Adabas Text Retrieval

Reference Manual
for UNIX and Windows

5 softwAre AG*

Manual Order Number: TRS232-030UNW

This document applies to Adabas Text Retrieval version 2.3.2 for UNIX and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:

Documentation@softwareag.com

© Copyright Software AG February 2004, February 2005 & November 2006
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

TABLE OF CONTENTS

1. INTRODUCTION ...ttt ittt 1
2. ADABAS TEXT RETRIEVAL CALLSooiiiiiiiiiiiiiiiiiiiiiiiiinens 7
Alphabetical Listingo 8
Topical LIStING 9
AD D 10
B 14
L 16
DS 17
DS 19
DY P 21
EISE 23
EISG 25
EISS 27
HIGH 29
PHON 32
QR 34
RO R . 37
RULE 38
Dynamic Parameters for the DYPand BCCalls 40

Adabas Text Retrieval Reference Manual for UNIX and Windows

QUERY SY N T A X ..ttt i ittt ittt eeteeeeenneeeennneeennnns 45
Search Labels 45
Search Mode Parameters 46
Query Syntax Diagrams i 48
Word-inverted Elements (free-text chapters) 48
Formatted-inverted Fields i e 48
Search NUMDEIS e e e e e e e 48
Search Query Language i 49
8 .« vttt e e e e 49
BlanKs e 49
Reserved WOrdst e 49
Truncation i e 49
OPETALOTS . ..ottt e 51
Evaluation Order of Operatorsttt 51
Boolean Operatorsiuiinii i e 51
Relational Operators ittt e 53
Proximity Operators oottt 55
Search NUMDbETS 56
The SORT and SORTD Functions, 57
TOKENIZ AT TON ...ttt ittt ittt ettt teeateeeeanaeeennnns 59
Scan Modes 60
SCTS - Define Classes of Characters 61
DESCIIPHON . .. oot 61
Call FOrmat e 61
a8 vttt ettt e e 61
Example SCTS Call i i 61
SCTC - Define Character Table i 62
SCTT - Define Translation Table 64
SCTW — Define Reserved Words i 67
SCTX — The Tokenization Logic ...t 71
SCA —The Scan Routine i 77

S.

Table of Contents

INCORE VOCABULARY ..ottt ittt ittt ieateeenneeennnns 79
Prerequisites for Using an Incore Vocabulary 79
Document Indexing with Incore Vocabulary 80
USER-WRITTEN ROUTINESt ittt e tiiieeannns 81
Introduction to User-Written Routines 81
USER EXIT IN TRS QUERY ... 82
1. User Exit as Part of the TRS System i i 82
2. The TRS Call “DUE” — Define User ExXit 83
3. The Query Syntax:ttt e 84
4. The User ExXit oo e e e 85
5. Calling the User EXitttt e et i 85
FORMAT OF CALL o 87
TRS CommOn ATCaottt ettt et e e e e e e e e e 87
Return Codeo 87
Action Codeo e 87
User Exit Control BIOCK i e 88
USER FUNCTION IN TRS . ..o 94
Return Code o 94
Brror Prefix . ..o 94
V) 95
Word Lengtho 95
Phonetic 1D e 95
Selection Codettt e 95
WOId Ve CtOr . .ottt 95

Adabas Text Retrieval Reference Manual for UNIX and Windows

7.

8.

THESAURUS / SYNONYM SYSTEM ..ottt iiiiiennnns 97
Fields of Implemenation of TRS Thesaurus 97
QR —Execute a QUETYoii 100
Thesaurus / Synonym Maintenance ..o, 101
TADD - Add a Connection/Synonymtoa Set-ID 102
TCHG - Change a Father/Son Connection or Synonym 104
TCOC - Change Comment and/or Order of a Connection 107
TDEL - Delete a Father/Son Connection or Synonym 109
TDID — Delete a all - from a Thesaurus 111
TFAT - List all Fathers found for a Son in a Thesaurus 112
TGEN - Generate Set-ID in Thesaurus for Text Retrieval 114
TIDS — List All Set-ID’sina Thesaurus 115
TLST - List all Connectionsina Set-ID 117
TSET — Check if a Set-ID existsina Thesaurus 120
TSON - List all Sons of a Father in Thesaurus 121
TSYN — List all SynonymsinaSet-ID 124
TUNG - Delete the Generation of a Set-ID in a Thesaurus 126
TWRD - Checkifa Word existsina Set-ID 127
FILE STRUCTURE ...ttt ittt ittt it eanaeeanns 129

An Example of the Index Structure i 130

Document File e 134

Vocabulary File e 134

Document Index File e e 136

Table of Contents

9. SAMPLE APPLICATION ..ottt iieeenennnnnnnnnnnns 137
The Calls Used in the Sample Application, 140
Initialize ADABAS TEXT RETRIEVAL Sessioncouuuiuiineo... 141
Document Maintenance and Retrieval 145
Formatted Retrieval 157
Overview of Selected DOCUMENTES oot et 167
Document Display 175
Index Display 180
Freestyle Retrieval 186
APPENDIX A — MESSAGESAND CODES ..ottt 191
General Return Codesot 191
DYP and BC Return Codest e 200
Scanner Return Codest 205
Thesaurus Return CodesSt 207
IN D E X ittt ittt tttteeennneeeennseeeennneeeennneeeannnans 209

\'/

INTRODUCTION

In industrialized societies, where the quantity of available information is increasing
exponentially, a major priority has become effective information management and distribution.
Database technology provides perhaps the only means of managing information of such vast
proportions.

Traditional information processing has been performed almost exclusively on formatted data
— data having a specified type and length. Advances in software and hardware technology,
however, have made possible the storage and retrieval of textual information as well. The ability
to process unformatted data makes it possible to extract needed information quickly from a large
text data bases.

The demand for efficient text retrieval is large and growing rapidly in almost all industries. For
example, textual information is found in great quantities in such fields as publishing, library
archiving, law and technical documentation. All of the necessary data retrieval and data
management services needed to create a comprehensive and truly integrated information processing
environment are provided by Adabas Text Retrieval together with other Software AG products.

Adabas Text Retrieval Reference Manual for UNIX and Windows

Integrated Information Processing

w2 (e

Reality

i

Communication ¢ vﬁ Description

Digiac:s;ry <> ‘ Application ‘ ‘ Application ‘ ‘ Application ‘ e — P CASE

% Reflection ¢ %

Database
)

3i|/ fm || % o
- : ~? 00 0O

=\[||7 1| e G Tl
Metadata Formatted Unformatted Office Geographical Complex Knowledge | Encyclopaedia

Data Data Data Data Data

Physical
Data Storage

Introduction

Adabas Text Retrieval Overview

Adabas Text Retrieval is the heart of Software AG’s text retrieval architecture. It offers the full
range of functionality expected of powerful information retrieval systems. Applications which
access both formatted and unformatted data simultaneously can be developed using Adabas
Text Retrieval. Other Software AG products which apply this architecture include:

. Natural Document Management — a complete document management system;

e Con-nect Document Retrieval — a optional extension to the functionality of Software
AG?’s office information system Con-nect.

Since Adabas Text Retrieval is an extension of Software AG’s database management system
Adabas, it inherits such advantages as high-performance data compression, on to restart,
automatic recovery and 24-hour operation.

Adabas Text Retrieval manages the index information and not the content of the data. This
means that document contents can be stored at any location (Adabas, sequential files, CD-ROM,
PC, etc.).

Adabas Text Retrieval can be used via its call interface from inside Natural or any third
generation language such as COBOL or PL/1.

Adabas Text Retrieval Reference Manual for UNIX and Windows

Adabas Text Retrieval Functionality

Text can be designated either as formatted or unformatted depending on your requirements.
Unformatted text is referred to in the remainder of this manual as free-text chapters.

Free-text chapters are subject to a process called inversion which creates the information
necessary to retrieve a text based on content. Any of three different inversion methods can be
used:

o Full-text inversion;
. Thesaurus-controlled inversion;

e Inversion using stopword lists.

Numerous functions and operators are available for flexible retrieval:
* Word searches

. Word truncation:
- Right truncation;
— Left truncation;
- Left and right truncation:
- Middle truncation.
. Phonetic searches;

. Synonym searches;

e Integration of thesaurus relations:
- Broader terms;
- Narrower terms;
- Synonyms.

e Relational operators;

¢ Boolean operators;

e Structure-independent search (any combination of free-text chapters and formatted
fields);

* References to previous queries (refinement);
. Sorting in ascending and descending order;

e Highlighting of found items.

Adabas Text Retrieval Terminology

Introduction

Defined below are the most important and frequently used terms in Adabas Text Retrieval.

Document

Documents consists of chapters (sometimes referred to as categories) which are equivalent to
fields in the relational database model. Chapters can either be designated as free-text chapters,
which are managed by Adabas Text Retrieval, or as formatted fields in accordance with the

database system.

Free-text chapters can be separated into paragraphs and sentences. This allows you to issue
queries which search individual sentences and paragraphs.

Document

Chapters

OR D ALIMDED
ORDE
F tt
TITL | ORDER NUMBER | Fopmatted
TITLE
[TITLE |
—
ABST
Free-text
chapters | [ABSTRACT |
DAT
DATE
PRI [DATE | j: .
[PRIC] A
[PRICE |

Adabas Text Retrieval Reference Manual for UNIX and Windows

Inversion

Inversion is the process which creates the necessary document index entries for the contents of
free-text chapters in the document. Adabas Text Retrieval supports three inversion methods:

o Full-text inversion;
e Inversion using a controlled thesaurus;

e Inversion by ignoring words in the stopword list.

You can choose one of the inversion methods for each free-text chapter.

ADABAS TEXT RETRIEVAL CALLS

Adabas Text Retrieval provides calls which perform the following functions:

. Set up sessions;

e Invert free-text chapters;

o Retrieve text and information;

e Browse through ISN sets;

e Highlight search terms;

e Invoke a tokenization process.

This chapter explains what each call is designed to carry out and the parameters of each call.

The names of dynamic parameters appear in uppercase capital letters. All other parameters
appear in italics.

Adabas Text Retrieval Reference Manual for UNIX and Windows

Alphabetical Listing

The following table lists all available Adabas Text Retrieval calls in alphabetical order:

Call

Description

Page

ADD
BC
CL
DDS
DSL
DYP
EISE
EISG
EISS
HIGH
PHON
QR
ROR
RULE
SCA
SCTC
SCTS
SCTT
SCTW
SCTX

Creates document index entries

Starts a session

Closes a session

Deletes document index entries
Defines search labels

Changes dynamic parameters

Ends browsing through an ISN set
Browses through an ISN set

Starts browsing through an ISN set
Highlights a document

Translates a token to a phonetic value
Executes a query

Releases a query

Defines inversion rules

Scans a free-text line and returns a token
Defines acharacter table

Defines classes of character

Defines a translation table

Defines reserved words

Defines the tokenization logic

DUBHLRLBRLHULELEELEH

~
~

6
61
64
67
71

[\

Adabas Text Retrieval Calls

Topical Listing

The following table provides a cross reference of Adabas Text Retrieval calls according to

function:

Topic Calls Page

Setting up Sessions BC B4
CL e
DYP

Inverting Documents RULE BS
ADD 10
DDS [
PHON 32

Retrieving Text and Information DSL |39
QR ¥
ROR ¥/

Browsing through ISN Sets EISE BB
EISG [
EISS

Highlighting HIGH |39

Invoking a tokenization process SCA 77
SCTC 62
SCTS 61
SCTT 64
SCTW 67
SCTX 71

Adabas Text Retrieval Reference Manual for UNIX and Windows

ADD

Description

The ADD call creates the document index entries for the contents of a free-text chapter within
a document. This process is called document inversion.

Before the ADD call can be executed, the free-text chapter to which the entered text belongs
must be established.

The free-text chapter is established by a BC or DYP call which provides the name of the Adabas
hyperdescriptor associated with the free-text chapter in question, as the value of the TEXT
parameter.

The ADD call stores entries in the document index; it does not store the document text.

Example

See page 153.

Call Format

10

CALL 'TRS’ 'ADD’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Document-ID alphanumeric variable input
Source-Text Length binary 4 bytes input
Source Text alphanumeric variable input
Document ISN binary 4 bytes output
End-of-Text Indicator alphanumeric 6 bytes input

Adabas Text Retrieval Calls

Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

Document-ID
A unique Document-ID must be provided. There are two different ways of providing a
Document-ID depending on the setting of the dynamic parameter DOCID of the DYP call:

e If the DOCID parameter contains the name of a formatted field (Adabas descriptor), the
Document-ID parameter must contain a unique value for the formatted field in question.
If a record containing the specified value of Document-ID already exists, the Adabas ISN
of this record is used in the document index, otherwise an Adabas record containing only
the value for the formatted field in question is added to the document file.

e If the DOCID parameter contains the value *##’, the Document-ID parameter must contain
the Adabas ISN of a record on the document file. An Adabas record with the specified ISN
must already exist on the document file.

Source-Text Length

The length of the text in bytes, as contained in the parameter Source Text.

Source Text

The text to be inverted.

Document ISN

The Document ISN reflects either of the following ISNs:
e the ISN entered in the Document-ID parameter;

e the ISN of the record containing the value of the Document-ID parameter.

1

Adabas Text Retrieval Reference Manual for UNIX and Windows

End-of-Text Indicator

Free-text chapters can be inverted as one text string or divided into several parts. The
End-of-Text Indicator parameter must contain either of the following values:

LAST For the last part of a free-text chapter.
NOLAST In all remaining cases.

The inversion process for the contents of a free-text chapter can generally be executed in one
step. However, for the inversion of long texts it may be necessary to execute the inversion in
multiple steps, because intermediate Adabas end transactions may be required in order to
prevent an Adabas Hold Queue overflow.

12

Adabas Text Retrieval Calls

Inversion Process

ORDER NUMBER

TITLE

ABSTRACT

DATE

PRICE

The Process for the
Free-Text Chapters @
TOKENIZATION
PROCESS
STANDARDIZED ORIGINAL
TERM TERM
INVERSION
PROCESS
FULL-TEXT THESAURUS STOPWORD LIST
INVERSION CONTROLLED CONTROLLED
FULL-TEXT
INDEX

13

Adabas Text Retrieval Reference Manual for UNIX and Windows

BC

Description

The BC call opens an Adabas Text Retrieval session. This call is mandatory and must be invoked

once at the beginning of each session.

Example

See page 142.

Call Format

Call 'TRS’ ’BC’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Size of Buffer binary 4 bytes in/output

Save Area alphanumeric 100 bytes output

Dynamic Parameters alphanumeric variable input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are

explained in Appendix A Messages and Codes.

14

Adabas Text Retrieval Calls

Size of Buffer

The size of the Adabas Text Retrieval buffer.

Minimum Size 32K
Recommended Size 64 K
Save Area

The name of the storage area used by Adabas Text Retrieval as a temporary save area.

Dynamic Parameters

Any of the following dynamic parameters can be specified in a BC call:

AUTOASP DSFNR INDEX SETCHAR
CONCHAR ERRADA MAXDPRO TEXT
DBTYPE ERRPRE MAXVSET TRUNCHAR
DEFOPER HIGHLIGHT MULTICALL VFNR
DFNR HOLDWORD PASSWORD WORDLEN
DOCID INCVOC SEARCHLB

For details of the dynamic parameters and their possible values, refer to the section entitled
Dynamic Parameters for the DYP and BC Calls on pagqu.

15

Adabas Text Retrieval Reference Manual for UNIX and Windows

CL

Description

The CL call closes an Adabas Text Retrieval session and releases all resources.

Example

See page 144.

Call Format

CALL 'TRS’ °’CL’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Save Area alphanumeric 100 bytes output
Return Code

Return Code

Save Area

This parameter refers to the storage area used by Adabas Text Retrieval for a temporary save
area.

16

Adabas Text Retrieval Calls

DDS

Description

The DDS call deletes the document index entries for a specific free-text chapter within a
document.

Important

Before the DDS call can be executed, the free-text chapter to which the entered text belongs
must have been established.

The free-text chapter is established by a BC or DYP call which provides the name of the Adabas
hyperdescriptor associated with the free-text chapter in question, as the value of the TEXT
parameter.

The DDS call deletes entries in the document index; it does not delete the document text.

Example
See page 155.

Call Format

CALL 'TRS’ ’'DDS’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Document-ID alphanumeric variable input

Delete Option alphanumeric 3 bytes input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

17

Adabas Text Retrieval Reference Manual for UNIX and Windows

Document-ID
A unique Document-ID must be provided. There are two different ways of providing a
Document-ID depending on the setting of the DOCID parameter of the DYP call:

e If the DOCID parameter contains the name of a formatted field (Adabas descriptor), the
Document-ID parameter must contain a unique value for the formatted field in question.

e If the DOCID parameter contains the value *##, the Document-ID parameter must contain
the Adabas ISN of a record on the document file.

Delete Option

There is only one possible delete option:

SUM Deletes the document index entries for the current free-text chapter.

Note:

If more than one free-text chapter exists for a document whose index entries are to be deleted,
the document index entries for each chapter must be deleted separately using repeated pairs of
DYP and DDS calls.

18

Adabas Text Retrieval Calls

DSL

Description

The DSL call defines search labels on the document index. These labels allow direct referencing
of both formatted fields and free-text chapters in queries.

For free-text chapters, the same search label can be entered for more than one Adabas
hyperdescriptor name, thus making up a global search label which enables the user to address
multiple free-text chapters with one search label in a query.

Example

See page 143.

Call Format

CALL 'TRS’ °'DSL’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Search Labels alphanumeric variable input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

19

Adabas Text Retrieval Reference Manual for UNIX and Windows

Search Labels

20

A search label can be assigned to an Adabas field. This can either be a formatted field (Adabas
descriptor) or a free-text chapter (Adabas hyperdescriptor).

The definition of search labels consists of a character string containing one or more entries
separated by commas and ending with a period.

To define search labels, use the following syntax:

’Y1YI=namel AA=name2,Y2Y2=name3,AB=named/,...]."
’Y1Y1=(namel,thesname)/,...].’
’Y1Y1=namel,Y2Y2=name2(,...).’

where Y1Y1 and Y2Y2 are text inverted fields and AA and AB are formatted inverted fields.

namel-4 are logical names for text inverted and formatted inverted fields. IN order to use logical
names for retrieval of text inverted and formatted inverted fields in the document structure,
search-label names are assigned to these fields.

thesname is a placeholder for a thesaurus linked to a field. Thesaurus names must not exceed
8 bytes.

Example:

'Y1Y1=TITLE, Y2Y2=ABSTRACT, AH=NUM,AI=DATE,Y1Y1=ABSTI, Y2Y2=ABSTI.’

where TITLE and ABSTRACT are the search labels for text inverted fields.
where NUM and DATE are the search labels for formatted inverted fields.
where ABSTI is the global search label for text inverted fields.

For information about search label and global search label, see Chapter Query Syntax.

Note:
Formatted inverted fields are specified as two-character bytes. Text inverted fields are specified
as four-character bytes.

Adabas Text Retrieval Calls

DYP

Description

The DYP call enables users to define dynamic parameters or redefine any parameters specified
in the BC call at the start of a session or in previous DYP calls. For example, the call enables
users to handle more than one free-text chapter within a document by changing the TEXT
parameter.

Example

See pages 153, 155, and 178.

Call Format

CALL 'TRS’ °'DYP’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Dynamic Parameters alphanumeric variable input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

21

Adabas Text Retrieval Reference Manual for UNIX and Windows

Dynamic Parameters

Any of the following dynamic parameters can be specified in a DYP call:

AUTOASP DSFNR INCVOC PASSWORD
CONCHAR ERRADA INDEX SEARCHLB
DBTYPE ERRPRE TEXT SETCHAR
DEFOPER ERRUSE MAXDPRO TRUNCHAR
DFNR HIGHLIGHT MAXVSET VFNR
DOCID HOLDWORD MULTICALL WORDLEN

For details of the dynamic parameters and their possible values, refer to the section entitled
Dynamic Parameters for the DYP and BC Calls on pagqu.

22

Adabas Text Retrieval Calls

EISE

Description

Each query executed by Adabas Text Retrieval results in an Adabas ISN set. This set can be
referenced by EISE, EISG and EISS calls. After an EISS call and any number of EISG calls have
been used, the EISE call must be used to conclude browsing through an ISN set.

Example

See page 173.

Call Format

CALL 'TRS’ ’EISE’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Command-1D binary 4 bytes input

Set Type alphanumeric 1 byte input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

Command-ID

The Adabas Command-ID of the ISN set to be referenced, as created by the QR call. It is
identical to the Command-ID output parameter of the QR call which generated the ISN set and
must therefore be set to the same value.

23

Adabas Text Retrieval Reference Manual for UNIX and Windows

Set Type

The type of ISN set for which browsing is to be terminated. One of the following values must
be specified:

D’ Document ISN set
vV’ Vocabulary ISN set

The value of the Set Type parameter must be identical to the value of the Type parameter of the
QR call.

24

Adabas Text Retrieval Calls

EISG

Description

Each query executed by Adabas Text Retrieval results in an Adabas ISN set. This set can be
referenced by EISE, EISG and EISS calls.

The EISG call is used to browse through an ISN set created by a QR call. The sequence of one
or more EISG calls must be preceded by an EISS call and concluded by an EISE call.

Example

See page 170.

Call Format

CALL °'TRS’ ’EISG’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Command-1D binary 4 bytes input

Set Type alphanumeric 1 byte input
Quantity binary 4 bytes input
Position binary 4 bytes input

ISN binary 4 bytes output

Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

25

Adabas Text Retrieval Reference Manual for UNIX and Windows

Command-ID

The Adabas Command-ID of the ISN set to be referenced, as created by the QR call. It is
identical to the Command-ID output parameter of the QR call which generated the ISN set and
must therefore be set to the same value.

Set Type
The type of ISN set for which browsing is to be executed. One of the following values must be
specified:
D’ Document ISN set
vV’ Vocabulary ISN set

The value of the Set Type parameter must be identical to the value of the Type parameter of the
QR call.

Quantity

The number of ISNs in the set generated by the QR call. The value of the Quantity parameter
must be identical to the Quantity parameter of the QR call.

Position

The position of the requested ISN within the ISN set as generated by the QR call.

ISN

The ISN within the position as indicated by the Position parameter in the ISN set is returned by
the EISG call.

26

Adabas Text Retrieval Calls

EISS

Description

Each query executed by Adabas Text Retrieval results in an Adabas ISN set. This set can be

referenced by EISE, EISG and EISS calls.

The EISS call starts browsing through an ISN set created by a QR call. The EISS call must be
performed once before each sequence of EISG calls used to browse through an ISN set.

Example
See page 169.

Call Format

CALL °'TRS’ ’EISS’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Command-1D binary 4 bytes input

Set Type alphanumeric 1 byte input

Quantity binary 4 bytes input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are

explained in Appendix A Messages and Codes.

Command-ID

The Adabas Command-ID of the ISN set to be referenced, as created by the QR call. It is
identical to the Command-ID output parameter of the QR call which generated the ISN set and

must therefore be set to the same value.

27

Adabas Text Retrieval Reference Manual for UNIX and Windows

Set Type

This parameter defines the type of ISN set for which browsing is to be started. One of the
following values must be specified:

D’ Document ISN set
vV’ Vocabulary ISN set

The value of the Set Type parameter must be identical to the value of the Type parameter of the
QR call.

Quantity

The number of ISNs in the set generated by the QR call. The value of the Quantity parameter
must be identical to the Quantity parameter of the QR call.

28

Adabas Text Retrieval Calls

HIGH

Description

The HIGH call is used to mark those words in a document which have been found for a given
query.

The HIGH call marks the beginning and ending of the words to be highlighted by two specific
characters. In NATURAL these characters can be used for dynamic highlighting by means of
the dynamic attribute feature (DY).

Important

Before the HIGH call can be executed, the free-text chapter to which the entered text belongs
must have been established.

The free-text chapter is established by a BC or DYP call which provides the name of the Adabas
hyperdescriptor associated with the free-text chapter in question, as the value of the TEXT
parameter.

Example

See page 177.

29

Adabas Text Retrieval Reference Manual for UNIX and Windows

Call Format

CALL 'TRS’ ’'HIGH’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Document-ID alphanumeric variable input
Query Name alphanumeric 8 bytes input
Input Text alphanumeric variable input
Output Text alphanumeric variable output
Text Length binary 4 byte input
Prefix alphanumeric 1 byte input
Suffix alphanumeric 1 byte input
Cursor binary 4 bytes in-/output
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are

explained in Appendix A Messages and Codes.

