
Adabas Native SQL

Adabas Native SQL Reference Manual

Version 2.4.1

October 2022

This document applies to Adabas Native SQL Version 2.4.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: SQL-REFERENCE-241-20220511

Table of Contents

Adabas Native SQL Reference Manual ... vii
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 INTRODUCTION .. 5
3 PROGRAMMING CONSIDERATIONS ... 9

Rules for Adabas Native SQL Statements .. 11
Source Program Maintenance .. 12
The Record Buffer and Reference to Data .. 13
Response Code Interpretation .. 30
Host Variables .. 32
ISN Lists and the ISN Buffer .. 32
HOLD Logic ... 33
Security Options ... 34
Record Buffer - ADA .. 35
Record Buffer - COBOL .. 35
Fields in FORTRAN ... 36
Record Buffer - PL/I .. 37
Date and Time Conversion Routines ... 38
Support of Distributed Data Structures ... 39
The Distribution handling .. 40
Relational Null Support ... 41
Long Alpha field Support .. 42

4 SINGLE AND MULTIPLE-RECORD PROCESSING .. 43
Single-Record Processing ... 44
Multiple-Record Processing ... 45

5 OVERVIEW OF STATEMENTS ... 47
Syntax ... 48
Overview of Adabas Native SQL Statements .. 51
Database Query Statements ... 51
Data Storage READ Statements ... 52
Associator READ Statement .. 53
Statements for Processing Multiple Records ... 54
Database Modification Statements ... 54
Logical Transaction Processing Statements ... 55
Checkpointing Statement ... 56
Other Adabas Native SQL Statements ... 56
Adabas Native SQL Clauses .. 57

6 ADABAS NATIVE SQL STATEMENTS .. 75
The BEGIN Statement .. 76
The CHECKPOINT Statement ... 77
The CLOSE Statement .. 78

iii

The COMMIT WORK Statement .. 122
The COMPARE Statement ... 81
The CONNECT Statement ... 91
The COPY Statement .. 101
The DBCLOSE Statement ... 102
The DELETE Statement .. 105
The FETCH Statement .. 110
The FIND Statement ... 111
The FIND COUPLED Statement .. 129
The GENERATE Statement .. 139
The HISTOGRAM Statement ... 140
The HOLD Statement ... 150
The INSERT Statement ... 152
The OPEN Statement .. 161
The READ ISN Statement .. 162
The READ LOGICAL Statement .. 171
The READ PHYSICAL SEQUENCE Statement ... 237
The READ USERDATA Statement ... 191
The RELEASE Statement .. 193
The RELEASE ISN Statement ... 194
The RESTORE Statement .. 195
The ROLLBACK WORK Statement ... 196
The SAVE Statement ... 254
The SORT Statement .. 200
The TRACE Statement .. 211
The UPDATE Statement ... 212
The WHENEVER Statement .. 224
The WRITE TO LOG Statement ... 225

7 USING ADABAS NATIVE SQL STATEMENTS IN TP PROGRAMS 227
COM-PLETE ... 228
Customer Information Control System (CICS) .. 228

8 GLOBAL PARAMETERS ... 231
The ABORT Parameter ... 233
The ADACALL Parameter ... 236
The APOS Parameter .. 238
The CICS STUB Parameter ... 239
The LANG Parameter ... 240
The LIBRARY Parameter .. 241
The MODE Parameter .. 242
The MONITOR Parameter ... 244
The NAME Parameter .. 247
The NETWORK Parameter .. 248
The OPTIONS Parameter ... 249
The SYSFILE Parameter .. 260
The TELE Parameter ... 261

Adabas Native SQL Reference Manualiv

Adabas Native SQL Reference Manual

The USER Parameter .. 262
The VIRTUAL-MACHINE Parameter ... 263
The XREF Parameter .. 264

9 APPENDIX A - SIZE LIMITATIONS ... 265
10 APPENDIX B - DESCRIPTIONS OF THE FILES USED IN THE EXAMPLES 267

FORTRAN Synonyms .. 269
11 APPENDIX C - ADABAS NATIVE SQL STATEMENTS USED IN THE
EXAMPLES ... 271
12 APPENDIX D - ADA EXAMPLES ... 273

Example 1 ... 274
Example 2 ... 275
Example 3 ... 278

13 APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE
SQL ... 283
14 APPENDIX F - COBOL EXAMPLES ... 291

Example 1 ... 292
Example 2 ... 294
Example 3 ... 296

15APPENDIXG -EXAMPLEOFCOBOLCODEGENERATEDBYADABASNATIVE
SQL ... 301
16 APPENDIX H - FORTRAN EXAMPLES ... 319

Example 1 ... 320
Example 2 ... 321
Example 3 ... 324

17 APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS
NATIVE SQL .. 329
18 APPENDIX J - PL/I EXAMPLES .. 339

Example 1 ... 340
Example 2 ... 342
Example 3 ... 344

19 APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE
SQL ... 349

vAdabas Native SQL Reference Manual

Adabas Native SQL Reference Manual

vi

Adabas Native SQL Reference Manual

This document describes the functions provided by Adabas Native SQL, Software AG's language
for accessing Adabas files from Ada, COBOL, FORTRAN and PL/I programs. SQL stands for
StructuredQuery Language.This document also describes how to code the statements that provide
these functions.

The document's intended audience is an Ada, COBOL, FORTRAN77 or PL/I programmer who is
also acquainted with Adabas concepts and who wishes to develop applications using Adabas
Native SQL.

This documentation consists of the following sections:

This describes the basic concepts of Adabas Native SQL.Introduction

This provides background information you should read before using
Adabas Native SQL for the first time. This material will help you
understand

Programming Considerations

■ the data structures that Adabas Native SQL builds in your programs,
■ howyour program should react if AdabasNative SQLdetects an error,
■ how Adabas Native SQL reads lists of records in sequence,
■ how to hold records in order to avoid updating conflicts, and
■ how to access and update files that are protected by the Adabas
security mechanisms.

This also includes a section on distributed data processing.

This deals with considerations when operating in single or
multiple-record processing mode.

Single and Multiple-Record
Processing

This provides an overview of the syntax used in Adabas Native SQL
statements, togetherwith a brief description of the statements themselves,

Overview of Statements

grouped logically according to statement function. This chapter also
describes in detail the clauses common to statementswhich retrieve data
from the database.

This describes in detail all the statements in alphabetical order for easy
reference.

Adabas Native SQL Statements

This provides additional information on the facilities provided forwriting
teleprocessing (TP) application programs.

Using Adabas Native SQL
Statements in TP Programs

This describes global parameterswhich can be used to define processing
options and adapt them to your particular requirements.

Global Parameters

Lists the size limitations of Adabas Native SQL.Appendix A: Size Limitations

Contains a description of the files used in the sample programs and the
FORTRAN synonyms that must be used.

Appendix B: Descriptions of the
Files used in the Examples

vii

Adabas Native SQL statements used in the examples.Appendix C

ADA ExamplesAppendix D

Example of ADA code generated by Adabas Native SQL.Appendix E

COBOL ExamplesAppendix F

Example of COBOL code generated by Adabas Native SQL.Appendix G

FORTRAN ExamplesAppendix H

Example of FORTRAN code generated by Adabas Native SQL.Appendix I

PL/I ExamplesAppendix J

Example of PL/I code generated by Adabas Native SQL.Appendix K

Other Sources of Information

This reference guide, read in conjunction with the Adabas Introduction Manual, should provide
all the information that youneedwhenwritingAdabasNative SQLapplication programs.However,
when writing TP application programs or if the database is protected by the Adabas security
features, you may need to refer to other sources, for example the database administrator (DBA)
or the following literature:

■ Adabas Operations Manual
■ Adabas Utilities Manual
■ Adabas DBA Reference Manual
■ Adabas Command Reference Manual
■ Adabas Installation Manual
■ Adabas Messages and Codes.

Adabas Native SQL Reference Manualviii

Adabas Native SQL Reference Manual

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Adabas Native SQL Reference Manual2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Adabas Native SQL Reference Manual

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 INTRODUCTION

Adabas Native SQL is an easy-to-use data manipulation language for accessing and updating in-
formation held in an Adabas database. The following example shows a typical Adabas Native
SQL statement that selects a record from the database and retrieves the required data:

EXEC ADABAS
SELECT NAME, AGE, SALARY
FROM PERSONNEL
WHERE NUMBER-OF-DEPENDENTS > 4

END-EXEC

This statement selects the data fields NAME, AGE and SALARY from the first record in the PERSONNEL
file that satisfies the criterion "NUMBER-OF-DEPENDENTS > 4".

Statements such as this one are embedded intoAda, COBOL, FORTRAN77 or PL/I programs. This
means you have the advantage of being able to use a familiar programming language to code the
logic of your problem, whilst the Adabas Native SQL statements give you ready access to all the
facilities of Adabas, a powerful modern database management system.

Adabas Native SQL incorporates the full power of the Natural userview concept. This means you
refer to fields defined in a userview as logical entities without having to concern yourself with the
physical details of file structure and record structure. For example, if you specify a group field,
AdabasNative SQL automatically creates Ada, COBOL, FORTRANor PL/I data declarationswith
the correct:

■ set of fields (possibly a subset of the fields in the database record; conversely, a field may occur
repeatedly in the userview if desired)

■ field names
■ field sequence
■ record structure, including all groups, sub-groups, sub-sub-groups, etc.

5

■ field formats (alphanumeric, numeric, packed numeric, etc.)
■ field lengths.

AdabasNative SQLworks in conjunctionwith Predict, Software AG's data dictionary system. The
information about file and record layouts contained in Predict is used to generate the data structures
that the generated Ada, COBOL, FORTRAN or PL/I program needs to access the database. As an
Adabas Native SQL programmer, you do not need to code detailed data declarations in your
program, so you are free to concentrate on the logic of the application.

Conversely, as Adabas Native SQL is processing the program, it records active cross-reference
information, or Xref data, in Predict. This Xref data includes the names of the files and fields that
the program accesses. Thus it is easy to find out which programs use which data fields, etc., so
that the programs that need to be recompiled when data structures are altered can readily be de-
termined.

The interaction between Adabas Native SQL and Predict is illustrated in the following figure.

Consistent use of AdabasNative SQL throughout a data processing installation eliminates the risk
of writing incorrect data declarations in programs that access the database. It also creates compre-
hensive records in the data dictionary that show which programs read from the database and
which programs update it. This makes programs easier to maintain and provides the DBA with
an effective management tool.

Adabas Native SQL Reference Manual6

INTRODUCTION

After it has been preprocessed by Adabas Native SQL, the program - containing data definitions
and executable code generated by Adabas Native SQL as well as the original Ada, COBOL, FOR-
TRANor PL/I codewritten by the programmer - is compiled and link-edited in the normalmanner.

7Adabas Native SQL Reference Manual

INTRODUCTION

8

3 PROGRAMMING CONSIDERATIONS

■ Rules for Adabas Native SQL Statements .. 11
■ Source Program Maintenance .. 12
■ The Record Buffer and Reference to Data .. 13
■ Response Code Interpretation ... 30
■ Host Variables .. 32
■ ISN Lists and the ISN Buffer .. 32
■ HOLD Logic ... 33
■ Security Options .. 34
■ Record Buffer - ADA .. 35
■ Record Buffer - COBOL .. 35
■ Fields in FORTRAN ... 36
■ Record Buffer - PL/I ... 37
■ Date and Time Conversion Routines ... 38
■ Support of Distributed Data Structures ... 39
■ The Distribution handling .. 40
■ Relational Null Support ... 41
■ Long Alpha field Support ... 42

9

Using Adabas Native SQL does not require you to learn new programming techniques. Programs
are written in Ada, COBOL, FORTRAN77 or PL/I as before, with Adabas Native SQL statements
that access the Adabas database inserted at the required places. The Adabas Native SQL prepro-
cessor converts the Adabas Native SQL statements into comments, inserts the generated code and
data structures into the source stream and passes the remainder of the program through without
alteration. At the same time, Adabas Native SQL optionally writes to the data dictionary a cross-
reference list of the files and fields used by the program.

This chapter covers the following topics:

Adabas Native SQL Reference Manual10

PROGRAMMING CONSIDERATIONS

Rules for Adabas Native SQL Statements

Each Adabas Native SQL statement is preceded by "EXEC ADABAS". Each Adabas Native SQL
statement is terminated by "END-EXEC" (in Ada, COBOL or FORTRAN), or by "END-EXEC" or
";" (in PL/I). These delimiters enable the preprocessor to distinguishAdabasNative SQL statements
from regular Ada, COBOL, FORTRANor PL/I code. The following COBOL program includes two
Adabas Native SQL statements:

IDENTIFICATION DIVISION.
PROGRAM ID. EXAMPLE.
AUTHOR. SAG.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.

SKIP2
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

PROCEDURE DIVISION.
EXEC ADABAS

SELECT NAME, AGE, SALARY
FROM PERSONNEL
WHERE NUMBER-OF-DEPENDENTS GT 4

END-EXEC
DISPLAY NAME AGE SALARY
GOBACK.

"EXEC ADABAS" must be specified within one line. The same is true for "END-EXEC". Only one
Adabas Native SQL statement may be written between "EXEC ADABAS" and "END-EXEC". The
Adabas Native SQL statement is restricted to a maximum of 100 lines in length (including "EXEC
ADABAS" and "END-EXEC").

Mixing Adabas Native SQL statements and regular source code statements is not allowed; Ada,
COBOL, FORTRAN or PL/I code or comments should not appear between "EXEC ADABAS" and
the corresponding "END-EXEC".

Note: (for COBOL users): The generated statements may include periods to terminate in-
ternal IF statements. Adabas Native SQL statements are therefore not permitted within
IF...ELSE sections. This restriction does not apply to programs generated with the global
parameter LANG COBOL/II or LANG COBOL/LE; in this case, Adabas Native SQL generates
END-IF statements instead of periods, so there are no restrictions on nesting Adabas Native
SQL statements within other IF...ELSE...END-IF statements.

11Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

Note: (for COBOL/II or COBOL/LE users): Adabas Native SQL will generate an extra
statement with a period at the end while generating a SQL statement in COBOL/II in the
case that the END–EXEC clause ends with a period: END–EXEC. In this case, users can
“ask” Adabas Native SQL to generate a period at the end of the generation.

Source Program Maintenance

The source program stored in the programmer's library includes Adabas Native SQL statements,
but not the code they generate. Therefore every compilation must be preceded by a pass through
the Adabas Native SQL preprocessor. The preprocessor produces as its output a program in Ada,
COBOL, FORTRANor PL/I, including the original AdabasNative SQL statements, which are now
marked as comments. This program should now be compiled and link-edited in the normal
manner. In the compiler listing, the generated statements are identified in columns 73..80 by the
characters "ADABAS" (executable code and internal data) or "ADADATA" (data definitions that
are of use to you). This identification enables you to locate the lines that contain the data definitions
easily.

Note: Do not alter variables that are declared in lines marked "ADABAS". You should only
use those variables that are declared in lines marked "ADADATA".

Ada, FORTRAN and IBM PL/I source files may include line numbers in columns 73..80. COBOL
source filesmay include line numbers in columns 1..6 and/or 73..80. AdabasNative SQL preserves
this line-numbering,which serves as a cross-reference between the source code in the programmer's
library and the compiler listing. The line sequence numbers are also used by the response code
interpretation report and the TRACE report to help you when debugging.

PL/I source files in VMS environments may not include line numbers.

If the source code is not numbered, Adabas Native SQL automatically generates line numbers in
columns 73..80.

The first Adabas Native SQL statement in the program must be the following:

EXEC ADABAS
 BEGIN DECLARE SECTION
END-EXEC ↩

Adabas Native SQL generates all the variables including the Adabas buffers after this statement.

Note for COBOL users: This statement must be in the WORKING-STORAGE SECTION of the
DATA DIVISION.

Adabas Native SQL Reference Manual12

PROGRAMMING CONSIDERATIONS

The Record Buffer and Reference to Data

A record buffer is an area of storage in the user's program that is used by Adabas to transfer in-
formation to or from the database. Whenever an Adabas read command is executed, the desired
database fields are located and copied into the record buffer.

Note: No record buffer is generated for FORTRAN programs; however, there is a character
string which encompasses all fields and serves the same purpose as a record buffer.
Throughout this document, the term record buffer is used; however if a FORTRAN program
is being discussed, this term should be interpreted as the character string referred to above.

Referencing Database Fields

To use data in database fields, refer to it using qualified identifiers composed of the record buffer
name together with the basic field name as defined in the data dictionary. See table below.

Form of ReferenceLanguage

BUFFER.FIELDAda, PL/I

FIELD OF BUFFERCOBOL

No qualification possibleFORTRAN

Note: If more than one database field is used, a prefix or suffix (in the SELECT statement
itself) should be used to make the name unique.

If the Adabas Native SQL statement that causes the record buffer to be generated does not have
an alias name in the FROM clause, then the level-1 record buffer name is the same as the (first) file
name. If the FROM clause does include an alias name, then the alias name is used as the level-1 record
buffer name. Levels are not used in Ada or FORTRAN.

Adabas Native SQL generates a name at level 2 for internal use only. Do not use this name in your
programs.

Synonyms

The field names are generated beginning at level 3. The variable names that Adabas Native SQL
generates are taken fromPredict. If the program iswritten inAda and anAda field name synonym
is defined in the data dictionary, then the synonym is used to generate the field name in theAdabas
Native SQL record buffer. If the program iswritten inCOBOL, FORTRANor PL/I, then theCOBOL,
FORTRAN or PL/I field name synonym is used respectively. If no field name synonym is defined
for the language in which the program is written, the basic name of the field is used. Note that the
cross-reference information written to the data dictionary by Adabas Native SQL is always the
basic name of the field and not the language-dependent synonym.

13Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

Prefix/Suffix

Having selected the field name or synonym, Adabas Native SQL then attaches the prefix and
suffix to the name. These are taken from one of the following sources:

DescriptionSource

Use the PREFIX and SUFFIX options for the current COMPARE, FIND,
HISTOGRAM, INSERT, READ, SORT or UPDATE statement.

Local (highest priority)

Use the PREFIX and SUFFIX clauses of the global Adabas Native SQL OPTIONS
parameter (see page)

Global

The current generation defaults for the respective language are used.Predict (lowest priority)

The first two options can only be used if the appropriate field in the Predict Modify...Defaults
screen for Ada, COBOL, FORTRAN or PL/I is marked with an "X", indicating it may be modified
by the user. Otherwise the prefix and suffix values defined in the data dictionary cannot be over-
ridden.

Validation

The field name is now validated by examining it for characters that do not conformwith the rules
for forming identifiers in the appropriate language (Ada, COBOL, FORTRANor PL/I). If any illegal
characters are found, they are processed according to the setting of the 'validation character'. See
table below:

ResultValidation Character

Invalid characters in a field namewill result in an error
message but will not be modified.

Null string (two consecutive apostrophes) in global
parameter
or
Blank (Predict default)

Invalid characters in a field name are replaced by this
character.

Replace character
(letters A-Z, digits 0-9 or special
character depending on language)

Invalid characters in the field name are deleted.Asterisk

The validation character is taken from one of the following sources:

DescriptionSource

Use the VALIDATION clause of the global OPTIONS parameter of Adabas Native
SQL. Only possible if the field Validate in the Predict Modify...Defaults screen
is marked with an "X".

Global (higher priority)

The current generation default for the respective language is used.Predict

Adabas Native SQL Reference Manual14

PROGRAMMING CONSIDERATIONS

Truncation

If the field name is now too long, it is truncated by deleting characters from the left, middle or
right, and awarningmessage is issued. The truncation character is taken fromone of the following
sources:

DescriptionSource

Use the TRUNCATION clause of the global Adabas Native SQL OPTIONS parameter. Only possible
if the field Truncation in the Predict Modify...Defaults screen is marked with an "X".

Global

The current generation default for the respective language is used.Predict

Field Attributes

The attributes of the variables (format, length, etc.) are also taken from the data dictionary. If the
definition does not conform to theAda, COBOL, FORTRANor PL/I standards, the field is declared
as an alphanumeric field. (Examples of non-conforming definitions would be 3 bytes binary or 5
bytes binary.)

Example: If there are fields calledNAME andCITY in the Adabas file PERSONNEL, the following
Adabas Native SQL statement-fragment is valid:

SELECT NAME, CITY
FROM PERSONNEL

You may refer to the variables in the record buffer as:

PERSONNEL.NAME, PERSONNEL.CITY (Ada)
NAME OF PERSONNEL, CITY OF PERSONNEL (COBOL)
NAME, CITY (FORTRAN)
PERSONNEL.NAME, PERSONNEL.CITY (PL/I)

If you use the alias name option:

SELECT NAME, CITY
FROM PERSONNEL PERSON-ALIAS

then Adabas Native SQL generates a record buffer structure with the name PERSON_ ALIAS
(Ada, PL/I) or PERSON-ALIAS (COBOL). You may refer to the variables in the record buffer as:

15Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

PERSON_ALIAS.NAME, PERSON_ALIAS.CITY (Ada)
NAME OF PERSON-ALIAS, CITY OF PERSON-ALIAS (COBOL)
NAME, CITY (FORTRAN)
PERSON_ALIAS.NAME, PERSON_ALIAS.CITY (PL/I)

Note: (for FORTRAN users): Qualification is not possible in FORTRAN. However, if the
database field is used in more than one Adabas Native SQL statement, a prefix or suffix (in
the statement itself) must be used to make the name unique.

Note: (for Ada and FORTRANusers): Numeric fields are transformed into character fields;
therefore, whenever these fields are initialized and whenever values are assigned to these
fields, the values must be filled with leading zeros, for example, "0001".

Groups

If the name specified is the name of a group (GR), Adabas Native SQL automatically generates
declarations for the lower-level fields at all levels, in accordance with the definition stored in the
data dictionary. The field names will be the full field names as defined in the data dictionary. If
Ada, COBOL, FORTRAN or PL/I synonyms are defined in the data dictionary, they will be used
in place of the full field names.

Example:

SELECT PERSON
FROM PERSONNEL

The structure of the Ada record buffer is as follows:

type RECORD_BUFPERS is
record

NAME : STRING (1..20);
FIRST_NAME : STRING (1..15);
INITIAL : STRING (1..1);
SEX : STRING (1..1);
AGE : STRING (1..2);
FAMILY_STATUS : STRING (1..10);
NUMBER_OF_DEPENDENTS : STRING (1..2);
ISN : INTEGER;
QUANTITY : INTEGER;
RESPONSE_CODE : SHORT_INTEGER;

end record;
PERSONNEL: RECORD_BUFPERS;

The structure of the COBOL record buffer is as follows:

Adabas Native SQL Reference Manual16

PROGRAMMING CONSIDERATIONS

01 PERSONNEL.
02 RECORD-BUF-0-1.
03 PERSON.
04 NAME PIC X(20).
04 FIRST-NAME PIC X(15).
04 INITIAL PIC X(1).
04 P-DES.
05 SEX PIC X(1).
05 AGE PIC 9(2).
05 FAMILY-STATUS PIC X(10).
05 NUMBER-OF-DEPENDENTS PIC 9(2).

02 ISN PIC 9(9) COMP.
02 QUANTITY PIC 9(9) COMP.
02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 20 NAME
CHARACTER* 15 FNAME
CHARACTER* 1 INIIAL
CHARACTER* 1 SEX
CHARACTER* 2 AGE
CHARACTER* 10 FAMSTA
CHARACTER* 2 NUMNTS
CHARACTER* 51 PERSON
CHARACTER* 15 PDES
CHARACTER* 51 PERNEL

Note: Synonyms are assumed to be defined in the data dictionary as shown in Appendix
B and truncation is assumed to occur in the middle of the word. (The maximum length of
names depends on the operating system.)

Note: The field PERNEL encompasses all other fields and is the equivalent of the record
buffer in Ada, COBOL and PL/I.

The structure of the PL/I record buffer is as follows:

DCL 1 PERSONNEL,
2 RECORD_BUFPERS_1 UNAL,
3 PERSON,
4 NAME CHAR (20),
4 FIRST_NAME CHAR (15),
4 INITIAL CHAR (1),
4 P_DES,
5 SEX CHAR (1),
5 AGE PIC '(1)99',
5 FAMILY_STATUS CHAR (10),

17Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

5 NUMBER_OF_DEPENDENTS PIC '(1)99',
2 ISN FIXED BIN(31),
2 QUANTITY FIXED BIN(31),
2 RESPONSE_CODE FIXED BIN(15),
RECORD_BUFPERS CHAR(51) BASED (ADDR(RECORD_BUFPERS_1));

Any field within a group may also be specified as a single field name.

Note: The level-2 name generated for the record buffer includes the cursor-name, if one
was specified. The COBOL example shows a record buffer that was generated from an
Adabas Native SQL statement without a cursor-name; the Ada and PL/I examples show a
record buffer that was generated from an Adabas Native SQL statement with the cursor-
name PERS.

Multiple-Value Fields

A multiple-value (MU) field is specified as a single field name; Adabas Native SQL takes the
number of occurrences from the data dictionary. If the number of occurrences is specified as zero
in the data dictionary, then Adabas Native SQL will declare 191 occurrences of the field. It is
therefore strongly recommended that the number of occurrences be correctly specified in the data
dictionary.

A single occurrence or a range of occurrencesmay optionally be specifiedwithin parentheses. The
upper limit of the range or the number of the occurrence must not be greater than the number of
occurrences as specified in the data dictionary, otherwise it will be ignored and awarningmessage
will be printed. The valid formats are:

mu

mu(i)

mu(:var)

mu(i-j)

mu(LAST)

mu(i-LAST) (only at the end of the SELECT list)

where mu denotes the name of themultiple field; i and j denote integer constants; and var denotes
the name of an integer variable. In Ada, varmust be defined as "STRING(1..5)". In FORTRAN,
varmust be defined as "CHARACTER*5" and should contain a 5-digit number. LAST may be
specified as the occurrence of an MU field to indicate that the last occurrence is to be read. For
MU fields it is also possible to specify (i-LAST) at the end of the SELECT list to indicate a range
of occurrences, from the occurrence with number i through to the last occurrence.

If a multiple-value field is referenced in the WHERE clause of a data retrieval statement, the only
valid format is:

mu

Adabas Native SQL Reference Manual18

PROGRAMMING CONSIDERATIONS

If a single occurrence or a range not starting from 1 is specified, the name in the record buffer will
be followed by a "-" or "_" and the number of the occurrence or the range.

Example:

SELECT OIL-CREDIT(1-5), OIL-CREDIT(7), OIL-CREDIT(9-10)
FROM FINANCE

The structure of the Ada record buffer is as follows:

type OIL_CREDITPERS is array (INTEGER range <>)
of STRING (1..7);

type OIL_CREDIT_9_10PERS is array (INTEGER range <>)
of STRING (1..7);

type RECORD_BUFPERS is
record

OIL_CREDIT : OIL_CREDITPERS (1..5);
OIL_CREDIT_7 : STRING (1..7);
OIL_CREDIT_9_10 : OIL_CREDIT_9_10PERS (1..2);
ISN : INTEGER;
QUANTITY : INTEGER;
RESPONSE_CODE : SHORT_INTEGER;

end record;
FINANCE : RECORD_BUFFERS;

The structure of the COBOL record buffer is as follows:

01 FINANCE.
02 RECORD-BUFPERS.
03 OIL-CREDIT PIC X(7) OCCURS 5.
03 OIL-CREDIT-7 PIC X(7).
03 OIL-CREDIT-9-10 PIC X(7) OCCURS 2.
02 ISN PIC 9(9) COMP.
02 QUANTITY PIC 9(9) COMP.
02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

19Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

CHARACTER* 7 OCRE (00005)
CHARACTER* 7 OCRE7
CHARACTER* 7 OCR910 (00002)
CHARACTER* 56 FINNCE

Note: Synonyms are assumed to be defined in the data dictionary as shown in Appendix
B and truncation is assumed to occur in the middle of the word. (The maximum length of
names depends on the operating system.)

Note: The field FINNCE encompasses all other fields and is the equivalent of the record
buffer in Ada, COBOL and PL/I.

The structure of the PL/I record buffer is as follows:

DCL 1 FINANCE,
2 RECORD_BUFPERS_1 UNAL,
3 OIL_CREDIT (5) CHAR (7),
3 OIL_CREDIT_7 CHAR (7),
3 OIL_CREDIT_9_10 (2) CHAR (7),

2 ISN FIXED BIN(31),
2 QUANTITY FIXED BIN(31),
2 RESPONSE_CODE FIXED BIN(15),
RECORD_BUFPERS CHAR(56) BASED (ADDR(RECORD_BUFPERS_1));

If the range is not explicitly specified, the default range is from the first occurrence up to the
number specified in the data dictionary file (or 191 if the number of occurrences is not specified
in the data dictionary).

In conjunction with multiple-value fields, you may additionally code mu(COUNT), i.e., the field
name followed by the keywordCOUNT in parentheses. This causesAdabasNative SQL to generate
a special field in which Adabas stores the actual number of occurrences in the record. The field is
two bytes long and has the following binary format:

■ SHORT_INTEGER in ADA;
■ PIC S9(4) COMP in COBOL;
■ INTEGER*2 in FORTRAN;
■ FIXED BIN(15,0) in PL/I.

The name generated for the COUNT field is the same as the name of the multiple-value field,
preceded by:

■ "C_" in ADA;
■ "C-" in COBOL;
■ "C" in FORTRAN;

Adabas Native SQL Reference Manual20

PROGRAMMING CONSIDERATIONS

■ "C_" in PL/I.

A count field is also generated if a count field is defined in a Predict field maintenance function.
This is particularly useful in conjunctionwith theAdabasNative SQL SELECT * statement. A count
field is never generated for a multiple-value field within a periodic group.

Example:

SELECT OIL-CREDIT, OIL-CREDIT(COUNT)
FROM FINANCE

The structure of the Ada record buffer is as follows:

type OIL_CREDITPERS is array (INTEGER range <>)
of STRING (1..7);

type RECORD_BUFPERS is
record

OIL_CREDIT : OIL_CREDITPERS (1..191);
C_OIL_CREDIT : SHORT_INTEGER;
ISN : INTEGER;
QUANTITY : INTEGER;
RESPONSE_CODE : SHORT_INTEGER;

end record;
FINANCE: RECORD_BUFPERS;

The structure of the COBOL record buffer is as follows:

01 FINANCE.
02 RECORD-BUFPERS.
03 OIL-CREDIT PIC X(7) OCCURS 191.
03 C-OIL-CREDIT PIC S9(4) COMP.
02 ISN PIC 9(9) COMP.
02 QUANTITY PIC 9(9) COMP.
02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 7 OCRE (00191)
INTEGER* 2 COCRE
CHARACTER* 1340 FINNCE

Note: Synonyms are assumed to be defined in the data dictionary as shown in Appendix
B and truncation is assumed to occur in the middle of the word. (The maximum length of
names depends on the operating system.)

21Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

Note: The field FINNCE encompasses all other fields and is the equivalent of the record
buffer in Ada, COBOL and PL/I.

The structure of the PL/I record buffer is as follows:

DCL 1 FINANCE,
2 RECORD_BUFPERS_1 UNAL,
3 OIL_CREDIT (191) CHAR (7),
3 C_OIL_CREDIT FIXED BIN(15,0),

2 ISN FIXED BIN(31),
2 QUANTITY FIXED BIN(31),
2 RESPONSE_CODE FIXED BIN(15),
RECORD_BUFPERS CHAR(1339) BASED (ADDR(RECORD_BUFPERS_1));

Periodic Groups

A periodic group (PE) consists of up to 65000 occurrences of a group. The default number of oc-
currences remains 99, as in the previous version. Adabas Native SQL automatically generates
definitions of all fields within the periodic group, using the full field names as defined in the data
dictionary, or theAda, COBOL, FORTRANor PL/I synonyms if present. Youmay limit the number
of occurrences as for multiple value fields. A COUNT field containing the number of occurrences
of the periodic group may be generated by coding pe(COUNT) or by defining a PE count field
with a Predict field maintenance function. Valid formats:

pe

pe(i)

pe(:var)

pe(i-j)

where pe denotes the name of the periodic group; i and j denote integer constants; and var denotes
the name of an integer variable. In Ada, var must be defined as "STRING(1..5)". In FORTRAN, var
must be defined as "CHARACTER*5" and should contain a 5-digit number.

If a periodic group is referenced in the WHERE clause of a data retrieval statement, the valid
formats are:

pe

pe(i)

Suffixes defining a single occurrence or a range of occurrences not starting from 1 will be added
to all fields within the periodic group. A range starting from the first occurrence is not given a
suffix.

Adabas Native SQL Reference Manual22

PROGRAMMING CONSIDERATIONS

If you do not need all the fields within the periodic group, you may request individual fields,
which are treated as multiple-value fields, except that you may not request the COUNT of such
a field, but only the COUNT of the periodic group as a whole.

For COBOL and PL/I, Adabas Native SQL supports the GROUP STRUCT attribute which can be
defined in the data dictionary for periodic groups. Correct use of this attribute can result in a sig-
nificantly shorter Adabas format buffer. Formore information seeDefiningMore Attributes of Fields,
3GL Specification in section Field of ChapterPredefinedObject Types of the Predict ReferenceManual.

Note: (for Ada and FORTRAN users): Periodic groups will always be generated with
GROUP STRUCT = N, and no consideration will be given to the Predict definition.

Example:

SELECT MAJOR-CREDIT(1), MAJOR-CREDIT(3-5), MAJOR-CREDIT(7),
MAJOR-CREDIT(COUNT)

FROM FINANCE

The structure of the Ada record buffer is as follows:

type CREDIT_CARD_3_5PERS is array (INTEGER range <>)
of STRING (1..18);

type CREDIT_LIMIT_3_5PERS is array (INTEGER range <>)
of STRING (1..4);

type CURRENT_BALANCE_3_5PERS is array (INTEGER range <>)
of STRING (1..4);

type RECORD_BUFPERS is
record

CREDIT_CARD_1 : STRING (1..18);
CREDIT_LIMIT_1 : STRING (1..4);
CURRENT_BALANCE_1 : STRING (1..4);
CREDIT_CARD_3_5 : CREDIT_CARD_3_5PERS (1..3);
CREDIT_LIMIT_3_5 : CREDIT_LIMIT_3_5PERS (1..3);
CURRENT_BALANCE_3_5 : CURRENT_BALANCE_3_5PERS (1..3);
CREDIT_CARD_7 : STRING (1..18);
CREDIT_LIMIT_7 : STRING (1..4);
CURRENT_BALANCE_7 : STRING (1..4);
C_MAJOR_CREDIT : SHORT_INTEGER;
ISN : INTEGER;
QUANTITY : INTEGER;
RESPONSE_CODE : SHORT_INTEGER;

end record;
FINANCE: RECORD_BUFPERS;

The structure of the COBOL record buffer is as follows:

23Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

01 FINANCE.
02 RECORD-BUFPERS.
03 MAJOR-CREDIT-1.
04 CREDIT-CARD-1 PIC X(18).
04 CREDIT-LIMIT-1 PIC 9(4).
04 CURRENT-BALANCE-1 PIC 9(4).
03 G-MAJOR-CREDIT-3-5.
04 MAJOR-CREDIT-3-5 OCCURS 3.
05 CREDIT-CARD-3-5 PIC X(18).
05 CREDIT-LIMIT-3-5 PIC 9(4).
05 CURRENT-BALANCE-3-5 PIC 9(4).

03 MAJOR-CREDIT-7.
04 CREDIT-CARD-7 PIC X(18).
04 CREDIT-LIMIT-7 PIC 9(4).
04 CURRENT-BALANCE-7 PIC 9(4).
03 C-MAJOR-CREDIT PIC S9(4) COMP.
02 ISN PIC 9(9) COMP.
02 QUANTITY PIC 9(9) COMP.
02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 18 CCARD1
CHARACTER* 4 CLIM1
CHARACTER* 4 CBAL1
CHARACTER* 26 MAJIT1
CHARACTER* 18 CCAD35(00003)
CHARACTER* 4 CLIM35(00003)
CHARACTER* 4 CBAL35(00003)
CHARACTER* 78 MAJT35
CHARACTER* 18 CCARD7
CHARACTER* 4 CLIM7
CHARACTER* 4 CBAL7
CHARACTER* 26 MAJIT7
INTEGER* 2 CMADIT
CHARACTER* 132 FINNCE

Note: Synonyms are assumed to be defined in the data dictionary as shown in Appendix
B and truncation is assumed to occur in the middle of the word. (The maximum length of
names depends on the operating system.)

Note: The field FINNCE encompasses all other fields and is the equivalent of the record
buffer in Ada, COBOL and PL/I.

The structure of the PL/I record buffer is as follows:

Adabas Native SQL Reference Manual24

PROGRAMMING CONSIDERATIONS

DCL 1 FINANCE,
2 RECORD_BUFPERS_1 UNAL,
3 MAJOR_CREDIT_1,
4 CREDIT_CARD_1 CHAR(18),
4 CREDIT_LIMIT_1 PIC '(3)99',
4 CURRENT_BALANCE_1 PIC '(3)99',

3 G_MAJOR_CREDIT_3_5,
4 MAJOR_CREDIT_3_5 (3),
5 CREDIT_CARD_3_5 CHAR(18),
5 CREDIT_LIMIT_3_5 PIC '(3)99',
5 CURRENT_BALANCE_3_5 PIC '(3)99',

3 MAJOR_CREDIT_7,
4 CREDIT_CARD_7 CHAR(18),
4 CREDIT_LIMIT_7 PIC '(3)99',
4 CURRENT_BALANCE_7 PIC '(3)99',

3 C_MAJOR_CREDIT FIXED BIN(15,0),
2 ISN FIXED BIN(31),
2 QUANTITY FIXED BIN(31),
2 RESPONSE_CODE FIXED BIN(15),
RECORD_BUFPERS CHAR(132) BASED(ADDR(RECORD_BUFPERS_1));

Multiple-Value Fields within Periodic Groups

Adabas Native SQL supports multiple-value fields that occur within periodic groups. If the
number of occurrences is not specified, the number of occurrences is taken from the data dictionary.
If the number of occurrences is not explicitly specified, or if the index is variable, the occurrence
number is not appended as a suffix to the field name.

Reference to elements of such a field is made as follows:

mp

mp(i(k))

mp(i(k-l))

mp(i-j(k))

mp(i-j(k-l))

mp(:ivar(k))

mp(:ivar(k-l))

mp(i(:kvar))

mp(i-j(:kvar))

mp(:ivar(:kvar))

mp(LAST)

mp(LAST(LAST))

25Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

mp(i(k-LAST)) (only at the end of the SELECT list)

mp denotes the name of the multiple-value field. i, i-j and ivar indicate which group or groups
are required. k, k-l and kvar indicate which occurrence or occurrences of the multiple-value field
are required. i, j, k and l denote integer constants. jmust be greater than i, and both must be in
the range 1..191. lmust be greater than k, and both must be in the range 1..191. ivar and kvar
denote the names of integer variables. LAST means the last occurrence.

If a multiple-value field within a periodic group is referenced in the WHERE clause of a data re-
trieval statement, the only valid format is:

mp

Counter fields can also be generated for multiple-value fields occurring within periodic groups.
mp(COUNT1) generates a counter field containing the number of occurrences of themultiple- value
field mp in the first occurrence of the periodic group, mp(COUNT1-3) generates counter fields for
the multiple-value field mp in each of the first three occurrences of the periodic group, and
mp(COUNTLAST) generates a counter field for the multiple-value field in the last occurrence of
the periodic group. The names of the counter fields are:

PL/IFORTRANCOBOLADA

C_mp_1Cmp1C-mp-1C_mp_1

C_mp_2Cmp2C-mp-2C_mp_2

C_mp_3Cmp2C-mp-3C_mp_3

Example:

SELECT INSURANCE-COMPANY(2-4(6-8))
FROM FINANCE

The structure of the Ada record buffer is as follows:

type INSURANCE_COMPANY_6_8PERS is array (INTEGER range <>,
INTEGER range <>)

of STRING (1..25);
type RECORD_BUFPERS is

record
INSURANCE_COMPANY_6_8 : INSURANCE_COMPANY_6_8PERS (1..3, 1..3);
ISN : INTEGER;
QUANTITY : INTEGER;
RESPONSE_CODE : SHORT_INTEGER;

end record;
FINANCE: RECORD_BUFPERS;

The structure of the COBOL record buffer is as follows:

Adabas Native SQL Reference Manual26

PROGRAMMING CONSIDERATIONS

01 FINANCE.
02 RECORD-BUFPERS.
03 A-INSURANCE-COMPANY-2-4 OCCURS 3.
04 INSURANCE-COMPANY-6-8 PIC X(25) OCCURS 3.

02 ISN PIC 9(9) COMP.
02 QUANTITY PIC 9(9) COMP.
02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 25 INCM68(00003 , 00003)
CHARACTER* 225 FINNCE

Note: Synonyms are assumed to be defined in the data dictionary as shown in Appendix
B and truncation is assumed to occur in the middle of the word. (The maximum length of
names depends on the operating system.)

Note: The field FINNCE encompasses all other fields and is the equivalent of the record
buffer in Ada, COBOL and PL/I.

The structure of the PL/I record buffer is as follows:

DCL 1 FINANCE,
2 RECORD_BUFPERS_1 UNAL,
3 A_INSURANCE_COMPANY_2_4 (3),
4 INSURANCE_COMPANY_6_8 (3) CHAR(25),

2 ISN FIXED BIN(31),
2 QUANTITY FIXED BIN(31),
2 RESPONSE_CODE FIXED BIN(15),
RECORD_BUFPERS CHAR(225) BASED(ADDR(RECORD_BUFPERS_1));

Additional Fields in the Record Buffers (Ada, COBOL, PL/I)

If a field is specified in the SELECT clause, and Predict contains redefinitions for this field, then
the redefined fields are also included in the record buffer. The prefix and suffix are added to the
field names and the result is truncated if necessary. (Ada does not support redefinition.)

Unless the global parameter ABORT . is specified, Adabas Native SQL appends three fields to each
record buffer. A record buffer containing these three fields is also generated forDELETE statements,
although no database fields are generated. The names of the fields are shown in the tables below.
They may only be used in conjunction with an adequate file name.

If the global parameter ABORT . is specified, these three fields are generated as global data and
they have the names SQLISN, SQLQTY and SQLRSP, as used in FORTRAN programs. Since no
record buffers are ever generated for FORTRAN, the field names are always global to the program.

27Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

The ISN variable is a 4-byte binary field in which Adabas returns the ISN (internal sequence
number) of the (first) record found or read or, in the case of a HISTOGRAM command where the
descriptor is in a periodic group, the number of the current occurrence. The ISNvariable is defined
as:

FormatVariable Name*Language

INTEGERISNADA

PIC 9(9) COMPISNCOBOL

FIXED BIN (31)ISNPL/I

* The variable name is SQLISN if the global parameter ABORT . is coded. See description of the
ABORT parameter for more information.

The QUANTITY variable is a 4-byte binary field which, when used in conjunction with a COM-
PARE, FIND, FINDCOUPLEDor SORT statement, is available after executing theOPEN statement.
It returns the number of ISNs in the ISN list, or the number of ISNs in the ISN buffer. When used
in conjunction with a HISTOGRAM statement, the quantity variable, which is available after ex-
ecuting the FETCH statement, returns the number of records that contain the specified descriptor
value. (The quantity variable is not available in conjunction with READ statements.) The quantity
variable is defined as:

FormatVariable Name*Language

INTEGERQUANTITYADA

PIC 9(9) COMPQUANTITYCOBOL

FIXED BIN (31)QUANTITYPL/I

* The variable name is SQLQTY if the global parameter ABORT . is coded. See description of the
ABORT parameter for more information.

The RESPONSE_CODE (Ada), RESPONSE-CODE (COBOL) or RESPONSE_CODE (PL/I) variable
is a 2-byte binary field inwhichAdabas returns the response code after execution of the command.
The response code variable is defined as:

FormatVariable Name*Language

SHORT_INTEGERRESPONSE_CODEADA

PIC 9(4) COMPRESPONSE-CODECOBOL

FIXED BIN (15)RESPONSE_CODEPL/I

* The variable name is SQLRSP if the global parameter ABORT . is coded.

See Response Code Interpretation and the description of theABORT parameter for more inform-
ation.

Adabas Native SQL Reference Manual28

PROGRAMMING CONSIDERATIONS

Additional Fields in FORTRAN Programs

AdabasNative SQL enters values in three global variables after each SQL statement. These variables
contain only the values generated by the last command andwill be changedwhen a new command
is issued.

The ISN variable is a 4-byte binary field in which Adabas returns the ISN (internal sequence
number) of the (first) record found or read or, in the case of a HISTOGRAM command where the
descriptor is in a periodic group, the number of the current occurrence.

FormatVariable NameLanguage

INTEGER*4SQLISNFORTRAN

The QUANTITY variable is a 4-byte binary field which, when used in conjunction with a COM-
PARE, FIND, FINDCOUPLEDor SORT statement, is available after executing theOPEN statement.
It returns the number of ISNs in the ISN list, or the number of ISNs in the ISN buffer. When used
in conjunction with a HISTOGRAM statement, the quantity variable, which is available after ex-
ecuting the FETCH statement, returns the number of records that contain the specified descriptor
value. (The quantity variable is not available in conjunction with READ statements.)

FormatVariable NameLanguage

INTEGER*4SQLQTYFORTRAN

The response code variable is a 2-byte binary field in which Adabas returns the response code
after execution of the command.

FormatVariable NameLanguage

INTEGER*2SQLRSPFORTRAN

See Response Code Interpretation and the description of theABORT parameter for more inform-
ation.

If you want to use for example the response codes returned bymore than one statement, then you
must save each response code before new SQL statements are executed.

29Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

End-of-File Flag (ADACODE, SQLCOD)

The ADACODE (Ada, COBOL, DEC FORTRAN and PL/I) or SQLCOD (IBM FORTRAN) variable
is a 2-byte binary field in which Adabas Native SQL returns an end-of-file flag. The value 3 in this
field indicates that end-of-file was detected in a sequential read command, or end-of-list after
reading all the records found by a search statement. It is defined as:

FormatVariable NameLanguage

SHORT_INTEGERADACODEADA

PIC 9(4) COMPADACODECOBOL

INTEGER*2SQLCODFORTRAN

INTEGER*2ADACODEFORTRAN/VMS

FIXED BIN (15)ADACODEPL/I

Response Code Interpretation

The Adabas response code is a code that is returned to the caller after every Adabas command. It
is stored in a variable called RESPONSE-CODE (COBOL) or RESPONSE_CODE (Ada and PL/I)
in the record buffer of the command that was executed, or in the global variable SQLRSP (FOR-
TRAN). A value of zero returned in this variable indicates that the Adabas Native SQL statement
has been executed successfully. A non-zero value (other than 3, which denotes end-of-file) indicates
that an error occurred. In this case, the statement has not been executed. Each value is associated
with a distinct type of error, as shown in the list below.

Adabas Native SQL automatically calls an error-checking routine after each Adabas command if
the response code is non-zero. Software AG supplies default routines which check and interpret
the response code. If the response code has a value other than 3, the routine prints out the appro-
priate errormessage, the contents of theAdabas control block and the line number of the erroneous
statement in the source program, calls an appropriate tracemodule, issues a backout transaction
(ROLLBACKWORK) command, closes the database (DBCLOSE), and finally terminates the pro-
gram.

Default Trace ModuleDefault Abort ModuleLanguage

PRTRACRESPFADA

PRTRACERESPINTCOBOL

PRTRACRESPFFORTRAN

PRTRACERESPINTPL/I

In many cases, the action described above may be all that is required. However, if the action taken
by the standard routine is inappropriate or insufficient, the ABORT parameter can be used to
specify that a user-defined error handling routine with a different name should be called instead.

Adabas Native SQL Reference Manual30

PROGRAMMING CONSIDERATIONS

The data administrator will know whether alternative error handling routines are available at
your installation.

See also the description of the ABORT parameter.

Response Codes

The response code is returned in the variable RESPONSE_CODE (Ada), RESPONSE-CODE (CO-
BOL), SQLRSP (FORTRAN) or RESPONSE_ CODE (PL/I) that is attached to every record buffer.
The normal response code (success) is 0.

If the following response code occurs and the error handling routine is that shown in the table
above, control will be returned to the user program directly following the statement that caused
the response code.

MeaningResponse code

Response Code 3 (which is also signaled in the variable ADACODE (Ada, COBOL or PL/I)
or SQLCOD (FORTRAN)) indicates that end-of-file was detected in a sequential read
command, or end-of-list after reading all the records found by a search statement.

3

The following response codes may also occur during normal operation. If a user-written error
handling routine is called, it should take appropriate action for all response codes thatmight occur.
This might include printing an error message and/or returning to the application program. The
standard error handling routines RESPINT and RESPF supplied by Software AG can be used as
a model when writing this routine.

MeaningResponse
code

The ISN list is too big to be sorted.1

A partially-completed transaction has been automatically backed-out, possibly as the result
of a timeout (for programs that use ET-mode).Note that Adabasmay release the command-ID

9

when Response Code 9 occurs. ISN lists, hold queue entries and user data (see also the
CHECKPOINT,COMMITWORK,CONNECT,DBCLOSEandREADUSERDATAstatements)
are no longer accessible.

Invalid file number. A file required by the program could not be found in the database17

An attempt has been made to update a file that was opened for access only19

Adabas has detected an error in the format buffer. This can be caused by an incorrect data
field definition in Predict.

41

The user-ID specified in the CONNECT statement is already in use; or the mode of usage
specified for a file in the CONNECT statement conflicts with the file's current usage.

48

A descriptor value in a record to be INSERTed or UPDATEd exists already in the file and
the file has the 'unique descriptor' attribute (VAX response code).

98

A READ ISN statement without the SEQUENCE option was issued and Adabas could not
find a record having the specified ISN; or a READ ISN statement attempted to read a record

113

31Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

MeaningResponse
code

and the 'security by value' check failed. It can also indicate that an INSERT statement using
the WHERE ISN=n clause specified an ISN that was already present in the file.

An UPDATE or DELETE statement was issued but the relevant record was not in hold status
for the program that issued the statement.

144

The program attempted to hold a record that is already being held by another user. This code
may be returned if the HOLD RETURN option is used.

145

The Adabas nucleus is not available.148

A descriptor value in a record to be INSERTed or UPDATEd exists already in the file and
the file has the 'unique descriptor' attribute.

198

See section Adabas Response Codes in the Adabas Messages and Codes Manual for more information.

Host Variables

Host variables are normal program variables that are also used in Adabas Native SQL statements.
They are declared using normal Ada, COBOL, FORTRAN or PL/I statements. When used in an
Adabas Native SQL statement, the name of each host variable must be immediately preceded by
a colon (":"), for example ":NAME".

