
Adabas SQL Server

Reference Manual

Manual Order Number: ESQ143-030ALL

This document applies to Adabas SQL Server Version 1.4 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:

Documentation@softwareag.com

� July 1999, Software AG
All rights reserved
Printed in the Federal Republic of Germany

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

I

TABLE OF CONTENTS

PREFACE 1.

Using This Manual – Some Basic Information 1.
Other Helpful Manuals 1.
Statement Page Layout 1.

1. COMMON ELEMENTS 3.

Character Set 3.

Data Types 3.
Data-Type Conversion 7.

Language Elements 8.
Constant Specification 8.
Identifiers 11.
Keywords 13.
Delimiters 15.

Table Specification 16.
Qualified Table Specification 17.
Unqualified Table Specification 17.
Correlation Identifiers 18.

Column Specification 19.
Unqualified Column Specification 20.
Qualified Column Specification 21.

Host Variable Specification 23.

Query Specification 28.

Persistent Procedure Specification 41.

Privilege Specification 44.

Grantee Specification 46.

Expressions 48.
Assignments and Comparisons 52.

Query Expression 55.
Row Amendment Expression 58.

Adabas SQL Server Reference Manual

II

Predicates 64.
BETWEEN Predicate 65.
COMPARISON Predicate 67.
EXISTS Predicate 73.
IN Predicate 75.
LIKE Predicate 78.
NULL Predicate 82.

Search Condition 84.

Functions 87.
The SUM Function 89.
The MAX Function 91.
The MIN Function 93.
The AVG Function 95.
The COUNT Function 97.

Special Registers 99.
USER 99.
SEQNO 101.

Table Element 104.
Table Column Element 106.
Table Constraint Element 126.
Table Index Element 132.

ORDER BY Clause 135.

USING Clause 138.

FOR UPDATE Clause 141.

2. SQL STATEMENTS 143.

ALTER TABLE 143.

ALTER USER 148.

BEGIN DECLARE SECTION 150.

CLOSE 152.

COMMIT 154.

CONNECT 156.

CREATE CLUSTER 160.

CREATE CLUSTER DESCRIPTION 166.

Table of Contents

III

CREATE DATABASE 171.

CREATE INDEX 173.

CREATE SCHEMA 176.

CREATE TABLE 179.

CREATE DEFAULT TABLESPACE 182.

CREATE TABLESPACE 187.

CREATE TABLE DESCRIPTION 192.

CREATE USER 196.

CREATE VIEW 198.

DEALLOCATE PREPARE 201.

DECLARE CURSOR 203.

DELETE 209.

DESCRIBE 213.

DISCONNECT 217.

DROP CLUSTER 219.

DROP CLUSTER DESCRIPTION 221.

DROP DATABASE 223.

DROP INDEX 225.

DROP SCHEMA 227.

DROP TABLE 229.

DROP DEFAULT TABLESPACE 231.

DROP TABLESPACE 233.

DROP TABLE DESCRIPTION 235.

DROP USER 237.

DROP VIEW 239.

END DECLARE SECTION 241.

EXECUTE 242.

EXECUTE IMMEDIATE 244.

FETCH 246.

GRANT 249.

INCLUDE 252.

Adabas SQL Server Reference Manual

IV

INSERT 254.

OPEN 257.

PREPARE 260.

REVOKE 264.

ROLLBACK 268.

SELECT (SINGLE ROW) 270.

SELECT 273.

SET CONNECTION 275.

UPDATE 277.

WHENEVER 281.

APPENDIX A — GLOSSARY 285.

INDEX 297.

1

PREFACE

Using This Manual – Some Basic Information

This manual describes the language elements of Adabas SQL Server. Adabas SQL Server is
Software AG’s implementation of the ANSI/ISO Standard SQL with certain enhancements to
accommodate additional functionality.

It is intended for application programmers with a basic knowledge of the concepts and facilities
of Standard SQL and Adabas as well as end-users who need help in formulating adhoc queries.

Chapter 1 describes in detail the common elements in the SQL syntax and their usage
and limitations.

Chapter 2 describes each SQL statement with syntax diagrams in detail following a
format shown below in the section Statement Page Layout.

Appendix A is a glossary of Adabas SQL Server terms.

Other Helpful Manuals

Other manuals you may need are:

– Adabas SQL Server Programmer’s Guide

– Adabas SQL Server Installation and Operations Manual
(separate for each platform: UNIX, OpenVMS, MVS)

– Adabas SQL Server Messages and Codes

– a set of platform-specific Adabas Manuals including
Adabas Messages and Codes

– ANSI/ISO Standards SQL (X3.135-1989, ISO 9075).

Statement Page Layout

The chapter SQL Statements and, where feasible, some parts of the chapter Common
Elements have a uniform page design to enable easy access to the required information. Under
the following headings relevant information will be found.

Adabas SQL Server Reference Manual

2

Sample Statement

Function:

This section gives a brief overview of a statement’s function to enable the reader to quickly
determine if the following information is of interest.

Invocation:

This section shows the possible modes in which a statement can be invoked. The applicable
alternatives for each statement are marked. For details refer to the Adabas SQL Server
Programmer’s Guide, chapter Introduction to Adabas SQL Server, sections
Interactive/Embedded/Dynamic SQL.

Syntax:

This section shows the syntax definitions for the SQL statement.

Syntax definitions are depicted graphically. Valid syntax constructions follow a path through
the syntax graph. Alternation and iteration are indicated by branching and looping. Roman type
(enclosed in oval boxes) indicates items that are to be entered literally and italic type (enclosed
in rectangle boxes) indicates items to be supplied by the user. Delimiters are enclosed in circles.

Description:

This section gives a detailed description of the statement’s purpose, functionality and application.

Limitations:

This section covers points which require special attention.

ANSI Specifics:

This section covers points of special interest not covered above and occurring particularly when
operating in ANSI mode.

Adabas SQL Server Specifics:

This section covers points of special interest not covered above and occurring particularly when
operating in Adabas SQL Server (default) mode.

Example:

This section is reserved for examples, whenever they are feasible and enhance the above
information.

1

3

COMMON ELEMENTS

Character Set

As the most simple language elements, characters are used to construct higher-level language
elements. Depending on the specific environment, Adabas SQL Server supports the
EBCDIC/ASCII character set:

Letters upper- and lowercase A – Z
Digits the digits 0 – 9
Special characters characters other than the above mentioned

Data Types

With Adabas SQL Server, data can be manipulated in many ways; the smallest unit of data is
a value. A value can result from several different origins:

a column, a constant, a function, an expression, a host variable, a subquery

For data type definitions refer to the section Table Column Element later in this chapter. The
interpretation of a value depends upon its data type. The following data types exist:

Adabas SQL Server Data Types General Data Types

CHARACTER/CHAR Fixed Length Character
INTEGER/INT Integer
SMALLINT Small Integer
REAL/FLOAT Single Precision Floating Point
DOUBLE PRECISION Double Precision Floating Point
DECIMAL Packed Decimal
NUMERIC Unpacked Decimal
BINARY/BIN Adabas Specific Unsigned

Integer/Adabas Binary

All data types include the NULL value, which should not be confused with a string of zero length
or a numeric 0.

Adabas SQL Server Reference Manual
1

4

Note:
The data types NATURAL DATE and NATURAL TIME are for use in conjunction with Adabas
ODBC Client, only.

Character-String Data Type

A value of data type character-string is a sequence of characters. The length of the
character-string is derived from the definition of the data type or from the value itself.

Fixed-Length Character String

The length of a value with the data type fixed length character-string is determined by the
definition of the origin of the value, e.g. if the value originates from a column which has been
defined as a fixed length character-string with length 15, a value originating from this column
will always have a length of 15. The maximum length also depends on the origin of the value:

Origin Maximum Length

column 16381

constant the number of characters specified
expression see Expressions
function see Functions
host variable host-language-dependent
subquery see Query Specification

Common Elements
1

5

Numeric Data Types

Numeric data types are used to specify the representation form of numeric values. Adabas SQL
Server supports 4 different representation forms of numeric values:

Each numeric value’s form of representation has a precision and a sign. The precision for each
of the forms of representation is specified as follows:

Representation Form Unit of Precision

Unpacked digit

Packed digit
Floating Point double or single

In addition, the decimal forms of representation have a scale. The scale of a numeric value is
defined as the number of digits in the fractional part of the number. The scale can not be larger
than the precision nor can it be negative.

Small Integer specifies a binary representation of a numeric value with a
precision of 15 bits. The value range of a Small Integer number
is –32768 to +32767.

Integer specifies a binary representation of a numeric value with a
precision of 31 bits. The value range of an Integer number is
–2147483648 to +2147483647.

Single Precision specifies a floating point representation with single precision.
Floating Point The value range of a single precision floating point number

depends on the hardware platform.

Double Precision specifies a floating point representation with double precision.
Floating Point The value range of a double precision floating point number

depends on the hardware platform.

Adabas SQL Server Reference Manual
1

6

Numeric specifies an unpacked decimal representation with a user-
specified scale and precision. The range of the precision is
between 1 – 27. The range of the scale is 0 to the value of the
precision. The value range of an unpacked decimal number is
–999999999999999 to +999999999999999.

Decimal specifies a packed decimal representation with a user-
specified scale and precision. The range of the precision is
between 1 – 27. The range of the scale is 0 to the value of the
precision. The value range of an unpacked decimal number is
–999999999999999 to +999999999999999.

Binary Data Type

Adabas SQL Server supports the Adabas binary data type. This binary data type is not to be
confused with the Standard ANSI SQL2 type of BIT, although the two types do display a
similarity. Whereas the bit data type is a bit pattern, the binary data type is effectively an
unsigned integer and is subject to byte swapping where appropriate. This binary data type can
be interpreted in the application program as desired, in most cases this will be as a bit pattern.

Binary values have a maximum length of 126 bytes. The maximum possible number of bits is
1008.

Common Elements
1

7

Data-Type Conversion

Adabas SQL Server is capable of converting a value of a certain data type to another data type.

The convertible data types and the conversion rules are as follows:

� Converting small integer to packed decimal

A value of the data type small integer is converted to a value of the data type packed decimal
with a precision of 5 and a scale of 0.

� Converting integer to packed decimal

A value of the data type integer is converted to a value of the data type packed decimal with a
precision of 11 and a scale of 0.

� Converting small integer to unpacked decimal

A value of the data type small integer is converted to a value of the data type decimal with a
precision of 5 and a scale of 0.

� Converting integer to unpacked decimal

A value of the data type integer is converted to a value of the data type decimal with a precision
of 11 and a scale of 0.

� Converting unpacked decimal to packed decimal

A value of the data type unpacked decimal is converted to a value of the data type packed
decimal with the same precision and scale.

� Converting packed decimal to unpacked decimal

A value of the data type packed decimal is converted to a value of the data type unpacked
decimal with the same precision and scale.

� Converting binary to binary of longer length

A value of the data type binary cannot be converted to either a value of the data type numeric
or a value of the data type character. However, a value of the data type binary can be converted
to another value of the data type binary which is of a longer length. In such a case, appropriate
padding of the more significant bits will be performed automatically.

Approximate Numeric Data Type Conversion to and from Exact Numeric Data Types

Decimal values are exact numeric values as opposed to single and double precision floating
point values which are approximate numeric values. Converting an exact numeric value to an
approximate numeric value might lead to a loss of accuracy. Vice versa, when converting an
approximate numeric value to an exact numeric value, there might be a loss of precision.

Adabas SQL Server Reference Manual
1

8

Language Elements

Like any other language, SQL consists of lexical units called tokens. Tokens are:

– constants,

– identifiers,

– keywords,

– delimiters.