Document-ID

30

A unique Document-ID must be provided. There are two different ways of providing a
Document-ID depending on the setting of the DOCID parameter of the DYP call:

e If the DOCID parameter (DYP call) contains the name of a formatted field (Adabas
descriptor), the Document-ID parameter must contain a unique value for the formatted

field in question.

e If the DOCID parameter (DYP call) contains the value “##”, the Document-ID parameter
must contain the Adabas ISN of a record on the document file representing the document

in question.

Adabas Text Retrieval Calls

Query Name

The name of the query as defined in the Query Name parameter of the QR call. The words will
be highlighted according to the selection criteria specified in this query.

Input Text

The source text which contains the words to be highlighted. Blanks should be provided at the
beginning and at the end of the source text to host the assigned prefix and suffix characters if
necessary.

Output Text

The source text including the assigned prefix and suffix characters.

Text Length

The length of the source text expressed in bytes.

Prefix

The special character indicating the beginning of a word to be highlighted.

Recommended character: “<”

Suffix

The special character indicating the end of a word to be highlighted.

Recommended character: “>
Cursor

For each free-text chapter of a document, this parameter has to be set to zero at the beginning
of the highlighting process and must not be changed for the remainder of the process.

31

Adabas Text Retrieval Reference Manual for UNIX and Windows

PHON

Description

The PHON call is used to translate a token into a phonetic value.

Call Format

CALL 'TRS’ °PHON’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Truncation Character alphanumeric 1 byte input
Token to be Translated alphanumeric variable (1-64 bytes) input
Translated Value alphanumeric 64 bytes output
Phonetic ID alphanumeric 1 byte input
Length of Token binary 4 bytes input
Number of Phon. Values binary 4 bytes output
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

Truncation Character

Specifies the character to be used as word-truncation character. This should be the same
character as specified by the BC or DYP call.

Token to be Translated

Specifies the token to be translated.

32

Adabas Text Retrieval Calls

Translated Value

The resulting translated token.

Phonetic ID

Not used at the moment but must be specified.

Length of Token

The length of the token to be translated in bytes.

Number of Phon. Values

The number of resulting tokens after translation. In the case of an error, the returned value is
0 (zero).

33

Adabas Text Retrieval Reference Manual for UNIX and Windows

QR

Description

The QR call is used to retrieve text and information from free-text chapters and formatted fields.

This process is called information retrieval.

Example
See pages 160, 162, 163, 169, 183, 189.

Call Format

CALL 'TRS’ 'QR’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Query alphanumeric variable input
Query Length binary 4 byte input
Query Name alphanumeric 8 bytes input
Disp Error binary 4 byte output
Length Error binary 4 byte output
Default Mode alphanumeric 1 byte input
Command-1D binary 4 bytes output
Quantity binary 4 bytes output
Type alphanumeric 1 byte input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

Adabas Text Retrieval Calls

Query

The query. Its syntax is described in the Chapter Query Syntax.

Query Length

The length of the current query expressed in bytes.

Query Name

The name of the current query. Subsequent queries can use this name to refer to the results of
the current query. Two different types of query names are possible depending on the value of
the Type parameter:

Type Query Name Range of nnn

D DOCSOnnn 001-999

v WRDSOnnn 001-999
Disp Error

If an error is detected when the syntax of the query is checked, this parameter will contain the
displacement of the erroneous term within the query.

Length Error

If an error is detected when the syntax of the query is checked, this parameter will contain the
length of the erroneous term within the query.

35

Adabas Text Retrieval Reference Manual for UNIX and Windows

Default Mode

The default selection mode. One of the following letters must be specified as the default
selection mode:

Letter Selection Mode
= PRECISE

A ASPECT

G GROUP

P PHONETIC

R ROOT

S SYN

X SYR

Selection modes are explained in Chapter Query Syntax.

Command-ID

The Adabas Command-ID of the Adabas ISN set created by the QR call.

This parameter serves as input to the EISS, EISG, EISE and RET calls.

Quantity

The number of ISNs contained in the ISN set created by the Adabas Text Retrieval QR call.

Type

The type of retrieval to be executed by the QR call. There are two possible values:

‘D¢ Document retrieval

‘v¢ Vocabulary retrieval

36

Adabas Text Retrieval Calls

RQR

Description

The RQR call is used to release all results of a specific query.

A query is automatically released when another QR call with the same Query Name is executed.

Example

See pages 159, 162, 163, 188.

Call Format

CALL 'TRS’ ’RQR’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Query Name alphanumeric 8 bytes input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

Query Name

The name of the query to be released, as assigned in the QR call.

37

Adabas Text Retrieval Reference Manual for UNIX and Windows

RULE

Description

The RULE call is used to define the rules for document inversion.

Call Format

CALL 'TRS’ 'RULE’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Option alphanumeric 7 bytes input

Max Words binary 4 bytes input

Aspects alphanumeric variable input

Marks alphanumeric variable input
Return Code

The return code is the message delivered at the end of processing which indicates whether an
error has occurred. A zero code indicates the normal end of processing. Other codes are
explained in Appendix A Messages and Codes.

38

Adabas Text Retrieval Calls

Option

This parameter defines the type of inversion to be executed. The options are:

Option Characteristics

’FULL’ Full text inversion of all words contained in the document to be inverted.
This option is generally the default setting.

’EXCLUDE’ Inversion of all words not belonging to one of the aspects as defined in the
Aspect parameter.

’INCLUDE’ Inversion only of those words belonging to aspects as defined in the Aspect
parameter.

"MARKED’ Inversion only of those words which are tagged with special markers as

defined in the Marks parameter.

Max Words

The maximum number of words to be inverted per document. This parameter is only maintained
for upward compatibility. If Adabas hyperdescriptors are used for document indexing then this
parameter is of no relevance.

Aspects

A list of the aspects to be used for the inversion of a document. Individual aspects on the list
must be separated by commas and the list must end with a period.

Marks

A list of predefined character strings used in the document to be inverted. If the mark used refers
to a predefined aspect, the latter can be entered after the mark and separated from it by the equals
(=) symbol. Marks must be separated by commas and the list concluded with a period.

39

Adabas Text Retrieval Reference Manual for UNIX and Windows

Dynamic Parameters for the DYP and BC Calls

The following dynamic parameters can be specified by a BC or DYP call.

Parameter Explanation

AUTOASP Automatically creates an aspect for each word entered in the vocabulary
file.

CONCHAR Specifies a character in hexadecimal format to be used to concatenate
multi-word terms. Blank and binary zero must not be specified. The
format is: hh
Example:

’CONCHAR=2D’

DBTYPE Specifies the target (server) environment. UNIX is the default
environment. Possible values are: UNIX, VMS, MAINFRAME.
Example:

’DBTYPE=VMS’

DEFOPER Specifies the default operator to be used in case none is explicitly
mentioned between two terms. Possible values are: AND, OR, NOT, AD]J,
INPAR, INSEN, NEAR
Default setting: ADJ

DFNR Document File Number. The Document File Number can be specified
either as it stands, or alternatively together with the Adabas Database ID
in question. In the latter case, Database ID and file number must be
enclosed in parentheses and separated by a comma.

Example:
’DFNR=39’
’DFNR=(1,39)’
Note: The DFNR parameter is mandatory
DOCID Adabas field name of the Document-ID in the document file. The value

40

4’ indicates that the ISN of the document file is to be used as document
identification.
Default setting: ‘DA’

Parameter

Adabas Text Retrieval Calls

Explanation

DSFNR

ERRADA

ERRPRE

ERRUSE

HIGHLIGHT

HOLDWORD

Document Index File Number. The Document Index File Number can be
specified either as it stands, or alternatively together with the Adabas
Database ID in question. In the latter case, Database ID and file number
must be enclosed in parentheses and separated by a comma.

Example:

'DSFNR=39’

'DSNR=(1,39)’

Note: The DSFNR parameter is mandatory

A constant value to be added to all Adabas return codes. You may specify
5 digits. Default setting: 0 (zero)

A constant value to be added to all Adabas Text Retrieval return codes.
You may specify 5 digits. Default setting: 0 (zero)

A constant value to be added to all User Exit return codes. You may
specify 5 digits. Default setting: 0 (zero)

Specifies the highlight algorithm. Possible values are: R, I

R = Replace the first blank found below/after the word to be highlighted
with the highlight characters. This is the default.

I = Insert before and after the word to be highlighted the highlight
characters. Because of character insertion, the output buffer may be larger
after return. Check buffer length after return. The output buffer should be
large enough to hold the complete text plus highlight characters.
Example:

'HIGHLIGHT=R’

Possible values are: YES, NO

To ensure correct document inversion in multi-user environments, this
parameter should be set to YES. If YES, each word is read in HOLD.
Default setting: NO

Example:

’HOLDWORD=YES’

a4

42

Adabas Text Retrieval Reference Manual for UNIX and Windows

Parameter

Explanation

INCVOC

INDEX

MAXDPRO

MAXVSET

MULTICALL

The format is: aaaaaaaa

Specifies the name (maximum 8 bytes) of incore vocabulary. For more
information, refer to Chapter Incore Vocabulary.

Example:

INCVOC=MYWORDS’

This parameter indicates which proximity indices are to be maintained by
Adabas Text Retrieval. The following values can be entered:
INDEX=(WORD)’

only word positions are maintained.

INDEX=(WORD,SENTENCE)’
word and sentence positions are maintained.

INDEX=(WORD,PARAGRAPH)’
word and paragraph positions are maintained.

If this parameter is omitted, Adabas Text Retrieval will maintain word,
sentence and paragraph positions.

Specifies the maximum number of selected documents on which a
proximity search is to be performed.
Default setting: 200

Specifies the maximum number of words for a search.
Default setting: 2000

Possible values are: YES, NO

Specifies whether the /Adabas multicall feature is to be used during the
document inversion process. If the multicall feature is used, the Adabas
Text Retrieval buffer size should be at least 96 KB.

Default setting: NO

The following parameter settings apply:
- MULTICALL=YES activates the Multi-Call command feature.

- MULTICALL=NO deactivates the Multi-Call command feature.

Adabas Text Retrieval Calls

Parameter Explanation
Using the feature leads to significant increase in performance during
document inversion, in particular in client/server applications.
Example:

'MULTICALL=YES’

PASSWORD An Adabas password can be supplied.

SEARCHLB Specifies the default search label. The names of free-text chapters can be
entered to a maximum of 20. If this parameter is omitted it takes the
current value of the TEXT parameter.

Example:
"SEARCHLB=(Y1Y1,Y2Y2,Y3Y3)’

SETCHAR Specifies the prefix character used to identify the result of previous
queries.

Default setting: NONE
Recommended setting: #

TEXT The name of the Adabas hyperdescriptor of the current free-text chapter.
This name is used for subsequent ADD and DDS calls. For compatibility
reasons regarding previous versions of Adabas Text Retrieval, the name
of the hyperdescriptor must be entered twice.

If the SEARCHLB parameter is omitted, the value of the TEXT parameter
is used as the default search label.
Default setting: "Y1Y1’
TRUNCHAR The character to be used as word truncation indicator.
Default setting: **’
VFNR Vocabulary File Number. The Vocabulary File Number can be specified

either as it stands, or alternatively together with the Adabas Database ID
in question. In the latter case, Database ID and file number must be
enclosed in parentheses and separated by a comma.

Example:

'VFNR=38’

'VFNR=(1,38)’

Note: The VFNR parameter is mandatory

43

44

Adabas Text Retrieval Reference Manual for UNIX and Windows

WORDLEN The value of this parameter indicates the word length to be used by Adabas
Text Retrieval.

Maximum word length: 64.

Default setting: 32

The dynamic parameters form a character string of one or more parameter entries and must be
separated by commas and ended by a period. Each parameter must be coded as follows:

’Parameter=Value’

Example:

'VFNR=38,DFNR=39,DSFNR=39,TEXT=Y2Y2.’

QUERY SYNTAX

Search Labels

A search label is an alphanumeric identifier up to eight characters long used to refer to an
element name in a search query. For example, the label “ABS” could be used to refer to the
element “ABSTRACT” in search queries. This method of abbreviation saves keystrokes in
entering search queries.

A global search label is a search label that represents a combination of two or more search labels.
Several labels can be combined to form a global label which, when applied in search queries,
can be used to search for more than one text inverted element. For example, the search labels
ABSTRACT and TITLE could be assigned the global label ABSTI.

Search labels are defined using the DSL call (see page 19).
Queries in formatted fields must be preceded by a search label.

Queries to free-text chapters can be preceded by a search label, but do not have to be if the search
label required is the same as that last specified in the TEXT or SEARCHLB parameter of the
last BC or DYP call, so-called standard search labels. Thus, a search label for a free-text chapter
remains valid until another search label has been chosen to replace it. For example:

ABS ADABAS

The occurrences of the term ADABAS within the free-text chapter ABSTRACT will be
retrieved.

45

Adabas Text Retrieval Reference Manual for UNIX and Windows

Search Mode Parameters

The search mode indicates the method to be used when retrieving inverted words.

The search mode precedes the search term in a query. If no search mode is specified, then the
mode most previously specified is used. The following syntax must be used:

Search-label search-mode search-term

When no selection mode is specified in the QR call which initiates the query, the default
selection mode is used. The default selection mode is defined by the value of the Default
Selection Mode parameter of the QR call in question.

search-label The name of the search label for the element concerned
search-term The term to be used as the basis for retrieval
search-mode One of the following parameters

Parameter* Mode

= PRECISE

PHONETIC PHONETIC

SYN SYNONYM

ROOT ROOT

SYR SYNONYM/ROOT

ASPECT ASPECT

GROUPn GROUP

The options are explained in more detail below.

PRECISE Mode

The default mode. Searches are performed on the basis of spelling alone. Input must be identical
to that contained in the document.

PHONETIC Mode

All words are retrieved which have the same phonetic value. This feature is designed for
searches in German language, but it can also be used with some success for English language.
For example, a PHONETIC search for the name “Mayer” will also retrieve the names “Maier”
and “Meyer”.

46

Query Syntax

SYNONYM Mode

If search terms are have synonyms defined for them in a thesaurus, then all documents
containing the search term and its synonyms are found. The selection mode SYNONYM is
based on the information stored previously in the SYNONYM field (V8) of the vocabulary file.

ROOT Mode

The ROOT search mode selects those documents which contain any of the search term’s

previously defined roots. This search mode is based on the information stored previously in the
ROOT field (V4) of the vocabulary file.

SYNONYM/ROOT Mode

The SYR selection mode selects those documents which contain the words specified in the
query, and/or any of their previously defined synonyms, and/or any of their previously defined
roots. This search mode is based on the information stored previously in the SYNONYM field
(V8) and/or ROOT field (V4) of the vocabulary file.

ASPECT Mode

All words are retrieved which are narrower terms for the search term. The number of
hierarchical levels between the search term and the terms found is irrelevant. For example, an
ASPECT search for the term “fiction” would retrieve the words “poem”, “epic”, “sonnet”,
“ballad”, “haiku”, “novel”, “story”, etc. The selection mode ASPECT is based on the

information stored previously in the ASPECT field (V5) of the vocabulary file.

GROUP Mode
All words are retrieved which are narrower terms occurring # levels lower in the thesaurus
hierarchy than the search term. Where # is omitted the depth is equal to 1.

LLINT3

For example, a GROUP search for the term “fiction” would retrieve the words “poem”, “novel”,
“story”, etc., but NOT the narrower terms (“sonnet”, “epic”, “ballad”, “haiku”, etc.) for these.

The selection mode GROUP is based on the information stored previously in the ASPECT field
(V5) of the vocabulary file.

47

Adabas Text Retrieval Reference Manual for UNIX and Windows

Query Syntax Diagrams

The syntax diagram below shows the various elements of a search query. Expressions in square
brackets are optional.

SORT

SORTD sort-f/eld]

QUERY= query-expression [boolean-operator query] [

The content of query-expression varies depending on whether you reference word-inverted
elements, formatted-inverted elements, or search numbers. The different possibilities are listed
below.

Word-inverted Elements (free-text chapters)

QUERY

EXPRESSION = search-label word-set [proximity-operator word-set]

Formatted-inverted Fields

QUERY

EXPRESSION — search-label [relational-operator] word-set

Search Numbers

QUERY

EXPRESSION = search-number [boolean-operator query]

48

Query Syntax

Search Query Language

Case

Blanks

Search queries may be entered in either upper or lower case.

In searching formatted-inverted text elements, search terms which contain blanks or non-TRS
characters must be enclosed in quotes.

In searching word-inverted text elements, blanks between words are interpreted as the value set
in the parameter DEFOPER.

Reserved Words

Search labels, global labels, and operators are reserved words within TRS and therefore cannot
be used directly in search queries. To apply a reserved word in a search query, it must be
surrounded by quotes.

Truncation

Truncation enables the retrieval of documents containing word segments or derivatives. Three
types of truncation are available: left, right and middle. The character used to indicate truncation
is specified by your administrator during installation. The following examples illustrate the
three truncation options applying an asterisk (“*”) as truncation character.

Note:
Only right word truncation is possible for formatted-inverted fields.

Right Truncation

Right truncation is used to retrieve documents which contain words beginning with a specified
string of letters. Thus the query

ABSTRACT kilo*

retrieves all words beginning with the string “kilo”, such as “kilogram” and “kilowatt”.

49

Adabas Text Retrieval Reference Manual for UNIX and Windows

Left Truncation

Left truncation is used to retrieve documents which contain words ending with a specified string
of letters. Thus the query

ABSTRACT *gram
retrieves all words ending with the string “gram”, such as “kilogram” and “program”.

Note:
Not possible for formatted-inverted fields.

Left and Right Truncation

Combined right and left truncation is used to retrieve documents which have words containing
a specified string of letters. Thus the query

ABSTRACT *ra*

retrieves words such as “gram”, “kilogram”, “hurrah”, “arab”, etc.

Note:
Not possible for formatted-inverted fields.

Middle Truncation

50

Middle truncation is used to retrieve documents which contain words beginning and ending with
a specified string of letters. Thus the query

ABSTRACT hypo*mia

retrieves all words beginning with the string “hypo” and ending with the string “mia”, such as
“hypothermia” and “hypoglycaemia”. It is not possible to specify how many letters are to be
truncated.

Note:
Not possible for formatted-inverted fields.

Query Syntax

Operators

Evaluation Order of Operators

When several different operators are used in the same search query, the order of evaluation is
determined on a the basis of predefined priority. The evaluation priorities, from highest to
lowest, are the following:

Expressions enclosed in parentheses;
AND;

NOT;

OR.

Boolean Operators

Boolean operators are used to join query expressions of the same or different types. The
following Boolean operators may be used:

« AND;
+ NOT;
« OR

The AND Operator

The AND operator is used to select documents based on the commonality of two query
expressions. For example, the query

ABSTRACT strawberries AND cream

retrieves all documents in which the words “strawberries” and “cream” both occur in the
element with the ABSTRACT search label.

The AND operator can be used more than once in a single query. For example, the query

ABSTRACT gin AND vermouth AND olive

retrieves all documents in which all the words are contained.

51

Adabas Text Retrieval Reference Manual for UNIX and Windows

The OR Operator

The OR operator is used to retrieve documents in which any one of the terms specified occur.
This is especially useful for retrieving related concepts. For example, the query

ABSTRACT sugar OR sweetener

retrieves all documents in which either the word “sugar” or the word “sweetener” occurs in the
element with the ABSTRACT search label.

Like the AND operator, the OR operator can be used more than once within a single query. You
can also replace the OR in search queries with a comma.

ABSTRACT sugar, sweetener

The NOT Operator

52

The NOT operator is used to retrieve documents which contain one specified term and which
do not contain another. It can be used only following a query expression. For example, the query

ABSTRACT sweetener NOT honey

retrieves those documents in which the element with the ABSTRACT search label contains the
word “sweetener”, but not the word “honey”. The following example, however, is invalid:

ABSTRACT NOT honey

Query Syntax

Relational Operators

Relational operators are used to reference alphanumeric and numeric formatted-inverted
elements.

The following relational operators may be used:
e BETWEEN n,n

e EQun (“equal to”)

e GE n (“greater than or equal to”)

* GT n (“greater than”)

e LE n (“less than or equal to”)

e LT n (“less than”)

where “n” in each case is an obligatory value which depends on the element in question.
The relational operator can be omitted in which case the default is ‘EQ’.

The operators are described in more detail below.

The BETWEEN Operator

The BETWEEN operator is used to retrieve documents containing any one of a range of values.
For example, the query

DATE BETWEEN 19870101,19871231
retrieves all documents in which the date given in the element with the DATE search label is
1987.

The EQ Operator

The EQ (“equal to”) operator is used to retrieve documents containing a single, precise value.
For example, the query

NUMBER EQ 109

retrieves the document in which the value for the NUMBER search label is 109.

The same result is also be achieved by omitting the operator:

NUMBER 109

53

Adabas Text Retrieval Reference Manual for UNIX and Windows

The GE Operator

The GE (“greater than or equal to”) operator is used to retrieve documents containing a value
greater than or equal to the specified value. For example, the query

NUMBER GE 109

retrieves all documents in which the value for the NUMBER search label is 109 or greater.

The GT Operator

The GT (“greater than”) operator is used to retrieve documents containing a value larger than
the specified value. For example, the query

NUMBER GT 109

retrieves all documents in which the value for the NUMBER search label is greater than 109.

The LE Operator

The LE (“less than or equal to”) operator is used to retrieve documents containing a value less
than or equal to the specified value. For example, the query

NUMBER LE 109

retrieves all documents in which the value for the NUMBER search label is less than or equal
to 1009.

The LT Operator

54

The LT (“less than”) operator is used to retrieve documents containing a value smaller than the
one specified. For example, the query

NUMBER LT 109

retrieves all documents in which the NUMBER search label is less than 109.

Query Syntax

Proximity Operators

Proximity operators specify retrieval based on relative word position within a text. They can
only be used to search word-inverted elements.

The following proximity operators are available:

e ADJ
e« NEAR
The ADJ Operator

The ADJ operator is used to retrieve documents in which words appear next to one another and
in the order specified. For example, the query

ABSTRACT Moon ADJ River
selects all documents in which the element with the “ABSTRACT” search label contains the
word string “Moon River”.

The NEAR Operator

The NEAR operator is used to retrieve documents in which words appear next to each other,
irrespective of their order. For example, the query

ABSTRACT recycled NEAR paper

selects all documents in which the element with the ABSTRACT search label contains the word
pairs “recycled paper” and “paper recycled”.

55

Adabas Text Retrieval Reference Manual for UNIX and Windows

Search Numbers

Search numbers are the numbers allocated to each query you issue during a session. They can
be used in subsequent queries to reference the set of documents already retrieved. To distinguish
them from normal numbers in queries, they must be given a prefix (e.g. #1). The prefix is
specified by your administrator during installation.

The search number consists of the current value of the SETCHAR parameter and the number
of the query whose results are to be referenced.

An example of a query using a search number is:

#1 AND AUTHOR DICKENS

This would retrieve all documents in query set 1 with the author Dickens.

56

Query Syntax

The SORT and SORTD Functions

Using the SORT and SORTD functions, you can sort a document set in ascending or descending
order.

The syntax of the sort function is as follows:

SORT search-label

SORTD search-label

SORT Specifies a sort in order of ascending magnitude.
SORTD Specifies a sort in order of descending magnitude
search-label Specifies the formatted-inverted element to be used as the sort criterion.

For example, the query

ABSTRACT sugar SORT DATE

retrieves all documents in which the word “sugar” occurs in the element with the ABSTRACT
search label and sorts them according to the value given in the element which has search label
“DATE”, starting with the oldest document.

As many as three sort criteria can be specified in a search query, for example:

SORT NUMBER SORT PUBLISH SORT ACC-NO

57

58

TOKENIZATION

Tokenization is the process by which Adabas Text Retrieval identifies words in text.

The tokenization process has been implemented as a Adabas Text Retrieval routine, callable
during the initiation of the system. It is possible to save the results for future use. Adabas Text
Retrieval constructs several tables which are used in the tokenization process.

The process consists of the following parts:

e Define classes of characters to be used by Adabas Text Retrieval (for example,
alphanumeric, numeric).

e Identify of valid characters. The Adabas Text Retrieval character table contains valid
characters.

e Determine whether tokenization is dependent on the context of the characters.

e Translate the word detected by the previous parts of the process.

The entire tokenization process is optional.

Associated with each Adabas Text Retrieval call is a return code. It indicates whether an error
has occurred and, if so, the type of error. A list of possible return codes is provided in section
“Return Codes” in Appendix A, Messages and Codes.

Specified in each Adabas Text Retrieval call is a scan mode, which determines whether the scan
is to be performed for text inversion or query-syntax analysis, or for both. A list of possible scan
modes is provided in section “Scan Modes” on pagqqO.