ISN Lists and the ISN Buffer

The abbreviation ISN occurs frequently in this manual. It stands for Internal Sequence Number:
a reference number that identifies each record uniquely within an Adabas file. Each new record
created by the INSERT statement must have an ISN. If you do not allocate the ISN explicitly, it is
assigned automatically by Adabas. When allocating ISNs, care should be taken that each ISN is
unique and that no ISN that exceeds the MAXISN parameter is specified.

When a FIND statement finds more than one record in the file, Adabas makes a list of the ISNs of
these records and returns this ISN list as the result of the FIND operation.

You have the option of providing an ISN buffer, whose size is specified by the ISNSIZE parameter
either in the globalOPTIONS parameter or in each individual Adabas Native SQL statement. If
an ISN buffer of adequate size is provided, Adabas stores the ISN list in this buffer. If an ISN
buffer is not provided, or if it is too small to contain the ISN list created by a particular FIND
statement, then the excess ISNs are automatically written to the Adabas workfile. They are then
read from the ISN buffer and/or from the workfile and returned to the user one by one each time
a statement (for example, FETCH) that requires an ISN is executed.

Adabas Native SQL Reference Manual32

PROGRAMMING CONSIDERATIONS

In general, programs run more efficiently if the ISN buffer is large enough to contain the entire
ISN list. However, if the ISN buffer has to bemade smaller, the programwill continue to run exactly
as before; the process of buffering excess ISNs in the Adabas workfile is completely transparent
to the user.

The ISNbuffer cannot be used if Adabas security by value is in effect, or in CICS orUTMprograms
that use the Adabas Native SQL statements SAVE and RESTORE.

HOLD Logic

The HOLD option can be used with all Adabas Native SQL data retrieval statements except HIS-
TOGRAM to place the record in hold status. A record in hold status is prevented from being up-
dated by other users until it is explicitly released by issuing a COMMIT WORK, ROLLBACK
WORK or RELEASE statement. This avoids the conflict that would arise if two or more users at-
tempted to update one record simultaneously.

RETURN Option

The presence or absence of the RETURN option determines Adabas's response if the record to be
accessed is currently being held by another user.

If HOLD is used without the RETURN option and an attempt is made to access a record held by
another user, the program is suspended until the record is released by the other user.

If HOLD is used with the RETURN option and an attempt is made to access a record held by an-
other user, Adabas returns Response Code 145 to the user program. If the response code interpret-
ation routine as supplied by SoftwareAG is being used, an errormessage is printed and the program
ABENDs. If some other action is required, an alternative routine that checks for this response code
and takes appropriate actionmust be supplied (see also the description of theABORT parameter).
The response code is returned in the variable RESPONSE_CODE (Ada), RESPONSE-CODE (CO-
BOL) or RESPONSE_CODE (PL/I), which is attached to every record buffer, or in the global variable
SQLRSP (FORTRAN).

See sectionCompetitive Updating in the Adabas CommandReferenceManual formore information
on Adabas hold logic.

33Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

Security Options

Adabas offers the following facilities to prevent unauthorized users from accessing or updating
confidential data:

■ Password protection
■ Ciphering
■ Security by value.

Password Protection

Password protection permits only those database operations that cite the correct password. Adabas
commands that include an incorrect password, or no password at all, are rejected. Furthermore,
access and update security levels are associated with each password. Whenever a database oper-
ation is executed, Adabas checks that the security level associated with the password equals or
exceeds the security level of the database, both at the file level and at the field level. Password
protection therefore provides a very flexible mechanism for controlling the degree of access indi-
vidual computer users can exercise.

Ciphering

If a file is ciphered, the data are stored on disk in an encrypted format that is incomprehensible
to any user who does not know the correct cipher key. Adabas uses the cipher key in conjunction
with a special decryption algorithm to reconstruct the original data. Cipher protection offers a
very high level of security against unauthorized efforts to read data from a database. Conversely,
a file update made with a wrong cipher key is conspicuous because the decryption algorithm
converts the data into a meaningless jumble when a legitimate user tries to read them.

Further details of the password and data encryption security facilities are given in the section Se-
curity Planning in the Adabas DBA Reference Manual.

Security by Value

The third security option Adabas offers is security by value. Using this facility, access to records
is controlled by the values contained in specified fields. For example, a user may be forbidden
from accessing records in the PERSONNEL file that have a value in the SALARY field exceeding
6000.

The ISNSIZE option cannot be used when processing files that are protected by this feature. See
page for more information.

See the Adabas Security Manual for more information. Note that this manual is only sent to DBAs
on written application.

Adabas Native SQL Reference Manual34

PROGRAMMING CONSIDERATIONS

Consult your DBA before writing programs that access files protected by any of the mechanisms
described in this section.

Record Buffer - ADA

The fields generated in the record buffers in Ada programs have the clauses shown in the table
below:

ObservationsAda clausePredict LengthPredict Format

STRING (1..nnn)nnnA

VMS onlySHORT_SHORT_INTEGER1B or I

SHORT_INTEGER2B or I

INTEGER4B or I

FLOAT4F

VMS onlyLONG_FLOAT8F

STRING (1..nn+m)nn.mN or U

STRING (1..y)nn.mP

BOOLEANL

STRING (1..4)D

STRING (1..7)T

SHORT_INTEGERCounter fields

Note: Numeric fields are transformed into character fields; therefore, whenever these fields
are initialized and whenever values are assigned to these fields, the values must be filled
with leading zeros, for example "0001".

Note: y = (nn+m+1) / 2

Record Buffer - COBOL

The fields generated in the record buffers in COBOL programs have the clauses shown in the table
below:

35Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

ObservationsCOBOL clausePredict LengthPredict Format

PIC X(nnn)nnnA

PIC S9(4) COMP2B or I

PIC S9(9) COMP4B or I

PIC S9(18) COMP8B or I

COMP-14F

COMP-28F

In any of these fields, nn+m may not exceed 18,
and if m=0 the term V9(m) is omitted

PIC 9(nn)V9(m)nn.mN or U

PIC S9(nn)V9(m)nn.mNS or US

PIC 9(nn)V9(m)COMP-3nn.mP

PIC S9(nn)V9(m)COMP-3nn.mPS

PIC XL

PIC 9(7) COMP-3D

PIC 9(13) COMP-3T

PIC S9(4) COMPCounter fields

An automatically generated counter field has the clause PIC S9(4) COMP.

A numeric or binary format fieldwith a length not included in the table above is treated in COBOL
as an alphanumeric format field

Packedfields inCOBOL/II under operating systemBS2000 are generated as "PACKEDDECIMAL"
instead of "COMP-3".

No alignment is performed.

Fields in FORTRAN

The fields generated in FORTRAN programs have the clauses shown in the table below:

CompilerFORTRAN ClausePredict
Alignment
assuming word length=4

LengthFormat

anyCHARACTER*nnnnnnA

IBM, Siemens, VMSLOGICAL*11B or I

half-word boundaryIBM, Siemens, VMSINTEGER*22B or I

word boundaryIBM, Siemens, VMSINTEGER*44B or I

double-word boundarySiemensINTEGER*88B or I

IBM, VMSCHARACTER*88B or I

Adabas Native SQL Reference Manual36

PROGRAMMING CONSIDERATIONS

CompilerFORTRAN ClausePredict
Alignment
assuming word length=4

LengthFormat

word boundaryIBM, Siemens, VMSREAL*44F

double-word boundaryIBM, Siemens, VMSREAL*88F

anyCHARACTER*x
where x=nn+m

nn.mN or NS, U or US

anyCHARACTER*y
where y=(nn+m+1)/2

nn.mP or PS

anyLOGICAL*1L

anyCHARACTER*4D

anyCHARACTER*7T

■ If generated for IBM, Siemens or VMS compilers: Any file number field, length fields and
automatically generated counter fields have the clause INTEGER*2.

Note: Numeric fields are transformed into character fields; therefore, whenever these fields
are initialized and whenever values are assigned to these fields, the values must be filled
with leading zeros, for example "0001".

Record Buffer - PL/I

The fields generated in the record buffers in PL/I programs have the clauses shown in the table
below:

Fields in the PL/I include code have a PL/I clause determined by the length and format of the
corresponding Predict field object, as shown in the table belowwhere s is the numeric sign whose
content (T, I, or 9R) and position (left or right) are defined in the PL/I generation defaults; nn+m
must not exceed 15; and if m is zero, V(m)9 is omitted.

ObservationsPL/I clausePredict
LengthFormat

CHAR (nnn)nnnA

VMS onlyFIXED BIN(7)1B

FIXED BIN (15,0)2B or I

FIXED BIN (31,0)4B or I

FLOAT DEC (6)4F

FLOAT DEC (16)8F

PIC '(nn)9V(m)9'nn.mN or U

37Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

ObservationsPL/I clausePredict
LengthFormat

PIC 's(nn-1)9V(m)9' or
PIC '(nn)9V(m-1)9s'

nn.mNS or US

FIXED DEC (nn+m,m)nn.mP or PS

BIT (8)L

FIXED DEC (7,0)D

FIXED DEC(13,0)T

FIXED BIN (15,0)Counter fields

A numeric or binary format field with a length not included in the table above is treated in PL/I
as an alphanumeric format field.

Date and Time Conversion Routines

The following routines are delivered with this version of Adabas Native SQL and can be used in
the application:

■ SQTODATE
■ SQFRDATE
■ SQTOTIME
■ SQFRTIME

SQTODATE

This module accepts two parameters:

■ N-DATE (N8) in format DDMMYYYY
■ DATE (D)

It converts the first parameter into a format D number and returns it in the second parameter.

SQFRDATE

This module accepts two parameters:

■ N-DATE (N8) in format DDMMYYYY
■ DATE (D)

It converts the second parameter, which is a format D number, into a numeric date and returns it
in the first parameter.

Adabas Native SQL Reference Manual38

PROGRAMMING CONSIDERATIONS

SQTOTIME

This module accepts three parameters:

■ N-DATE (N8) in format DDMMYYYY
■ N-TIME (N7) in format HHMMSSS
■ TIME (T)

It converts the first and second parameters into a format T number and returns it in the third
parameter.

SQFRTIME

This module accepts three parameters:

■ N-DATE (N8) in format DDMMYYYY
■ N-TIME (N7) in format HHMMSSS
■ TIME (T)

It converts the third parameter, which is a format T number, into a numeric date and numeric time
and returns them in the first and second parameters.

Support of Distributed Data Structures

Adabas Native SQL supports distributed data structures by the DBID or AUTODBID clauses in
AdabasNative SQLstatements, or theGlobalOPTIONSparametersAUTODBID-ALL ,AUTODBID-
ATM ,AUTODBID andDBID. These clauses put theDBIDnumber defined in Predict in the control
block.

■ The Global Parameters NETWORK and VIRTUAL-MACHINE

The Global Parameters NETWORK and VIRTUAL-MACHINE

These global parameters are mandatory if more than one network is defined in Predict.

These parameters define the network and virtual machine in which the program is to run. Adabas
Native SQL checks that the network and virtual machine exist in Predict and that the virtual ma-
chine is linked as a child object to the network.

For every database used (DBID, AUTODBID, AUTODBID-ATM and AUTODBID-ALL clauses)
Adabas Native SQL checks the following:

■ that if the database is defined as local, it is linked to the current virtual machine,

39Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

■ that if the database is defined as isolated, it is linked (via the current virtual machine) to the
current network.

Note: In this section, the terms current network and current virtual machine are used to describe
the network and virtual machine specified with the global parametersNETWORK and
VIRTUAL-MACHINE respectively.

The Distribution handling

The distribution is handled by the application programmer. If the program uses the DBID,
AUTODBID,AUTODBID-ATMandAUTODBID-ALL,AdabasNative SQLperforms the following
additional checks:

■ If one of theDBID clauses is used, the RunModeparameter of the correspondingPredict database
object must be I (isolated) or L (local), otherwise an error message is given.

■ If the database is local, AdabasNative SQL checks that it is linked to the current virtual machine.
■ If the database is isolated, Adabas Native SQL checks that it is linked to the current network.

After checking the database, Adabas Native SQL checks the physical link between the file and the
database. The physical link information is stored in the Adabas attributes in Predict for every
physical file connected to the database. This information includes the physical file number and
the physical Logical Distribution type (how the file is implemented). This typemust be either blank
(simple file) or E (expanded).

If the file is expanded, this means that there are several files with the same layout in the same
database, and that every file has a different range of ISNs. Adabas Native SQL checks for the
physical file with the lowest minimum ISN value (ADALOD LOAD parameter MINISN).

With both simple and expanded files, Adabas Native SQL takes the physical file number from this
physical link information. Note that in previous versions of Predict, the physical file number and
the logical file number (as exists in the file description) had to be identical. As of Predict Version
3.2 or above, however, the same logical file may have different physical file numbers.

With this kind of distribution, the application is responsible for defining the DBID where every
file exists. The AUTODBID-ALL option allows an update program which updates one database
and accesses up to fivemore databases.WithAUTODBID-ALL,AdabasNative SQL automatically
detects which is the updated database and issues the COMMIT and ROLLBACK commands to it.
It also generates different CONNECT and DBCLOSE statements to the different databases.

There is another option AUTODBID-ATM that may be used only in cases that the application will
run under the control of the Adabas TransactionManager (ATM) .With this optionAdabasNative
SQL does not restrict the number of updated databases within one program. It automatically uses
the DBID defined in Predict for every access or update statement while the Commit and Close
statements will be pointed to the default database and ATMwill take care of the synchronization.

Adabas Native SQL Reference Manual40

PROGRAMMING CONSIDERATIONS

Relational Null Support

Adabas supports relational Null fields. The Null field has an indicator in two binary Byte format
which indicateswhether the field has a value or isNull. This indicator appears in theAdabas record
and value buffers.

The definition of a Null field in Predict is shown by 'R' or 'U' in the field Suppression Column.

Adabas Native SQL supports Null fields in the following three clauses:

1. SELECT clause

Every field specified in the SELECT clause which has a Null value indication is generated in
the record buffer as two fields. The first field is the Null value indicator as two binary Bytes
and its name is the field name, prefixed with "S-". The second field is the field itself.

This definition is generated for every Null field even if it belongs to a group, or even if SELECT*
is used.

When the record is read from the database, a value of zero in the Null field indicator means
that the value in the field itself is a real value. A value of "-1" ("x'FFFF'") in the Null field indic-
ator means that the field has no value and is a real Null.

2. UPDATE/STORE clauses

There is a new reserved word "NULL" which may be specified as a value for Null fields. For
example:

SET field=NULL

Adabas Native SQL will move "-1" ("x'FFFF'") to the Null field indicator of the specified field
in the record buffer used for updating the file.

If the user uses the SET clause and specifies a real value or a variable for a field which has a
Null value indicator, Adabas Native SQL will automatically reset the Null field indicator of
that field. If the user does not specify the SET clause, but initiates the fields in the record buffer
by himself, he should also reset or turn on the Null field indicator.

3. WHERE clause

There is an extension to the syntax:

41Adabas Native SQL Reference Manual

PROGRAMMING CONSIDERATIONS

WHERE descriptor IS [NOT] NULL

This may be used in order to search for all records where the specified descriptor is Null or not
Null. This extension is allowed only for descriptors which are defined with the new relational
Null support.

Long Alpha field Support

Adabas has a field format "LA", standing for Long Alpha field.

This format represents a variable field whose length may be up to 16K Bytes.

Because it is a variable field, Adabas returns its value together with two binary Bytes in front of
the valuewhich represents the actual length of the field (the length includes the two binary Bytes.).

The definition of a Long Alpha field in Predict uses the format "AV".

Adabas Native SQL generates a Long Alpha field as two separate elements in the record buffer.
The first element is the field length as two binary Bytes with the name suffixed with "-LEN". Im-
mediately after is the the second element, which is the definition of the field itself as a character
string with a total length taken from Predict with the name suffixed with "-TXT".

Because Adabas returns the value of the field in a variable way, it is impossible to have a definition
of a field following the Long Alpha field in the record buffer.

For this reason the following restrictions hold:

■ the Long Alpha field may be generated only as the last element in the record buffer.
■ Only an elementary field is supported as a Long Alpha field (no MU or PE allowed).

Adabas Native SQL Reference Manual42

PROGRAMMING CONSIDERATIONS

4 SINGLE AND MULTIPLE-RECORD PROCESSING

■ Single-Record Processing ... 44
■ Multiple-Record Processing ... 45

43

AdabasNative SQLdata retrieval statements operate in one of twomodes: single-record processing
mode and multiple-record processing mode.

The READ ISN statement always operates in single-record mode. The Adabas Native SQL state-
ments in the following list can be used in either single-record processing or multiple-record pro-
cessing mode:

■ COMPARE
■ FIND
■ FIND COUPLED
■ HISTOGRAM
■ READ LOGICAL
■ READ PHYSICAL SEQUENCE
■ SORT.

Adabas Native SQL generates the appropriate data declarations and code for multiple-record
processing if the keyword FOR is present in the DECLARE clause of the statement (see list above).
If the FORkeyword is not coded or if theDECLARE clause is omitted,AdabasNative SQLgenerates
code for single-record processing.

This chapter covers the following topics:

Single-Record Processing

If single-record processing is to be used, theOPEN, FETCHandCLOSE statements are not required
and only the FIND, READ, etc., statement is required. Adabas Native SQL generates executable
code from this statement, which must therefore appear in the procedure division of COBOL pro-
grams. In FORTRAN, the statement must be included within the executable statements.

Single-record processing should be used if the user needs to access only one record from the file.

Example (single-record processing):

.

.

.
EXEC ADABAS

SELECT PERSON
FROM PERSONNEL
WHERE PERSONNEL-NUMBER = 180001

END-EXEC
DISPLAY NAME FIRST-NAME AGE SEX.

Adabas Native SQL Reference Manual44

SINGLE AND MULTIPLE-RECORD PROCESSING

In this example, the program uses the single-record processing method to display data from the
record located by the WHERE criterion.

Multiple-Record Processing

The OPEN, FETCH and CLOSE statements are used for multiple-record processing. The set of
records to be processed is determined using a COMPARE, FIND, HISTOGRAM, READ or SORT
statement, followed by an OPEN statement. The records are then processed one by one using the
FETCH statement, which will normally be coded in a loop. Finally, the CLOSE statement, which
releases the ISN list and other Adabas resources, must be issued if the records were located by a
FIND, COMPARE or SORT statement, i.e., if an ISN list was created.

It is the FETCH statement that actually reads each record from the database file and retrieves the
values in the fields specified in the SELECT clause of the COMPARE, FIND, HISTOGRAM, READ
or SORT statement. The OPEN, FETCH and CLOSE statements generate executable Adabas com-
mands, whereas the COMPARE, FIND, HISTOGRAM, READ or SORT statement merely sets up
parameter lists for later use.

The keyword FORmust be specified in the DECLARE clause of COMPARE, FIND,HISTOGRAM,
READ or SORT in multiple-record processing mode. Using the DECLARE clause, you define a
cursor that associates a 'cursor-name' with the statement. Once the cursor has been defined, it may
be referred to in the OPEN, FETCH and CLOSE statements. These statements have the following
syntax:

cursor-name is the name used in the FIND, READ, SORT, COMPARE or HISTOGRAM statement
that was previously declared. The cursor-name provides the link between the parameter-defining
statement (FIND, READ, SORT, COMPARE or HISTOGRAM) and the corresponding executable
statements (OPEN, FETCH and CLOSE).

45Adabas Native SQL Reference Manual

SINGLE AND MULTIPLE-RECORD PROCESSING

Example (multiple-record processing):

.

.

.

.
EXEC ADABAS

DECLARE PERS CURSOR FOR
SELECT PERSON
FROM PERSONNEL
WHERE NAME > = 'BROWN'

END-EXEC
.
.
.
.

EXEC ADABAS
OPEN PERS

END-EXEC
EXEC ADABAS

FETCH PERS
END-EXEC
PERFORM READ-PERSONNEL UNTIL ADACODE = 3.
EXEC ADABAS

CLOSE PERS
END-EXEC

.

.

.

.
READ-PERSONNEL.

DISPLAY NAME FIRST-NAME AGE SEX.
EXEC ADABAS

FETCH PERS
END-EXEC

Adabas Native SQL Reference Manual46

SINGLE AND MULTIPLE-RECORD PROCESSING

5 OVERVIEW OF STATEMENTS

■ Syntax .. 48
■ Overview of Adabas Native SQL Statements .. 51
■ Database Query Statements .. 51
■ Data Storage READ Statements ... 52
■ Associator READ Statement .. 53
■ Statements for Processing Multiple Records ... 54
■ Database Modification Statements .. 54
■ Logical Transaction Processing Statements .. 55
■ Checkpointing Statement .. 56
■ Other Adabas Native SQL Statements ... 56
■ Adabas Native SQL Clauses ... 57

47

This chapter covers the following topics:

Syntax

The Adabas Native SQL statements use the following syntax conventions:

■ Upper Case
■ Lower Case
■ Braces
■ Brackets
■ Ellipsis
■ Ellipsis Preceded by a Comma
■ Other Special Characters
■ Syntax Diagram for Adabas Native SQL Data Retrieval Statements
■ Syntax Diagram for statement-name

Upper Case

Words printed in upper case must be entered exactly as they appear in the definition. However,
if the initial part of an upper-case word is underlined, it may be abbreviated by entering only the
underlined portion.

Lower Case

Words or hyphenated terms printed in lower-case are either the names of further syntax definitions,
or else they are self-descriptivewords thatmust be replaced by a suitable substitution. For example,
the first term in the syntax definition shown below is statement-name, which is in turn described
in the next syntax definition; the word constant is self-descriptive and might be replaced by the
number 667.

Braces

Braces {} are used:

■ to enclose alternatives, which are either stacked vertically, or stacked horizontally and separated
by vertical bars. One of the alternatives must be coded. Default values that apply when a para-
meter is omitted are underlined.

■ to group terms together. Ellipsis (see below) following the closing brace applies to the entire
group, that is, to everything within the braces.

Adabas Native SQL Reference Manual48

OVERVIEW OF STATEMENTS

Brackets

Brackets [] indicate that the enclosed expression is optional.

Ellipsis

Ellipsis (a series of dots ...) after a term indicates that the termmay be repeated. If the ellipsis follows
a bracketed expression, the whole of the expression must be repeated. Ellipsis followed by a
number, for example ...4, indicates the maximum number of times that the term may be coded.
Example:

A...3

denotes any one of the following strings:

A
AA
AAA

Ellipsis Preceded by a Comma

Ellipsis preceded by a comma (,...) after a term indicates that the term may be repeated; if it is
repeated, the occurrencesmust be separated by commas. Ellipsis precededby a commaand followed
by a number, for example ,...3, indicates the maximum number of times that the term may be
coded. Example:

X,...3

denotes any one of the following strings:

X
X,X
X,X,X

Other Special Characters

Other special characters, for example comma, asterisk * or parentheses () must be coded exactly
as they appear in the definition.

49Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

Syntax Diagram for Adabas Native SQL Data Retrieval Statements

Adabas Native SQL Reference Manual50

OVERVIEW OF STATEMENTS

Syntax Diagram for statement-name

Overview of Adabas Native SQL Statements

This section describes briefly the function of each Adabas Native SQL statement.

Database Query Statements

Each of these statements produces a list containing the numbers of the database records (ISNs)
that satisfy the given retrieval criterion.

If you are only interested in the record whose number appears first in the list, then the database
query statement on its own will produce the list and then retrieve the data from this record.
However, more generally you will wish to process all of the records identified by the list.

The database query statement, which in this case must include the DECLARE cursor-name CURSOR
FOR clause, does not retrieve any data. It must be followed by the OPEN, FETCH and CLOSE
statements, which are described in section Statements for Processing Multiple Records.

ActionStatement

Produces an ISN list that is a logical combination of two ISN lists that have previously been
produced. The ISN list may include all records whose ISNs appear

COMPARE

■ in the first list AND in the second list
■ in the first list OR in the second list, or
■ in the first list BUT NOT in the second list.

If the keyword FOR is not coded in the DECLARE clause, this statement also reads data from
the record whose ISN is at the beginning of this list.

This statement generates the Adabas command S8 (Process ISN Lists).

51Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

ActionStatement

Produces an ISN list containing the ISNs of all records that satisfy the given retrieval criterion.
If required, the ISN list will be sorted so that the records to which it points can be retrieved

FIND

in ascending or descending sequence, ordered by the values in one, two or three descriptor
fields.

If the keyword FOR is not coded in the DECLARE clause, this statement also reads data from
the record whose ISN is at the beginning of this list.

This statement generates the Adabas command S1/4 (Find Records).

Finds the records in a secondary file that are coupled to a specified record in the primary file.
For example, having found a particular record in the PERSONNEL file (primary file), you

FIND
COUPLED

could use the FIND COUPLED statement to find all the records in the AUTOMOBILES file
(secondary file) that detail the cars owned by this employee. The PERSONNEL and
AUTOMOBILES files are coupled by the
PERSONNEL-NUMBER/OWNER-PERSONNEL-NUMBER fields.

If the keyword FOR is not coded in the DECLARE clause, this statement also reads data from
the record whose ISN is at the beginning of this list.

This statement generates the Adabas command S5 (Find Coupled).

Note that this statement is not available under VMS.

Sorts an ISN list that has been produced by a previousAdabasNative SQLFINDorCOMPARE
statement. The ISN list is sorted so that the records to which it points can be retrieved in

SORT

ascending or descending sequence, ordered by the values in one, two or three descriptor
fields.

If the keyword FOR is not coded in the DECLARE clause, this statement also reads data from
the record whose ISN is at the beginning of this list.

This statement generates the Adabas command S9 (Sort ISN List).

Data Storage READ Statements

These statements read specified data fields from the database. The READ ISN statement always
reads from a single record; the remaining statements can also read data from a single record but
they will normally be used in conjunction with the OPEN and FETCH statements to read from a
series of records.

Adabas Native SQL Reference Manual52

OVERVIEW OF STATEMENTS

ActionStatement

Reads data fields from a single record. The ISN of the record is specified by the
program.

READ ISN

This statement generates the Adabas command L1/4 (Read Record).

Reads data fields fromone ormore records. The records are read in logical sequence,
based on the ascending order of a given descriptor. The program may optionally

READ LOGICAL

specify a starting value for the descriptor. The user may request a Descending
option.

This statement generates the Adabas command L3/6 (Read Logical Sequence).

Reads data fields from one or more records. The records are read in the order in
which they are physically stored in the database.

READ PHYSICAL
SEQUENCE

This is the most efficient method of reading if an entire file is to be processed and
the record sequence is not important.

This statement generates the Adabas command L2/5 (Read Physical Sequence).

Associator READ Statement

This statement will normally be used with the DECLARE cursor-name CURSOR FOR clause and in
conjunction with the OPEN and FETCH statements in order to retrieve all descriptor values se-
quentially. The first FETCH statement will return the lowest descriptor value (and optionally the
number of records that contain this value), the second FETCH statement will return the next
descriptor value, and so forth.

ActionStatement

Reads from the Adabas Associator but does not read from Data Storage. It returns to the
user the values of a specified descriptor in ascending sequence. Optionally, it can also return

HISTOGRAM

the number of records that contain each descriptor value. The user may request that the
order of the values returned be in descending order.

This statement generates the Adabas command L9 (Read Descriptor Values).

53Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

Statements for Processing Multiple Records

As mentioned above, some of the Adabas Native SQL statements can be used to process multiple
records or descriptor values. This applies to the following:

■ statements that produce an ISN list (FIND, FIND COUPLED, SORT and COMPARE)
■ statements that initiate sequential reading (READLOGICALandREADPHYSICALSEQUENCE),
and

■ the HISTOGRAM statement, which initiates reading a sequence of descriptor values.

In each case, the records or descriptor values are actually read by a FETCH statement, which is
normally executed in a loop. The FETCH statement is preceded by the statement that initiates
processing and by the OPEN statement, both of which are executed once only. When as many re-
cords as desired have been processed, the program should issue a CLOSE statement to release the
ISN list.

ActionStatement

This statement must be issued after the statement that initiates reading and before the sequence
of FETCH statements that actually retrieve the data from the database.

OPEN

This is the statement that actually retrieves data from the database. Normally it will be executed
in a loop until the end-of-data response code is detected.

FETCH

Performs housekeeping tasks, such as releasing the ISN list, which is no longer required. This
statement must be issued after the FIND, FIND COUPLED, SORT and COMPARE statements.

CLOSE

Optionally, it may be issued after a READ LOGICAL, READ PHYSICAL SEQUENCE or
HISTOGRAM statement.

Database Modification Statements

These three statementsmodify the data held in the database. Normally, the DELETE andUPDATE
statementswill be preceded by other AdabasNative SQL statements that find the required record.
This record must be placed in hold status so that other programs cannot interfere until the modi-
fication is completed.

All of these statements can be disabled by setting the global parameter MODE NOUPD. This can
be useful when testing programs, and also for production programs which should not modify the
database in any way.

Adabas Native SQL Reference Manual54

OVERVIEW OF STATEMENTS

ActionStatement

Deletes a record from the database.DELETE

This statement generates the Adabas command E1 (Delete Record).

Inserts a new record in the database.INSERT

This statement generates the Adabas command N1/2 (Add Record).

Updates the values held in one or more fields of the specified record. This statement is also used
to update fields that were previously empty.

UPDATE

This statement generates the Adabas command A1 (Record Update).

Logical Transaction Processing Statements

A logical transaction is defined as the smallest unit of change that, when applied to the database,
leaves it in a logically consistent state from the point of view of the application. If processing were
to be interrupted when a logical transaction had been only partially applied to the database, there
would be a logical inconsistency; this state must be avoided at all costs. Adabas has been designed
so that these inconsistent states can never occur if the following three statements are used correctly.

ActionStatement

Marks the end of a logical transaction.COMMIT WORK

This statement generates the Adabas command ET (End Transaction).

Cancels all modifications made to the files which the user is accessing during the
user's current logical transaction.

ROLLBACKWORK

This statement generates the Adabas command BT (Backout Transaction).

The COMMITWORK, CHECKPOINT and DBCLOSE statements allow the program
to store additional data in a special data area. This facility would typically be used to

READ USERDATA

store information about the positions of input files, etc., so that processing can be
restarted in the event of a system failure. The READ USERDATA statement is used
to recover this information.

This statement generates the Adabas command RE (Read ET User Data).

55Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

Checkpointing Statement

This statement applies only to programs that update a database in exclusive mode.

ActionStatement

Generates a checkpoint entry in the Adabas checkpoint table.CHECKPOINT

This statement generates the Adabas command C1 (Write a Checkpoint).

Other Adabas Native SQL Statements

ActionStatement

This statement must be included as the first Adabas Native SQL statement in every
program, with the possible exception of the COPY and GENERATE statements. In Ada

BEGIN

programs, it must be coded in the data declaration part of the program; in COBOL
programs it must be coded in the DATA DIVISION; and in FORTRAN programs it must
be coded in the DATA DEFINITION area of the program.

Indicates the files to be accessed and the access mode (read-only or read and update).
Options are included to specify the processing mode, to specify the password to be used

CONNECT

to gain access to password-protected files, and to retrieve user data that were written by
a previous program (see also the description of the READ USERDATA statement above).

This statement generates the Adabas command OP (Open User Session).

Permits a file layout generated by Predict as Ada, COBOL, FORTRAN or PL/I code to be
copied into the program.

COPY

Flushes the Adabas buffer, so that database updates are written to the physical storage
medium. It can be used if desired after a sequence of logically related transactions. In

DBCLOSE

online applications, however, it should only be used at the end of a user session and not
at the end of each TP transaction program.

This statement generates the Adabas command CL (Close User Session).

The COPY statement copies a file layout that was generated using information contained
in the data dictionary into the program. If it has not already been generated using Predict's

GENERATE

facilities, or if the data dictionary information may have been changed since the layout
was generated, this statement can be used to generate the file layout from the latest
information and copy it into the program in a single step.

Places a record in hold status. Other programs cannot interfere with this record so long
as it is in hold status.

HOLD

A record must be put in hold status before it can be deleted or updated.

Adabas Native SQL Reference Manual56

OVERVIEW OF STATEMENTS

ActionStatement

See also the HOLD option, which can be used with all Adabas Native SQL data retrieval
statements except HISTOGRAM.

This statement generates the Adabas command HI (Hold Record).

See also the RELEASE ISN statement.

Releases an ISN list that was created by a COMPARE, FIND, FIND COUPLED or SORT
statement and retained because the SAVE option was coded. This statement will only be
required in exceptional circumstances.

RELEASE

This statement generates the Adabas command RC (Release Command ID).

Releases a record from hold status. The converse of the HOLD statement.RELEASE ISN

This statement generates the Adabas command RI (Release Record).

Restores the Adabas Native SQL environment after swapping. Used in conjunction with
the SAVE statement in CICS programs running in pseudo-conversational mode and in

RESTORE

UTM programs with multi-step transactions. Adabas must be running in get-next mode,
that is, you must not specify an ISN buffer (ISNSIZE parameter).

Makes the Adabas Native SQL environment available to the user, who should save it in
a safe place before swapping takes place. Used in conjunctionwith the RESTORE statement

SAVE

in CICS programs running in pseudo-conversational mode and in UTM programs with
multi-step transactions. Adabas must be running in get-next mode, that is, you must not
specify an ISN buffer (ISNSIZE parameter).

A debugging aid used to switch trace printing of all executed Adabas Native SQL
statements on and off.

TRACE

Controls generation of code that tests the response code after execution of Adabas Native
SQL statements and, if a non-zero response code occurs, branches to a user-written error
handling routine.

WHENEVER

Writes data to the Adabas data protection log. The data can subsequently be read using
an Adabas utility program. This statement will only be required in exceptional
circumstances.

WRITETOLOG

This statement generates the Adabas command C5 (Write User Data To Protection Log).

Adabas Native SQL Clauses

The following clauses are common to the data retrieval statements, i.e., COMPARE, FIND, FIND
COUPLED, HISTOGRAM, READ ISN, READ LOGICAL, READ PHYSICAL SEQUENCE and
SORT.

■ DECLARE Clause
■ SELECT Clause
■ FROM Clause
■ WHERE Clause

57Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

■ OPTIONS Clause
■ ORDER BY Clause
■ GROUP BY Clause

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name is used to generate theAdabas command-IDunless theDYNAMCID
option is specified in the OPTIONS parameter.

The cursor-name may be up to four characters long and cannot contain special characters such as
@, #, $ and %.

Note: In COBOL programs, all cursor-names should be exactly four characters long. Other-
wise, some compilers may issue warning messages.

If multiple records are to be processed, the DECLARE cursor-name CURSOR FOR construction must
be used. The keyword FOR indicates toAdabasNative SQL that the statement is used in conjunction
with OPEN and FETCH statements that appear later in the program quoting the same cursor-
name.

If only a single record is to be processed, the DECLARE clause may be omitted.

Adabas Native SQL Reference Manual58

OVERVIEW OF STATEMENTS

SELECT Clause

The SELECT clause indicates which fields are to be retrieved from the database in the file which
is specified in the FROMclause. All types of fieldsmay be selected,with the exception of redefined
fields andphonetic descriptors. Fields that are notmentioned in the SELECT clause are not included
in the record buffer structure, they are not read from theAdabas file and consequently they cannot
be referenced later in the program. The fields may be specified either by their full primary names
or by appropriate language-specific synonyms as defined in the data dictionary. See Synonyms
for more information.

If you intend to use language-specific synonyms in SELECT clauses and are running Predict 3.1,
invert a new superdescriptor in the FDIC file. This superdescriptor must have the 2-character
name SN and consist of the following parent fields:

SYNONYM-NAME (CL).

FILE-NAME (CC).

The message DESCRIPTOR SYNONYMwill appear in the Adabas Native SQL MESSAGES. The
message SYNONYMwill appear whether or not this superdescriptor is inverted.

If the SELECT clause is omitted, then no records are processed, but other functions such as search
may be performed.

The field expressions are used byAdabasNative SQLwhen generating the format buffer and record
buffer. The field names generated by Adabas Native SQL for the record buffer are generated from
the field-names as defined in the data dictionary, except that language-specific synonyms will be
used if they have been defined in the data dictionary. The prefix and suffix are added to the basic
field-name, invalid characters may be replaced by the 'validation character', and excess characters
may be deleted (truncated) if the name is too long. The field attributes, including format, length,
etc., are also taken from the data dictionary. The section Programming Considerations describes
the record buffer structure that AdabasNative SQL generates using the SELECT clause, the FROM
clause and the definitions stored in the data dictionary.

The name of the record buffer structure is the 'alias' specified in the FROM clause or, if no alias is
specified, the file name specified in the FROM clause.

If an asterisk is specified following the keyword SELECT, all the fields within the userview are
read.

59Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

Example:

SELECT *
FROM FINANCE

The structure of the Ada record buffer is as follows:

type CREDIT_CARDPERS is array (INTEGER range <>)
of STRING (1..0018);

type CREDIT_LIMITPERS is array (INTEGER range <>)
of STRING (1..0004);

type CURRENT_BALANCEPERS is array (INTEGER range <>)
of STRING (1..0004);

type OIL_CREDITPERS is array (INTEGER range <>)
of STRING (1..0007);

type INSURANCE_COMPANYPERS is array (INTEGER range <>,
INTEGER range <>)

of STRING (1..0025);
type POLICY_AMOUNTPERS is array (INTEGER range <>,

INTEGER range <>)
of STRING (1..0006);

type ON_VACPERS is array (INTEGER range <>)
of STRING (1..0001);

type RECORD_BUFPERS is
record

PERSONNEL_NUMBER : STRING (1..0008);
CREDIT_CARD : CREDIT_CARDPERS (1..0002);
CREDIT_LIMIT : CREDIT_LIMITPERS (1..0002);
CURRENT_BALANCE : CURRENT_BALANCEPERS (1..0002);
OIL_CREDIT : OIL_CREDITPERS (1..0010);
NET_WORTH : STRING (1..0008);
CREDIT_RATING : STRING (1..0002);
INSURANCE_COMPANY : INSURANCE_COMPANYPERS (1..0003,1..0004);
POLICY_AMOUNT : POLICY_AMOUNTPERS (1..0003,1..0004);
COLLEGE : STRING (1..0016);
ON_VAC : ON_VACPERS (1..0005);
INVESTMENT : STRING (1..0015);
SAVINGS : STRING (1..0007);
BANK : STRING (1..0020);
ISN : INTEGER;
QUANTITY : INTEGER;
RESPONSE_CODE : SHORT_INTEGER;

end record
FINANCE: RECORD_BUFPERS;

Note: This example shows a record buffer that was generated from an Adabas Native SQL
statement with the cursor-name 'PERS'. The periodic group fields are always generated
with STRUCT='N'.

Adabas Native SQL Reference Manual60

OVERVIEW OF STATEMENTS

The structure of the COBOL record buffer is as follows:

Note: The level-2 name generated for the record buffer includes the cursor-name, if one
was specified. The COBOL example below shows a record buffer that was generated from
an Adabas Native SQL statement without a cursor-name.

01 FINANCE.
02 RECORD-BUF-0-1.
03 PERSONNEL-NUMBER PIC 9(8).
03 G-MAJOR-CREDIT.
04 MAJOR-CREDIT OCCURS 2.
05 CREDIT-CARD PIC X(18).
05 CREDIT-LIMIT PIC 9(4).
05 CURRENT-BALANCE PIC 9(4).

03 OIL-CREDIT PIC X(7) OCCURS 10.
03 NET-WORTH PIC 9(8).
03 CREDIT-RATING PIC 9(2).
03 G-INSURANCE-POLICY-TYPES.
04 INSURANCE-POLICY-TYPES OCCURS 3.
05 INSURANCE-COMPANY PIC X(25) OCCURS 4.
05 POLICY-AMOUNT PIC 9(6) OCCURS 4.

03 COLLEGE PIC X(16).
03 G-VACATION.
04 VACATION OCCURS 5.
05 ON-VAC PIC X(1).

03 INVESTMENT PIC X(15).
03 SAVINGS PIC 9(7).
03 BANK PIC X(20).
02 ISN PIC 9(9) COMP.
02 QUANTITY PIC 9(9) COMP.
02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 8 PERBER
CHARACTER* 18 CCARD (00002)
CHARACTER* 4 CLIM (00002)
CHARACTER* 4 CBAL (00002)
CHARACTER* 52 MAJDIT
CHARACTER* 8 NETRTH
CHARACTER* 2 CREING
INTEGER* 2 CINPES
CHARACTER* 25 INCOM (00003 , 00004)
CHARACTER* 6 POLUNT(00003 , 00004)
CHARACTER* 372 INSPES
CHARACTER* 16 COLEGE
CHARACTER* 1 ONVAC (00005)
CHARACTER* 5 VACION
CHARACTER* 15 INVENT

61Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

CHARACTER* 7 SAVNGS
CHARACTER* 20 BANK
CHARACTER* 507 FINNCE

Notes:

1. The cursor is not shown for FORTRAN.

2. Synonyms are assumed to be defined in the data dictionary as shown in Appendix B and
truncation is assumed to occur in the middle of the word. (The maximum length of names is
operating-system dependent.)

3. The field FINNCE encompasses all other fields and is the equivalent of the record buffer in
COBOL and PL/I.

The structure of the PL/I record buffer is as follows:

Note: The level-2 name generated for the record buffer includes the cursor-name, if one
was specified. The PL/I example shows a record buffer that was generated from an Adabas
Native SQL statement with the cursor-name 'PERS'.

DCL 1 FINANCE,
2 RECORD_BUFPERS_1 UNAL,
3 PERSONNEL_NUMBER PIC '(7)99',
3 G_MAJOR_CREDIT,
4 MAJOR_CREDIT (2),
5 CREDIT_CARD CHAR (18),
5 CREDIT_LIMIT PIC '(3)99',
5 CURRENT_BALANCE PIC '(3)99',

3 OIL_CREDIT (10) CHAR (7),
3 NET_WORTH PIC '(7)99',
3 CREDIT_RATING PIC '(1)99',
3 G_INSURANCE_POLICY_TYPES,
4 INSURANCE_POLICY_TYPES (3),
5 INSURANCE_COMPANY (4) CHAR (25),
5 POLICY_AMOUNT (4) PIC '(5)99',

3 COLLEGE CHAR (16),
3 G_VACATION,
4 VACATION (5),
5 ON_VAC CHAR (1),

3 INVESTMENT CHAR (15),
3 SAVINGS PIC '(6)99',
3 BANK CHAR (20),

2 ISN FIXED BIN(31),
2 QUANTITY FIXED BIN(31),
2 RESPONSE_CODE FIXED BIN(15),
RECORD_BUFPERS CHAR(585) BASED (ADDR(RECORD_BUFPERS_1));

Adabas Native SQL Reference Manual62

OVERVIEW OF STATEMENTS

FROM Clause

The FROM clause specifies the file fromwhich data is to be retrieved. This clause is used together
with the SELECT clause to generate the record buffer (Ada, COBOL or PL/I) or the equivalent
FORTRANdata structure, and to control the retrieval of information from the database. The fields
specified in the SELECT clause refer only to the first file named in the FROM clause; however, the
retrieval criterion in theWHERE clause can refer to fields from amaximumof 5 physically-coupled
files, or a maximum of 16 soft-coupled files.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used. The alias, which should
be unique within the program (including linked modules), is required if two or more Adabas
Native SQL statements within the module refer to the same file. It can then be used as a qualifier
in subsequentAda, COBOLor PL/I statements thatwish to refer to the fields in the respective record
buffers. Note that the alias is not preceded by a comma.

Example:

SELECT NAME, CITY
FROM PERSONNEL

The record buffer has the name 'PERSONNEL'. Youmay refer to the variables in the record buffer
as:

PERSONNEL.NAME (Ada)
PERSONNEL.CITY (Ada)
NAME OF PERSONNEL (COBOL)
CITY OF PERSONNEL (COBOL)
NAME (FORTRAN)
CITY (FORTRAN)
PERSONNEL.NAME (PL/I)
PERSONNEL.CITY (PL/I)

If you use the alias option:

63Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

SELECT NAME
FROM PERSONNEL PERSON-ALIAS

then Adabas Native SQL generates a record buffer structure with the name 'PERSON_ALIAS'
(Ada or PL/I) or 'PERSON-ALIAS' (COBOL). You may refer to the variables in the record buffer
as:

PERSON_ALIAS.NAME (Ada)
PERSON_ALIAS.CITY (Ada)
NAME OF PERSON-ALIAS (COBOL)
CITY OF PERSON-ALIAS (COBOL)
NAME (FORTRAN)
CITY (FORTRAN)
PERSON_ALIAS.NAME (PL/I)
PERSON_ALIAS.CITY (PL/I)

Adabas Native SQL Reference Manual64

OVERVIEW OF STATEMENTS

WHERE Clause

The search-criterion specifies the criterion for selecting the records to be read by the retrieval
statement. Since individual statements use the search-criterion differently, it is explained for
each statement separately. Fields taken from files that are not specified in the FROM clause must
be qualified, for example, FILE.FIELD or ALIAS.FIELD.

Note: (forAda and FORTRANusers): Packed andunpackedfields are generated as character
fields, thus search values must include leading zeros in order to pass numeric values to an
alphanumeric field. For example, WHERE PERSONNEL-NUMBER = '00000105'.

Note: (for Ada users): Character constants (literals) used as search values must be padded
with leading spaces.

Special restrictions apply when referring to periodic groups, multiple-value fields and multiple-
value fields within periodic groups in WHERE clauses. See the respective sections on multiple
value fields for more information.

65Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

OPTIONS Clause

Note: Not all options apply to each retrieval statement.

AUTODBID Option

This option indicates to Adabas Native SQL that the database ID is to be taken from the data dic-
tionary. If the file is linked to more than one database, the database specified first will be used.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

Adabas Native SQL Reference Manual66

OVERVIEW OF STATEMENTS

CIPHER Option

This option must be specified when accessing a ciphered file.

The keyword CIPHER is followed by an '=' sign and the cipher key (cipher code), which may be
a constant of up to 8 characters or the name of a variable containing the cipher key. If the cipher
key is specified as a constant, it will appear in the program listings and its security may be com-
promised. The use of a variable whose value is read in at run-time is recommended. If the cipher
key is specified as the name of a variable, it must be preceded by a colon (':').

Great care should be taken to remember the cipher key used when updating a file. If you update
a file and subsequently forget the cipher key, the data can never be recovered from the file correctly.

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in Predict as Level-88 entries.

The value is taken from one of the following sources:

■ Local (higher priority): Use theCOND-NAMEoption for the current COMPARE, FIND,HISTO-
GRAM, INSERT, READ, SORT or UPDATE statement.

■ Global (lower priority): Use the COND-NAME clause of the globalOPTIONS parameter

This option can only be set if field With Cond. names in the PredictModify COBOLDefaults screen
is marked with an "X". See also Generate COBOL Copy Code in the Predict Administration Manual.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record is
in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running in
exclusive-control mode.

See the section HOLD Logic for more information.

67Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from Predict. If no index name
is defined in the data dictionary, the name of the multiple-value field or periodic group is used,
prefixed with 'I-'.

The value for this option is taken from one of the following sources:

■ Local (higher priority):Use the INDEXEDoption for the currentCOMPARE, FIND,HISTOGRAM,
INSERT, READ, SORT or UPDATE statement.

■ Global (lower priority): Use the INDEXED clause of the globalOPTIONS parameter.

This option can only be set if the field Indexed by in thePredict Modify COBOL Defaults screen
is marked with an "X". See also Generate COBOL Copy Code in the Predict Administration Manual.

ISN Option

The ISN option may be used with the READ PHYSICAL SEQUENCE and READ LOGICAL
statements. In the READ PHYSICAL SEQUENCE statement, it specifies the ISN of the first record
to be read. If a record with this ISN does not exist, the record with the next higher ISN will be
read. In the READ LOGICAL statement, the ISN option specifies the ISN of the first record to be
read from the set of records that satisfy the WHERE clause.

The parameter that follows the keyword 'ISN', namely value2, may be either a constant or the
name of a variable that contains the ISN. If value2 is a variable name, it must be immediately
preceded by a colon (':'), for example ':NAME'.

ISNSIZE Option

The ISNSIZE parameter defines themaximumnumber of ISNs that can be stored in the ISN buffer.
If the number of records that satisfy the selection criterion exceeds ISNSIZE, the excess ISNs are
stored by Adabas and retrieved automatically when required. This process is transparent to the
programmer.

If this option is not coded locally, that is, as an option in a COMPARE, FIND, FIND COUPLED
or SORT statement, the ISNSIZE defined in the global OPTIONS parameter (see) takes effect. If
neither a local nor a global ISNSIZE definition is coded, an ISN buffer is not allocated. This latter
mode must be used if the file is protected by the 'security by value' facility, or if the SAVE and
RESTORE statements are used in CICS or UTM programs.

A larger value for the ISNSIZEparametermay improve processing speed. See yourDBA for further
advice about selecting an appropriate value for this option.

Adabas Native SQL Reference Manual68

OVERVIEW OF STATEMENTS

MAXTIME Option

This option specifies the time limit for Adabas Sx commands.

Specify either a number or a variable containing a number. The default is defined with the para-
meter Maximum time for an Sx command on the Adabas Native SQL Defaults screen.

See sectionOP Command, paragraph Additions 4 in the Adabas Command Reference Manual for more
information..

PASSWORD Option

The keyword PASSWORD is followed by an '=' sign and then the password, which may be a
constant of up to 8 characters or the name of a variable containing the password.

Note: If the password contains special characters i.e. @#$%, it may not be specified as a
constant and a variable should be used.

The use of a variablewhose value is read in at run-time is recommended. If the password is specified
as the name of a variable, it must be immediately preceded by a colon (':').

Example: PASSWORD = :VAR

where VAR is the name of a variable containing the password.

This option must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless the password is specified
globally in the CONNECT statement. In this case, Adabas Native SQL will use this password in
all generatedAdabas commands unless it is overridden by a password specified in the PASSWORD
parameter of the OPTIONS clause for an individual statement.

PREFIX Option

The prefix is taken from one of the following sources:

■ Local (highest priority): Use the PREFIX option for the current COMPARE, FIND,HISTOGRAM,
INSERT, READ, SORT or UPDATE statement.

■ Global: Use the PREFIX clause of the globalOPTIONS parameter.
■ Predict (lowest priority): The current generation default for the respective language are taken
from the data dictionary.

The first two options can only be used if the Field name prefix field in the Predict Modify...De-
faults screen forAda, COBOL, FORTRANor PL/I ismarkedwith "X", indicating itmay bemodified
by the user. Otherwise the prefix value defined in the data dictionary cannot be overridden.

69Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

SAVE Option

Use this option if you need to retain the entire ISN list. The saved ISN list can be used later in
COMPARE, FIND and SORT statements. The saved ISN list is discarded when:

■ a further Adabas Native SQL statement that creates another ISN list with the same name (same
command-ID) is executed, or

■ an Adabas Native SQL 'CLOSE' or 'DBCLOSE' statement is executed, or
■ the non-activity time limit or transaction time limit is exceeded.