Delimiters are used to separate tokens. See section Delimiters in this chapter for further details.

Constant Specification

A constant is one origin for a value. For each data type, constants can be specified. Each data
type has its own rules on how a constant of that type is to be specified.

Character-String Constants

A character-string constant represents a fixed length character-string value. A character-string
constant is a sequence of characters which begins and ends with the character-string delimiter
apostrophe (’) or double quotation marks.

Note:
In future versions, the alternative use of the character-string delimiter quotation mark (”) will
no longer be permitted.

The length of a character-string constant is determined by the number of characters between the
beginning and ending character-string delimiters. Should a character-string have to contain a
quotation mark or apostrophe, this character is to be repeated:

Example:

The constant: ’this isn’’t a string with 4 ”’’” characters’

represents the
character-string: this isn’t a string with 4 ” ’ ” characters

Common Elements
1

9

Numeric Constants

A numeric constant represents a numeric value. The sign, precision and scale are derived from
the constant itself.

Integer constant An integer constant represents a numeric value of data type
integer. It is a sequence of digits optionally preceded by a plus
(+) or minus (–) character. The precision of an integer constant
is 31 bits. If the first digit is not preceded by a plus or minus
character the sign of the value is assumed to be positive.

Examples: +234 –43 4323

Floating Point A floating point constant represents a numeric value of data ty-
constant pe double precision floating point. It consists of two numbers

separated by the character ‘E’.

The first number is a sequence of digits which may contain a
decimal point and may be preceded by a plus (+) or minus (–)
character.

The second number is a sequence of digits optionally preceded
by a plus or minus character. The value of a floating point
constant is the result of the multiplication of the first number
and the power of 10 specified by the second number. The
precision is double precision. If the first number is not preceded
by a plus or minus character, the sign of the value is assumed
to be positive.

Examples: +2.05E2 –0.345
35E–3 5.E+4

Decimal constant A decimal constant represents a numeric value of data type
Decimal. It is a sequence of digits containing a decimal point
and optionally preceded by a plus (+) or minus (–) character.

The precision is determined by the total number of digits
specified. The scale of the constant is determined by the
number of digits after the decimal point. If the first digit is not
preceded by a minus character, the sign of the value is assumed
to be positive.

Examples: +234.0 –0.34535
.554 1.

Adabas SQL Server Reference Manual
1

10

Binary Constants

A binary constant can be specified either as a bit constant, i.e. using the binary counting system
or as a hex constant, i.e. using the hexadecimal counting system. The two are freely
interchangeable and are equivalent.

Binary Literal

A binary literal is signified by the prefix letter ‘y’, either upper or lower case. The ’Y’ stands
for binarY. It is then followed by zero or more binary digits (either ’1’ or ’0’), enclosed in single
quotes up to the permitted maximum of 1008 digits. For example, an 8 digit binary literal could
be expressed as follows:

Y’11100100’

No space is permitted between the ‘Y’ prefix and the leading quote.

In order to improve legibility, it is permitted to split the literal up into smaller groups of digits.
Any white space character is permitted between each group of digits. Alternatively it is not
mandatory to have any character separating a group of digits. For example :

Y’11’ ’10’ ’01’ ’00’

Such a representation, regardless of the configuration of the groups of digits is entirely
equivalent to the concatenated form.

Hexadecimal Literal

A hexadecimal literal is signified by the prefix letter ’H’, either upper or lower case. It is then
followed by zero or more hex digits (’0’ to ’9’ and ’A’ to ’F’), enclosed in single quotes up to
the permitted maximum of 126 digits. For example, an 8-digit hex literal could be expressed
as follows:

H’A2BFC78D’

No space is permitted between the ’H’ prefix and the leading quote.

In order to improve legibility, it is permitted to split the literal up into smaller groups of digits.
Any white space character is permitted between each group of digits. Alternatively, it is not
mandatory to have any character separating a group of digits. For example:

H’A2’ ’BF’ ’C7’ ’8D’

Such a representation, regardless of the configuration of the groups of digits, is entirely
equivalent to the concatenated form.

Common Elements
1

11

Identifiers

Identifiers are used to identify or name objects. An identifier is a character string consisting of
uppercase or lowercase letters, digits and the underscore character.

Two basic rules apply:

– the first character must always be a letter,

– an identifier must not be identical to an SQL keyword.

In general, Adabas SQL Server can handle identifiers of up to 32 characters. Additional
limitations for certain type of identifiers are described below. The following types of identifiers
exist:

Column Identifier identifies a column of a base table or viewed table. Adabas
SQL Server supports column identifiers of up to 32 characters.

Connection Identifier identifies the name of a connection specified in a CONNECT
statement. Adabas SQL Server supports connection identifiers
of up to 32 characters.

Constraint Identifier is used to identify a constraint in a base table. Adabas SQL
Server supports constraint identifiers of up to 32 characters.

Correlation Identifier is used to temporarily identify a table within an SQL statement.
Adabas SQL Server supports correlation identifiers of up to 32
characters.

Cursor Identifier identifies a cursor. Adabas SQL Server supports cursor
identifiers of up to 18 characters.

Database Identifier is a logical name for a database. Adabas SQL Server supports
database identifiers of up to 32 characters.

Host Variable Identifier identifies a host variable in a host program. The naming
conventions for a host variable identifier must conform to the
naming conventions for the host language in question.
Depending upon the context the host variable identifier may be
a single host variable, a single field within a host variable
structure or a host variable structure reference. Host variable
identifiers of up to 32 characters are supported.

Index Identifier is used to identify an index in a base table. Adabas SQL Server
supports index identifiers of up to 32 characters.

Adabas SQL Server Reference Manual
1

12

Password Identifier identifies the password associated to a user-ID. Adabas SQL
Server supports password identifiers of up to 20 characters. The
password identifier may consist of any alpha characters or
numbers and the following special characters:
! # $ % * () _
– + = / ? : : .
,, < >

Schema Identifier identifies a schema. Adabas SQL Server supports schema
identifiers of up to 32 characters.

Server Identifier identifies a server as specified in the routing file/table. Adabas
SQL Server supports server identifiers of up to 8 characters.

Shortname Identifier is used to assign a short name to an Adabas field. This identifier
must consist of two characters, the first of which may be any
uppercase character between A – Z excluding E and the second
one may be any uppercase character between A – Z or a digit
0 – 9.

Statement Identifier identifies a prepared statement. It is only used in the context of
dynamic SQL. Adabas SQL Server supports statement
identifiers of up to 32 characters.

Table Identifier identifies a base table or a viewed table. Adabas SQL Server
supports table identifiers of up to 32 characters.

User Identifier identifies a host variable or a constant in a host program which
contains the user-ID. Adabas SQL Server supports user
identifiers of up to 32 characters.

Common Elements
1

13

Keywords

The following names (keywords) have a prescribed meaning in SQL and can not be used for any
other purposes. The following is a list of SQL keywords:

A ABS ABSOLUTE ACCOUNTING ACRABN ACTION ACTIVATE ADABAS ADD
ADDDATE ADDTIME ADD_MONTHS AFTER ALIAS ALL ALLOCATE ALPHA ALTER
ANALYZE AND ANSI ANY ARE AS ASC ASCENDING ASCII ASSERTION ASSO
ASSOPFAC AT AUDIT AUTHORIZATION AVG

B BAD BEGIN BEGINLOAD BETWEEN BIN BINARY BIT BIT_LENGTH BLOCK
BLOCKSIZE BOTH BY BUFFER BUFFERPOOL BYTE

C CACHELIMIT CACHES CASCADE CASCADED CASE CAST CATALOG CEIL CHAR
CHARACTER CHARACTER_LENGTH CHAR_LENGTH CHECK CHR CLEAR CLOSE
CLUSTER CLUSTERED COALESCE COLD COLLATE COLLATION COLUMN
COMMENT COMMIT CONCAT CONFIG CONNECT CONNECTED CONNECTION
CONSISTENCY CONSOLE CONSTRAINT CONSTRAINTS CONTIGUOUS_AC
CONTIGUOUS_DS CONTIGUOUS_NI CONTIGUOUS_UI CONTINUE CONVERT COPY
CORRESPONDING COSTLIMIT COSTWARNING COUNT CREATE CREATETAB
CROSS CURRENT CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP
CURRENT_USER CURSOR

D DATA DATABASE DATAPFAC DATE DATEDIFF DAY DAYOFWEEK DAYOFYEAR
DAYS DB2 DBA DBPROC DBPROCEDURE DBYTE DEALLOCATE DEC DECIMAL
DECLARE DECODE DEFAULT DEFERRABLE DEFERRED DELETE DERIVED DESC
DESCENDING DESCRIBE DESCRIPTION DESCRIPTOR DESTPOS DEVICE
DEVSPACE DIAGNOSE DIAGNOSTICS DIGITS DIRECT DISCONNECT DISTINCT DIV
DOMAIN DOMAINDEF DOUBLE DROP DS DSDEV DSETPASS DSRABN DSREUSE
DSSIZE DUPLICATES

E EBCDIC EDITPROC ELSE END ENDLOAD ENDPOS EQ ESCAPE EUR EXCEPT
EXCEPTION EXCLUSIVE EXEC EXECUTE EXISTS EXIT EXPAND EXPLAIN
EXPLICIT EXTERNAL EXTRACT

F FALSE FETCH FILE FILENAME FIRST FIRSTPOS FIXED FLOAT FLOOR FNULL FOR
FORCE FOREIGN FORMAT FOUND FREAD FREEPAGE FROM FULL FWRITE

G GE GET GLOBAL GO GOTO GRANT GRANTED GRAPHIC GREATEST GROUP GT

H HAVING HEX HEXTORAW HOLD HOUR HOURS

Adabas SQL Server Reference Manual
1

14

I IDENTIFIED IDENTITY IGNORE IMMEDIATE IMPLICIT IN INCLUDE INDEX
INDEXNAME INDICATOR INIT INITCAP INITIALLY INNER INPUT INSENSITIVE
INSERT INSTR INT INTEGER INTERNAL INTERSECT INTERVAL INTO IS ISN
ISNREUSE ISNSIZE ISO ISOLATION

J JIS JOIN

K KEEP KEEPING KEY

L LABEL LABELS LANGUAGE LAST LASTPSO LAST_DAY LE LEADING LEAST LEFT
LENGTH LEVEL LFILL LIKE LINK LOAD LOCAL LOCALSYSDBA LOCATIONS LOCK
LOG LONG LOWER LPAD LT LTRIM

M MAKEDATE MAKETIME MAPCHAR MATCH MAX MAXDS MAXISN MAXNI
MAXRECL MAXUI MDELETE MEGABYTE MFETCH MICROSEC MICROSECOND
MICROSECONDS MICROSECS MIN MINSERT MINUS MINUTE MINUTES MIXDSDEV
MOD MODE MODULE MONITOR MONTH MONTHS MONTHS_BETWEEN MSELECT
MULTIPLE MUPDATE

N NAMES NATIONAL NATURAL NCHAR NE NEXT NEXTVAL NIRABN NISIZE NO
NOFORMAT NOLOG NORMAL NOROUND NOT NOWAIT NULL NULLIF NUM
NUMBER NUMERIC NVL

O OCTET_LENGTH OF OFF ON ONLY OPEN OPTIMISTIC OPTIMIZE OPTION OR
ORACLE ORDER OUT OUTPUT OUTER OVERLAPS OVERWRITE

P PACKED PAD PAGES PARAM PARSE PARSEID PARTIAL PARTICIPANTS PASSWORD
PATTERN PCTFREE PERMLIMIT PGMREFRESH PHONETIC PLAN POINTER POS
POSITION POWER PRECISION PREPARE PRESERVE PREV PRIMARY PRIOR PRIV
PRIVILEGES PROC PROCEDURE PROCPARAM PSM PUBLIC