During the text-inversion process or query-syntax analysis, Adabas Text Retrieval looks for a
user-defined scan logic. If user-defined scan logic does not exist, Adabas Text Retrieval uses
its default scan logic.

59

Adabas Text Retrieval Reference Manual for UNIX and Windows

Scan Modes

The scan mode determines whether the scan is to be performed for text inversion or query-syntax
analysis, or for both. The table below contains the letter codes for the scan modes:

Both text inversion process and query syntax analysis.

On user request only (for example, translation of formatted fields value).
Parameter syntax analysis only.

Query-syntax analysis only.

= Qo v T >

Text inversion process only.

60

Tokenization

SCTS - Define Classes of Characters

Description

The SCTS call defines all classes of characters to be used by Adabas Text Retrieval. It is always
the first call in the tokenization process. Typical character classes are ALPH, NUMBER, DOT,

etc.
Call Format
Call 'TRS’ ’SCTS’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Scan Mode alphanumeric 1 byte input
Classes alphanumeric variable input
Classes

A list of all classes of characters which will be used by Adabas Text Retrieval. Classes on the
list must be separated by commas; the last class must be followed by a period.

The maximum number of classes is 16; the maximum length of each class is six characters.

Example SCTS Call

CALL 'TRS’ 'SCTS’ RETURN-CODE 'T’ 'ALPH,NUMBER,DOT,BLANK,SEP.’

This definition is for a text-inversion process only ("T’) and the user-defined classes of
characters to be used by Adabas Text Retrieval are ALPH, NUMBER, DOT, BLANK and SEP.

61

Adabas Text Retrieval Reference Manual for UNIX and Windows

SCTC - Define Character Table

Description

The SCTC call is used to assign specific characters (a character table) to one or more of the
classes already defined by the SCTS call (see pageljl).

Note:
If you do not supply Adabas Text Retrieval with a character table, it uses a default table. In this
case, make sure that the default table is compatible with its definition of classes.

Call Format

Call 'TRS’ ’SCTC’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Scan Mode alphanumeric 1 byte input
Character Table alphanumeric variable input

Line Error binary 4 bytes output

62

Tokenization

Character Table

A character table is a set of lines which assign specific characters to one or more classes. All
lines are fixed length, 80 characters long.

The format of each line is:
CHAR=(c1,c2,c3...), CLASS=class1

where cl,c2,c3... denotes the characters to be assigned to the character class classl. The
characters can be entered in either character format or hexadecimal format. Input in
hexadecimal format must start with the letter ‘X’ followed by a two-byte hexadecimal value
(total of three bytes). Input is in character format is one byte in length. All values must be
separated by commas and enclosed by parentheses. It is not necessary to define all of the 256
possible characters. Those which are not defined are regarded as delimiters. It is possible to
assign characters to more than one class.

The classes specified must be already defined in the SCTS call (see pagﬁl). The set can contain
as many lines as required to define all relevant characters.

The set is ended by a line containing the constant “END”.

Line Error

If an error is detected when the syntax of the character table is checked, this parameter contains
the number of the line containing the error.

Example SCTC Call

The following is an example of the SCTC call:
CALL 'TRS’ 'SCTC’ RETURN-CODE A’ CHAR-TABLE LINE-ERROR

where CHAR—TABLE is a pointer to:

CHAR=(A,B,C,D,E,FG,H,l,J),CLASS=ALPH
CHAR=(K,L,M,N,O,PQ,R,S,T),CLASS=ALPH
CHAR=(U,V,W,X,Y,Z),CLASS=ALPH
CHAR=(a,b,c,d,e,f,g,h,i,j), CLASS=ALPH
CHAR=(k,l,m,n,0,p,q,is,t),CLASS=ALPH
CHAR=(u,v,w,x,y,z),CLASS=ALPH
CHAR=(1,2,3,4,5,6,7,8,9,0),CLASS=NUMBER
CHAR=(-),CLASS=SEP
CHAR=(!,?,.),CLASS=DOT
CHAR=(X20),CLASS=BLANK

END

63

Adabas Text Retrieval Reference Manual for UNIX and Windows

SCTT - Define Translation Table

Description

The SCTT call defines a translation table. This translation table is used by Adabas Text Retrieval
to translate a token after it is isolated.

Note:
The default translation is no translation at all.

Call Format

Call 'TRS’ 'SCTT parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Scan Mode alphanumeric 1 byte input
Translation Code alphanumeric 5 bytes input
Translation Table alphanumeric/binary variable/256 bytes input

Line Error binary 4 bytes output

Translation Code

The translation code specifies the type of translation:

ASIS No translation at all. All characters remain as they were given by the application.
CHAR Characters are translated according to a user-defined translation table.

UPPER All characters are translated to upper case.

LOWER All characters are translated to lower case.

TABLE All characters are translated according to a user-defined translation table.

64

Tokenization

Translation Table

Example

The contents of the translation table depend on the translation code. For translation codes ASIS,
UPPER and LOWER, no translation table can be specified.

For translation code TABLE, a 256-byte table defining the translated character value for all 256
characters must be specified.

For translation code CHAR, a translation table with variable length must be specified. The table
contains only those characters which are to be translated. The syntax to define the translation
table is as follows:

LC=char,UC=transchar,L.C=char,UC=transchar,...]
LC=Xhex,UC=Xtranshex,LC=Xhex,UC=Xtranshex|,...]

END

where char is a character in ASCII format, transchar is the translated character value in ASCII
format, hex is a character in hexadecimal representation and transhex is the translated character
value in hexadecimal representation.

LC=a,UC=A,LC=b,UC=B
LC=X61,UC=X41,LC=X62,UC=X42
END

Line Error

Contains the number of the line containing an error.

65

Adabas Text Retrieval Reference Manual for UNIX and Windows

Example SCTT Call

The following is an example of the SCTT call. It demonstrates a simple translation from lower
case to upper-case:

CALL 'TRS’ 'SCTT’ TRS.RC 'T' 'TABLE’ #SCAN-TABLE(*)

66

Tokenization

SCTW - Define Reserved Words

Description

Defines reserved words to the Adabas Text Retrieval keyword table.

Call Format

Call 'TRS’ ’SCTW’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output

Keywords alphanumeric variable input

Line Error binary 4 bytes output
Keywords

A set of statements which define the reserved words. The table of reserved words has the
following syntax:

class=(reservedword, reservedword],...])[, DELETE]

END

where class is one of the following identifiers:

. STDFUNCTION

. COMMA
. OR

e AND

. NOT

67

68

Adabas Text Retrieval Reference Manual for UNIX and Windows

EQUALTO
GREATERTHAN
GREATEREQUAL
LESSTHAN
LESSEQUAL
NEAR
GROUP
ADJACENT
BETWEEN
SYNONYM
SYNONYMROOT
SYNONYMNEW
SORTASCENDING
SORTDESCENDING
ROOT
PHONETIC
CATEGORY
ASPECTNARROW
ASPECTBROADER
LEFTPARENTHESES
RIGHTPARENTHESES
INSENTENCE
INPARAGRAPH
USERFUNCTIONO
USERFUNCTION1
USERFUNCTION2
USERFUNCTION3

Tokenization

* USERFUNCTION4

e USERFUNCTIONS

* USERFUNCTION6

* USERFUNCTION7

e USERFUNCTIONS

e USERFUNCTIONY9

The DELETE parameter is optional and, if specified, removes all previously defined, reserved
words of the given class. The following table shows the default definitions:
e StdFunction = (=)

e Comma = (,)

e Or=(0OR)

e And=(AND)

e Not =(NOT)

e EqualTo = (EQ)

e GreaterThan = (GT)

e GreaterEqual = (GE)

e LessThan = (LT)

e LessEqual = (LE)

e Near = (NEAR)

e Group = (GROUP)

e Adjacent = (ADJ)

e Between = (BETWEEN)

e Synonym = (SYN)

e SynonymRoot = (SYR)

. SynonymNew = (NSYN)

* SortAscending = (SORT)

e SortDescending = (SORTD)

69

Adabas Text Retrieval Reference Manual for UNIX and Windows

* Root = (ROOT)

e Phonetic = (PHONETIC)

. Category = (ASPECT,CATEGORY)
e AspectNarrow = (NASPECT)

e AspectBroader = (TBT)

e LeftParentheses = (()

e RightParentheses = ())

. InSentence = (,,!,?

e InParagraph = ($$)

e UserFunction0 = (USRFUNCO)
e UserFunctionl = (USRFUNC1)
e UserFunction2 = (USRFUNC2)
e UserFunction3 = (USRFUNC3)
e UserFunction4 = (USRFUNC4)
e UserFunction5 = (USRFUNCS)
e UserFunction6 = (USRFUNCO6)
e UserFunction7 = (USRFUNC?7)
e UserFunction8 = (USRFUNCS)
e UserFunction9 = (USRFUNCY)

Line Error

Contains the number of the line containing an error.

70

Tokenization

SCTX - The Tokenization Logic

Description

The SCTX call defines actions to be taken by Adabas Text Retrieval when the tokenization
process identifies a character belonging to a specific class.

Call Format

Call 'TRS’ ’SCTX' parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Scan Mode alphanumeric 1 byte input
Tokenization Logic alphanumeric variable input
Area Size binary 4 bytes output
Line Error binary 4 bytes output

71

Adabas Text Retrieval Reference Manual for UNIX and Windows

Tokenization Logic

Syntax

A set of statements which define the tokenization logic. All statements are maximal 80
characters long.

IF = class

{[GOTO: label | ACTION= action] TYPE= type |[CHAR= cﬂ}
IFMODE = mode

All parameters are keyword parameters (except for the label) and thus can be specified in any
order.

Not all parameters must be declared, but each parameter can only be declared once per line; if
multiple declarations of a parameter appear in the same line, then only the first parameter
declaration is used.

The set is ended by a line containing the constant “END”.

IF=class

The value of class denotes the class of characters for which the statement is to be executed. This
is the same class as that defined in the “classes” parameter of the SCTS call. If no IF is specified,
the statement is executed once regardless of the class of the character.

IFMODE=mode

72

The value mode in the IFMODE parameter specifies whether an action is to be taken during text
inversion or during query-syntax analysis. This parameter is applicable only if the scan mode
is set to “A” (text inversion process and query syntax analysis). For other scan modes, this
parameter is ignored. Possible values are:

T Text inversion process only.
Q Query-syntax analysis only.

If the parameter IFMODE is omitted, the action is taken during both text inversion and query
syntax analysis.

GOTO=label

Tokenization

The value label in the GOTO parameter denotes the location (label) in a program from which
execution is to be continued after the current statement is executed. If the parameter GOTO is

omitted, execution continues with the next statement.

ACTION=action

The value action in the ACTION parameter denotes the action to be taken for the current
character. Possible values for the parameter ACTION include:

Value Description

ACCEPT Character is to be accepted.

SKIP Character is to be ignored.

BACK Go back one character.

TRUNCATE Current character string is to be truncated, thus forming a word.

REPLACE Character is to be replaced by the character contained in the value “c1” of the param-
eter CHAR (see pagfj4).

INSERT The character contained in the value “c1” of the parameter CHAR is to be inserted in
the current character string after the current character.

MARK Mark current character. This parameter is used in conjunction with parameter value
BTOM (below).

BTOM (Back To Mark) Go back to the character marked by ACTION=MARK. If no char-
acter is marked, go back to the start of token (i.e. erase the token).

INVERSE TRUNCATE and invert the token.

73

Adabas Text Retrieval Reference Manual for UNIX and Windows

TYPE=type

The value type of the TYPE parameter defines the type of token. The following token types can
be specified.

Value Description

NUMER Numeric token.

STRING Token is a string.
CHAR=clI

The value ¢/ of the CHAR parameter denotes a one-byte character used together with the actions
REPLACE or INSERT. If the value of the parameter ACTION is “REPLACE” or “INSERT”,
a value for CHAR must be supplied. In all other cases CHAR is ignored.

Line Error

If an error is detected when the syntax of the character table is checked, this parameter contains
the number of the line containing the error.

74

Tokenization

SCTX Call: Example 1

CALL 'TRS’ 'SCTX’ RETURN-CODE 'T’'SCAN-LOGIC P-AREA-SIZE LINE-ERROR
WHERE SCAN-LOGIC IS A POINTER TO:

START IF=SPEC,GOTO=SPECH1
IF=APOS,GOTO=APOS1
IF=ALPH,GOTO=SA,ACTION=ACCEPT
IF=NUMBER,GOTO=SN,ACTION=ACCEPT
IF=DOT,GOTO=DOTH1
ACTION=SKIP,GOTO=START

SA IF=SEP,GOTO=SA,ACTION=SKIP
IF=ALPH,GOTO=SA,ACTION=ACCEPT
IF=NUMBER,GOTO=SA,ACTION=ACCEPT
IF=DOT,GOTO=SA1,ACTION=ACCEPT
ACTION=TRUNCATE

SA1 IF=ALPH,GOTO=SA,ACTION=ACCEPT
IF=NUMBER,GOTO=SA,ACTION=ACCEPT
ACTION=BACK
ACTION=TRUNCATE

SN IF=NUMBER,GOTO=SN,ACTION=ACCEPT

IF=SEP,GOTO=SA,ACTION=SKIP
IF=ALPH,GOTO=SA,ACTION=ACCEPT
IF=DOT,GOTO=SN1,ACTION=ACCEPT
ACTION=TRUNCATE,TYPE=NUMER

SN1 IF=ALPH,GOTO=SA,ACTION=ACCEPT
IF=NUMBER,GOTO=SN,ACTION=ACCEPT
ACTION=BACK
ACTION=TRUNCATE,TYPE=NUMER

DOT1 IFMODE=Q,GOTO=DOT2
ACTION=ACCEPT
ACTION=TRUNCATE

DOT2 ACTION=SKIP,GOTO=START

SPEC1 IFMODE=Q,GOTO=SPEC2
ACTION=SKIP,GOTO=START

SPEC2 IF=REL,GOTO=SPEC3
ACTION=ACCEPT
ACTION=TRUNCATE

Adabas Text Retrieval Reference Manual for UNIX and Windows

SPEC3 ACTION=ACCEPT
IF=EQ,ACTION=ACCEPT
IF=REL,ACTION=ACCEPT
ACTION=TRUNCATE

APOS1 IFMODE=Q,GOTO=APOS1A
ACTION=SKIP,GOTO=START

APOS1A ACTION=SKIP

APOS1B IF=APOS,ACTION=SKIP,GOTO=APOS2
ACTION=ACCEPT,GOTO=APOS1B

APOS2 ACTION=TRUNCATE,TYPE=STRING
END

SCTX Call: Example 2

This example illustrates the translation of the German umlaut (U) to the anglicized version (UE).

IF=UMLAUT, ACTION=REPLACE,CHAR=U
ACTION=INSERT,CHAR=E,GOTO ...

76

SCA - The Scan Routine

Tokenization

Description

The SCA routine tokenizes data by applying user-defined logic. It scans a free text line and

returns one token at a time.

Note:

The SCA routine works only in the Adabas Text Retrieval application. A ’BC’ call must precede

this call.

Call Format

Call 'TRS’ ’SCA’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output

Free Text Line alphanumeric variable input

Line Length binary 4 bytes input

Disp in Text binary 4 bytes input, output
Token alphanumeric 64 bytes output
Token Type binary 4 bytes output
Token Length binary 4 bytes output

Scan Mode alphanumeric 1 byte input

Free Text Line

The text to be scanned.

Line Length

The length of the free text line in bytes.

77

Adabas Text Retrieval Reference Manual for UNIX and Windows

Disp in Text

This is an internal variable within Adabas Text Retrieval. The current displacement in the text
line must be zero with the first call to the scanner and must not be changed during successive
calls within the same text line.

Token

Current token as found by the scanner.

Token Type

Type of token as defined in the scanner. Adabas Text Retrieval returns in this parameter the code
of the type. The types used by the Adabas Text Retrieval system are:

Code Detail

2 Numeric token
7 Token is a string
Token Length

Length of current token in bytes.

78

INCORE VOCABULARY

The incore vocabulary should contain high frequency words in order to reduce the number of

Adabas calls and to speed up the document inversion process. To make such a incore vocabulary

available to TRS, you must

e ensure that there is an existing vocabulary file with words in the V1 field;

e mark with an identifier all the words to be used by placing it in the V5 field;

e use the INCVOC parameter during a BC or DYP call to define the incore vocabulary. (To
do this, you must use the same identifier which was used to mark the words in the
vocabulary file.)

Warning:

Do not use an incore vocabulary with the EXCLUDE option or together with the AUTOASP
option. If you do, TRS ignores the INCVOC option if the EXCLUDE or AUTOASP option is used
at the same time.

Prerequisites for Using an Incore Vocabulary

Example

e A vocabulary file where the V1 fields are filled

e The field V5 in the vocabulary file

e Determining which words belong to the incore vocabulary (up to a maximum of 1000)
e Determining the name of the vocabulary

e Putting the name of the vocabulary in the field V5 corresponding to the chosen words
e Defining the parameter INCVOC’ in the "BC’ call

ISN A%t V5

1 THIS MYWORDS
2 IS MYWORDS
3 A MYWORDS
4 COMPUTER

5 ANOTHER MYWORDS

Note: In order to put the name of the vocabulary in the field V5, you have to write your own
program and let it run independently of Adabas Text Retrieval.

79

Adabas Text Retrieval Reference Manual for UNIX and Windows

Document Indexing with Incore Vocabulary

80

With the prerequisites listed above, Adabas Text Retrieval can load the incore vocabulary.
During the indexing process, Adabas Text Retrieval will first look in the incore vocabulary and
if the word exists there, the system will get the word ISN from there; otherwise, it will look in

the vocabulary file. This procedure reduces the Adabas calls and so the document indexing is
faster.

USER-WRITTEN ROUTINES

Introduction to User-Written Routines

The User Functions, User exits, Phonetic Routine and Root Function are user written routines
that are used in the TRS system. They are dynamically loaded at the startup of the TRS system
during the BC call. Those functions must be present as dynamic shared library modules.

TRS allows up to three dynamic shared library modules. The user written routines must all be
linked to up to three shared library modules. There is more than one shared library module
because some of the routines are delivered with the TRS system, and sometimes the user wants
to override a routine for a specific project.

To make the routines available to the TRS system do the following:

. Define the shared libraries as “trsuex1”, “trsuex2” or “trsuex3”.

e Build the shared libraries using the options of the C-compiler and linker on the
corresponding platform.

e Copy the shared libraries to the directory “$STRSDIR/$TRSVERS”.

TRS looks for a routine first in the shared library “trsuex1”, then “trsuex2” and then in “trsuex3”.
If a user wants to override a specific routine, he/she should put the new routine in the shared
module that precede the shared module that the original routine is part of.

The entry point names of the user written routines must be:

Entry Point Name Target User Routine
TRSUEO1-TRSUE32 For user exits routine 1 — 32
TRSFFMO-TRSFFM9 For user function routines 0 — 9
TRSUFRT For user root function routine.
TRSUPHO For user phonetic function routine.

81

Adabas Text Retrieval Reference Manual for UNIX and Windows

USER EXIT IN TRS QUERY

User Exits allow the user to intercept during execution of a query and to call TRS query functions
from it.

1. User Exit as Part of the TRS System

82

User Exit calling TRS (recursively) is part of the TRS current session. No new session (i.e.,
no new level) is defined, with the result that the recursive is done on a query basis.

The User Exit is limited in the TRS calls it can perform. A TRS call like “BC” or “CL”
is not recommended since it will change the TRS environment of the current TRS session.
Since it is planned to be a fully recursive mechanism on query level only, TRS does not
check for these kind of mistakes.

All TRS calls used in the User Exits affect the whole system.

TRS keeps the original values of some of the session parameters. The following
parameters are saved before calling the User Exits and restored after returning from the
User Exit: DFNR, DSFNR, VFNR, WORDLEN, SEARCHLB, THESAURI, DOCSET and
WORDSET. Other parameters, if changed by the “DYP” call, will affect the session, even
after returning from the User Exits.

A “DSL” call to the same DFNR and DSFNR will override the previous definition.

Adding documents inside the User Exit is not recommended since the User Exit does not
know the status of the user application on a higher level.

It is not recommended to use the TRS parameter ERRPRE. “ERRPRE” is a parameter
given at the start of the session. It is a prefix to be added to TRS return code. The default
setting is 0. Calling TRS from the User Exit will cause ERRPRE to be accumulated.

User-Written Routines

2. The TRS Call “DUE” - Define User Exit

To define the User Exit to TRS, we introduce a new TRS CALL named “DUE”. This call defines
the User Exit search labels with the User Exits code number and the User Exit parameters passed
from the application program to the User Exit via TRS. The ‘DUE’ call affects all the sessions.
There is only one ‘DUE’ definition active in the system. A new ‘DUE’ will override the
definition of the previous one.

The format of the call is:

CALL ‘TRS’ ‘DUE’ PARAMETERS

Required Parameters | Format Length In/Output
Return Code binary 4 Bytes output
Separation Value alphanumeric 1 Byte input

User Exit Definition alphanumeric variable input

Return Code

The code returned at the end of processing, which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

Separation Value

A special character that defines the boundaries of the parameters passed to the User Exit. If this
parameter is set to blank, a comma indicates end of parameters.

User Exit Definition

A free format text defining the User Exits search label, User Exit code number and the
parameters passed to the User Exit from the application program via the TRS system.

The definition of the USER EXITS consist of a character string containing one or more entries
separated by commas and ended by a period.

To define the USER EXIT, the name of the User Exit must be entered, followed by an equal sign
and the User Exit parameters.

83

Adabas Text Retrieval Reference Manual for UNIX and Windows

Example:

“UEX1 = parameters, DATE = parameters.”

Here we define two user exits: UEX1 and DATE.

The User Exits parameter consists of the User Exit code number, one or two bytes defining the
User Exit code number (1-32), followed by a comma and the parameters pass to the User Exit
via TRS starting with the Separation Value and ending with it.

Example:

CALL "'TRS’ 'DUE’ ’'# "HISTORY=5,#DSFNR=(4,5), GREGORIAN#.”

This is the definition of a User Exit called “HISTORY™ (its search label), its User Exit number

is 5 and the parameters passed to it are:

”"DSFNR=(4,5), GREGORIAN”.

3. The Query Syntax:

84

The exit is identified by the search label defined in the “DUE” call. TRS isolates the sub-query
for the exit and passes it to the user exit as is. No syntax checking or any other checking is done
on that sub-query.

The sub-query boundaries are:

. from the exit search label to the next search label,

e from the exit search label to the next operator found in the query;
e from the exit search label to the end of the query;

Parentheses will also define the sub-query boundaries.
Examples:
1. ”HISTORY CATEGORY ASIA OR BOOKS CATEGORY ASIA”

Where HISTORY is a User Exit search label and BOOKS is a free text search label. TRS
will call User Exit 5 and the User Exit will get the sub query “CATEGORY ASIA”.

2. HISTORY (CATEGORY ASIA AND AFRICA) or HISTORY FRANCE.

TRS will call User Exit 5 twice: first, with sub query “CATEGORY ASIA AND AFRICA”;
second, with sub query “FRANCE”.

User-Written Routines

4. The User Exit

The User Exit is able to call TRS and Adabas via the TRS mechanism. The exit can perform
its own operation and then return to TRS with a request to finish executing the sub-query as part
of the query itself. The exit dynamic area is allocated from the TRS common area via the TRS
mechanism (The ‘DSA’ call). The exit may request TRS to release the dynamic area it allocated
and to release a compiled query. The exit may not release a compiled query whose results are
returned to TRS to be part of the query on a higher level.

5. Calling the User Exit

TRS calls the exits during query execution. For syntax checking only query (“ANAL” call), TRS
calls the exits at the end of the syntax checking.

The exit input is:
e User Exit name (search label) as defined in the “DUE” call.

e The User Exit parameters passed to it from the application program, as written in the
“DUE” call.

e The end user sub-query as written in the query itself.

The exit output is:

The User Exit output depends on the type of action TRS has to do with it. There are four types

of output:

Abbreviation File Type of Output

D Result of Document Retrieval.

v Result of Vocabulary Retrieval.

F Values for Formatted Field Retrieval.
w Values for Free Text Retrieval.

D: Result of Document Retrieval

The exit output: Adabas Command id of an Adabas ISN-set from the document file,
created by the User Exit and the number of ISN’s contained in this ISN list.
TRS action: Build a new ISN list identical to the User Exit ISN list for later reference.

85

Adabas Text Retrieval Reference Manual for UNIX and Windows

V: Result of Vocabulary Retrieval:

The exit output: Adabas Command Id of an Adabas ISN-set, from the vocabulary file,
created by the User Exit and the number of ISN’s contained in the ISN list.