Under these circumstances, response code 9 is returnedwhen the next Adabas command is attemp-
ted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FINDCOUPLEDandSORT). If theCLOSE statement is not executed,
large amounts of storage will be occupied for the remainder of the Adabas session.

SEQUENCE Option

The SEQUENCE option is used only with the READ ISN statement.

If this option is coded, the record with the specified ISN or the next higher ISN is read. The ISN
of the record that was read is returned in the field 'ISN', which is appended to every record buffer
(see page). If the file does not contain a record having an ISN higher than the specified ISN, end-
of-file is signaled. Therefore, when using this option, the flag ADACODE (Ada, COBOL and PL/I)
or SQLCOD (FORTRAN) should be checked for end-of-file status.

If this option is not specified, the record with the specified ISN is read. If the file does not contain
a record having the specified ISN, an error is reported (response-code = 113). This causes the pro-
gram to terminate unless a user-written response code interpretation routine is provided.

See also description of the global parameter ABORT.

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded, all buffers generated by Adabas Native SQL will be defined
as static.

The value is taken from one of the following sources:

■ Local (higher priority): Use the STATIC option for the current COMPARE, FIND,HISTOGRAM,
INSERT, READ, SORT or UPDATE statement.

■ Global (lower priority): Use the STATIC clause of the globalOPTIONS parameter.

Adabas Native SQL Reference Manual70

OVERVIEW OF STATEMENTS

Note: This option can only be set if the field Static in the Predict Modify PL/I Defaults screen is
marked with an "X". See also Generate PL/I Include Code in the Predict Administration Manual.

SUFFIX Option

The suffix is taken from one of the following sources:

■ Local (highest priority): Use the SUFFIX option for the current COMPARE, FIND,HISTOGRAM,
INSERT, READ, SORT or UPDATE statement.

■ Global: Use the SUFFIX clause of the globalOPTIONS parameter.
■ Predict (lowest priority): The current generation default for the respective language is taken
from the data dictionary.

The first two options can only be used if the Field name suffix field in the Predict Modify...De-
faults screen forAda, COBOL, FORTRANor PL/I ismarkedwith "X", indicating itmay bemodified
by the user. Otherwise the suffix value defined in the data dictionary cannot be overridden.

71Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

ORDER BY Clause

TheORDERBY clause specifies the order inwhich the records are retrieved. It is used in the FIND,
HISTOGRAM, READ LOGICAL and SORT statements.

In the FINDand SORT statements, the ISN listmay be sorted on up to three descriptors in ascending
or descending sequence. In the READ LOGICAL statement, this clause specifies one descriptor
that determines the logical sequence in which the records are to be read.

A descriptor used in an ORDER BY clause may not be a member of a periodic group, nor may it
be a phonetic descriptor.

The keywordDESCENDING,whichmay be abbreviated to DESC, specifies descending sequence,
otherwise ascending sequence is assumed as default.

Adabas Native SQL Reference Manual72

OVERVIEW OF STATEMENTS

GROUP BY Clause

The GROUP BY clause is used only in the HISTOGRAM statement. It specifies the descriptor for
which the values are to be retrieved. If the 'WHERE' clause is coded, the field used in the GROUP
clause must be the same as the field used in the WHERE clause.

73Adabas Native SQL Reference Manual

OVERVIEW OF STATEMENTS

74

6 ADABAS NATIVE SQL STATEMENTS

■ The BEGIN Statement .. 76
■ The CHECKPOINT Statement ... 77
■ The CLOSE Statement ... 78
■ The COMMIT WORK Statement ... 122
■ The COMPARE Statement .. 81
■ The CONNECT Statement .. 91
■ The COPY Statement ... 101
■ The DBCLOSE Statement ... 102
■ The DELETE Statement .. 105
■ The FETCH Statement ... 110
■ The FIND Statement .. 111
■ The FIND COUPLED Statement ... 129
■ The GENERATE Statement ... 139
■ The HISTOGRAM Statement ... 140
■ The HOLD Statement ... 150
■ The INSERT Statement .. 152
■ The OPEN Statement ... 161
■ The READ ISN Statement ... 162
■ The READ LOGICAL Statement ... 171
■ The READ PHYSICAL SEQUENCE Statement .. 237
■ The READ USERDATA Statement .. 191
■ The RELEASE Statement ... 193
■ The RELEASE ISN Statement .. 194
■ The RESTORE Statement ... 195
■ The ROLLBACK WORK Statement ... 196
■ The SAVE Statement .. 254
■ The SORT Statement ... 200
■ The TRACE Statement ... 211
■ The UPDATE Statement ... 212
■ The WHENEVER Statement .. 224
■ The WRITE TO LOG Statement .. 225

75

This chapter covers the following topics:

The BEGIN Statement

This statement must appear in every program that uses Adabas Native SQL statements. The only
Adabas Native SQL statements allowed to precede this statement are COPY and GENERATE.

■ InAdaprograms, the BEGIN statementmust be coded in the data declaration part of the program.
■ In COBOL programs it must be coded in the DATA DIVISION.
■ In FORTRAN programs it must be coded in the DATA DEFINITION area of the program.

Adabas Native SQL generates Adabas control blocks, format buffers, search buffers, value buffers
and other miscellaneous information in response to the BEGIN DECLARE SECTION statement.

Adabas Native SQL Reference Manual76

ADABAS NATIVE SQL STATEMENTS

The CHECKPOINT Statement

TheCHECKPOINT statement is used by update programs that issue checkpoints. It is only applic-
able to programs that run in exclusive file control mode. One option is available:

■ USER

USER

For user checkpoints made in exclusive file control mode. An Adabas C1 command is generated.

value1 is a constant of 4 characters identifying the checkpoint code or the name of a variable
containing the checkpoint code. If value1 is a variable name, it must be preceded by a colon (':').

Examples:

EXEC ADABAS
CHECKPOINT USER = 'CK01'

END-EXEC

EXEC ADABAS
CHECKPOINT USER = :CURRENT-CKPT

END-EXEC

77Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The CLOSE Statement

This statement is part of the OPEN/FETCH/CLOSE sequence that is used for processing multiple
records. See section 3 for further details.

The CLOSE statement must be used in conjunction with the COMPARE, FIND, FIND COUPLED
and SORT statements, that is, with those statements that generate an ISN list. It may be used with
the HISTOGRAM, READ LOGICAL and READ PHYSICAL SEQUENCE statements, but its use
following these statements is not mandatory.

The CLOSE statement releases various Adabas resources, and it also releases the command-ID
from the ISN list table. This makes it impossible to refer to the records after the CLOSE statement
has been executed. No more FETCH statements can be executed after the CLOSE has taken place.

This statement generates an Adabas RC command.

Adabas Native SQL Reference Manual78

ADABAS NATIVE SQL STATEMENTS

The COMMIT WORK Statement

The COMMIT WORK statement is used to indicate the end of a logical transaction. It should be
issued by ET mode users whenever the program has completed the processing of one logical
transaction. Failure to do this may lead to an excessively large hold queue in the Adabas work file
and eventually to hold queue overflow.

Should the application program ABEND, the status of the database at the time when the last
COMMITWORKwas issuedwill automatically be restoredwhenAdabas is restarted (autobackout).

An Adabas ET (end-of-transaction) command is generated.

79Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

USERDATA Clause

The user maywrite data to the Adabas system file using the 'USERDATA = value' clause. The data
can be retrieved using the CONNECT and READUSERDATA statements. value can be a constant
enclosed in apostrophes or the name of a variable containing the user data. If value is a variable
name, it must be immediately preceded by a colon (':'). See the examples below.

If the USERDATA clause is used, a CONNECT statement with a valid user-ID must have been
executed. The user-ID that was specified in the CONNECT statement is associated with the user
data, and itmust be quotedwhen recovering the user datawith a subsequent CONNECTor READ
USERDATA statement.

This facility can be used to record information required when performing a restart, for example
the positions of files that are being processed sequentially.

The length of the user data, i.e., the number of characters to be written, must not exceed the limit
specified in the USERDATA clause of the globalOPTIONS parameter.

Examples:

EXEC ADABAS
COMMIT WORK

USERDATA = :USERVAR
END-EXEC

EXEC ADABAS
COMMIT WORK

USERDATA = 'TEST1234'
END-EXEC

Adabas Native SQL Reference Manual80

ADABAS NATIVE SQL STATEMENTS

The COMPARE Statement

TheCOMPARE statement performs logical processing on two ISN lists thatwere previously created
using FIND, FIND COUPLED or COMPARE statements with the SAVE option. It can compute
the intersection (logical AND) or union (logical OR) of two ISN lists, or the set of ISNs that are in
one list but not in the other (logical AND NOT).

The two ISN lists to be compared must relate to the same file, and they must be in ascending ISN
sequence. Therefore the ORDER BY option is not permitted in the FIND statement that created
the ISN lists to be compared.

The ISN lists to be compared must have been created by Adabas Native SQL statements with the
SAVEoption. They should be releasedwith theCLOSE statementwhen they are no longer required.

81Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

In general, the COMPARE statement will return a list containing the ISNs of many records.

If more than one record is to be processed, the COMPARE statement must contain the DECLARE
cursor-nameCURSORFOR clause and itmust be followed by anOPEN/FETCH/CLOSE sequence
as described in chapter [2004-07-02 tbd]. The fields specified in the SELECT clause are available
after execution of the FETCH statement.

If only the recordwhose ISN is at the head of the resulting ISN list is to be processed, theDECLARE
clause may be omitted and the fields specified in the SELECT clause are available after execution
of the COMPARE statement. In this case Adabas Native SQL generates executable code for the
COMPARE statement,whichmust therefore appear in the procedure division inCOBOLprograms.

An Adabas S8 command is generated.

Adabas Native SQL Reference Manual82

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the 'DECLARE cursor-name CURSOR FOR' construction
must be used. The keyword 'FOR' indicates to Adabas Native SQL that the statement is used in
conjunctionwithOPEN and FETCH statements that appear later in the program quoting the same
cursor-name. If only a single record is to be processed, the DECLARE clause may be omitted.

83Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

SELECT Clause

The SELECT clause specifies which fields are to be retrieved from the database. All types of fields
may be selected, with the exception of phonetic descriptors. The fields must be specified by their
full names as defined in the data dictionary.

If an asterisk is specified following the keyword 'SELECT', all the fields within the userview are
read.

See also the previous discussion on the SELECT clause for more information.

Adabas Native SQL Reference Manual84

ADABAS NATIVE SQL STATEMENTS

FROM Clause

The FROM clause specifies the file from which data is to be retrieved. It is used together with the
SELECT clause to generate the record buffer and to control the retrieval of information from the
database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used.

See also the previous discussion on the FROM clause for more information.

85Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

The WHERE clause is used to specify the cursor names defined in the FIND or COMPARE state-
ments that created the ISN lists. Both of thes statements should have the SAVE option.

The COMPARE statement can be used to perform the following logical operations:

AND The resulting ISNs will contain those ISNs that are present in both ISN lists.

OR The resulting ISNs will contain those ISNs that are present in either the first ISN list or the
second ISN list or both.

AND NOT The resulting ISN list will contain those ISNs that are present in the first ISN list
(identified by cursor-name1) but not present in the second ISN list (identified by cursor-name2).

Adabas Native SQL Reference Manual86

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option indicates
to Adabas Native SQL that the database ID is to be taken from the data dictionary. If the file is
linked to more than one database, an error message will be issued.

The AUTODBID option and the HOLD option may not be used together. This implies to Adabas
Native SQL that you are attempting to update a database other than your default database. Also,
AUTODBID and DBID may not be used together.

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See also the previous discussion
on the CIPHER option for more information.

87Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes as level-88 entries the condition names defined in Predict.

If specified here, any value specified with the global parameterOPTIONSwill be overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an "X" if
you want to specify this option. See also the previous discussion on the COND-NAME option
for more information.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

The DBID option and the HOLD option may not be used together. This implies to Adabas Native
SQL that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record is
in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running in
exclusive-control mode.

See HOLD Logic for more information.

The HOLD option may not be used together with the AUTODBID, AUTODBID-ALL or DBID
options. This implies to Adabas Native SQL that you are attempting to update a database other
than your default database.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from the Predict additional
field attribute 3GL specification, Indexed by. If no index name is specified here, the name of
the multiple-value field or periodic group is used, prefixed with 'I-'.

Any specification here will override any setting of the global parameterOPTIONS.

Adabas Native SQL Reference Manual88

ADABAS NATIVE SQL STATEMENTS

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an "X" if you
want to specify this option. See also the previous discussion on the INDEXEDoption and section
Generate COBOL Copy Code in the Predict Administration Manual for more information.

ISNSIZE Option

The ISNSIZE parameter defines themaximumnumber of ISNs that can be stored in the ISN buffer.
If the number of records that satisfy the selection criterion exceeds ISNSIZE, the excess ISNs are
stored by Adabas and retrieved automatically when required. This process is transparent to the
programmer. See also the previous discussion on the ISNSIZE option for more information.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
password clause of the CONNECT statement .

See also the discussion on security options for more information.

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See also the previous discussion on the PREFIX option for more in-
formation.

SAVE Option

Use this option if you need to retain the entire ISN list. The saved ISN list can be used later in
COMPARE, FIND and SORT statements. The saved ISN list is discarded when:

■ A further Adabas Native SQL statement that creates another ISN list with the same name (same
command-ID) is executed, or:

■ An Adabas Native SQL CLOSE or DBCLOSE statement is executed, or:
■ The non-activity time limit or transaction time limit is exceeded.

Under these circumstances, response code 9 is returnedwhen the next Adabas command is attemp-
ted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FINDCOUPLEDandSORT). If theCLOSE statement is not executed,
large amounts of storage will be occupied for the remainder of the Adabas session.

89Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see page).

Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See also the previous discussion on the STATIC option formore information.

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See also the previous discussion on the SUFFIX option for more in-
formation.

Adabas Native SQL Reference Manual90

ADABAS NATIVE SQL STATEMENTS

The CONNECT Statement

The CONNECT statement is used to indicate the beginning of a user session and to list the files
that will be used and themodes in which they are to be opened. The CONNECT statement should
not be issued bymodules called from themain program. If a CONNECT statement is used, it must
be in the main program and it must include not only the files used by the main program but also
those used by all modules called from the main program. It must be the first executable Adabas
Native SQL statement in the program, with the possible exception of COPY and GENERATE
statements (compare with the BEGIN statement).

If the CONNECT statement is omitted, the program will run in ET mode. Any files can be read
and updated, with only the customary password and cipher restrictions on access.

If the program is to run in exclusive-control mode or if files are to be accessed in access-onlymode
(all attempts to modify the database will be rejected), then the CONNECT statement must be in-
cluded.

91Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

If the Adabas user session is still active when the CONNECT statement is issued (from a previous
program that was not terminated correctly with the DBCLOSE statement), a ROLLBACKWORK
will be performed and Response Code 9 is returned.

This statement generates an Adabas OP (open) command.

Adabas Native SQL Reference Manual92

ADABAS NATIVE SQL STATEMENTS

USERID Clause

This clause specifies the user-ID for the user session. A user-ID must be provided if you intend to
store and/or read user data and you require this data to be available during a subsequent user
session or Adabas session (see also the CHECKPOINT, COMMIT WORK, DBCLOSE, READ
USERDATA and WRITE TO LOG statements). The value provided for the user-ID should be
unique for this user (that is, it should not be used by any other user). Response Code 48 will be
returned if the user-ID is already in use.

The first character must be an upper-case letter or a digit. useridmay be a constant of up to 8
characters, or the name of a variable containing the user-ID. If userid is a variable name, it must
be immediately preceded by a colon (':'), for example ':NAME'.

Note: If userid is a constant, it must be enclosed in single quotes.

93Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

Password Clause

Youmay, if you wish, specify the password only once in your program, in the PASSWORD clause
of the CONNECT statement. Adabas Native SQLwill pass this password to all generated Adabas
commands.

If you also code the PASSWORDoption in anAdabasNative SQL statement, the local specification
overrides the global specification in the CONNECT statement for that statement only.

passwordmay be a constant of up to 8 characters or the name of a variable containing the password.
If password is a variable name, it must be preceded by a colon (':') for example ':SECRET'.

Adabas Native SQL Reference Manual94

ADABAS NATIVE SQL STATEMENTS

ACC Clause

This is a list of the names of the Adabas files to be accessed by the program in access-only (read-
only) mode. Any attempt to update a file opened in access-only mode or to add or delete records
will be rejected (response-code=19).

If this clause is present, all files to be processed by the program must be listed in the CONNECT
statement. An attempt to read a file that was not specified will cause an error (response code=17).

Example:

EXEC ADABAS
CONNECT ACC = PERSONNEL, AUTOMOBILES, FINANCE

END-EXEC

This program uses the files PERSONNEL, AUTOMOBILES and FINANCE in access-only mode.

Adabas Native SQL automatically adds the ABEND file to the ACC list so that the error texts
corresponding to non-zero response codes can be retrieved from it as required by the response
code interpretation routine. The default is UPD.

95Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

UPD and EXU Clauses

All files updated by the program should be specified in the CONNECT statement. An attempt to
update a file that is not specified in theCONNECT statementwill cause an error (response code=17).

There are two types of update programs:

ET-mode: These are programs that can update files in parallel with other programs updating the
same files. Programs that run in ET mode must put the required record in hold status before up-
dating or deleting it, and must issue the COMMIT WORK statement at the end of each logical
transaction. This mode is used for online update programs.

Exclusivemode: These are programs that have exclusive use of the selected files. During the entire
execution time, other programs are prevented from updating these files.

Thus, one or more of the following possibilities may be specified:

■ 'UPD =' followed by a list of file names, for programs that run in ET mode. The application
program should check the response-code after eachAdabasNative SQL statement that generates
one or more Adabas commands for the value 9, which would mean that an automatic backout
has occurred and the program should restart the transaction from the beginning;

■ 'EXU =' followed by a list of file names, for EXCLUSIVE mode;

Further information about exclusive control updatingmaybe found in theAdabas CommandReference
Manual and the Adabas DBA Reference Manual. Consult your DBA before writing programs that
run in exclusive file control mode or file cluster mode.

Examples:

EXEC ADABAS
CONNECT 'MEMUNE'

ACC = PERSONNEL UPD = AUTOMOBILES
END-EXEC

The program uses the PERSONNEL file in access-only mode and updates the AUTOMOBILES
file in ET-logic mode.

Adabas Native SQL Reference Manual96

ADABAS NATIVE SQL STATEMENTS

EXEC ADABAS
CONNECT 'MEMUNE'

UPD = PERSONNEL EXU=PERSONNEL
END-EXEC

The program uses the PERSONNEL file in access-only mode and updates the PERSONNEL file
in ET-logic mode.

97Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

USERDATA Clause

This clause enables the user to retrieve the user data stored in the Adabas system file by a
CHECKPOINT, COMMIT WORK or DBCLOSE statement.

The last USERDATA record thatwas storedwith aCHECKPOINT, COMMITWORKorDBCLOSE
statement is read into var. var must be preceded by a colon (':'), for example ':NAME'.

This option may only be used if the user specified the same user-ID for the current user session
and also for the session during which the USERDATA were stored.

Adabas Native SQL Reference Manual98

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

Note: Default values for some values are specified in the Predict Modify Adabas Native
SQL Defaults screen.

NORESTRICTED option

If this option is used, the Adabas OPEN command will be generated without the RESTRICTED
option, so fileswhich are not specified in CONNECTmay be added later to theAdabas user queue
element.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

Note: Unless using the AUTODBID-ATM global option , only read or search access is per-
mitted if the DBID option is used; the INSERT, UPDATE and DELETE statements must not
be used. One CONNECT statement must be issued for each database to be accessed.

99Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

MAXISN Option

This option specifies the maximum number of ISNs resulting from the execution of Sx commands
that Adabas can store internally in its ISN table. Increasing the default setting may reduce access
to the Adabas work file.

MAXHOLD Option

This option specifies the maximum number of records that the user may have in hold status at
any time.

MAXCID Option

This option specifies the maximum number of Command IDs that may be active for the user at
the same time.

MAXTIME Option

This option specifies the time limit for the execution of Sx commands.

The programmer should consultwith theDBAabout the systemdefault values for these parameters
before changing them. For further details, see the Adabas Command Reference Manual, section OP
Command, paragraph Additions 4.

TT Option

This option may be used to specify a transaction time limit.

TNA Option

This option may be used to specify a non-activity time limit.

ACODE option

This option allows for providing the encoding key for "A" format fields during the user session.

WCODE option

This option allows for providing the encoding key for "W" format fields during the user session.

Adabas Native SQL Reference Manual100

ADABAS NATIVE SQL STATEMENTS

The COPY Statement

Adabas Native SQL supports the COPY statement as described in the chapter The Preprocessor of
thePredict AdministrationManual. A file layout that has been generated asAda, COBOL, FORTRAN
or PL/I code by Predict can be copied into the program by means of this statement.

The file-namemust always be specified. It is the name of the file as defined in the data dictionary.

The member-namemust be specified if more than one file layout has been generated for this file.

The file-name and member-name can be specified as positional parameters (see [1] above) or as
keyword parameters (see [2] above).

101Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The DBCLOSE Statement

The DBCLOSE statement is used to terminate a user session. All Adabas resources are released.

This statement may be issued at the end of the main program. It should not be issued by modules
called by a main program, nor should it be issued at the end of a TP transaction program unless
this coincides with the end of the user session.

Adabas Native SQL Reference Manual102

ADABAS NATIVE SQL STATEMENTS

USERDATA Clause

The usermay store user data in the Adabas system file by including the 'USERDATA = var' clause.
The user data can be retrieved by a subsequent CONNECT or READ USERDATA statement. var
is the name of the variable containing the user data. The variable name must be immediately
preceded by a colon (':'), for example 'USERDATA = :NAME'. The length of the user data, that is
the number of characters to be written, must not exceed the limit specified in the USERDATA
clause of the globalOPTIONS parameter.

This statement generates an Adabas CL (close) command.

Example:

EXEC ADABAS
DBCLOSE

USERDATA = :USERVAR
END-EXEC

103Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

DBID Option

This optionmay be used if the program has accessedmore than one database. The database-name
must be defined in the data dictionary, including the file or files that have been accessed. One
DBCLOSE statement should be issued per database.

Adabas Native SQL Reference Manual104

ADABAS NATIVE SQL STATEMENTS

The DELETE Statement

The DELETE statement deletes a record from the specified file. The record to be deleted must be
retrieved by the FIND statement or one of the READ statements before issuing the DELETE
statement. The record must be in hold status unless the program is running in EXUmode (see the
CONNECT statement). A record can be 'held' either by specifying the 'HOLD' option in the state-
ment that reads it, or by issuing a separate HOLD statement. If the record is not in hold status, it
will implicitly be 'held'.

When the logical transaction has been completed, a COMMITWORK statement should be issued.
One of the effects of this statement is to release records that are in hold status.

This statement generates an Adabas E1 command.

105Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

The cursor-name may be up to four characters long. The DECLARE clause will not normally be
required, but it may be used if desired to define the Adabas command ID.

Note: This clause should not be used if the WHERE CURRENT OF clause is used.

Adabas Native SQL Reference Manual106

ADABAS NATIVE SQL STATEMENTS

FROM Clause

file1 is the Adabas file name or view name, as defined in the data dictionary, of the file fromwhich
the record is to be deleted. If the same file appears in another statement, an alias should be used.

107Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

The WHERE clause is used to specify the ISN of the record to be deleted.

In order to delete a recordwhose ISN is explicitly known, the 'WHERE ISN = value' option should
be used. valuemay be a constant or the name of a variable containing the ISN. If value is a variable
name, it must be immediately preceded by a colon (':'), for example ':NAME'. The colon must not
be coded following the '=' sign if value is a numeric constant, for example 'WHERE ISN = 1234'.

The option 'WHERE CURRENT OF cursor-name1' should be coded in order to delete a record
found by a previousAdabasNative SQL statement. cursor-name1 is the name of the cursor defined
in that statement.

Adabas Native SQL Reference Manual108

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement. See also the previous discussion on this option for more information.

CIPHER Option

The cipher key must be specified when accessing a ciphered file.

See also the previous discussion on this option for more information.

109Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The FETCH Statement

This statement is part of the OPEN/FETCH/CLOSE sequence that is used for processing multiple
records. SeeMultiple-Record Processing for more information.

The FETCH statement reads the data from the file into the record buffer. An OPEN statement
must always be issued before the first FETCH statement can be executed when using multiple-
record processing. Each successive FETCH statement automatically reads the next record (or de-
livers the next descriptor value in the case of the HISTOGRAM statement), until all the records
have been passed to the user program. When all records have been read, an end-of-file condition
is encountered and the flag ADACODE is set to 3.

Adabas Native SQL Reference Manual110

ADABAS NATIVE SQL STATEMENTS

The FIND Statement

The FIND statement performs a retrieval query against a database file, selecting the record or re-
cords specified by the search criterion in the WHERE clause. The keyword 'FIND' may optionally
be omitted.

This statement returns either a list of the ISNs of the records that satisfy the search criterion, or an
'end-of-file' indication in the variable ADACODE (Ada, COBOLor PL/I) or SQLCOD (FORTRAN),
indicating that no records satisfied the search criterion.

111Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

In general, the FIND statement will return a list containing the ISNs of many records.

If all of the records found by the FIND statement are to be processed, then the FIND statement
must include the 'DECLARE cursor-name CURSOR FOR' clause and it must be followed by an
OPEN/FETCH/CLOSE sequence as described previously. The fields specified in the SELECT
clause are available after execution of the FETCH statement.

If only the first of these records is to be processed, then the DECLARE clause may be omitted and
the fields specified in the SELECT clause are available after execution of the FIND statement. In
this case, ADABAS Native SQL generates executable code for the FIND statement, which must
therefore appear in the procedure division in COBOL programs.

The FIND statement can only retrieve data from the first file (main file) named in the FROM-clause,
although the search criterion can include descriptor fields taken fromup to five physically-coupled
or 16 soft-coupled files (except in the case of VMS which does not support coupled files). The
coupling relationships must be defined in PREDICT. If data fields are to be retrieved not from the
main file but from a coupled file, the FINDCOUPLED statementmust be used in conjunctionwith
the FIND statement.

The FIND statement causes an ADABAS S1/S4 command to be generated, or an S2 command if
the 'ORDER BY' clause is coded.

Adabas Native SQL Reference Manual112

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the 'DECLARE cursor-name CURSOR FOR' construction
must be used. The keyword 'FOR' indicates to ADABAS Native SQL that the statement is used in
conjunctionwithOPEN and FETCH statements that appear later in the program quoting the same
cursor-name. If only a single record is to be processed, the DECLARE clause may be omitted.

See also the previous discussion on this clause for more information.

113Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

SELECT Clause

The SELECT clause specifies which fields are to be retrieved from the database. All types of fields
may be selected, with the exception of phonetic descriptors. The fields must be specified by their
full names as defined in the data dictionary.

If the SELECT clause is omitted, then no records are processed, but other functions such as search
may be performed.

If an asterisk is specified following the keyword 'SELECT', all the fields within the userview are
read.

See also the previous discussion on this clause for more information.

Adabas Native SQL Reference Manual114

ADABAS NATIVE SQL STATEMENTS

FROM Clause

The FROM clause specifies the file or files that contain the fields used in the search criterion. It is
also used, in conjunction with the SELECT clause, to generate the record buffer and to control the
retrieval of information from the database.

file is theADABASfile name or viewname as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used.

In the FIND statement, up to 5 physically-coupled or 16 soft-coupled files may be specified in the
FROM clause. This facility is used if the search criterion includes fields taken frommore than one
file. Every file containing fields used in the search criterion must be listed in the FROM clause.
Data can only be retrieved from the first file (main file) whose name directly follows the keyword
'FROM'.

The second and subsequent files listed in the FIND statement must be physically coupled to the
main file. Note that the names of the coupled files are separated by commas, but the alias is not
preceded by a comma.

See also the previous discussion on this clause for more information.

Note: In VMS only one file can be specified in the FROM clause, because coupled files are
not supported.

115Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

TheWHERE clause identifies the set of records to be selected.Only database fields that are defined
as descriptors, subdescriptors, superdescriptors, hyperdescriptors or phonetic descriptorsmay be
used to form the search-criterion. In ADABAS Version 5, non-descriptor fields may be used, if the
NONDE indication in the ADABAS Native SQL DDA allows it.

The search-criterion is made up of descriptors, logical operators and values, according to the type
of selection relevant to the application.

Adabas Native SQL Reference Manual116

ADABAS NATIVE SQL STATEMENTS

search-criterion

117Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

search-expression

Adabas Native SQL Reference Manual118

ADABAS NATIVE SQL STATEMENTS

descriptor

119Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

comp

Adabas Native SQL Reference Manual120

ADABAS NATIVE SQL STATEMENTS

exception

de1 is the name of the descriptor to be used in the search expression. The name must refer to a
descriptor, subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor. de1 is a
descriptor in the main file, that is, the file whose name appears first in the FROM clause, directly
following the keyword.

The second construct, file.de2, shows the name of a descriptor (de2) qualified by the filename
(file). The qualifier is required if the descriptor is in a coupled file, i.e., is not in the main file.

de3 (i) is a reference to a specific occurrence of a descriptorwhich is a field in a periodic group.

file1.de1 = file2.de2

This construction is used to connect two files via the soft coupling option of Adabas 5. The rela-
tionship should exist in Predict.

Example:

EXEC ADABAS
FIND
SELECT *
FROM PERSONNEL,AUTOMOBILES
WHERE NAME = 'SMITH' AND AUTOMOBILES.MAKE = 'FORD'

END-EXEC

In this example, NAME is a descriptor field in the main file PERSONNEL, whilst MAKE is a
descriptor field in the file AUTOMOBILES which is coupled to the main file.

value is the descriptor value that is to be sought. value can be either a constant or the name of a
variable. In the latter case, the name must be immediately preceded by a colon (':'), for example
':NAME'.

121Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The BETWEEN option indicates that any record in which the value of the specified descriptor lies
between value1 and value2will satisfy the search expression. value1 contains the lower limit of
the range, and value2 contains the upper limit of the range.

The NOT = option is used to exclude a specified value of the descriptor from a previous range
(given in the BETWEEN option). value3must lie between value1 and value2 of the preceding
BETWEEN option.

The NOT BETWEEN option is used to exclude a specified range of values from a previous range
(given in the BETWEEN option). value3 and value4must lie between value1 and value2 of the
preceding BETWEEN option.

The IN option is used when the user wishes to select records in which a descriptor has any one of
a number of values. The search expression is satisfied if the descriptor has any of the values specified
in the list.

The search expression may also be a cursor-name referring to another FIND statement in which
the 'SAVE ISN-list' option was used. The search expression denotes the ISN list produced by the
previous FIND statement. Records can be selected from this ISN list, so the search can be refined,
by combining the SETID option with other search expressions.

Adabas Native SQL Reference Manual122

ADABAS NATIVE SQL STATEMENTS

This search expressionwill find all records where this descriptor has a relational NULL value (has
no value at all).

This search expression will find all records where this descriptor has a value.

Note: The order of evaluation of the operators within the Adabas Search Algorithm is:

1. Evaluate the range of values and OR between values of the same descriptor.

2. Evaluate the AND operator.

3. Evaluate the new Logical OR operator (the Logical operator between different descriptors and
search criteria).

Examples of Search Criteria

AGE = 27
AGE = 27 AND CITY = 'NY'
AGE BETWEEN 25 AND 35
CITY IN ('NY', 'WA', :CITA)
AGE BETWEEN 18 AND 21 OR AGE BETWEEN 65 AND 120
AGE BETWEEN :XAGE AND :YAGE AND AGE > = 18
AGE > 27 AND SETID = 'PERS'
SETID = 'PER1' AND SETID = 'PER2'
AGE BETWEEN 18 AND 30 AND AGE NOT BETWEEN 24 AND 26
AUTOMOBILES.MAKE = 'FORD'
AGE = 30 AND AUTOMOBILES.MAKE = 'FORD'
PERSONNEL.PERSONNEL_NUMBER = AUTOMOBILES.OWNER_PERSONNEL_NUMBER AND ...

123Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option indicates
to Adabas Native SQL that the database ID is to be taken from the data dictionary. If the file is
linked to more than one database, an error message will be issued.

The AUTODBID option and the HOLD option may not be used together. This implies to Adabas
Native SQL that you are attempting to update a database other than your default database. Also,
AUTODBID and DBID may not be used together.

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See also the previous discussion
on this option for more information.

Adabas Native SQL Reference Manual124

ADABAS NATIVE SQL STATEMENTS

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes as level-88 entries the condition names defined in Predict.

If specified here, any value specified with the global parameterOPTIONSwill be overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an "X" if
you want to specify this option. See also the previous discussion on this option for more inform-
ation.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

The DBID option and the HOLD option may not be used together. This implies to Adabas Native
SQL that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record is
in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running in
exclusive-control mode.

See HOLD Logic for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This implies
to Adabas Native SQL that you are attempting to update a database other than your default
database.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from the Predict additional
field attribute 3GL specification, Indexed by. If no index name is specified here, the name of the
multiple-value field or periodic group is used, prefixed with 'I-'.

Any specification here will override any setting of the global parameterOPTIONS.

125Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an "X" if you
want to specify this option. See theprevious discussion on this option and sectionGenerate COBOL
Copy Code in the Predict Administration Manual for more information.

ISNSIZE Option

The ISNSIZE parameter defines themaximumnumber of ISNs that can be stored in the ISN buffer.
If the number of records that satisfy the selection criterion exceeds ISNSIZE, the excess ISNs are
stored by Adabas and retrieved automatically when required. This process is transparent to the
programmer. See the previous discussion on this option for more information.

MAXTIME Option

Limits the time of executing the FIND statement. See the previous discussion on this option for
more information.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
password clause of the CONNECT statement.

See the previous discussion on this option for more information

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

SAVE Option

Use this option if you need to retain the entire ISN list. The saved ISN list can be used later in
COMPARE, FIND and SORT statements. The saved ISN list is discarded when:

■ A further Adabas Native SQL statement that creates another ISN list with the same name (same
command-ID) is executed, or:

■ An Adabas Native SQL CLOSE or DBCLOSE statement is executed, or:
■ The non-activity time limit or transaction time limit is exceeded.

Under these circumstances, response code 9 is returnedwhen the next Adabas command is attemp-
ted.

Adabas Native SQL Reference Manual126

ADABAS NATIVE SQL STATEMENTS

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FINDCOUPLEDandSORT). If theCLOSE statement is not executed,
large amounts of storage will be occupied for the remainder of the Adabas session.

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameterOPTIONS.

Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See the previous discussion on this option for more information.

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

127Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

ORDER BY Clause

The ORDER BY clause specifies the order in which the records are retrieved.

The ISN list may be sorted on up to three descriptors in ascending or descending sequence.

A descriptor used in an ORDER BY clause may not be a member of a periodic group, nor may it
be a phonetic descriptor.

The keywordDESCENDING,whichmay be abbreviated to DESC, specifies descending sequence,
otherwise ascending sequence as default is assumed. If more than one descriptor is specified, the
ASCENDING/DESCENDINGoption applies collectively to all of them. It is not possible to specify
ascending sequence for one descriptor and descending sequence for another.

Adabas Native SQL Reference Manual128

ADABAS NATIVE SQL STATEMENTS

The FIND COUPLED Statement

The FINDCOUPLED statement retrieves fields from a record or records coupled to a given record
in another file. Specify the names of both files and the ISN of the record to which the records to
be retrieved are coupled.

FINDCOUPLED is normally used togetherwith FIND. The FIND statement is used to find a record
of interest (the search criterionmay include fields from several files); the FINDCOUPLED statement
is then used to retrieve information from the record or records that are coupled to that record. If
more than one record satisfied the search criterion of the original FIND statement, the FIND
COUPLED statement must be repeated for each record in the ISN list returned by the FIND
statement.

129Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

In general, the FIND COUPLED statement will return a list containing the ISNs of several records
that are coupled to the specified record in the main file.

If all of the records found by the FIND COUPLED statement are to be processed, then the FIND
COUPLED statementmust include the 'DECLARE cursor-nameCURSORFOR' clause and itmust
be followed by an OPEN/FETCH/CLOSE sequence as described from page [2004-08-24 tbd]. The
fields specified in the SELECT clause are available after execution of the FETCH statement.

If, however, only the first of these records is to be processed, then the DECLARE clause may be
omitted and the fields specified in the SELECT clause are available after execution of the FIND
COUPLED statement. In this case, Adabas Native SQL generates executable code for the FIND
COUPLED statement,whichmust therefore appear in the procedure division inCOBOLprograms.

Examples including the FIND COUPLED statement may be found in the appendices.

Note: The examples using coupled files cannot be executed under VMS, since coupled files
are not supported.

An Adabas S5 command is generated.

Adabas Native SQL Reference Manual130

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the 'DECLARE cursor-name CURSOR FOR' construction
must be used. The keyword FOR indicates to Adabas Native SQL that the statement is used in
conjunctionwithOPEN and FETCH statements that appear later in the program quoting the same
cursor-name. If only a single record is to be processed, the DECLARE clause may be omitted.

See the previous discussion on this clause for more information.

131Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

SELECT Clause

The SELECT clause specifies which fields are to be retrieved from the database. All types of fields
may be selected, with the exception of phonetic descriptors. The fields must be specified by their
full names as defined in the data dictionary.

If the SELECT clause is omitted, then no records are processed, but other functions such as search
may be performed.

If an asterisk is specified following the keyword SELECT, all the fields within the userview are
read.

See the previous discussion on this clause for more information.

Adabas Native SQL Reference Manual132

ADABAS NATIVE SQL STATEMENTS

FROM Clause

This is the file list. file1 and file2 are Adabas file names or view names as defined in the data
dictionary. The two files must be coupled. file1 is the name of the file from which the records
are to be read. file2 is the name of the file containing the record whose ISN is specified in the
WHERE clause.

alias1 is the alias associated with file1. If present, it is used as the name of the record buffer;
otherwise, the name file1 is used. The alias -which should be uniquewithin the program (includ-
ing linkedmodules) - is required if two ormoreAdabasNative SQL statementswithin themodule
refer to the samefile. It can then be used as a qualifier in subsequentAda, COBOLor PL/I statements
that wish to refer to the fields in the respective record buffers.

The names of the coupled files are separated by a comma, but the alias - if present - is not preceded
by a comma.

Example:

EXEC ADABAS
FIND COUPLED
SELECT NAME, CITY
FROM PERSONNEL,AUTOMOBILES
WHERE ISN = :VAR

END-EXEC

133Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

The WHERE clause specifies the ISN of the record in file2 to which the records in file1 are
coupled. valuemay be a numeric constant or the name of a variable containing the ISN. If value
is a variable name, it must be immediately preceded by a colon (':'), for example ':NAME'. The
colonmust not be coded following the '=' sign if value is a numeric constant, for example 'WHERE
ISN = 1234'.

Adabas Native SQL Reference Manual134

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option indicates
to Adabas Native SQL that the database ID is to be taken from the data dictionary. If the file is
linked to more than one database, an error message will be issued.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

CIPHER Option

The cipher key must be specified when accessing a ciphered file.

See the previous discussion on this option for more information.

135Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameterOPTIONSwill be overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an "X" if
you want to specify this option. See the previous discussion on this option for more information.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record is
in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running in
exclusive-control mode. See HOLD Logic for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This implies
to Adabas Native SQL that you are attempting to update a database other than your default
database.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from Predict. If no index name
is defined in the data dictionary, the name of the multiple-value field or periodic group is used,
prefixed with 'I-'.

Any specification here will override any setting of the global parameterOPTIONS).

Indexed by in the Predict Modify COBOL Defaults screenmust bemarkedwith an "X" if youwant
to specify this option. See the previous discussion on this option and section Generate COBOL
Copy Code in the Predict Administration Manual for more information.

Adabas Native SQL Reference Manual136

ADABAS NATIVE SQL STATEMENTS

ISNSIZE Option

The ISNSIZE parameter defines themaximumnumber of ISNs that can be stored in the ISN buffer.
If the number of records that satisfy the selection criterion exceeds ISNSIZE, the excess ISNs are
stored by Adabas and retrieved automatically when required. This process is transparent to the
programmer. See the previous discussion on this option for more information.

MAXTIME Option

This option is used to limit the time of executing the FIND statement. The user may specify a
number or variable containing a number.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement. See the previous discussion on this option for more information.

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

SAVE Option

Use this option if you need to retain the entire ISN list. The saved ISN list can be used later in
COMPARE, FIND and SORT statements. The saved ISN list is discarded when:

■ A further Adabas Native SQL statement that creates another ISN list with the same name (same
command-ID) is executed, or:

■ An Adabas Native SQL CLOSE or DBCLOSE statement is executed, or:
■ The non-activity time limit or transaction time limit is exceeded.

Under these circumstances, response code 9 is returnedwhen the next Adabas command is attemp-
ted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FINDCOUPLEDandSORT). If theCLOSE statement is not executed,
large amounts of storage will be occupied for the remainder of the Adabas session.

137Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameterOPTIONS.

Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See the previous discussion on this option for more information.

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

Adabas Native SQL Reference Manual138

ADABAS NATIVE SQL STATEMENTS

The GENERATE Statement

This statement is used to generate copy code youwish to include in your program or to regenerate
copy code for which the Predict dictionary definitions have been modified after generation.

This Adabas Native SQL statement provides a subset of the facilities provided by the Predict
GENERATE statement. If you require any of the extended range of facilities, use the Predict pre-
processor.

If more than one preprocessor is used, they must be used in the following order:

■ Predict
■ Adabas Native SQL
■ CICS.

The start-level is in the range 1..40.

See the description of the analogous GENERATE command in chapter The Preprocessor of the
Predict Administration Manual for more information.

139Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The HISTOGRAM Statement

The HISTOGRAM statement is used to determine the values present for a given descriptor in the
specified file. The values are returned in ascending or descending sequence. Along with each
descriptor value, Adabas Native SQL indicates the number of records that contain that value. This
information is read from the Associator inverted lists; no access is made to Data Storage.

The HISTOGRAM statement will normally be used to read many descriptor values in sequence.
In this case, the 'DECLARE cursor-name CURSOR FOR' clause must be coded, and the HISTO-
GRAM statement must be followed by the OPEN and FETCH statements. The descriptor field

Adabas Native SQL Reference Manual140

ADABAS NATIVE SQL STATEMENTS

specified in the SELECT clause and also the QUANTITY, i.e., the number of records with that
descriptor value, are available after execution of the FETCH statement.

If only the first (lowest) descriptor value that is greater than or equal to the specified starting value
is required, the DECLARE clause may be omitted. The descriptor field specified in the SELECT
clause is available directly after execution of the HISTOGRAM statement.

An Adabas L9 command is generated.

141Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple descriptor values are to be processed, the 'DECLARE cursor-name CURSOR FOR'
construction must be used. The keyword FOR indicates to Adabas Native SQL that the statement
is used in conjunctionwithOPENand FETCHstatements that appear later in the programquoting
the same cursor-name. If only a single descriptor value is to be processed, the DECLARE clause
may be omitted.

See the previous discussion on this clause for more information.

Adabas Native SQL Reference Manual142

ADABAS NATIVE SQL STATEMENTS

SELECT Clause

field-name is the name of the descriptor forwhich the values are to be returned. field-namemust
be the same descriptor as in the GROUP BY clause. The values are provided in ascending or des-
cending order. Null values are not returned for descriptors that were defined with the null value
suppression option.

Use the COUNT(*) option to find out howmany records contain each descriptor value. The count
will then be returned in the variable QUANTITY attached to the record buffer. Note that the string
'COUNT(*)' must be written without spaces.

If the descriptor is a field within a periodic group, the field 'ISN' (Ada, COBOL or PL/I unless the
global parameter 'ABORT .' is specified) or 'SQLISN' (Ada, COBOL or PL/I if the global parameter
'ABORT .' is specified; also FORTRAN) will contain the number of the occurrence in which the
returned value is located.

143Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

FROM Clause

The FROM clause specifies the file from which the descriptor values are to be retrieved.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used.

See the previous discussion on this clause for more information.

Adabas Native SQL Reference Manual144

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

The range of descriptor values to be read may be restricted by coding an appropriate WHERE
clause.

Starting and ending values may be specified using the 'WHERE field-name BETWEEN value1
AND value2' option. value1 represents the value with which reading is to begin and value2
represents the value with which reading is to end.

The following restriction applies only if ADA-VERSION=62 in the global OPTIONS statement or
if the ADA-VERSION= parameter is omitted: to specify only a starting value, use the 'field-name
>= value3' or 'field-name GE value3' option for ascending order or 'field-name <= value3' or
'field-name LE value3' for descending order (if the Adabas version allows it). value3 represents
the value with which reading is to begin.

In the case of ADA-VERSION=71 in the global OPTIONS statement, all the comparator operators
can be used for both ascending and descending order.

The field-namemust be the descriptor specified in the GROUP BY clause. If the starting value
(value1, value3) is not contained in the file, the next higher value in the list will be used. If no
higher value exists, an end-of-file conditionwill result. value1, value2 and value3maybe constants
or the names of variables containing the values. If they are variable names, they must be immedi-
ately preceded by colons (':'), for example ':NAME'.

field-name (i) is a reference to an occurrence within a periodic group.

Note: If a prefix or suffix is used for a field-name specified in the data dictionary, you may
not use the BETWEEN option if ADA-VERSION=62 in the global OPTIONS statement or
if the ADA-VERSION= parameter is omitted.

145Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option indicates
to Adabas Native SQL that the database ID is to be taken from the data dictionary. If the file is
linked to more than one database, an error message will be issued.

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in PREDICT as level-88 entries.

If specified here, any value specified with the global parameterOPTIONS) will be overridden.

With Cond. names in the PREDICT Modify COBOL Defaults screen must be marked with an "X"
if youwant to specify this option. See the previous discussion on this optin for more information.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

Adabas Native SQL Reference Manual146

ADABAS NATIVE SQL STATEMENTS

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement.

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS) or taken from PREDICT.

Field name prefix in the PREDICT Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameterOPTIONS.

Static in the PREDICT Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See the previous discussion on this option for more information.

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from PREDICT.

Field name suffix in the PREDICT Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

147Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

ORDER BY Clause

The field-name1 parameter specifies the descriptor that is to control the reading sequence. Note
that the descriptor specified may not be a member of a periodic group, nor may it be a phonetic
field.

If the descriptor was defined with the null value suppression option, records having a null value
in the descriptor field will not be read.

If the WHERE clause is coded, the descriptor field used in the WHERE clause must be the same
as the descriptor field used in the ORDER BY clause.

If DESCENDING is specified, the records are read in descending order.

Note: The 'GE' operator cannot be specified together with the DESCENDING keyword if
ADA-VERSION=62 in the global OPTIONS statement or if the ADA-VERSION= parameter
is omitted.

Adabas Native SQL Reference Manual148

ADABAS NATIVE SQL STATEMENTS

GROUP BY Clause

field-name is the descriptor for which the values are to be returned.

The descriptormay not be a phonetic descriptor or a field in a periodic group. The use of descriptors
defined as multiple-value fields is not recommended.

If the SELECT,WHERE and/orORDERBY clauses are coded, the field-nameused in these clauses
must be the same as the field-name used in the GROUP BY clause.

149Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The HOLD Statement

This statement is used to place a record in hold status. This reserves the record for subsequent
updating or deleting, preventing other users from updating the record until it is released by a
COMMIT WORK, RELEASE or ROLLBACKWORK statement. This statement should be used
after reading the record and before updating or deleting it, unless the read statement itself included
the HOLD option. The cursor-name identifies the statement that retrieved the record.

Adabas Native SQL Reference Manual150

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

If the RETURN option is coded and the record is already being held for another program, the
value 145 will be returned in the response-code. This will cause an error printout followed by an
ABEND unless a user-written response code interpretation routine is provided.

See description of the ABORT parameter for more information.

If the RETURN option is not coded and the record is being held for another program, the program
will be suspended until the record is released.

In many applications, it is preferable to specify the HOLD option in the READ or FIND statement
rather than to use a separate HOLD statement.

This statement generates an Adabas HI command.

151Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The INSERT Statement

The INSERT statement adds a new record to the Adabas file.

When an attempt is made to add a new record with one or more fields that have been defined as
unique descriptors, response code 198 will be returned if a record having the same descriptor
value as the new record already exists in the file. This will cause an error print-out (response code
98 in VAX, otherwise 198) followed by anABENDunless the user provides an alternative response
code interpretation routine. See description of the ABORT parameter on page .

This statement generates an Adabas N1 command, or an N2 command if the 'WHERE ISN' clause
is coded.

Adabas Native SQL Reference Manual152

ADABAS NATIVE SQL STATEMENTS

INTO Clause

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used. The alias, which should
be unique, is required if two or more Adabas Native SQL statements within the module refer to
the same file. It can then be used as a qualifier in subsequent Ada, COBOL or PL/I statements that
refer to the fields in the record buffer.

153Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

The cursor-name specified in theDECLARE clause is used byAdabas as the command-ID.Adabas
avoids re-translating the format bufferwhen it recognizes a command-ID that has been used before,
so using this clause can improve performance, particularly if the 'WHERE ISN' option is used.

Adabas Native SQL Reference Manual154

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

Use one or both options. If both options are used, they can be specified in any order.

The 'WHERE ISN=value' option is used if you wish to specify the ISN of the record to be added
(user-ISN option). valuemay be either a constant or the name of a variable containing the ISN.
The ISN must lie between 1 and the maximum ISN value that was defined for the file. If value is
a variable name, it must be immediately preceded by a colon (':'), for example ':NAME'. The colon
must not be coded following the '=' sign if value is a numeric constant, for example 'WHERE ISN
= 1234'. If a record with the specified ISN already exists, the value 113 will be returned in the re-
sponse-code. The 'DECLARE cursor-nameCURSOR' clause should be used if 'WHERE ISN=value'
is coded, in order to avoid unnecessary format buffer translations.

If the option 'WHERE CURRENTOF cursor-name1' is used and no assignments are used, it is not
necessary to build a new record buffer; the existing record buffer is written to the database. This
can improve performance.

If the WHERE clause is omitted, the ISN of the new record will be allocated automatically by
Adabas.

Assignments

Note: If the option 'WHERE CURRENT OF cursor-name1' is used, multiple-value fields
and periodic groups are not supported in the assignments. If multiple-value fields or peri-
odic groups are present, all assignmentsmust bemade before the statement.No assignments
are permitted within the statement.

This clause specifies the fields to be written to the record and, optionally, the values to be assigned
to them. The expressions may be separated by blanks (spaces) or commas.

A new record buffer is built if this clause is coded.Avoiding this clausemay improve performance,
because the record buffer of the statement specified in the CURRENT OF clause is used.

155Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

expression

field-name denotes the name of the elementary field. This is the full field name as defined in the
data dictionary. If necessary, the field-name can be subscripted to select the required field from
a multiple-value field, from a periodic group, or from a multiple-value field within a periodic
group.