Q QUALIFIER QUERYNO QUICK

R RANGE RAW RAWTOHEX READ READONLY READWRITE REAL RECONNECT
REFERENCED REFERENCES REJECT RELATIVE RELEASE RENAME REPLACE
REPLICATION RESET RESOURCE REST RESTART RESTORE RESTRICT REUSE
REVOKE RFETCH RFILL RIGHT ROLLBACK ROUND ROW ROWID ROWNO
ROWNUM ROWS RPAD RTRIM

Common Elements
1

15

S SAME SAVE SAVEPOINT SCHEMA SCROLL SEARCH SECOND SECONDS SECTION
SEGMENT SELECT SELECTIVITY SELUPD SEQNO SEQUENCE SERVERDB SESSION
SESSION_USER SET SHARE SHORTNAME SHOW SHUTDOWN SIGN SIZE SMALLINT
SOME SOUNDEX SOUNDS SOURCEPOS SPACE SQL SQLCODE SQLERROR SQLID
SQLMODE SQLSTATE SQLWARNING SQL_DB SQRT STAMP STANDARD STARTPOS
STAT STATE STATEMENT STATISTICS STDDEV STOGROUP STORE SUBDATE
SUBPAGES SUBSTR SUBSTRING SUBTIME SUBTRANS SUM SUPPRESSION
SYNONYM SYSDATE SYSDBA SYSTEM_USER

T TABID TABLE TABLEDEF TABLESPACE TEMP TEMPLIMIT TEMPORARY
TERMCHAR THEN TIME TIMEDIFF TIMEOUT TIMESTAMP TIMEZONE
TIMEZONE_HOUR TIMEZONE_MINUTE TO TO_CHAR TO_NUMBER TRAILING
TRANSACTION TRANSFILE TRANSLATE TRANSLATION TRIGGER TRIGGERDEF
TRIM TRUE TRUNC

U UID UIRABN UISIZE UNION UNIQUE UNKNOWN UNLOAD UNLOCK UNPACKED
UNTIL UPDATE UPPER UQINDEX USA USAGE USER USERGROUP USERID USING

V VALIDPROC VALUE VALUES VARCHAR VARGRAPHIC VARIANCE VARYING
VERIFY VERSION VIEW VIRTUAL VSAM VTRACE

W WAIT WEEKOFYEAR WHEN WHENEVER WHERE WITH WORK WRITE

Y YEAR YEARS YES

Z ZONE ZONED

Delimiters

A delimiter is used to separate the lexical units in the language for compiler processing.
Delimiters are either spaces, control characters, comments or special tokens. A comment must
be preceded by double hyphens (--).

Special tokens in SQL are all of the following symbols:

, () < > .

: = + - *

<> <= >= / ;

? �> �< �=

Adabas SQL Server Reference Manual
1

16

Table Specification

A table specification is used to identify a base table or viewed table (view) in an SQL statement.
A table specification has one of the following purposes:

– to define a table (in a CREATE TABLE, CREATE TABLE DESCRIPTION or CREATE
VIEW statement).

– to identify a table (in all other applicable statements).

A table specification can be either a qualified table name or synonym or an unqualified table
name or synonym.

table identifier

.

�

schema identifier

Common Elements
1

17

Qualified Table Specification

A qualified table specification consists of a schema identifier followed by a table identifier
separated by a period. A qualified table specification must uniquely identify a table within a
catalog, whereas a table identifier alone must be unique within a schema. Adabas SQL Server
supports qualified specifications of up to 65 characters including the period.

All table specifications are effectively qualified, even ones which are not explicitly qualified,
as a default schema identifier will be used internally for the implicit qualification. This default
is specified prior to the compilation process generally using a precompiler parameter.

An explicit schema identifier must be used in those cases where the default schema identifier
does not correspond to the schema identifier of the table to be specified. Should the combination
of default schema identifier and the table name not correspond to an actual table, then the
compilation will fail as the table reference can not be resolved. In such a case, the table must
be explicitly qualified with the correct schema identifier. Another consequence is that if two
tables have the same table identifier, but of course different schema identifiers, then an adequate
qualifier must be supplied, either explicitly or implicitly. The following example references two
different tables:

Example:

FROM schema1.cruise, schema2.cruise

A table reference is in scope not only within the actual query specification in which it is declared
but also for all subqueries that occur as part of this query specification. When the table is
declared again in a lower subquery the columns associated with this table refer to the local
declaration and not the outer one. Columns which refer to tables declared in an outer query
specification are called outer references.

Unqualified Table Specification

An unqualified table specification can be used in those cases where the default schema identifier

coincides with the schema identifier of the table to be specified.

Example:

FROM cruise, sailor;

Adabas SQL Server Reference Manual
1

18

Correlation Identifiers

Correlation identifiers can only be defined in the FROM clauses of either a query specification
or a DELETE statement or in an UPDATE statement.

A correlation identifier assigns a new identifier to a table, which can only be used locally within
the statement where it has been defined. The scope of a correlation identifier consists of the
query specification or statement where it has been defined and all the subqueries present within
that query specification or statement.

If a correlation identifier has been defined for a table and a column of the table needs to be
qualified, only the correlation name can be used to do so. The original table name or synonym
can not be used.

A correlation identifier is mandatory whenever two separate occurrences of the same table need
to be distinguished, for example:

SELECT * FROM cruise a, cruise b;

The table CRUISE now logically exists twice and can be referenced as either A or B. This
method can also be used merely to have a shorter qualifier available for use within the statement.

Common Elements
1

19

Column Specification

A column specification is used to identify a column in an SQL statement. A column is specified
by a column identifier. A column specification is used for one of the following purposes:

– to define a column of a table (in a CREATE TABLE, CREATE TABLE DESCRIPTION
or CREATE VIEW statement).

– to identify a column (in a CREATE INDEX statement).

– to represent the value of a column (in an expression in the SELECT clause, or in a search
condition).

– to represent all the values of the resultant rows to which the clause in question is applied
(in WHERE or HAVING clauses as well as in the GROUP BY or ORDER BY clauses).

– to represent all the values of the rows resulting from the grouping operation (as an
argument in a function).

column identifier

.

correlation
identifier

table specification

�

A column specification can be either a qualified column specification or an unqualified column
identifier. A qualified column specification explicitly specifies the table to which the column
relates, an unqualified column identifier does not make this relation explicit.

Adabas SQL Server Reference Manual
1

20

The general method applied by Adabas SQL Server to relate a column specification to one and
only one table specification conforms to the following rules:

– the current query specification is defined as the one in which the column specification
occurs.

– successive query specifications are analyzed from the current query onwards.

– the first table specification that contains the definition of the column specification in
question is taken. This is the candidate table specification.

– within that query specification, no other candidate table specifications may occur.

Note:
If the candidate table is contained in a higher query specification than the current one, the
column is an outer reference.

Unqualified Column Specification

An unqualified column specification can be used in those cases where it is possible to relate the
column unambiguously to one table. This is the case when only one table within the same query
specification contains the column identifier in question.

Example:

SELECT cruise_id,contract_id
FROM cruise,contract;

Common Elements
1

21

Qualified Column Specification

A qualified column specification consists of a table specification followed by a column
identifier separated by a period. Qualified column specifications must be used in those cases
where it is otherwise impossible to relate a column unambiguously to a table. This is the case
when more than one table in the same query specification contains columns with the same
column identifier.

Example:

The example below shows how the column specification distinguishes between two columns
of the same name in different tables. Note, that both tables have to be specified in the FROM
clause.

SELECT contract.id_cruise, sailor.id_cruise
FROM contract,sailor;

Another reason can be that the same table needs to be referenced more than once in the same
query specification. In this situation simply qualifying the column identifier with the table
specification will not suffice. Instead a correlation identifier is required to distinguish between
the different references of the same table (refer to the section Table Specification in this chapter
for more information).

Example:

To find the least expensive cruise for each destination, the following syntax applies, where the
first instance of the table cruise has to be correlated with the letter X, as the subquery needs to
distinguish between two identical column references on two different ’instances’ of the same
table.

SELECT cruise_id,start_harbor,cruise_price
FROM cruise X
WHERE cruise_price = (SELECT MIN(cruise_price)

FROM cruise
WHERE destination_harbor = X.destination_harbor);

Adabas SQL Server Reference Manual
1

22

Outer references are a special type of qualified column specification. Strictly speaking, they are
only required if a column identifier can not unambiguously be related to a single table. The use
of qualified column specifications for outer references increases the readability of an SQL
statement. An outer reference is a reference to a column of a table specified in a higher-level
query specification.

Example:

To identify all contracts that cost more than double the cruise price of the cruises that the
contracts identify , the following syntax applies. This example shows how the id_cruise column
is an outer reference as the table it references is contained in the higher query specification.

SELECT contract_id FROM contract
WHERE (price*2) > (SELECT cruise_price FROM cruise

WHERE cruise_id = contract.id_cruise);

Common Elements
1

23

Host Variable Specification

Host variables serve as a data exchange medium between Adabas SQL Server and the
application program written in a host language. When used in an SQL statement, a host variable
specification has one of the following purposes:

– to identify a variable in the host language program which is to receive a value(s) from
Adabas SQL Server.

– to identify a variable in the host language program which is to pass a value(s) to Adabas
SQL Server.

A host variable is a single variable or structure declared in the host program.

A host variable identifier is used to identify a single host variable or structure from within an
SQL statement.

A host variable specification consists of a host variable identifier and an associated optional
INDICATOR variable and defines either a single variable, a structure, or an element in a
structure.

Adabas SQL Server Reference Manual
1

24

Single Variables

The identified single host variable may actually be a single element within a host variable
structure. Such a reference is not permitted in ANSI compatibility mode.

A single host variable is identified by a host variable identifier which has the following syntax:

host variable
identifier 1

: host variable
identifier 2

:INDICATOR �

host variable identifier 1 identifies a single variable which is assigned any value but the
NULL value.

host variable identifier 2 identifies an INDICATOR variable, see section INDICATOR
Variables below.

Example:

To select the price of the cruise with a cruise ID of 5064 into a host variable the following syntax
applies.

SELECT cruise_price
INTO :host_variable1

FROM cruise
WHERE cruise_id=5064;

Common Elements
1

25

INDICATOR Variables

An INDICATOR variable can serve as one of two purposes:

� Signifies the presence of a NULL value in a host variable assignment.
If the NULL value is to be assigned to a target host variable specification then an accompanying
INDICATOR variable must be present and is assigned a negative value to signify the NULL
value. If the NULL value is to be assigned and the INDICATOR variable is missing, then a
runtime error will occur.

The INDICATOR variable must be of a numeric data type with the exception of double
precision, real and floating point data types. It must be of the appropriate data type for the host
language.

Example:

To select the cancellation date of Contract 2025 into a host variable, the following syntax
applies. (The column ’date_cancellation’ could contain NULL values)

SELECT date_cancellation
INTO :host_variable1 INDICATOR :host_variable2

FROM contract
WHERE contract_id=2025 ;

� Signifies that truncation has occurred in a host variable assignment.
If truncation occurred during the assignment of a character string to a host variable, then the
INDICATOR variable will show the total number of characters in the originating source prior
to truncation.

SUMMARY:

INDICATOR Value Meaning Host Variable Value

<0 signifies NULL value undefined
=0 signifies non-NULL value actual value
>0 number of characters actual value in originating source

Adabas SQL Server Reference Manual
1

26

Host Variable Markers

A dynamic SQL statement can not contain host variables directly. It is, however, possible to
provide a dynamic SQL statement after it has been prepared with value parameters at execution
time. The dynamic statement must then contain a host variable marker for every host variable
specification. A host variable marker is represented by a question mark (?) in the statement’s
source text. For details refer to Adabas SQL Server Programmer’s Guide, chapter: Dynamic
SQL.