TRS action: Build a new ISN list identical to the exit ISN list for later reference. If it
is a document retrieval query (‘D’ type), do the document retrieval.

F: Values for Formatted Field Retrieval:

The exit output: One or more values to be retrieved. The formatted field Adabas name and
the relational operator.

TRS action: Do a formatted field retrieval according to exit parameters.

V: Values for Free Text Retrieval:

The exit output: One or more values to be retrieved, the chapter Adabas name and the
selection mode (type of selection on the vocabulary file).

TRS action: Do a free text retrieval according to exit parameters.

86

User-Written Routines

FORMAT OF CALL

TRSUEnn (parameters). ‘nn’— is the User Exit code number. ‘nn’ is between 01 and 32. All calls
are called by reference.

Required Parameters | Format Length In/Output
Pointer to TRS Com- Binary 4 Bytes input
mon Area
Return Code Binary 4 Bytes output
Action Code Binary 1 Byte input
User Exit Control Binary 4 Bytes input / output
Block

TRS Common Area

TRS common area (known as TSIZE) needed in a direct call to TRS.

Note:
TRS passes to the User exit a pointer to the common area. When calling TRS, a user should pass
to the called routine the common area (in the “C” language it is *Pointer).

Return Code

The code returned at the end of processing, by the exit, which indicates whether an error has
occurred. A zero code indicates the normal end of processing. TRS adds the TRS error prefix
to the return code and returns it to the application.

Action Code

One byte that is type of action:
A: Only syntax checking is done.

X: Syntax checking and execution is done.

87

Adabas Text Retrieval Reference Manual for UNIX and Windows

User Exit Control Block

88

Address of a Control Block used to transfer information to and from the User Exit.

Field Format Length In/Output Output Type
VDFW

Query Addr binary 4 bytes input

Parm Addr binary 4 bytes input

Query Length binary 2 bytes input

Parm Length binary 2 bytes input

Exit Name alpha 32 bytes input

Exit Code binary 1 byte input

VFNR DB No. binary 2 byte input

VFNR File No. binary 2 byte input

DFNR DB No. binary 2 byte input

DFNR File No. binary 2 byte input

DSFNR DB No. binary 2 byte input

DSFNR File No. | binary 2 byte input

Query Type alpha 1 byte input

Main Query Name | alpha 8 bytes input

Reserved 8 bytes

Disp Error binary 4 bytes output

Length Error binary 4 bytes output

DFNR CID binary 4 bytes output - R - -

DFNR QTY binary 4 bytes output - R - -

VFNR CID binary 4 bytes output 0O O -

VFNR QTY binary 4 bytes output 0O O -

No. of Values binary 2 bytes output - - RR

User-Written Routines

Field Format Length In/Output Output Type
VDFW

Output Type alpha 1 byte output R R RR
Query Name alpha 8 bytes output O0O0O0O0O
Field Name alpha 2 bytes output R - RR
Value Format alpha 1 byte output - - RR
Value Length binary 1 byte output - - RR
DSA Name alpha 8 bytes output O ORR
Function Code alpha 1 byte output - - RR
Reserved 12 bytes
R = required, O = optional, — = not used

Explanation of Fields
The fields in the preceding table are explained as follows:
Query Addr
Address of the end-user sub-query as written in the query itself.
Parm Addr
Address of application parameters to the User Exit, as written in the “DUE” call.
Query Length
The length of the sub-query.
Parm Length
Length of the application parameters to the User Exit.

Exit Name

User Exit search label as defined in the “DUE” call.

89

Adabas Text Retrieval Reference Manual for UNIX and Windows

Exit Code

User Exit code number as defined in the “DUE” call.

VFNR DB No.

Adabas data base id of current vocabulary file.

VFNR File No.

Adabas file number of current vocabulary file.

DFNR DB No.

Adabas data base id of current documents file.

DFNR File No.

Adabas file number of current documents file.

DSFNR DB No.

Adabas data base id of current document index file.

DSFNR File No.

Adabas file number of current documents index file.

Query Type

The type of retrieval to be executed by the original QR call. There are two possible values:
D: Documents retrieval

V: Vocabulary retrieval.

Main Query Name

Name of TRS query that called the user exit.

Disp Error

If an error is detected when the syntax of the query is checked, the exit will return in this
parameter the displacement of the erroneous entry within the query.

920

User-Written Routines

Length Error

If an error is detected when the syntax of the query is checked, the exit will return in this
parameter the length of the erroneous entry within the query.

DFNR CID

The Adabas Command-ID of the Adabas ISN-set from document file as created by the
User-Exit. TRS releases this Command-id at the end of the process.

DFNR QTY
The number of ISN’s contained in the ISN-set identified by “DFNR CID”.

VENR CID

The Adabas Command-ID of the Adabas ISN-set from vocabulary file, as created by the User
Exit. TRS releases this Command-id at the end of the process.

For “D” output type (DFNR CID) and “F” output type (FORMATTED FIELD VALUES), the
“VFNR CID” is optional and is used by the highlight process during TRS CALL ‘HIGH’.

VFNR QTY
The number of ISN’s contained in the ISN-set identified by VFNR CID.

For “D” output type (DFNR CID) and ”F” output type (FORMATTED FIELD VALUES) this
parameter is optional and is used by highlight process during TRS CALL ‘HIGH’.

Number of Values
Number of words for the TRS selection.
For ‘F’ and ‘W’ output type.
The User Exit puts the words in an area identified by “DSA-NAME”.

Output Type
Abbreviation Description
v Result of vocabulary retrieval.
D Result of document retrieval.
F Values for formatted field retrieval.
\%% Values for free text retrieval.

91

Adabas Text Retrieval Reference Manual for UNIX and Windows

Query Name
Name of query to be released by TRS at the end of the process.

The exit can do TRS ‘QR’ calls. The exit may return the results of these calls (COMMAND-ID
and quantity) to TRS for further processing.

The exit cannot do TRS ‘RQR’ call (release query) because TRS releases the result
COMMAND-ID during ‘RQR’ call.

Field Name

Adabas name of a particular free text chapter or formatted field. TRS search is done on this field.

Value Format

Format of the values returns by the exit:

Abbreviation Format of Values
A Alphanumeric

B Binary

P Packed Decimal

U Unpacked Decimal

Value Length

Length of every value in the area returns by the exit.

DSA-Name

The exit dynamic area is allocated from the TRS common area via the TRS ‘DSA’ call.
“DSA-Name” identified the area in the TRS common area where the User Exit returns its values.
At the end of the process TRS releases this area.

Function Code

Type of search to be made for free text chapters (for type ‘W) or the relational operator for
formatted field (for type ‘F’).

Function code for ‘W’ type:

92

User-Written Routines

Abbreviation Function Code for W Type

STANDARD FUNCTION
SYNONYMS

SYNONYMS ROOT

ROOT

PHONETIC

CATEGORY

ASPECT - NARROW TERM
ASPECT - BROADER TERM
NEW SYNONYM MECHANISM
GROUP

USER FUNCTION 0

USER FUNCTION 1

USER FUNCTION 2

USER FUNCTION 3

USER FUNCTION 4

USER FUNCTION 5

USER FUNCTION 6

USER FUNCTION 7

USER FUNCTION 8

USER FUNCTION 9

XU R LN, QO0OEZOT I XL

Function code for ‘F’ type:

Abbreviation Function Code for F Type

RELATIONAL EQUAL TO
RELATIONAL GREATER THAN
RELATIONAL GREATER OR EQUAL
RELATIONAL LESS THAN
RELATIONAL LESS OR EQUAL
RELATIONAL BETWEEN

[seRC2 I el o B @ Bl v}

93

Adabas Text Retrieval Reference Manual for UNIX and Windows

USER FUNCTION IN TRS

The TRS system allows a user to define its own basic function, in addition to the standard
function already defined in the system. This document describes the way a user function can
integrate with the TRS system.

The system keywords of TRS are define in the TRS call ‘SCTW’. Ten user functions are defined
there with the name “FUNCO” thru “FUNC9”. The user can add its own synonym to the user
function name by calling the TRS call ‘SCTW’ (see Add Reserved Words in TRS Command
Reference Manual).

The user function modules are named TRSFFMn where ‘n’ is the user function name (e.g.,
TRSFFM1).

TRS calls the user function with the following parameters: All calls are called by reference.

Requested Parameters | Format Length In / Output
Return Code binary 4 bytes output
Error Prefix binary 4 bytes input

Word alphanumeric variable input

Word length binary 4 bytes input
Phonetic ID alphanumeric 1 byte input
Selection Code alphanumeric 2 bytes output
Word Vector alphanumeric variable output
Number of Values binary 4 bytes output

Return Code

The code returned by the user function module at the end of processing which indicates whether
an error has occurred. A zero code indicates normal end of processing. A non-zero code
terminates the execution of the query process and the code is returned to the application
program.

Error Prefix

A constant value to be added to all User Function return codes.

94

User-Written Routines

Word

Original word from the query itself. Its length is according to the parameter: Word Length.

Word Length

Length of original word and every entry in the vector of result words.

The user function returns the number of words returned in the result vector of words.

Phonetic ID

One byte Phonetic ID is given in the “DSL” call for the current chapter. If no Phonetic ID was
given, this byte is left blank.

Selection Code

The user function returns the name of Adabas field from the vocabulary file to do the selection
from, or a select code in the first byte of the parameter:

Adabas Filed / Code Description

‘W’ If search on words (including truncation).
‘R’ If search on root.

‘P’ If phonetic search.

For select code, the second byte must be left blank.

Word Vector

List of words generated by the user function. Its length is according to the parameter: Word
Length.

Number of Values

Number of Values returned in the vector.

95

Adabas Text Retrieval Reference Manual for UNIX and Windows

An example of a user function module:

Name: TRSFFM1
Function: User Function 1 that returns the original word and asks TRS to search in the
root field.

int TRSFFM1

(

int *prm_rc, * out return code */
int *prm_errp, f*in error prefix */
char *prm_word, /*in original word */
int *prm_wlen, /*in word length */
char *prm_phonid, /*in phonetic id */

char *prm_code, /* out selection code */

char *prm_vector, /*out extended list of words */
int *prm_cnt) /* out number of output values */
{

/* move original word to result vector */
memcpy(prm_vector,prm_word,*prm_wlen);

* selection code is root */

*prm_code ='R’;

/* one word in result vector */

*prm_cnt = 1;

return 0;

}

THESAURUS / SYNONYM SYSTEM

Fields of Implemenation of TRS Thesaurus

The implementation of TRS Thesaurus has the following fields:

Field Description

1,T1,10,A,NU THESAURUS ID - Identification of the thesaurus.

1,1T2,64,ANU TREE ID - Identification of the thesaurus set.

1,1T3,64,ANU TERM-BROAD - Broader term in case of a hierar-
chical relation or an entry of a synonym ring identi-
fied by the entry in the TREE-ID.

1,T4,64,ANU TERM-NARROW - Narrower term of a hierarchical
relation or empty for a synonym term.

1,TC,80,A,NU COMMENT - Comment for each term in the thesau-
rus

1,TD,10,A,NU ORDER - Enable the user to view the thesaurus term

in an ordered way.

TO = T1(1,10),T2(1,64), T3(1,64)

Super-de — Used to access specific terms inside the
thesaurus.

T9 = T1(1,10), T2(1,64), T4(1,64)

Super-de — Used to access specific terms inside the
thesaurus

TW = T1(1,10), T2(1,64), T4(1,64), T3(1,64)

Super-de — Used to access specific terms inside the
thesaurus

TW = T1(1,10), T2(1,64), T4(1,64), TD(L,10)

Super-de — Used to access specific terms inside the
thesaurus + order

TX = T1(1,10), T3(1,64)

Super-de — Used to access specific terms inside the
thesaurus

TY = T1(1,10), T4(1,64)

Super-de — Used to access specific terms inside the
thesaurus

97

98

Adabas Text Retrieval Reference Manual for UNIX and Windows

These fields define an aspect. This information is sufficient in order to define several thesaurus
and to be able to isolate one “tree” from another by giving it TREE-ID. The user will call TRS
to add this record. Adding a couple of records like that with the same THESAURUS-ID and the
same TREE-ID defines a “tree”. In order to make the search more efficient we introduce another
record type which serves us for building the HYPER DESCRIPTOR data:

Field
1,T5,4,B,NU

1,T6,18,A,NU

1,T7,64,A,NU

T8 = T6(3,12), T7(1,64)
TA,18,A,NU = HYPER(n,T5,T6)

TT = T6(3,12), T7(1,64), T5(1,4)

TU = T6(3,12), T7(1,64), T6(13,16)

Description

TARGET ISN - ISN of the NARROW
TERM as it is in the VFNR.

HYPER INFORMATION - Thesaurus id +
ISN of the term in the VFNR file + level of
tree.

TREE ID - Identification of the thesaurus
set.

Super De — Thesaurus Id + Tree Id

Hyper De — It’s value is the T6 field and it’s
target ISN is the T5 value

Super De — To allow GEN/UNGEN of a
leaves.

Super De — To allow GEN/UNGEN of a
leaves.

The Hyper record is compiled out of the “tree” which was previously defined. There is a TRS
call that compile a given set (“tree”) within a given thesaurus — e.g., like the following tree:

2N

D/ \E

Thesaurus / Synonym System

For vocabulary, we will have the words A, B, C, D, E. For example, the allocated ISN’s are 1,
2, 3, 4, 5. The “tree” to be define will be as follows:

THESAURUS-ID SET-ID N-TERM B-TERM
XX YY B A
XX YY C A
XX YY D C
XX YY E C

The compilation of it will generate the following records:

TARGET REF - THESAU- SET TERM LEVEL
-ISN -TYPE RUS- -ID
ID
1 NT XX YY A 00
2 NT XX YY B 00
2 NT XX YY A 01
3 NT XX YY C 00
3 NT XX YY A 01
4 NT XX YY D 00
4 NT XX YY A 02
4 NT XX YY C 01
5 NT XX YY E 00
5 NT XX YY A 02
5 NT XX YY C 01

The search on the HYPER will give us the required vocabulary ISN set (same as phonetic or
ROOT). This structure demonstrates the “NT” (NARROW TERM) search, but in a similar way
we implemented BROADER-TERM search (same “tree” definition but with additional HYPER
records where, in REF-TYPE, we have “BT”). Also synonyms were implemented similarly.

The “level” field in the HYPER value allows us to search with a given “depth”. In a regular
search, we will search on range where level can be from “00” to “99” and, when a depth is
requested, we will search as of the given level.

99

Adabas Text Retrieval Reference Manual for UNIX and Windows

QR - Execute a Query

Search Modes Parameters

With the new Thesaurus/Synonym implementation there are three additional SEARCH MODE

parameters:

e NASPECTn
e TBTn

e NSYN

NASPECT mode

Using the new Thesaurus implementation, all words are retrieved which are narrower terms
occurring # levels lower in the Thesaurus hierarchy than the search term. Where 7 is omitted,
all levels are retrieved.

TBTn

Using the new Thesaurus implementation, all words are retrieved which are broader terms
occurring n levels higher in the Thesaurus hierarchy than the search term. Where 7 is omitted,
all levels are retrieved.

NSYN

If search terms have synonyms defined for them in a Thesaurus, all documents containing the
search term and its synonyms are found. The selection mode NSYN is based on the new
synonym implementation.

The Thesaurus-id is defined in the DSL call to TRS. If no Thesaurus-id is defined in the DSL
call for the current chapter, the default Thesaurus-id, as defined in the DYP/BC call, is used.

100

Thesaurus / Synonym System

Thesaurus / Synonym Maintenance

To maintain the source records for Thesauruses and Synonyms there is a set of new TRS calls:

TADD
TCHG
TCOC
TDEL
TDID
TFAT
TGEN
TIDS
TLST
TSET
TSON
TSYN
TUNG
TWRD

Add a Connection/Synonym to a Set-ID.

Change a Father/Son Connection or Synonym.
Change Comment and/or Order of a Connection.
Delete a Father/Son Connection or Synonym.
Deletion of a Set-ID in a Thesaurus.

List all Fathers of a Son in a Thesaurus.

Generate a Set-ID in a Thesaurus for Text Retrieval use.
List all Set-ID’s in a Thesaurus.

List all connections in a Set-ID.

Check if a Set-ID exists on a Thesaurus.

List all Sons of a Father in a Thesaurus.

List of all Sunonyms in a Set-ID.

Delete the Generation of a Set-ID in a Thesaurus.

Check if a term exists on a Set-ID.

101

Adabas Text Retrieval Reference Manual for UNIX and Windows

TADD - Add a Connection/Synonym to a Set-ID

Description

The TADD call is used to add a father/son connection or a synonym to a Set-ID in a Thesaurus.

Format of Call
CALL ‘TRS’ ‘TADD’ Parameters

Requested Parameters Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Name Alphanumeric 64 bytes Input
Father Alphanumeric 64 bytes Input
Son Alphanumeric 64 bytes Input
Comment Alphanumeric 80 bytes Input
Order Alphanumeric 10 bytes Input
Direction Alphanumeric 1 byte Input
Gen Done Alphanumeric 1 byte Output
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

RC = 251 - The specified Son/Father connection already exists in this Set-ID.
RC = 252 — The specified combination would create a loop.

RC = 258 — Set-ID and addition must be the same type.

RC = 260 — Son cannot be a blank field.

Thesaurus Name

Name of the Thesaurus in which the Set-1d is found (or will be found once the connection is
added).

102

Thesaurus / Synonym System

Set-ID Name

Name of the Set-Id in which the added connection will be found.

Father

The broader term in the added connection. (Empty in case of a synonym.)

Son

The narrower term in the added connection.

Comment

Each connection can have a user-comment added on to it.

Order

The order specified can be used when listing the sons of the father.

Direction

If this SET-ID is to be scanned upwards (besides downwards), this field should be set to “B”
(Default = downwards only). In the case of SET-ID, which is a synonym type, this field is
ignored.

Gen-Done

If the “Son” was a “Leaf”, the Gen-Done parameter will have a “Y”, meaning generation is taken
care of; otherwise it will have a “N”, meaning that the user must deal with the regeneration.

103

Adabas Text Retrieval Reference Manual for UNIX and Windows

TCHG - Change a Father/Son Connection or Synonym

Description

The TCHG call is used to make changes to an existing connection. The following fields are

changed:

Format

CALL ‘TRS’ ‘TCHG’ PARAMETERS

SET-ID
FATHER
SON
COMMENT
ORDER

of Call

Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Name Alphanumeric 64 bytes Input
Father Alphanumeric 64 bytes Input
Son Alphanumeric 64 bytes Input
New Set-ID Alphanumeric 64 bytes Input
New Father Alphanumeric 64 bytes Input
New Son Alphanumeric 64 bytes Input
New Comment Alphanumeric 80 bytes input
New Order Alphanumeric 10 bytes Input
Direction Alphanumeric 1 byte Input
Gen-Done Alphanumeric 1 byte Output

104

Thesaurus / Synonym System

Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

RC = 252 — The change would create a loop.

RC = 253 - This Father/Son combination does not exist.
RC = 258 - Change must be according to Set-ID type.
RC = 260 - Set-ID or Son was blank.

Thesaurus Name

Name of Thesaurus in which the connection to be changed is found.

Set-ID Name

Name of the Set-ID in which the connection to be changed is found.

Father

The broader term of the connection to be changed. (Empty for synonyms.)

Son

The narrower term of the connection to be changed.

New Set-ID

The new Set-ID in which the changed connection will be found. If no change is requested, this
field must hold the original Set-ID.

New Father

The new broader term of the changed connection. If no change is requested, this field must
contain the original Father. (Empty for synonyms.)

105

Adabas Text Retrieval Reference Manual for UNIX and Windows

New Son

The new narrower term of the changed connection. If no change is requested, this field must
contain the original Son.

New Comment

The new comment for the changed connection. If no change is requested, this field must contain
the original Comment.

New Order

The new order for the changed connection. If no change is requested, this field must contain
the original order.

Direction

If the SET-ID is to be scanned upwards (in addition to downwards), this field should be set to
“B” (Default = downwards only).

Gen-Done

If the “Son” was a “Leaf”, the Gen-Done parameter will have a “Y”; this means generation is
taken care of. Otherwise it would have a “N”; this means that the user must deal with the
regeneration. This parameter is applicable only for trees and not for synonyms. For synonyms,
update to the generation is never done.

106

Thesaurus / Synonym System

TCOC - Change Comment and/or Order of a Connection

Description

The TCOC call is used to make changes to the comment and/or order of an existing connection.
This call does not cause need for regeneration.

Format of Call
CALL ‘TRS’ ‘TCOC’ PARAMETERS
Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-Id Name Alphanumeric 64 bytes Input
Father Alphanumeric 64 bytes Input
Son Alphanumeric 64 bytes Input
New Comment Alphanumeric 80 bytes Input
New Order Alphanumeric 10 bytes Input
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

RC = 253 - This Father/Son combination does not exist.

Thesaurus Name

Name of Thesaurus in which the connection to changed is found.

Set-ID Name

Name of the Set-ID in which the connection to be changed is found.

107

Adabas Text Retrieval Reference Manual for UNIX and Windows

Father

The broader term of the connection to be changed.

Son

The narrower term of the connection to be changed.

New Comment

The new comment for the changed connection. If no change is requested, this field must contain
the original Comment.

New Order

The new order for the changed connection. If no change is requested, this field must retain the
original order.

108

Thesaurus / Synonym System

TDEL - Delete a Father/Son Connection or Synonym

Description

The TDEL call deletes a Father/Son connection or synonym from a Set-ID in a Thesaurus.

Format of Call

CALL ‘TRS’ ‘TDEL’ PARAMETERS

Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Name Alphanumeric 64 bytes Input
Father Alphanumeric 64 bytes Input

Son Alphanumeric 64 bytes Input
Gen-done Alphanumeric 1 byte Output

Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

RC = 253 - This Father/Son combination or synonym does not exist.

Thesaurus Name

Name of Thesaurus in which the connection to be deleted is found.

Set-ID

Name of Set-ID in which the connection to be deleted is found.

109

Adabas Text Retrieval Reference Manual for UNIX and Windows

Father

The broader term in the connection to be deleted. Empty in case of a synonym.

Son

The narrower term in the connection to be deleted.

Gen-Done

If the “Son” was a “Leaf”, the Gen-Done parameter will have a “Y”; this means generation is
taken care of. Otherwise it will have a “N”; this means the user must deal with the generation.
This parameter is applicable only for trees and not for synonyms. For synonyms, an update for
the generation is never done.

110

Thesaurus / Synonym System

TDID - Delete a all - from a Thesaurus

Description

The TDID call deletes the a SET-ID from a Thesaurus.

Format of Call

CALL ‘TRS’ ‘TDID’ PARAMETERS

Requested Parameters | Format Length In / Output

Return Code Binary 4 bytes Output

Thesaurus Name Alphanumeric 10 bytes Input

Set-ID Alphanumeric 64 bytes Input
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing. RC = 255 — This SET-ID/Thesaurus
combination does not exist.

Thesaurus Name

Name of the Thesaurus in which the generator of the SET-ID to be deleted is found.

SET-ID

Name of SET-ID whose generation is to be deleted.

111

Adabas Text Retrieval Reference Manual for UNIX and Windows

TFAT - List all Fathers found for a Son in a Thesaurus

Description

The TFAT call lists all Fathers found for a Son on all Set-ID’s in a Thesaurus. Each call returns
the next Father found.

Format of Call
CALL ‘TRS’ ‘TFAT’ PARAMETERS
Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Alphanumeric 64 bytes Input/Output
Father Alphanumeric 64 bytes Output
Son Alphanumeric 64 bytes Input
Step Alphanumeric 1 byte Input
Comment Alphanumeric 80 bytes Output
Order Alphanumeric 10 bytes Output
Work Area Binary 4 bytes *
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

RC = 255 - No Fathers found.
RC = 263 - End of list.

Thesaurus Name

The Thesaurus which will be scanned for the given Son.

112

Thesaurus / Synonym System

Set-ID

The Set-ID in which the Father is found. If this field is not blank when starting this call, only
Fathers in the specified Set-ID will be used.

Father
The father found.

Son

The Son whose Fathers is to be be listed.

Step

Three types of “step” exist:
e “S” - for start listing
. “N” - for next “Father”

e “E” - for end listing

Since this function returns one “Father” at a time, the user must specify at which stage he’s at,
at the time of the call. It is suggested to call the function with “E” when listing is no longer
required for freeing space.

Comment

The comment for the Father returned.

Order

The order for the Father returned.

Work Area

Internal Area, not to be touched by user.