Note: field-name can be a multiple-value or a part of a periodic group, but in this case an
index must be specified within parentheses. For a multiple-value within a periodic group
the user should move the value by himself before the INSERT/UPDATE statement.

The option 'SET field-name' is used when the required value has already been assigned to the
field in the record buffer by means of normal Ada, COBOL, FORTRAN or PL/I statements.

The option 'SET field-name = constant' or 'SET field-name = var-name' is used to specify the value
to be assigned to the field.

constant denotes a constant (literal) value and var-name denotes the name of a variable defined
in the Ada, COBOL, FORTRAN or PL/I program, which must be preceded by a colon.

If NULL is specified, Adabas Native SQL will move -1 (x'FFFF') to the Null field indicator of the
specified field in the Record buffer used for updating the file.

If the user uses the SET clause and specifies a real value or a variable for a field which has a Null
value indicator, Adabas Native SQL will automatically reset the Null field indicator of that field.
If the user does not specify the SET clause, but initiates the fields in the Record buffer by himself,
he should also reset or turn on the Null field indicator.

Adabas Native SQL Reference Manual156

ADABAS NATIVE SQL STATEMENTS

var-name

If the variable name is unique within the program, it can be specified as :var. Otherwise, it should
be made unique by preceding it by root, a higher-level data name (qualifier) in the data structure
hierarchy. Both the COBOL-type construction (:var OF root or :var IN root) and the PL/I-type
construction (:root.var) are valid in Ada, COBOL and PL/I programs.

Both the 'SET field-name' option and the 'SET field-name = data' option can be used in the same
SET clause.

The optional indexmay be an integer constant or the name of a variable preceded by a colon. Note
that blanks (spaces) are not allowed between the :var and the parenthesis preceding the index.

157Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement.

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See the previous discussion on
this option for more information.

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified suffix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

Adabas Native SQL Reference Manual158

ADABAS NATIVE SQL STATEMENTS

Example 1: Ada

type RECORD_BUFPERS is
record
SALARY: STRING (...
.
.
.
end record;

FINANCE: RECORD_BUFPERS;

FINANCE.OIL_CREDIT_2:= "0001000";
EXEC ADABAS

INSERT
INTO FINANCE

SET PERSONNEL-NUMBER = "005333756"
OIL_CREDIT(3) = "0002000"
OIL_CREDIT(1) = "0001000"
INSURANCE_COMPANY(1(1)) = "AAA "
OIL_CREDIT(2)

END-EXEC

Example 2: COBOL

01 REC
02 SALARY
02 AGE
02 PERSON-NAMEhg
.
.
.

MOVE 1000 TO OIL-CREDIT-2
EXEC ADABAS

INSERT
INTO FINANCE
SET PERSONNEL-NUMBER = 5333756

OIL-CREDIT(3) = 2000
OIL-CREDIT(1) = 1000
INSURANCE-COMPANY(1(1)) = 'AAA'
OIL-CREDIT(2)

END-EXEC

159Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

Example 3: FORTRAN

CHARACTER* 8 PERBER
CHARACTER* 7 OCRE1
CHARACTER* 7 OCRE3
CHARACTER*25 INCOM (00001 , 00001)
CHARACTER* 7 OCRE2
CHARACTER* 14002 FINNCE
.....
OCRE2 = '0001000'

EXEC ADABAS
INSERT
INTO FINANCE
SET PERSONNEL-NUMBER = '005333756'

OIL-CREDIT(1) = '0002000'
OIL-CREDIT(3) = '0001000'
INSURANCE-COMPANY(1(1)) = 'AAA'
OIL-CREDIT (2)

END-EXEC

Note: Synonyms are assumed to be defined in the data dictionary as shown in Appendix
B, and truncation is assumed to occur in the middle of the word. (The maximum length of
names is operating-system dependent.)

The field FINNCE encompasses all other fields and is the equivalent of the record buffer in Ada,
COBOL and PL/I.

Example 4: PL/I

DCL 01 REC,
02 SALARY,
02 AGE,
02 PERSON_NAME;

.

.

.
OIL_CREDIT_2 = 1000;
EXEC ADABAS

INSERT
INTO FINANCE
SET PERSONNEL-NUMBER = 5333756
OIL-CREDIT(3) = 2000
OIL-CREDIT(1) = 1000
INSURANCE-COMPANY(1(1)) = 'AAA'
OIL-CREDIT(2)

END-EXEC

Adabas Native SQL Reference Manual160

ADABAS NATIVE SQL STATEMENTS

The OPEN Statement

This statement is part of the OPEN/FETCH/CLOSE sequence that is used for processing multiple
records.

The OPEN statement processes the parameters defined in the WHERE clause of the statement
referenced by cursor-name and then issues the actual Adabas command if necessary. Once the
OPEN statement has been executed, the contents of the WHERE clause are not re-examined.
Therefore, changes to the variables in a WHERE clause will not have any effect until the OPEN
statement is re-executed.

In the case of theHISTOGRAM,READLOGICAL andREADPHYSICAL SEQUENCE statements,
the OPEN statement does nothing more than to initialize the variables for the executable Adabas
commands. For theCOMPARE, FIND, FINDCOUPLEDandSORT statements, theOPENstatement
initializes the variables and also executes the command (FIND, SORT,...) that produces the ISN
list. No records are actually fetched from the file until the FETCH statement is executed.

When used in conjunction with a COMPARE, FIND, FIND COUPLED or SORT statement, the
OPEN statement puts the ISN quantity in the record buffer. Thus the number of records can be
found before executing the first FETCH statement.

161Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The READ ISN Statement

The READ ISN statement is used to read from a file a single record whose ISN is known, or the
first record whose ISN is greater than a specified value.

This statement causes an Adabas L1 command to be generated, or an L4 command if the HOLD
option is coded.

Adabas Native SQL Reference Manual162

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-namemay be up to four characters long. See the previous discussion on
this clause for more information.

163Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

SELECT Clause

The SELECT clause specifies which fields are to be retrieved from the database. All types of fields
may be selected, with the exception of subdescriptors, superdescriptors and phonetic descriptors.
The fields must be specified by their full names as defined in the data dictionary.

If the SELECT clause is omitted, then no records are processed, but other functions such as search
may be performed.

If an asterisk ('*') is specified following the keyword 'SELECT', all the fields within the userview
are read.

See the previous discussion on this clause for more information.

Adabas Native SQL Reference Manual164

ADABAS NATIVE SQL STATEMENTS

FROM Clause

The FROM clause specifies the file from which data are to be retrieved. It is used together with
the SELECT clause to generate the record buffer and to control the retrieval of information from
the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used.

See the previous discussion on this clause for more information.

165Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

The WHERE clause is used to specify the ISN of the record to be read. If the SEQUENCE option
is not specified, an error (response-code = 113) will result if the file does not contain a record with
this ISN. If the SEQUENCE option is specified and the file does not contain a record with the
given ISN, then the record with the next higher ISN will be read, or end-of-file will be signaled if
there is no such record.

value can be a constant or the name of a variable. If value is a variable name, itmust be immediately
preceded by a colon (':'), for example ':NAME'. Note that the colon is not part of the '=' sign that
follows the 'ISN' keyword.

If the programmer wishes Adabas Native SQL to use the ISN of a record found by a previous
statement, he should use the 'CURRENTOF' option, specifying the cursor-name of that statement.

Adabas Native SQL Reference Manual166

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option indicates
to Adabas Native SQL that the database ID is to be taken from the data dictionary. If the file is
linked to more than one database, an error message will be issued.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

CIPHER Option

The cipher key must be specified when accessing a ciphered file.

See the previous discussion on this option for more information.

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameterOPTIONSwill be overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an "X" if
you want to specify this option. See the previous discussion on this option for more information.

167Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record is
in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running in
exclusive-control mode.

The HOLD option may not be used together with the AUTODBID or DBID options. This implies
to Adabas Native SQL that you are attempting to update a database other than your default
database.

See HOLD Logic for more information.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from Predict. If no index name
is defined in the data dictionary, the name of the multiple-value field or periodic group is used,
prefixed with 'I-'.

Any specification here will override any setting of the global parameterOPTIONS.

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an "X" if you
want to specify this option. See theprevious discussion on this option and sectionGenerate COBOL
Copy Code in the Predict Administration Manual for more information.

Adabas Native SQL Reference Manual168

ADABAS NATIVE SQL STATEMENTS

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement.

See the previous discussion on this option for more information.

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

SEQUENCE Option

If this option is coded, the record with the specified ISN or the next higher ISN is read. The ISN
of the record that was read is returned in the field 'ISN', which is appended to every record buffer.
If the file does not contain a record having an ISN higher than the specified ISN, end-of-file is
signaled. Therefore, when using this option, the flagADACODE (Ada, COBOL, PL/I) or SQLCOD
(FORTRAN) should be checked for end-of-file status.

If this option is not specified, the record with the specified ISN is read. If the file does not contain
a record having the specified ISN, an error is reported (response-code = 113). This causes the pro-
gram to terminate unless a user-written response code interpretation routine is provided.

See description of the ABORT parameter on page .

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameterOPTIONS.

Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See the previous discussion on this option for more information.

169Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified suffix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

Adabas Native SQL Reference Manual170

ADABAS NATIVE SQL STATEMENTS

The READ LOGICAL Statement

171Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

Adabas Native SQL Reference Manual172

ADABAS NATIVE SQL STATEMENTS

Note: The BETWEEN clause only applies if ADA-VERSION=71 in the global OPTIONS statement.

The READLOGICAL statement is used to read a file, or portion thereof, in logical sequential order
based on the ascending or descending sequence of the values for a given descriptor.

This statement will normally be used to read many records in logical sequence. In this case, the
'DECLARE cursor-nameCURSORFOR' clausemust be coded, and the READLOGICAL statement
must be followed by theOPEN and FETCH statements. The fields specified in the SELECT clause
are available after execution of the FETCH statement.

If only the first record in the file is required, the DECLARE clause may be omitted and the fields
specified in the SELECT clause are available directly after execution of the READ LOGICAL
statement.

This statement causes an Adabas L3 command to be generated, or an L6 command if the HOLD
option is coded.

173Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the 'DECLARE cursor-name CURSOR FOR' construction
must be used. The keyword 'FOR' indicates to Adabas Native SQL that the statement is used in
conjunctionwithOPEN and FETCH statements that appear later in the program quoting the same
cursor-name. If only a single record is to be processed, the DECLARE clause may be omitted.

Adabas Native SQL Reference Manual174

ADABAS NATIVE SQL STATEMENTS

SELECT Clause

The SELECT clause specifies which fields are to be retrieved from the database. All types of fields
may be selected, with the exception of subdescriptors, superdescriptors and phonetic descriptors.
The fields must be specified by their full names as defined in the data dictionary.

If the SELECT clause is omitted, then no records are processed, but other functions such as search
may be performed.

If an asterisk is specified following the keyword 'SELECT', all the fields in the userview are read.

See the previous discussion on this clause for more information.

175Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

FROM Clause

The FROM clause specifies the file from which data are to be retrieved. It is used together with
the SELECT clause to generate the record buffer and to control the retrieval of information from
the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used.

See the previous discussion on this clause for more information.

Adabas Native SQL Reference Manual176

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

The records may be read starting from a particular descriptor value by using the WHERE clause,
where value represents the value fromwhich reading is to begin. field-name1must be the name
of the descriptor specified in the ORDER BY clause (see below).

If the starting value is not found in the file, the next higher value in the file will be used for ascend-
ing sequence. If no higher value exists, an end-of-file condition (inADA,COBOLandPL/I programs:
ADACODE = 3; in FORTRAN programs: SQLCOD = 3) will result. valuemay be a constant or the
name of a variable.

If value1, value2 or value3 is a variable name, it must be immediately preceded by a colon (':'),
for example ':NAME'.

The BETWEEN clause only applies when Adabas Version 7.1 or higher is used and the ADA-
VERSION parameter in the global OPTIONS statement is set to 71 or when Adabas Version 3.1
or higher in OpenVMS is used.

177Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

AUTODBID Option

This option can be used if the file is linked to a single database. This option indicates to Adabas
Native SQL that the database ID is to be taken from the data dictionary. If the file is linked to more
than one database, an error message will be issued. (If the file is linked to more than one database,
the DBID option should be used.)

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See the previous discussion on
this option for more information.

Adabas Native SQL Reference Manual178

ADABAS NATIVE SQL STATEMENTS

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in Predict as Level-88 entries.

If specified here, any value specified with the global parameterOPTIONSwill be overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an "X" if
you want to specify this option. See the previous discussion on this option for more information.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record is
in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running in
exclusive-control mode.

See HOLD Logic for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This implies
to Adabas Native SQL that you are attempting to update a database other than your default
database.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from Predict. If no index name
is defined in the data dictionary, the name of the multiple-value field or periodic group is used,
prefixed with 'I-'.

Any specification here will override any setting of the global parameterOPTIONS.

179Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an "X" if you
want to specify this option. See theprevious discussion on this option and sectionGenerate COBOL
Copy Code in the Predict Administration Manual for more information.

ISN Option

The ISN parameter indicates the place within a group of records with the same descriptor value
where reading is to begin. Of the recordswhich satisfy the selection criterion field-name1 = value
(see the WHERE clause), reading begins at the record whose ISN is greater than value3. If there
is no record with field-name1 = valuewhose ISN is greater than value3, the first record with the
next descriptor value field-name1 > value is read. If there is none, the end-of-file condition (in
Ada, COBOL and PL/I programs: ADACODE=3; in FORTRANprograms: SQLCOD=3)will be set.

The ISN value is specified in the value3 field. value3may be a constant or the name of a variable
containing the ISN. If value3 is a variable name, it must be immediately preceded by a colon (':'),
for example ':NAME'.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement. See the previous discussion on this option for more information.

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameterOPTIONS.

Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See the previous discussion on this option for more information.

Adabas Native SQL Reference Manual180

ADABAS NATIVE SQL STATEMENTS

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified suffix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

181Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

ORDER BY Clause

The field-name1 parameter specifies the descriptor that is to control the reading sequence. Note
that the descriptor specified may not be a member of a periodic group, nor may it be a phonetic
field.

If the descriptor was defined with the null value suppression option, records having a null value
in the descriptor field will not be read.

If the WHERE clause is coded, the descriptor field used in the WHERE clause must be the same
as the descriptor field used in the ORDER BY clause.

If DESCENDING is specified, the records are read in descending order.

Note: If the ADA-VERSION parameter in the global OPTIONS statement is set to 62 or if
the ADA-VERSION= parameter is omitted, the 'GE' operator cannot be specified together
with the DESCENDING keyword on mainframe platforms, and if the 'LE' operator is spe-
cified, the DESCENDING keyword may be omitted on mainframe platforms.

Adabas Native SQL Reference Manual182

ADABAS NATIVE SQL STATEMENTS

The READ PHYSICAL SEQUENCE Statement

This statement is used to read records in the sequence in which they are physically located in the
data files. It does not read records in any particular logical order.

This statement may be used to read an entire file at maximum speed, since no access is required
to the Associator.

This statement is normally used to read many records (possibly the entire file). In this case, the
'DECLARE cursor-name CURSOR FOR' clause must be coded, and the READ PHYSICAL SE-
QUENCE statement must be followed by theOPEN and FETCH statements. The fields specified
in the SELECT clause are available after execution of the FETCH statement.

183Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

If only the first record in the file is required, the DECLARE clause may be omitted and the fields
specified in the SELECT clause are available directly after execution of the READ PHYSICAL SE-
QUENCE statement.

This statement causes an Adabas L2 command to be generated, or an L5 command if the HOLD
option is coded.

Adabas Native SQL Reference Manual184

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the 'DECLARE cursor-name CURSOR FOR' construction
must be used. The keyword 'FOR' indicates to Adabas Native SQL that the statement is used in
conjunctionwithOPEN and FETCH statements that appear later in the program quoting the same
cursor-name. If only a single record is to be processed, the DECLARE clause may be omitted.

See the previous discussion on this clause for more information.

185Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

SELECT Clause

The SELECT clause specifies which fields are to be retrieved from the database. All types of fields
may be selected, with the exception of subdescriptors, superdescriptors and phonetic descriptors.
The fields must be specified by their full names as defined in the data dictionary.

If this clause is omitted, no records are processed, but other functions such as search may be per-
formed.

If an asterisk is specified following the keyword 'SELECT', all the fields within the userview are
read.

See the previous discussion on this clause for more information.

Adabas Native SQL Reference Manual186

ADABAS NATIVE SQL STATEMENTS

FROM Clause

This clause specifies the file fromwhich data are to be retrieved. It is used togetherwith the SELECT
clause to generate the record buffer and to control the retrieval of information from the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used. See the previous dis-
cussion on this clause for more information.

187Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option indicates
to Adabas Native SQL that the database ID is to be taken from the data dictionary. If the file is
linked to more than one database, an error message will be issued.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See the previous discussion on
this option for more information.

Adabas Native SQL Reference Manual188

ADABAS NATIVE SQL STATEMENTS

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameterOPTIONSwill be overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an "X" if
you want to specify this option. See the previous discussion on this option for more information.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record is
in hold status, it cannot be updated or deleted by any other user. A record that is to be updated
or deleted must be in hold status unless the program is running in exclusive-control mode.

See HOLD Logic for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This implies
to Adabas Native SQL that you are attempting to update a database other than your default
database.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from Predict. If no index name
is defined in the data dictionary, the name of the multiple-value field or periodic group is used,
prefixed with 'I-'.

Any specification here will override any setting of the global parameterOPTIONS.

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an "X" if you
want to specify this option. See theprevious discussion on this option and sectionGenerate COBOL
Copy Code in the Predict Administration Manual for more information.

189Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

ISN Option

This option is used if the file is to be read in physical sequence starting at some position other than
the beginning of the file.

The ISN parameter specifies the ISN of the record preceding the record where reading is to begin.
The ISN is specified in the value2 field. value2may be a constant or the name of a variable con-
taining the ISN. If value2 is a variable name, it must be immediately preceded by a colon (':'), for
example ':NAME'. This field is updated automatically by Adabas and need not be modified by
the user every time the next record is to be read.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement. See the previous discussion on this option for more information.

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you want
to specify this option. See the previous discussion on this option for more information.

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameterOPTIONS.

Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See the previous discussion on this option for more information.

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified suffix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

Adabas Native SQL Reference Manual190

ADABAS NATIVE SQL STATEMENTS

The READ USERDATA Statement

This statement reads user data previously stored in the Adabas system file by a CHECKPOINT,
COMMIT WORK or DBCLOSE statement.

The user data will be read into the variable whose name is var1. The variable name must be im-
mediately preceded by a colon (':'), for example 'READ USERDATA INTO :NAME'.

This statement generates an Adabas RE command.

191Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

USERID Clause

If youwish to read data stored by another user, or stored by youduring a differentAdabas session,
the USERID parameter must be used, specifying the user-ID that was used when the data was
written. value can be an alphanumeric constant or the name of a variable containing the user-ID.
If value is a variable name, it must be immediately preceded by a colon (':'). The colon must not
be coded if value is a constant.

Examples:

EXEC ADABAS
READ USERDATA INTO :USER-VAR

USERID = 'US01'
END-EXEC

EXEC ADABAS
READ USERDATA INTO :TEMP1

USERID = :HISNAME
END-EXEC

Adabas Native SQL Reference Manual192

ADABAS NATIVE SQL STATEMENTS

The RELEASE Statement

Youwill not normally need this statement. It is used to release theAdabas global format-ID and/or
an Adabas command-ID.

The command-ID has three functions:

■ to identify a format buffer so that further use of the same format bufferwith the same command-
ID is more efficient,

■ to identify the next READ statement in a sequential read process,
■ to identify a list of ISNs found in a FIND statement.

You can release the command-ID from one, two or all three of the above functions. If the FOR
clause is not specified, then the command-IDwill be released from all the functions and in addition
the global format-ID will be released.

MeaningFunction

Releases the command-ID from the internal format buffer pool.FORMAT

Releases the ADABAS global format-ID.GLOBAL

Releases the command-ID from the table of sequential commands.SEQ

Releases the command-ID from the table of ISN lists.LIST

The command-ID that will be released is the command-ID generated by Adabas Native SQL for
the set of buffers identified by cursor-name.

If cursor-name is not specified, all command-IDs will be released.

See the description of the RC command in theAdabas Command Reference Manual for more inform-
ation.

This statement generates an Adabas RC command.

193Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The RELEASE ISN Statement

This statement releases fromhold status a record that has been held by a previous READorHOLD
statement with the same cursor-name identification.

If you are using ET logic, do not use this statement to release a record that has been updated
during your current session.

The COMMITWORK statement, which is used in ET-mode programs to mark the end of a logical
transaction, automatically releases records that were put into hold status during the current
transaction.

This statement generates an Adabas RI command.

Adabas Native SQL Reference Manual194

ADABAS NATIVE SQL STATEMENTS

The RESTORE Statement

This statement is used in programs that run under the control of a TP monitor, for example CICS
in pseudo-conversational mode or UTM with multiple-step transactions.

The data to be restored must be passed to the RESTORE statement in var1, which must have a
length of 80 bytes. The name of the variable var1must be preceded by a colon (':'). The data is
passed to the Adabas Native SQL statement identified by cursor.

The data must be the same data that was returned from a preceding SAVE statement. The user is
responsible for preserving the data between the SAVE statement and the RESTORE statement.

See also the complementary SAVE statement.

195Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The ROLLBACK WORK Statement

This statement is used to remove all the databasemodifications (insertions, deletions and updates)
that have been performed since the beginning of the Adabas user session or the last COMMIT
WORK or ROLLBACK statement. Note that the ROLLBACKWORK statement can modify the
state of files other than the files used in the program that issued the statement. After the ROLLBACK
WORKhas been completed, the database has the status that it hadwhen the last COMMITWORK
was issued.

This statement generates an Adabas BT (backout transaction) command.

Adabas Native SQL Reference Manual196

ADABAS NATIVE SQL STATEMENTS

WITHOUT Clause

The usermay backout all files except one by specifying the appropriate file name in theWITHOUT
parameter.

Example:

EXEC ADABAS
ROLLBACK WORK

WITHOUT PERSONNEL
END-EXEC

In this example, all files in the database should be backed out with the exception of file PERSON-
NEL.

197Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The SAVE Statement

This statement is used in programs that run under the control of a TP monitor, for example CICS
in pseudo-conversationalmode orUTMwithmultiple-step transactions. Several SAVE statements
may be used, one for each Adabas Native SQL statement whose context must be preserved over
an I/O transaction. However, unnecessary SAVE statements should be avoided.

A typical sequence of operations is shown in the following diagram:

Adabas Native SQL Reference Manual198

ADABAS NATIVE SQL STATEMENTS

The data to be saved from the Adabas Native SQL statement identified by cursor is returned in
var1, which must have a length of 80 bytes. The name of the variable var1must be preceded by
a colon (':'). The data will normally be used in a subsequent RESTORE statement. The user is re-
sponsible for preserving the data between the SAVE statement and the RESTORE statement.

See also the complementary RESTORE statement.

Programs that use the SAVE statement must not use the ISNSIZE option in any Adabas SQL
statements.

199Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The SORT Statement

The SORT statement may be used to sort an ISN list that was created by a COMPARE or FIND
statement. The SAVE option must be used in the COMPARE or FIND statement in order to save
the ISN list.

The ISN list is sorted according to the values of one, two or three descriptors in the records indicated
by the entries in the given ISN list. The keyword DESCENDING, which may be abbreviated to
DESC, specifies descending sequence, otherwise ascending sequence will be assumed. If more
than one descriptor is specified, the ASCENDING/DESCENDING option applies collectively to

Adabas Native SQL Reference Manual200

ADABAS NATIVE SQL STATEMENTS

all of them. It is not possible to specify ascending sequence for one descriptor and descending se-
quence for another.

The ISN list to be sorted must be in ascending ISN sequence. An ISN list that was produced by a
FIND statement with the ORDER BY clause or a SORT command cannot be sorted.

In general, the SORT statement will return a list containing the ISNs of many records.

If more than one of the records listed in the ISN list returned by the SORT statement are to be
processed, then the SORT statement must include the 'DECLARE cursor-name CURSOR FOR'
clause and it must be followed by anOPEN/FETCH/CLOSE sequence. The fields specified in the
SELECT clause are available after execution of the FETCH statement.

If, however, only the first of these records is to be processed, then the DECLARE clause may be
omitted and the fields specified in the SELECT clause are available after execution of the SORT
statement. In this case, Adabas Native SQL generates executable code for the SORT statement,
which must therefore appear in the procedure division in COBOL programs.

An Adabas S9 command is generated.

201Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the 'DECLARE cursor-name CURSOR FOR' construction
must be used. The keyword 'FOR' indicates to Adabas Native SQL that the statement is used in
conjunctionwithOPEN and FETCH statements that appear later in the program quoting the same
cursor-name. If only a single record is to be processed, the DECLARE clause may be omitted.

Adabas Native SQL Reference Manual202

ADABAS NATIVE SQL STATEMENTS

SELECT Clause

The SELECT clause specifies which fields are to be retrieved from the database. All types of fields
may be selected, with the exception of subdescriptors, superdescriptors and phonetic descriptors.
The fields must be specified by their full names as defined in the data dictionary.

If an asterisk is specified following the keyword 'SELECT', all the fields within the userview are
read.

See page for more information.

203Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

FROM Clause

The FROM clause specifies the file from which data are to be retrieved. It is used together with
the SELECT clause to generate the record buffer and to control the retrieval of information from
the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used.

See the previous discussion on this clause for more information

Adabas Native SQL Reference Manual204

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

The cursor-name is the name coded in the DECLARE clause of the statement that created the ISN
list to be sorted. This statement must include the SAVE option. It must not be a FIND statement
with the ORDER BY clause or a SORT statement.

205Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

OPTIONS Clause

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option indicates
to Adabas Native SQL that the database ID is to be taken from the data dictionary. If the file is
linked to more than one database, an error message will be issued.

If the file is linked to more than one database, the DBID option should be used.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See the previous discussion on
this option for more information.

Adabas Native SQL Reference Manual206

ADABAS NATIVE SQL STATEMENTS

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameterOPTIONSwill be overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an "X" if
you want to specify this option. See the previous discussion on this option for more information.

DBID Option

This option should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record is
in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running in
exclusive-control mode. See HOLD Logic for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This implies
to Adabas Native SQL that you are attempting to update a database other than your default
database.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from Predict. If no index name
is defined in the data dictionary, the name of the multiple-value field or periodic group is used,
prefixed with 'I-'.

Any specification here will override any setting of the global parameterOPTIONS.

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an "X" if you
want to specify this option. See theprevious discussion on this option and sectionGenerate COBOL
Copy Code in the Predict Administration Manual for more information.

207Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

ISNSIZE Option

The ISNSIZE parameter defines themaximumnumber of ISNs that can be stored in the ISN buffer.
For the SORT statement, the ISN buffer must either be defined with size 0, or else it must be large
enough to contain the entire ISN list that is to be sorted. If an ISN buffer is defined that is too small
to contain the entire ISN list, the value 1 will be returned in the response-code.

The value of len must be either 0 or at least four times the number of records to be sorted.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement (see the previous discussion on this option for more information).

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

SAVE Option

The SAVE option is used if the programmer needs to retain the entire ISN list. The saved ISN list
is discarded when:

■ a further Adabas Native SQL statement that creates another ISN list with the same name (same
command ID) is executed, or

■ an Adabas Native SQL CLOSE or DBCLOSE statement is executed, or
■ the non-activity time limit or transaction time limit is exceeded. Under these circumstances, re-
sponse code 9 is returned when the next Adabas command is attempted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FINDCOUPLEDandSORT). If theCLOSE statement is not executed,
large amounts of storage will be occupied for the remainder of the Adabas session.

Adabas Native SQL Reference Manual208

ADABAS NATIVE SQL STATEMENTS

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameterOPTIONS.

Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See the previous discussion on this option for more information.

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified suffix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

209Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

ORDER BY Clause

The ORDER BY clause specifies the order in which the records are retrieved.

The ISN list may be sorted on up to three descriptors in ascending or descending sequence.

A descriptor used in an ORDER BY clause may not be a member of a periodic group, nor may it
be a phonetic descriptor.

The keywordDESCENDING,whichmay be abbreviated to DESC, specifies descending sequence,
otherwise ascending sequence is assumed. If more than one descriptor is specified, the ASCEND-
ING/DESCENDINGoption applies collectively to all of them. It is not possible to specify ascending
sequence for one descriptor and descending sequence for another.

If the ISN list is too big to be sorted, an error is reported with response-code=1. See also the LS
(sort work space) parameter in the Adabas Operations Manual.

Note: Sorting large ISN lists may take a long time.

Adabas Native SQL Reference Manual210

ADABAS NATIVE SQL STATEMENTS

The TRACE Statement

This statement is used in conjunction with the global optionMODE TRACE.

Provided 'MODE TRACE.' has been specified, the TRACE ON and TRACE OFF statements can
be used within the application program to control trace output statically. Trace output will only
be produced in those program sections where TRACE ON is in effect.

Tracing is also controlled dynamically by a variable with the name TRCE (Ada, COBOL, PL/I) or
SQDE00 (FORTRAN) in sectionswhere TRACEON is in effect. The application programcandisable
tracing dynamically by setting the content of this variable to the value 'OFF', and can re-enable
tracing by setting its content to any other value.

Three conditions must be satisfied for tracing to be active:

■ the global option 'MODE TRACE.' must be set,
■ the 'TRACE ON' statement must be issued, and
■ the variable 'TRCE' or 'SQDE00' must not contain the value 'OFF'.

Note: tracing is switched offwhen the program is started. No trace output will be produced
until a TRACE ON statement is executed.

211Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The UPDATE Statement

The UPDATE statement is used to update one or more fields of a record in the specified file. The
record to be updated must be retrieved by the FIND statement or one of the READ statements
before issuing the UPDATE statement. The record must be in hold status unless the program is
running in EXU mode (see the CONNECT statement). A record can be 'held' either by specifying
the HOLD option in the statement that reads it, or by issuing a separate HOLD statement.

When the logical transaction has been completed, a COMMITWORK statement should be issued.
One of the effects of this statement is to release records that are in hold status.

Adabas Native SQL Reference Manual212

ADABAS NATIVE SQL STATEMENTS

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,
is used as the name of the record buffer; otherwise, the name file is used. The alias, which should
be unique, is required if two or more Adabas Native SQL statements within the module refer to
the samefile. It can be used as a qualifier in subsequentAda, COBOL, FORTRANor PL/I statements
that refer to the fields in the record buffer.

This statement generates an Adabas A1 command.

213Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

DECLARE Clause

The cursor-name may be up to four characters long. A cursor-name should be specified if this
Adabas Native SQL statement is executed repeatedly; Adabas can recognize the cursor-name,
which is also used as the Adabas command-ID, and avoid re-translating the format buffer when
the statement is executed subsequently.

Adabas Native SQL Reference Manual214

ADABAS NATIVE SQL STATEMENTS

WHERE Clause

The WHERE clause is used to specify the ISN of the record to be updated.

To update a record having a specific ISN, the programmer should use the 'ISN = value' option.
value may be a constant or the name of a variable containing the ISN. If value is a variable name,
it must be immediately preceded by a colon (':'), for example ':NAME'. The colon must not be
coded following the '=' sign if value is a numeric constant, for example 'WHERE ISN = 1234'. If the
'WHERE ISN = value' option is used, the SET clause must be coded.

To update a record using the ISN returned by a previous Adabas Native SQL statement, the pro-
grammer should use the 'CURRENTOF' option. cursor-name1 is the cursor-name defined in that
statement.

If the user uses the 'CURRENTOF cursor-name1' option in theWHERE clause and the DECLARE
and SET clauses are omitted, Adabas Native SQL will use the Adabas variables generated for the
statement identified by cursor-name1 and will not generate variables for this statement. In this
case, modify the desired fields before issuing the UPDATE statement.

Example:

EXEC ADABAS
FIND
DECLARE PERS CURSOR
SELECT SALARY
FROM PERSONNEL
WHERE PERSONNEL-NUMBER = 180001
OPTIONS HOLD

END-EXEC
.
.
.

SALARY = SALARY * 1.2
EXEC ADABAS

UPDATE PERSONNEL
WHERE CURRENT OF PERS

END-EXEC

215Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

SET Clause

The SET clause specifies the fields to be updated and, optionally, the values to be given to these
fields. The expressions may be separated by blanks (spaces) or commas.

The SET clause must always be coded if the option 'WHERE ISN = value' is used.

If the SET clause is coded, it is recommended that the 'DECLARE cursor-name CURSOR' clause
be used as well to enhance performance.

Coding the SET clause causes Adabas Native SQL to generate a record buffer for this statement.
If the SET clause is not coded, the record buffer of the statement referenced by cursor-name1 will
be used to update the database.

Adabas Native SQL Reference Manual216

ADABAS NATIVE SQL STATEMENTS

expression

field-name denotes the name of the field to be updated. This is the full field name as defined in
the data dictionary. If necessary, the field-name can be subscripted to select the required field
from amultiple-value field, from a periodic group, or from amultiple-value fieldwithin a periodic
group.

The option 'SET field-name' is used when the required value has already been assigned to the
field by means of normal Ada, COBOL, FORTRAN or PL/I statements.

Note: field-name can be a multiple-value or a part of a periodic group, but in this case an
index must be specified within parentheses. For a multiple-value within a periodic group
the user should move the value by himself before the INSERT/UPDATE statement.

The option 'SET field-name = constant' or 'SET field-name = var-name' is used to specify the
new value to be assigned to the field.

constant denotes a constant (literal) value and var-name denotes the name of a variable defined
in the Ada, COBOL, FORTRAN or PL/I program, which must be preceded by a colon.

If NULL is specified, Adabas Native SQL will move -1 (x'FFFF') to the Null field indicator of the
specified field in the Record buffer used for updating the file.

If the user uses the SET clause and specifies a real value or a variable for a field which has a Null
value indicator, Adabas Native SQL will automatically reset the Null field indicator of that field.
If the user does not specify the SET clause, but initiates the fields in the Record buffer by himself,
he should also reset or turn on the Null field indicator.

217Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

var-name

If the variable name is unique within the program, it can be specified as :var. Otherwise, it should
be made unique by preceding it by root, a higher-level data name (qualifier) in the data structure
hierarchy. Both the COBOL-type construction (:var OF root or :var IN root) and the PL/I-type
construction (:root.var) are valid in Ada, COBOL, FORTRAN and PL/I programs.

Both the 'SET field-name' option and the 'SET field-name = data' option can be used in the same
SET clause.

The optional indexmay be an integer constant or the name of a variable preceded by a colon. Note
that blanks (spaces) are not allowed between the :var and the parenthesis preceding the index.

Example 1: Ada

type REC_1 is
record

SALARY : STRING (1..6);
AGE : STRING (1..2);
PERSON_NAME: STRING (1..20);

end record;
REC: REC_1;

.

.

.
EXEC ADABAS

FIND
DECLARE PERS CURSOR
FROM PERSONNEL PRSNNL
WHERE PERSONNEL_NUMBER = "00180001"
OPTIONS HOLD

END-EXEC
.
.

PERSONNEL.PHONE_NR = "00746127";
EXEC ADABAS

UPDATE PERSONNEL
WHERE CURRENT OF PERS
SET NAME = :REC.PERSON-NAME

AGE = :REC.AGE
SALARY = :REC.SALARY
PHONE_NR

Adabas Native SQL Reference Manual218

ADABAS NATIVE SQL STATEMENTS

ZIP = "06100"
STATE = "BS"

END-EXEC

Example 2: COBOL

01 REC
02 SALARY
02 AGE
02 PERSON-NAME

.

.
EXEC ADABAS

FIND
DECLARE PERS CURSOR
FROM PERSONNEL PRSNNL
WHERE PERSONNEL-NUMBER = 180001
OPTIONS HOLD

END-EXEC
.
.

MOVE 746127 to PHONE-NR OF PERSONNEL
EXEC ADABAS

UPDATE PERSONNEL
WHERE CURRENT OF PERS
SET NAME = :PERSON-NAME

AGE = :AGE OF REC
SALARY = :REC.SALARY
PHONE-NR
ZIP = 35
STATE = 'BS'

END-EXEC

Example 3: FORTRAN

CHARACTER* 20 VARNAM
CHARACTER* 2 VARAGE
CHARACTER* 6 VARSAL
.......
CHARACTER* 20 NAME
CHARACTER* 2 AGE
CHARACTER* 6 SALARY
CHARACTER* 8 PHONE
CHARACTER* 5 ZIP
CHARACTER* 2 STATE
CHARACTER* 43 PERNEL

EXEC ADABAS
DECLARE PERS CURSOR

219Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

FROM PERSONNEL
WHERE PERSONNEL-NUMBER = '00180001'
OPTIONS HOLD PREFIX=A

END-EXEC

PNONE = '00746127'

EXEC ADABAS
UPDATE PERSONNEL
WHERE CURRENT OF PERS
SET NAME = :VARNAM

AGE = :VARAGE
SALARY = :VARSAL
PHONE
ZIP = '35'
STATE = 'BS'

END-EXEC

Note: Synonyms are assumed to be defined in the data dictionary as shown in Appendix
B, and truncation is assumed to occur in the middle of the word. (The maximum length of
names is operating-system dependent.)

Note: The field PERNEL encompasses all other fields and is the equivalent of the record
buffer in Ada, COBOL and PL/I.

Example 4: PL/I

DCL 01 REC,
02 SALARY,
02 AGE,
02 PERSON_NAME;
.
.

EXEC ADABAS
FIND
DECLARE PERS CURSOR
FROM PERSONNEL PRSNNL
WHERE PERSONNEL-NUMBER = 180001
OPTIONS HOLD

END-EXEC
.
.

PERSONNEL.PHONE_NR = 746127;
EXEC ADABAS

UPDATE PERSONNEL
WHERE CURRENT OF PERS
SET NAME = :PERSON-NAME

AGE = :AGE OF REC
SALARY = :REC.SALARY
PHONE-NR

Adabas Native SQL Reference Manual220

ADABAS NATIVE SQL STATEMENTS

ZIP = 6100
STATE = 'BS'

END-EXEC

OPTIONS Clause

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See the previous discussion on
this option for more information.

COND-NAME Option

This option applies only to COBOL programs.

If the option 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameterOPTIONSwill be overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an "X" if
you want to specify this option. See the previous discussion on this option for more information.

221Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from Predict. If no index name
is defined in the data dictionary, the name of the multiple-value field or periodic group is used,
prefixed with 'I-'.

Any specification here will override any setting of the global parameterOPTIONS.

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an "X" if you
want to specify this option. See theprevious discussion on this option and sectionGenerate COBOL
Copy Code in the Predict Administration Manual for more information.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a password-
protected file or a file that is protected by security by value, unless it is specified globally in the
CONNECT statement. See the previous discussion on this option for more information.

PREFIX Option

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

STATIC Option

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameterOPTIONS.

Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you want to
specify this option. See the previous discussion on this option for more information.

Adabas Native SQL Reference Manual222

ADABAS NATIVE SQL STATEMENTS

STATUS Option (available with Adabas Version 4 only)

The STATUS option invokes the Status Protection option of Adabas. This causes the data protection
information for the statement to be physically written to the Data Protection Log at the time the
statement is processed.

Note: Use of the STATUS option is not recommended. See section Status Protection Option
in chapter Concepts and Facilities of theAdabas Command Reference Manual for more informa-
tion.

SUFFIX Option

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified suffix. Any value here will override values specified with the global parameterOP-
TIONS or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this option for more information.

223Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

The WHENEVER Statement

The WHENEVER statement is used to control the error handling of the program. It affects the
code generated by the Adabas Native SQL preprocessor for handling exception conditions.

The 'WHENEVER NOT FOUND GOTO label' statement specifies a label to which the program
should jump if the 'no records found' condition occurs as a result of the execution of a COMPARE,
FIND, FIND COUPLED or SORT statement.

The 'WHENEVER SQLERROR GOTO label' statement specifies a label to which the program
should jump if an error response code (response code neither = 0 nor = 3) occurs as a result of the
execution of an Adabas Native SQL statement.

The 'WHENEVER ... CONTINUE' statement causes the Adabas Native SQL preprocessor to stop
generating test-&-branch code after each ADABAS Native SQL statement.

If a 'WHENEVER SQLERROR ...' statement is coded, it deactivates the error handling routine of
the standard abort module. You should normally use the SQLERROR together with ABORT.

The variables ISN, QUANTITY and RESPONSE_CODE (Ada, COBOL and PL/I unless the global
parameter 'ABORT .' is coded) or SQLISN, SQLQTY and SQLRSP (Ada, COBOL and PL/I if the
global parameter 'ABORT .' is coded; also FORTRAN) contain the values from the most recent
ADABAS Native SQL statement. These can be used for error analysis.

See sections Additional Fields in the Record Buffers and Response Code Interpretation for more
information.

See also description of the ABORT parameter for more information on error processing.

Adabas Native SQL Reference Manual224

ADABAS NATIVE SQL STATEMENTS

The WRITE TO LOG Statement

This statement is used to write user data to the Adabas data protection log. This data may be read
and displayedwith the ADASEL utility program. See theAdabas Utilities Manual for more inform-
ation.

225Adabas Native SQL Reference Manual

ADABAS NATIVE SQL STATEMENTS

USERDATA Clause

The data to be written must be stored in the variable denoted by var. The variable name must be
immediately preceded by a colon (':'), for example 'USERDATA = :NAME'. The length of the user
data, that is, the number of characters to be written, must not exceed the limit specified in the
USERDATA clause of the global parameter. OPTIONS.

Adabas Native SQL Reference Manual226

ADABAS NATIVE SQL STATEMENTS

7 USING ADABAS NATIVE SQL STATEMENTS IN TP

PROGRAMS
■ COM-PLETE .. 228
■ Customer Information Control System (CICS) .. 228

227

This chapter describes the procedures that must be observed when writing teleprocessing applic-
ation programs under COM-PLETE, CICS or UTM that issue Adabas Native SQL statements.

No special precautions need to be takenwhenwriting programs that are to run under BS2000/RTIO,
z/VM, TSO or equivalent compatible systems. Programs should be coded in exactly the same way
as batch programs.

See also the Adabas Programmer's Guide for Teleprocessing Applications.

This chapter covers the following topics:

COM-PLETE

TP application programs that are to run under the control of Software AG's COM-PLETE TP
monitor should be coded in exactly the same way as batch programs.

The COM-PLETE utility program USCHC can be used to set the default hard-copy device to 0, so
that output produced by DISPLAY statements will be sent to the user's terminal.

Customer Information Control System (CICS)

TheCICS TransactionWorkArea (TWA) provides a standardized interface for passing parameters
to the program. The first sixwords of the TWAare used byAdabasNative SQL for communication
with CICS. Alternatively, the user may choose to use the COMMAREA. Refer to the global para-
meterMONITOR.

The CICS command level interface for Ada, COBOL, FORTRAN and PL/I ensures that programs
written in these languages will be quasi-reentrant.

Programs can be written in CICS pseudo-conversational mode with the aid of the SAVE and RE-
STORE statements. Programs that use this facility must not use the ISNSIZE option.

Adabas Native SQL provides an easy way of defining parameters for generating the CICS code.
For further information, see the global parameterMONITOR.

See also the global parameter CICS STUB.

Passing Parameters to Adabas

The addresses of the Adabas control block, format buffer, record buffer, search buffer, value buffer
and ISN buffer are passed in the same manner for all releases of CICS. These addresses must be
placed in the first six words of the TWA. Software AG provides an Assembler subroutine,
ADASTWA, which places the parameter address in the TWA. The Adabas/CICS interface routine,

Adabas Native SQL Reference Manual228

USING ADABAS NATIVE SQL STATEMENTS IN TP PROGRAMS

ADALNC, retrieves these addresses from the TWA. This module must be used instead of the
standard Adabas interface routine, ADALNK. The Ada, COBOL, FORTRAN or PL/I program
should call ADASTWA with the TWA as the first parameter; the next six parameters are the cus-
tomary parameters as used with Adabas direct calls.

Compiling and Executing Adabas Native SQL/CICS Programs

CICS applications programs that use Adabas Native SQL statements must be processed in the
following order:

1. Run the program through the Adabas Native SQL preprocessor;

2. Run the program through the CICS preprocessor;

3. Compile the program in the normal manner;

4. Link-edit the program. An INCLUDE statement must be coded to force the inclusion of the
subroutine ADASTWA (Ada, COBOL and PL/I) or ADATWA (FORTRAN);

5. Execute the program.

COBOL TP Programs Using Adabas Native SQL and CICS (Command Level)

The following global option parametersmust be specifiedwhen preprocessingCOBOLprograms:

ADACALL ADASTWA USING TWA.
TELE "EXEC CICS LINK PROGRAM ('ADABAS') END-EXEC".
ABORT RESPCICS CICS.

The ADACALL parameter causes each 'CALL ADABAS' statement to be replaced by a 'CALL
ADASTWA' statement. The TELE parameter causes the CICS command level instruction to be
inserted after every Adabas command. TheABORT parameter causes the call to the response code
analysis module 'RESPCICS' to be called in a "CICS" way.

Alternatively 'MONITOR CICS.' may be used.

Also, the TWAmust be declared in the linkage section of the program and the address of the TWA
must be made available.

229Adabas Native SQL Reference Manual

USING ADABAS NATIVE SQL STATEMENTS IN TP PROGRAMS

FORTRAN Programs Using Adabas Native SQL and CICS (Command Level)

The code for FORTRAN programs is identical to that for COBOL; however ADASTWA (supplied
in the Adabas source library) must be changed to ADATWA.

PL/I TP Programs Using Adabas Native SQL and CICS (Command Level)

The following global option parameters must be specified when preprocessing PL/I programs:

ADACALL ADASTWA USING TWA.
TELE "EXEC CICS LINK PROGRAM ('ADABAS');".
ABORT RESPCICS CICS.

The ADACALL parameter causes each 'CALL Adabas' statement to be replaced by a 'CALL
ADASTWA' statement. The TELE parameter causes the CICS command level instruction to be
inserted after every Adabas command. TheABORT parameter causes the call to the response code
analysis module 'RESPCICS' to be called in a "CICS" way.

Alternatively, 'MONITOR CICS.' may be used.

Also, the TWA must be declared and its address must be made available.

If you implement a multiple-step transaction under UTM, the contents of the control block are
lost. You should therefore use the SAVE and RESTORE statements before and after every screen-
IO. Also, Adabas must be running in get-next mode, this means specify no ISNSIZE.

Adabas Native SQL Reference Manual230

USING ADABAS NATIVE SQL STATEMENTS IN TP PROGRAMS

8 GLOBAL PARAMETERS

■ The ABORT Parameter ... 233
■ The ADACALL Parameter ... 236
■ The APOS Parameter ... 238
■ The CICS STUB Parameter ... 239
■ The LANG Parameter ... 240
■ The LIBRARY Parameter .. 241
■ The MODE Parameter .. 242
■ The MONITOR Parameter ... 244
■ The NAME Parameter .. 247
■ The NETWORK Parameter .. 248
■ The OPTIONS Parameter .. 249
■ The SYSFILE Parameter ... 260
■ The TELE Parameter .. 261
■ The USER Parameter ... 262
■ The VIRTUAL-MACHINE Parameter .. 263
■ The XREF Parameter ... 264

231

Adabas Native SQL provides a range of global parameters that can be used to define processing
options and adapt them to your particular requirements. The options are specified in a parameter
file, which is typically included in the job control stream and read by an '//ADAGLOB DD *' JCL
card or equivalent.

This chapter lists the global parameters and describes their syntax and their effect.

Note that each of these parameters is terminated by a period ('.').

Global parameters can now contain comment lines. Comment lines are signified by two asterisks
('**') starting in column 1.

This chapter covers the following topics:

Adabas Native SQL Reference Manual232

GLOBAL PARAMETERS

The ABORT Parameter

The ABORT parameter is used to modify Adabas Native SQL's action when an Adabas command
returns a response code other than 0 or 3.

See also Response Code Interpretation and the Adabas Messages and Codes Manual.

In the absence of an ABORT parameter, the abort module RESPINT (Ada, COBOL or PL/I) or
RESPF (FORTRAN) is called. Thismodule interprets the response code and prints the appropriate
text from theABENDerrormessagefile, the content of theCONTROL-BLOCKand the line sequence
number of the erroneous source statement in the SYSOUT file, calls the appropriate trace module,
issues an Adabas BT command, and closes the database. Finally, it ABENDs the run.

In particular, the following fields are passed to the error-handling routine:

CONTROL-BLOCK
DDFILE
CSEQ
FORMAT-BUF
RECORD-BUF
SEARCH-BUF
VALUE-BUF
CLN1
CLN2
TRCE
CLNNUM
DDDBID

CLN1 and CLN2 are arrays that contain the Adabas Native SQL statement. CLN1 contains char-
acters 1..40 of each statement and CLN2 contains characters 41..80. CLNNUM is a variable that
indicates the number of elements used in each of these two arrays.

If youwant to trap certain error conditions and handle them differently, youmust write your own
error handling routine. AdabasNative SQLwill generate calls to thatmodule instead of to RESPINT
if an ABORT parameter with the appropriate module-name is executed. The fields listed above
are passed to the module.

233Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

If 'ABORT FILE=0.' is coded, Adabas Native SQL does not generate an OPEN for the Natural
system.

If ABORT is coded with no module-name, i.e., 'ABORT .', Adabas Native SQL will not check the
response code after executingAdabas commands and no exception handling routinewill be called.
You must write inline code following each Adabas Native SQL statement to handle exception
conditions, or use the WHENEVER statement. In addition, if ABORT is coded with no module-
name, Adabas Native SQL generates three global fields with the names SQLISN, SQLQTY and
SQLRSP instead of generating the three fields ISN, QUANTITY and RESPONSE_CODE for each
record buffer.

See also Additional Fields in the Record Buffers (Ada, COBOL, PL/I). (In FORTRAN programs,
since there are no record buffers, AdabasNative SQL always generates the above-mentioned three
global fields.)

IDENT Clause

If the ABORT parameter is used with the IDENT keyword, Adabas Native SQL generates a state-
ment of the form:

CALL identifier ...

where the variable identified by the identifier contains the name of the error-handling routine.
Otherwise, a statement of the form:

CALL 'module-name' ...

is generated, where the name of the error-handling routine appears as a literal constant in the
CALL statement.

The first form is used for dynamic calls, the second for static calls.

This option is only available in COBOLprograms, and it is not supported by all COBOL compilers.

PLI Clause

If the user-written module is in PL/I, the keyword 'PLI' must be coded.