Host Structures

A host structure is a C or a PL/I structure or a COBOL group that is referenced in an SQL
statement. The exact rules to which a host structure must conform are described in the host
language chapters of the Adabas SQL Server Programmer’s Guide.

host variable
identifier 1

: host variable
identifier 2

:INDICATOR �

host variable identifier 1 identifies a host structure. It can only be specified in the INTO
clause of a single row SELECT or FETCH statement. A
reference to a host structure is equivalent to a reference to each
element in that structure.

Each element of the host structure identified by host variable
identifier 1 is a host variable which is assigned a value, if that
value is not the NULL value.

host variable identifier 2 is an INDICATOR structure. An INDICATOR structure is a
host structure consisting of elements each identifying an
INDICATOR variable.

Each element of the INDICATOR structure identified by host
variable identifier 2 identifies an INDICATOR variable, see
also section INDICATOR Variables in this chapter.

Common Elements
1

27

The ith element in the host structure indicated by host variable identifier 2 is the INDICATOR
variable for the ith element in the host structure indicated by host variable identifier 1.

Note:
Pointer expressions will be supported in the next release version.

Assume the number of elements in the host structure identified by host variable identifier 1 is
m and the number of elements in the host structure identified by host variable identifier 2 is n:

– If m > n, then the last m-n elements in the host structure identified by host variable
identifier 1 do not have an INDICATOR variable.

– If m < n, then the last n-m elements in the host structure identified by host variable
identifier 2 are ignored.

Examples:

If two host structures have been declared, one for actual returned values and one for indicator
values, and the variables ’struct1’ and ’indicator1’ identify these structures respectively, then
the following syntax shows how values from a derived column list are entered into host variables
(assuming that the host structures match the derived columns).

SELECT cruise_id,start_date,cruise_price
INTO :struct1 INDICATOR :indicator1

FROM cruise;

To insert a resulting value from a query into a particular ’Element’ of a defined structure, the
following syntax applies. Where ’struct1’ is a structure identifier that contains an element
identified by ’price_element’ and ’indicator1’ is a structure identifier that contains the element
identified by ’price_ind’.

SELECT cruise_price
INTO :struct1.price_element INDICATOR :indicator1.price_ind

FROM cruise;

Adabas SQL Server Reference Manual
1

28

Query Specification

Function:

A query specification is used to define a resultant table.

Invocation:

A query specification can appear in one of the following contexts:

– as the operand of a query expression (in a DECLARE CURSOR statement),

– in a subquery within, for instance, a COMPARISON predicate,

Common Elements
1

29

Syntax:

derived column

DISTINCT

SELECT

ALL ,

table
specification

FROM WHERE

column
specification

GROUP BY

,

search
conditionHAVING

,

�

search
condition

special register
SEQNO

column
specification

Adabas SQL Server Reference Manual
1

30

DISTINCT is an optional directive which forces all rows of the resultant
table to be unique, i.e duplicate rows will not be returned.

ALL is the default setting and means that duplicate rows will be
returned. The use of this directive is superfluous.

derived column is the specification of the corresponding columns in the final
resultant table derived by the query. Derived columns are
separated by commas and all of them together are referred to
as the derived column list (see separate diagram below).

table specification is the specification of tables or views from which the resultant
table is to be defined. Table and view names are separated by
commas and all of them together are referred to as the table list.

correlation identifier is a means of giving an alternative name to a particular table for
use within the query and subqueries which are in scope.

WHERE clause is the specification of a search condition which candidate rows
must fulfil in order to become part of the resultant table.

GROUP BY clause is the specification of the desired grouping columns. A
grouping column is the column by which the resultant table will
be grouped.

Special register SEQNO enables access to Adabas information such as ISN or
occurrence numbers.

HAVING clause specifies a search condition which candidate groups must fulfil
in order to become part of the resultant table.

Common Elements
1

31

expression

*

.

�

table specification

correlation
identifier

Derived Column

.

correlation identifier is a means of giving an alternative name to a particular table for
use within the query and subqueries which are in scope.

table specification is the specification of a table or view. The correlation identifier
and table specification must be specified in the table list of the
FROM clause.

* is an abbreviated form of listing all columns of the table
identified by the correlation identifier or the table
specification. If this is specified, all columns of all tables
specified in the table list of the FROM clause are selected.
SEQNOs are not selected unless they are included in the table
description as a named column. In ANSI compatibility mode,
the qualification of the asterisk in the form of the correlation
identifier or the table specification is not permitted.

expression is a valid expression as described in the section Expressions in
this chapter.

Adabas SQL Server Reference Manual
1

32

Description:

A query specification defines the resultant table specified in the derived column list derived
from the tables or views given in the table list, subject to the conditions imposed by the optional
WHERE and/or HAVING clause and optionally grouped according to the GROUP BY clause.

Example:

The following describes the step-by-step processing of a query with the respective intermediate
resultant tables. The abstract example uses a base table named T and columns named a, b, c and
d. The apparent ordering of the intermediate resultant tables is due to ease of representation
rather than of any predetermined ordering of the resultant tables.

SELECT a + 10, d, MAX(b) + 2
FROM T
WHERE c = 33

GROUP BY a, d
HAVING MIN(b) > 3;

� The table list in the FROM clause actually defines all the candidate rows which may become
part of the result. Conceptually, the first processing step of a query specification is to establish
an intermediate resultant table containing all columns and all rows as defined in the table list.
If only one table is involved, then the resultant table will be equivalent to the base table.
However, should more than one table be listed, then all the tables in the list must be conceptually
joined.

11 1 33 X

33

33

33

30

33

X

X

Y

Y

Y

11

11

1

5 7

7 4

6

12

2

a b c d

From T

Table T

No. 1

Processing Step 1

Common Elements
1

33

� The next processing step concerns the WHERE clause. Each row in the intermediate resultant
table is conceptually subjected to the search condition specified in the WHERE clause. If the
condition equates to true, then the candidate row proceeds to the next stage. Otherwise, it is
eliminated from further consideration, thus reducing the size of the final resultant table. Should
no WHERE clause have been specified or the condition equate to true for all candidate rows then
the subsequent resultant table will contain all rows as illustrated by the intermediate resultant
table No.1.

c

11 1 33 X

33

33

33

30

33

X

X

Y

Y

Y

11

11

1

5 7

7 4

6

12

2

a b d

11 1 33 X

33

33

33

33

X

Y

Y

Y

11

11

5 7

7 4

6

2

From T WHERE C=33

No. 1

ca b d

No. 2

Processing Step 2

Adabas SQL Server Reference Manual
1

34

� The next possible processing step concerns the GROUP BY clause. This step actually splits into
two phases resulting in Tables No. 3 and No. 4. If built-in functions are used within a query, it
is called a grouped query. The query is also grouped if a GROUP BY clause is specified, even
if no functions are given. Built-in functions are aggregate operators which operate on a set of
values in order to produce a single value as a result. These functions can be applied to the whole
intermediate resultant table in order to produce a final resultant table of one row. In such a case,
no GROUP BY clause is specified but the query is still grouped, as it uses built-in functions.

Any column referenced within a grouped query must be an operand of a function, a grouping
column or appear anywhere in the WHERE clause. This is because outside of the WHERE
clause, the query is concerned with groups instead of mere rows. The converse, however, is not
true. A grouping column may appear in a function.

This is equally true for SEQNO special registers and named SEQNO columns. In the case of
a special register, it must be specified exactly the same way as it appears in the SELECT list.

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉ

11 1 33 X

33

33

33

33

X

Y

Y

Y

11

11

5 7

7 4

6

2

a b c d

11 1 33 X

33

33

33

33

X

Y

Y

Y

11

11

5 7

7 4

6

2

a b c d

WHERE C=33

Group 1

Group 2

Group 3

Group 4

GROUP BY a,d

11 1X 1

ad

5 7Y 7

7 4X 4

11 2Y 6

M
IN

(b
)

M
A

X
(b

)
No. 4No. 3No. 2

Processing Step 3

Common Elements
1

35

It is possible to divide the intermediate resultant table into groups. Groups are partitioned by
specifying at least one grouping column in the GROUP BY list. A group is then established by
extracting all candidate rows from the intermediate resultant table No. 2, where the value of the
grouping column/s is/are equal. As many groups are established as there are differing values of
the grouping column. There is no predetermined ordering of these groups.

Groups are established as follows:

– identical values in the first grouping column are identified,

– if a match has been made, the values of the second grouping columns are compared (same
procedure for all other grouping columns),

– if all values in the grouping columns are identical, a candidate row has been identified.

At this point the second phase is initiated. The query is examined in order to produce a list of
the columns required for intermediate resultant table No. 4. These new columns are either
grouping columns or columns derived from functions applied to columns in intermediate
resultant table No. 3. In either case, only columns or functions appearing in the derived column
list or the HAVING clause have to be considered. Thus, aggregate functions are applied to each
group in turn resulting in one candidate row per group in intermediate resultant table No. 4.

 The aggregate functions can now be applied to each group in turn resulting in one candidate row
per group for the next conceptual intermediate table.

In conclusion, the GROUP BY clause establishes candidate groups which, when operated upon
by the aggregate functions, are transformed into candidate rows, one per group, which form the
next intermediate resultant table No. 4.

Adabas SQL Server Reference Manual
1

36

� The next possible processing step concerns the HAVING clause. Each row in the intermediate
resultant table is conceptually subjected to the search condition specified in the HAVING
clause. If the condition equates to true, then the candidate row proceeds to the next stage,
otherwise it is eliminated from further consideration. As such, it is analogous to the WHERE
clause except it eliminates candidate groups rather than candidate rows. It is therefore
permissible to use functions in the search conditions. In fact, columns which are not contained
in a function must be specified in the GROUP BY list.

�� �� �

��

� �� �

� �� �

�� 	�

�

� �� �

� � �

��
������������

�
��

��
�

�
�

�
��

�

�
��

��
�

�
�

�
��

�

�	
�� �	
�

��

Processing Step 4

Common Elements
1

37

� The final stage can now be executed, namely the production of the final resultant table. This
is a derivation of the previous intermediate resultant table and is conceptually the same,
regardless of whether it came from the HAVING, GROUP BY, WHERE or FROM clause. A
resultant row is processed by evaluating each derived column in turn, based on the values
contained in the corresponding row of the intermediate resultant table. This evaluation may be
quite complex, depending on the nature of the expressions contained in the derived column’s
specification.

Step 5 finalizes the processing of this query by producing the final resultant table no. 6.

�

� �� �

� � �

���������������������������	

�
��

��
�

�
�

�
��

�

��

� ��

�

�

�	
�
 �	
��

� �

Processing Step 5

Derived Column List

A derived column list of at least one derived column must be specified. This may be done either
as explicit expressions separated by commas or as an asterisk. The asterisk is an abbreviation
representing all the columns as defined in the table list. The special register SEQNO is not
selected as part of the asterisk abbreviation. An equivalent statement would simply list all
columns explicitly, in the order in which they were defined in the original CREATE TABLE
statement.

It is also possible to qualify the asterisk with a table specification which will result in all the
columns belonging to the specified table only being derived.

Adabas SQL Server Reference Manual
1

38

Each derived column has an associated data type which is projected out of the subquery. The
derived column may also have a derived column label by which the derived column can be
identified externally to the query specification e.g. from within an ORDER BY clause. A
derived column label is only present if the derived column is based exclusively on a column of
a base table. In which case the derived column label is simply the fully qualified column
specification. If one column of a resultant table does not have a derived column label then all
other column labels can not be referenced.