Note:
When function called repeatedly (step = “N” or “E”) this same work-area must be passed.

113

Adabas Text Retrieval Reference Manual for UNIX and Windows

TGEN - Generate Set-ID in Thesaurus for Text Retrieval

Description

After all necessary changes have been made to a Set-ID, the user must generate this Set-Id. This
function deletes the old generation and creates a new one.

Format of Call
CALL ‘TRS’ ‘TGEN’ PARAMETERS
Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Name Alphanumeric 64 bytes Input
Direction Alphanumeric 1 byte Input
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

RC = 255 - This Set-ID/Thesaurus combination does not exist.

Thesaurus Name

Name of the Thesaurus in which the Set-ID to be generated is found.

Set-ID

Name of the Set-ID to be generated.

Direction

If this SET-ID is to be scanned upwards (besides downwards), this field should be set to: “B”.
(Default = downwards only.) In the case of a Set-ID which is a synonym type, this field is
ignored.

114

Thesaurus / Synonym System

TIDS - List All Set-ID’s in a Thesaurus

Description

The TIDS call lists all Set-ID’s found in a Thesaurus. this function is called repeatedly to get
all Set-ID’s. After each call, one Set-ID is returned.

Format of Call

CALL ‘TRS’ ‘TIDS’ PARAMETERS

Requested Parameters | Format Length In/Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Step Alphanumeric 1 byte Input
Set-ID Alphanumeric 64 bytes Output
Set-ID Type Alphanumeric 1 byte Output
Work Area Binary 68 bytes *
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

RC = 255 - No Set-ID’s found.
RC = 263 - End of list.
RC = 257 - No start has been done.

Thesaurus Name

The Thesaurus which is to have its Set-ID’s listed.

115

Adabas Text Retrieval Reference Manual for UNIX and Windows

Step

Three types of “step” exist:
e “S” - for start listing
. “N”> — for next Set-ID

e “E” - forend listing

Since this function returns one Set-ID at a time, the user must specify at which stage he’s at, at
the time of the call. It is suggested to call the function with “E” when listing is no longer required
for freeing space.

Set-ID

The Set-ID found.

Set-ID Type

The type of Set-ID. “S” for Synonym.
“T” for Tree.

Work Area

Internal work area — not to be touched by user!

Note:
When function called repeatedly (step = “N” or “E”) this same work-area must be passed.

116

Thesaurus / Synonym System

TLST - List all Connections in a Set-1D

Description

The TLST call lists all connections found in a Set-ID. This function is called repeatedly, after
each call the next connection is returned. The order of the connections listed is by depth,
meaning: A “grandchild” of a son will appear before that son’s “brother” appears.

Format of Call

CALL ‘TRS’ ‘TLST’ PARAMETERS

Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Name Alphanumeric 64 bytes Input
Top Word Alphanumeric 64 bytes Input
Step Alphanumeric 1 byte Input
Order Type Alphanumeric 1 byte Input
Father Alphanumeric 64 bytes Output
Son Alphanumeric 64 bytes Output
Comment Alphanumeric 80 bytes Output
Order Alphanumeric 10 bytes Output
Level Binary 4 bytes Output
Work-Area Binary 72 bytes *

117

Adabas Text Retrieval Reference Manual for UNIX and Windows

Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

RC = 263 - End of list.

RC = 255 - Set-ID not found.

RC = 261 - Set-ID is a synonym type one.
RC = 257 - List hasn’t been started.

Thesaurus Name

Name of Thesaurus to be listed.

Set-ID Name

Name of the Set-ID to be listed.

Top Word

Step

118

Optional. If this field is not blank the listing will start from this term, otherwise the listing starts
from the top of the tree. This field should not be touched after the “start” step.

Three types of “step” exist:

e “S” - for start listing
. “N” - for next connection
e “E” - forend listing

Since this function returns one connection at a time, the user must specify at which stage he’s
at, at the time of the call. It is suggested to call the function with “E” when listing is no longer
required for freeing space.

Thesaurus / Synonym System

Order Type

The user can get the listing by internal “order” (using the “order field”) or by alphabetical order.
This field must get either: “I” — internal or “A” — alphabetical (default).

Father

The broader term of the connection returned.

Son

The narrower term of the connection returned.

Comment

The comment of the connection returned.

Order

The order of the connection returned.

Level
The relative level of the connection returned: relative to the “top word” if one specified
otherwise, relative to the top of the tree.

Work area

Internal work area, not to be touched by the user!

Note:
When function called repeatedly (step = “N” or “E”) this same work-area must be passed.

119

Adabas Text Retrieval Reference Manual for UNIX and Windows

TSET — Check if a Set-ID exists in a Thesaurus

Description
The TSET call checks if a Set-ID exists in a given Thesaurus.

Format of Call
CALL ‘TRS’ ‘TSET’ PARAMETERS
Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Name Alphanumeric 64 bytes Input
Set Type Alphanumeric 1 byte Output
Found Alphanumeric 1 byte Output
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A
zero code indicates the normal end of processing.

Thesaurus Name

Thesaurus in which the Set-ID is to be looked for.

Set-ID Name
Name of Set-ID to be looked for.

Set Type

If Set-IS found, this field will contain either: ‘T’ — for “tree” or ‘S’ — for “synonym”.

Found

Will contain either ‘Y’ (for “yes” found) or ‘N’ (for not found).

120

Thesaurus / Synonym System

TSON - List all Sons of a Father in Thesaurus

Description

The TSON call lists all Sons found for a Father in all Set-ID’s in a Thesaurus. Each call returns
the next Son found.

Format of Call
CALL ‘TRS’ ‘TSON’ PARAMETERS
Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Alphanumeric 64 bytes Input/Output
Father Alphanumeric 64 bytes Input
Son Alphanumeric 64 bytes Output
Step Alphanumeric 1 byte Input
Order Type Alphanumeric 1 byte Input
Comment Alphanumeric 80 bytes Output
Order Alphanumeric 1 byte Output
Work Area Binary 4 bytes *
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A zero
code indicates the normal end of processing.

RC = 255 - No Sons found.
RC = 263 - End of List.

Thesaurus Name

The Thesaurus Name which will be scanned for the given Father.

121

Adabas Text Retrieval Reference Manual for UNIX and Windows

Set-ID

The Set-ID in which the Son is found. If this field is not blank when starting this call, only sons
in the specified Set-ID will be listed.

Father

The father whose sons are to be listed.

Son

The Son found.

Step

Three types of “step” exist:

e “S” - for start listing

e “N” - for next “Son”

e “E” - forend listing

Since this function returns one “Son” at a time, the user must specify at which stage he’s at, at

the time of the call. It is suggested to call the function with “E” when listing is no longer required
for freeing space.

Order Type

The user can get the listing by internal “order” (using the “order field”) or by alphabetical order.
This field must get either: “I” (internal) or “A” (alphabetical), by default.

Comment

The comment for the Son returned.

122

Thesaurus / Synonym System

Order

The order for the Son returned.

Work Area

Internal Area, not to be touched by user.

Note:
When function called repeatedly (step = “N” or “E”) this same work-area must be passed.

123

Adabas Text Retrieval Reference Manual for UNIX and Windows

TSYN - List all Synonyms in a Set-ID

Description

The TSYN call lists all Synonymous found in a Set-ID. This function is called repeatedly, after
each call the next Synonym is returned.

Format of Call
CALL ‘TRS’ ‘TSYN’ PARAMETERS
Requested Parameters | Format Length In / Output
Return Code Binary 4 bytes Output
Thesaurus Name Alphanumeric 10 bytes Input
Set-ID Name Alphanumeric 64 bytes Input
Step Alphanumeric 1 byte Input
Synonym Alphanumeric 64 bytes Output
Comment Alphanumeric 80 bytes Output
Work Area Binary 4 bytes *
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A zero
code indicates the normal end of processing.

RC =263 - End of List.

RC =255 - Set-ID not found

RC =257 - List hasn’t been started.

RC =259 - Set-ID not of a Synonym type

Thesaurus Name

Name of Thesaurus to be listed.

124

Thesaurus / Synonym System

Set-ID Name

Name of Set-ID to be listed.

Step
Three types of “step” exist:
e “S” - for start listing
. “N” — for next connection
e “E” - forend listing
Since this function returns one connection at a time, the user must specify at which stage he’s
at, at the time of the call. It is suggested to call the function with “E” when listing is no longer
required for freeing space.
Synonym
The Synonym returned.
Comment
The comment of the connection returned.
Work-Area

Internal work area — not to be touched by the user!

Note:
When function is called repeatedly (step = “N” or “E”), this same work must be passed.

125

Adabas Text Retrieval Reference Manual for UNIX and Windows

TUNG - Delete the Generation of a Set-ID in a Thesaurus

Description

The TUNG call deletes the generation of a Set-ID.

Format of Call

CALL ‘TRS’ ‘TUNG’ PARAMETERS

Requested Parameters | Format Length In / Output

Return Code Binary 4 bytes Output

Thesaurus Name Alphanumeric 10 bytes Input

Set-ID Name Alphanumeric 64 bytes Input
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A zero
code indicates the normal end of processing.

Thesaurus Name

Name of the Thesaurus in which the generator of the Set-ID to be deleted is found.

Set-ID

Name of the Set-ID whose generation is to be deleted.

126

Thesaurus / Synonym System

TWRD - Check if a Word exists in a Set-ID

Description

The TWRD call checks if a specified word exists in a Set-ID.

Format of Call
CALL ‘TRS’ ‘TWRD’ PARAMETERS

Requested Parameters Format Length In / Output

Return Code Binary 4 bytes Output

Thesaurus Name Alphanumeric 10 bytes Input

Set-ID Name Alphanumeric 64 bytes Input

Word Alphanumeric 64 bytes Input

Found Alphanumeric 1 byte Output
Return Code

The code returned at the end of processing which indicates whether an error has occurred. A zero
code indicates the normal end of processing.

Thesaurus Name

The Thesaurus in which the word is being checked for.

Set-ID Name

Name of the Set-ID in which the word is being checked for.

Word

The word to be checked for.

Found

Either a “Y’ (for “YES’— word was found) or a ‘N’ (for ‘'NO’ — not found) is returned in this field.

127

128

FILE STRUCTURE

The information in Adabas Text Retrieval is stored in three logical Adabas files which can be
stored in one or more physical Adabas files. The three logical Adabas files are:

e Document file (DFNR);

* Vocabulary file (VFNR);

e Document index file (DSFNR).

The document file must contain user-defined formatted fields which are to be used for retrieval

operations. The Adabas ISNs of the document file will make up the resulting ISN sets for
retrieval operations.

The vocabulary file contains the word index and thesaurus of Adabas Text Retrieval.
The document index file contains the indices of all free-text chapters.

Important:

Because the Adabas ISNs of all files mentioned above are used by Adabas Text Retrieval for
free-text indexing, the Adabas ISNs must not be deleted or changed in any way. If any of these
files is reloaded, the USERISN parameter must be specified.

129

Adabas Text Retrieval Reference Manual for UNIX and Windows

An Example of the Index Structure

130

The following diagrams show how the internal index structure of Adabas Text Retrieval
functions by way of a simple example, and how Adabas Text Retrieval indices are used when
a retrieval operation is carried out.

For example, in Figure 9-1 the two documents DOC1 and DOC?2 are allocated the ISNs 678 and
679 in the document file.

Document File

ISN DOCID TEXT

678 DOCH this is a computer

679 DOC2 this is another computer
Figure 9-1

During the inversion process, each word of a document is entered on the vocabulary file (see
Figure 9-2). The vocabulary file, similar to a dictionary, contains a single entry of each word
known to the system no matter how frequently the word occurs in the documents. The words
known to the system are entered in the V1 field. Each word entered receives an Adabas ISN
unique to that word. This unique Adabas ISN is called a word ISN.

Thereafter, the name of the free-text chapter to which the information belongs is entered in the
D1 field on the document index file (see Figure 9-3). The document ISN of the document to
which the information belongs is entered in the DO field. The word ISNs representing the words
of which the document consists are entered in the multiple field D3.

The Adabas hyperdescriptor technique enables Adabas Text Retrieval to make up an inverted
list which relates the word ISNs of a document to the document ISN of the document in question,
although this document ISN is part of the data of the document index file and not the original
ISN as assigned by Adabas.

File Structure

During a retrieval operation (see Figure 9-4) Adabas Text Retrieval searches the vocabulary file
for the ISN of the word sought. In the example on the following pages, the word “computer”
is sought. If the word cannot be found, the result of the query will be zero; otherwise Adabas
Text Retrieval uses the word ISN (in this case 4) to find all documents containing the word

sought on the document index file. In this case, the documents with the document ISNs 678 and
679 are in the document file.

Vocabulary File
DATA ASSO
Word

Word Word ISN
ISN V1 V1 ISNQ ISN
1 THIS A 1 3
2 IS ANOTHER 1 5
3 A COMPUTER 1 4
4 COMPUTER IS 1 2
5 ANOTHER THIS 1 1

Figure 9-2

131

132

Adabas Text Retrieval Reference Manual for UNIX and Windows

Document Index File

DATA ASSO
Free Text | Doc ISN | Word ISN Word ISN Doc ISN
Chap
ISN D1 Do D3 Y1 ISNQ ISNs
1 Y1 678 1,2,3,4 1 2 678,679
2 Y1 679 1,2,5,4 2 2 678,679
3 1 678
4 2 678,679
5 1 679
Figure 9-3

File Structure

Query: COMPUTER

Vocabulary File

ASSO \l ISNQ ISN
A 1 3
ANOTHER 1 5
COMPUTER 1 4
IS 1 2
THIS 1 1
—» | Word ISN = 4

Document Index File
ASSO Word Doc
ISN ISN
Y1 ISNQ ISNs
1 2 678,679
2 2 678,679
3 1 678
4 2 678,679
5 1 679
—» | Document ISNs = 678,679

Figure 9-4

133

Adabas Text Retrieval Reference Manual for UNIX and Windows

Document File

Adabas Text Retrieval uses the Adabas ISNs of the document file to identify the documents.
These Adabas ISNs form the result of any query entered in the system in the form of Adabas
ISN sets. The respective Adabas ISN is either identified by the value of a unique formatted field
on the document file or entered directly as a parameter to the ADD or DDS call (see the DOCID
parameter in the DYP call, page 40).

In order to perform queries accessing the contents of the free-text chapters together with user
defined formatted fields all relevant formatted fields must be contained in the document file.

For formatted fields you have to specify the corresponding descriptors. For example, for the
field ORDER (A16,N,D) in the demo application:

’01,DA,16,A,DE,NU’

Vocabulary File

134

The vocabulary file contains:
e The vocabulary (word index) of Adabas Text Retrieval;
e The Adabas Text Retrieval thesaurus.

It consists of the following fields:

Field Description

1,V1,32,A,DE,NU (WORD) The field V1 contains the standardized
word as encountered by Adabas Text Retrieval
during the inversion process. A typical case of
standardization is the translation of all characters
(letters) contained in a word to upper case.

1,V2,32,A,DE,NUMU (WORD-DOUBLE) The field V2 contains the
internal index value for the execution of double
truncation (*string*).

1,V3,32,A,DE,NU (WORD-REVERSE) The field V3 contains the
internal index values for the execution of left and
middle truncation.

Field

File Structure

Description

1,V4,32,A,DE,MU,NU

1,V5,32,A,DE,MU,NU

V6=PHON(V1)

or:

1,V6,32,A,DE,MU,NU

1,V8,32,A,DE,MU,NU

1,V9,32,A,NU

Note:

(ROOT) The field V4 contains user defined roots of
the word contained in the V1 field; it supports the
execution of the ROOT or SYR selection modes.

(ASPECT) The field V5 contains user-defined,
broader terms (ASPECTS) of the word contained in
the V1 field: it supports the execution of the
ASPECT and GROUPn selection modes.

(PHONETIC) The phonetic descriptor V6 is built on
the basis of the word contained in the V1 field. It
supports the execution of the PHONETIC selection
mode.

(PHONETIC) The field V6 contains the phonetic
value built on the basis of the word contained in the
V1 field with a specific user exit in Adabas Text
Retrieval.

(SYNONYM) The occurrences of the multiple
value field V8 make up a synonym ring containing
those user defined words which are of equal
meaning; they support the execution of SYN or SYR
selection modes.

(ORIGINAL) The field V9 contains the original
nonstandard form of the word as contained in the V1
field and as encountered by Adabas Text Retrieval
during the inversion process at its first occurrence in
any text entered into the system.

If the original non-standardized form of the word is
not required, the field V9 can be omitted.

The length of all the fields above corresponds to the word length inside Adabas Text Retrieval.
1t is specified by the WORDLEN parameter of the BC or DYP call. It must not exceed 64 bytes.

The default word length is 32 bytes.

135

Adabas Text Retrieval Reference Manual for UNIX and Windows

Document Index File

The document index file contains the internal document index created by Adabas Text Retrieval
during the inversion process.

It consists of the following fields:

Field Description

1,D0,4,B,NU ISN of DFNR record

1,D1,2,ANU Hypername

1,D2,191,ANU,MU Proximity information
1,D3,4,B,NUMU Word ISN in VFNR

1,D7,12,B,NU Paragraph, sentence and word position

D9=D0(1,4),D1(1,2),D7(5,6)

For each user-defined, free-text chapter, a hyperdescriptor in the following form must be added
to the document index file:

Field Description

Y1,4,B,NU,MU=HYPER(1,D1,D0,D3) This hyperdescriptor definition should be used for
applications which do not use proximity search.

Y1,8,B,NU,MU=HYPER This hyperdescriptor definition should be used for
(1,b1,D0,D7,D2,D3) applications which use proximity search.

136

SAMPLE APPLICATION

This chapter demonstrates the use of Adabas Text Retrieval calls in the context of a sample
application. This sample application is written in Natural and is contained as a Natural INPL
on the Adabas Text Retrieval installation tape.

A retrieval application typically consists of the functions illustrated below:

A TYPICAL TEXT RETRIEVAL APPLICATION
Document Document
Maintenance Retrieval
Add Modify Delete Execute Delete Execute
Document Document Document Query Document Query
Create Delete Delete Hiﬁ’h"ght
Index Index Entries || | Index Entries ems
Selected
Create
Index

137

Adabas Text Retrieval Reference Manual for UNIX and Windows

The sample application explained in this chapter is a small text retrieval system used to retrieve
information on Software AG’s product documentation. It enables the maintenance and retrieval
of documents.

The following main functions are implemented:
o Maintenance. Store, update, delete documents;
o Formatted retrieval. Query, select, display documents;

e Freestyle retrieval. Query, display, overview.

The following figure provides an overview of the sample application:

Example menu

TRS-INIT
Maintenance Formatted Freestyle
Retrieval Retrieval
TRS-ADD TRS-QR TRS-FQR
TRS-EIS TRS-FQRH
TRS-DISP TRS-NAT
TRS-HLP

Local data area
TRS-LDA

138

Sample Application

The following diagram provides an overview of the sample application file structure:

Document File

File-Number: 39
DDM-Name: TRS-DOCUMENT

DFNR VFNR
File-Number: 39 File-Number: 39

DDM-Name: TRS-VOCABULARY

DFNR

File-Number: 39

To implement the sample application, you must adjust the physical file numbers to the values
chosen by you when installing the sample application files in the Adabas database:

Change the file numbers of the DDMs TRS-DOCUMENT and TRS-VOCABULARY;

Change the file numbers used for the Adabas Text Retrieval BC call in the Natural program
TRS-INIT (statement number 0330 , pagqj42);

Recatalog all Natural objects with the Natural CATALL command.

139

The Calls Used in the Sample Application

Adabas Text Retrieval Reference Manual for UNIX and Windows

140

The following table alphabetically lists the calls used in the sample application:

Call Description In Sample
Program
ADD Inverts a document TRS-ADD
BC Starts an Adabas Text Retrieval session TRS-INIT
CL Closes an Adabas Text Retrieval session TRS-INIT
DDS Deletes document index entries TRS-ADD
DSL Defines search labels TRS-INIT
DYP Changes dynamic parameters TRS-ADD
TRS-DISP
EISE Ends browsing through an ISN set TRS-EIS
EISG Browses through an ISN set TRS-EIS
EISS Starts browsing through an ISN set TRS-EIS
HIGH Highlights a document TRS-DISP
QR Executes a query TRS-HLP
TRS-FQR
TRS-QR
ROR Releases a query TRS-FQR
TRS-QR

Sample Application

Initialize Adabas Text Retrieval Session

TRS-INIT

The program TRS-INIT initializes an Adabas Text Retrieval session and invokes the required
function (maintenance, retrieval, freestyle retrieval). The program is broken down into the
following functional segments.

Initialize program;

Set to lower case;

Initialize the Adabas Text Retrieval Session (BC call);
Define Search Labels (DSL call);

Display Menu and Invoke Selected Functions;

Close the Adabas Text Retrieval Session (CL call).

Program Start Up
0010 R R R R R R R RS SRR R R R R R R R R R R RS R R R R R EE SRR EEEEEEEEEEREEEEEEEESES
0020 * *
0030 * ADABAS TEXT RETRIEVAL Example Application *
0040 * *
0050 * Object : TRS-INIT *
0060 * Type : Program *
0070 * Function : Initialize TRS session *
0080 * Author : Software AG *
0090 * *
0100 R R R R R R R RS SRR R R RS R R R R R R R RS R EE R R R EE SRR EEEEEEEEEEREEEEEEEEESEES
0110 *
0120 DEFINE DATA LOCAL USING TRS-LDA
0130 LOCAL
0140 1 SEL (Al)
0150 END-DEFINE
0160 *

Use Lowercase letters
0170 =* *
0180 * Set lower case *
0190 * *
0200 SET CONTROL 'L’

0210

*

141

142

Adabas Text Retrieval Reference Manual for UNIX and Windows

Initialize the Adabas Text Retrieval Session

Note:

1t is recommended that you execute a CL call prior to a BC call to ensure that the existing session
is closed.

The BC call in line 0330 is used to initialize an Adabas Text Retrieval session.

The TRS.DYP-PARM parameter contains all relevant Adabas Text Retrieval start-up
parameters for that specific session.

0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450

0460

* *
* Initialize TRS session *
* *
*
*
CALL 'TRS’ 'CL’ TRS.RC TRS.SAVE
*
*
MOVE 'VFNR=38,DFNR=39,DSFNR=39,DOCID=DA,SETCHAR=#.' TO TRS.DYP-PARM
*
*
CALL 'TRS’ 'BC’ TRS.RC TRS.SIZE TRS.SAVE TRS.DYP-PARM
*
*
IF TRS.RC NE 0
MOVE TRS.RC TO TRS.RC1
*
*
CALL 'TRS’ 'CL’ TRS.RC TRS.SAVE
*
*
WRITE 'Error in TRS-BC:’ TRS.RC1
STOP
END-IF
*

Sample Application

Define Search Labels

In order to use logical names for the retrieval of free-text chapters and formatted fields in the
document structure, search labels are assigned to these fields using the DSL call (see line 0530).
The parameter TRS.DSL-PARM must contain all necessary search label definitions.

The logical name #TITLE is assigned to the free-text chapter hyperdescriptor Y1Y1 and the
logical name #ABSTRACT to Y2Y2 (see line 0500).

The logical name #DATE is assigned to the formatted field represented by the Adabas descriptor
DB and the logical name #ORDER to DA (see line 0500).

These logical names can be used for processing queries which access the requested fields in the
document structure.

0470 =* *
0480 * Define Search-Labels *
0490 * *

0500 MOVE 'Y1Y1=#TITLE,Y2Y2=#ABSTRACT, DB=#DATE, DA=#0ORDER.’ TO TRS.DSL-PARM

0510 =*
0520 *

0530 CALL 'TRS’ 'DSL’ TRS.RC TRS.DSL-PARM

0540 *

0550 *

0560 IF TRS.RC NE 0

0570 MOVE TRS.RC TO TRS.RC1

0580 CALL 'TRS’ 'CL’ TRS.RC TRS.SAVE
0590 WRITE 'Error in TRS-DSL:’ TRS.RC1l
0600 STOP

0610 END-IF

0620 *

0630 SET KEY ALL

0640 SET KEY PF3 NAMED ’‘Quit’

0650 *

143

Adabas Text Retrieval Reference Manual for UNIX and Windows

Display Menu and Invoke Selected Functions

A menu is displayed for selecting a desired function. The following functions are available:

A Document Maintenance (store, update, delete);

R Formatted Retrieval,

F Freestyle Retrieval.