Adabas Native SQL Reference Manual234

GLOBAL PARAMETERS

CICS Clause

This clause specifies that the calling mechanism to the response code analysis routine should be
generated for CICS. Hence Adabas Native SQL will generate the following:

CALL 'ADASTWA' USING ADASQL-LINK-ADDRESSES CONTROL-BLOCKxxxx
DDFILE CSEQ FORMAT-BUFxxxx RECORD-BUFxxxx SEARCH-BUFxxxx VALUE-BUFxxxx
CLN1 CLN2 TRCE CLNNUM DDDBID
CALL 'ADASTWA' USING TWA ADASQL-LINK-ADDRESSES
EXEC CICS LINK PROGRAM ('RESPCICS') END-EXEC

Note: The definition of ADASQL-LINK-ADDRESSES is generated by Adabas Native SQL,
and the user should define the TWA as a 24-byte string.

FILE Clause

If the error texts reside in a file other than the standardNatural systemfile (FNAT), the FILE clause
should be used to specify the file number. This number will be passed to the response code inter-
pretation routine as the second parameter, DDFILE. If FILE=0 is coded, no OPEN command will
be issued.

The error texts are commonly stored in the Natural system file (parameter FNAT in the SYSFILE
statement).

DBID Clause

This clause may be used to specify a database where the FNAT exists in another environment.
RESPINT now accepts another parameter DDDBID which has the database number of the FNAT
or zero (if the DBID clause is not specified).

235Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The ADACALL Parameter

TheADACALLparameter is used to instructAdabasNative SQL to generate non-standardAdabas
calls. Instead of the standard call:

CALL 'ADABAS' USING CONTROL-BLOCK... etc.

Adabas Native SQL will generate a call as follows:

CALL 'module-name' USING id1... CONTROL-BLOCK... etc.

The subroutine name 'ADABAS' is replaced by the specified module name in each executable
command generated by Adabas Native SQL.

This parameter is used mainly in teleprocessing (TP) applications programs, where the user must
call the ADASTWAmodule. The first parameter of the 'CALL' statement is the terminal work area
(TWA); this is followed by the Adabas buffers.

A TP program should therefore specify the following ADACALL parameter:

ADACALL ADASTWA USING TWA.

This will cause Adabas Native SQL to generate the following call instead of 'CALL 'ADABAS'':

CALL 'ADASTWA' USING TWA CONTROL-BLOCK... etc.

TheADACALLparametermay also be useful in installations thatmaintain an I/O interface between
the application and Adabas. The ADACALL parameter can be used to direct the calls to the I/O
interface, instead of to Adabas.

In CICS environments, the ADALNK module must be replaced by the ADALNC module, which
fetches the Adabas parameters (control block, record buffer, etc.) from the TWA.

See also the description of the 'MONITOR' and 'TELE' parameters.

CICS users should also refer to Using Adabas Native SQL Statements in TP Programs.

Adabas Native SQL Reference Manual236

GLOBAL PARAMETERS

IDENT Clause

If the ADACALL parameter is used with the IDENT keyword, Adabas Native SQL generates a
statement of the form:

CALL identifier ...

where the variable identified by the identifier contains the name of the Adabas link routine. Oth-
erwise, a statement of the form:

CALL 'module-name' ...

is generated, where the name of the Adabas link routine appears as a literal constant in the CALL
statement. The first form can be desirable in certain circumstances. This option is only available
in COBOL programs, and it is not supported by all COBOL compilers.

LAST Clause

The LAST clause is used to specify the seventh parameter generated for the Adabas call. id2 is a
structure generated by Adabas Native SQL. It can be modified by the user as desired.

The seventh parameter is only an option of Adabas. It contains information that can be evaluated
by an Adabas user exit. Adabas Review uses the seventh parameter to receive information on the
program name and library name. Adabas Native SQL put the value of the program name within
the structure. The user should plug in the library name, using a simple MOVE statement into the
L-variable field. The last clause also causes Adabas Native SQL to generate code that may enable
Review to identify the use of the seventh parameter.

The LAST clause of the ADACALL parameter generates a structurewith the following names (not
applicable to VMS or UNIX):

01 Variable
02 FILLER PIC x(276).
02 PR-variable PIC x(8)VALUE

'program'.
02 L-variable PIC x(8) VALUE

'library'.
02 RE-variable PIC x(76).

237Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The APOS Parameter

If the APOS parameter is set to 'NO', character strings generated by Adabas Native SQL will be
enclosed in double quotes ("). If theAPOSparameter is not coded, character stringswill be enclosed
in single quotes, sometimes known as apostrophes (').

Adabas Native SQL Reference Manual238

GLOBAL PARAMETERS

The CICS STUB Parameter

This global parameter is used to improve performance of interpartition commands when using
CICS.

In this case, the call is made to the modulle "Adabas", supplying as the first parameter the stub
pointer. Adabas Native SQL generates the definition of the stub pointer, and the user should
supply the name by using the ADACALL parameter:

ADACALL ADABAS USING pointer

With the CICS stub, the user should also use the ABORT CICS parameter if the response code
analysis routine should be invoked for CICS.

Note: The user should define the TWA for this purpose.

239Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The LANG Parameter

Adabas Native SQL generates declarations and code in the language specified by this parameter.
The code generated with the setting 'COBOL' is also compatible with the COBOL/II compiler, but
the code generated with the 'COBOL/II' setting makes use of the structured 'END-IF', 'END-PER-
FORM', etc., clauses.

If this parameter is omitted, Adabas Native SQL attempts to determine the language in which the
program is written by examining its first line. However, this technique is not completely reliable,
so we strongly recommend you include this parameter in every Adabas Native SQL run.

Adabas Native SQL Reference Manual240

GLOBAL PARAMETERS

The LIBRARY Parameter

This new parameter is used to support a library concept for 3GL applications. name represents a
logical library name (max. 8 characters). If the library is not defined in Predict, an error message
is displayed.

241Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The MODE Parameter

This parameter controls debugging facilities that are built in to Adabas Native SQL.

MODE FLOW

If the parameter 'MODE FLOW' is specified, all Adabas Native SQL statements will be printed
out at runtime as they are executed.

MODE NOFLOW

If the parameter 'MODE NOFLOW' is specified, the code that copies Adabas Native SQL source
statements into a buffer is not generated. This reduces the size of the generated Ada, COBOL,
FORTRAN or PL/I code, but the FLOW and TRACE facilities are not available and Adabas Native
SQL cannot print out the source statement if a runtime error is detected. This couldmake debugging
more difficult.

MODE NOUPDATE

If MODE NOUPDATE is coded, statements that would modify the database (DELETE, INSERT,
UPDATE) have no effect.

MODE TRACE

This parameter must be coded if diagnostic output is required. Conversely, when a program has
been debugged and diagnostic output is no longer required, you can delete this parameter and
recompile the program. The resulting object module will be smaller and will run faster.

Diagnostic output is controlled by the following:

■ the global parameter 'MODE TRACE.'
■ the Adabas Native SQL statements 'TRACE ON' and 'TRACE OFF', and
■ the value contained in the variable TRCE (Ada, COBOL, PL/I) or SQDE00 (FORTRAN).

The action of the global parameter 'MODE TRACE' is described above.

When processing an Ada, COBOL, FORTRAN or PL/I program, and assuming that the global
parameter 'MODE TRACE' has been coded, Adabas Native SQL only generates the code for pro-

Adabas Native SQL Reference Manual242

GLOBAL PARAMETERS

ducing diagnostic output when it encounters a 'TRACE ON' statement, it stops generating this
code when it encounters a 'TRACE OFF' statement. These two statements provide static control
of the diagnostic output, that is, they control the section or sections of the program in which dia-
gnostic code is generated.

When an Adabas Native SQL statement is executed, the first action of the diagnostic code is to
test the value contained in the variable TRCE (Ada, COBOL, PL/I) or SQDE00 (FORTRAN). If this
value is 'OFF', then no further action is performed. Otherwise, the statement is printed out together
with the contents of the buffers. This variable provides dynamic control of the diagnostic output.
By assigning values to this variable at runtime, you have greater control over the diagnostic output.
For example, you could limit output to the first five executions of a loop that may be executed
several hundred times.

243Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The MONITOR Parameter

This parameter makes it unnecessary to code the ADACALL and TELE global parameters.

If the optional twa clause is coded, this name is used instead of the default name 'TWA'.

For COBOL programs, coding 'MONITOR CICS.' is equivalent to coding the following three
global parameters:

ADACALL ADASTWA USING TWA.
TELE "EXEC CICS LINK PROGRAM ('ADABAS') END-EXEC".
ABORT RESPCICS CICS

The MONITOR CICS parameter is not valid in FORTRAN programs.

For PL/I programs, coding 'MONITOR CICS.' is equivalent to coding the following three global
parameters:

ADACALL ADASTWA USING TWA.
TELE "EXEC CICS LINK PROGRAM ('ADABAS') ;".
ABORT RESPCICS CICS

These defaults may be overridden by coding one or both of the ADACALL or TELE parameters.

Prior to all calls created by the ADACALL parameter, the following code will be generated for
COBOL if 'MONITOR CICS.' has been coded:

MOVE xxxxxxxxxx to ADASQL-SAVE-TWA

The corresponding code for PL/I programs is:

ADASQL_SAVE_TWA = xxxxxxxxxx

 ↩

xxxxxxxxxx is the field name supplied after USING in the global parameter ADACALL. (TWA is
the default ADACALL used.)

Adabas Native SQL Reference Manual244

GLOBAL PARAMETERS

After each TELE line is generated, the following COBOL code is inserted if 'MONITOR CICS.' has
been coded:

MOVE ADASQL-SAVE-TWA TO xxxxxxxxxx

The code for PL/I programs is:

xxxxxxxxxx = ADASQL_SAVE_TWA

If you are using more than 28 bytes in the TWA, code the following:

01 TWA.
02 ADABAS-TWA PIC X(28)
02 REST-OF-TWA PIC X(nnnn).

Then code the following ADACALL parameter for COBOL:

ADACALL ADASTWA USING ADABAS-TWA

We recommend defining the layout of the TWA in COBOL copy books which can be accessed by
all Adabas Native SQL programs.

The code for PL/I is:

DCL 01 TWA,
02 ADABAS_TWA CHAR(28)
02 REST_OF_TWA CHAR(nnnnn);

This parameter also controls the generation of EXEC CICS LINK to RESPCICS and PRTRCICS
instead of RESPINT and PRTRACE.

The COMMAREA parameter is for using the COMMAREA instead of the TWA.

The user then will have to define a structure for the Commarea usage as follows:

01 COMMAREA-NAME.
02 FILLER PIC X(8) VALUE 'ADABAS52'.
02 ADDR-NAME.
03 FILLER PIC X(4) OCCURS 6.

Adabas Native SQL will then generate

■ a call to ADASTWA with addr-name to move the addresses of the Adabas buffers into it;

245Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

■ and then an EXEC CICS command with COMMAREA(commarea-name) instead of TWA.

The constant "ADABAS52" is the indicator for theAdabasCICS interface to detect theCOMMAREA
parameter list. For the syntax of the Adabas parameter list, see also the Adabas CICS command
level interface description for CICS Version 3.2 and higher.

Note: The RESPCICS and PRTRCICS will continue to use the TWA.

Adabas Native SQL Reference Manual246

GLOBAL PARAMETERS

The NAME Parameter

Theprogram-name specified in the 'NAME' parameter is used byAdabasNative SQL in conjunction
with the programming language (Ada, COBOL, FORTRAN or PL/I) when Adabas Native SQL
writes Xref data to the data dictionary. The program-name is referred to in Predict asMember.

Adabas Native SQL provides cross-reference reports of programs, modules and fields using the
Xref facilities of Predict. This information is automatically created during the preprocessor pass.
The names of the files and fields that are used are taken from the FROM, SELECT, WHERE, SET,
etc., clauses of theAdabasNative SQL statements; the name of the program that uses them is taken
from the 'NAME' parameter.

If theNAMEparameter is omitted, AdabasNative SQL takes the programname from the following
sources:

Program name taken fromLanguage

the procedureADA

PROGRAM-ID paragraph in the environment divisionCOBOL

the first line of the program, which must be PROGRAM prognameFORTRAN

the label preceding 'PROC OPTIONS(MAIN)'PL/I

247Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The NETWORK Parameter

This global parameter defines the network in which the program is to run. network-namemust be
defined in Predict, and must be linked to the virtual machine specified with the parameter VIR-
TUAL-MACHINE.

This parameter is mandatory, if one or more networks other than HOME are defined in Predict.

A network contains all virtualmachines and databases that are to be accessed. In fact, all databases
that are used in the program should belong to the network specified here.

For every database used (DBID, AUTODBID, AUTODBID-ATM or AUTODBID-ALL clauses),
Adabas Native SQL checks that if the database is defined as local it belongs to the current virtual
machine, and if the database is isolated that it belongs to the current network.

Adabas Native SQL Reference Manual248

GLOBAL PARAMETERS

The OPTIONS Parameter

249Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

Adabas Native SQL Reference Manual250

GLOBAL PARAMETERS

TheOPTIONSparameter enables the user to specify various processing options thatwill take effect
for the whole of the program unless they are overridden by declarations made at the individual
statement level.

The OPTIONS parameter should not be confused with the OPTIONS clause of individual Adabas
Native SQL statements.

ADA-VERSION Clause

The ADA-VERSION clause indicstes to Adabas Native SQL in which Adabas version the precom-
piled program is to be executed. The default is 62, and this will generate code that can be executed
in all Adabas versions. The value 71 will enable using new features introduced in Adabas Version
7.1 in the READ LOGICAL and HISTOGRAM statements.

Note: Aprecompiled programwithADA-VERSION=71may fail or give unpredicted results
if executed in an Adabas version lower than 7.1.

AUTODBID Clause

The AUTODBID option causes every access statement to use the database identified in Predict for
that file. If the file is linked to a database and no specific DBID is specified in the statement, an
error message is given.

AUTODBID-ALL Clause

The AUTODBID-ALL option causes all statements (both access and update) to use the database
identified in Predict for that file. If the file is linked to a database and no specific DBID is specified
in the statement, an error message is issued.

If AUTODBID-ALL is specified, neither the DBID nor the AUTODBID clause may be used.

The following rules apply to the various statements when using the AUTODBID-ALL clause:

RemarksStatement

One file must be documented in exactly one database.All statements

If separate test and production environments are used, separate dictionary files (FDIC)
are necessary.

No source changes are necessary if only a recompile with the production dictionary
is required.

These statements are mandatory and must be used within one program.CONNECT,
DBCLOSE

The files specified in theUPDATE clause define the database to be updated. All update
files must be within one database otherwise an error message is displayed. If more

251Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

RemarksStatement

than one database is accessed, several OPEN commands must be generated, but only
one OPEN command is generated for update.

To generate a CLOSE command to the same databases which are opened using
CONNECT, the DBCLOSE must occur within the same program, otherwise an error
message is given.

The COMMIT statement is always sent to exactly one database. This database is
identified by the CONNECT statement (updatefiles => database) or by the UPDATE

COMMIT

statements available in the program. An UPDATE or CONNECT statement must be
coded, otherwise an error message is given.

If the program does not contain a CONNECT statement, a warning is issued that
CONNECTmust be executed before the updates are performed, otherwise consistency

UPDATE,DELETE,
INSERT

cannot be guaranteed. Adabas Native SQL must be able to check that within one
program updates are performed only on files that belong to the same database.

The update of only one database is supported.

AUTODBID–ATM Clause

The AUTODBID–ATM option causes all statements (both accesss and update) to use the database
identified in Predict for that file. If the file is linked to more than one database and no specific
DBID is specified in the statement, an error message is issued.

If AUTODBID–ATM is specified, neither the AUTODBID-ALL nor the AUTODBID clause may
be used.

With this optionwe do not restrict the number of updated databases (unlike the AUTODBID-ALL
parameter) and the user does not have to specify any DBID in any of the statements.

Note: Please note that if such a program will be run without the supervision of the Adabas
Transaction Manager, we cannot guaranty the data integrity and this will be the user’s re-
sponsibility to ensure the use of the Adabas Transaction Manager.

The Commit statement will be generated with the default DBID and the Adabas Transaction
Manager will take care of the two phase commit.

If within this program the user would like to use the CONNECT statement, then he should specify
in this statement the DBID to which this CONNECT should run. The same would apply to the
DBCLOSE statement.

Adabas Native SQL Reference Manual252

GLOBAL PARAMETERS

BINARY Clause

This clause applies to COBOL programs only.

It will cause all binary fields to be generated as BINARY instead of COMP.

COND-NAME Clause

This clause applies to COBOL programs only.

If the clause 'COND-NAME = Y' is coded, the record buffer generated by Adabas Native SQL in-
cludes the condition names defined in Predict as level-88 entries.

This global value will be overridden by any value specified in a clause of an individual Adabas
Native SQL statement.

The field With Cond. names in the Predict Modify COBOL Defaults screen must be marked with
an "X" if you want to specify this option. See also Generate COBOL Copy Code in the Predict Admin-
istration Manual.

DBID Clause

This clause should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed. All statements including UPDATE, DELETE and STORE
are affected by this clause.

DYNAMCID Clause

If the DYNAMCID keyword is coded, Adabas Native SQL generates the command IDs of the
Adabas control blocks dynamically during program execution.

The automaticAdabas routine for generating the command ID is used.UsingDYNAMCID increases
performance significantly.

If this clause is not specified, the command ID used for each Adabas command is generated from
the cursor-name of the correspondingAdabasNative SQL statement. If theDYNAMCIDkeyword
is not coded in the global OPTIONS parameter and a cursor-name is not defined for a particular
Adabas Native SQL statement, because the DECLARE option was not used, Adabas Native SQL
will generate command IDs in the form -m-n, where mn is a sequence number starting from 01.
The first statement without a DECLARE clause will have command ID -0-1, the second statement
will have -0-2, etc.

The command ID is used by Adabas for the following purposes:

253Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

■ As an identifier for the internal, decoded version of the format buffer. Efficiency is improved if
Adabas statements that use the same format buffer use the same command ID, otherwiseAdabas
is compelled to re-interpret the format buffer each time.

■ WhenexecutingHISTOGRAM,READLOGICALandREADPHYSICALSEQUENCEstatements.
If the command ID is not given when the statement is executed, Adabas 'loses its place' in the
file and gives inconsistent results.

■ To identify ISN lists. The command ID links the Adabas command (COMPARE, FIND, FIND
COUPLED, or SORT) that creates the ISN listwith subsequent commands that retrieve the records
whose ISNs are stored in the list.

If several programs that use Adabas Native SQL statements are linked together, all command IDs
must be unique. This can be achieved explicitly, that is, by coding a unique cursor-name for each
statement, or by allowingAdabasNative SQL to allocate the command IDs dynamically bymeans
of theDYNAMCIDglobal option. Coding unique cursor-names has the advantage that theAdabas
command log is easier to interpret.

See section Command ID Usage in the Adabas Command Reference Manual for more information.

GFORMAT Clause

This clause indicates that a global format is to be generated for this program. Adabas Native SQL
generates a unique global format ID for every declaration generated (with the exception of variable
index used for periodic groups or multiple-value fields). The global format ID is unique and will
not exist in other programs. This clause can help to improve application performance, particularly
in on-line environments, by reducing the number of format buffer translations that Adabas has
to perform.

If this option is used, the global format ID is generated from the following information:

GFID = abcdeeef

Where for FDIC file number and DBID < 255,

a = x'C0'

b = x'83'

c = FDIC DBID

d = FDIC FNR

eee = Adabas Native SQL sequence number from Predict defaults

f = An internal sequence number within the program

Where for FDIC file number or DBID > 255

Adabas Native SQL Reference Manual254

GLOBAL PARAMETERS

a = x'C1'

b = Possible value x'00' to x'FF'

c = Right byte of FDIC DBID

d = Right byte of FDIC FNR

eee = Adabas Native SQL sequence number from Predict defaults

f = An internal sequence number within the program

The GFORMAT clause is not available in Ada programs.

INDEXED Clause

This clause applies to COBOL programs only.

If the INDEXED clause is specified, all multiple-value fields and periodic groups are generated
with the 'INDEXED BY' keywords. The name of the index is taken from Predict. If no index name
is defined in the data dictionary, the name of the multiple-value field or periodic group is used,
prefixed with 'I-'.

This global value will be overridden by any value specified in a clause of an individual Adabas
Native SQL statement.

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this clause and sectionGenerate COBOL
Copy Code in the Predict Administration Manual for more information.

INIT-LOW-VALUE Clause

By default, Adabas Native SQL is generating the Value buffer fields with an initial value of blanks
for alphanumeric fields and zeroes for numeric fields. In thisway a Read logical commandwithout
a WHERE clause will start the sequential read from those starting values.

With this option the generated alphanumeric fields in the Value buffer will have an initial value
of X’00’ which has a collating sequence lower than blanks. In this way if the descriptor which we
use for the Read logical has values lower than blanks and we don’t specify the WHERE clause we
will start the sequential read from the lowest value available for this field.

Please note that this feature is available for Cobol and PL/1 languages only.

255Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

ISNSIZE Clause

If the ISNSIZE clause is specified, the default size of the ISN buffer is defined and all Adabas
Native SQL statements run in 'ISN buffer' mode; however, the buffer size can be modified for in-
dividual retrieval statements by local ISNSIZE specifications.

If a global ISNSIZE value is not specified, ISN buffers are allocated for individual statements as
determined by the presence or absence of the ISNSIZE parameter in the OPTIONS clause of each
individual statement.

ISN buffer mode must not be used when accessing files that use the 'security by value' facility.

See also ISN Lists and the ISN Buffer.

LARGE-NUMBERS Clause

This option will cause Adabas Native SQL to generate numeric (Unpacked)and Packed fields in
Cobol for numeric fields with up to 31 digits. Without this option numeric fields with more than
18 digits will be generated as a character string. Users should note that in case of using the LARGE-
NUMBER clause, they should make sure that the Cobol compiler option that allows for up to 31
digits numeric fields is set.

LONG-COUNTER Clause

This option will cause Adabas native SQL to generate the Multiple Value and Periodic Group
counters as 4 binary bytes instead of the default of 2 binary bytes. This option should be used if
the total occurrences of the Multiple Value or the Periodic group may exceed 32767 occurrences.

NEW-CONTROL-BLOCK Clause

This option will cause Adabas Native SQL to generate the new control block structure introduced
in Adabas 6.1 on mainframe platforms and Adabas 4.1 in OpenVMS.

The new control block will allow file numbers and dbid's to be greater than 255.

NONDE Clause

This clause is available with Adabas 5 only. It is used to allow (NONDE=Y) or inhibit (NONDE=N)
the use of non-descriptors within database search criteria. The option NONDE=D specifies that
each search criterion must include at least one descriptor (and possibly some non-descriptors).

The field Non-descriptor search allowed in the Predict Modify Adabas Native SQL Defaults
screen must be set to "Y" if you want to use this option.

Adabas Native SQL Reference Manual256

GLOBAL PARAMETERS

OLDCOND-NAME Clause

Adabas Native SQL allows for the condition values to contain blanks. In versions prior to V231,
a blank in the value of the condition name definition in Predict was considered as a delimiter and
Adabas Native SQL generated several values for the same condition name value line.

With version 231 and up, only one value will be generated per value line definition in Predict and
this value may contain blanks.

Users that would like to keep the old functionality may use this keyword.

With this option, Adabas Native SQL will generate the Condition names as in versions prior to
V231 and consider a blank in the value to be a delimiter.

OPEN Clause

If this clause is coded, Adabas Native SQL performs an explicit 'open' on Predict file as it prepro-
cesses your application program.

PREFIX Clause

If the option 'PREFIX = prefix' is coded, the field names generated for the record bufferwill include
the specified prefix. This global value will be overridden by any value specified in a clause of an
individual Adabas Native SQL statement or taken from the data dictionary.

Field name prefix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this clause for more information.

SOFT Clause

This clause is used to enable (SOFT=Y) or inhibit (SOFT=N) the soft-coupling option.

The field Use of soft-coupling allowed in the Predict Modify Adabas Native SQL Defaults
screen must be set to "Y" if you want to specify this option.

STATIC Clause

This option applies to PL/I programs only.

If the option 'STATIC = Y' is coded, all buffers generated by Adabas Native SQL will be defined
as static. This global value will be overridden by any value specified in a clause of an individual
Adabas Native SQL statement.

The field Static in the Predict Modify PL/I Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this clause for more information.

257Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

SUFFIX Clause

If the option 'SUFFIX = suffix' is coded, the field names generated for the record bufferwill include
the specified suffix. This global value will be overridden by any value specified in a clause of an
individual Adabas Native SQL statement or taken from the data dictionary.

Field name suffix in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option. See the previous discussion on this clause for more information.

TRUNCATION Clause

Afield namemay exceed themaximum number of characters permitted by the language, particu-
larly if a prefix and/or suffix has been added. Adabas Native SQL uses the TRUNCATION clause
to delete excess characters:

truncate from the leftTRUNCATION = L

truncate from the middleTRUNCATION = M

truncate from the rightTRUNCATION = R

This global value will override the value in the data dictionary.

The field Truncation in the Predict Modify...Defaults screen must be marked with an "X" if you
want to specify this option.

USERDATA Clause

The USERDATA clause may be used to specify the size of the ET-data buffer, i.e., RECORD-
BUFOPN. The default size is 500 bytes. This buffer is used in COMMIT WORK, DBCLOSE and
CHECKPOINT statements.

VALIDATION Clause

This option determines how invalid characters in field names - including prefix and suffix, if
specified - are handled by Adabas Native SQL.

ResultValidation Character

Invalid characters in a field name will result in an error
message but will not be modified.

Null string (two consecutive apostrophes)

Invalid characters in a field name are replaced by this
character.

Replace character
(letters A-Z, digits 0-9
or special character depending on language)

Invalid characters in the field name are deleted.Asterisk

This global value will override the value in the data dictionary.

Adabas Native SQL Reference Manual258

GLOBAL PARAMETERS

Validation in the Predict Modify...Defaults screen must be marked with an "X" if you want to
use this option.

VISTA Clause

In case that the Predict file is defined under Adabas Vista configuration, the DBID and file number
of the physical Predict file may differ from the Adabas Native SQL SYSFILE parameter. In this
case Adabas Native SQL will issue an error that these numbers do not match the Predict Control
record.

TheVISTA clausewill causeAdabasNative SQL to ignore the different values and use the numbers
from the Predict Control record for generating the global format id.

259Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The SYSFILE Parameter

The SYSFILE parameter specifies to Adabas Native SQL the number of the Natural system file
and the number of Predict file. The Adabas Native SQL error messages are normally stored in the
Natural systemfile. The SYSFILEparameter ismandatory, and the dbid and fnrmust be specified.
These numbers are checked against the DDA default record in Predict and, in case of incompatib-
ility, execution stops.

PASSWORD Clause

If the Predict file or Natural system file is password-protected, the correct password must be
specified using this clause.

CIPHER Clause

If the Predict file or Natural system file is enciphered, the correct cipher key (cipher code) must
be specified using this clause.

Example:

SYSFILE FNAT = (3,9) FDIC = (3,8)

The database ID (DBID) of the Natural system file is 3, and its filenumber (FNR) is 9. The DBID
of the Predict file is 3, and its FNR is 8.

Adabas Native SQL Reference Manual260

GLOBAL PARAMETERS

The TELE Parameter

The TELE parameter specifies a source statement to be inserted after each CALL command in the
generated executable statements. The text may, for example, be a command required by a telepro-
cessing monitor.

Example:

TELE "EXEC CICS LINK PROGRAM ('ADABAS') END-EXEC". (COBOL)
TELE "EXEC CICS LINK PROGRAM ('ADABAS');". (PL/I)
TELE "EXEC CICS LINK PROGRAM ('ADABAS') END-EXEC". (FORTRAN)

The above example inserts the CICS command level instruction after every CALL. This parameter
should be used in conjunction with the ADACALL parameter. See the example in the ADACALL
parameter.

Theremay be up to five TELE statements, so that up to five additional lines of textmay be generated
after the call.

Note that in COBOL programs the textmust not include a period.

See also theMONITOR parameter.

Ada is still not supported by the CICS translator.

261Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The USER Parameter

This parameter is used to identify the user responsible for the program. This userid will be docu-
mented in XREF. If no USER parameter is specified, AdabasNative SQL takes the first 3 characters
of the program as the userid.

Adabas Native SQL Reference Manual262

GLOBAL PARAMETERS

The VIRTUAL-MACHINE Parameter

This statement defines the virtualmachine, that is the real computer or node, inwhich the program
is to run.

virtual-machinemust be defined in Predict, and must be linked as a child object to the network
specified with theNETWORK parameter.

This parameter is mandatory if one or more databasesVirtual Machines other than HOME are
defined in Predict.

For every database used (DBID, AUTODBID, AUTODBID-ATM or AUTODBID-All clauses),
Adabas Native SQL checks that if the database is defined as local it belongs to the current virtual
machine, and if the database is isolated that it belongs to the current network.

263Adabas Native SQL Reference Manual

GLOBAL PARAMETERS

The XREF Parameter

This parameter controls thewriting of cross-reference information (Xref data) to the data dictionary.

Note that the XREF global Adabas Native SQL parameter interacts with Predict's Preprocessor
force option. If the Predict option is set to 'Y', thenAdabasNative SQL ignores the XREF parameter
in theAdabasNative SQL global parameter file (if present) and proceeds as though 'XREF FORCE'
had been coded.

For details of the Predict Preprocessor Force option, see section Common Parameters in chapter
Generation of the Predict Administration Manual.

Adabas Native SQL makes entries in the data dictionary indicating which files and fields
are used by the current program.

XREF ON.

No entries are made in the data dictionary.XREF OFF.

Adabas Native SQL makes entries as for 'XREF ON' and additionally checks that the data
dictionary contains a program description bearing the name of the current program. An
error message is output if this condition is not satisfied.

XREF FORCE.

If the data dictionary is opened for access only (global parameter DDFILE ACC.), 'XREF OFF.'
must be coded.

The program is identified by its name (referred to in Predict asMember) togetherwith the language
in which it is written (Ada, COBOL, FORTRAN or PL/I). See theNAME parameter.

Adabas Native SQL Reference Manual264

GLOBAL PARAMETERS

9 APPENDIX A - SIZE LIMITATIONS

The standard version of Adabas Native SQL is limited to the following maximum sizes:

■ Length of an Adabas Native SQL source statement: 100 lines.

Note: If the length of the statement exceeds 15 lines, then only the first 11 lines, a line of
dots, and the last 3 lines will be stored for the purposes of TRACE, FLOW and runtime
error reporting.

■ Number of fields mentioned by name in the SELECT clause: 300.
■ Number of fields contained in a file that is referencedwith SELECT *: 500. (This number includes
also the Redefinition fields within this file).

■ Number of distinct field names used within the program (these are the field names that will be
written into the data dictionary by the cross-reference facility): 2000.

■ Number of distinct external subroutines used within the programs (their names will be written
into the data dictionary by the cross-reference facility): 500.

■ Number of variable indices used within the program: 99.
■ Number of elements of redefinitions in one SELECT (PL/I only): 99.
■ Number of Adabas Native SQL SELECT statements without a 'CURSOR' : 100
■ Number of AdabasNative SQL statements that use 'CURSORFOR' (multiple record processing):
120 (only applicable to operating systems z/OS, BS2000 and VMS).

■ Number of Adabas Native SQL statements that use 'CURSOR' (including statements that use
'CURSOR FOR'): 150 (only applicable to operating systems z/OS, BS2000 and VMS).

■ Number of files mentioned in the CONNECT statement: 100.
■ Number of declarations without a 'CURSOR': 100
■ Number of lines of ADA, COBOL, FORTRAN or PL/I code generated for one Adabas Native
SQL statement, not including the direct calls: 200.

265

■ Maximum numbers supported for DBID: 32767.
■ Size of format buffer generated: 32767 bytes.
■ Number of selection criteria in a 'WHERE' clause: 30.
■ Number of constants (literals) used in selection criteria throughout the program: 250.
■ Number of constants (literals) used in selection criteriawithin oneAdabasNative SQL statement:
69.

■ Number of variables in SET clause of UPDATE/INSERT statement: 300.
■ Number of characters in a literal within an Adabas Native SQL statement: 38.

Restrictions in ADA:

■ No redefinition.
■ No groups generated.
■ Periodic groups are always generated with STRUCT=N.
■ PACKED and UNPACKED fields are generated as alpha.
■ Superdescriptors are not divided into parts in the value buffer.
■ The DBID option is not supported.
■ FIND COUPLED is not supported.
■ The GLOBAL FORMAT-ID option is not supported.

Adabas Native SQL Reference Manual266

APPENDIX A - SIZE LIMITATIONS

10 APPENDIX B - DESCRIPTIONS OF THE FILES USED IN

THE EXAMPLES
■ FORTRAN Synonyms ... 269

267

These file descriptions, which are used in the Ada, COBOL, FORTRAN and PL/I examples shown
in the following appendices, are supplied on the Predict installation tape. They can be loaded into
the data dictionary using the Load function of the migration utility as described in the Predict
Administration Manual. FORTRAN synonyms that must be used in order for the examples to run
are listed at the end of this appendix.

> > + Fi: EMPLOYEES L: 1 S:
36
Ty L Field name F Length Occ D U DB S
*- - -------------------------------- *- -------- ----- * * -- *

1 PERSONNEL-ID A 8.0 D U AA
GR 1 FULL-NAME AB

2 FIRST-NAME A 20.0 AC N
2 MIDDLE-I A 1.0 AD N
2 NAME A 20.0 D AE
1 MIDDLE-NAME A 20.0 AD N
1 MAR-STAT A 1.0 AF F
1 SEX A 1.0 AG F
1 BIRTH U 6.0 D AH

GR 1 FULL-ADDRESS A1
MU 2 ADDRESS-LINE A 20.0 8 AI N

2 CITY A 20.0 D AJ N
2 ZIP A 10.0 AK N
2 POST-CODE A 10.0 AK N
2 COUNTRY A 3.0 AL N

GR 1 TELEPHONE A2
2 AREA-CODE A 6.0 AN N
2 PHONE A 15.0 AM N
1 DEPT A 6.0 D AO
1 JOB-TITLE A 25.0 D AP N

PE 1 INCOME 40 AQ
2 CURR-CODE A 3.0 AR N
2 SALARY P 9.0 AS N

MU 2 BONUS P 9.0 12 AT N
GR 1 LEAVE-DATA A3

2 LEAVE-DUE U 2.0 AU
2 LEAVE-TAKEN U 2.0 AV N

PE 1 LEAVE-BOOKED 20 AW
2 LEAVE-START U 6.0 AX N
2 LEAVE-END U 6.0 AY N

MU 1 LANG A 3.0 15 D AZ N
PH 1 PHONETIC-NAME A 20.0 D PH
SP 1 LEAVE-LEFT B 4.0 D H1 N
SB 1 DEPARTMENT A 4.0 D S1
SP 1 DEPT-PERSON A 26.0 D S2
SP 1 CURRENCY-SALARY A 12.0 D S3 N
-- - -------------------------------- -- -------- ----- - - -- -

Adabas Native SQL Reference Manual268

APPENDIX B - DESCRIPTIONS OF THE FILES USED IN THE EXAMPLES

> > + Fi: VEHICLES L: 1 S: 16

Ty L Field name F Length Occ D U DB S All
*- - -------------------------------- *- -------- ----- * * -- *

1 REG-NUM A 15.0 D U AA N
1 CHASSIS-NUM B 4.0 AB F
1 PERSONNEL-ID A 8.0 D AC

GR 1 CAR-DETAILS CD
2 MAKE A 20.0 D AD N
2 MODEL A 20.0 AE N
2 COLOR A 10.0 D AF N
2 COLOUR A 10.0 D AF N
1 YEAR U 2.0 AG N
1 CLASS A 1.0 D AH F
1 LEASE-PUR A 1.0 AI F
1 DATE-ACQ U 6.0 AJ N
1 CURR-CODE A 3.0 AL N

MU 1 MAINT-COST P 7.0 60 AM N
SP 1 DAT-ACQ-DESC B 4.0 D AN
SP 1 MODEL-YEAR-MAKE A 22.0 D AO

-- - -------------------------------- -- -------- ----- - - -- -

This chapter covers the following topics:

FORTRAN Synonyms

File EMPLOYEES:

PIDPERSONNEL-ID

FNAMEFIRST-NAME

INCINCOME

File VEHICLES:

PIDPERSONNEL-ID

MOYEMAMODEL-YEAR-MAKE

REGNUMREG-NUM

In order to run FORTRAN example 3, the field SALARYmust be changed from P9 to I4. The small
difference in the total is attributable to rounding in the integer-to-real and real-to-integer conver-
sions.

269Adabas Native SQL Reference Manual

APPENDIX B - DESCRIPTIONS OF THE FILES USED IN THE EXAMPLES

270

11 APPENDIXC - ADABASNATIVE SQLSTATEMENTSUSED

IN THE EXAMPLES

The table below shows which statements are used in each example. For example, the BEGIN and
CLOSE statements are used in every example; the COMMITWORK statement is used in Examples
2 and 3.

The correspondingly numbered Ada, COBOL, FORTRAN and PL/I examples are equivalent.

321Example

xxxBEGIN

xxxCLOSE

xxCOMMIT WORK

xCONNECT

xxxDBCLOSE

xDELETE

xxxFETCH

xxFIND

xHISTOGRAM

xxxOPEN

xxREAD LOGICAL

xxUPDATE

271

272

12 APPENDIX D - ADA EXAMPLES

■ Example 1 .. 274
■ Example 2 .. 275
■ Example 3 .. 278

273

This chapter covers the following topics:

Example 1

with TYPES, ADABAS_GENERIC_CALLS, TEXT_IO ;
use TYPES, TEXT_IO ;
--
-- AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH
-- CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID
-- NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE,
-- PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE
-- FOLLOWING CONDITION:
-- PERSONNEL-ID BETWEEN 10000001 AND 19999999
-- MODEL-VEAR-MAKE >
-- CLASS = 'C'
procedure AEX1 is

START_MODEL : STRING (1..20) := "MERCEDES-BENZ ";
START_YEAR_MAKE : STRING (1..2) := "86" ;
START_MODEL_YEAR_MAKE : STRING(1..22) := START_MODEL &

START_YEAR_MAKE ;

FILLE1 : STRING(1..20) := " PERSONNEL-ID " ;
FILLE2 : STRING(1..17) := " NAME " ;
FILLE3 : STRING(1..18) := " FIRST-NAME " ;
FILLE4 : STRING(1..6) := "BIRTH " ;
FILLE5 : STRING(1..3) := "SEX" ;
HEADER : STRING(1..64) := FILLE1 & FILLE2 & FILLE3 & FILLE4

& FILLE5 ;
HEADER2: STRING(1..64) := (1..64 => '*');
SPACE_LINE : STRING(1..80) := (1..80 => ' ');

EXEC ADABAS
BEGIN DECLARE SECTION

END-EXEC

EXEC ADABAS
DECLARE EMPL CURSOR FOR
SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
FROM EMPLOYEES, VEHICLES
WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID

AND PERSONNEL-ID BETWEEN "100000001" AND "19999999"
AND VEHICLES.MODEL-YEAR-MAKE > :START_MODEL_YEAR_MAKE
AND VEHICLES.CLASS = "C"
END-EXEC

Adabas Native SQL Reference Manual274

APPENDIX D - ADA EXAMPLES

begin

EXEC ADABAS
OPEN EMPL

END-EXEC
PUT_LINE (HEADER) ;
PUT_LINE (HEADER2) ;
PUT_LINE (SPACE_LINE) ;

EXEC ADABAS
FETCH EMPL

END-EXEC

while ADACODE /= 3 loop
PUT_LINE (" " & EMPLOYEES.PERSONNEL_ID & " " & EMPLOYEES.NAME &

" " & EMPLOYEES.FIRST_NAME & " " & EMPLOYEES.BIRTH & " "
& EMPLOYEES.SEX) ;

EXEC ADABAS
FETCH EMPL

END-EXEC

end loop ;

EXEC ADABAS
CLOSE EMPL

END-EXEC

EXEC ADABAS
DBCLOSE

END-EXEC
end AEX1 ;

Example 2

with TYPES, ADABAS_GENERIC_CALLS, TEXT_IO ;
use TYPES, TEXT_IO ;
--
-- DELETE AN EMPLOYEE RECORD AND RELEASE ALL CARS WHICH ARE
-- ASSIGNED TO THIS EMPLOYEE. APRIVATE CAR WILL BE DELETED
-- AND A COMPANY CAR WILL BE MADE A POOL-CAR WHICH IS IDENTIFIED
-- BY ITS PERSONNEL-ID CONTAINING ONLY THE COUNTRY CODE.

procedure AEX2 is
PERSONNEL_NUMBER : STRING(1..8) := "20007100" ;
EMPLOYEE_ISN : INTEGER := 0 ;

275Adabas Native SQL Reference Manual

APPENDIX D - ADA EXAMPLES

EXEC ADABAS
BEGIN DECLARE SECTION

END-EXEC

EXEC ADABAS
READ LOGICAL
DECLARE VEH1 CURSOR FOR
SELECT REG-NUM, PERSONNEL-ID, CLASS
FROM VEHICLES
WHERE PERSONNEL-ID GE :PERSONNEL-NUMBER
OPTIONS HOLD
ORDER BY PERSONNEL-ID

END-EXEC

begin
--
-- FIND EMPLOYEE
--

EXEC ADABAS
FIND
SELECT
FROM EMPLOYEES EMPLOYEES_1
WHERE PERSONNEL-ID = :PERSONNEL_NUMBER
OPTIONS HOLD

END-EXEC
--
-- IF THE PERSONNEL-ID EXISTS DELETE THE EMPLOYEE AND READ THE
-- VEHICLES FILE

if EMPLOYEES_1.QUANTITY = 1 then

EMPLOYEE_ISN := EMPLOYEES_1.ISN ;
--
-- DELETE EMPLOYEE
--

EXEC ADABAS
DELETE
FROM EMPLOYEES
WHERE ISN = :EMPLOYEE_ISN

END-EXEC
--
-- READ VEHICLES-FILE
--

EXEC ADABAS
OPEN VEH1

END-EXEC

EXEC ADABAS
FETCH VEH1

END-EXEC

Adabas Native SQL Reference Manual276

APPENDIX D - ADA EXAMPLES

while ADACODE /= 3 AND
VEHICLES.PERSONNEL_ID = PERSONNEL_NUMBER loop

if VEHICLES.CLASS = "P" then
EXEC ADABAS

DELETE
FROM VEHICLES
WHERE CURRENT OF VEH1

END-EXEC
PUT_LINE ("PRIVATE CAR" & VEHICLES.REG_NUM &

"HAS BEEN DELETED");
else

VEHICLES.PERSONNEL_ID := VEHICLES.PERSONNEL_ID (1..1)
& " " ;

EXEC ADABAS
UPDATE VEHICLES
WHERE CURRENT OF VEH1

END-EXEC
PUT_LINE ("COMPANY CAR " & VEHICLES.REG_NUM &

" HAS BEEN UPDATED") ;
end if ;

EXEC ADABAS
FETCH VEH1

END-EXEC
end loop ;

EXEC ADABAS
CLOSE VEH1

END-EXEC
EXEC ADABAS

COMMIT WORK
END-EXEC

else
PUT_LINE ("NO EMPLOYEES FOUND WITH PERSONNEL-ID " &

PERSONNEL_NUMBER) ;
end if ;

EXEC ADABAS
DBCLOSE

END-EXEC
end AEX2 ;

277Adabas Native SQL Reference Manual

APPENDIX D - ADA EXAMPLES

Example 3

with TYPES, ADABAS_GENERIC_CALLS, TEXT_IO ;
use TYPES, TEXT_IO ;
-- SALARY INCREASE
-- THIS PROGRAM INCREASES THE SALARY OF EVERY EMPLOYEE BY
-- 4 PERCENT.
-- THE DEPARTMENT, THE OVERALL AMOUNT OF PAY RISE FOR THE
-- DEPARTMENT AND THE PAY RISE FOR ALL DEPARTMENTS WILL BE PRINTED
-- OUT.
-- THE PROGRAM IS RESTARTABLE. AFTER AN ABNORMAL TERMINATION THE
-- PROGRAM EXECUTION WOULD RESTART FROM THE LAST DEPARTMENT
-- WHOSE SALARY UPDATE HAD BEEN COMPLETED BEFORE THE ABEND
-- OCCURED.

procedure AEX3 is
type COMMIT_DATA_1 is
RECORD
COMMIT_DEPARTMENT : STRING(1..6) := " " ;
COMMIT_SUM : INTEGER := 0 ;
COMMIT_FIL : STRING(1..490) := (1..490 => ' ');
end record ;
COMMIT_DATA : COMMIT_DATA_1 ;
COMMIT_DATA_2 : STRING(1..500);
for COMMIT_DATA use at COMMIT_DATA_2'ADDRESS;
START_DEPT : STRING(1..6) := " " ;
J : INTEGER := 0 ;
NEW_SALARY : INTEGER := 0 ;
INCREASE : INTEGER := 0 ;
SUM_DEPARTMENT : INTEGER := 0 ;
SUM_TOTAL : INTEGER := 0 ;
FILLE1 : STRING(1..10) := " DEPARTMENT" ;
FILLE2 : STRING(1..15) := (1..15 => ' ') ;
FILLE3 : STRING(1..15) := "SALARY INCREASE " ;
HEADER : STRING(1..40) := FILLE1 & FILLE2 & FILLE3 ;
HEADER2 : STRING(1..40) := (1..40 => '*') ;
SPACE_LINE : STRING(1..40) := (1..40 => ' ') ;

EXEC ADABAS
BEGIN DECLARE SECTION

END-EXEC

EXEC ADABAS
HISTOGRAM
DECLARE EMP1 CURSOR FOR
SELECT DEPT
FROM EMPLOYEES EMPLOYEES_1
WHERE DEPT GE :COMMIT_DATA.COMMIT_DEPARTMENT

Adabas Native SQL Reference Manual278

APPENDIX D - ADA EXAMPLES

GROUP BY DEPT
END-EXEC

EXEC ADABAS
READ LOGICAL
DECLARE EMP2 CURSOR FOR
SELECT PERSONNEL-ID, DEPT, SALARY, INCOME(COUNT)
FROM EMPLOYEES
WHERE DEPT GE :START_DEPT
ORDER BY DEPT
OPTIONS HOLD

END-EXEC

begin

EXEC ADABAS
CONNECT 'INCREASE'
UPD=EMPLOYEES
AND USERDATA INTO :COMMIT_DATA_2

END-EXEC
--
-- A HISTOGRAM STATEMENT IS USED TO ASCERTAIN THE NUMBER OF
-- EMPLOYEES PER DEPARTMENT
--

EXEC ADABAS
OPEN EMP1

END-EXEC

EXEC ADABAS
FETCH EMP1

END-EXEC

if COMMIT_DATA.COMMIT_DEPARTMENT /= " " then

PUT_LINE (" LAST PROGRAM RUN TERMINATED ABNORMALLY ") ;
PUT_LINE (" LAST DEPARTMENT WAS: " &

COMMIT_DATA.COMMIT_DEPARTMENT) ;

EXEC ADABAS
FETCH EMP1

END-EXEC

end if ;

START_DEPT := EMPLOYEES_1.DEPT ;

EXEC ADABAS
OPEN EMP2

END-EXEC

PUT_LINE(HEADER) ;

279Adabas Native SQL Reference Manual

APPENDIX D - ADA EXAMPLES

PUT_LINE(HEADER2) ;
PUT_LINE(SPACE_LINE) ;

while ADACODE /= 3 loop
--
-- THE EMPLOYEES FILE WILL BE READ UNTIL ALL RECORDS FOR THE
-- DEPARTMENT HAVE BEEN PROCESSED AND THE SALARY HAS BEEN
-- UPDATED.
--

J := 1 ;
while J <= EMPLOYEES_1.QUANTITY loop

EXEC ADABAS
FETCH EMP2

END-EXEC
J := J + 1 ;

-- THE SALAYRY INCREASE CAN BE EXECUTED WHEN THE COUNT OF THE
-- PERIODIC GROUP IS LESS THAN 40.

if EMPLOYEES.C_INCOME < 40 then
INCREASE := (EMPLOYEES.SALARY(1) * 4)/100 ;
NEW_SALARY := EMPLOYEES.SALARY(1) + INCREASE ;
EMPLOYEES.SALARY(2..40) := EMPLOYEES.SALARY(1..39) ;
EMPLOYEES.SALARY(1) := NEW_SALARY ;

EXEC ADABAS
UPDATE EMPLOYEES
WHERE CURRENT OF EMP2

END-EXEC
SUM_DEPARTMENT := SUM_DEPARTMENT + INCREASE ;
SUM_TOTAL := SUM_TOTAL + INCREASE ;

else
PUT_LINE("UPDATE PERSON " & EMPLOYEES.PERSONNEL_ID &

"NOT POSSIBLE") ;
end if ;
end loop ;
PUT_LINE(" " & EMPLOYEES.DEPT & " " &

INTEGER'IMAGE(SUM_DEPARTMENT)) ;
SUM_DEPARTMENT := 0 ;
COMMIT_DATA.COMMIT_DEPARTMENT := EMPLOYEES.DEPT ;
COMMIT_DATA.COMMIT_SUM := SUM_TOTAL;

EXEC ADABAS
COMMIT WORK
USERDATA = :COMMIT_DATA_2

END-EXEC

EXEC ADABAS
FETCH EMP1

END-EXEC
end loop ;

EXEC ADABAS
CLOSE EMP1

END-EXEC
EXEC ADABAS

Adabas Native SQL Reference Manual280

APPENDIX D - ADA EXAMPLES

CLOSE EMP2
END-EXEC

PUT_LINE(SPACE_LINE) ;
SPACE_LINE(1..50) := (1..50 => '-') ;
PUT_LINE(SPACE_LINE) ;
SPACE_LINE(1..50) := (1..50 => ' ') ;
PUT_LINE(SPACE_LINE) ;
PUT_LINE("TOTAL SALARY INCREASE : " & INTEGER'IMAGE(SUM_TOTAL)) ;
COMMIT_DATA.COMMIT_DEPARTMENT := " " ;

EXEC ADABAS
DBCLOSE
USERDATA = :COMMIT_DATA_2

END-EXEC
end AEX3 ;

281Adabas Native SQL Reference Manual

APPENDIX D - ADA EXAMPLES

282

13 APPENDIX E - EXAMPLEOF ADACODEGENERATEDBY

ADABAS NATIVE SQL

with TYPES, ADABAS_GENERIC_CALLS, TEXT_IO ;
use TYPES, TEXT_IO ;
--
-- AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH
-- CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID
-- NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE,
-- PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE
-- FOLLOWING CONDITION:
-- PERSONNEL-ID BETWEEN 10000001 AND 19999999
-- MODEL-VEAR-MAKE >
-- CLASS = 'C'

procedure AEX1 is
START_MODEL : STRING (1..20) := "MERCEDES-BENZ ";
START_YEAR_MAKE : STRING (1..2) := "86" ;
START_MODEL_YEAR_MAKE : STRING(1..22) := START_MODEL &

START_YEAR_MAKE ;