The special register SEQNO also has a derived column label, when not specified within a
numeric expression and only in connection with an ORDER BY clause. The derived column
label is simply SEQNO. Should the special register SEQNO be attributed with a table level
number, the derived column label will be attributed accordingly.

It should be noted that the use of an asterisk with a table list made up of more than one table
can lead to extremely large derived column lists.

Tables

A query specification must have at least one table or view listed in the FROM clause. All column
references must uniquely refer to one of these table references. If the same column name is
present in more than one table in the FROM clause then it must be qualified by the appropriate
table name, which itself may need to be explicitly qualified (refer to the section Table
Specification in this chapter for details).

A table reference is in scope not only within the actual query specification in which it is declared
but also for all subqueries that occur as part of this query specification. That is until the table
is declared again in a lower subquery in which case columns referring to this table refer to the
local declaration and not the outer one. Columns which refer to tables declared in an outer query
specification are called outer references.

Should more than one table be declared in the FROM clause, then the query is said to be joined.
It is possible for a table to be joined with itself but in such a case, in order to make the table
references unique within the FROM clause, at least one correlation name must be given.

Query Specification/Subqueries

A subquery is a query specification which is subordinate to or nested in another query
specification. In general, a subquery is also the origin of a value or a set of values. If this is the
case, the number of derived columns in the derived column list of the query specification must
be exactly one. The data type and length of such a value resulting from a subquery is the data
type and length of that derived column.

Common Elements
1

39

A correlation name is a means of giving an alternative label to a table within the query
specification. Hence, if a column reference is qualified with the table name and a correlation
name has been specified, then the qualification must be the correlation name.

Limitations:

A subquery may only return a derived column list with a cardinality of one. Within an
unquantified COMPARISON predicate only one value may be returned. Please refer to
COMPARISON, IN and EXISTS predicates for more details.

A subquery which is specified as part of an unquantified COMPARISON predicate may not have
a GROUP BY or a HAVING clause nor may the FROM clause reference a grouped view.

No outer reference columns may appear in the GROUP BY list.

Columns which are specified in grouped queries but are not themselves specified in functions
are grouping columns and hence, must be listed in the GROUP BY list. This is only necessary
for columns appearing either in the derived column list or in the HAVING clause, regardless of
if they are referenced in a subquery of the grouped query or not. If there are no such columns
then a GROUP BY list is not required, i.e the whole intermediate resultant table is considered
to be a group. However one may be given if desired.

Outer reference columns may not appear in the derived column list of any subquery. They are
therefore restricted to the WHERE clause or the HAVING clause of the subquery.

A grouped query which is derived from a view can not reference columns from that view in any
kind of expression.

A grouped query can only reference one table. Similarly, it can not reference a joined view.

A DISTINCT directive may only appear once within the subquery. Hence, if the derived column
list has been specified as DISTINCT then no functions may also be specified with DISTINCT,
whether they are in the derived column list, in the HAVING clause or even in a contained
subquery.

ANSI Specifics:

The keyword BY is mandatory in a GROUP BY clause.

Adabas SQL Server Reference Manual
1

40

Adabas SQL Server Specifics:

The keyword BY is optional in a GROUP BY clause.

Examples:

The following syntax applies when finding all the contract’s and associated cruise identifiers
for all cruises booked on August 12th, 1991.

SELECT contract_id,id_cruise
FROM contract
WHERE date_booking = 19910812;

The following syntax applies when requiring a list of the different start harbors available.

SELECT DISTINCT start_harbor
FROM cruise ;

The following syntax applies when needing to identify all the contract IDs, customer IDs and
cruise prices of all cruises that leave from Bahamas.

SELECT contract.contract_id, contract.id_customer, cruise.cruise_price
FROM contract,cruise
WHERE cruise.start_harbor = ’BAHAMAS’

and contract.id_cruise = cruise.cruise_id;

To find the most expensive and least expensive cruise going to either Fethiye or Bodrum from
Marmaris, the following syntax applies.

SELECT start_harbor,
destination_harbor,
MAX(cruise_price),
MIN(cruise_price)
FROM cruise
WHERE start_harbor = ’MARMARIS’

 GROUP BY start_harbor,destination_harbor
HAVING destination_harbor = ’FETHIYE’
OR destination_harbor = ’BODRUM’ ;

Also see the detailed, illustrated examples earlier within this section.

Common Elements
1

41

Persistent Procedure Specification

Function:

A persistent procedure specification defines the information that serves as a key when storing

or retrieving dynamically prepared statements to or from the catalog.

Invocation:

Can appear in one of the following statements: PREPARE, DECLARE CURSOR, DESCRIBE,
OPEN, EXECUTE and/or DEALLOCATE PREPARE

Syntax:

MODULE

character-string
constant 1

host variable
identifier 1

character string
constant 2

host variable
identifier 2

PROCEDURE VERSION �
host variable
identifier 3

character string constant 1 specifies the name of the module. The length of the name is
limited to 27 characters.

host variable identifier 1 is a valid single host variable which is used to contain the name
of the module.

character string constant 2 specifies the name of the procedure. The length of the name is
limited to 5 characters.

host variable identifier 2 is a valid single host variable which is used to contain the name
of the procedure.

host variable identifier 3 is a valid single host variable which is used to contain the
version code that will be stored or checked against. The version
code consists of 8 bytes of binary data.

Adabas SQL Server Reference Manual
1

42

Description:

When preparing SQL statements dynamically, there is the option to produce a temporary or a
persistent version of the executable form (meta program). Statements prepared to be persistent
will be stored in the catalog and can be retrieved anytime by any session or process.

This is in contrast to the statement prepared for temporary purposes. The executable form of this
preparation can not be shared by multiple sessions and does not exist beyond the end of session.

In the catalog, a persistent SQL statement is identified by three items: a module name, a
procedure name and a version code. The module and procedure names combined serve as a key
and this combination must uniquely identify each meta program in the catalog. The version code
serves as a checkmark to verify the correct generation.

Static embedded SQL statements also result in meta programs stored in the catalog, once they
have been compiled. This happens at the time of their first invocation. The identification of such
a meta program is done by compilation unit identifiers, statement sequence numbers and
precompilation timestamps. Compared to persistent dynamic meta program identification, the
compilation unit identifiers correspond to the module names, the statement sequence numbers
map into the procedure names and the precompilation timestamp is used as a version code.

Each meta program stored is equipped with the above-mentioned identification items during
execution of a PREPARE statement. Each further reference of the meta program, for example
an OPEN statement, must provide the same values. If the meta program is not found by the key
value (module and procedure names) an error message will be generated. Another error message
will be generated if a meta program with the key value was found but the version code differs
from that provided in the statement.

With a DEALLOCATE PREPARE statement, meta programs can be removed from the catalog.
In this case, the version code must not be specified. The DEALLOCATE PREPARE statement
can either remove a single meta program or by omitting the procedure name, all meta programs
of a specific module.

Limitations:

If a persistent procedure specification is used in a DEALLOCATE PREPARE statement, the
VERSION clause must be omitted. If the PROCEDURE clause is also omitted, the whole
module is specified.

If the persistent procedure specification is used in any other appropriate statement, the
PROCEDURE and VERSION clauses must be specified.

Common Elements
1

43

ANSI Specifics:

The persistent procedure specification is not part of the Standard.

Adabas SQL Server Specifics:

None.

 Example:

The following statement will remove a prepared statement that has been stored in the catalog.
The host variables mod and proc must contain the module and procedure names.

DEALLOCATE PREPARE MODULE :mod PROCEDURE :proc;

An OPEN statement using a persistent procedure specification might look as follows:

OPEN :cursorname CURSOR FOR
MODULE :mod PROCEDURE :proc VERSION :vers;

Adabas SQL Server Reference Manual
1

44

Privilege Specification

Function:

Defines the privileges which may be granted or revoked.

Invocation:

It can appear in GRANT and REVOKE statements.

Syntax:

INSERT

SELECT

DELETE

UPDATE column
identifier

)(

,

,

�

ALL PRIVILEGES

column identifier identifies the column upon which the GRANT or REVOKE
statements will be based. The column name must be a column
defined on the specified table or view. If more than one table
or view is specified, then the column identifier must be valid
for all tables or views.

Common Elements
1

45

Description:

Defines the privilege or set of privileges to be granted or revoked. These privileges are defined
for specified tables or views.

The following privilege specifications may be defined:

SELECT enables the selection of data from the table(s) or view(s).

INSERT enables the insertion of data in the table(s) or view(s).

DELETE enables the deletion of rows from the specified table(s) or
view(s).

UPDATE enables the updating of data in the specified table(s) or view(s).
The UPDATE privilege can be specified for a list of columns
within the table(s) or view(s).

Limitations:

If a view is based on more than one base table (read-only view), then the SELECT privilege is
the only one to be granted in this case.

ANSI Specifics:

The keyword “PRIVILEGES” is mandatory when specifying “ALL”.

Adabas SQL Server Specifics:

The keyword “PRIVILEGES” is optional when specifying “ALL”.

 Example:

See the GRANT/REVOKE statements for examples.

Adabas SQL Server Reference Manual
1

46

Grantee Specification

Function:

Identifies the individual(s) to whom privileges are to be granted or from whom privileges are
to be revoked.

Invocation:

It can appear in GRANT and REVOKE statements.

Syntax:

user
identifier

PUBLIC

,

�

user identifier identifies the user to be granted/revoked privileges

Description:

Defines whether the privilege or set of privileges is to be granted to or is to be revoked from a
particular user, from a list of users, or from all users. If the option PUBLIC is specified, all
present and future users will automatically be affected by the granting or revocation of the
specified privilege.

Limitations:

Owners of tables hold all privileges for their tables by default and should, therefore, not
additionally grant (or revoke from) themselves privileges on these tables.

Common Elements
1

47

ANSI Specifics:

None.

Adabas SQL Server Specifics:

None.

 Example:

See the GRANT/REVOKE statements for examples.

Adabas SQL Server Reference Manual
1

48

Expressions

In general, an expression is a combination of opeands separated by operators. An expression
produces a result and is, therefore, an origin of a value. The following diagrams define the syntax
of an expression:

+

/

*

–

function

constant

column
specification

host variable
specification

�

–

+

expression)(

special
register

Note:
In this context, the host variable specification can only reference a single host variable or a
single field within a structure.

Common Elements
1

49

Expressions Without Operators

If an expression is used without operators, the result is the value represented by the object
specified, e.g., the result of an expression consisting of a column specification is the value
represented in that column specification.

Expressions With Operators

The operators which can be used in expressions can be divided into monadic and diadic
operators.

Monadic Operators are prefix operators and have one operand. Monadic operators include the
monadic plus (+) and the monadic minus (–) operators. The monadic plus operator does not
change the value of its operand. The monadic minus operator changes the sign of the value of
its operand. Monadic operators can only be used with one operand of data type numeric.

Diadic Operators are infix operators and have two operands. Diadic operators include the
addition (+), subtraction (–), multiplication (*) and division (/) operators. Diadic operators
can only be used with operands of numeric data type. The data type of the result of an expression
with two operands and a diadic operator depends on the data types of the two operands and on
the operator. The rules which apply to Adabas SQL Server are described as follows:

Precedence of Operators and Parentheses

The operators in an expression are processed in a certain order. This order of precedence can
be influenced by the use of parentheses. Operators of equal precedence are applied from left to
right.

The following table lists all operators and parentheses in the order of their precedence:

Operator Function Example

() Parentheses override precedence rules. (x+y) * (x-y)
Operations inside parentheses are
applied first.