0660 *

0670 * Display Menu *
0680 *

0690 REPEAT

0700 INPUT USING MAP ’'TRS—-MENU’
0710 IF *PF-KEY = 'PF3’

0720 ESCAPE BOTTOM

0730 END-IF

0740 DECIDE ON FIRST VALUE SEL

0750 VALUE 'A’

0760 FETCH 'TRS—ADD’

0770 VALUE 'R’

0780 FETCH 'TRS—-QR’

0790 VALUE 'F’

0800 FETCH 'TRS-FQR’

0810 VALUE '.’'

0820 ESCAPE BOTTOM

0830 NONE

0840 REINPUT 'Invalid function code.’

0850 END-DECIDE
0860 END—-REPEAT
0870 =*

Close the Adabas Text Retrieval Session

The CL call in line 0930 closes the Adabas Text Retrieval session.

0880
0890
0900
0910
0920
0930 CALL 'TRS’ 'CL’ TRS.RC TRS.SAVE
0940 =*

0950 *

0960 SET CONTROL ‘U’

0970 =*

0980 END

Close TRS session *

* X X X X

144

Sample Application

Document Maintenance and Retrieval

TRS-ADD

The program TRS-ADD enables the user to perform the following functions.
e Select a document for update/delete;

. Store a document;

e Update a document;

e Invert a document (ADD call);

o Delete a document;

e Delete document index entries (DDS call).

145

Adabas Text Retrieval Reference Manual for UNIX and Windows

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340

146

Program Start Up
EE R R R S S S S S R R T S S S S S R R S S S S S S S o o o o
* *
* ADABAS TEXT RETRIEVAL Example Application *
* *
* Object : TRS-ADD *
* Type : Program *
* Function : Store, update, delete and invert document *
* Author : Software AG *
* *
EE R R SR S S S S S R R S S S S R S R S S S o S o O
*
DEFINE DATA LOCAL USING TRS—-LDA /* TRS Parameter
*
LOCAL
*
1 MAP1 /* Fields in Map

2 ORDER (A16)

2 DATE (N8)

2 PRICE (N3)

2 TITLE (A70)

2 ABSTRACT (A70/12)
*
1 DOCUMENT VIEW OF TRS—-DOCUMENT /* Document View

2 ORDER (A16)

2 DATE

2 PRICE (N3)

2 TITLE

2 ABSTRACT (12)
*
1 #ORDER-OLD (Al6) /* Work Fields
1 #MSG (A72)
*
END-DEFINE
*

Sample Application

Set Keys

0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530

*

* Set keys

*

SET
SET
SET
SET
SET
SET
SET
SET

*

*

R1.

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY

REPEAT

*

*

INPUT

ALL
PF2
PF3
PF4
PF5
PF6
PF8

PF10 NAMED

WITH TEXT #MSG USING MAP

NAMED
NAMED
NAMED
NAMED
NAMED
NAMED

'Clear’
‘Quit’

'Update’
'Delete’
'Store’
'Next '
'Query’

/* Main Loop

'TRS—ADDM’

Terminate

0540
0550
0560
0570
0580
0590
0600

* Quit Function

IF *PF-KEY

END-IF

= 'PF3’
ESCAPE BOTTOM

Invoke Formatted Retrieval

0610
0620
0630
0640
0650
0660
0670

* Invoke Query

IF *PF-KEY
FETCH
END-IF

= 'PF10’

"TRS-QR’

147

Adabas Text Retrieval Reference Manual for UNIX and Windows

Clear Screen
0680 * *
0690 * Clear screen
0700 * *
0710 IF *PF-KEY = 'PF2’
0720 RESET MAP1
0730 MOVE 'Input data and press enter.’ TO #MSG
0740 ESCAPE TOP
0750 END-IF
0760 *

Next Document
0770 * *
0780 * Next document
0790 * *
0800 IF *PF-KEY = 'PF8’
0810 READ DOCUMENT BY ORDER = MAP1.ORDER
0820 IF MAP1.ORDER NE DOCUMENT.ORDER
0830 ESCAPE BOTTOM
0840 END-IF
0850 END-READ
0860 MOVE DOCUMENT.ORDER TO MAP1.ORDER
0870 END-IF
0880 *
0890 *
0900 IF MAP1.ORDER = ' '
0910 REINPUT ’'Please enter Order Nr.'
0920 END-IF
0930 *

148

Sample Application

Select Document for STORE/UPDATE/DELETE

0940

0950

0960

0970

0980

0990

01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160

*

* Select document
*

IF *PF-KEY = 'ENTR’ OR *PF-KEY = 'PF8’
IF MAP1.0ORDER = #ORDER-OLD
ESCAPE TOP
END-IF
*
Fl.
FIND (1) DOCUMENT WITH ORDER = MAP1l.ORDER
MOVE BY NAME DOCUMENT TO MAP1
MOVE MAP1.ORDER TO #ORDER-OLD
END-FIND
*
IF *NUMBER (Fl.) > 0
COMPRESS 'Order-Nr.:’ MAP1.ORDER ’found.’ INTO #MSG
ELSE
COMPRESS 'Order-Nr.:’ MAP1.ORDER ’‘not found.’ INTO #MSG
END-IF
ESCAPE TOP
*
END-IF

149

Adabas Text Retrieval Reference Manual for UNIX and Windows

Store Document

In this program segment, the document is stored in the document file and inverted by Adabas
Text Retrieval. The document is inverted using the subroutine SR-INVERT specified in line
1300. This subroutine begins in line 2020.

01170 * *
01180 * Store document

01190 = *
01200 IF *PF-KEY = 'PF6’

01210 FIND (1) DOCUMENT WITH ORDER = MAP1l.ORDER

01220 IF *NUMBER > 0

01230 COMPRESS ’'Document’ MAP1.ORDER ‘already exists.’ INTO #MSG
01240 REINPUT #MSG MARK *MAP1l.ORDER

01250 END-IF

01260 END-FIND

01270 MOVE BY NAME MAP1 TO DOCUMENT

01280 STORE DOCUMENT

01290 =

01300 PERFORM SR—INVERT /* Invoke Inversion

01310 *

01320 END TRANSACTION

01330 COMPRESS ’'Order-Nr.:’ MAP1.ORDER ‘successfully added.’ INTO #MSG
01340 RESET #ORDER-OLD

01350 END-IF

01360 =

150

Sample Application

Update Document

The following program segment updates the document in the document file and re-inverts the
document. The document is inverted using the subroutine SR-INVERT specified in line 1540.
This subroutine begins in line 2020.

01370 *

01380 * Update document

01390 =

01400 IF *PF-KEY = 'PF4’

01410 IF MAP1.ORDER NE #ORDER-OLD

01420 REINPUT ’‘No change of Order-Nr. allowed. for update’
01430 MARK *MAP1.ORDER

01440 END-IF

01450 IF MAP1.DATE NE MASK(YYYYMMDD)

01460 REINPUT ’‘Please correct date.’ MARK *MAP1.DATE

01470 END-IF

01480 FIND (1) DOCUMENT WITH ORDER = MAP1l.ORDER

01490 MOVE BY NAME MAP1 TO DOCUMENT

01500 =

01510 UPDATE /* Invoke Inversion
01520 *

01530 RESET #ORDER-OLD

01540 PERFORM SR—INVERT

01550 END OF TRANSACTION

01560 COMPRESS 'Order-Nr.:’ MAP1.ORDER ‘successfully updated’ INTO #MSG
01570 END-FIND

01580 =

01590 END-IF

01600 =

151

152

Adabas Text Retrieval Reference Manual for UNIX and Windows

Delete Document
The documents are deleted from the document file. The selection of the relevant input entries
is carried out in subroutine SR-DELETE specified in line 1830. This subroutine begins in line
2570.
01610 * *
01620 * Delete document
01630 * *
01640 IF *PF-KEY = 'PF5’
01650 F2.
01660 FIND DOCUMENT ORDER = MAP1.ORDER
01670 SET CONTROL 'WFL70C7B10/10°'
01680 INPUT ’'PLease retype Order-Nr.:’ #ORDER-OLD (AD=T'_ ')
01690 SET CONTROL 'WB'
01700 IF #ORDER-OLD NE MAP1.ORDER
01710 MOVE ’'No record deleted.’ TO #MSG
01720 ESCAPE BOTTOM
01730 END-IF
01740 DELETE
01750 END-FIND
01760 *
01770 IF *NUMBER (F2.) = 0
01780 BACKOUT TRANSACTION
01790 COMPRESS ’'Document’ MAP1.ORDER ’‘doesn”t exists.’ INTO #MSG
01800 REINPUT #MSG MARK *MAP1.ORDER
01810 END-IF
01820 *
01830 PERFORM SR-DELETE /* Invoke Delete Index
01840 *
01850 RESET MAP1
01860 END OF TRANSACTION
01870 COMPRESS ’'Order-Nr.:’ MAP1.ORDER ‘successfully deleted.’ INTO #MSG
01880 RESET #ORDER-OLD
01890 ESCAPE TOP
01900 END-IF
01910 *
01920 *
01930 END-REPEAT

Sample Application

Invert Document

The SR-INVERT subroutine inverts the contents of the two free-text chapters TITLE and
ABSTRACT.

Before the inversion by the ADD call, the TEXT parameter must be set to the name of the
Adabas hyperdescriptor (Y1) which represents the free-text chapter TITLE in the document file.
This is carried out by the DYP call in line 2120..

The ADD call is then executed in line 2180 which performs the inversion. Within the ADD call:
. The field MAP1.ORDER contains the current value of the document ID;
e The field TRS.ALEN contains the length of the text to be inverted, in this case 72 bytes;

e The field MAP1.TITLE(1) contains the one and only text line of the free-text chapter
TITLE;

e The field TRS.DISN will contain the ISN assigned to the DFNR record by TRS;

e The constant, LAST, indicates that there are no subsequent parts of the free-text chapter
to be inverted.

The procedure for inverting the chapter ABSTRACT is identical to that for TITLE above (see
lines 2370 and 2430).

Bearing in mind that the name of the Adabas hyperdescriptor for ABSTRACT is Y2, the
possible length of the free-text can be up to 864 bytes.

01940 EE R R R R R R RS SRR R RS RS R R R SRR R R R RS R R R R R R EE SRR EEEEEEEEEEREEEEEEEEESES
01950 EE R R R R R R RS SRR R R R R R R R R R R R R R RS R EEE R R R EEEEEEEEEEEEEEEEEEEEEEEESES
01960 *** S U b Tr O U t 1 N @ 8 *kkkkkhkhkkhkhhhhhhhhhhkdhhhhhhrhhhrhhhkhhrkkk
01970 EE R R R R R R RS R R R R SRR R R R R R R R RS R R R R R E RS RS SRR EEEEEEREEEEEEEEESES
01980 R R R R R R R RS R R R R R RS R R R RS R E RS R R R R EREEEEEE SRR EEEEEEREEEEEEEEESES
01990 *

02000 *

02010 R R R R R R R RS SRR E R RS R R R R R SRR R RS R R R R R R RS EEEEEEEEEEEEREEEEEEEEESES
02020 DEFINE SUBROUTINE SR-INVERT /* Inversion Process for Document

02030 EE R R R R R R RS SRR R R RS R R R R R R R R RS R R R R R EEEEEEEEEEEEEEEREEEEEEEEESES
02040 *

02050
02060
02070
02080
02090 MOVE 'TEXT=Y1lYl.’ TO TRS.DYP-PARM

TRS—ADD ===== Inversion for Document Chapter — TITLE

* X X F

153

154

Adabas Text Retrieval Reference Manual for UNIX and Windows

02100 *
02110 *

02120

CALL 'TRS’ 'DYP’' TRS.RC TRS.DYP-PARM

02130 =
02140 *
02150

02160 =
02170 *
02180

02190

02200 =
02210 *
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360 =

* 0% X 2k F F

*

MOVE 68 TO TRS.ALEN

CALL 'TRS’ 'ADD’ TRS.RC MAP1.ORDER TRS.ALEN MAP1.TITLE
TRS.DISN 'LAST '

IF TRS.RC NE 0
MOVE TRS.RC TO TRS.RC1
BACKOUT TRANSACTION
COMPRESS ’'Error in TRS-ADD (Title) =>’ TRS.RC1 INTO #MSG
REINPUT #MSG
END-IF

TRS—ADD ===== Inversion for Document Chapter - ABSTRACT

MOVE 'TEXT=Y2Y2.’' TO TRS.DYP-PARM

02370

CALL 'TRS’ 'DYP’' TRS.RC TRS.DYP-PARM

02380 =
02390 =
02400

02410 *
02420 *

MOVE 816 TO TRS.ALEN

02430

CALL 'TRS’ 'ADD’ TRS.RC MAP1.ORDER TRS.ALEN MAP1.ABSTRACT(1)

02440
02450 =
02460 =
02470
02480
02490
02500
02510
02520
02530 =

TRS.DISN 'LAST '

IF TRS.RC NE 0
MOVE TRS.RC TO TRS.RC1
BACKOUT TRANSACTION
COMPRESS 'Error in TRS—-ADD (Abstract) =>’ TRS.RC1l INTO #MSG
REINPUT #MSG
END-IF

02540 END—-SUBROUTINE

02550 =
02560 =

Sample Application

Delete Document Index Entries

Within the SR-DELETE subroutine, the DDS call is invoked in order to remove index entries
from the document index file (DSFNR).

The index entries for the free-text chapters TITLE and ABSTRACT must be deleted separately.

The deletion process takes place for ABSTRACT in lines 2670 and 2700 and for TITLE in lines
2860 and 2890. Prior to the invocation of the DDS call, the TEXT parameter must be set to the
name of the Adabas hyperdescriptor representing the free-text chapter in question (see lines

2640 and 2830).

The field MAP1.ORDER contains the value of the document ID.

02570 EE R R SR S S S S S S R T S S S Sk S
02580 DEFINE SUBROUTINE SR-DELETE /* Delete Document Index

02590 EE R R SR S S S S S S R R T S S S S T R R R S S S S O o o
02600 =
02610 *

02620 * TRS-DDS ===== Delete Index for Document Chapter - TITLE
02630 =

02640 MOVE 'TEXT=Y1Yl.’ TO TRS.DYP-PARM

*

02650
02660 =

02670 CALL 'TRS’ 'DYP’ TRS.RC TRS.DYP-PARM

02680 =
02690 =

02700 CALL 'TRS’ 'DDS’ TRS.RC MAP1.ORDER ’'SUM’

02710 *

02720 *

02730 IF TRS.RC NE 0

02740 MOVE TRS.RC TO TRS.RC1

02750 BACKOUT TRANSACTION

02760 COMPRESS 'Error in TRS-DDS (Title) =>’ TRS.RC1 INTO #MSG
02770 REINPUT #MSG

02780 END-IF

02790 *

155

156

Adabas Text Retrieval Reference Manual for UNIX and Windows

02800
02810
02820

TRS—-DDS

Delete Index for Document Chapter - ABSTRACT

02830

MOVE 'TEXT=Y2Y2.’' TO TRS.DYP-PARM

02840
02850

02860

CALL 'TRS’ 'DYP’' TRS.RC TRS.DYP-PARM

02870
02880

02890

CALL 'TRS’ 'DDS’ TRS.RC MAP1.ORDER ’'SUM’

02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050

*

IF TRS.RC NE 0
MOVE TRS.RC TO TRS.RC1
BACKOUT TRANSACTION
COMPRESS 'Error in TRS-DDS (Abstract)
REINPUT #MSG
END-IF

END-SUBROUTINE

*

*

*

*

FETCH

"MENU"

END

=>’ TRS.RC1l INTO #MSG

Sample Application

Formatted Retrieval

TRS-QR

The TRS-QR program represents the main retrieval part of the demonstration application. The
program enables the user to enter specific queries for each of the categories in the document.
The program returns the respective results and totals them by linking all relevant queries with
the boolean operator “AND.” The program is broken up into the following subsections:

. Execute Query for the categories Order, Title, Abstract, Date (QR call);
e Produce Final Result (QR call);

. Invoke Overview.

Program Start Up

0010 EE R R R S S S S S R R R T S S S S S R S R S S o o S o o O

0020 =* *
0030 * ADABAS TEXT RETRIEVAL Example Application *
0040 =* *
0050 * Object : TRS-QR *
0060 * Type : Program *
0070 * Function : Retrieval *
0080 * Author : Software AG *
0090 * *
0100 EE R R R S S S S S R T S S S S S R o S o o S R o o
0110*

0120DEFINE DATA LOCAL USING TRS-LDA /* TRS Parameter

0130%*

0140LOCAL

0150%*

01601 #MAP /* Fields in Map

0170 2 #ORDER(A60)

0180 2 #ORDER-R(N7)

0190 2 #TITLE(A60)

0200 2 #TITLE-R(N7)

0210 2 #ABSTRACT(A60)

0220 2 #ABSTRACT-R(N7)

0230 2 #DATE(A60)

0240 2 #DATE-R(N7)

0250 2 #RESULT(N7)

0260*

02701 #MSG(A72)

0280*

0290END-DEFINE

0300*

157

Adabas Text Retrieval Reference Manual for UNIX and Windows

Set Keys
0310*
0320* Set keys
0330*

0340SET KEY ALL

0350SET KEY PF2 NAMED ’‘Clear’
0360SET KEY PF3 NAMED ‘Quit’
0370SET KEY PF6 NAMED ’‘Over’
0380SET KEY PF10 NAMED ‘Add’

0390%*
0400REPEAT
0410%*
0420 INPUT USING MAP ’'TRS—-QRM’
0430*

Terminate
0440%*
0450* Escape to menu
0460*
0470 IF *PF-KEY = 'PF3’
0480 ESCAPE BOTTOM
0490 END-IF
0500%*

Invoke Document Processing

0510*

0520* Invoke Add

0530*

0540 IF *PF-KEY = 'PF1l0’
0550 FETCH 'TRS—-ADD’
0560 END-IF

0570*

158

Sample Application

Clear Screen

Clear Screen and release queries.

For the release of the queries a RQR call is used (see lines 0620

and 0650).

0580*
0590* Clear the screen

0600*
0610 IF *PF-KEY = 'PF2’

0620*

0630*

0640 CALL 'TRS’ 'RQR’ TRS.RC ’'DOCS0002°
0650*

0660*

0670 CALL 'TRS’ 'RQR’ TRS.RC ’‘DOCS0003°
0680*

0690*

0700 RESET #MAP

0710 ESCAPE TOP

0720 END-IF

0730*

159

Adabas Text Retrieval Reference Manual for UNIX and Windows

Execute Query for ORDER
0740%* *
0750* TRS Query ===== ORDER-NUMBER
0760%* *
0770 RESET TRS.QUERY-G #ORDER-R #TITLE-R #ABSTRACT-R #DATE-R #RESULT
0780%*
0790 IF #ORDER NOT EQ ' '
0800*
0810 MOVE ’‘DOCS0001’ TO TRS.NAME
0820 COMPRESS ’'#ORDER’ #ORDER TO TRS.QUERY
0830%*
0840%*
0850 CALL 'TRS’ ’'QR’ TRS.RC TRS.QUERY TRS.QLEN TRS.NAME TRS.DERR TRS.LERR
0860 TRS.MODE TRS.CID TRS.QTY TRS.TYPE
0870%*
0880*
0890 IF TRS.RC NE 0
0900 MOVE TRS.RC TO TRS.RCl1l
0910 COMPRESS ’'Error in TRS.QR =>' TRS.RC1 TO #MSG
0920 REINPUT #MSG MARK *#ORDER
0930 END-IF
0940%*
0950 MOVE TRS.QTY TO #ORDER-R
0960 MOVE '#1’ TO TRS.QUERY-G
0970%*
0980 END-IF
0990+*
1000%*

160

Sample Application

Execute Query for TITLE

The query entered by the user for the formatted field TITLE is executed by the QR call in line
1100).

The search label entered by the user and the query expression are combined with the parameter
TRS.QUERY for the QR call (see lines 1060-1070). The constant "DOCS0002’ constitutes the
query name in TRS.NAME. This will be used to reference back to this specific query later on
in the program.

In the QR call:

The TRS.QLEN parameter indicates the length of the query. In the example, it is 80 bytes;

The parameters TRS.DERR and TRS.LERR contains information on syntax errors
detected in the query;

The constant “D” is chosen for the TRS.MODE parameter in order to indicate that a
document retrieval must be carried out;

The TRS.CID parameter contains the Adabas command ID which identifies the Adabas
ISN list resulting from the query;

The TRS.QTY parameter contains the number of selected documents. This parameter is
shown to the user as the first result;

The constant value ’=’, in the TRS.TYPE parameter, chooses the default selection mode
to be PRECISE.

In the field TRS.QUERY-G of line 1220, the constant entry "#2” indicates that the result of this
query will be incorporated into the final query (for determining the final result).

161

Adabas Text Retrieval Reference Manual for UNIX and Windows

1010%* *
1020* TRS Query ===== TITLE

1030%* *
1040 IF #TITLE NOT EQ ' '

1050%*

1060 MOVE ’'DOCS0002’ TO TRS.NAME

1070 COMPRESS '#TITLE' #TITLE TO TRS.QUERY

1080%*

1090%*

1100 CALL 'TRS’ ’'QR’ TRS.RC TRS.QUERY TRS.QLEN TRS.NAME TRS.DERR TRS.LERR
1110 TRS.MODE TRS.CID TRS.QTY TRS.TYPE
1120%*

1130%*

1140 IF TRS.RC NE 0

1150 MOVE TRS.RC TO TRS.RC1

1160 COMPRESS ’'Error in TRS.QR =>’ TRS.RC1 TO #MSG
1170 REINPUT #MSG MARK *#TITLE

1180 END-IF

1190%*

1200 MOVE TRS.QTY TO #TITLE-R

1210 IF TRS.QUERY-G EQ ' '

1220 MOVE '#2' TO TRS.QUERY-G

1230 ELSE

1240 COMPRESS TRS.QUERY-G ’AND #2’ TO TRS.QUERY-G
1250 END-IF

1260%*

1270 ELSE

1280%*

1290%*

1300 CALL 'TRS’ 'RQR’ TRS.RC ’'DOCS0002’

1310%*

1320%*

1330 END-IF

1340%*

1350%*

162

Sample Application

Execute Query for ABSTRACT and DATE

A QR call is used to select documents according to the queries entered by the user for the fields
ABSTRACT and DATE. Note that the QR call in lines 1450 and 1460 is identical to that used
for TITLE above.

1360% *
1370* TRS Query ===== ABSTRACT

1380* *
1390 TIF #ABSTRACT NOT EQ ' '

1400%

1410 MOVE ’'DOCS0003’ TO TRS.NAME

1420 COMPRESS '#ABSTRACT' #ABSTRACT TO TRS.QUERY

1430%

1440%*

1450 CALL 'TRS’ 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRS.NAME TRS.DERR TRS.LERR
1460 TRS.MODE TRS.CID TRS.QTY TRS.TYPE

1470%*

1480%

1490 IF TRS.RC NE 0

1500 MOVE TRS.RC TO TRS.RC1

1510 COMPRESS 'Error in TRS.QR =>’ TRS.RC1l TO #MSG

1520 REINPUT #MSG MARK *#ABSTRACT

1530 END-IF

1540%

1550 MOVE TRS.QTY TO #ABSTRACT-R

1560 IF TRS.QUERY-G EQ ' '

1570 MOVE '#3’ TO TRS.QUERY-G

1580 ELSE

1590 COMPRESS TRS.QUERY-G ’'AND #3’ TO TRS.QUERY-G

1600 END-IF

1610%

1620 ELSE

1630*

1640%

1650 CALL 'TRS’ 'RQR’ TRS.RC ’'DOCS0003°’

1660*

1670%

1680 END-IF

1690%

1700%

1710%* *
1720* TRS Query ===== DATE

1730% *
1740 IF #DATE NOT EQ ' '

163

Adabas Text Retrieval Reference Manual for UNIX and Windows

1750%

1760 MOVE ‘DOCS0004’' TO TRS.NAME

1770 COMPRESS '#DATE’ #DATE TO TRS.QUERY

1780%

1790%

1800 CALL 'TRS’ 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRS.NAME TRS.DERR TRS.LERR
1810 TRS.MODE TRS.CID TRS.QTY TRS.TYPE
1820%*

1830~*

1840 IF TRS.RC NE 0

1850 MOVE TRS.RC TO TRS.RC1

1860 COMPRESS 'Error in TRS.QR =>’ TRS.RC1l TO #MSG
1870 REINPUT #MSG MARK *#DATE

1880 END-IF

1890~*

1900 MOVE TRS.QTY TO #DATE-R

1910 IF TRS.QUERY-G EQ ' '

1920 MOVE ‘#4' TO TRS.QUERY-G

1930 ELSE

1940 COMPRESS TRS.QUERY-G 'AND #4' TO TRS.QUERY-G
1950 END-IF

1960%

1970 END-IF

1980%

1990~%

164

Sample Application

Produce Final Result

A QR call is executed in line 2090 to produce the final total result based on the queries which
have already been executed.