FILLE1 : STRING(1..20) := " PERSONNEL-ID " ;
FILLE2 : STRING(1..17) := " NAME " ;
FILLE3 : STRING(1..18) := " FIRST-NAME " ;
FILLE4 : STRING(1..6) := "BIRTH " ;
FILLE5 : STRING(1..3) := "SEX" ;
HEADER : STRING(1..64) := FILLE1 & FILLE2 & FILLE3 & FILLE4

& FILLE5 ;
HEADER2: STRING(1..64) := (1..64 => '*');
SPACE_LINE : STRING(1..80) := (1..80 => ' ');

--
-- EXEC ADABAS
-- BEGIN DECLARE SECTION
-- END-EXEC
--

283

ADACODE : SHORT_INTEGER := 0 ;
CB_OPN : CONTROL_BLOCK :=

(FILLER1 => "AS" ,
COMMAND_CODE => " " ,
COMMAND_ID => "OPEN" ,
FILE_NUMBER => 0,
RESPONSE_CODE => 0,
ISN => 0,
ISN_LOWER_LIMIT => 0,
ISN_QUANTITY => 0,
FORMAT_BUFFER_LENGTH => 0,
RECORD_BUFFER_LENGTH => 0,
SEARCH_BUFFER_LENGTH => 0,
VALUE_BUFFER_LENGTH => 0,
ISN_BUFFER_LENGTH => 4,
COMMAND_OPTION_1 => " " ,
COMMAND_OPTION_2 => " " ,
ADDITIONS_1 => " ",
ADDITIONS_2 => " " ,
ADDITIONS_3 => " ",
ADDITIONS_4 => " ",
ADDITIONS_5 => " ",
COMMAND_TIME => 0,
USER_AREA => "AS ") ;

FORMAT_BUF_OPN : FORMAT_BUFFER (1..0001) ;
SEARCH_BUF_OPN : SEARCH_BUFFER (1..0001) ;
VB_OPN : VALUE_BUFFER (1..0001) ;
RB_OPN : RECORD_BUFFER (1..1500) ;
ISN_BUF_OPN : ISN_BUFFER (1..0001) ;
package A_OPN is new ADABAS_GENERIC_CALLS

(FORMAT_BUFFER,RECORD_BUFFER,SEARCH_BUFFER,VALUE_BUFFER) ;
DDFILE : STRING(1..3) := "061" ;
CSEQ : STRING(1..8) ;
CLN1 : CLN_TYPE ;
CLN2 : CLN_TYPE ;
TRCE : STRING(1..7) ;
CLNNUM : SHORT_INTEGER ;
SQLRSP : SHORT_INTEGER ;
SQLQTY : INTEGER ;
SQLISN : INTEGER ;

type FORMAT_BUFEMPL_1 is
record

FILLE001 : STRING(1..32) :="AA,8,A,AE,20,A,AC,20,A,AH,6,U,AG";
FILLE002 : STRING(1..05) :=",1,A.";

end record ;
FORMAT_BUFEMPL : FORMAT_BUFEMPL_1 ;
type SEARCH_BUFEMPL_1 is

record
FILLE001 : STRING(1..32) :="(22,AA,24,AC)/22/AA,8,A,S,AA,8,A";
FILLE002 : STRING(1..27) :=",D,/24/AO,22,A,GT,D,AH,1,A.";

end record ;

Adabas Native SQL Reference Manual284

APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE SQL

SEARCH_BUFEMPL : SEARCH_BUFEMPL_1 ;
type RECORD_BUFEMPL is
record

PERSONNEL_ID : STRING (1..0008) ;
NAME : STRING (1..0020) ;
FIRST_NAME : STRING (1..0020) ;
BIRTH : STRING (1..0006) ;
SEX : STRING (1..0001) ;
ISN : INTEGER ;
QUANTITY : INTEGER ;
RESPONSE_CODE : SHORT_INTEGER ;

end record ;

EMPLOYEES : RECORD_BUFEMPL ;
type VALUE_BUFEMPL is
record

V_PERSONNEL_ID_F : STRING (1..0008)
:= (1..0008 => ' ') ;

V_PERSONNEL_ID_T : STRING (1..0008)
:= (1..0008 => ' ') ;

V_MODEL_YEAR_MAKE : STRING (1..0022)
:= (1..0022 => ' ') ;

V_CLASS : STRING (1..0001)
:= (1..0001 => ' ') ;

end record ;
VBEMPL : VALUE_BUFEMPL ;
ISN_BUFEMPL : ISN_BUFFER (1..0001) ;
package AEMPL is new ADABAS_GENERIC_CALLS
(FORMAT_BUFEMPL_1,RECORD_BUFEMPL,SEARCH_BUFEMPL_1,VALUE_BUFEMPL) ;
CBEMPL : CONTROL_BLOCK :=

(FILLER1 => "AS" ,
COMMAND_CODE => " " ,
COMMAND_ID => "EMPL" ,
FILE_NUMBER => 22,
RESPONSE_CODE => 0,
ISN => 0,
ISN_LOWER_LIMIT => 0,
ISN_QUANTITY => 0,
FORMAT_BUFFER_LENGTH => 37,
RECORD_BUFFER_LENGTH => 55,
SEARCH_BUFFER_LENGTH => 59,
VALUE_BUFFER_LENGTH => 39,
ISN_BUFFER_LENGTH => 4,
COMMAND_OPTION_1 => " " ,
COMMAND_OPTION_2 => " " ,
ADDITIONS_1 => " ",
ADDITIONS_2 => " " ,
ADDITIONS_3 => " ",
ADDITIONS_4 => " ",
ADDITIONS_5 => " ",
COMMAND_TIME => 0,

285Adabas Native SQL Reference Manual

APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE SQL

USER_AREA => "AS ") ;
ISNSIZEEMPL : INTEGER ;
ISNMOREEMPL : INTEGER ;
ISNINDEMPL : INTEGER ;
EOFEMPL : BOOLEAN := FALSE ;

--
-- EXEC ADABAS
-- DECLARE EMPL CURSOR FOR
-- SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
-- FROM EMPLOYEES, VEHICLES
-- WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID
-- AND PERSONNEL-ID BETWEEN "10000001" AND "19999999"
-- AND VEHICLES.MODEL-YEAR-MAKE > :START_MODEL_YEAR_MAKE
-- AND VEHICLES.CLASS = "C"
-- END-EXEC

--

begin

--
-- EXEC ADABAS
-- OPEN EMPL
-- END-EXEC
--

VBEMPL.V_PERSONNEL_ID_F := "10000001" ;
VBEMPL.V_PERSONNEL_ID_T := "19999999" ;
VBEMPL.V_MODEL_YEAR_MAKE := START_MODEL_YEAR_MAKE ;
VBEMPL.V_CLASS := "C" ;

ISNSIZEEMPL := INTEGER(CBEMPL.ISN_BUFFER_LENGTH / 4) ;
ISNINDEMPL := 1 ;
CBEMPL.ISN_LOWER_LIMIT := 0 ;
CBEMPL.COMMAND_OPTION_1 := " " ;
CBEMPL.COMMAND_OPTION_2 := " " ;
CBEMPL.ISN_QUANTITY := 0 ;
CBEMPL.ISN_BUFFER_LENGTH := 0 ;
CBEMPL.COMMAND_CODE := "S1" ;
AEMPL.ADABAS (

CBEMPL,FORMAT_BUFEMPL,
EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,

ISN_BUFEMPL) ;
EMPLOYEES.RESPONSE_CODE :=

CBEMPL.RESPONSE_CODE ;
EMPLOYEES.QUANTITY :=

CBEMPL.ISN_QUANTITY ;
EMPLOYEES.ISN :=

CBEMPL.ISN ;
if CBEMPL.RESPONSE_CODE /= 0

then
CSEQ := "00000000" ;

Adabas Native SQL Reference Manual286

APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE SQL

CLN1(01) := " EXEC ADABAS " ;
CLN2(01) := " " ;
CLN1(02) := " OPEN EMPL " ;
CLN2(02) := " " ;
CLN1(03) := " END-EXEC " ;
CLN2(03) := " " ;
CLNNUM := 03 ;

AEMPL.RESPF
(CBEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL,
EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
CLN1,CLN2,TRCE,CLNNUM) ;

end if ;
ISNMOREEMPL := CBEMPL.ISN_QUANTITY ;
if ISNMOREEMPL > 0 then
EOFEMPL := FALSE ;

else
EOFEMPL := TRUE ;

end if ;
if ISNMOREEMPL < ISNSIZEEMPL then

ISNSIZEEMPL := ISNMOREEMPL ;
end if ;
ISNINDEMPL :=0 ;

PUT_LINE (HEADER) ;
PUT_LINE (HEADER2) ;
PUT_LINE (SPACE_LINE) ;

--
-- EXEC ADABAS
-- FETCH EMPL
-- END-EXEC
--

if ISNINDEMPL = ISNMOREEMPL then
EOFEMPL := TRUE ;

end if ;
if not(EOFEMPL) then
EOFEMPL := FALSE ;
CBEMPL.COMMAND_OPTION_2 := "N" ;
CBEMPL.COMMAND_OPTION_1 := " " ;
CBEMPL.COMMAND_CODE := "L1" ;
AEMPL.ADABAS (

CBEMPL,FORMAT_BUFEMPL,
EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,

ISN_BUFEMPL) ;
EMPLOYEES.RESPONSE_CODE :=

CBEMPL.RESPONSE_CODE ;
EMPLOYEES.QUANTITY :=

CBEMPL.ISN_QUANTITY ;
EMPLOYEES.ISN :=

CBEMPL.ISN ;
if CBEMPL.RESPONSE_CODE = 3 then

287Adabas Native SQL Reference Manual

APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE SQL

EOFEMPL := TRUE ;
else
if CBEMPL.RESPONSE_CODE /= 0

then
CSEQ := "00000000" ;
CLN1(01) := " EXEC ADABAS " ;
CLN2(01) := " " ;
CLN1(02) := " FETCH EMPL " ;
CLN2(02) := " " ;
CLN1(03) := " END-EXEC " ;
CLN2(03) := " " ;
CLNNUM := 03 ;

AEMPL.RESPF
(CBEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL,
EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
CLN1,CLN2,TRCE,CLNNUM) ;

end if ;
end if ;
end if ;
if EOFEMPL then

ADACODE := 003 ;
else

ADACODE := 0 ;
end if ;

while ADACODE /= 3 loop
PUT_LINE (" " & EMPLOYEES.PERSONNEL_ID & " " & EMPLOYEES.NAME &

" " & EMPLOYEES.FIRST_NAME & " " & EMPLOYEES.BIRTH & " "
& EMPLOYEES.SEX) ;

--
-- EXEC ADABAS
-- FETCH EMPL
-- END-EXEC
--

if ISNINDEMPL = ISNMOREEMPL then
EOFEMPL := TRUE ;

end if ;
if not(EOFEMPL) then
EOFEMPL := FALSE ;
CBEMPL.COMMAND_OPTION_2 := "N" ;
CBEMPL.COMMAND_OPTION_1 := " " ;
CBEMPL.COMMAND_CODE := "L1" ;
AEMPL.ADABAS (

CBEMPL,FORMAT_BUFEMPL,
EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,

ISN_BUFEMPL) ;
EMPLOYEES.RESPONSE_CODE :=

CBEMPL.RESPONSE_CODE ;
EMPLOYEES.QUANTITY :=

CBEMPL.ISN_QUANTITY ;

Adabas Native SQL Reference Manual288

APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE SQL

EMPLOYEES.ISN :=
CBEMPL.ISN ;

if CBEMPL.RESPONSE_CODE = 3 then
EOFEMPL := TRUE ;

else
if CBEMPL.RESPONSE_CODE /= 0

then
CSEQ := "00000000" ;
CLN1(01) := " EXEC ADABAS " ;
CLN2(01) := " " ;
CLN1(02) := " FETCH EMPL " ;
CLN2(02) := " " ;
CLN1(03) := " END-EXEC " ;
CLN2(03) := " " ;
CLNNUM := 03 ;

AEMPL.RESPF
(CBEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL,
EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
CLN1,CLN2,TRCE,CLNNUM) ;

end if ;
end if ;
end if ;
if EOFEMPL then

ADACODE := 003 ;
else

ADACODE := 0 ;
end if ;

end loop ;

--
-- EXEC ADABAS
-- CLOSE EMPL
-- END-EXEC
--

CBEMPL.COMMAND_OPTION_1 := "I" ;
CBEMPL.COMMAND_OPTION_2 := "S" ;
CBEMPL.COMMAND_CODE := "RC" ;
AEMPL.ADABAS (

CBEMPL,FORMAT_BUFEMPL,
EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,

ISN_BUFEMPL) ;
EMPLOYEES.RESPONSE_CODE :=

CBEMPL.RESPONSE_CODE ;
EMPLOYEES.QUANTITY :=

CBEMPL.ISN_QUANTITY ;
EMPLOYEES.ISN :=

CBEMPL.ISN ;
if CBEMPL.RESPONSE_CODE /= 0

then
CSEQ := "00000000" ;

289Adabas Native SQL Reference Manual

APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE SQL

CLN1(01) := " EXEC ADABAS " ;
CLN2(01) := " " ;
CLN1(02) := " CLOSE EMPL " ;
CLN2(02) := " " ;
CLN1(03) := " END-EXEC " ;
CLN2(03) := " " ;
CLNNUM := 03 ;

AEMPL.RESPF
(CBEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL,
EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
CLN1,CLN2,TRCE,CLNNUM) ;

end if ;

--
-- EXEC ADABAS
-- DBCLOSE
-- END-EXEC
--

CB_OPN.RECORD_BUFFER_LENGTH := 1500 ;
CB_OPN.COMMAND_OPTION_2 := " " ;
CB_OPN.COMMAND_CODE := "CL" ;
A_OPN.ADABAS (

CB_OPN,FORMAT_BUF_OPN,
RB_OPN ,SEARCH_BUF_OPN,VB_OPN,

ISN_BUF_OPN) ;
if CB_OPN.RESPONSE_CODE /= 0

then
CSEQ := "00000000" ;
CLN1(01) := " EXEC ADABAS " ;
CLN2(01) := " " ;
CLN1(02) := " DBCLOSE " ;
CLN2(02) := " " ;
CLN1(03) := " END-EXEC " ;
CLN2(03) := " " ;
CLNNUM := 03 ;

A_OPN.RESPF
(CB_OPN,DDFILE,CSEQ,FORMAT_BUF_OPN,
RB_OPN ,SEARCH_BUF_OPN,VB_OPN,
CLN1,CLN2,TRCE,CLNNUM) ;

end if ;
end AEX1 ;

Adabas Native SQL Reference Manual290

APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE SQL

14 APPENDIX F - COBOL EXAMPLES

■ Example 1 .. 292
■ Example 2 .. 294
■ Example 3 .. 296

291

This chapter covers the following topics:

Example 1

IDENTIFICATION DIVISION.
PROGRAM-ID. CEX1.
REMARKS.

* AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH *
* CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID *
* NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE, *
* PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE *
* FOLLOWING CONDITION:
* PERSONNEL-ID BETWEEN 10000001 AND 19999999
* MODEL-YEAR-MAKE >
* CLASS = 'C'
ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 START-MODEL-YEAR-MAKE.

02 START-MODEL PIC X(20) VALUE 'MERCEDES-BENZ'.
02 START-YEAR-MAKE PIC 9(2) VALUE 86.

*
01 HEADER.

02 FILLER PIC X(12) VALUE 'PERSONNEL-ID'.
02 FILLER PIC X(8) VALUE SPACE.
02 FILLER PIC X(4) VALUE 'NAME'.
02 FILLER PIC X(13) VALUE SPACE.
02 FILLER PIC X(10) VALUE 'FIRST NAME'.
02 FILLER PIC X(8) VALUE SPACE.
02 FILLER PIC X(5) VALUE 'BIRTH'.
02 FILLER PIC X(1) VALUE SPACE.
02 FILLER PIC X(3) VALUE 'SEX'.

01 HEADER2 PIC X(64) VALUE ALL '*'.
01 SPACE-LINE PIC X(80) VALUE SPACE.
01 LINE1.

02 FILLER PIC X(2) VALUE SPACE.
02 PERSONNEL-NR PIC X(8) VALUE SPACE.
02 FILLER PIC X(3) VALUE SPACE.
02 LAST-NAME PIC X(20) VALUE SPACE.
02 FILLER PIC X(1) VALUE SPACE.
02 F-NAME PIC X(20) VALUE SPACE.
02 FILLER PIC X(1) VALUE SPACE.
02 BIRTHDAY PIC X(6) VALUE SPACE.
02 FILLER PIC X(1) VALUE SPACE.
02 KIND PIC X(1) VALUE SPACE.

Adabas Native SQL Reference Manual292

APPENDIX F - COBOL EXAMPLES

*
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

*
EXEC ADABAS

DECLARE EMPL CURSOR FOR
SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
FROM EMPLOYEES, VEHICLES
WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID

AND PERSONNEL-ID BETWEEN '10000001' AND '19999999'
AND VEHICLES.MODEL-YEAR-MAKE > :START-MODEL-YEAR-MAKE
AND VEHICLES.CLASS = 'C'
END-EXEC

PROCEDURE DIVISION.
*

DISPLAY HEADER.
DISPLAY HEADER2.
DISPLAY SPACE-LINE.

*
EXEC ADABAS

OPEN EMPL
END-EXEC

*
EXEC ADABAS

FETCH EMPL
END-EXEC

*
PERFORM READ-EMPLOYEES UNTIL ADACODE = 3.

*
EXEC ADABAS

CLOSE EMPL
END-EXEC

*
EXEC ADABAS

DBCLOSE
END-EXEC

*
STOP RUN.

*
READ-EMPLOYEES.

MOVE PERSONNEL-ID TO PERSONNEL-NR.
MOVE NAME TO LAST-NAME.
MOVE FIRST-NAME TO F-NAME.
MOVE BIRTH TO BIRTHDAY.
MOVE SEX TO KIND.
DISPLAY LINE1.
MOVE SPACE TO LINE1.

*
EXEC ADABAS

293Adabas Native SQL Reference Manual

APPENDIX F - COBOL EXAMPLES

FETCH EMPL
END-EXEC

Example 2

IDENTIFICATION DIVISION.
PROGRAM-ID. CEX2.
REMARKS.

* DELETE AN EMPLOYEE RECORD AND RELEASE ALL CARS WHICH ARE *
* ASSIGNED TO THIS EMPLOYEE. A PRIVATE CAR WILL BE DELETED *
* AND A COMPANY CAR WILL BE MADE A POOL-CAR WHICH IS IDENTIFIED *
* BY ITS PERSONNEL-ID CONTAINING ONLY THE COUNTRY CODE. *
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

*
01 PERSONNEL-NUMBER PIC X(8) VALUE '20007100'.
01 EMPLOYEE-ISN PIC 9(9) COMP VALUE ZERO.
01 COUNTRY-NUMBER.

02 COUNTRY-NO PIC X(1) VALUE SPACE.
02 FILLER PIC X(14) VALUE SPACE.

*
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

*
EXEC ADABAS

READ LOGICAL
DECLARE VEH1 CURSOR FOR
SELECT REG-NUM, PERSONNEL-ID, CLASS
FROM VEHICLES
WHERE PERSONNEL-ID GE :PERSONNEL-NUMBER
OPTIONS HOLD
ORDER BY PERSONNEL-ID

END-EXEC
*
PROCEDURE DIVISION.

*
*** FIND EMPLOYEE
*

EXEC ADABAS
FIND
SELECT
FROM EMPLOYEES EMPLOYEES-1
WHERE PERSONNEL-ID = :PERSONNEL-NUMBER
OPTIONS HOLD

END-EXEC
*

Adabas Native SQL Reference Manual294

APPENDIX F - COBOL EXAMPLES

*** IF THE PERSONNEL-ID EXISTS DELETE THE EMPLOYEE AND READ THE
*** VEHICLES FILE
*

IF QUANTITY OF EMPLOYEES-1 = 1
MOVE ISN OF EMPLOYEES-1 TO EMPLOYEE-ISN
PERFORM DELETE-EMPLOYEE
PERFORM READ-VEHICLES-FILE

ELSE
DISPLAY
'NO EMPLOYEE FOUND WITH PERSONNEL-ID ', PERSONNEL-NUMBER.

*
EXEC ADABAS

DBCLOSE
END-EXEC

*
STOP RUN.

*
DELETE-EMPLOYEE.

EXEC ADABAS
DELETE
FROM EMPLOYEES
WHERE ISN = :EMPLOYEE-ISN

END-EXEC
*

DISPLAY 'EMPLOYEE ', PERSONNEL-NUMBER, ' HAS BEEN DELETED'.
*
READ-VEHICLES-FILE.

EXEC ADABAS
OPEN VEH1

END-EXEC
*

EXEC ADABAS
FETCH VEH1

END-EXEC
*

PERFORM READ-VEHICLES UNTIL ADACODE = 3 OR
PERSONNEL-ID OF VEHICLES > PERSONNEL-NUMBER.

*
EXEC ADABAS

CLOSE VEH1
END-EXEC

*
EXEC ADABAS

COMMIT WORK
END-EXEC

*
READ-VEHICLES.

IF CLASS = 'P'
PERFORM DELETE-PRIVATE-CAR

ELSE

295Adabas Native SQL Reference Manual

APPENDIX F - COBOL EXAMPLES

PERFORM UPDATE-COMPANY-CAR.
*

EXEC ADABAS
FETCH VEH1

END-EXEC
*

DELETE-PRIVATE-CAR.
EXEC ADABAS

DELETE
FROM VEHICLES
WHERE CURRENT OF VEH1

END-EXEC
DISPLAY 'PRIVATE CAR ', REG-NUM, ' HAS BEEN DELETED'.

*
UPDATE-COMPANY-CAR.

MOVE PERSONNEL-ID OF VEHICLES TO COUNTRY-NUMBER.
MOVE COUNTRY-NO TO PERSONNEL-ID OF VEHICLES.

*
EXEC ADABAS

UPDATE VEHICLES
WHERE CURRENT OF VEH1

END-EXEC
DISPLAY 'COMPANY CAR ', REG-NUM, ' HAS BEEN UPDATED'.

Example 3

IDENTIFICATION DIVISION.
PROGRAM-ID. CEX3.
REMARKS.

* SALARY INCREASE.
* THIS PROGRAM INCREASES THE SALARY OF EVERY EMPLOYEE BY
* 4 PERCENT.
* THE DEPARTMENT, THE OVERALL AMOUNT OF PAY RISE FOR THE
* DEPARTMENT AND THE PAY RISE FOR ALL DEPARTMENTS WILL BE PRINTED
* OUT.
* THE PROGRAM IS RESTARTABLE. AFTER AN ABNORMAL TERMINATION THE
* PROGRAM EXECUTION WOULD RESTART WITH THE LAST DEPARTMENT
* WHOSE SALARY UPDATE HAD BEEN COMPLETED BEFORE THE ABEND
* OCCURED.

Adabas Native SQL Reference Manual296

APPENDIX F - COBOL EXAMPLES

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
*
01 COMMIT-DATA.

02 COMMIT-DEPARTMENT PIC X(6) VALUE SPACE.
02 COMMIT-SUM PIC S9(10) COMP-3 VALUE +0.

01 START-DEPT PIC X(6) VALUE SPACE.
01 IND PIC 9(4) COMP VALUE 0.
01 I PIC 9(4) COMP VALUE 0.
01 J PIC 9(4) COMP VALUE 0.
01 NEW-SALARY PIC S9(9) COMP-3 VALUE +0.
01 INCREASE PIC S9(9) COMP-3 VALUE +0.
01 SUM-DEPARTMENT PIC S9(10) COMP-3 VALUE +0.
01 SUM-TOTAL PIC S9(11) COMP-3 VALUE +0.
*
01 HEADER.

02 FILLER PIC X(10) VALUE 'DEPARTMENT'.
02 FILLER PIC X(15) VALUE SPACE.
02 FILLER PIC X(15) VALUE 'SALARY INCREASE'.

01 HEADER2 PIC X(40) VALUE ALL '*'.
01 SPACE-LINE PIC X(50) VALUE SPACE.
01 LINE1.

02 FILLER PIC X(3) VALUE SPACE.
02 DEPARTMENT PIC X(6) VALUE SPACE.
02 FILLER PIC X(16) VALUE SPACE.
02 SUM-DEPT PIC Z,ZZZ,ZZZ,ZZ9.

01 LAST-LINE.
02 FILLER PIC X(21) VALUE 'TOTAL SALARY INCREASE'.
02 FILLER PIC X(3) VALUE ' : '.
02 TOTAL-SUM-DEPT PIC ZZ,ZZZ,ZZZ,ZZZ.

*
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

*
EXEC ADABAS

HISTOGRAM
DECLARE EMP1 CURSOR FOR
SELECT DEPT
FROM EMPLOYEES EMPLOYEES-1
WHERE DEPT GE :COMMIT-DEPARTMENT
GROUP BY DEPT

END-EXEC
*

EXEC ADABAS
READ LOGICAL
DECLARE EMP2 CURSOR FOR
SELECT PERSONNEL-ID, DEPT, SALARY, INCOME(COUNT)
FROM EMPLOYEES
WHERE DEPT GE :START-DEPT

297Adabas Native SQL Reference Manual

APPENDIX F - COBOL EXAMPLES

OPTIONS HOLD
ORDER BY DEPT

END-EXEC
*

PROCEDURE DIVISION.
*

EXEC ADABAS
CONNECT 'INCREASE'
UPD=EMPLOYEES
AND USERDATA INTO :COMMIT-DATA

END-EXEC
*
*** A HISTOGRAM STATEMENT IS USED TO ASCERTAIN THE NUMBER OF
*** EMPLOYEES PER DEPARTMENT
*

EXEC ADABAS
OPEN EMP1

END-EXEC
*

EXEC ADABAS
FETCH EMP1

END-EXEC
*

IF COMMIT-DATA NOT = ' '
PERFORM RESTART.

*
MOVE DEPT OF EMPLOYEES-1 TO START-DEPT.

*
EXEC ADABAS

OPEN EMP2
END-EXEC

*
DISPLAY HEADER.
DISPLAY HEADER2.
DISPLAY SPACE-LINE.
PERFORM HIST-EMPL UNTIL ADACODE = 3.

*
EXEC ADABAS

CLOSE EMP1
END-EXEC

*
EXEC ADABAS

CLOSE EMP2
END-EXEC

*
DISPLAY SPACE-LINE.
MOVE ALL '-' TO SPACE-LINE.
DISPLAY SPACE-LINE.
MOVE SPACES TO SPACE-LINE.
DISPLAY SPACE-LINE.

Adabas Native SQL Reference Manual298

APPENDIX F - COBOL EXAMPLES

MOVE SUM-TOTAL TO TOTAL-SUM-DEPT.
DISPLAY LAST-LINE.
MOVE ' ' TO COMMIT-DATA.

*
EXEC ADABAS

DBCLOSE
USERDATA = :COMMIT-DATA

END-EXEC
*

STOP RUN.
*

RESTART.
DISPLAY 'LAST PROGRAM RUN TERMINATED ABNORMALLY'.
DISPLAY 'LAST DEPARTMENT WAS: ', COMMIT-DEPARTMENT.

*
EXEC ADABAS

FETCH EMP1
END-EXEC.

*
HIST-EMPL.
*
*** THE EMPLOYEES FILE WILL BE READ UNTIL ALL RECORDS FOR THE
*** DEPARTMENT HAVE BEEN PROCESSED AND THE SALARY HAS BEEN
*** UPDATED.
*

PERFORM READ-EMPL VARYING J FROM 1 BY 1 UNTIL
J > QUANTITY OF EMPLOYEES-1.

MOVE DEPT OF EMPLOYEES TO DEPARTMENT.
MOVE SUM-DEPARTMENT TO SUM-DEPT.
MOVE ZERO TO SUM-DEPARTMENT.
DISPLAY LINE1.
MOVE SPACE TO LINE1.

*
MOVE DEPT OF EMPLOYEES TO COMMIT-DEPARTMENT.
MOVE SUM-TOTAL TO COMMIT-SUM.

EXEC ADABAS
COMMIT WORK
USERDATA = :COMMIT-DATA

END-EXEC
*

EXEC ADABAS
FETCH EMP1

END-EXEC.
*
READ-EMPL.

EXEC ADABAS
FETCH EMP2

END-EXEC.

299Adabas Native SQL Reference Manual

APPENDIX F - COBOL EXAMPLES

*
*** THE SALARY INCREASE CAN BE EXECUTED WHEN THE COUNT OF THE
*** PERIODIC GROUP IS LESS THAN 40.
*

IF C-INCOME < 40
PERFORM SALARY-INCREASE

ELSE
DISPLAY 'UPDATE PERSON ', PERSONNEL-ID, ' NOT POSSIBLE'.

*
SALARY-INCREASE.

COMPUTE INCREASE = SALARY(1) * 0.04.
COMPUTE NEW-SALARY = SALARY(1) + INCREASE.
ADD 1 C-INCOME OF EMPLOYEES GIVING IND.
PERFORM INCREASE-IN-SALARY VARYING I FROM C-INCOME BY -1

UNTIL I = 0.
MOVE NEW-SALARY TO SALARY(1).

*
EXEC ADABAS

UPDATE EMPLOYEES
WHERE CURRENT OF EMP2

END-EXEC
*

COMPUTE SUM-DEPARTMENT = SUM-DEPARTMENT + INCREASE.
COMPUTE SUM-TOTAL = SUM-TOTAL + INCREASE.

*
INCREASE-IN-SALARY.

MOVE SALARY(I) TO SALARY(IND).
SUBTRACT 1 FROM IND.

Adabas Native SQL Reference Manual300

APPENDIX F - COBOL EXAMPLES

15 APPENDIX G - EXAMPLEOF COBOL CODEGENERATED

BY ADABAS NATIVE SQL

 1
 0 000001 IDENTIFICATION DIVISION. ↩
 00000010
 000002 PROGRAM-ID. CEX1. ↩
 00000020
 000003 * WITH COBOL II SET THE NEXT LINE TO COMMENT
 000004 *REMARKS.
 000005 * AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH ↩
 *
 000006 * CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS ↩
PERSONNEL-ID *
 000007 * NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE, ↩
 *
 000008 * PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE ↩
 *
 000009 * FOLLOWING CONDITION:
 000010 * PERSONNEL-ID BETWEEN 10000001 AND 19999999
 000011 * MODEL-YEAR-MAKE >
 000012 ENVIRONMENT DIVISION. ↩
 00000030
 000013 DATA DIVISION. ↩
 00000040
 000014 WORKING-STORAGE SECTION. ↩
 00000050
 000015 01 START-MODEL-YEAR-MAKE. ↩
 00000060
 000016 02 START-MODEL PIC X(20) VALUE ↩
'MERCEDES-BENZ'. 00000070
 000017 02 START-YEAR-MAKE PIC 9(2) VALUE 86. ↩
 00000080
 000018 *
 000019 01 HEADER. ↩

301

 00000090
 000020 02 FILLER PIC X(12) VALUE 'PERSONNEL-ID'. ↩
 00000100
 000021 02 FILLER PIC X(8) VALUE SPACE. ↩
 00000110 IMP
 000022 02 FILLER PIC X(4) VALUE 'NAME'. ↩
 00000120
 000023 02 FILLER PIC X(13) VALUE SPACE. ↩
 00000130 IMP
 000024 02 FILLER PIC X(10) VALUE 'FIRST NAME'. ↩
 00000140
 000025 02 FILLER PIC X(8) VALUE SPACE. ↩
 00000150 IMP
 000026 02 FILLER PIC X(3) VALUE 'SEX'. ↩
 00000160
 000027 01 HEADER2 PIC X(64) VALUE ALL '*'. ↩
 00000170
 000028 01 SPACE-LINE PIC X(80) VALUE SPACE. ↩
 00000180 IMP
 000029 01 LINE1. ↩
 00000190
 000030 02 FILLER PIC X(2) VALUE SPACE. ↩
 00000200 IMP
 000031 02 PERSONNEL-NR PIC X(8) VALUE SPACE. ↩
 00000210 IMP
 000032 02 FILLER PIC X(3) VALUE SPACE. ↩
 00000220 IMP
 000033 02 LAST-NAME PIC X(20) VALUE SPACE. ↩
 00000230 IMP
 000034 02 FILLER PIC X(1) VALUE SPACE. ↩
 00000240 IMP
 000035 02 F-NAME PIC X(20) VALUE SPACE. ↩
 00000250 IMP
 000036 02 FILLER PIC X(1) VALUE SPACE. ↩
 00000260 IMP
 000037 02 KIND PIC X(1) VALUE SPACE. ↩
 00000270 IMP
 000038 *

 000039 *
 000040 * EXEC ADABAS
 000041 * BEGIN DECLARE SECTION
 000042 * END-EXEC
 000043 *
 000044 01 ADACODE PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000045 01 CONTROL-BLOCKOPN. ↩
 ADABAS
 000046 03 FILLER1OPN PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000047 03 FILLER1-CHAROPN REDEFINES FILLER1OPN PIC XX. ↩

Adabas Native SQL Reference Manual302

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS 46
 000048 03 COMMAND-CODEOPN PIC XX VALUE ↩
SPACE. ADABAS IMP
 000049 03 COMMAND-IDOPN PIC X(4) VALUE ↩
'OPEN'. ADABAS
 000050 03 FILE-NUMBEROPN PIC 9(4) COMP VALUE ↩
 0. ADABAS
 000051 03 FILLER REDEFINES FILE-NUMBEROPN . ↩
 ADABAS 50
 000052 04 DBIDOPN PIC X. ↩
 ADABAS
 000053 04 FILLER PIC X. ↩
 ADABAS
 000054 03 RESPONSE-CODEOPN PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000055 03 ISNOPN PIC 9(9) COMP VALUE 0. ↩
 ADABAS
 000056 03 ISN-LOWER-LIMITOPN PIC 9(9) COMP VALUE 0. ↩
 ADABAS
 000057 03 ISN-QUANTITYOPN PIC 9(9) COMP VALUE 0. ↩
 ADABAS
0 000058 03 FORMAT-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE ↩
 0. ADABAS
 000059 03 FBL-CHAROPN REDEFINES FORMAT-BUFFER-LENGTHOPN PIC ↩
XX. ADABAS 58
 000060 03 RECORD-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE ↩
 0. ADABAS
 000061 03 RBL-CHAROPN REDEFINES RECORD-BUFFER-LENGTHOPN PIC ↩
XX. ADABAS 60
 000062 03 SEARCH-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE ↩
 0. ADABAS
 000063 03 VALUE-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE ↩
 0. ADABAS
 000064 03 ISN-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE ↩
 4. ADABAS
 000065 03 COMMAND-OPTION-1OPN PIC X VALUE ↩
SPACE. ADABAS IMP
 000066 03 COMMAND-OPTION-2OPN PIC X VALUE ↩
SPACE. ADABAS IMP
 000067 03 ADDITIONS-1OPN VALUE ↩
SPACE. ADABAS IMP
 000068 04 ADDITIONS-1-12OPN PIC XX. ↩
 ADABAS
 000069 04 FILLER PIC XX. ↩
 ADABAS
 000070 04 ADDITIONS-1-58OPN PIC X(4). ↩
 ADABAS
 000071 03 FILLER REDEFINES ADDITIONS-1OPN . ↩
 ADABAS 67
 000072 04 ADDITIONS-1-BNOPN PIC 9(4) COMP. ↩
 ADABAS
 000073 04 FILLER PIC X(6). ↩

303Adabas Native SQL Reference Manual

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS
 000074 03 ADDITIONS-2OPN PIC X(4) VALUE ↩
SPACE. ADABAS IMP
 000075 03 ADDITIONS-3OPN PIC X(8) VALUE ↩
SPACE. ADABAS IMP
 000076 03 ADDITIONS-4OPN . ↩
 ADABAS
 000077 04 ADDITIONS-4-12OPN PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000078 04 ADDITIONS-4-34OPN PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000079 04 ADDITIONS-4-56OPN PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000080 04 ADDITIONS-4-78OPN PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000081 03 ADDITIONS-5OPN . ↩
 ADABAS
 000082 04 ADDITIONS-5-BNOPN PIC 9(9) COMP VALUE 0. ↩
 ADABAS
 000083 04 ADDITIONS-5-58OPN PIC X(4) VALUE SPACE. ↩
 ADABAS IMP
 000084 03 FILLER REDEFINES ADDITIONS-5OPN . ↩
 ADABAS 81
 000085 04 ADDITIONS-5-1OPN PIC X. ↩
 ADABAS
 000086 04 ADDITIONS-5-28OPN PIC X(7). ↩
 ADABAS
 000087 03 COMMAND-TIMEOPN PIC 9(9) COMP. ↩
 ADABAS
 000088 03 USER-AREAOPN PIC X(4) VALUE ' ↩
 '. ADABAS
 000089 01 FORMAT-BUFOPN PIC X. ↩
 ADABAS
 000090 01 SEARCH-BUFOPN PIC X. ↩
 ADABAS
 000091 01 VALUE-BUFOPN PIC X. ↩
 ADABAS
 000092 01 ISN-BUFOPN PIC X. ↩
 ADABAS
 000093 01 OPENTYPE PIC X(00010). ↩
 ADABAS
 000094 01 RECORD-BUFOPN. ↩
 ADABAS
 000095 02 RECORD-BUFOPN-01 PIC X(00100). ↩
 ADABAS
 000096 02 RECORD-BUFOPN-02 PIC X(00100). ↩
 ADABAS
 000097 02 RECORD-BUFOPN-03 PIC X(00100). ↩
 ADABAS
 000098 02 RECORD-BUFOPN-04 PIC X(00100). ↩
 ADABAS
 000099 02 RECORD-BUFOPN-05 PIC X(00100). ↩

Adabas Native SQL Reference Manual304

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS
 000100 02 RECORD-BUFOPN-06 PIC X(00100). ↩
 ADABAS
 000101 02 RECORD-BUFOPN-07 PIC X(00100). ↩
 ADABAS
 000102 02 RECORD-BUFOPN-08 PIC X(00100). ↩
 ADABAS
 000103 02 RECORD-BUFOPN-09 PIC X(00100). ↩
 ADABAS
 000104 02 RECORD-BUFOPN-10 PIC X(00100). ↩
 ADABAS
 000105 02 RECORD-BUFOPN-11 PIC X(00100). ↩
 ADABAS
 000106 02 RECORD-BUFOPN-12 PIC X(00100). ↩
 ADABAS
 000107 02 RECORD-BUFOPN-13 PIC X(00100). ↩
 ADABAS
 000108 02 RECORD-BUFOPN-14 PIC X(00100). ↩
 ADABAS
 000109 02 RECORD-BUFOPN-15 PIC X(00100). ↩
 ADABAS
 000110 01 DDFILE PIC 99999 VALUE ↩
 7. ADABAS
 000111 01 DDDBID PIC 99999 VALUE ↩
11177. ADABAS
 000112 01 CSEQ PIC X(8). ↩
 ADABAS
 000113 01 CLN1. ↩
 ADABAS
 000114 02 CLN1V PIC X(40) OCCURS 20. ↩
 ADABAS

0 000115 01 CLN2. ↩
 ADABAS
 000116 02 CLN2V PIC X(40) OCCURS 20. ↩
 ADABAS
 000117 01 CLNNUM PIC 9(4) COMP. ↩
 ADABAS
 000118 01 TRCE PIC X(7). ↩
 ADABAS
 000119 01 SQLRSP PIC 9(4) COMP. ↩
 ADABAS
 000120 01 SQLQTY PIC 9(9) COMP. ↩
 ADABAS
 000121 01 SQLISN PIC 9(9) COMP. ↩
 ADABAS
 000122 01 ADA-FULL-INTOPN PIC 9(9) COMP VALUE 12288. ↩
 ADABAS
 000123 01 FILLER REDEFINES ADA-FULL-INTOPN. ↩
 ADABAS 122
 000124 02 FILLER PIC XX. ↩

305Adabas Native SQL Reference Manual

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS
 000125 02 ADA-HALF-INTOPN PIC XX. ↩
 ADABAS
 000126 01 SAVE-DBID-1OPN PIC 9(9) COMP VALUE 0. ↩
 ADABAS
 000127 01 SAVE-DBID-DEFOPN REDEFINES SAVE-DBID-1OPN . ↩
 ADABAS 126
 000128 02 FILLER PIC X(2). ↩
 ADABAS
 000129 02 SAVE-DBIDOPN PIC 9(4) COMP. ↩
 ADABAS
 000130 01 FORMAT-BUFEMPL. ↩
 ADABAS
 000131 02 FILLER PIC X(30) VALUE ↩
 ADABAS
 000132 'AA,8,A,AE,20,A,AC,20,A,AG,1,A.'. ↩
 ADABAS
 000133 01 SEARCH-BUFEMPL. ↩
 ADABAS
 000134 02 FILLER PIC X(46) VALUE ↩
 ADABAS
 000135 '(1,AA,2,AC)/1/AA,8,A,S,AA,8,A,D,/2/AO,24,A,GT.'. ↩
 ADABAS
 000136 01 EMPLOYEES. ↩
 ADADATA
 000137 02 RECORD-BUFEMPL. ↩
 ADADATA
 000138 03 PERSONNEL-ID PIC X(00008). ↩
 ADADATA
 000139 03 NAME PIC X(00020). ↩
 ADADATA
 000140 03 FIRST-NAME PIC X(00020). ↩
 ADADATA
 000141 03 SEX PIC X(00001). ↩
 ADADATA
 000142 02 ISN PIC 9(9) COMP ↩
VALUE 0. ADADATA
 000143 02 QUANTITY PIC 9(9) COMP ↩
VALUE 0. ADADATA
 000144 02 RESPONSE-CODE PIC 9(4) COMP ↩
VALUE 0. ADADATA
 000145 01 VALUE-BUFEMPL. ↩
 ADABAS
 000146 02 V-PERSONNEL-ID-F PIC X(00008) ↩
 ADABAS
 000147 VALUE ↩
LOW-VALUE. ADABAS IMP
 000148 02 V-PERSONNEL-ID-T PIC X(00008) ↩
 ADABAS
 000149 VALUE ↩
LOW-VALUE. ADABAS IMP
 000150 02 V-MODEL-YEAR-MAKE. ↩

Adabas Native SQL Reference Manual306

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS
 000151 03 S-YEAR PIC 9(0004) ↩
 ADABAS
 000152 VALUE ↩
 0. ADABAS
 000153 03 S-MAKE PIC X(00020) ↩
 ADABAS
 000154 VALUE ↩
LOW-VALUE. ADABAS IMP
 000155 01 ISN-BUFEMPL. ↩
 ADABAS
 000156 03 ISN-BUFVECEMPL OCCURS 1 PIC 9(9) COMP. ↩
 ADABAS
 000157 01 CONTROL-BLOCKEMPL. ↩
 ADABAS
 000158 03 FILLER1EMPL PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000159 03 FILLER1-CHAREMPL REDEFINES FILLER1EMPL PIC XX. ↩
 ADABAS 158
 000160 03 COMMAND-CODEEMPL PIC XX VALUE ↩
SPACE. ADABAS IMP
 000161 03 COMMAND-IDEMPL PIC X(4) VALUE ↩
'EMPL'. ADABAS
 000162 03 FILE-NUMBEREMPL PIC 9(4) COMP VALUE ↩
 1. ADABAS
 000163 03 FILLER REDEFINES FILE-NUMBEREMPL. ↩
 ADABAS 162
 000164 04 DBIDEMPL PIC X. ↩
 ADABAS
 000165 04 FILLER PIC X. ↩
 ADABAS
 000166 03 RESPONSE-CODEEMPL PIC 9(4) COMP VALUE 0. ↩
 ADABAS
 000167 03 ISNEMPL PIC 9(9) COMP VALUE 0. ↩
 ADABAS
 000168 03 ISN-LOWER-LIMITEMPL PIC 9(9) COMP VALUE 0. ↩
 ADABAS
 000169 03 ISN-QUANTITYEMPL PIC 9(9) COMP VALUE 0. ↩
 ADABAS
 000170 03 FORMAT-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE ↩
30. ADABAS
 000171 03 FBL-CHAREMPL REDEFINES FORMAT-BUFFER-LENGTHEMPL PIC ↩
XX. ADABAS 170
0 000172 03 RECORD-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE ↩
49. ADABAS
 000173 03 RBL-CHAREMPL REDEFINES RECORD-BUFFER-LENGTHEMPL PIC ↩
XX. ADABAS 172
 000174 03 SEARCH-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE ↩
46. ADABAS
 000175 03 VALUE-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE ↩
40. ADABAS
 000176 03 ISN-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE ↩

307Adabas Native SQL Reference Manual

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 4. ADABAS
 000177 03 COMMAND-OPTION-1EMPL PIC X VALUE ↩
SPACE. ADABAS IMP
 000178 03 COMMAND-OPTION-2EMPL PIC X VALUE ↩
SPACE. ADABAS IMP
 000179 03 ADDITIONS-1EMPL VALUE ↩
SPACE. ADABAS IMP
 000180 04 ADDITIONS-1-12EMPL PIC XX. ↩
 ADABAS
 000181 04 FILLER PIC XX. ↩
 ADABAS
 000182 04 ADDITIONS-1-58EMPL PIC X(4). ↩
 ADABAS
 000183 03 FILLER REDEFINES ADDITIONS-1EMPL. ↩
 ADABAS 179
 000184 04 ADDITIONS-1-BNEMPL PIC 9(4) COMP. ↩
 ADABAS
 000185 04 FILLER PIC X(6). ↩
 ADABAS
 000186 03 ADDITIONS-2EMPL PIC X(4) VALUE ↩
SPACE. ADABAS IMP
 000187 03 ADDITIONS-3EMPL PIC X(8) VALUE ↩
SPACE. ADABAS IMP
 000188 03 ADDITIONS-4EMPL PIC X(8) VALUE ↩
SPACE. ADABAS IMP
 000189 03 ADDITIONS-5EMPL . ↩
 ADABAS
 000190 04 ADDITIONS-5-BNEMPL PIC 9(9) COMP VALUE 0. ↩
 ADABAS
 000191 04 ADDITIONS-5-58EMPL PIC X(4) VALUE SPACE. ↩
 ADABAS IMP
 000192 03 FILLER REDEFINES ADDITIONS-5EMPL. ↩
 ADABAS 189
 000193 04 ADDITIONS-5-1EMPL PIC X. ↩
 ADABAS
 000194 04 ADDITIONS-5-28EMPL PIC X(7). ↩
 ADABAS
 000195 03 COMMAND-TIMEEMPL PIC 9(9) COMP. ↩
 ADABAS
 000196 03 USER-AREAEMPL PIC X(4) VALUE ' ↩
 '. ADABAS
 000197 01 ISNSIZEEMPL PIC 9(9) COMP. ↩
 ADABAS
 000198 01 ISNMOREEMPL PIC 9(9) COMP. ↩
 ADABAS
 000199 01 ISNINDEMPL PIC 9(4) COMP. ↩
 ADABAS
 000200 01 EOF-COBEMPL PIC 9 VALUE 0. ↩
 ADABAS
 000201 88 EOFEMPL VALUE 1. ↩
 ADABAS
 000202 88 NOT-EOFEMPL VALUE 0. ↩

Adabas Native SQL Reference Manual308

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS
 000203 01 SAVE-DBID-1EMPL PIC 9(9) COMP VALUE ↩
 0. ADABAS
 000204 01 SAVE-DBID-DEFEMPL REDEFINES SAVE-DBID-1EMPL. ↩
 ADABAS 203
 000205 02 FILLER PIC X(2). ↩
 ADABAS
 000206 02 SAVE-DBIDEMPL PIC 9(4) COMP. ↩
 ADABAS
 000207 *
 000208 *
 000209 * EXEC ADABAS
 000210 * DECLARE EMPL CURSOR FOR
 000211 * SELECT PERSONNEL-ID, NAME, FIRST-NAME, SEX
 000212 * FROM EMPLOYEES, VEHICLES
 000213 * WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID
 000214 * AND PERSONNEL-ID BETWEEN '10000001' AND '19999999'
 000215 * AND VEHICLES.MODEL-YEAR-MAKE > ↩
:START-MODEL-YEAR-MAKE
 000216 * END-EXEC

 000217 *
 000218 ↩
 00000280
 000219 PROCEDURE DIVISION. ↩
 00000290
 000220 *
 000221 *
 000222 * EXEC ADABAS
 000223 * TRACE ON
 000224 * END-EXEC
 000225 *
 000226 DISPLAY HEADER. ↩
 00000300 19
 000227 DISPLAY HEADER2. ↩
 00000310 27
 000228 DISPLAY SPACE-LINE. ↩
 00000320 28
0 000229 *
 000230 *
 000231 * EXEC ADABAS
 000232 * OPEN EMPL
 000233 * END-EXEC
 000234 *
 000235 MOVE '10000001' TO V-PERSONNEL-ID-F OF VALUE-BUFEMPL ↩
 ADABAS 146 145
 000236 MOVE '19999999' TO V-PERSONNEL-ID-T OF VALUE-BUFEMPL ↩
 ADABAS 148 145
 000237 MOVE START-MODEL-YEAR-MAKE TO V-MODEL-YEAR-MAKE OF ↩
 ADABAS 15 150
 000238 VALUE-BUFEMPL ↩

309Adabas Native SQL Reference Manual

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS 145
 000239 MOVE ADA-HALF-INTOPN TO FILLER1-CHAREMPL ↩
 ADABAS 125 159
 000240 COMPUTE ISNSIZEEMPL = ISN-BUFFER-LENGTHEMPL / 4 ↩
 ADABAS 197 176
 000241 MOVE 1 TO ISNINDEMPL ↩
 ADABAS 199
 000242 MOVE 0 TO ISN-LOWER-LIMITEMPL ↩
 ADABAS 168
 000243 MOVE 0 TO ISN-QUANTITYEMPL ↩
 ADABAS 169
 000244 MOVE ' ' TO COMMAND-OPTION-2EMPL ↩
 ADABAS 178
 000245 MOVE ' ' TO COMMAND-OPTION-1EMPL ↩
 ADABAS 177
 000246 MOVE 0 TO ISN-BUFFER-LENGTHEMPL ↩
 ADABAS 176
 000247 MOVE SAVE-DBIDEMPL TO RESPONSE-CODEEMPL ↩
 ADABAS 206 166
 000248 MOVE 'S1' TO COMMAND-CODEEMPL ↩
 ADABAS 160
 000249 CALL 'ADABAS' USING ↩
 ADABAS EXT
 000250 CONTROL-BLOCKEMPL FORMAT-BUFEMPL RECORD-BUFEMPL ↩
 ADABAS 157 130 137
 000251 SEARCH-BUFEMPL VALUE-BUFEMPL ↩
 ADABAS 133 145
 000252 ISN-BUFEMPL ↩
 ADABAS 155
 000253 MOVE ISNEMPL TO ISN OF ↩
 ADABAS 167 142
 000254 EMPLOYEES ↩
 ADABAS 136
 000255 MOVE RESPONSE-CODEEMPL TO RESPONSE-CODE OF ↩
 ADABAS 166 144
 000256 EMPLOYEES ↩
 ADABAS 136
 000257 MOVE ISN-QUANTITYEMPL TO QUANTITY OF ↩
 ADABAS 169 143
 000258 EMPLOYEES ↩
 ADABAS 136
 000259 MOVE 0 TO ISNINDEMPL ↩
 ADABAS 199
 000260 IF RESPONSE-CODEEMPL NOT = 0 ↩
 ADABAS 166
 000261 1 MOVE ' ' TO CSEQ ↩
 ADABAS 112
 000262 1 MOVE ' EXEC ADABAS ' TO ↩
CLN1V (01) ADABAS 114
 000263 1 MOVE ' ' TO ↩
CLN2V (01) ADABAS 116
 000264 1 MOVE ' OPEN EMPL ' TO ↩