+ – Monadic plus/monadic minus –1

* / Multiply, divide (diadic) y/2

+ – Add, subtract (diadic) y-2

Note:
A diadic operator must not be immediately followed by a monadic operator. Otherwise, in the
case of ’––’ (two minus signs) it will be assumed that this is an SQL comment.

Adabas SQL Server Reference Manual
1

50

Integer Operands

If a diadic operator has two operands of the data type Integer or Small Integer, the result is of
data type Integer. In the case of a division operation, the possible remainder will be lost, as any
result must lie in the range of the Integer data type.

Decimal Operands

If a diadic operator has two operands with data type Decimal, the result is also of data type
Decimal. Operations are performed using the Packed Decimal instructions of the underlying
hardware or software simulation. The precision and scale of the result depend on those of the
two operands and on the operation applied. Let P1 and S1 denote the precision and scale of one
operand and P2 and S2 the precision and scale of the other. Let M denote the maximum precision
of 27.

Addition and Subtraction

The precision (P) and scale (S) of the result on mainframe systems are determined by the
following formulae:

P = min (M, max (P1 – S1, P2 – S2) + max (S1, S2) + 1)

S = max (S1, S2)

If both operands do not have the same scale, the operand with the smaller scale is copied to a
temporary variable with the same scale as the other operand. The value is extended with zeros.

Multiplication

The precision and scale of the result on mainframe systems are determined by the following
formulae:

P = min (M, P1 + P2)

S = min (M, S1, + S2)

Division

The precision and scale of the result on mainframe systems are determined by the following
formulae:

P = M

S = max (0,M – P1 + S1 – S2)

Unpacked Decimal Operands

Unpacked Decimal operands are converted to Decimal data type and processed accordingly (see
the sections Decimal Operands above as well as the section Data Type Conversion earlier in
this chapter).

Common Elements
1

51

Single Precision Floating Point Operands

Single Precision Floating Point operands are converted to data type Double Precision Floating
Point and processed accordingly. For details, see the section Data Type Conversion earlier in
this chapter.

Double Precision Floating Point Operands

If a diadic operator has two operands of the data type Double Precision Floating Point, the result
is also of this data type. Operations are performed using the floating point instructions of the
underlying hardware.

Mixed Operands

If a diadic operation has two operands which are not of the same data type, one of the operands
is converted to the data type of the other. Conversion is always done to a “higher” data type in
the following order:

Small Integer Low
Integer
Unpacked Decimal
Decimal
Single Precision Floating Point
Double Precision Floating Point High

Adabas SQL Server Reference Manual
1

52

Assignments and Comparisons

All operations in SQL can be broken down to two basic operations:

assignment of values and
comparison of values.

Values are assigned during the processing of FETCH, UPDATE, INSERT and single-row
SELECT statements. Comparison of values take place during the execution of statements that
contain predicates. Both assignment and comparison operations have two operands. An
assignment operation has a receiving operand and a sending operand. In an assignment, the
value of the sending operand is given to the receiving operand. A comparison operation has two
comparison operands whose values are compared with each other. For both assignment and
comparison operations, both operands must have a comparable data type.

Assume operand 1 has data type x. Operand 2 has a comparable data type only if its data type
is:

– x or

– a data type which can be converted to x or

– a data type to which x can be converted, unless operand 1 is the receiving operand of an
assignment operation. In this case, the data type is fixed and can not be changed.

In general, this means that data types character-string, binary, and numeric are not comparable.

If both operands have different but yet comparable data types and a conversion has to be
performed, this is always done from a ‘lower’ data type to a ‘higher’ data type (see Mixed
Operands above). For detailed information on data type conversion rules refer to the section
Data Type Conversion in this chapter.

Common Elements
1

53

Character-String Assignment

When a value of data type character-string is assigned to a value recipient (a value recipient is
either a host variable, or a column), the length of the value and the length with which the value
recipient has been defined are compared.

� If both lengths are the same, the value is simply assigned to the recipient and after the
assignment, the value and the value of the recipient are identical.

� If the length of the value is smaller than the length of the recipient, the value is padded with
blanks.

– If the length of the value is greater than the length of the recipient, the value is truncated.
If the INDICATOR variable was specified, it will show the number of truncated characters.

Numeric Assignment

When a value of data type numeric is assigned to a recipient, data type conversion is performed
when the data types of the value and the recipient are not identical. The data-type conversion
rules are described in the section Data Type Conversion in this chapter.

Binary Assignment

When a value of data type binary is assigned to a value recipient (a value recipient is either a
host variable or a column), the length of the value and the length with which the value recipient
has been defined are compared.

� If both lengths are the same, the value is simply assigned to the recipient and after assignment,
the value and the value recipient are identical.

� If the length of the value is greater than the length of the recipient, then an error condition is
raised.

� If the length of the value is smaller than the length of the recipient, the missing most significant
digits of the value are appended with the value ’0’.

If the application program is a remote client and Adabas SQL Server resides on a server machine
where normally during client/server communication, ASCII/EPCDIC and/or byte swapping
conversions would be induced, for such host variables these conversions are suppressed. It is
up to the host program to interpret the contents of such host variable. For further information
refer to the Adabas SQL Server Programmer’s Guide, chapters: Dynamic SQL and Embedding
SQL Statements in Host Languages.

Adabas SQL Server Reference Manual
1

54

Character-String Comparison

The comparison of two values of data type character-string, is performed by comparing each
corresponding character in each string. If the two strings do not have the same length, the shorter
one of the two is appended with as many blanks as necessary, so that both strings have the same
length. Note that the padding is done with the appropriate environment-dependent hexadecimal
representation for a blank (e.g. x’20’ for an ASCII environment and x’40’ for an EBCDIC
environment) and that padding is either to the right or to the left, depending on the underlying
hardware architecture.

� Two values of data type character-string are equal if and only if both strings are empty (i.e. have
a length of zero), or every corresponding character is the same. The comparison is done either
from left to right or from right to left depending on and according to the underlying hardware
architecture.

� Two values of data type character-string are unequal if at least one corresponding character is
found to be unequal. The order of two unequal character-string values is determined by the first
unequal character found during the comparison process (either from the left or from the right
depending on the underlying hardware architecture). The order is then determined by the
EBCDIC or ASCII collating sequence.

Numeric Comparison

The comparison of two values of data type numeric is performed following the normal algebraic
rules taking the sign into account.

Example: -5 is less than -3

Numeric comparison is always done between two values of the same data type. If two numeric
values do not have the same data type, data type conversion is performed as described in section
Data Type Conversion in this chapter.

Binary Comparison

The comparison of two values of data type binary is performed by comparing each
corresponding bit digit in each value. The two values are equal if every corresponding digit is
identical.

If the two values are of different lengths, then the most significant missing digits of the shorter
value are appended with the value ‘0’.

The comments regarding host variables and binary assignment, as described above, also apply
to comparison.

Common Elements
1

55

Query Expression

Function:

A query expression is an expression involving one or more query specifications connected using
the UNION operator. It is used exclusively in a DECLARE CURSOR statement.

Invocation:

Common Element of a DECLARE CURSOR statement.

Syntax:

query specification

ALL

UNION

query expression)(

�

ALL signifies that duplicate rows originating from different UNION
operands are to be retained.

UNION is a diadic operator which takes specifications of resultant
tables as its operands, be they query specifications or deeper
nested query expressions.

query specification is the basic element of a query expression. It specifies a
resultant table derived from a query.

query expression another query expression may be specified.

Adabas SQL Server Reference Manual
1

56

Description:

A query expression specifies a resultant table made up of the possible UNION of several
resultant tables as specified in corresponding query specifications. In its simplest form, a query
expression can consist of just a single query specification. However, it is possible to add on
subsequent resultant tables to this initial query specification with the aid of the UNION operator
in order to produce a larger result.

The result of a UNION operation with two base tables is a resultant table which contains all rows
belonging to either or both the operands.

Conceptually, the result of the UNION operation is formed by establishing a resultant table
which contains all rows from both operands and then eliminating any duplicates. The
specification of DISTINCT in any of the query specifications is irrelevant as duplicates are
eliminated anyway.

By specifying ALL in the expression, rows duplicated by the two operands are retained.
Specifying DISTINCT in the query specification is therefore significant.

As a consequence, the use of parentheses when ALL is either always specified with each UNION
operator or never specified within the query expression is completely superfluous. However, if
the ALL qualifier is only partially used, then the order of evaluation determines the final result
and hence, the use of parentheses may be significant.

Query expressions specified within parentheses are evaluated first and thereafter the order of
evaluation will be from left to right.

When a UNION operator is specified, then the columns of the resultant table do not have derived
column labels.

Limitations:

The two operands must be UNION-compatible, i.e, the derived column lists of the two operands
must be of the same format. Hence, each derived column list must have the same number of
derived columns and each derived column must be of the same data type as its corresponding
derived column in the derived column list of the other operand.

ANSI Specifics:

None.

Common Elements
1

57

Adabas SQL Server Specifics:

None.

 Example:

To list all cruise IDs for any contracts that require final payment or start before the 30th
December 1991, the following syntax applies.

SELECT cruise_id
 FROM cruise
 WHERE start_date < = 19911230

UNION
SELECT id_cruise

 FROM contract
 WHERE date_payment < = 19911230;

Adabas SQL Server Reference Manual
1

58

Row Amendment Expression
Function:

The row amendment expression specifies values which are to be assigned to columns of the
table/view which is to be amended.

Invocation:

Common element of an UPDATE or INSERT statement.

Syntax:

column
specification

,

)(

,

expression

NULL

SET =column
specification

�

value specification

column specification refers to a column of the target table and thus signifies that this
particular column is either to have an explicit value assigned
to it (in the case of INSERT) or is to be updated.

expression defines the value which is to be assigned to the specified
column.

value specification defines the values to be assigned to specified columns.

Common Elements
1

59

expression

NULL

,

VALUES)(

�

query specification

Value Specification

query specification defines a resultant table which will be used as a source of values
for assignment to the specified columns.

expression defines the value which is to be assigned to the specified
column.

Description:

The row amendment expression is part of either an UPDATE statement or an INSERT statement.
Its function is to specify values which are to be assigned to columns of the table which is to be
amended. This table is referred to as the target table.

SET/VALUES Formats

One of two formats may be used depending upon the options and the statement concerned. Both
formats are equivalent.
– The SET format (upper branch of the main diagram) is normally part of the UPDATE

statement. However, when compiled in Adabas SQL Server mode, it may be used within
an INSERT statement. Only a single row may be specified with this format.

– The VALUES format (lower branch of the main diagram) itself can take one of two forms.
Either explicit values can be specified in a similar manner to the set format or a query
specification may be given. The VALUES format is normally part of an INSERT
statement. However, when compiled in Adabas SQL Server mode it may be used within
an UPDATE statement, in which case a query specification is not permitted.

Adabas SQL Server Reference Manual
1

60

Column Values

A column can be specified with a default value, upon table creation. Default values are
irrelevant within an UPDATE statement. Therefore, columns of the target table which are not
specified in an UPDATE statement remain unaltered. However, should a column not be
explicitly specified as a target column within an INSERT statement, then any default value will
be assigned. Should there not be a default value, then a compilation error will be generated. In
the case of columns which support the NULL value and where an explicit default has not been
specified, then the default is assumed to be NULL. Otherwise, an explicit default may have been
specified as an appropriate literal or the underlying Adabas default for the column has been
specified.

Should the target table in fact be a view, any columns of the underlying base table which are
not enclosed within the view definition, will also be assigned the default value upon insertion
into the view.