This final result is stored under the name DOCS0011 in line 2050.

2000%* *
2010* TRS Query ===== Total

2020%* *
2030 IF TRS.QUERY-G NOT EQ ' '

2040%*

2050 MOVE ‘DOCS0011’ TO TRS.NAME

2060 MOVE TRS.QUERY-G TO TRS.QUERY

2070%*

2080*

2090 CALL 'TRS’ 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRS.NAME TRS.DERR TRS.LERR
2100 TRS.MODE TRS.CID TRS.QTY TRS.TYPE

2110*

2120*

2130 IF TRS.RC NE 0

2140 MOVE TRS.RC TO TRS.RC1

2150 COMPRESS 'Error in TRS.QR =>’ TRS.RC1l TO #MSG

2160 REINPUT #MSG

2170 END-IF

2180*

2190 MOVE TRS.QTY TO #RESULT

2200%*

2210 END-IF

2220%

165

Adabas Text Retrieval Reference Manual for UNIX and Windows

Invoke Overview

The program TRS-EIS is invoked to create an overview of all documents selected by the final

query.

2230* *
2240* Invoke Overview

2250* *
2260 IF *PF-KEY = 'PF6’

2270 IF #RESULT = 0

2280 REINPUT 'No final result build.’

2290 ELSE

2300 FETCH RETURN 'TRS-EIS’

2310 END-IF

2320 END-IF

2330*

2340END—-REPEAT

2350%*

2360FETCH 'MENU’

2370%

2380*

2390END

166

Sample Application

Overview of Selected Documents

TRS-EIS

The program TRS-EIS creates an overview of the selected documents using the EISS, EISG and
EISE calls. The user can then select documents to be displayed by marking them with “X”. The
program is divided into the following subsections:

e Resume Query (QR call);

e Create Overview (EISG call);
¢ Page Up;

. Page Down;

e Select Item for Display.

167

168

Adabas Text Retrieval Reference Manual for UNIX and Windows

Program Start Up

0010**

0100***

/* TRS—-Parameter

0020*

0030* ADABAS TEXT RETRIEVAL Example Application
0040*

0050* Object : TRS-EIS

0060* Type : Program

0070* Function : Retrieval overview
0080* Author : Software AG

0090*

0110*

0120DEFINE DATA LOCAL USING TRS-LDA
0130*

0140LOCAL

0150*

0160 1 DOCUMENT VIEW OF TRS—-DOCUMENT
0170 2 ORDER

0180 2 DATE

0190 2 TITLE

0200*

0210 1 MAP1

0220 2 LINE(A72/16)
0230 2 MARK(A1/16)
0240 2 MARK-CV(C/16)
0250%*

02601 MSG(A72)

0270%*

02801 J(N2)

02901 K(N2)

03001 I(N7)

03101 P-FROM(N7)
03201 P-THRU(N7)
03301 ORD(A16/16)
0340%*

03501 LINE1(A72)
03601 REDEFINE LINE1

0370 2 ORDER(A1l)
0380 2 FILLER1 (Al)
0390 2 DATE(NS8)

0400 2 FILLER2 (Al)
0410 2 LINE-TEXT(A51)
0420%*

0430END-DEFINE

0440%*

/* Document View

/* Fields in Map

/* Work Fields

*
*
*
*
*
*
*
*

Sample Application

Set Keys
0450* *
0460* Set keys
0470* *

0480SET KEY ALL

0490SET KEY PF3 NAMED ’‘Quit’
0500SET KEY PF6 NAMED ’‘Disp’
0510SET KEY PF7 NAMED ’‘Back’
0520SET KEY PF8 NAMED 'For’
0530%*

Resume Query

A QR call in line 0610 is executed in order to resume the result of the final query by the program
TRS-QR and to sort the selected documents according to the formatted field ORDER (see line
0570).

The EISS call in line 0740 is used to start browsing through an ISN set created by a QR call.

0540* *
0550* Resume Queries
0560* *

0570MOVE ’#11 SORT #ORDER’ TO TRS.QUERY

0580MOVE ‘DOCS0012’ TO TRS.NAME
0590*
0600*

0610CALL 'TRS’ 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRS.NAME TRS.DERR TRS.LERR
0620 TRS.MODE TRS.CID TRS.QTY TRS.TYPE

0630*

0640*

0650IF TRS.RC NE 0

0660 MOVE TRS.RC TO TRS.RC1
0670 WRITE 'INTERNAL ERROR’
0680 STOP

0690END-IF

0700*

0710MOVE TRS.QTY TO TRS.QTY1
0720*

0730*

0740CALL 'TRS’ 'EISS’ TRS.RC TRS.CID TRS.TYPE TRS.QTY

0750%
0760*
0770MOVE 1 TO P-FROM
0780*

169

Adabas Text Retrieval Reference Manual for UNIX and Windows

Create Overview

An overview is of the selected documents is created. These documents are fetched via ISNs
which have been provided by the EISG call in line 1000. This call contains the following
parameters:

e The TRS.CID parameter contains the Adabas Command ID assigned to the query
previously executed.

e The constant “D” is assigned to the parameter TRS.TYPE to indicate that a document
selection was executed.

e The TRS.QTY parameter contains the number of documents selected by the previous QR
call;

e The TRS.POS parameter must contain the relative position of the requested ISN inside the
Adabas ISN set. In this case, the user variable “I” is used to browse through the selected
documents;

e The parameter TRS.ISN will contain the Adabas ISN selected by the EISG call.

The document represented by the ISN provided by the EISG call is then accessed by a GET
command in line 1050.

170

Sample Application

0790%* *
0800* Create Overview

0810%* *
0820REPEAT

0830%*

0840 /* Calculate Position in Set

0850 MOVE P-FROM TO P-THRU

0860 ADD 15 TO P-THRU

0870 IF P-THRU GT TRS.QTY1l

0880 MOVE TRS.QTY1l TO P-THRU
0890 END-IF
0900*

0910 RESET MAP1 K

0920 MOVE (AD=NP) TO MARK-CV(*)
0930%*

0940%*

0950 FOR I = P-FROM TO P-THRU
0960*

0970 MOVE I TO TRS.POS

0980*

0990%*

1000 CALL 'TRS’ 'EISG’ TRS.RC TRS.CID TRS.TYPE TRS.QTY TRS.POS TRS.ISN

1010%*
1020%*
1030 MOVE TRS.ISN TO TRS.ISN1
1040%*

1050 GET DOCUMENT TRS.ISN1

1060%*

1070 ADD 1 TO K

1080 MOVE DOCUMENT.ORDER TO LINE1.ORDER
1090 MOVE DOCUMENT.ORDER TO ORD(K)

1100 MOVE DOCUMENT.DATE TO LINE1.DATE
1110 MOVE TITLE TO LINE-TEXT
1120 MOVE LINE1 TO LINE(K)

1130 RESET MARK-CV(K)

1140%

1150 END-FOR

1160%*

1170%

1180 INPUT WITH TEXT MSG USING MAP ’'TRS-EISM’
1190%*

1200%*

1210 RESET MSG

1220%

171

Adabas Text Retrieval Reference Manual for UNIX and Windows

Escape

1230%*

1240* Escape
1250%

1260 IF *PF-KEY = 'PF3’
1270 ESCAPE BOTTOM
1280 END-IF

1290%

Page Up

Scroll back through the set of documents.

1300%
1310* Page-Up
1320%
1330 IF *PF-KEY = 'PF7’
1340 SUBTRACT 16 FROM P-FROM
1350 IF P-FROM LT 1
1360 MOVE ’'This is the first page.’ TO MSG
1370 MOVE 1 TO P-FROM
1380 END-IF
1390 END-IF
1400%
Page Down

Scroll forward through the set of documents.

1410+*

1420* Page-Down

1430%

1440 IF *PF-KEY = 'PF8’

1450 ADD 16 TO P-FROM

1460 IF P-FROM GT TRS.QTY1l
1470 MOVE ’'This is the last page.’ TO MSG
1480 SUBTRACT 16 FROM P-FROM
1490 END-IF

1500 END-IF

1510%

172

Sample Application

Select Item for Display

The subprogram TRS-DISP is invoked in line 1650 to display a document (see line 1560). The
document-iol (ORDER) is passed as parameter to the subprogram.

At the end, an EISE call is issued in line 1960 to end browsing.

1520% *
1530* Select item for display

1540% *
1550 IF *PF-KEY = 'ENTR’ OR *PF-KEY = ’'PF6’

1560%

1570 IF *PF-KEY = 'PF6’

1580 MOVE ALL 'X’ TO MARK(1:K)

1590 END-IF

1600%

1610 FOR J = 1 TO 16

1620 IF MAP1.MARK (J) NE ’ '

1630 MOVE LINE(J) TO LINE1l

1640%

1650 CALLNAT 'TRS—-DISP’ ORD(J) MSG

1660%

1670 IF *PF-KEY = 'PF3’

1680 ESCAPE BOTTOM

1690 END-IF

1700%

1710 IF *PF-KEY = 'PF6’

1720 MOVE ’'This is the first page.’ TO MSG
1730 RESET J

1740 END-IF

1750%

1760 IF *PF-KEY = 'PF8’' AND J = K

1770 MOVE ’'This is the last page.’ TO MSG
1780 SUBTRACT 1 FROM J

1790 END-IF

1800%

1810 IF *PF-KEY = 'PF7’

1820 SUBTRACT 2 FROM J

1830 IF J LT O

1840 MOVE ’'This is the first page.’ TO MSG
1850 RESET J

1860 END-IF

1870 END-IF

1880%

1890 END-IF

173

Adabas Text Retrieval Reference Manual for UNIX and Windows

1900 END-FOR
1910 END-IF
1920%*
1930END-REPEAT
1940%*

1950%*

1960CALL 'TRS’ 'EISE’ TRS.RC TRS.CID TRS.TYPE

1970%*
1980*
1990END

174

Sample Application

Document Display

TRS-DISP

The program TRS-DISP displays a single document selected from the document overview
provided by the program TRS-EIS. The HIGH call is used to mark the words which fulfill the
search criterion specified in the QR calls. The program is divided into the following major
subsections:

. Find document;
e Highlight document (HIGH call);

e Display documents.

175

Adabas Text Retrieval Reference Manual for UNIX and Windows

Program Start Up

0010**

0020* *
0030* ADABAS TEXT RETRIEVAL Example Application *
0040* *
0050* Object : TRS-DISP *
0060* Type : Subprogram *
0070* Function : Display selected documents *
0080* Author : Software AG *
0090* *
0100**
0110*

0120DEFINE DATA PARAMETER

0130*

01401 PARA

0150 2 ORDER (Al6)
0160 2 MSG (A72)

0170%*

0180LOCAL USING TRS-LDA
0190LOCAL

0200*

02101 MAP1

0220 2 ORDER(A16)

0230 2 PRICE(N3)

0240 2 DATE(NS8)

0250 2 TITLE1(A70)
0260 2 ABSTRACT1(A70/12)
0270*

02801 DOCUMENT VIEW OF TRS—DOCUMENT
0290 2 ORDER

0300 2 DATE

0310 PRICE

0320 TITLE

0330 C*ABSTRACT
0340 2 ABSTRACT (12)
03501 I(N2)

0360%*

0370END-DEFINE

0380%*

0390REPEAT

0400%*

0410 RESET MAP1
0420%*

N NN

176

Sample Application

Find Document

This procedure collects the document information for display and highlighting.

0430%* *
0440* Find Document
0450%* *
0460 FIND DOCUMENT WITH ORDER = PARA.ORDER
0470%*
0480 MOVE DOCUMENT.ORDER TO MAP1.ORDER
0490 MOVE DOCUMENT.PRICE TO MAP1.PRICE
0500 MOVE DOCUMENT.DATE TO MAP1l.DATE
0510 MOVE 70 TO TRS.HLEN
0520 MOVE DOCUMENT.TITLE TO TRS.HTEXT1
0530 MOVE 0 TO TRS.CURSOR
0540%*
Highlight Document

A HIGH call is issued in order to highlight the term or terms specified in a query. Prior to
highlighting, a DYP call (see line 0600 and 0880) must be executed in order to set the TEXT
parameter to the name of the Adabas hyperdescriptor representing the free-text chapter in
question.

In the HIGH call, the DOCUMENT.ORDER parameter contains the document ID. This process
is also carried out for the document abstract (see lines 0830-1020).

The constant DOCS0002 is the name of the query (issued in the program TRS-QR) for which
the highlighting is to be performed. The input parameter TRS.HTEXT contains the source text
to be highlighted (in this case the title). By use of the Natural dynamic attribute parameter (DY),
the TRS.HTEXT2 output parameter, which contains the source text including prefixes and
suffixes created by the HIGH call, can be used for immediate physical highlighting.

177

Adabas Text Retrieval Reference Manual for UNIX and Windows

The constants "<’ and ">’ represent the suffix and prefix to be used to mark the words fulfilling
the search criteria. Highlighting is achieved using the Natural dynamic attribute facility.

The TRS.CURSOR parameter is an internal variable which controls the highlighting process.
Prior to the start of the highlighting process, it must be set to zero. It must not be changed during
intermediate processing (see line 0740).

0550%* *
0560* TRS High ===== Highlight Document Chapter - TITLE

0570%* *
0580*

0590*

0600 CALL 'TRS’ 'DYP’ TRS.RC 'TEXT=Y1lYl.’

0610*

0620*

0630 CALL 'TRS’ 'HIGH’ TRS.RC DOCUMENT.ORDER ’‘DOCS0002°

0640 TRS.HTEXT TRS.HTEXT2 TRS.HLEN ‘<’ ‘>’ TRS.CURSOR
0650*

0660*

0670 IF NOT (TRS.RC = 0 OR = 6)

0680 MOVE TRS.RC TO TRS.RC1

0690 INPUT (AD=0OIL) ’'ERROR IN TRS-HIGH :’ TRS.RC1l

0700 STOP

0710 END-IF

0720%*

0730 MOVE TRS.HTEXT2 TO MAP1l.TITLEl

0740 MOVE 0 TO TRS.CURSOR

0750%*

0760 FOR I = 1 TO C*DOCUMENT.ABSTRACT

0770 IF I > 12

0780 ESCAPE BOTTOM

0790 END-IF

0800 MOVE 70 TO TRS.HLEN

0810 MOVE DOCUMENT.ABSTRACT(I) TO TRS.HTEXT1

0820%*

0830* *
0840* TRS High ===== Highlight Document Chapter - ABSTRACT

0850%* *
0860*

0870%*

0880 CALL 'TRS’ 'DYP’ TRS.RC 'TEXT=Y2Y2.'

0890*

0900*

0910 CALL 'TRS’ 'HIGH’ TRS.RC DOCUMENT.ORDER ’‘DOCS0003’ TRS.HTEXT

0920 TRS.HTEXT2 TRS.HLEN ’'<’ ’'>’ TRS.CURSOR

0930*

178

Sample Application

0940*
0950 IF NOT (TRS.RC = 0 OR = 6)
0960 MOVE TRS.RC TO TRS.RC1
0970 INPUT (AD=0IL) 'ERROR IN TRS-HIGH :’ TRS.RC1
0980 STOP
0990 END-IF
1000 MOVE TRS.HTEXT2 TO MAP1.ABSTRACT1(I)
1010 END-FOR
1020 END-FIND
1030%*
Display Documents

Display the documents with highlighting.

Note:
The Natural dynamic attribute feature is used to highlight the words marked by the HIGH call.

1040% *
1050* Display Highlighted Document

1060% *
1070 INPUT WITH TEXT MSG

1080 USING MAP 'TRS—-DISM’

1090%

1100 IF *PF-KEY = 'PF3’ OR *PF-KEY = 'PF6’ OR

1110 *PF-KEY = 'PF7’' OR *PF-KEY = 'PF8’

1120 RESET MSG

1130 ESCAPE ROUTINE

1140 END-IF

1150%

1160END-REPEAT

1170*

1180END

179

Adabas Text Retrieval Reference Manual for UNIX and Windows

Index Display

TRS-HLP

The help routine TRS-HLP shows the values of the formatted fields and the free-text chapters.
For formatted fields DATE and ORDER, a simple histogram is used. For the free-text chapters,
logical reads on the “word fields” of the vocabulary and subsequent QR calls are used to obtain
the number of documents where the words occur.

The program is divided into the following subsections:
e Display Available Values for ORDER;

e Display Available Values for DATE;

e Display Vocabulary for TITLE or ABSTRACT;

. Show Screen.

180

Sample Application

Program Start Up

0010**

0020*
0030*
0040*
0050%*
0060*
0070%*
0080*
0090*

0100***

0110*

0120DEFINE DATA PARAMETER

0130*

ADABAS TEXT RETRIEVAL Example Application

Object
Type
Function
Author

01401 PARA
2 FIELD (A65)
2 VALUE (A60)

0150
0160
0170
0180
0190*

0200LOCAL USING TRS-LDA

0210*

0220LOCAL
VOC VIEW OF TRS—VOCABULARY

02301
0240
0250
02601
0270
02801
0290
03001
0310
0320
0330
0340
0350
0360%*
03701
03801
03901
04001
04101
04201

2 REDEFINE VALUE
3 DATE (N4)

2 WORD

2 ORIGINAL-WORD
DOC1 VIEW OF TRS—-DOCUMENT

2 ORDER

DOC2 VIEW OF TRS—-DOCUMENT

2 DATE

MAP1
CAT (Al0)
MARK (A1/10)

QTY (N5/10)
cv (Cc/10)

2
2
2 WORD (A30/10)
2
2

#I
#J
#K
#D
#A
#V

(N2)
(N2)
(Al)
(N4)
(A60)
(A34)

0430END-DEFINE

0440*

0450SET

0460MOVE (AD=PN) TO CV(*)

0470*
0480*

0490IF NOT(PARA.FIELD

0500%*

KEY PF3

TRS—-HLP

Helproutine

Display category index
Software AG

' #ABSTRACT’

*
*
*
*
*
*
*
*
*

181

182

Adabas Text Retrieval Reference Manual for UNIX and Windows

Display Available Values for ORDER

A HISTOGRAM statement is used in line 550 to determine the values present for the formatted
field ORDER.

0510* *
0520* Display available values for Order *
0530* *
0540 IF PARA.FIELD = '#ORDER’

0550 HISTOGRAM DOC1l FOR ORDER STARTING FROM PARA.VALUE

0560 ADD 1 TO #I

0570 MOVE DOC1.0ORDER TO MAP1.WORD (#I)

0580 MOVE *NUMBER TO MAP1.QTY (#I)

0590 RESET CV(#I)

0600 IF #I GE 10

0610 PERFORM SR—-SCREEN

0620 IF *PF-KEY = 'PF3’

0630 ESCAPE ROUTINE

0640 END-IF

0650 END-IF

0660 END-HISTOGRAM

0670 END-IF

Sample Application

Display Available Values for DATE

A HISTOGRAM statement is used in line 770 to determine the values present for the formatted
field DATE.

0680* *
0690* Display available values for Date *
0700%* *
0710 IF PARA.FIELD = '#DATE’

0720 IF PARA.DATE NE MASK(YYMM)

0730 MOVE PARA.DATE TO #D

0740 END-IF

0750 RESET PARA.VALUE

0760*

0770 HISTOGRAM DOC2 FOR DATE STARTING FROM #D

0780 ADD 1 TO #I

0790 MOVE DOC2.DATE TO MAP1.WORD (#I)

0800 MOVE *NUMBER TO MAP1.QTY (#I)

0810 RESET CV(#I)

0820 IF #I GE 10

0830 PERFORM SR—-SCREEN

0840 IF *PF-KEY = 'PF3’

0850 ESCAPE ROUTINE

0860 END-IF

0870 END-IF

0880 END-HISTOGRAM

0890*

0900 END-IF

0910ELSE

0920%*

Display Vocabulary for TITLE or ABSTRACT

The vocabulary file is read in line 1010 and a QR call is issued in line 1080 to determine how
often the queried word is found in the contents of the relevant free-text chapter. If the number
of documents selected by this query is greater than zero, the word becomes part of the display.
The “original word” representing the non-standard word is used for the display to show the
word in lower/upper case and special characters (see line 1190).

183

Adabas Text Retrieval Reference Manual for UNIX and Windows

0930* *
0940* DISPLAY VOCABULARY FOR TITLE OR ABSTRACT *
0950%* *

0960 MOVE PARA.VALUE TO #A
0970 IF PARA.VALUE < H'81’
0980 MOVE H’'81’ TO #A
0990 END-IF

1000%*

1010 READ VOC BY WORD = #A

1020*

1030 COMPRESS '’’’ VOC.WORD '’’’ TO #V LEAVING NO
1040 COMPRESS PARA.FIELD #V TO TRS.QUERY

1050 MOVE ’'DOCS0020" TO TRS.NAME
1060%*

1070*

1080 CALL ’'TRS’ 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRS.NAME TRS.DERR TRS.LERR
1090 TRS.MODE TRS.CID TRS.QOTY TRS.TYPE
1100*

1110%*

1120 IF TRS.RC NE 0

1130 MOVE TRS.RC TO TRS.RC1

1140 INPUT (AD=OIL) ’‘ERROR IN TRS.QR =>’ TRS.RC1
1150 END-IF

1160*

1170 IF TRS.QTY > 0

1180 ADD 1 TO #I

1190 MOVE VOC.ORIGINAL-WORD TO MAP1.WORD (#I)
1200 MOVE TRS.QTY TO MAP1.QTY (#I)

1210 RESET CV(#I)

1220 END-IF

1230*

1240 IF #I GE 10

1250 PERFORM SR—SCREEN

1260 IF *PF-KEY = 'PF3’

1270 ESCAPE ROUTINE

1280 END-IF

1290 END-IF

1300 END-READ

1310END-IF

1320IF #I > 0

1330 PERFORM SR-SCREEN
1340END-IF

1350%*

184

Sample Application

Show Screen

The selected values are displayed to screen and can be selected for inclusion in queries.

1360**

1370DEFINE SUBROUTINE SR-SCREEN /* Display Screen
1380**
1390%*

1400MOVE PARA.FIELD TO MAP1l.CAT

1410%*

1420INPUT USING MAP ’'TRS—-HLPM'

1430%*

1440IF *PF-KEY = 'PF3’

1450 ESCAPE ROUTINE

1460END-IF

1470%*

1480%* *
1490* Check if words are marked

1500%* *

1510FOR #J = 1 TO #I
1520 IF MAP1.MARK(#J) NE ' '’

1530 IF PARA.VALUE NE ' '

1540 MOVE ',’ TO #K

1550 END-IF

1560 COMPRESS PARA.VALUE #K MAP1.WORD(#J) INTO PARA.VALUE LEAVING NO
1570 IF NOT (PARA.FIELD = '#TITLE' OR = '#ABSTRACT') AND

1580 PARA.VALUE NE ' '

1590 ESCAPE BOTTOM

1600 END-IF

1610 END-IF

1620END-FOR

1630%*

1640RESET MAP1 #I #J
1650MOVE (AD=PN) TO CV(*)
1660%*

1670END—-SUBROUTINE
1680END

185

Adabas Text Retrieval Reference Manual for UNIX and Windows

Freestyle Retrieval

TRS-FQR

The program TRS-FQR enables the user to enter queries which conform to Adabas Text
Retrieval query syntax. The program is divided into the following logical units.

e Delete queries (RQR);

¢ Copy query;

e Create Natural retained set (RET call);

e Execute query (QR call).

Program Start Up
0010**
0020* *
0030* ADABAS TEXT RETRIEVAL Example Application *
0040* *
0050* Object : TRS-FQR *
0060* Type : Program *
0070* Function : Freestyle retrieval *
0080* Author : Software AG *
0090* *
0100**
0110*
0120DEFINE DATA LOCAL USING TRS-LDA
0130%*
0140LOCAL

01501 #CHAPTER(A10)
01601 #QUERY (A62)
01701 #NR (N2/10)
01801 #MARK(A1l/10)
01901 #RESULT(N5/10)
02001 #PQR(A62/10)
02101 #MSG (A60)
02201 #I (N4)
02301 #J (N4)
02401 #SETID (A32) INIT<'TRSSET'>
02501 #QNAM (A8)
02601 REDEFINE #QNAM
0270 2 HEADER (A4)
0280 2 COUNT (N4)
02901 cv1 (C/10)
0300*

0310END-DEFINE

0320%*

186

Sample Application

Set Keys

0330*
0340* sSet keys

0350*
0360SET KEY ALL
0370SET KEY PF2
0380SET KEY PF4
0390SET KEY PF3
0400SET KEY PF6
0410*

NAMED ’‘Delete’

NAMED 'Copy
NAMED ‘Quit’
NAMED ’'Over’

0420MOVE (AD=PN) TO CV1(*)

’

0430*
0440REPEAT
0450*
0460 RESET #MARK(*)
0470%*
0480 INPUT WITH TEXT #MSG USING MAP
0490*
Terminate
0500%* *
0510* Escape to menu
0520* *
0530 IF *PF-KEY = ’'PF3’
0540 ESCAPE BOTTOM

0550 END-IF
0560%*

187

Adabas Text Retrieval Reference Manual for UNIX and Windows

Delete Queries

The user deletes previously executed queries by marking them with “D” and pressing PF2. The
queries are released by executing a RQR call as seen in line 0660.