Adabas Native SQL Reference Manual310

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

CLN1V (02) ADABAS 114
 000265 1 MOVE ' ' TO ↩
CLN2V (02) ADABAS 116
 000266 1 MOVE ' END-EXEC ' TO ↩
CLN1V (03) ADABAS 114
 000267 1 MOVE ' ' TO ↩
CLN2V (03) ADABAS 116
 000268 1 MOVE 03 TO CLNNUM ↩
 ADABAS 117
 000269 1 CALL 'RESPINT' ↩
 ADABAS EXT
 000270 1 USING CONTROL-BLOCKEMPL DDFILE CSEQ FORMAT-BUFEMPL ↩
 ADABAS 157 110 112 130
 000271 1 RECORD-BUFEMPL SEARCH-BUFEMPL VALUE-BUFEMPL ↩
 ADABAS 137 133 145
 000272 1 CLN1 CLN2 TRCE CLNNUM DDDBID. ↩
 ADABAS 113 115 118 117 111
 000273 MOVE ISN-QUANTITYEMPL TO ISNMOREEMPL ↩
 ADABAS 169 198
 000274 IF ISNMOREEMPL > 0 MOVE 0 TO EOF-COBEMPL ↩
 ADABAS 198 200
 000275 1 ELSE MOVE 1 TO EOF-COBEMPL. ↩
 ADABAS 200
 000276 IF ISNMOREEMPL < ISNSIZEEMPL ↩
 ADABAS 198 197
 000277 1 MOVE ISNMOREEMPL TO ISNSIZEEMPL. ↩
 ADABAS 198 197
 000278 *
 000279 *
 000280 * EXEC ADABAS
 000281 * FETCH EMPL
 000282 * END-EXEC
 000283 *
 000284 MOVE ADA-HALF-INTOPN TO FILLER1-CHAREMPL ↩
 ADABAS 125 159
 000285 IF ISNINDEMPL = ISNMOREEMPL MOVE 1 TO EOF-COBEMPL. ↩
 ADABAS 199 198 200
0 000286 IF NOT-EOFEMPL ↩
 ADABAS 202
 000287 1 MOVE 0 TO EOF-COBEMPL ↩
 ADABAS 200
 000288 1 MOVE 'N' TO COMMAND-OPTION-2EMPL ↩
 ADABAS 178
 000289 1 MOVE ' ' TO COMMAND-OPTION-1EMPL ↩
 ADABAS 177
 000290 1 MOVE SAVE-DBIDEMPL TO RESPONSE-CODEEMPL ↩
 ADABAS 206 166
 000291 1 MOVE 'L1' TO COMMAND-CODEEMPL ↩
 ADABAS 160
 000292 1 CALL 'ADABAS' USING ↩
 ADABAS EXT
 000293 1 CONTROL-BLOCKEMPL FORMAT-BUFEMPL RECORD-BUFEMPL ↩

311Adabas Native SQL Reference Manual

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS 157 130 137
 000294 1 SEARCH-BUFEMPL VALUE-BUFEMPL ↩
 ADABAS 133 145
 000295 1 ISN-BUFEMPL ↩
 ADABAS 155
 000296 1 MOVE ISNEMPL TO ISN OF ↩
 ADABAS 167 142
 000297 1 EMPLOYEES ↩
 ADABAS 136
 000298 1 MOVE RESPONSE-CODEEMPL TO RESPONSE-CODE OF ↩
 ADABAS 166 144
 000299 1 EMPLOYEES ↩
 ADABAS 136
 000300 1 IF RESPONSE-CODEEMPL = 3 ↩
 ADABAS 166
 000301 2 MOVE 1 TO EOF-COBEMPL ↩
 ADABAS 200
 000302 2 ELSE IF RESPONSE-CODEEMPL NOT = 0 ↩
 ADABAS 166
 000303 3 MOVE ' ' TO CSEQ ↩
 ADABAS 112
 000304 3 MOVE ' EXEC ADABAS ' TO ↩
CLN1V (01) ADABAS 114
 000305 3 MOVE ' ' TO ↩
CLN2V (01) ADABAS 116
 000306 3 MOVE ' FETCH EMPL ' TO ↩
CLN1V (02) ADABAS 114
 000307 3 MOVE ' ' TO ↩
CLN2V (02) ADABAS 116
 000308 3 MOVE ' END-EXEC ' TO ↩
CLN1V (03) ADABAS 114
 000309 3 MOVE ' ' TO ↩
CLN2V (03) ADABAS 116
 000310 3 MOVE 03 TO CLNNUM ↩
 ADABAS 117
 000311 3 CALL 'RESPINT' ↩
 ADABAS EXT
 000312 3 USING CONTROL-BLOCKEMPL DDFILE CSEQ FORMAT-BUFEMPL ↩
 ADABAS 157 110 112 130
 000313 3 RECORD-BUFEMPL SEARCH-BUFEMPL VALUE-BUFEMPL ↩
 ADABAS 137 133 145
 000314 3 CLN1 CLN2 TRCE CLNNUM DDDBID. ↩
 ADABAS 113 115 118 117 111
 000315 IF EOFEMPL MOVE 003 TO ADACODE ↩
 ADABAS 201 44
 000316 1 ELSE MOVE 0 TO ADACODE. ↩
 ADABAS 44

Adabas Native SQL Reference Manual312

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 000317 *
 000318 PERFORM READ-EMPLOYEES UNTIL ADACODE = 3. ↩
 00000330 383 44
 000319 *
 000320 *
 000321 * EXEC ADABAS
 000322 * CLOSE EMPL
 000323 * END-EXEC
 000324 *
 000325 MOVE ADA-HALF-INTOPN TO FILLER1-CHAREMPL ↩
 ADABAS 125 159
 000326 MOVE 'I' TO COMMAND-OPTION-1EMPL ↩
 ADABAS 177
 000327 MOVE 'S' TO COMMAND-OPTION-2EMPL ↩
 ADABAS 178
 000328 MOVE SAVE-DBIDEMPL TO RESPONSE-CODEEMPL ↩
 ADABAS 206 166
 000329 MOVE 'RC' TO COMMAND-CODEEMPL ↩
 ADABAS 160
 000330 CALL 'ADABAS' USING ↩
 ADABAS EXT
 000331 CONTROL-BLOCKEMPL FORMAT-BUFEMPL RECORD-BUFEMPL ↩
 ADABAS 157 130 137
 000332 SEARCH-BUFEMPL VALUE-BUFEMPL ↩
 ADABAS 133 145
 000333 ISN-BUFEMPL ↩
 ADABAS 155
 000334 MOVE ISNEMPL TO ISN OF ↩
 ADABAS 167 142
 000335 EMPLOYEES ↩
 ADABAS 136
 000336 MOVE RESPONSE-CODEEMPL TO RESPONSE-CODE OF ↩
 ADABAS 166 144
 000337 EMPLOYEES ↩
 ADABAS 136
 000338 IF RESPONSE-CODEEMPL NOT = 0 ↩
 ADABAS 166
 000339 1 MOVE ' ' TO CSEQ ↩
 ADABAS 112
 000340 1 MOVE ' EXEC ADABAS ' TO ↩
CLN1V (01) ADABAS 114
 000341 1 MOVE ' ' TO ↩
CLN2V (01) ADABAS 116
 000342 1 MOVE ' CLOSE EMPL ' TO ↩
CLN1V (02) ADABAS 114
0 000343 1 MOVE ' ' TO ↩
CLN2V (02) ADABAS 116
 000344 1 MOVE ' END-EXEC ' TO ↩
CLN1V (03) ADABAS 114
 000345 1 MOVE ' ' TO ↩
CLN2V (03) ADABAS 116

313Adabas Native SQL Reference Manual

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 000346 1 MOVE 03 TO CLNNUM ↩
 ADABAS 117
 000347 1 CALL 'RESPINT' ↩
 ADABAS EXT
 000348 1 USING CONTROL-BLOCKEMPL DDFILE CSEQ FORMAT-BUFEMPL ↩
 ADABAS 157 110 112 130
 000349 1 RECORD-BUFEMPL SEARCH-BUFEMPL VALUE-BUFEMPL ↩
 ADABAS 137 133 145
 000350 1 CLN1 CLN2 TRCE CLNNUM DDDBID. ↩
 ADABAS 113 115 118 117 111
 000351 *
 000352 *
 000353 * EXEC ADABAS
 000354 * DBCLOSE
 000355 * END-EXEC
 000356 *
 000357 MOVE ADA-HALF-INTOPN TO FILLER1-CHAROPN ↩
 ADABAS 125 47
 000358 MOVE 1500 TO RECORD-BUFFER-LENGTHOPN ↩
 ADABAS 60
 000359 MOVE ' ' TO COMMAND-OPTION-2OPN ↩
 ADABAS 66
 000360 MOVE ' ' TO COMMAND-OPTION-1OPN ↩
 ADABAS 65
 000361 MOVE SAVE-DBIDOPN TO RESPONSE-CODEOPN ↩
 ADABAS 129 54
 000362 MOVE 'CL' TO COMMAND-CODEOPN ↩
 ADABAS 48
 000363 CALL 'ADABAS' USING ↩
 ADABAS EXT
 000364 CONTROL-BLOCKOPN FORMAT-BUFOPN RECORD-BUFOPN ↩
 ADABAS 45 89 94
 000365 SEARCH-BUFOPN VALUE-BUFOPN ↩
 ADABAS 90 91
 000366 ISN-BUFOPN ↩
 ADABAS 92
 000367 IF RESPONSE-CODEOPN NOT = 0 ↩
 ADABAS 54
 000368 1 MOVE ' ' TO CSEQ ↩
 ADABAS 112
 000369 1 MOVE ' EXEC ADABAS ' TO ↩
CLN1V (01) ADABAS 114
 000370 1 MOVE ' ' TO ↩
CLN2V (01) ADABAS 116
 000371 1 MOVE ' DBCLOSE ' TO ↩
CLN1V (02) ADABAS 114
 000372 1 MOVE ' ' TO ↩
CLN2V (02) ADABAS 116
 000373 1 MOVE ' END-EXEC ' TO ↩
CLN1V (03) ADABAS 114
 000374 1 MOVE ' ' TO ↩
CLN2V (03) ADABAS 116

Adabas Native SQL Reference Manual314

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 000375 1 MOVE 03 TO CLNNUM ↩
 ADABAS 117
 000376 1 CALL 'RESPINT' ↩
 ADABAS EXT
 000377 1 USING CONTROL-BLOCKOPN DDFILE CSEQ FORMAT-BUFOPN ↩
 ADABAS 45 110 112 89
 000378 1 RECORD-BUFOPN SEARCH-BUFOPN VALUE-BUFOPN ↩
 ADABAS 94 90 91
 000379 1 CLN1 CLN2 TRCE CLNNUM DDDBID. ↩
 ADABAS 113 115 118 117 111

 000380 *
 000381 STOP RUN. ↩
 00000340
 000382 *
 000383 READ-EMPLOYEES. ↩
 00000350
 000384 MOVE PERSONNEL-ID TO PERSONNEL-NR. ↩
 00000360 138 31
 000385 MOVE NAME TO LAST-NAME. ↩
 00000370 139 33
 000386 MOVE FIRST-NAME TO F-NAME. ↩
 00000380 140 35
 000387 MOVE SEX TO KIND. ↩
 00000390 141 37
 000388 DISPLAY LINE1. ↩
 00000400 29
 000389 MOVE SPACE TO LINE1. ↩
 00000410 IMP 29
 000390 *
 000391 * ↩
 00000420
 000392 * EXEC ADABAS ↩
 00000430
 000393 * FETCH EMPL ↩
 00000440
 000394 * END-EXEC ↩
 00000450
 000395 * ↩
 00000460
 000396 MOVE ADA-HALF-INTOPN TO FILLER1-CHAREMPL ↩
 ADABAS 125 159
 000397 IF ISNINDEMPL = ISNMOREEMPL MOVE 1 TO EOF-COBEMPL. ↩
 ADABAS 199 198 200
 000398 IF NOT-EOFEMPL ↩
 ADABAS 202
 000399 1 MOVE 0 TO EOF-COBEMPL ↩
 ADABAS 200
0 000400 1 MOVE 'N' TO COMMAND-OPTION-2EMPL ↩
 ADABAS 178
 000401 1 MOVE ' ' TO COMMAND-OPTION-1EMPL ↩

315Adabas Native SQL Reference Manual

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS 177
 000402 1 MOVE SAVE-DBIDEMPL TO RESPONSE-CODEEMPL ↩
 ADABAS 206 166
 000403 1 MOVE 'L1' TO COMMAND-CODEEMPL ↩
 ADABAS 160
 000404 1 CALL 'ADABAS' USING ↩
 ADABAS EXT
 000405 1 CONTROL-BLOCKEMPL FORMAT-BUFEMPL RECORD-BUFEMPL ↩
 ADABAS 157 130 137
 000406 1 SEARCH-BUFEMPL VALUE-BUFEMPL ↩
 ADABAS 133 145
 000407 1 ISN-BUFEMPL ↩
 ADABAS 155
 000408 1 MOVE ISNEMPL TO ISN OF ↩
 ADABAS 167 142
 000409 1 EMPLOYEES ↩
 ADABAS 136
 000410 1 MOVE RESPONSE-CODEEMPL TO RESPONSE-CODE OF ↩
 ADABAS 166 144
 000411 1 EMPLOYEES ↩
 ADABAS 136
 000412 1 IF RESPONSE-CODEEMPL = 3 ↩
 ADABAS 166
 000413 2 MOVE 1 TO EOF-COBEMPL ↩
 ADABAS 200
 000414 2 ELSE IF RESPONSE-CODEEMPL NOT = 0 ↩
 ADABAS 166
 000415 3 MOVE ' ' TO CSEQ ↩
 ADABAS 112
 000416 3 MOVE ' EXEC ADABAS ' TO ↩
CLN1V (01) ADABAS 114
 000417 3 MOVE ' ' TO ↩
CLN2V (01) ADABAS 116
 000418 3 MOVE ' FETCH EMPL ' TO ↩
CLN1V (02) ADABAS 114
 000419 3 MOVE ' ' TO ↩
CLN2V (02) ADABAS 116
 000420 3 MOVE ' END-EXEC ' TO ↩
CLN1V (03) ADABAS 114
 000421 3 MOVE ' ' TO ↩
CLN2V (03) ADABAS 116
 000422 3 MOVE 03 TO CLNNUM ↩
 ADABAS 117
 000423 3 CALL 'RESPINT' ↩
 ADABAS EXT
 000424 3 USING CONTROL-BLOCKEMPL DDFILE CSEQ FORMAT-BUFEMPL ↩
 ADABAS 157 110 112 130
 000425 3 RECORD-BUFEMPL SEARCH-BUFEMPL VALUE-BUFEMPL ↩
 ADABAS 137 133 145
 000426 3 CLN1 CLN2 TRCE CLNNUM DDDBID. ↩
 ADABAS 113 115 118 117 111
 000427 IF EOFEMPL MOVE 003 TO ADACODE ↩

Adabas Native SQL Reference Manual316

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

 ADABAS 201 44
 000428 1 ELSE MOVE 0 TO ADACODE. ↩
 ADABAS 44

317Adabas Native SQL Reference Manual

APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL

318

16 APPENDIX H - FORTRAN EXAMPLES

■ Example 1 .. 320
■ Example 2 .. 321
■ Example 3 .. 324

319

This chapter covers the following topics:

Example 1

PROGRAM FEX1
C AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH
C CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID
C NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE,
C PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE
C FOLLOWING CONDITION:
C PERSONNEL-ID BETWEEN 10000001 AND 19999999
C MODEL-YEAR-MAKE >
C CLASS = 'C'

CHARACTER*22 STARTS
CHARACTER*20 STARTM /'MERCEDES BENZ'/
CHARACTER*2 STAYM /'86'/
EQUIVALENCE (STARTS,STARTM)
EQUIVALENCE (STARTS(21:21),STAYM)

C
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

C
EXEC ADABAS

DECLARE EMPL CURSOR FOR
SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
FROM EMPLOYEES, VEHICLES
WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID

AND PERSONNEL-ID BETWEEN '10000001' AND '19999999'
AND VEHICLES.MODEL-YEAR-MAKE > :STARTS
AND VEHICLES.CLASS = 'C'

END-EXEC
C

WRITE (6,10)
C

EXEC ADABAS
OPEN EMPL

END-EXEC
C

EXEC ADABAS
FETCH EMPL

END-EXEC
C

1 IF (SQLCOD .EQ. 3) GOTO 2
C

WRITE (6,20) PID,NAME,FNAME,BIRTH,SEX
C

EXEC ADABAS

Adabas Native SQL Reference Manual320

APPENDIX H - FORTRAN EXAMPLES

FETCH EMPL
END-EXEC

C
GOTO 1

C

2 CONTINUE
C

EXEC ADABAS
CLOSE EMPL

END-EXEC
C

EXEC ADABAS
DBCLOSE

END-EXEC
C

10 FORMAT ('1PERSONNEL-ID',8X,'NAME',13X,'FIRST-NAME',8X,
* 'BIRTH',1X,'SEX' / 1X,64('*') /)

20 FORMAT (3X,A8,3X,A20,1X,A20,1X,A6,1X,A1)
C

END

Example 2

PROGRAM FEX2
C DELETE AN EMPLOYEE RECORD AND RELEASE ALL CARS WHICH ARE
C ASSIGNED TO THIS EMPLOYEE. A PRIVATE CARS WILL BE DELETED
C AND A COMPANY CAR WILL BE MADE A POOL-CAR WHICH IS IDENTIFIED
C BY ITS PERSONNEL-ID CONTAINING ONLY THE COUNTRY CODE.
C

CHARACTER*8 PERSNR /'20007100'/
INTEGER*4 EMPISN
CHARACTER*15 CNUM
CHARACTER*1 CNO
EQUIVALENCE (CNUM,CNO)

C
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

C
EXEC ADABAS

READ LOGICAL
DECLARE VEH1 CURSOR FOR
SELECT REG-NUM, PERSONNEL-ID, CLASS
FROM VEHICLES
WHERE PERSONNEL-ID GE :PERSNR
OPTIONS HOLD

321Adabas Native SQL Reference Manual

APPENDIX H - FORTRAN EXAMPLES

ORDER BY PERSONNEL-ID
END-EXEC

C
C FIND EMPLOYEE
C

EXEC ADABAS
FIND
SELECT
FROM EMPLOYEES EMPL1
WHERE PERSONNEL-ID = :PERSNR
OPTIONS HOLD

END-EXEC
C
C IF THE PERSONNEL-ID EXISTS DELETE THE EMPLOYEE AND READ THE
C VEHICLES FILE
C

IF (SQLQTY .EQ. 1) THEN
EMPISN = SQLISN
GOTO 3

1 GOTO 4
ELSE

WRITE (6,10) PERSNR
END IF

C
2 CONTINUE

C
EXEC ADABAS

DBCLOSE
END-EXEC

C
STOP

C
C*** DELETE EMPLOYEE
C

3 CONTINUE
C

EXEC ADABAS
DELETE
FROM EMPLOYEES
WHERE ISN = :EMPISN

END-EXEC
C

WRITE (6,20) PERSNR
C

GOTO 1
C
C*** DEALLOCATE CARS
C

4 CONTINUE

Adabas Native SQL Reference Manual322

APPENDIX H - FORTRAN EXAMPLES

C
EXEC ADABAS

OPEN VEH1
END-EXEC

C
EXEC ADABAS

FETCH VEH1
END-EXEC

C
5 IF (SQLCOD .EQ. 3 .OR. PID .NE. PERSNR) GOTO 6

C
IF (CLASS .EQ. 'P') THEN

EXEC ADABAS
DELETE
FROM VEHICLES
WHERE CURRENT OF VEH1

END-EXEC
WRITE (6,30) REGNUM

ELSE
CNUM = PID
PID = CNO

EXEC ADABAS
UPDATE VEHICLES
WHERE CURRENT OF VEH1

END-EXEC
WRITE (6,40) REGNUM

END IF
C

EXEC ADABAS
FETCH VEH1

END-EXEC
C

GOTO 5
C

6 CONTINUE
C

EXEC ADABAS
CLOSE VEH1

END-EXEC
C

EXEC ADABAS
COMMIT WORK

END-EXEC
C

GOTO 2

323Adabas Native SQL Reference Manual

APPENDIX H - FORTRAN EXAMPLES

C
10 FORMAT (' NO EMPLOYEE FOUND WITH PERSONNEL-ID ',A8)
20 FORMAT (' EMPLOYEE ',A8,' HAS BEEN DELETED')
30 FORMAT (' PRIVATE CAR ',A15,' HAS BEEN DELETED')
40 FORMAT (' COMPANY CAR ',A15,' HAS BEEN UPDATED')

END

Example 3

PROGRAM FEX3
C SALARY INCREASE.
C THIS PROGRAM INCREASES THE SALARY OF EVERY EMPLOYEE BY
C 4 PERCENT.
C THE DEPARTMENT, THE OVERALL AMOUNT OF PAY RISE FOR THE
C DEPARTMENT AND THE PAY RISE FOR ALL DEPARTMENTS WILL BE PRINTED
C OUT.
C THE PROGRAM IS RESTARTABLE. AFTER AN ABNORMAL TERMINATION THE
C PROGRAM EXECUTION WOULD RESTART WITH THE LAST DEPARTMENT
C WHOSE SALARY UPDATE HAD BEEN COMPLETED BEFORE THE ABEND
C OCCURED.
C

CHARACTER*10 COMDAT
CHARACTER*6 COMDEP
INTEGER*4 COMSUM
EQUIVALENCE (COMDAT,COMDEP)
EQUIVALENCE (COMDAT(7:7),COMSUM)
CHARACTER*6 SDEP
INTEGER*4 IND, I, J, NEWSAL, INCRS, SUMDEP, SUMTOT, E1QTY

C
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

C
EXEC ADABAS

HISTOGRAM
DECLARE EMP1 CURSOR FOR
SELECT DEPT
FROM EMPLOYEES E1
WHERE DEPT GE :COMDEP
OPTIONS PREFIX=E1
GROUP BY DEPT

END-EXEC
C

EXEC ADABAS
READ LOGICAL
DECLARE EMP2 CURSOR FOR
SELECT PERSONNEL-ID, DEPT, SALARY, INCOME(COUNT)

Adabas Native SQL Reference Manual324

APPENDIX H - FORTRAN EXAMPLES

FROM EMPLOYEES
WHERE DEPT GE :SDEP
OPTIONS HOLD
ORDER BY DEPT

END-EXEC
C

EXEC ADABAS
CONNECT 'INCREASE'
UPD=EMPLOYEES
AND USERDATA INTO :COMDAT

END-EXEC
C
C A HISTOGRAM STATEMENT IS USED TO ASCERTAIN THE NUMBER OF
C EMPLOYEES PER DEPARTMENT
C

EXEC ADABAS
OPEN EMP1

END-EXEC

C
EXEC ADABAS

FETCH EMP1
END-EXEC

E1QTY = SQLQTY
C

IF (COMDAT .NE. ' ') THEN
C
C RESTART PROCESSING
C

WRITE (6,*) 'LAST PROGRAM RUN TERMINATED ABNORMALLY'
WRITE (6,50) COMDEP

C
EXEC ADABAS

FETCH EMP1
END-EXEC.

E1QTY = SQLQTY
END IF

C
SDEP = E1DEPT

C
EXEC ADABAS

OPEN EMP2
END-EXEC

C
WRITE (6,10)

C
1 IF (SQLCOD .EQ. 3) GOTO 4

C
C THE EMPLOYEES FILE WILL BE READ UNTIL ALL RECORDS FOR THE
C DEPARTMENT HAVE BEEN PROCESSED AND THE SALARY HAS BEEN
C UPDATED

325Adabas Native SQL Reference Manual

APPENDIX H - FORTRAN EXAMPLES

C
DO 3 J=1, E1QTY

EXEC ADABAS
FETCH EMP2

END-EXEC
C THE SALARY INCREASE CAN BE EXECUTED WHEN THE COUNT OF THE
C PERIODIC GROUP IS LESS THAN 40.

IF (CINC .LT. 40) THEN
INCRS = NINT(REAL(SALARY(1)) * 0.04)
NEWSAL = SALARY(1) + INCRS
IND = CINC + 1

C
DO 2 I = CINC, 0, -1

SALARY(IND) = SALARY(I)
IND = IND - 1

2 CONTINUE
C

SALARY(1) = NEWSAL
C

EXEC ADABAS
UPDATE EMPLOYEES
WHERE CURRENT OF EMP2

END-EXEC
C

SUMDEP = SUMDEP + INCRS
SUMTOT = SUMTOT + INCRS

ELSE
WRITE (6,40) PID

END IF
C

3 CONTINUE

C
WRITE (6,20) DEPT, SUMDEP
SUMDEP = 0

C
COMDEP = DEPT
COMSUM = SUMTOT

EXEC ADABAS
COMMIT WORK
USERDATA = :COMDAT

END-EXEC
C

EXEC ADABAS
FETCH EMP1

END-EXEC
E1QTY = SQLQTY

C
GOTO 1

C
4 CONTINUE

Adabas Native SQL Reference Manual326

APPENDIX H - FORTRAN EXAMPLES

C
EXEC ADABAS

CLOSE EMP1
END-EXEC

C
EXEC ADABAS

CLOSE EMP2
END-EXEC

C
WRITE (6,30) SUMTOT
COMDAT = ' '

C
EXEC ADABAS

DBCLOSE
USERDATA = :COMDAT

END-EXEC
C

10 FORMAT (' DEPARTMENT',15X,'SALARY INCREASE'/1X,40('*'))
20 FORMAT (4X,A6,16X,I10)
30 FORMAT (/50('-')//' TOTAL SALARY INCREASE : ',I11)
40 FORMAT (' UPDATE PERSON ',A8,' NOT POSSIBLE')
50 FORMAT (' LAST DEPARTMENT WAS ',A6)

END

327Adabas Native SQL Reference Manual

APPENDIX H - FORTRAN EXAMPLES

328

17 APPENDIX I - EXAMPLEOFFORTRANCODEGENERATED

BY ADABAS NATIVE SQL

PROGRAM FEX1 00000010
C AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH 00000020
C CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID 00000030
C NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE, 00000040
C PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE 00000050
C FOLLOWING CONDITION: 00000060
C PERSONNEL-ID BETWEEN 10000001 AND 19999999 00000070
C MODEL-YEAR-MAKE > 00000080
C CLASS = 'C' 00000090

CHARACTER*22 STARTS 00000100
CHARACTER*20 STARTM /'MERCEDES BENZ'/ 00000110
CHARACTER*2 STAYM /'86'/ 00000120
EQUIVALENCE (STARTS,STARTM) 00000130
EQUIVALENCE (STARTS(21:21),STAYM) 00000140

C 00000150
* 00000160
* EXEC ADABAS 00000170
* BEGIN DECLARE SECTION 00000180
* END-EXEC 00000190
* 00000200

INTEGER*2 SQLCOD /0/ ADABAS
CHARACTER* 2 SQC000 /'AS' / ADABAS
CHARACTER* 2 SQCC00 /' ' / ADABAS
CHARACTER* 4 SQCI00 /'OPEN' / ADABAS
INTEGER* 2 SQCF00 / 0 / ADABAS
INTEGER* 2 SQCR00 / 0 / ADABAS
INTEGER* 4 SQCS00 / 0 / ADABAS
INTEGER* 4 SQCL00 / 0 / ADABAS
INTEGER* 4 SQCQ00 / 0 / ADABAS
INTEGER* 2 SQC300 / 0 / ADABAS
INTEGER* 2 SQC400 / 0 / ADABAS
INTEGER* 2 SQC500 / 0 / ADABAS

329

INTEGER* 2 SQC600 / 0 / ADABAS
INTEGER* 2 SQC700 / 4 / ADABAS
CHARACTER* 1 SQC100 /' ' / ADABAS
CHARACTER* 1 SQC200 /' ' / ADABAS
CHARACTER* 8 SQCM00 /' ' / ADABAS
CHARACTER* 4 SQCN00 /' ' / ADABAS
CHARACTER* 8 SQCO00 /' ' / ADABAS
INTEGER* 2 SQCE00 / 0 / ADABAS
INTEGER* 2 SQCH00 / 0 / ADABAS
INTEGER* 2 SQCJ00 / 0 / ADABAS
INTEGER* 2 SQCK00 / 0 / ADABAS
INTEGER* 4 SQC800 / 0 / ADABAS
INTEGER* 4 SQCT00 / 0 / ADABAS
CHARACTER* 4 SQCU00 /'AS ' / ADABAS
CHARACTER* 4 SQC900 /' ' / ADABAS
CHARACTER* 1 SQCD00 ADABAS
CHARACTER* 2 SQCV00 ADABAS
CHARACTER* 4 SQCW00 ADABAS
CHARACTER* 8 SQCP00 ADABAS
CHARACTER* 7 SQCG00 ADABAS
CHARACTER* 1 SQCZ00 ADABAS
CHARACTER* 80 SQCB00 ADABAS
INTEGER* 2 SQCY00 ADABAS
CHARACTER* 1 SQCA00(00080) ADABAS
EQUIVALENCE (SQCA00(00001),SQCB00) ADABAS
EQUIVALENCE (SQCA00(00001),SQC000) ADABAS
EQUIVALENCE (SQCA00(00003),SQCC00) ADABAS
EQUIVALENCE (SQCA00(00005),SQCI00) ADABAS
EQUIVALENCE (SQCA00(00009),SQCF00) ADABAS
EQUIVALENCE (SQCA00(00009),SQCD00) ADABAS
EQUIVALENCE (SQCA00(00011),SQCR00) ADABAS
EQUIVALENCE (SQCA00(00013),SQCS00) ADABAS
EQUIVALENCE (SQCA00(00017),SQCL00) ADABAS
EQUIVALENCE (SQCA00(00021),SQCQ00) ADABAS
EQUIVALENCE (SQCA00(00025),SQC300) ADABAS
EQUIVALENCE (SQCA00(00027),SQC400) ADABAS
EQUIVALENCE (SQCA00(00029),SQC500) ADABAS
EQUIVALENCE (SQCA00(00031),SQC600) ADABAS
EQUIVALENCE (SQCA00(00033),SQC700) ADABAS
EQUIVALENCE (SQCA00(00035),SQC100) ADABAS
EQUIVALENCE (SQCA00(00036),SQC200) ADABAS
EQUIVALENCE (SQCA00(00037),SQCM00) ADABAS
EQUIVALENCE (SQCA00(00037),SQCV00) ADABAS
EQUIVALENCE (SQCA00(00037),SQCY00) ADABAS
EQUIVALENCE (SQCA00(00041),SQCW00) ADABAS
EQUIVALENCE (SQCA00(00045),SQCN00) ADABAS
EQUIVALENCE (SQCA00(00049),SQCO00) ADABAS
EQUIVALENCE (SQCA00(00057),SQCP00) ADABAS
EQUIVALENCE (SQCA00(00057),SQCE00) ADABAS
EQUIVALENCE (SQCA00(00059),SQCH00) ADABAS
EQUIVALENCE (SQCA00(00061),SQCJ00) ADABAS
EQUIVALENCE (SQCA00(00063),SQCK00) ADABAS

Adabas Native SQL Reference Manual330

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

EQUIVALENCE (SQCA00(00065),SQC800) ADABAS
EQUIVALENCE (SQCA00(00065),SQCZ00) ADABAS
EQUIVALENCE (SQCA00(00066),SQCG00) ADABAS
EQUIVALENCE (SQCA00(00069),SQC900) ADABAS
EQUIVALENCE (SQCA00(00073),SQCT00) ADABAS
EQUIVALENCE (SQCA00(00077),SQCU00) ADABAS
CHARACTER* 1 SQFB00 ADABAS
CHARACTER* 1 SQSB00 ADABAS
CHARACTER* 1 SQVB00 ADABAS
CHARACTER* 1 SQDS00 ADABAS
CHARACTER* 500 SQRB00 ADABAS
CHARACTER* 10 SQDK00 ADABAS
CHARACTER* 3 SQDD00 /'030' / ADABAS
CHARACTER* 8 SQDA00 ADABAS
CHARACTER* 40 SQDB00(00020) ADABAS
CHARACTER* 40 SQDC00(00020) ADABAS
CHARACTER* 7 SQDE00 ADABAS
INTEGER* 2 SQDG00 ADABAS
INTEGER* 2 SQLRSP ADABAS
INTEGER* 4 SQLQTY ADABAS
INTEGER* 4 SQLISN ADABAS
CHARACTER* 8 SQDL00 ADABAS
INTEGER* 2 SQDN00 ADABAS
INTEGER* 4 SQDO00 ADABAS
REAL* 4 SQDP00 ADABAS
REAL* 8 SQDQ00 ADABAS
CHARACTER* 1 SQDM00(00008) ADABAS
EQUIVALENCE (SQDM00(00001),SQDL00) ADABAS
EQUIVALENCE (SQDM00(00001),SQDN00) ADABAS
EQUIVALENCE (SQDM00(00001),SQDO00) ADABAS
EQUIVALENCE (SQDM00(00001),SQDP00) ADABAS
EQUIVALENCE (SQDM00(00001),SQDQ00) ADABAS
INTEGER* 2 SQDR00 ADABAS
CHARACTER* 1 SQDF00 ADABAS
CHARACTER* 1 SQDT00(00002) ADABAS
EQUIVALENCE (SQDT00(00001),SQDR00) ADABAS
EQUIVALENCE (SQDT00(00002),SQDF00) ADABAS
CHARACTER* 37 SQFB01 ADABAS
CHARACTER* 1 SQFA01(00037) ADABAS
EQUIVALENCE (SQFA01(00001),SQFB01) ADABAS
CHARACTER*37 SQFC01/'AA,8,A,AE,20,A,AC,20,A,AH,6,U,AG,1,A.'/ ADABAS
EQUIVALENCE (SQFA01(00001),SQFC01) ADABAS
CHARACTER* 59 SQSB01 ADABAS
CHARACTER* 1 SQSA01(00059) ADABAS
EQUIVALENCE (SQSA01(00001),SQSB01) ADABAS
CHARACTER*40 SQSC01/'(22,AA,24,AC)/22/AA,8,A,S,AA,8,A,D,/24/A'/ ADABAS
EQUIVALENCE (SQSA01(00001),SQSC01) ADABAS
CHARACTER*19 SQSD01/'O,22,A,GT,D,AH,1,A.'/ ADABAS
EQUIVALENCE (SQSA01(00041),SQSD01) ADABAS
EQUIVALENCE (SQRA01(00001),SQRB01) ADADATA
EQUIVALENCE (SQRA01(00001),EMPLOY) ADADATA
CHARACTER* 8 PID ADADATA

331Adabas Native SQL Reference Manual

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

EQUIVALENCE (SQRA01(00001),PID) ADADATA
CHARACTER* 20 NAME ADADATA
EQUIVALENCE (SQRA01(00009),NAME) ADADATA
CHARACTER* 20 FIRSTN ADADATA
EQUIVALENCE (SQRA01(00029),FIRSTN) ADADATA
CHARACTER* 6 BIRTH ADADATA
EQUIVALENCE (SQRA01(00049),BIRTH) ADADATA
CHARACTER* 1 SEX ADADATA
EQUIVALENCE (SQRA01(00055),SEX) ADADATA
CHARACTER* 55 EMPLOY ADADATA
CHARACTER* 55 SQRB01 ADADATA
CHARACTER* 1 SQRA01(00055) ADADATA
EQUIVALENCE (SQVA01(00001),SQVB01) ADABAS
CHARACTER* 8 SQVC01 /' ' / ADABAS
EQUIVALENCE (SQVA01(00001),SQVC01) ADABAS
CHARACTER* 8 SQVD01 /' ' / ADABAS
EQUIVALENCE (SQVA01(00009),SQVD01) ADABAS
CHARACTER* 22 SQVE01 /' ' / ADABAS
EQUIVALENCE (SQVA01(00017),SQVE01) ADABAS
CHARACTER* 1 SQVF01 /' ' / ADABAS
EQUIVALENCE (SQVA01(00039),SQVF01) ADABAS
CHARACTER* 39 SQVB01 ADABAS
CHARACTER* 1 SQVA01(00039) ADABAS
INTEGER* 4 SQDS01(00001) ADABAS
CHARACTER* 2 SQC001 /'AS' / ADABAS
CHARACTER* 2 SQCC01 /' ' / ADABAS
CHARACTER* 4 SQCI01 /'EMPL' / ADABAS
INTEGER* 2 SQCF01 / 22 / ADABAS
INTEGER* 2 SQCR01 / 0 / ADABAS
INTEGER* 4 SQCS01 / 0 / ADABAS
INTEGER* 4 SQCL01 / 0 / ADABAS
INTEGER* 4 SQCQ01 / 0 / ADABAS
INTEGER* 2 SQC301 / 37 / ADABAS
INTEGER* 2 SQC401 / 55 / ADABAS
INTEGER* 2 SQC501 / 59 / ADABAS
INTEGER* 2 SQC601 / 39 / ADABAS
INTEGER* 2 SQC701 / 4 / ADABAS
CHARACTER* 1 SQC101 /' ' / ADABAS
CHARACTER* 1 SQC201 /' ' / ADABAS
CHARACTER* 8 SQCM01 /' ' / ADABAS
CHARACTER* 4 SQCN01 /' ' / ADABAS
CHARACTER* 8 SQCO01 /' ' / ADABAS
CHARACTER* 8 SQCP01 /' ' / ADABAS
INTEGER* 4 SQC801 / 0 / ADABAS
INTEGER* 4 SQCT01 / 0 / ADABAS
CHARACTER* 4 SQCU01 /'AS ' / ADABAS
CHARACTER* 4 SQC901 /' ' / ADABAS
CHARACTER* 1 SQCD01 ADABAS
CHARACTER* 2 SQCV01 ADABAS
CHARACTER* 4 SQCW01 ADABAS
CHARACTER* 7 SQCG01 ADABAS
CHARACTER* 1 SQCZ01 ADABAS

Adabas Native SQL Reference Manual332

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

CHARACTER* 80 SQCB01 ADABAS
INTEGER* 2 SQCY01 ADABAS
CHARACTER* 1 SQCA01(00080) ADABAS
EQUIVALENCE (SQCA01(00001),SQCB01) ADABAS
EQUIVALENCE (SQCA01(00001),SQC001) ADABAS
EQUIVALENCE (SQCA01(00003),SQCC01) ADABAS
EQUIVALENCE (SQCA01(00005),SQCI01) ADABAS
EQUIVALENCE (SQCA01(00009),SQCF01) ADABAS
EQUIVALENCE (SQCA01(00009),SQCD01) ADABAS
EQUIVALENCE (SQCA01(00011),SQCR01) ADABAS
EQUIVALENCE (SQCA01(00013),SQCS01) ADABAS
EQUIVALENCE (SQCA01(00017),SQCL01) ADABAS
EQUIVALENCE (SQCA01(00021),SQCQ01) ADABAS
EQUIVALENCE (SQCA01(00025),SQC301) ADABAS
EQUIVALENCE (SQCA01(00027),SQC401) ADABAS
EQUIVALENCE (SQCA01(00029),SQC501) ADABAS
EQUIVALENCE (SQCA01(00031),SQC601) ADABAS
EQUIVALENCE (SQCA01(00033),SQC701) ADABAS
EQUIVALENCE (SQCA01(00035),SQC101) ADABAS
EQUIVALENCE (SQCA01(00036),SQC201) ADABAS
EQUIVALENCE (SQCA01(00037),SQCM01) ADABAS
EQUIVALENCE (SQCA01(00037),SQCV01) ADABAS
EQUIVALENCE (SQCA01(00037),SQCY01) ADABAS
EQUIVALENCE (SQCA01(00041),SQCW01) ADABAS
EQUIVALENCE (SQCA01(00045),SQCN01) ADABAS
EQUIVALENCE (SQCA01(00049),SQCO01) ADABAS
EQUIVALENCE (SQCA01(00057),SQCP01) ADABAS
EQUIVALENCE (SQCA01(00065),SQC801) ADABAS
EQUIVALENCE (SQCA01(00065),SQCZ01) ADABAS
EQUIVALENCE (SQCA01(00066),SQCG01) ADABAS
EQUIVALENCE (SQCA01(00069),SQC901) ADABAS
EQUIVALENCE (SQCA01(00073),SQCT01) ADABAS
EQUIVALENCE (SQCA01(00077),SQCU01) ADABAS
INTEGER* 4 SQDH01 ADABAS
INTEGER* 4 SQDJ01 ADABAS
INTEGER* 2 SQDI01 ADABAS
LOGICAL* 1 SQEF01 /.FALSE./ ADABAS
INTEGER* 2 SQDR01 ADABAS
CHARACTER* 1 SQDF01 ADABAS
CHARACTER* 1 SQDT01(00002) ADABAS
EQUIVALENCE (SQDT01(00001),SQDR01) ADABAS
EQUIVALENCE (SQDT01(00002),SQDF01) ADABAS

C 00000210
* 00000220
* EXEC ADABAS 00000230
* DECLARE EMPL CURSOR FOR 00000240
* SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX 00000250
* FROM EMPLOYEES, VEHICLES 00000260
* WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID 00000270
* AND PERSONNEL-ID BETWEEN '10000001' AND '19999999' 00000280
* AND VEHICLES.MODEL-YEAR-MAKE > :STARTS 00000290
* AND VEHICLES.CLASS = 'C' 00000300

333Adabas Native SQL Reference Manual

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

* END-EXEC 00000310
* 00000320
C 00000330

WRITE (6,10) 00000340
C 00000350
* 00000360
* EXEC ADABAS 00000370
* OPEN EMPL 00000380
* END-EXEC 00000390
* 00000400

SQVC01 ='10000001' ADABAS
SQVD01 ='19999999' ADABAS
SQVE01 =STARTS ADABAS
SQVF01 ='C' ADABAS

SQDA00='00000400' ADABAS
SQDB00(01)=' EXEC ADABAS ' ADABAS
SQDC00(01)=' ' ADABAS
SQDB00(02)=' OPEN EMPL ' ADABAS
SQDC00(02)=' ' ADABAS
SQDB00(03)=' END-EXEC ' ADABAS
SQDC00(03)=' ' ADABAS
SQDG00=03 ADABAS
SQDH01=SQC701 / 4 ADABAS
SQDI01=1 ADABAS
SQCL01=0 ADABAS
SQCQ01=0 ADABAS
SQC201=' ' ADABAS
SQC101=' ' ADABAS
SQC701=0 ADABAS
SQDR01=188 ADABAS
SQCD01=SQDF01 ADABAS
SQCC01='S1' ADABAS
CALL ADABAS (ADABAS
1 SQCB01,SQFB01,SQRB01,SQSB01,SQVB01, ADABAS
1 SQDS01) ADABAS
SQLRSP=SQCR01 ADABAS
SQLQTY=SQCQ01 ADABAS
SQLISN=SQCS01 ADABAS
IF (SQCR01 .NE. 0 ADABAS
1) THEN ADABAS

CALL RESPF (ADABAS
1 SQCB01,SQDD00,SQDA00,SQFB01,SQRB01,SQSB01, ADABAS
1 SQVB01,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS

END IF ADABAS
SQDJ01=SQCQ01 ADABAS
IF (SQDJ01 .GT. 0) THEN ADABAS

SQEF01=.FALSE. ADABAS
ELSE ADABAS

SQEF01=.TRUE. ADABAS
END IF ADABAS

IF (SQDJ01 .LT. SQDH01) SQDH01=SQDJ01 ADABAS
SQDI01=0 ADABAS

Adabas Native SQL Reference Manual334

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

C 00000410
* 00000420
* EXEC ADABAS 00000430
* FETCH EMPL 00000440
* END-EXEC 00000450
* 00000460

SQDA00='00000460' ADABAS
SQDB00(01)=' EXEC ADABAS ' ADABAS
SQDC00(01)=' ' ADABAS
SQDB00(02)=' FETCH EMPL ' ADABAS
SQDC00(02)=' ' ADABAS
SQDB00(03)=' END-EXEC ' ADABAS
SQDC00(03)=' ' ADABAS
SQDG00=03 ADABAS
IF (SQDI01 .EQ. SQDJ01) SQEF01=.TRUE. ADABAS
IF (.NOT. SQEF01) THEN ADABAS
SQEF01=.FALSE. ADABAS
SQC201='N' ADABAS
SQC101=' ' ADABAS
SQDR01=188 ADABAS
SQCD01=SQDF01 ADABAS
SQCC01='L1' ADABAS
CALL ADABAS (ADABAS
1 SQCB01,SQFB01,SQRB01,SQSB01,SQVB01, ADABAS
1 SQDS01) ADABAS
SQLRSP=SQCR01 ADABAS
SQLQTY=SQCQ01 ADABAS
SQLISN=SQCS01 ADABAS
IF (SQCR01 .EQ. 3) THEN ADABAS

SQEF01=.TRUE. ADABAS
ELSE ADABAS
1IF (SQCR01 .NE. 0 ADABAS
1) THEN ADABAS
CALL RESPF (ADABAS

1 SQCB01,SQDD00,SQDA00,SQFB01,SQRB01,SQSB01, ADABAS
1 SQVB01,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS

END IF ADABAS
END IF ADABAS
IF (SQEF01) THEN ADABAS

SQLCOD=003 ADABAS
ELSE ADABAS

SQLCOD=0 ADABAS
END IF ADABAS

C 00000470
1 IF (SQLCOD .EQ. 3) GOTO 2 00000480

C 00000490
WRITE (6,20) PID,NAME,FNAME,BIRTH,SEX 00000500

C 00000510
* 00000520
* EXEC ADABAS 00000530
* FETCH EMPL 00000540
* END-EXEC 00000550

335Adabas Native SQL Reference Manual

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

* 00000560
SQDA00='00000560' ADABAS
SQDB00(01)=' EXEC ADABAS ' ADABAS
SQDC00(01)=' ' ADABAS
SQDB00(02)=' FETCH EMPL ' ADABAS
SQDC00(02)=' ' ADABAS
SQDB00(03)=' END-EXEC ' ADABAS
SQDC00(03)=' ' ADABAS
SQDG00=03 ADABAS
IF (SQDI01 .EQ. SQDJ01) SQEF01=.TRUE. ADABAS
IF (.NOT. SQEF01) THEN ADABAS
SQEF01=.FALSE. ADABAS
SQC201='N' ADABAS
SQC101=' ' ADABAS
SQDR01=188 ADABAS
SQCD01=SQDF01 ADABAS
SQCC01='L1' ADABAS
CALL ADABAS (ADABAS
1 SQCB01,SQFB01,SQRB01,SQSB01,SQVB01, ADABAS
1 SQDS01) ADABAS
SQLRSP=SQCR01 ADABAS
SQLQTY=SQCQ01 ADABAS
SQLISN=SQCS01 ADABAS
IF (SQCR01 .EQ. 3) THEN ADABAS

SQEF01=.TRUE. ADABAS
ELSE ADABAS
1IF (SQCR01 .NE. 0 ADABAS
1) THEN ADABAS

CALL RESPF (ADABAS
1 SQCB01,SQDD00,SQDA00,SQFB01,SQRB01,SQSB01, ADABAS
1 SQVB01,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS

END IF ADABAS
END IF ADABAS
IF (SQEF01) THEN ADABAS

SQLCOD=003 ADABAS
ELSE ADABAS

SQLCOD=0 ADABAS
END IF ADABAS

C 00000570
GOTO 1 00000580

C 00000590
2 CONTINUE 00000600

C 00000610
* 00000620
* EXEC ADABAS 00000630
* CLOSE EMPL 00000640
* END-EXEC 00000650
* 00000660

SQDA00='00000660' ADABAS
SQDB00(01)=' EXEC ADABAS ' ADABAS
SQDC00(01)=' ' ADABAS
SQDB00(02)=' CLOSE EMPL ' ADABAS

Adabas Native SQL Reference Manual336

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

SQDC00(02)=' ' ADABAS
SQDB00(03)=' END-EXEC ' ADABAS
SQDC00(03)=' ' ADABAS
SQDG00=03 ADABAS
SQC101='I' ADABAS
SQC201='S' ADABAS
SQDR01=188 ADABAS
SQCD01=SQDF01 ADABAS
SQCC01='RC' ADABAS
CALL ADABAS (ADABAS
1 SQCB01,SQFB01,SQRB01,SQSB01,SQVB01, ADABAS
1 SQDS01) ADABAS
SQLRSP=SQCR01 ADABAS
SQLQTY=SQCQ01 ADABAS
SQLISN=SQCS01 ADABAS
IF (SQCR01 .NE. 0 ADABAS
1) THEN ADABAS
CALL RESPF (ADABAS

1 SQCB01,SQDD00,SQDA00,SQFB01,SQRB01,SQSB01, ADABAS
1 SQVB01,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS

END IF ADABAS
C 00000670
* 00000680
* EXEC ADABAS 00000690
* DBCLOSE 00000700
* END-EXEC 00000710
* 00000720

SQDA00='00000720' ADABAS
SQDB00(01)=' EXEC ADABAS ' ADABAS
SQDC00(01)=' ' ADABAS
SQDB00(02)=' DBCLOSE ' ADABAS
SQDC00(02)=' ' ADABAS
SQDB00(03)=' END-EXEC ' ADABAS
SQDC00(03)=' ' ADABAS
SQDG00=03 ADABAS
SQC400=0500 ADABAS
SQC200=' ' ADABAS
SQDR00=188 ADABAS
SQCD00=SQDF00 ADABAS
SQCC00='CL' ADABAS
CALL ADABAS (ADABAS
1 SQCB00,SQFB00,SQRB00,SQSB00,SQVB00, ADABAS
1 SQDS00) ADABAS
IF (SQCR00 .NE. 0 ADABAS
1) THEN ADABAS
CALL RESPF (ADABAS

1 SQCB00,SQDD00,SQDA00,SQFB00,SQRB00,SQSB00, ADABAS
1 SQVB00,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS

END IF ADABAS
C 00000730

10 FORMAT ('1PERSONNEL-ID',8X,'NAME',13X,'FIRST-NAME',8X, 00000740
* 'BIRTH',1X,'SEX' / 1X,64('*') /) 00000750

337Adabas Native SQL Reference Manual

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

20 FORMAT (3X,A8,3X,A20,1X,A20,1X,A6,1X,A1) 00000760
C 00000770

END 00000780

Adabas Native SQL Reference Manual338

APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL

18 APPENDIX J - PL/I EXAMPLES

■ Example 1 .. 340
■ Example 2 .. 342
■ Example 3 .. 344

339

This chapter covers the following topics:

Example 1

PEX1 : PROC OPTIONS(MAIN);
/* AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH

CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID
NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE,
PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE
FOLLOWING CONDITION:

PERSONNEL-ID BETWEEN 10000001 AND 19999999
MODEL-YEAR-MAKE >
CLASS = 'C' */

/* */
DCL 1 START_STRUC,

2 START_MODEL CHAR(20) INIT('MERCEDES-BENZ'),
2 START_YEAR_MAKE PIC '(2)9' INIT(86);

DCL START_MODEL_YEAR_MAKE CHAR(22) BASED(ADDR(START_STRUC));
/* */
DCL 1 HEADER,

2 FILLER1 CHAR(12) INIT('PERSONNEL-ID'),
2 FILLER2 CHAR(8) INIT(' '),
2 FILLER3 CHAR(4) INIT('NAME'),
2 FILLER4 CHAR(13) INIT(' '),
2 FILLER5 CHAR(10) INIT('FIRST-NAME'),
2 FILLER6 CHAR(8) INIT(' '),
2 FILLER7 CHAR(5) INIT('BIRTH'),
2 FILLER8 CHAR(1) INIT(' '),
2 FILLER9 CHAR(3) INIT('SEX');

DCL 1 HEADER2 CHAR(64) INIT((64)'*');
DCL 1 LINE1,

2 FILLER1 CHAR(2) INIT(' '),
2 PERSONNEL_NR CHAR(8) INIT(' '),
2 FILLER2 CHAR(3) INIT(' '),
2 LAST_NAME CHAR(20) INIT(' '),
2 FILLER3 CHAR(1) INIT(' '),
2 F_NAME CHAR(20) INIT(' '),
2 FILLER4 CHAR(1) INIT(' '),
2 BIRTHDAY CHAR(6) INIT(' '),
2 FILLER5 CHAR(1) INIT(' '),
2 KIND CHAR(1) INIT(' ');

/* */
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

Adabas Native SQL Reference Manual340

APPENDIX J - PL/I EXAMPLES

/* */
EXEC ADABAS

DECLARE EMPL CURSOR FOR
SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
FROM EMPLOYEES, VEHICLES
WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID

AND PERSONNEL-ID BETWEEN '10000001' AND '19999999'
AND VEHICLES.MODEL-YEAR-MAKE > :START_MODEL_YEAR_MAKE
AND VEHICLES.CLASS = 'C'
END-EXEC

/* */
PUT SKIP EDIT (HEADER) (A);
PUT SKIP EDIT (HEADER2) (A);
PUT SKIP;

/* */
EXEC ADABAS

OPEN EMPL
END-EXEC

/* */
EXEC ADABAS

FETCH EMPL
END-EXEC

/* */
DO WHILE (ADACODE *= 3);

PERSONNEL_NR = PERSONNEL_ID;
LAST_NAME = NAME;
F_NAME = FIRST_NAME;
BIRTHDAY = BIRTH;
KIND = SEX;
PUT SKIP EDIT (LINE1) (A);

EXEC ADABAS
FETCH EMPL

END-EXEC
END;

/* */
EXEC ADABAS

CLOSE EMPL
END-EXEC

/* */
EXEC ADABAS

DBCLOSE
END-EXEC

/* */
END PEX1;

341Adabas Native SQL Reference Manual

APPENDIX J - PL/I EXAMPLES

Example 2

PEX2 : PROC OPTIONS(MAIN);
/* DELETE AN EMPLOYEE RECORD AND RELEASE ALL CARS WHICH ARE

ASSIGNED TO THIS EMPLOYEE. A PRIVATE CARS WILL BE DELETED
AND A COMPANY CAR WILL BE MADE A POOL-CAR WHICH IS IDENTIFIED
BY ITS PERSONNEL-ID CONTAINING ONLY THE COUNTRY CODE.