Columns may only be referred to in a numeric expression when the row amendment expression
is contained in an UPDATE statement. The actual value of the column in the row currently under
consideration is then taken. The data type of the numeric expression must be comparable to that
of the specified column. If the target column supports NULL then it may be assigned the value
NULL.

If the column specification list is omitted, then all columns of the target table require a
corresponding value. Otherwise, the number and type of the values specified must correspond
with the column specified in the list. Likewise, if a query specification is given, each column
of its derived column list must match the corresponding column in the list.

If a query specification is given as part of an INSERT statement, then as many rows are inserted
as are returned by the query specification. The query specification may not reference the target
table.

Common Elements
1

61

INSERT/UPDATE – Subtables

INSERT or UPDATE statements may operate on Level 1 or Level 2 tables. In general this works
like any other table with the following restrictions:

– Within an UPDATE statement, columns which are of a lower level than the target table can
appear as target columns. However, at run time, the actual value which is to be assigned
to the column must be equal to its current contents. It is, therefore, not physically possible
to change the value of a lower level column from within the higher level target table. Such
columns, therefore, serve the purpose of enforcing referential integrity.

– Updating of a column of the same level as the target table is also permitted. It should be
noted, however, that should a lower level table be dependent upon that column, then
changing its contents will also be reflected in the subtable. This enforces referential
integrity and is equivalent to a cascaded update operation.

– Within an INSERT statement, columns which are of a lower level than the target table can
appear as target columns. However, at runtime the actual value which is to be assigned to
the column must be equal to its current contents. Such columns, therefore, serve the
purpose of enforcing referential integrity.

– Within an UPDATE statement, during execution, should it be determined that the target
column is a rotated column and that the target value is equivalent to the Adabas default
value and the column is defined as having suppression equal to on, then such an update
is rejected.

Adabas SQL Server Reference Manual
1

62

Use of Special Register SEQNO

Although the explicit use of the special register SEQNO is not permitted within the row
amendment expression, column specifications which are based upon it are, under certain
circumstances.

– Within an UPDATE statement, such columns can appear as target columns. However, at
runtime the actual value which is to be assigned to the named SEQNO column must be
equal to its current contents. It is, therefore, not possible to actually change the value of
a named SEQNO column.

– Within an INSERT statement, a Level 0 named SEQNO column can be a target column
and can be assigned a value. This value must lie within the permitted range of values for
such columns. Such a column serves the purpose of representing the underlying Adabas
ISN.

The direct assignment of a value to a Level 1 or Level 2 named SEQNO column is not
permitted. However, within an INSERT statement, targeted at a Level 1 or Level 2 table,
lower level named SEQNO columns may be specified as target columns. In this case, the
value which they are assigned must equal values which already exist.

When the target table is a Level 1 table, such a column therefore serves the purpose of
helping to identify the Adabas row into which a new Adabas MU or PE field is to be
inserted.

When the target table is a Level 2 table, such columns serve the purpose of helping to
identify the Adabas row and the subsequent Adabas PE into which a new Adabas MU field
is to be inserted.

Limitations:

Within an UPDATE statement, a query specification must not be used.

Within an INSERT statement, expressions may not reference any columns. Additionally,
numeric expressions can not contain any operators.

The query specification may not reference the target table or any of its columns, whether directly
or when hidden by a view reference.

A column may only be assigned the NULL value if it supports it.

ANSI Specifics:

Within an UPDATE statement, the VALUES format is not permitted. Within an INSERT
statement, the SET format is not permitted.

Common Elements
1

63

Adabas SQL Server Specifics:

Within an UPDATE statement, the VALUES format is permitted. Within an INSERT statement,
the SET format is permitted.

Example:

To insert a new record into the cruise table using the SET format of the row amendment
expression, the syntax is as follows.

INSERT INTO cruise
SET cruise_id = 1234,

start_date = 19920925,
start_time = 12,
end_date = 19921206,
end_time = 14,
start_harbor = ’ACAPULCO’,
destination_harbor = ’LIVERPOOL’,
cruise_price = 2050,
bunk_number = 7
bunks_free = 10
id_yacht = 146,
id_skipper = 244,
id_predecessor = 5037,
id_successor = 5039;

To increase all cruise prices by 100 and delay the start times of all cruises by 2 hours using the
VALUES format of the row amendment expression, the following syntax applies.

UPDATE cruise
(cruise_price, start_time)

VALUES (cruise_price+100, start_time+2) ;

To insert a new row into the table cruise by supplying the data for the rows cruise_id and
start_date from the table contract, the following syntax applies for using a query specification
in the row amendment expression.

INSERT INTO cruise (cruise_id,start_date)
SELECT id_cruise,date_reservation

FROM contract
WHERE contract_id=2007 ;

Adabas SQL Server Reference Manual
1

64

Predicates

A predicate is a tri-state (true, false, unknown) boolean expression which constitutes a search
term contained within a search expression. A predicate can take one of six forms as described
below. Predicates which necessitate the use of comparison operations obey the rules as defined
in the section Expressions, Assignment and Comparisons earlier in this chapter.

NULL predicate

COMPARISON predicate

BETWEEN predicate

IN predicate

LIKE predicate

EXISTS predicate

�

Common Elements
1

65

BETWEEN Predicate
Function:

This predicate checks to see if a specified value lies within the range defined and returns a
tri-state boolean result.

Invocation:

One of the six predicates which constitute a search term.

Syntax:

expression
1 ��!� "��#��� expression

2
��$ expression

3

expression 1 is a valid expression as described in the section Expressions in
this chapter.

NOT is an operator which negates the result of the predicate.

expression 2 & 3 each is a valid expression as described in the section
Expressions in this chapter.

AND is not to be confused with its use as a boolean operator. AND
simply separates expressions 2 and 3.

Adabas SQL Server Reference Manual
1

66

Description:

The BETWEEN predicate checks if the value specified by expression 1 lies within the range
specified by the values derived from expression 2 and expression 3 respectively. As such, it is
entirely equivalent to the following pair of COMPARISON predicates:

expression1 BETWEEN expression2 AND expression3

(expression1 >= expression2) AND (expression1 <= expression3);

In fact, Adabas SQL Server processes the BETWEEN predicate as if it was expressed in this
form.

The use of the NOT operator would simply negate the result of the boolean expression.

All expressions must have comparable data types. Should either of the expressions evaluate to
NULL, then the predicate returns the tri-state value of unknown.

Limitations:

None.

ANSI Specifics:

None.

Adabas SQL Server Specifics:

None.

Example:

The following syntax applies if we want to find all the cruise IDs that have a cruise price between
and including 800 and 2000.

SELECT cruise_id
FROM cruise
WHERE cruise_price BETWEEN 800 and 2000 ;

Common Elements
1

67

COMPARISON Predicate

Function:

This predicate performs a comparison between two expressions and returns a tri-state boolean
result.

Invocation:

One of the six predicates which constitute a search term.

Syntax:

��

�%

�&

=

<>

<

>

>=

<=

EQ

GT

LT

NE

LE

GE

expression 1

to be continued

Adabas SQL Server Reference Manual
1

68

query specification)(

ALL

ANY

SOME

expression 2

�

expression 1 is a valid expression as described in the section Expressions in
this chapter.

operator is one of the possible operators which must be chosen in order
to perform the desired comparison.

expression 2 is a valid expression as described in the section Expressions in
this chapter.

query specification is contained in parentheses and may be given instead of the
expression 2.

ALL, ANY, SOME are three keywords. One of these may optionally be specified
in order to transform the comparison expression from being
unquantified to being quantified.

Common Elements
1

69

Description:

As already stated both operands, expressions and query specifications, must have a comparable
data type. Should either of the expressions evaluate to NULL, then the predicate returns the
tri-state value of UNKNOWN.

A query specification may be given instead of the expression 2. Such a query is often referred
to as a subquery or a subselect. Due to the comparable data type requirement, the subquery may
only specify one resultant column in its derived column list. It is said to have a cardinality of
one. When used within an unquantified COMPARISON predicate, the resultant table may only
return one value, thus ‘mimicking’ a normal expression. A run time error will be returned should
the subquery produce more than one result or no result at all. Naturally this is something which
can not be checked at compilation time. Should the query return a value of NULL, then the
predicate equates to unknown.

The operator specifies the actual comparison operation to be performed. There are various
alternative representations for the operators, depending upon which mode is current, as shown
below.

The use of one of the keywords ALL, ANY or SOME changes the nature of the subquery and
makes the predicate quantified. The subquery may now return more values; it is no longer
restricted to zero or just one. When you use ALL, the predicate equates to true if the comparison
with expression 1 is true for all values returned by the subquery. When you use ANY, only one
of the comparisons need be true for the predicate to be true. The keyword SOME is entirely
equivalent to ANY.

Should any particular value equate to NULL, then the predicate returns the value UNKNOWN.

Strings can also be deemed to be greater or less than other strings. For example ‘Swindon’ <
‘Swinton’ would equate to true.

Limitations:

When a subquery is used in an unquantified comparison predicate, then that subquery can not
contain a GROUP BY clause or a HAVING clause, as this would violate (in general) the
requirement to return just one value. Likewise the subquery may not reference a grouped view
as its source table.

ANSI Specifics:

ANSI only allows the following operator representations:

= > < <> <= >=

Adabas SQL Server Reference Manual
1

70

Adabas SQL Server Specifics:

In addition to the ANSI representations, Adabas SQL Server also allows the following operator
representations:

EQ GT LT NE LE GE

Example:

If used within an unquantified COMPARISON predicate, the subquery must only return one
result. The following syntax applies when trying to identify cruises which are less expensive
than the price for a cruise with Yacht ID no. 145.

SELECT cruise_id, destination_harbor, cruise_price
FROM cruise
WHERE cruise_price <

 (SELECT MIN (cruise_price)
 FROM cruise

 WHERE id_yacht=145);

If used within a quantified COMPARISON predicate, the subquery may return more than one
result. The following describes the step-by-step processing of a query with the respective
intermediate resultant tables. The abstract example uses a base tables named T1 with columns
named a, b, c and d and T2 with columns named e, f and g. The apparent ordering of the
intermediate resultant tables is due to ease of representation rather than of any predetermined
ordering of the resultant tables.

SELECT a,d
FROM T1
WHERE b < ALL

(SELECT e
 FROM T2

 WHERE f = 10);

Common Elements
1

71

� The first processing step of a query specification establishes an intermediate resultant table
containing all columns and all rows as defined in the table list for T1, i.e.,IRT I. Thereafter,
conceptually for each row of IRT I, the subquery is evaluated and as described in the section
Query Specification i.e. IRT III is established from IRT II. This step needs to be performed for
each occurrence of a row in IRT 1, as the result of the subquery may depend on values contained
in IRT I. This occurs when the subquery contains an outer reference in its search condition.

11 1 33 X

33

33

33

30

33

X

X

Y

Y

Y

11

11

1

5 7

7 4

6

12

2

a b c d

��

IRT I (T1)

��

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

ÍÍÍ
ÍÍÍ
ÍÍÍ
ÍÍÍ
ÍÍÍ
ÍÍÍ
ÍÍÍ

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

8 10 a

a

a

a20

10 20

5 10

10

e f g

IRT II (T2)

Processing Step 1

Adabas SQL Server Reference Manual
1

72

� During the second processing step, the subquery has been established as intermediate resultant
table (IRT) III. The comparison can now take place.

11 1 33 X

33

33

33

30

33

X

X

Y

Y

Y

11

11

1

5 7

7 4

6

12

2

a b c d

IRT I (T1)

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

8

5

20

e

IRT III(T2)

compare

compare

compare

Processing Step 2

� During the third processing step, all rows of T1 containing a value in column b which is smaller
than ALL values in column e of T2 qualify for the intermediate resultant table IV which is the
final result of the query.