0570%* *
0580* Delete Queries
0590%* *
0600 IF *PF-KEY = 'PF2’
0610 FOR #I = 1 TO 10
0620 IF #MARK(#I) EQ 'D’
0630 MOVE #I TO #QNAM.COUNT
0640%*
0650*
0660 CALL 'TRS’ 'RQR’ TRS.RC #QNAM
0670%*
0680*
0690 RESET #RESULT (#I) #NR(#I) #PQR(#I) #MARK (#I)
0700 MOVE (AD=PN) TO CV1(#I)
0710 END-IF
0720 END-FOR
0730 ESCAPE TOP
0740 END-IF
0750%*
Copy Query

A previously executed query can be copied to make up a new query which can be modified and

executed.

0760%* *
0770* Copy Query

0780%* *
0790 IF *PF-KEY = ’'PF4’

0800 FOR #I = 1 TO 10

0810 IF #MARK(#I) EQ 'C’

0820 MOVE #PQR(#I) TO #QUERY

0830 RESET #MARK (*)

0840 ESCAPE BOTTOM

0850 END-IF

0860 END-FOR

0870 ESCAPE TOP

0880 END-IF

0890*

188

Sample Application

Execute Query

A QR call (see line 1400) is executed to perform the query. The query and its results are put on
the stack of executed queries.

1170%*
1180*
1190+%
1200
1210
1220
1230%
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330%
1340
1350
1360
1370
1380*
1390~%
1400
1410
1420%*
1430%
1440
1450
1460
1470
1480%
1490
1500
1510
1520
1530
1540%*
1550
1560%
1570
1580

*
TRS Queries
*
IF #QUERY = ' '
REINPUT ‘No query specified.’
END-IF
FOR #I = 1 TO 10
IF #PQR(#I) = ' '
ESCAPE BOTTOM /* Check for empty slot
END-IF
END-FOR
IF #I = 11
REINPUT
‘Stack is full ! delete queries by marking with ”D” and PF2’
END-IF
MOVE 'DOCS’ TO #QNAM.HEADER
MOVE #I TO #QNAM.COUNT
MOVE #QNAM TO TRS.NAME
COMPRESS #CHAPTER #QUERY TO TRS.QUERY
CALL 'TRS’ 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRS.NAME TRS.DERR TRS.LERR
TRS.MODE TRS.CID TRS.QTY TRS.TYPE
MOVE (AD=I) TO CV1(#I)
MOVE TRS.QUERY TO #PQR(#I)
MOVE TRS.QTY TO #RESULT (#I)
MOVE #I TO #NR(#I)
IF TRS.RC NE 0
MOVE TRS.RC TO TRS.RC1
COMPRESS 'Error in TRS.QR =>’ TRS.RC1l TO #MSG
END-IF
RESET #QUERY
END-REPEAT
FETCH 'MENU’
END

189

190

APPENDIX A — MESSAGES AND CODES

General Return Codes

Return Code 1
Explanation: Invalid number of parameters.

Return Code 2
Explanation: Storage allocation failed — increase commen area size in ”"BC” call.

Return Code 3
Explanation: No common area allocated. Use the BC call to allocate it.

Return Code 4
Explanation: Internal buffer not found or end of line in scanner reached.

Return Code 5
Explanation: EISG error in browsing. Check EIS* function parameters.

Return Code 6
Explanation: Referenced query not found.

Return Code 7
Explanation: Invalid request for vocabulary query.

Return Code 8
Explanation: User table overflow.

Return Code 9
Explanation: Invalid use of proximity search.

Return Code 10
Explanation: Middle word search and no V2 field.

Return Code 11
Explanation: Too many terms in aspect operation.

Return Code 12
Explanation: Phonetic search and no V6 field.

Return Code 13
Explanation: Number of words in document exceeds initial estimation.

191

192

Adabas Text Retrieval Reference Manual for UNIX and Windows

Return Code 14
Explanation: Invalid function call.

Return Code 15
Explanation: Common area allocation failed.

Return Code 16
Explanation: Invalid use of search lables.

Return Code 17
Explanation: Record set unexpectedly empty.

Return Code 18
Explanation: Invalid parameter in "QR” (query type ”D” or ”V”).

Return Code 19
Explanation: Syntax error detected in cataloging rules.

Return Code 20
Explanation: Vocabulary isn limit reached during query (MAXVSET).

Return Code 21
Explanation: Invalid parameter. Only "LAST” or "NOLAST” allowed.

Return Code 22
Explanation: Invalid parameter. Only "ALL” or ”SUM” allowed.

Return Code 23
Explanation: Invalid default mode parameter.

Return Code 24
Explanation: Second "BC” and common area size is different.

Return Code 25
Explanation: No document record in DFNR file.

Return Code 26
Explanation: Invalid parameter. Only "SUM” allowed.

Return Code 27
Explanation: Unable to load user exit.

Return Code 28
Explanation: Unable to locate user exit’s entry point.

Messages and Codes

Return Code 30
Explanation: Invalid isn in batch load.

Return Code 31
Explanation: FDT area not found.

Return Code 37
Explanation: Invalid hyper descriptor length.

Return Code 38
Explanation: Thesaurus selection and tree not found.

Return Code 39
Explanation: No search label defined.

Return Code 40
Explanation: Hyper descriptor not found.

Return Code 59
Explanation: Query not found.

Return Code 60
Explanation: Illegal query name.

Return Code 80
Explanation: No proximity search for this chapter.

Return Code 101
Explanation: Operator followed by another operator.

Return Code 102
Explanation: Operand missing before comma.

Return Code 103
Explanation: Comma followed by operator.

Return Code 104
Explanation: Operator followed by right parenthesis.

Return Code 105
Explanation: Operator last token in query.

Return Code 106
Explanation: Operand missing after function.

193

Adabas Text Retrieval Reference Manual for UNIX and Windows

Return Code 107
Explanation: Function followed by another function.

Return Code 108
Explanation: Function followed by comma.

Return Code 109
Explanation: Function followed by left parenthesis.

Return Code 110
Explanation: Function followed by right parenthesis.

Return Code 111
Explanation: Function last item in query.

Return Code 112
Explanation: Comma followed by function.

Return Code 113
Explanation: Comma followed by comma.

Return Code 114
Explanation: Comma followed by left parenthesis.

Return Code 115
Explanation: Comma followed by right parenthesis.

Return Code 116
Explanation: Comma followed by end of query.

Return Code 119
Explanation: Left parenthesis followed by operator.

Return Code 120
Explanation: Left parenthesis followed by comma.

Return Code 121
Explanation: Left parenthesis followed by right parenthsis.

Return Code 122
Explanation: Left parenthesis followed by end of query.

Return Code 123
Explanation: Right parenthesis followed by comma.

194

Messages and Codes

Return Code 126
Explanation: Comma as first token not allowed.

Return Code 127
Explanation: Right parenthesis as first token not allowed.

Return Code 128
Explanation: Empty request.

Return Code 131
Explanation: Reference number followed by comma.

Return Code 135
Explanation: Function followed by reference number.

Return Code 136
Explanation: Comma followed by reference number.

Return Code 140
Explanation: Operator as first token not allowed.

Return Code 141
Explanation: Formatted field followed by operator.

Return Code 142
Explanation: Formatted field followed by function.

Return Code 143
Explanation: Formatted field followed by comma.

Return Code 145
Explanation: Formatted field followed by right parenthesis.

Return Code 146
Explanation: Formatted field followed by end of query.

Return Code 147
Explanation: Formatted field followed by reference number.

Return Code 148
Explanation: Formatted field followed by formatted field.

Return Code 149
Explanation: Relational operator followed by operator.

195

Adabas Text Retrieval Reference Manual for UNIX and Windows

Return Code 150
Explanation: Relational operator followed by function.

Return Code 151
Explanation: Relational operator followed by comma.

Return Code 152
Explanation: Relational operator followed by left parenthesis.

Return Code 153
Explanation: Relational operator followed by right parenthesis.

Return Code 154
Explanation: Relational operator followed by end of query.

Return Code 155
Explanation: Relational operator followed by formatted field.

Return Code 156
Explanation: Relational operator after relational operator.

Return Code 157
Explanation: Relational operator after operator.

Return Code 158
Explanation: Formatted field after function.

Return Code 159
Explanation: Relational operator after function.

Return Code 160
Explanation: Formatted field after comma.

Return Code 161
Explanation: Relational operator after comma.

Return Code 162
Explanation: Relational operator not after formatted field.

Return Code 163
Explanation: Relational operator after left parenthesis.

Return Code 165
Explanation: Relational operator after right parenthesis.

196

Messages and Codes

Return Code 166
Explanation: Relational operator as first token.

Return Code 168
Explanation: Relational operator after reference number.

Return Code 170
Explanation: Reference number after relational operator.

Return Code 171
Explanation: Sort clause not in place.

Return Code 173
Explanation: Formatted field expected after sort.

Return Code 174
Explanation: Right parenthesis without left parenthesis.

Return Code 175
Explanation: Only three sort fields allowed.

Return Code 176
Explanation: Sort field is missing.

Return Code 177
Explanation: Wrong number of words for formatted fields.

Return Code 179
Explanation: Word truncation is not allowed.

Return Code 180
Explanation: Error while scanning source text.

Return Code 181
Explanation: Max. number of words in document exceeds record capacity.

Return Code 182
Explanation: Error while reallocating incore vocabulary buffer.

Return Code 183
Explanation: Internal error: Incore vocabulary buffer not found.

Return Code 184
Explanation: Formatted field as a default chapter.

197

198

Adabas Text Retrieval Reference Manual for UNIX and Windows

Return Code 187
Explanation: Two values expected after relational operator " BETWEEN”.

Return Code 188
Explanation: Left parenthesis without right parenthesis.

Return Code 194
Explanation: Number of query elements exceeds number of pre-calculated elements — rework
your query.

Return Code 195
Explanation: Internal buffer overflow. Query too long.

Return Code 196
Explanation: Non numeric items.

Return Code 197
Explanation: Storage allocation failed during syntax analysis.

Return Code 198
Explanation: Storage allocation failed during query execution.

Return Code 199
Explanation: Internal error during syntax analysis.

Return Code 200
Explanation: Invalid position indicator.

Return Code 201
Explanation: Internal error during query execution.

Return Code 202
Explanation: Internal error during load batch.

Return Code 203
Explanation: Internal error during highlighting process.

Return Code 204
Explanation: No ”D3” field in DSFNR.

Return Code 205
Explanation: Invalid ”D3” field length in DSFNR.

Return Code 206
Explanation: Word not found in vocabulary.

Messages and Codes

Return Code 207
Explanation: Cannot open output file.

Return Code 208
Explanation: Cannot write output record.

Return Code 209
Explanation: Cannot close output file.

Return Code 210
Explanation: Error in DSA call.

Return Code 220
Explanation: Syntax error in "DUE” call.

Return Code 221
Explanation: Error in user exit call. Illegal output code.

Return Code 222
Explanation: Error in user exit call. ’DSA” area not found.

Return Code 223
Explanation: Error in “CQR” call. Illegal action code.

Return Code 224
Explanation: No active user exit or user function found.

Return Code 225
Explanation: Main query was released by the user exit.

199

Adabas Text Retrieval Reference Manual for UNIX and Windows

DYP and BC Return Codes

Return Code 400
Explanation: Unknown keyword within ”"DYP” parameter.

Return Code 401
Explanation: Invalid use of "DYP” parameter.

Return Code 402
Explanation: Unexpected end of "DYP” parameter.

Return Code 403
Explanation: Invalid document file parameter (DFNR=).

Return Code 404
Explanation: Invalid document summary file parameter (DSFNR=).

Return Code 405
Explanation: Invalid vocabulary file parameter (VFNR=).

Return Code 406
Explanation: No space to allocate buffer for VFNR file FDT.

Return Code 407
Explanation: Cannot reallocate buffer of VFNR file FDT.

Return Code 408
Explanation: Invalid database id. (DBID=).

Return Code 409
Explanation: Invalid database type (DBTYPE=).

Return Code 410
Explanation: Invalid concatenation character (CONCAHR-=).

Return Code 411
Explanation: Invalid TRS error prefix number (ERRPRE=).

Return Code 412

Explanation: Invalid limit of vocabulary set (MAXVSET=).

Return Code 413

Explanation: Maximum number of words in doc invalid (MAXWORD-=).

200

Messages and Codes

Return Code 414
Explanation: Maximum number of aspects for one word invalid (NUMASPCT=).

Return Code 415
Explanation: Invalid length of Adabas password (PASSWORD=).

Return Code 416
Explanation: Invalid length of user information for Adabas control block (TID=).

Return Code 417
Explanation: Invalid set prefix character (SETCHAR=).

Return Code 418
Explanation: Invalid truncation character (TRUNCHAR=).

Return Code 419
Explanation: Start isn for loader invalid (STARTISN=).

Return Code 420
Explanation: Invalid word length (WORDLEN-=).

Return Code 421
Explanation: Invalid document id. record key (DOCID=).

Return Code 422
Explanation: No space to allocate buffer for FFE area.

Return Code 423
Explanation: No space to allocate buffer for formatted fields.

Return Code 424
Explanation: Field not in formatted field table.

Return Code 425
Explanation: Invalid text isn’s group name (TEXT=).

Return Code 426
Explanation: Invalid document set name (DOCSET=).

Return Code 427
Explanation: Invalid vocabulary set name (WORDSET=).

Return Code 428
Explanation: Invalid user scan id. for the "SCA” call (USCANID=).

201

Adabas Text Retrieval Reference Manual for UNIX and Windows

Return Code 429
Explanation: Invalid "WAIT ON HOLD” parameter (WH=).

Return Code 430
Explanation: Invalid default file parameter (DEFFILE=).

Return Code 431
Explanation: Max. document id. length exceeded.

Return Code 432
Explanation: Only "WORD?” as parameter allowed (INDEX=).

Return Code 433
Explanation: Invalid parameter (INDEX=).

Return Code 434
Explanation: Invalid parameter (INDEX=).

Return Code 435
Explanation: Invalid parameter (INDEX=).

Return Code 436
Explanation: Invalid search label length (SEARCHLB=).

Return Code 437
Explanation: Only 20 search labels allowed (SEARCHLB-=).

Return Code 438
Explanation: Default proximity operator invalid (DEFOPER=).

Return Code 439
Explanation: Invalid parameter (FUNCTION=).

Return Code 440
Explanation: Cannot allocate buffer for function definition.

Return Code 441
Explanation: Invalid parameter (FUNCTION=).

Return Code 442
Explanation: Invalid parameter (FUNCTION=).

Return Code 443
Explanation: Not a valid function (FUNCTION=).

202

Messages and Codes

Return Code 444
Explanation: Not a valid function (FUNCTION=).

Return Code 445
Explanation: Invalid parameter (FUNCTION=).

Return Code 446
Explanation: Invalid parameter (FUNCTION=).

Return Code 447
Explanation: Invalid parameter (FUNCTION=).

Return Code 448
Explanation: Invalid Adabas error prefix number (ERRADA=).

Return Code 449
Explanation: Invalid incore vocabulary name (INCVOC=).

Return Code 450
Explanation: Invalid parameter for batch loader (LOADER=).

Return Code 451
Explanation: Invalid highlight algorithm parameter (HIGHLIGHT=).

Return Code 452
Explanation: Invalid root file parameter (RFNR=).

Return Code 453
Explanation: Invalid vocabulary prefix char (WORDPREF=).

Return Code 454
Explanation: Invalid User Exit error prefix number (ERRUSE=).

Return Code 455
Explanation: Invalid multi call parameter (MULTICALL-=).

Return Code 456
Explanation: Invalid parameter (HOLDWORD-=).

Return Code 457
Explanation: Invalid parameter (INVNUM-=).

Return Code 458
Explanation: Invalid parameter (FFTRANS=).

203

Adabas Text Retrieval Reference Manual for UNIX and Windows

Return Code 459
Explanation: Invalid parameter (JENR=).

Return Code 460
Explanation: Invalid parameter (JREF=).

Return Code 461
Explanation: No DYP during an ADD loop allowed.

204

Messages and Codes

Scanner Return Codes

Return Code 300
Explanation: Class name is more than 6 characters long.

Return Code 301
Explanation: More than 16 classes listed.

Return Code 302
Explanation: Mode must be ”A”, ”F”, ”P”, ”Q” or "T”.

Return Code 303
Explanation: Class not found in list defined.

Return Code 304
Explanation: Keyword "CLASS=" missing.

Return Code 305
Explanation: No classes have been defined. No ”SCTS” call done.

Return Code 306
Explanation: Problem allocating "DSA” space.

Return Code 307
Explanation: Bad translation code specified.

Return Code 308
Explanation: Undefined lable referred to.

Return Code 309
Explanation: Undefined action.

Return Code 310
Explanation: Undefined type.

Return Code 311
Explanation: Undefined mode.

Return Code 312
Explanation: Area size too small for save.

Return Code 313
Explanation: Bad action specified for "SCTK?” call.

205

206

Adabas Text Retrieval Reference Manual for UNIX and Windows

Return Code 314
Explanation: Substrings too long to be saved.

Return Code 315
Explanation: Token too long.

Return Code 316
Explanation: Keyword "CHAR=" missing.

Return Code 317
Explanation: Comma must appear.

Return Code 318
Explanation: Keyword ”LC=" missing.

Return Code 319
Explanation: Keyword "UC=" missing.

Return Code 320
Explanation: Wrong class identifier.

Return Code 321
Explanation: Left parenthesis must appear.

Return Code 322
Explanation: Right parenthesis must appear.

Return Code 323
Explanation: Unknown class.

Return Code 324
Explanation: Incorrect keyword.

Return Code 325
Explanation: More than 99 keywords listed.

Messages and Codes

Thesaurus Return Codes

Return Code 251
Explanation: Son/father combination exists already in the set id. or thesaurus.

Return Code 252
Explanation: The son/father combination would create a loop.

Return Code 253
Explanation: The son/father combination does not exist.

Return Code 254
Explanation: No father found for this term.

Return Code 255
Explanation: The set id. does not exist in the thesaurus.

Return Code 256
Explanation: The term does not exist in the set id. or thesaurus.

Return Code 257
Explanation: No "START” was done for this listing.

Return Code 258
Explanation: Trying to add different type to a set id.

Return Code 259
Explanation: Set id. is not a synonym type.

Return Code 260
Explanation: Son or set id. cannot be an empty record.

Return Code 261
Explanation: Set id. is not a tree type.

Return Code 263
Explanation: End of list.

207

208

INDEX

A

Adabas Text Retrieval
functionality, 4
overview, 3
terminology, 5

ADD Call, 10, 145
ADJ Operator, 55
AND Operator, 51
ASPECT Mode, 47
AUTOASP, 40

B

BC Call, 14, 40, 141

BETWEEN Operator, 53

Boolean Operators, 51
AND, 51
NOT, 52
OR, 52

Browse, initiate, 27

C

Call, 7
ADD, 10, 145

alphabetical listing, 8

BC, 14, 40, 141
CL, 16, 141
DDS, 17, 145
DSL, 19, 141
DYP, 21, 40
EISE, 23
EISG, 25

EISS, 27
general, 7

HIGH, 29, 175
PHON, 32

QR, 34, 157, 167, 186

RET, 186

RQR, 37
RULE, 38
SCTC, 62
SCTS, 61
SCTT, 64
SCTW, 67
SCTX, 71
topical listing, 9

Chapter, 5
Character, classes, 61

Character Table, definition, 62

CL Call, 16, 141
CONCHAR, 40

D

DBTYPE, 40
DDS Call, 17, 145
DEFOPER, 40
DENR, 40

See also Document File

DOCID, 40

Document, 5
display, 175
inversion, 10
maintenance, 145
overview, 167
retrieval, 145

Document File, 129, 134, 139
Document Index File, 129, 136

DSFNR, 41

See also Document Index File

209

Adabas Text Retrieval Reference Manual for UNIX and Windows

DSL Call, 19, 141

Dynamic Parameter, 40

definition, 21, 40
DYP Call, 21, 40

E

EISE Call, 23

EISG Call, 25

EISS Call, 27

EQ Operator, 53
ERRADA, 41

Error Messages, 191
ERRPRE, 41
ERRUSE, 41

F

File Structure, 129
Function
SORT, 57
SORTD, 57

G

GE Operator, 54
GROUP Mode, 47
GT Operator, 54

H

HIGH Call, 29, 175
HIGHLIGHT, 41
Highlighting, 29
HOLDWORD, 41

210

Incore vocabulary, 79
INCVOC, 42
Index
display, 180
structure, 130

Inversion, 4, 6, 130

L

Label. See Search Label
LE Operator, 54
LT Operator, 54

MAXVSET, 42

Messages. See Error Messages
Mode. See Search Mode
MULTICALL, 42

N

NEAR Operator, 55
NOT Operator, 52

o)

Operator, 51
ADJ, 55
AND, 51
BETWEEN, 53
boolean, 51
EQ, 53
evaluation order, 51
GE, 54
GT, 54
LE, 54

LT, 54
NEAR, 55
NOT, 52
OR, 52
proximity, 55
relational, 53

OR Operator, 52

P

Parameter, dynamic, 40
definition, 21, 40

PASSWORD, 43
PHON Call, 32
PHONETIC Mode, 46
PRECISE Mode, 46
Program. See Sample Application
Proximity Operator, 55
ADJ, 55
NEAR, 55

Q

QR Call, 34, 157, 167, 186
Query
diagram, 48
language, 49
reserved words, 49
syntax, 45, 48
truncation, 49

R

Relational Operators, 53
BETWEEN, 53
EQ, 53
GE, 54
GT, 54

Index

LE, 54

LT, 54
Release Query, 37
Reserved, words, 67
RET Call, 186
Retrieval

formatted, 157

PHON call, 32

QR call, 34
Return Codes

DYP and BC, 200

General, 191

Scanner, 205

Thesaurus, 207
ROOT Mode, 47
Routine, SCA, 77
ROQOR Call, 37
RULE Call, 38

S

Sample Application, 137
SCA Routine, 77
Scan Modes, tokenization, 60
Scan Routine, 77
SCTC Call, 62
SCTS Call, 61
SCTT Call, 64
SCTW Call, 67
SCTX Call, 71
Search Label, 19, 45
Search Mode, 46
ASPECT, 47
GROUP, 47
PRECISE, 46
ROOT, 47
SYNONYM, 47
Search Number, 56
SEARCHLB, 43

211

Adabas Text Retrieval Reference Manual for UNIX and Windows

Session TRS-NAT. See Sample Application
close, 16 TRS-QR. See Sample Application
initialize, 141 TRSMLT. See Tokenization
open, 14 TRSMSL. See Tokenization

TRSMT. See Tokenization
ggﬂ%HS%R’ 43 TRSSCT. See Tokenization

SORTb, 57 TRSTEXT. See Keyword Definition

SYNONYM Mode, 47
Syntax, query, 45, 48
SYR. See SYNONYM Mode

T

TEXT, 43

Text
formatted, 4
unformatted, 4

Thesaurus, 134
Thesaurus / Synonym System, 97
Tokenization, 59

logic, 71

scan modes, 60

Translation Table, 64

TRS-ADD. See Sample Application
TRS-DISP. See Sample Application
TRS-EIS. See Sample Application
TRS-FQR. See Sample Application
TRS-HLP. See Sample Application
TRS-INIT. See Sample Application

212

Truncation, 49
left, 50
left and right, 50
right, 49

TRUNCHAR, 43

U

User-Written Routines, 81

\'

VFNR, 43
See also Vocabulary File

Vocabulary, incore, 79
Vocabulary File, 129, 134

w

WORDLEN, 44

	Adabas Text Retrieval Reference Manual for UNIX and Windows
	Table of Contents
	Introduction
	Adabas Text Retrieval Calls
	Query Syntax
	Tokenization
	Incore Vocabulary
	User-Written Routines
	Thesaurus / Synonym System
	File Structure
	Sample Application
	Messages and Codes
	Index