*/
/* */
DCL PERSONNEL_NUMBER CHAR(8) INIT ('20007100');
DCL EMPLOYEE_ISN FIXED BIN(31) INIT(0);
DCL 1 COUNTRY_NUM,

2 COUNTRY_NO CHAR(1) INIT (' ') ,
2 FILLER CHAR(14) INIT (' ');

DCL COUNTRY_NUMBER CHAR(15) BASED(ADDR(COUNTR_NUM));
/* */

EXEC ADABAS
BEGIN DECLARE SECTION

END-EXEC
/* */

EXEC ADABAS
READ LOGICAL
DECLARE VEH1 CURSOR FOR
SELECT REG-NUM, PERSONNEL-ID, CLASS
FROM VEHICLES
WHERE PERSONNEL-ID GE :PERSONNEL-NUMBER
OPTIONS HOLD
ORDER BY PERSONNEL-ID

END-EXEC
/*
*** FIND EMPLOYEE

*/
EXEC ADABAS

FIND
SELECT
FROM EMPLOYEES EMPLOYEES_1
WHERE PERSONNEL-ID = :PERSONNEL_NUMBER
OPTIONS HOLD

END-EXEC
/*
*** IF THE PERSONNEL-ID EXISTS DELETE THE EMPLOYEE AND READ THE
*** VEHICLES FILE

*/
IF EMPLOYEES_1.QUANTITY = 1 THEN
DO;

EMPLOYEE_ISN = EMPLOYEES_1.ISN;
CALL DELETE_EMPLOYEE;
CALL READ_VEHICLES_FILE;

Adabas Native SQL Reference Manual342

APPENDIX J - PL/I EXAMPLES

END;
ELSE
PUT SKIP EDIT
('NO EMPLOYEE FOUND WITH PERSONNEL-ID ',PERSONNEL_NUMBER)(A);

/* */
EXEC ADABAS

DBCLOSE
END-EXEC

/***/

DELETE_EMPLOYEE : PROC;
/* */

EXEC ADABAS
DELETE
FROM EMPLOYEES
WHERE ISN = :EMPLOYEE_ISN

END-EXEC
/* */

PUT SKIP EDIT
('EMPLOYEE ',PERSONNEL_NUMBER,' HAS BEEN DELETED')(A);

/* */
END DELETE_EMPLOYEE;
/***/
READ_VEHICLES_FILE : PROC;
/* */

EXEC ADABAS
OPEN VEH1

END-EXEC
/* */

EXEC ADABAS
FETCH VEH1

END-EXEC
/* */

DO WHILE (ADACODE *= 3 &
VEHICLES.PERSONNEL_ID = PERSONNEL_NUMBER);

IF CLASS = 'P' THEN
DO;

EXEC ADABAS
DELETE
FROM VEHICLES
WHERE CURRENT OF VEH1

END-EXEC
PUT SKIP EDIT
('PRIVATE CAR ',REG_NUM,' HAS BEEN DELETED')(A);

END;
ELSE
DO;

COUNTRY_NUMBER = VEHICLES.PERSONNEL_ID;
VEHICLES.PERSONNEL_ID = COUNTRY_NO;

EXEC ADABAS
UPDATE VEHICLES

343Adabas Native SQL Reference Manual

APPENDIX J - PL/I EXAMPLES

WHERE CURRENT OF VEH1
END-EXEC

PUT SKIP EDIT
('COMPANY CAR ',REG_NUM,' HAS BEEN UPDATED')(A);

END;
/* */

EXEC ADABAS
FETCH VEH1

END-EXEC
/* */

END;
/* */

EXEC ADABAS
CLOSE VEH1

END-EXEC
/* */

EXEC ADABAS
COMMIT WORK

END-EXEC
/* */
END READ_VEHICLES_FILE;
/* */
END PEX2;

Example 3

PEX3 : PROC OPTIONS(MAIN);
/* SALARY INCREASE.

THIS PROGRAM INCREASES THE SALARY OF EVERY EMPLOYEE BY
4 PERCENT.
THE DEPARTMENT, THE OVERALL AMOUNT OF PAY RISE FOR THE
DEPARTMENT AND THE PAY RISE FOR ALL DEPARTMENTS WILL BE PRINTED
OUT.
THE PROGRAM IS RESTARTABLE. AFTER AN ABNORMAL TERMINATION THE
PROGRAM EXECUTION WOULD RESTART WITH THE LAST DEPARTMENT
WHOSE SALARY UPDATE HAD BEEN COMPLETED BEFORE THE ABEND
OCCURED.

*/
/* */
DCL 1 COMM_DATA,

2 COMMIT_DEPARTMENT CHAR(6) INIT (' '),
2 COMMIT_SUM FIXED DEC(10) INIT (0);

DCL COMMIT_DATA CHAR(12) BASED(ADDR(COMM_DATA));
DCL START_DEPT CHAR(6) INIT (' ');
DCL IND FIXED BIN(15) INIT (0);
DCL I FIXED BIN(15) INIT (0);
DCL J FIXED BIN(15) INIT (0);
DCL NEW_SALARY FIXED DEC(9) INIT (0);

Adabas Native SQL Reference Manual344

APPENDIX J - PL/I EXAMPLES

DCL INCREASE FIXED DEC(9) INIT (0);
DCL SUM_DEPARTMENT FIXED DEC(10) INIT (0);
DCL SUM_TOTAL FIXED DEC(11) INIT (0);
/* */
DCL 1 HEADER,

2 FILLER1 CHAR(10) INIT ('DEPARTMENT'),
2 FILLER2 CHAR(15) INIT (' '),
2 FILLER3 CHAR(15) INIT ('SALARY INCREASE');

DCL 1 LINE1,
2 FILLER1 CHAR(3) INIT (' '),
2 DEPARTMENT CHAR(6) INIT (' '),
2 FILLER2 CHAR(16) INIT (' '),
2 SUM_DEPT PIC 'Z,ZZZ,ZZZ,ZZ9';

DCL 1 FOOT_LINE,
2 FILLER1 CHAR(21) INIT ('TOTAL SALARY INCREASE'),
2 FILLER CHAR(3) INIT (' : '),
2 TOTAL_SUM_DEPT PIC 'ZZ,ZZZ,ZZZ,ZZZ';

/* */
EXEC ADABAS

BEGIN DECLARE SECTION
END-EXEC

/* */
EXEC ADABAS

HISTOGRAM
DECLARE EMP1 CURSOR FOR
SELECT DEPT
FROM EMPLOYEES EMPLOYEES_1
WHERE DEPT GE :COMMIT_DEPARTMENT
GROUP BY DEPT

END-EXEC
/* */

EXEC ADABAS
READ LOGICAL
DECLARE EMP2 CURSOR FOR
SELECT PERSONNEL-ID, DEPT, SALARY, INCOME(COUNT)
FROM EMPLOYEES
WHERE DEPT GE :START_DEPT
OPTIONS HOLD
ORDER BY DEPT

END-EXEC
/* */

EXEC ADABAS
CONNECT 'INCREASE'
UPD=EMPLOYEES
AND USERDATA INTO :COMMIT_DATA

END-EXEC
/*

A HISTOGRAM STATEMENT IS USED TO ASCERTAIN THE NUMBER OF
EMPLOYEES PER DEPARTMENT

*/

345Adabas Native SQL Reference Manual

APPENDIX J - PL/I EXAMPLES

EXEC ADABAS
OPEN EMP1

END-EXEC
/* */

EXEC ADABAS
FETCH EMP1

END-EXEC
/* */

IF COMMIT_DATA *= ' ' THEN CALL RESTART;
/* */

START_DEPT = EMPLOYEES_1.DEPT;
/* */

EXEC ADABAS
OPEN EMP2

END-EXEC
/* */

PUT SKIP EDIT (HEADER) (A);
PUT SKIP LIST ((40)'*');
PUT SKIP;

/* */
DO WHILE (ADACODE *= 3);

CALL HIST_EMPL;
END;

/* */
EXEC ADABAS

CLOSE EMP1
END-EXEC

/* */
EXEC ADABAS

CLOSE EMP2
END-EXEC

/* */
PUT SKIP;
PUT SKIP LIST ((50)'-');
PUT SKIP;
TOTAL_SUM_DEPT = SUM_TOTAL;
PUT SKIP EDIT (FOOT_LINE) (A);
COMMIT_DATA = ' ';

/* */
EXEC ADABAS

DBCLOSE
USERDATA = :COMMIT_DATA

END-EXEC
/***/
RESTART : PROC;

PUT SKIP LIST ('LAST PROGRAM RUN TERMINATED ABNORMALLY');
PUT SKIP EDIT ('LAST DEPARTMENT WAS: ',COMMIT_DEPARTMENT)(A);

/* */
EXEC ADABAS

FETCH EMP1

Adabas Native SQL Reference Manual346

APPENDIX J - PL/I EXAMPLES

END-EXEC
END RESTART;
/***/

HIST_EMPL : PROC;
/*

THE EMPLOYEES FILE WILL BE READ UNTIL ALL RECORDS FOR THE
DEPARTMENT HAVE BEEN PROCESSED AND THE SALARY HAS BEEN
UPDATED

*/
DO J=1 BY 1 TO EMPLOYEES_1.QUANTITY;

EXEC ADABAS
FETCH EMP2

END-EXEC
/* THE SALARY INCREASE CAN BE EXECUTED WHEN THE COUNT OF THE

PERIODIC GROUP IS LESS THAN 40. */
IF C_INCOME <= 40 THEN

CALL SALARY_INCREASE;
ELSE

PUT SKIP EDIT
('UPDATE PERSON ',PERSONNEL_ID,' NOT POSSIBLE')(A);

END;
/* */

DEPARTMENT = EMPLOYEES.DEPT;
SUM_DEPT = SUM_DEPARTMENT;
SUM_DEPARTMENT = 0;
PUT SKIP EDIT (LINE1) (A);

/* */
COMMIT_DEPARTMENT = EMPLOYEES.DEPT;
COMMIT_SUM = SUM_TOTAL;

EXEC ADABAS
COMMIT WORK
USERDATA = :COMMIT_DATA

END-EXEC
/* */

EXEC ADABAS
FETCH EMP1

END-EXEC
/* */
END HIST_EMPL;
/***/
SALARY_INCREASE : PROC;

INCREASE = SALARY(1) * 0.04;
NEW_SALARY = SALARY(1) + INCREASE;
IND = C_INCOME + 1;

/* */
DO I=C_INCOME BY -1 TO 0;

SALARY(IND) = SALARY(I);
IND = IND - 1;

END;
/* */

347Adabas Native SQL Reference Manual

APPENDIX J - PL/I EXAMPLES

SALARY(1) = NEW_SALARY;
/* */

EXEC ADABAS
UPDATE EMPLOYEES
WHERE CURRENT OF EMP2

END-EXEC
/* */

SUM_DEPARTMENT = SUM_DEPARTMENT + INCREASE;
SUM_TOTAL = SUM_TOTAL + INCREASE;

END SALARY_INCREASE;
/* */
END PEX3;

Adabas Native SQL Reference Manual348

APPENDIX J - PL/I EXAMPLES

19 APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY

ADABAS NATIVE SQL

PEX1 : PROC OPTIONS(MAIN); 00000010
/* AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH 00000020

CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID 00000030
NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE, 00000040
PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE 00000050
FOLLOWING CONDITION: 00000060

PERSONNEL-ID BETWEEN 10000001 AND 19999999 00000070
MODEL-YEAR-MAKE > 00000080
CLASS = 'C' */00000090

/* */00000100
DCL 1 START_STRUC, 00000110

2 START_MODEL CHAR(20) INIT('MERCEDES-BENZ'), 00000120
2 START_YEAR_MAKE PIC '(2)9' INIT(86); 00000130

DCL START_MODEL_YEAR_MAKE CHAR(22) BASED(ADDR(START_STRUC));00000140
/* */00000150

DCL 1 HEADER, 00000160
2 FILLER1 CHAR(12) INIT('PERSONNEL-ID'), 00000170
2 FILLER2 CHAR(8) INIT(' '), 00000180
2 FILLER3 CHAR(4) INIT('NAME'), 00000190
2 FILLER4 CHAR(13) INIT(' '), 00000200
2 FILLER5 CHAR(10) INIT('FIRST-NAME'), 00000210
2 FILLER6 CHAR(8) INIT(' '), 00000220
2 FILLER7 CHAR(5) INIT('BIRTH'), 00000230
2 FILLER8 CHAR(1) INIT(' '), 00000240
2 FILLER9 CHAR(3) INIT('SEX'); 00000250

DCL 1 HEADER2 CHAR(64) INIT((64)'*'); 00000260
DCL 1 LINE1, 00000270

2 FILLER1 CHAR(2) INIT(' '), 00000280
2 PERSONNEL_NR CHAR(8) INIT(' '), 00000290
2 FILLER2 CHAR(3) INIT(' '), 00000300
2 LAST_NAME CHAR(20) INIT(' '), 00000310
2 FILLER3 CHAR(1) INIT(' '), 00000320

349

2 F_NAME CHAR(20) INIT(' '), 00000330
2 FILLER4 CHAR(1) INIT(' '), 00000340
2 BIRTHDAY CHAR(6) INIT(' '), 00000350
2 FILLER5 CHAR(1) INIT(' '), 00000360
2 KIND CHAR(1) INIT(' '); 00000370

/* */00000380
-/* ** 00000390

EXEC ADABAS 00000400
BEGIN DECLARE SECTION 00000410

END-EXEC 00000420
** */ 00000430
DCL ADACODE FIXED BIN(15) INIT (0); ADABAS
DCL ADABAS ENTRY OPTIONS(ASM,INTER); ADABAS
DCL RESPINT ENTRY OPTIONS(ASM,INTER); ADABAS
DCL 1 CONTROL_BLOCKOPN UNAL, ADABAS

3 FILLER1OPN CHAR(2) INIT ('AS') , ADABAS
3 COMMAND_CODEOPN CHAR(2) , ADABAS
3 COMMAND_IDOPN CHAR(4) INIT ('OPEN') , ADABAS
3 FILE_NUMBEROPN FIXED BIN(15) INIT (0) , ADABAS
3 RESPONSE_CODEOPN FIXED BIN(15) INIT (0) , ADABAS
3 ISNOPN FIXED BIN(31) INIT (0) , ADABAS
3 ISN_LOWER_LIMITOPN FIXED BIN(31) INIT (0) , ADABAS
3 ISN_QUANTITYOPN FIXED BIN(31) , ADABAS
3 FORMAT_BUFFER_LENGTHOPN FIXED BIN(15) INIT (0) , ADABAS
3 RECORD_BUFFER_LENGTHOPN FIXED BIN(15) INIT (0) , ADABAS
3 SEARCH_BUFFER_LENGTHOPN FIXED BIN(15) INIT (0) , ADABAS
3 VALUE_BUFFER_LENGTHOPN FIXED BIN(15) INIT (0) , ADABAS
3 ISN_BUFFER_LENGTHOPN FIXED BIN(15) INIT (4) , ADABAS
3 COMMAND_OPTION_1OPN CHAR(1) INIT (' ') , ADABAS
3 COMMAND_OPTION_2OPN CHAR(1) INIT (' ') , ADABAS
3 ADDITIONS_1OPN CHAR(8) INIT (' ') , ADABAS
3 ADDITIONS_2OPN CHAR(4) INIT (' ') , ADABAS
3 ADDITIONS_3OPN CHAR(8) INIT (' ') , ADABAS
3 ADDITIONS_4OPN CHAR(8) INIT (' ') , ADABAS
3 ADDITIONS_5OPN , ADABAS
4 ADDITIONS_5_BNOPN FIXED BIN(31) INIT (0) , ADABAS
4 ADDITIONS_5_58OPN CHAR(4) , ADABAS
3 COMMAND_TIMEOPN FIXED BIN(31) , ADABAS
3 USER_AREAOPN CHAR(4) INIT ('AS') ; ADABAS

DCL CONTROL_BLOCK_1OPN CHAR(80) ADABAS
BASED(ADDR(CONTROL_BLOCKOPN)); ADABAS

DCL ADDITIONS_1_12OPN CHAR(2) DEF ADDITIONS_1OPN ; ADABAS
DCL ADDITIONS_1_BNOPN FIXED BIN(15) UNAL ADABAS

BASED (ADDR(ADDITIONS_1OPN)); ADABAS
DCL ADDITIONS_1_58OPN CHAR(4) DEF ADDITIONS_1OPN POS(5); ADABAS
DCL 1 ADDITIONS_5_DEFOPN BASED (ADDR(ADDITIONS_5OPN)), ADABAS

2 ADDITIONS_5_1OPN CHAR(1), ADABAS
2 ADDITIONS_5_28OPN CHAR(7); ADABAS

DCL 1 ADDITIONS_4_DEFOPN BASED (ADDR(ADDITIONS_4OPN)), ADABAS
2 ADDITIONS_4_12OPN FIXED BIN(15), ADABAS
2 ADDITIONS_4_34OPN FIXED BIN(15), ADABAS
2 ADDITIONS_4_56OPN FIXED BIN(15), ADABAS

Adabas Native SQL Reference Manual350

APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

2 ADDITIONS_4_78OPN FIXED BIN(15); ADABAS
DCL DBIDOPN CHAR(1) BASED (ADDR(FILE_NUMBEROPN)); ADABAS
DCL FORMAT_BUFOPN CHAR (0001) ; ADABAS
DCL SEARCH_BUFOPN CHAR (0001) ; ADABAS
DCL VALUE_BUFOPN CHAR (0001) ; ADABAS
DCL ISN_BUFOPN CHAR (0001) ; ADABAS
DCL RECORD_BUFOPN CHAR (1500) ; ADABAS
DCL OPENTYPE CHAR (0010) ; ADABAS
DCL DDFILE PIC'999' INIT (30) ; ADABAS
DCL CSEQ CHAR(8) ; ADABAS
DCL CLN1(20) CHAR(40) ; ADABAS
DCL CLN2(20) CHAR(40) ; ADABAS
DCL TRCE CHAR(7) ; ADABAS
DCL CLNNUM FIXED BIN(15) ; ADABAS
DCL SQLRSP FIXED BIN(15) ; ADABAS
DCL SQLQTY FIXED BIN(31) ; ADABAS
DCL SQLISN FIXED BIN(31) ; ADABAS
DCL SAVE_DBID_1OPN FIXED BIN(15) ; ADABAS
DCL 1 SAVE_DBID_DEFOPN BASED(ADDR(SAVE_DBID_1OPN)), ADABAS

2 FILLEROPN CHAR(1), ADABAS
2 SAVE_DBIDOPN CHAR(1); ADABAS

DCL 1 FORMAT_BUFEMPL_1 , ADABAS
2 FILLE001 CHAR(34) INIT('AA,8,A,AE,20,A,AC,20,A,AH,6,U,AG,1'), ADABAS
2 FILLE002 CHAR(03) INIT(',A.'), ADABAS
FORMAT_BUFEMPL CHAR(00037) ADABAS

BASED (ADDR(FORMAT_BUFEMPL_1)); ADABAS
DCL 1 SEARCH_BUFEMPL_1 , ADABAS

2 FILLE001 CHAR(34) INIT('(22,AA,24,AC)/22/AA,8,A,S,AA,8,A,D'), ADABAS
2 FILLE002 CHAR(25) INIT(',/24/AO,22,A,GT,D,AH,1,A.'), ADABAS
SEARCH_BUFEMPL CHAR(00059) ADABAS

BASED (ADDR(SEARCH_BUFEMPL_1)); ADABAS
DCL 1 EMPLOYEES UNAL, ADADATA

2 RECORD_BUFEMPL_1 , ADADATA
3 PERSONNEL_ID CHAR (0008) , ADADATA
3 NAME CHAR (0020) , ADADATA
3 FIRST_NAME CHAR (0020) , ADADATA
3 BIRTH PIC '(0005)99' , ADADATA
3 SEX CHAR (0001) , ADADATA
2 ISN FIXED BIN(31), ADADATA
2 QUANTITY FIXED BIN(31), ADADATA
2 RESPONSE_CODE FIXED BIN(15), ADADATA
RECORD_BUFEMPL CHAR(00055) ADADATA

BASED (ADDR(RECORD_BUFEMPL_1)); ADADATA
DCL 1 VALUE_BUFEMPL_1 UNAL, ADABAS

2 V_PERSONNEL_ID_F CHAR (0008) ADABAS
INIT(' '), ADABAS

2 V_PERSONNEL_ID_T CHAR (0008) ADABAS
INIT(' '), ADABAS

2 V_MODEL_YEAR_MAKE, ADABAS
3 S_YEAR PIC '(0001)99' ADABAS

INIT(0), ADABAS
3 S_MAKE CHAR (0020) ADABAS

351Adabas Native SQL Reference Manual

APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

INIT(' '), ADABAS
2 V_CLASS CHAR (0001) ADABAS

INIT(' '), ADABAS
VALUE_BUFEMPL CHAR(00039) ADABAS

BASED (ADDR(VALUE_BUFEMPL_1)); ADABAS
DCL V_MODEL_YEAR_MAKE_EMPL CHAR (0022) ADABAS

BASED (ADDR(ADABAS
VALUE_BUFEMPL_1.V_MODEL_YEAR_MAKE)); ADABAS

DCL ISN_BUFEMPL (1) FIXED BIN(31); ADABAS
DCL 1 CONTROL_BLOCKEMPL UNAL, ADABAS

3 FILLER1EMPL CHAR(2) INIT ('AS') , ADABAS
3 COMMAND_CODEEMPL CHAR(2) , ADABAS
3 COMMAND_IDEMPL CHAR(4) INIT ('EMPL') , ADABAS
3 FILE_NUMBEREMPL FIXED BIN(15) INIT (22) , ADABAS
3 RESPONSE_CODEEMPL FIXED BIN(15) INIT (0) , ADABAS
3 ISNEMPL FIXED BIN(31) INIT (0) , ADABAS
3 ISN_LOWER_LIMITEMPL FIXED BIN(31) INIT (0) , ADABAS
3 ISN_QUANTITYEMPL FIXED BIN(31) , ADABAS
3 FORMAT_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (37) , ADABAS
3 RECORD_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (55) , ADABAS
3 SEARCH_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (59) , ADABAS
3 VALUE_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (39) , ADABAS
3 ISN_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (4) , ADABAS
3 COMMAND_OPTION_1EMPL CHAR(1) INIT (' ') , ADABAS
3 COMMAND_OPTION_2EMPL CHAR(1) INIT (' ') , ADABAS
3 ADDITIONS_1EMPL CHAR(8) INIT (' ') , ADABAS
3 ADDITIONS_2EMPL CHAR(4) INIT (' ') , ADABAS
3 ADDITIONS_3EMPL CHAR(8) INIT (' ') , ADABAS
3 ADDITIONS_4EMPL CHAR(8) INIT (' ') , ADABAS
3 ADDITIONS_5EMPL , ADABAS
4 ADDITIONS_5_BNEMPL FIXED BIN(31) INIT (0) , ADABAS
4 ADDITIONS_5_58EMPL CHAR(4) , ADABAS
3 COMMAND_TIMEEMPL FIXED BIN(31) , ADABAS
3 USER_AREAEMPL CHAR(4) INIT ('AS') ; ADABAS

DCL CONTROL_BLOCK_1EMPL CHAR(80) ADABAS
BASED(ADDR(CONTROL_BLOCKEMPL)); ADABAS

DCL ADDITIONS_1_12EMPL CHAR(2) DEF ADDITIONS_1EMPL; ADABAS
DCL ADDITIONS_1_BNEMPL FIXED BIN(15) UNAL ADABAS

BASED (ADDR(ADDITIONS_1EMPL)); ADABAS
DCL ADDITIONS_1_58EMPL CHAR(4) DEF ADDITIONS_1EMPL POS(5); ADABAS
DCL 1 ADDITIONS_5_DEFEMPL BASED (ADDR(ADDITIONS_5EMPL)), ADABAS

2 ADDITIONS_5_1EMPL CHAR(1), ADABAS
2 ADDITIONS_5_28EMPL CHAR(7); ADABAS

DCL DBIDEMPL CHAR(1) BASED (ADDR(FILE_NUMBEREMPL)); ADABAS
DCL ISNSIZEEMPL FIXED BIN(31) ; ADABAS
DCL ISNMOREEMPL FIXED BIN(31) ; ADABAS
DCL ISNINDEMPL FIXED BIN(15) ; ADABAS
DCL SAVE_DBID_1EMPL FIXED BIN(15) ; ADABAS
DCL 1 SAVE_DBID_DEFEMPL BASED(ADDR(SAVE_DBID_1EMPL)), ADABAS

2 FILLEREMPL CHAR(1), ADABAS
2 SAVE_DBIDEMPL CHAR(1); ADABAS

DCL EOFEMPL BIT(1) INIT ('0'B); ADABAS

Adabas Native SQL Reference Manual352

APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

/* */00000440
-/* ** 00000450

EXEC ADABAS 00000460
DECLARE EMPL CURSOR FOR 00000470
SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX 00000480
FROM EMPLOYEES, VEHICLES 00000490
WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID 00000500

AND PERSONNEL-ID BETWEEN '10000001' AND '19999999' 00000510
AND VEHICLES.MODEL-YEAR-MAKE > :START_MODEL_YEAR_MAKE 00000520
AND VEHICLES.CLASS = 'C' 00000530
END-EXEC 00000540

** */ 00000550
/* */00000560

PUT SKIP EDIT (HEADER) (A); 00000570
PUT SKIP EDIT (HEADER2) (A); 00000580
PUT SKIP; 00000590

/* */00000600
-/* ** 00000610

EXEC ADABAS 00000620
OPEN EMPL 00000630

END-EXEC 00000640
** */ 00000650

VALUE_BUFEMPL_1.V_PERSONNEL_ID_F = '10000001'; ADABAS
VALUE_BUFEMPL_1.V_PERSONNEL_ID_T = '19999999'; ADABAS
V_MODEL_YEAR_MAKE_EMPL = START_MODEL_YEAR_MAKE; ADABAS
VALUE_BUFEMPL_1.V_CLASS = 'C'; ADABAS

DO; ADABAS
ISNSIZEEMPL=ISN_BUFFER_LENGTHEMPL/4; ADABAS
ISNINDEMPL=1; ADABAS
ISN_LOWER_LIMITEMPL=0; ADABAS
COMMAND_OPTION_1EMPL=' '; ADABAS
COMMAND_OPTION_2EMPL=' '; ADABAS
ISN_BUFFER_LENGTHEMPL=0; ADABAS
ISN_QUANTITYEMPL=0 ; ADABAS
COMMAND_CODEEMPL='S1'; ADABAS
CALL ADABAS (ADABAS

CONTROL_BLOCKEMPL,FORMAT_BUFEMPL,RECORD_BUFEMPL, ADABAS
SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
ISN_BUFEMPL); ADABAS

EMPLOYEES.RESPONSE_CODE =RESPONSE_CODEEMPL; ADABAS
EMPLOYEES.QUANTITY =ISN_QUANTITYEMPL; ADABAS
EMPLOYEES.ISN =ISNEMPL; ADABAS
IF RESPONSE_CODEEMPL*=0 ADABAS
THEN DO; ADABAS

CSEQ='00000650'; ADABAS
CLN1(01)=' EXEC ADABAS '; ADABAS
CLN2(01)=' '; ADABAS
CLN1(02)=' OPEN EMPL '; ADABAS
CLN2(02)=' '; ADABAS
CLN1(03)=' END-EXEC '; ADABAS
CLN2(03)=' '; ADABAS
CLNNUM=03; ADABAS

353Adabas Native SQL Reference Manual

APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

CALL RESPINT ADABAS
(CONTROL_BLOCKEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL, ADABAS
RECORD_BUFEMPL,SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
CLN1,CLN2,TRCE,CLNNUM); ADABAS

END; ADABAS
ISNMOREEMPL=ISN_QUANTITYEMPL; ADABAS
IF ISNMOREEMPL > 0 THEN EOFEMPL= '0'B; ADABAS

ELSE EOFEMPL= '1'B; ADABAS
IF ISNMOREEMPL<ISNSIZEEMPL THEN ISNSIZEEMPL=ISNMOREEMPL; ADABAS
ISNINDEMPL=0; ADABAS
END; ADABAS

/* */00000660
-/* ** 00000670

EXEC ADABAS 00000680
FETCH EMPL 00000690

END-EXEC 00000700
** */ 00000710

DO; ADABAS
IF ISNINDEMPL=ISNMOREEMPL THEN EOFEMPL='1'B; ADABAS
IF *EOFEMPL THEN DO; ADABAS
EOFEMPL='0'B; ADABAS
COMMAND_OPTION_2EMPL='N'; ADABAS
COMMAND_OPTION_1EMPL=' '; ADABAS
COMMAND_CODEEMPL='L1'; ADABAS
CALL ADABAS (ADABAS

CONTROL_BLOCKEMPL,FORMAT_BUFEMPL,RECORD_BUFEMPL, ADABAS
SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
ISN_BUFEMPL); ADABAS

EMPLOYEES.RESPONSE_CODE =RESPONSE_CODEEMPL; ADABAS
EMPLOYEES.QUANTITY =ISN_QUANTITYEMPL; ADABAS
EMPLOYEES.ISN =ISNEMPL; ADABAS
IF RESPONSE_CODEEMPL=3 ADABAS
THEN EOFEMPL='1'B; ADABAS
ELSE ADABAS
IF RESPONSE_CODEEMPL*=0 ADABAS
THEN DO; ADABAS
CSEQ='00000710'; ADABAS
CLN1(01)=' EXEC ADABAS '; ADABAS
CLN2(01)=' '; ADABAS
CLN1(02)=' FETCH EMPL '; ADABAS
CLN2(02)=' '; ADABAS
CLN1(03)=' END-EXEC '; ADABAS
CLN2(03)=' '; ADABAS
CLNNUM=03; ADABAS

CALL RESPINT ADABAS
(CONTROL_BLOCKEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL, ADABAS
RECORD_BUFEMPL,SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
CLN1,CLN2,TRCE,CLNNUM); ADABAS

END; ADABAS
END; ADABAS
END; ADABAS

IF EOFEMPL THEN ADACODE = 003; ADABAS

Adabas Native SQL Reference Manual354

APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

ELSE ADACODE = 0; ADABAS
/* */00000720

DO WHILE (ADACODE *= 3); 00000730
PERSONNEL_NR = PERSONNEL_ID; 00000740
LAST_NAME = NAME; 00000750
F_NAME = FIRST_NAME; 00000760
BIRTHDAY = BIRTH; 00000770
KIND = SEX; 00000780
PUT SKIP EDIT (LINE1) (A); 00000790

-/* ** 00000800
EXEC ADABAS 00000810

FETCH EMPL 00000820
END-EXEC 00000830

** */ 00000840
DO; ADABAS
IF ISNINDEMPL=ISNMOREEMPL THEN EOFEMPL='1'B; ADABAS
IF *EOFEMPL THEN DO; ADABAS
EOFEMPL='0'B; ADABAS
COMMAND_OPTION_2EMPL='N'; ADABAS
COMMAND_OPTION_1EMPL=' '; ADABAS
COMMAND_CODEEMPL='L1'; ADABAS
CALL ADABAS (ADABAS

CONTROL_BLOCKEMPL,FORMAT_BUFEMPL,RECORD_BUFEMPL, ADABAS
SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
ISN_BUFEMPL); ADABAS

EMPLOYEES.RESPONSE_CODE =RESPONSE_CODEEMPL; ADABAS
EMPLOYEES.QUANTITY =ISN_QUANTITYEMPL; ADABAS
EMPLOYEES.ISN =ISNEMPL; ADABAS
IF RESPONSE_CODEEMPL=3 ADABAS
THEN EOFEMPL='1'B; ADABAS
ELSE ADABAS
IF RESPONSE_CODEEMPL*=0 ADABAS
THEN DO; ADABAS

CSEQ='00000840'; ADABAS
CLN1(01)=' EXEC ADABAS '; ADABAS
CLN2(01)=' '; ADABAS
CLN1(02)=' FETCH EMPL '; ADABAS
CLN2(02)=' '; ADABAS
CLN1(03)=' END-EXEC '; ADABAS
CLN2(03)=' '; ADABAS
CLNNUM=03; ADABAS

CALL RESPINT ADABAS
(CONTROL_BLOCKEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL, ADABAS
RECORD_BUFEMPL,SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
CLN1,CLN2,TRCE,CLNNUM); ADABAS

END; ADABAS
END; ADABAS
END; ADABAS

IF EOFEMPL THEN ADACODE = 003; ADABAS
ELSE ADACODE = 0; ADABAS

END; 00000850
/* */00000860

355Adabas Native SQL Reference Manual

APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

-/* ** 00000870
EXEC ADABAS 00000880

CLOSE EMPL 00000890
END-EXEC 00000900

** */ 00000910
DO; ADABAS
COMMAND_OPTION_1EMPL='I'; ADABAS
COMMAND_OPTION_2EMPL='S'; ADABAS
COMMAND_CODEEMPL='RC'; ADABAS
CALL ADABAS (ADABAS

CONTROL_BLOCKEMPL,FORMAT_BUFEMPL,RECORD_BUFEMPL, ADABAS
SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
ISN_BUFEMPL); ADABAS

EMPLOYEES.RESPONSE_CODE =RESPONSE_CODEEMPL; ADABAS
EMPLOYEES.QUANTITY =ISN_QUANTITYEMPL; ADABAS
EMPLOYEES.ISN =ISNEMPL; ADABAS
IF RESPONSE_CODEEMPL*=0 ADABAS
THEN DO; ADABAS
CSEQ='00000910'; ADABAS
CLN1(01)=' EXEC ADABAS '; ADABAS
CLN2(01)=' '; ADABAS
CLN1(02)=' CLOSE EMPL '; ADABAS
CLN2(02)=' '; ADABAS
CLN1(03)=' END-EXEC '; ADABAS
CLN2(03)=' '; ADABAS
CLNNUM=03; ADABAS

CALL RESPINT ADABAS
(CONTROL_BLOCKEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL, ADABAS
RECORD_BUFEMPL,SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
CLN1,CLN2,TRCE,CLNNUM); ADABAS

END; ADABAS
END; ADABAS

/* */00000920
-/* ** 00000930

EXEC ADABAS 00000940
DBCLOSE 00000950

END-EXEC 00000960
** */ 00000970

DO; ADABAS
RECORD_BUFFER_LENGTHOPN=1500; ADABAS
COMMAND_OPTION_2OPN =' '; ADABAS
COMMAND_CODEOPN ='CL'; ADABAS
CALL ADABAS (ADABAS

CONTROL_BLOCKOPN ,FORMAT_BUFOPN ,RECORD_BUFOPN , ADABAS
SEARCH_BUFOPN ,VALUE_BUFOPN , ADABAS
ISN_BUFOPN); ADABAS

IF RESPONSE_CODEOPN *=0 ADABAS
THEN DO; ADABAS
CSEQ='00000970'; ADABAS
CLN1(01)=' EXEC ADABAS '; ADABAS
CLN2(01)=' '; ADABAS
CLN1(02)=' DBCLOSE '; ADABAS

Adabas Native SQL Reference Manual356

APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

CLN2(02)=' '; ADABAS
CLN1(03)=' END-EXEC '; ADABAS
CLN2(03)=' '; ADABAS
CLNNUM=03; ADABAS

CALL RESPINT ADABAS
(CONTROL_BLOCKOPN ,DDFILE,CSEQ,FORMAT_BUFOPN , ADABAS
RECORD_BUFOPN ,SEARCH_BUFOPN ,VALUE_BUFOPN , ADABAS
CLN1,CLN2,TRCE,CLNNUM); ADABAS

END; ADABAS
END; ADABAS

/* */00000980

357Adabas Native SQL Reference Manual

APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

358

	Adabas Native SQL Reference Manual
	Table of Contents
	Adabas Native SQL Reference Manual
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 INTRODUCTION
	3 PROGRAMMING CONSIDERATIONS
	Rules for Adabas Native SQL Statements
	Source Program Maintenance
	The Record Buffer and Reference to Data
	Referencing Database Fields
	Synonyms
	Prefix/Suffix
	Validation
	Truncation
	Field Attributes
	Groups
	Multiple-Value Fields
	Periodic Groups
	Multiple-Value Fields within Periodic Groups

	Additional Fields in the Record Buffers (Ada, COBOL, PL/I)
	Additional Fields in FORTRAN Programs
	End-of-File Flag (ADACODE, SQLCOD)

	Response Code Interpretation
	Response Codes

	Host Variables
	ISN Lists and the ISN Buffer
	HOLD Logic
	RETURN Option

	Security Options
	Password Protection
	Ciphering
	Security by Value

	Record Buffer - ADA
	Record Buffer - COBOL
	Fields in FORTRAN
	Record Buffer - PL/I
	Date and Time Conversion Routines
	SQTODATE
	SQFRDATE
	SQTOTIME
	SQFRTIME

	Support of Distributed Data Structures
	The Global Parameters NETWORK and VIRTUAL-MACHINE

	The Distribution handling
	Relational Null Support
	Long Alpha field Support

	4 SINGLE AND MULTIPLE-RECORD PROCESSING
	Single-Record Processing
	Multiple-Record Processing

	5 OVERVIEW OF STATEMENTS
	Syntax
	Upper Case
	Lower Case
	Braces
	Brackets
	Ellipsis
	Ellipsis Preceded by a Comma
	Other Special Characters
	Syntax Diagram for Adabas Native SQL Data Retrieval Statements
	Syntax Diagram for statement-name

	Overview of Adabas Native SQL Statements
	Database Query Statements
	Data Storage READ Statements
	Associator READ Statement
	Statements for Processing Multiple Records
	Database Modification Statements
	Logical Transaction Processing Statements
	Checkpointing Statement
	Other Adabas Native SQL Statements
	Adabas Native SQL Clauses
	DECLARE Clause
	SELECT Clause
	FROM Clause
	WHERE Clause
	OPTIONS Clause
	AUTODBID Option
	CIPHER Option
	COND-NAME Option
	DBID Option
	HOLD Option
	INDEXED Option
	ISN Option
	ISNSIZE Option
	MAXTIME Option
	PASSWORD Option
	PREFIX Option
	SAVE Option
	SEQUENCE Option
	STATIC Option
	SUFFIX Option

	ORDER BY Clause
	GROUP BY Clause

	6 ADABAS NATIVE SQL STATEMENTS
	The BEGIN Statement
	The CHECKPOINT Statement
	USER

	The CLOSE Statement
	The COMMIT WORK Statement
	USERDATA Clause
	Examples:

	The COMPARE Statement
	DECLARE Clause
	SELECT Clause
	FROM Clause
	WHERE Clause
	OPTIONS Clause
	AUTODBID Option
	CIPHER Option
	COND-NAME Option
	DBID Option
	HOLD Option
	INDEXED Option
	ISNSIZE Option
	PASSWORD Option
	PREFIX Option
	SAVE Option
	STATIC Option
	SUFFIX Option

	The CONNECT Statement
	USERID Clause
	Password Clause
	ACC Clause
	Example:

	UPD and EXU Clauses
	Examples:

	USERDATA Clause
	OPTIONS Clause
	NORESTRICTED option
	DBID Option
	MAXISN Option
	MAXHOLD Option
	MAXCID Option
	MAXTIME Option
	TT Option
	TNA Option
	ACODE option
	WCODE option

	The COPY Statement
	The DBCLOSE Statement
	USERDATA Clause
	Example:

	OPTIONS Clause
	DBID Option

	The DELETE Statement
	DECLARE Clause
	FROM Clause
	WHERE Clause
	OPTIONS Clause
	PASSWORD Option
	CIPHER Option

	The FETCH Statement
	The FIND Statement
	DECLARE Clause
	SELECT Clause
	FROM Clause
	WHERE Clause
	search-criterion
	search-expression
	Examples of Search Criteria

	OPTIONS Clause
	AUTODBID Option
	CIPHER Option
	COND-NAME Option
	DBID Option
	HOLD Option
	INDEXED Option
	ISNSIZE Option
	MAXTIME Option
	PASSWORD Option
	PREFIX Option
	SAVE Option
	STATIC Option
	SUFFIX Option

	ORDER BY Clause

	The FIND COUPLED Statement
	DECLARE Clause
	SELECT Clause
	FROM Clause
	WHERE Clause
	OPTIONS Clause
	AUTODBID Option
	CIPHER Option
	COND-NAME Option
	DBID Option
	HOLD Option
	INDEXED Option
	ISNSIZE Option
	MAXTIME Option
	PASSWORD Option
	PREFIX Option
	SAVE Option
	STATIC Option
	SUFFIX Option

	The GENERATE Statement
	The HISTOGRAM Statement
	DECLARE Clause
	SELECT Clause
	FROM Clause
	WHERE Clause
	OPTIONS Clause
	AUTODBID Option
	COND-NAME Option
	DBID Option
	PASSWORD Option
	PREFIX Option
	STATIC Option
	SUFFIX Option

	ORDER BY Clause
	GROUP BY Clause

	The HOLD Statement
	OPTIONS Clause

	The INSERT Statement
	INTO Clause
	DECLARE Clause
	WHERE Clause
	Assignments
	OPTIONS Clause
	PASSWORD Option
	CIPHER Option
	PREFIX Option
	SUFFIX Option

	The OPEN Statement
	The READ ISN Statement
	DECLARE Clause
	SELECT Clause
	FROM Clause
	WHERE Clause
	OPTIONS Clause
	AUTODBID Option
	CIPHER Option
	COND-NAME Option
	DBID Option
	HOLD Option
	INDEXED Option
	PASSWORD Option
	PREFIX Option
	SEQUENCE Option
	STATIC Option
	SUFFIX Option

	The READ LOGICAL Statement
	DECLARE Clause
	SELECT Clause
	FROM Clause
	WHERE Clause
	OPTIONS Clause
	AUTODBID Option
	CIPHER Option
	COND-NAME Option
	DBID Option
	HOLD Option
	INDEXED Option
	ISN Option
	PASSWORD Option
	PREFIX Option
	STATIC Option
	SUFFIX Option

	ORDER BY Clause

	The READ PHYSICAL SEQUENCE Statement
	DECLARE Clause
	SELECT Clause
	FROM Clause
	OPTIONS Clause
	AUTODBID Option
	CIPHER Option
	COND-NAME Option
	DBID Option
	HOLD Option
	INDEXED Option
	ISN Option
	PASSWORD Option
	PREFIX Option
	STATIC Option
	SUFFIX Option

	The READ USERDATA Statement
	USERID Clause

	The RELEASE Statement
	The RELEASE ISN Statement
	The RESTORE Statement
	The ROLLBACK WORK Statement
	WITHOUT Clause

	The SAVE Statement
	The SORT Statement
	DECLARE Clause
	SELECT Clause
	FROM Clause
	WHERE Clause
	OPTIONS Clause
	AUTODBID Option
	CIPHER Option
	COND-NAME Option
	DBID Option
	HOLD Option
	INDEXED Option
	ISNSIZE Option
	PASSWORD Option
	PREFIX Option
	SAVE Option
	STATIC Option
	SUFFIX Option

	ORDER BY Clause

	The TRACE Statement
	The UPDATE Statement
	DECLARE Clause
	WHERE Clause
	SET Clause
	OPTIONS Clause
	CIPHER Option
	COND-NAME Option
	INDEXED Option
	PASSWORD Option
	PREFIX Option
	STATIC Option
	STATUS Option (available with Adabas Version 4 only)
	SUFFIX Option

	The WHENEVER Statement
	The WRITE TO LOG Statement
	USERDATA Clause

	7 USING ADABAS NATIVE SQL STATEMENTS IN TP PROGRAMS
	COM-PLETE
	Customer Information Control System (CICS)
	COBOL TP Programs Using Adabas Native SQL and CICS (Command Level)
	FORTRAN Programs Using Adabas Native SQL and CICS (Command Level)
	PL/I TP Programs Using Adabas Native SQL and CICS (Command Level)

	8 GLOBAL PARAMETERS
	The ABORT Parameter
	IDENT Clause
	PLI Clause
	CICS Clause
	FILE Clause
	DBID Clause

	The ADACALL Parameter
	IDENT Clause
	LAST Clause

	The APOS Parameter
	The CICS STUB Parameter
	The LANG Parameter
	The LIBRARY Parameter
	The MODE Parameter
	MODE FLOW
	MODE NOFLOW
	MODE NOUPDATE
	MODE TRACE

	The MONITOR Parameter
	The NAME Parameter
	The NETWORK Parameter
	The OPTIONS Parameter
	ADA-VERSION Clause
	AUTODBID Clause
	AUTODBID-ALL Clause
	AUTODBID–ATM Clause
	BINARY Clause
	COND-NAME Clause
	DBID Clause
	DYNAMCID Clause
	GFORMAT Clause
	INDEXED Clause
	INIT-LOW-VALUE Clause
	ISNSIZE Clause
	LARGE-NUMBERS Clause
	LONG-COUNTER Clause
	NEW-CONTROL-BLOCK Clause
	NONDE Clause
	OLDCOND-NAME Clause
	OPEN Clause
	PREFIX Clause
	SOFT Clause
	STATIC Clause
	SUFFIX Clause
	TRUNCATION Clause
	USERDATA Clause
	VALIDATION Clause
	VISTA Clause

	The SYSFILE Parameter
	PASSWORD Clause
	CIPHER Clause

	The TELE Parameter
	The USER Parameter
	The VIRTUAL-MACHINE Parameter
	The XREF Parameter

	9 APPENDIX A - SIZE LIMITATIONS
	10 APPENDIX B - DESCRIPTIONS OF THE FILES USED IN THE EXAMPLES
	FORTRAN Synonyms

	11 APPENDIX C - ADABAS NATIVE SQL STATEMENTS USED IN THE EXAMPLES
	12 APPENDIX D - ADA EXAMPLES
	Example 1
	Example 2
	Example 3

	13 APPENDIX E - EXAMPLE OF ADA CODE GENERATED BY ADABAS NATIVE SQL
	14 APPENDIX F - COBOL EXAMPLES
	Example 1
	Example 2
	Example 3

	15 APPENDIX G - EXAMPLE OF COBOL CODE GENERATED BY ADABAS NATIVE SQL
	16 APPENDIX H - FORTRAN EXAMPLES
	Example 1
	Example 2
	Example 3

	17 APPENDIX I - EXAMPLE OF FORTRAN CODE GENERATED BY ADABAS NATIVE SQL
	18 APPENDIX J - PL/I EXAMPLES
	Example 1
	Example 2
	Example 3

	19 APPENDIX - EXAMPLE OF PL/I CODE GENERATED BY ADABAS NATIVE SQL