11 X

11

7 X

12 X

Y

a d

IRT IV (T1)

Processing Step 3

Common Elements
1

73

EXISTS Predicate
Function:

This predicate tests to see if a particular resultant table, as specified by the given subquery,
actually exists, i.e., if any resultant rows were identified.

Invocation:

One of the six predicates which constitute a search term.

Syntax:

query specificationEXISTS �)(

query specification is the subquery whose resultant table is to be tested for
existence.

Description:

The subquery, in this instance, may specify a derived column list of any desired cardinality and
of any number of resultant rows. This is because the nature of the resultant table is unimportant.
What counts is whether the resultant table exists or not. Adabas SQL Server does not evaluate
the derived column list.

If the resultant table does exist, then the predicate equates to true otherwise it is false. The
predicate never equates to unknown.

In fact, all COMPARISON or IN predicates involving a subquery are internally transformed to
an EXISTS predicate as shown above.

WHERE ‘op’ is any valid COMPARISON predicate operator:

� WHERE x op (SELECT y FROM t)

WHERE EXISTS (SELECT * from t WHERE x op y)

Note:
The limitation that the subquery must result in only one value is lost in the transformation.

Adabas SQL Server Reference Manual
1

74

� WHERE x op ANY (SELECT y FROM t)

WHERE EXISTS (SELECT * FROM t WHERE x op y);

� WHERE NOT x op ALL (SELECT y FROM t)

WHERE NOT EXISTS (SELECT * FROM t WHERE x NOT op y);

� WHERE NOT a op ALL (SELECT y FROM t)

WHERE EXISTS (SELECT * FROM t WHERE x NOT op y)

Note:
The transformation for the second, third and fourth examples is only allowed if x and y can not
result in the NULL value.

Limitations:

None.

ANSI Specifics:

None.

Adabas SQL Server Specifics:

None.

Example:

To identify all cruises where the destination harbor is NOT a starting point for any other cruise,
the syntax below applies.

SELECT cruise_id FROM cruise x
WHERE NOT EXISTS (SELECT * FROM cruise

WHERE x.destination_harbor = start_harbor) ;

Common Elements
1

75

IN Predicate
Function:

This predicate tests whether a given value is contained within a specified set of values and
returns a tri-state boolean result.

Invocation:

One of the six predicates which constitute a search term.

Syntax:

constant

query
specification

)(

USER

host variable
specification

,

�NOT INexpression

expression is a valid expression as described in the section Expressions in
this chapter.

NOT is an operator which negates the effect of the membership test.

host variable specification is a valid single host variable specification and its value
specifies a set member.

USER is in the special register USER (see the section Special
Registers later in this chapter).

query specification is contained in parentheses and may be given instead of an
explicit list separated by commas.

Adabas SQL Server Reference Manual
1

76

Description:

The IN predicate may be expressed as a search expression containing comparison predicates
linked by the OR operator. In fact, Adabas SQL Server processes the IN predicate in this way.

� x IN (1,2,3)

x = 1 OR x = 2 OR x = 3

� x IN (subquery)

x = ANY (subquery)

The expression and all members of the set, be they explicitly given or returned as the result of
the subquery, must be of a comparable data type. Should either the expression or any of the set
members evaluate to the NULL value, then the predicate returns the tri-state value of unknown.

The query specification follows the rules as given for subqueries within a quantified
COMPARISON predicate. Hence, the subquery may only specify one resultant column in its
derived column list, although many different values/rows may be returned.

String comparison follows the same rules as specified for the COMPARISON predicate.

Limitations:

None.

ANSI Specifics:

In ANSI compatibility mode, the use of the special register USER is not supported.

Adabas SQL Server Specifics:

None.

Common Elements
1

77

 Examples:

To identify all skippers who are on cruises starting from BAHAMAS, PANAMA or TRINIDAD
the following syntax applies.

 SELECT id_skipper
 FROM cruise
 WHERE start_harbor IN (’BAHAMAS’, ’PANAMA’, ’TRINIDAD’);

To identify all customers who will be starting a cruise from MIAMI the following syntax applies.

SELECT id_customer
FROM contract
WHERE id_cruise IN (SELECT cruise_id

FROM cruise
WHERE start_harbor = ’MIAMI’);

Adabas SQL Server Reference Manual
1

78

LIKE Predicate
Function:

The LIKE predicate compares a column of a base table or view with a pattern. Wildcard
characters may optionally be specified

Invocation:

One of the six predicates which constitute a search term.

Syntax:

NOT LIKE pattern

ESCAPE

column
specification

escape character �

column specification is a column of a base table or view which is to provide the value
against which the comparison is to be made. The column must
be of data type character-string.

NOT is an operator which negates the result of the LIKE predicate.

Common Elements
1

79

host variable
specification

character string
constant

�

Pattern

pattern is the form to which the column must conform. It can be
expressed as either a hard coded constant or a single host
variable specification of the data type character string. The use
of wildcard characters is supported.

host variable
specification

character string
constant

�

Escape Character

escape character is a single escape character. The wildcard characters
themselves can be considered in any pattern matching by
preceding them with an escape character.

Description:

The LIKE predicate performs a comparison between the specified column value and a given
pattern. Should a match be found, then the predicate equates to true otherwise false. Should the
column or the pattern equate to a NULL value, then the predicate’s result is unknown.

In general, for the predicate to equate to true, there needs to be a one-to-one match between the
two strings. However, wildcard characters can be used in order to make the comparison more
flexible.

Adabas SQL Server Reference Manual
1

80

The wildcard character ‘_’

It takes the place of any single character in the pattern. Should a particular position in the
string.irish–times.i be of no significance, then it can be masked out by the use of an underscore
character in the pattern.

For example, with a pattern of ‘ABCDE’, only ‘ABCDE’ will result in ‘true’. However, a pattern
of ‘AB_DE’ will not only give a true result for ‘ABCDE’ as before but also for ‘ABZDE’ or,
in fact, for any string that is five characters long and starts with ‘AB’ and ends with ‘DE’. Note
the comparison of ‘ABZZDE’ would fail for this pattern as an extra character has been
introduced.

The wildcard character ‘%’

It takes the place of zero or more characters in the pattern.

If the pattern were specified as ‘AB%DE’, then a column value of ‘ABZZDE’ would indeed give
a true result as would a string of any length that started with ‘AB’ and finished with ‘DE’.

If the pattern is not of an identical size to the column, no space padding takes place and so, no
match will be found. This is opposite to a normal COMPARISON predicate.

For example, if the column first_name has provision for 10 characters and contains the value
’TIMOTHY’ then the following COMPARISON predicate will evaluate to true:

WHERE first_name = ’TIMOTHY’

However, the following LIKE predicate will evaluate to false:

first_name LIKE ’TIMOTHY’

This is because no space padding takes place. The following two LIKE predicates would
evaluate to true:

first_name LIKE ’TIMOTHY ’

first_name LIKE ’TIM%’

Note:
In the above case, the wildcard character % would also result in a row containing the value
’TIMMY ’, for example, being found.

In theory, the pattern can be made as complex as required, with no limitations being placed on
the mixing of wildcard characters.

Common Elements
1

81

Escape Character

If either or both of the wildcard characters were required to stand for their actual meaning, then
an escape character must be specified. This is any single character which must precede either
the ‘%’or the ‘_’ thus signifying that the following wildcard character is to be taken literally.

For example, if an exact match for the string ‘AB_DE’ was required and the escape character
had been defined as ‘?’, then the pattern would have to be specified as ‘AB?_DE’.

Limitations:

Should the column reference a view, then this viewed column must be derived exclusively from
a column of a base table. This applies to all three modes.

ANSI Specifics:

None.

Adabas SQL Server Specifics:

None.

Example:

To find out if a person whose name ends with the characters ’ann’ is registered, the following
syntax applies:

SELECT person_id
FROM person
WHERE first_name_1 LIKE ’%ann’;

Adabas SQL Server Reference Manual
1

82

NULL Predicate
Function:

The NULL predicate tests a particular column to see if it contains the NULL value.

Invocation:

One of the six predicates which constitute a search term.

Syntax:

column
specification

IS NOT NULL �

column specification may reference any valid column even if it does not support
NULL values.

NOT is an operator which negates the result of the predicate.

Description:

This predicate tests to see if a given column holds the NULL value. As such, this predicate can
only return either true (column IS NULL) or false (column holds a definite value). The result
can never be unknown.

Limitations:

None.

ANSI Specifics:

None.

Adabas SQL Server Specifics:

None.

Common Elements
1

83

 Example:

To find out if any cruises were offered, for which no reservations have been made yet, the
following syntax applies:

SELECT ID_CRUISE
FROM CRUISE, CONTRACT
WHERE CRUISE_ID = ID_CRUISE AND DATE_RESERVATION IS NULL;

Adabas SQL Server Reference Manual
1

84

Search Condition

Function:

A search condition is a boolean expression of one or more predicates which defines whether a
candidate row or group is to be included in the resultant table of the query, depending upon
whether the condition equates to true.

Invocation:

A search condition may appear as the body of a WHERE clause in either a query specification
or a searched DELETE or UPDATE statement and as the body of a HAVING clause.

Syntax:

search condition

predicate

)(

�NOT

OR

AND

predicate is the basic building block of a search condition and constitutes
one of the possible ‘search terms’. All predicates equate to true,
false or unknown.

search condition is a recursive construction enabling, in theory, search conditions
of unlimited complexity. Such recursive constructions must be
enclosed in brackets. As they are built up of predicates, search
conditions also equate to true, false or unknown and constitute the
other possible search term.

Common Elements
1

85

NOT is an operator which negates the result of either the predicate
or the included search condition.

AND/OR are boolean operators which combine predicates and paren-
thesized search conditions to form a final search condition.

Description:

Should a search condition, constituting the body of a WHERE clause, equate to true, then the
candidate row which is currently under consideration is deemed to be a member of the resultant
table. Otherwise it is rejected.

Should the search condition actually constitute the body of a HAVING clause, then the candidate
group is included if the search condition equates to true.

Individual search terms of the search condition can be combined using the boolean operators
AND or OR. The order of precedence of the operators is NOT followed by AND followed by
OR. Operators of the same precedence are evaluated from left to right. Search terms which are
search conditions are evaluated first.

Because predicates can result in the state unknown, the operators are able to evaluate ‘tri-state
logic’. The truth tables are as follows:

NOT TRUE

FALSE

FALSE

TRUE

UNKNOWN

UNKNOWN

AND
TRUE

FALSE

UNKNOWN

TRUE

TRUE

FALSE

UNKNOWN

FALSE

FALSE

FALSE

FALSE

UNKNOWN

UNKNOWN

FALSE

UNKNOWN

OR
TRUE

FALSE

UNKNOWN

TRUE

TRUE

TRUE

TRUE

FALSE

TRUE

FALSE

UNKNOWN

UNKNOWN

TRUE

UNKNOWN

UNKNOWN

Adabas SQL Server Reference Manual
1

86

Limitations:

None.

ANSI Specifics:

None.

Adabas SQL Server Specifics:

None.

 Example:

To search for the person IDs of all people who’s surname starts with the letter ’W’ and are not
from the city of DERBY, the following syntax applies.

SELECT person_id
FROM person
WHERE surname LIKE ’W%’ AND NOT city = ’DERBY’;

To delete all contract data about people who made a reservation on the 4th of September 1991,
where the cruise does not cost more than 2000 or the amount deposited is not more than 700,
the following syntax applies.

DELETE FROM contract
WHERE date_reservation = 19910904

 AND (NOT price > 2000 OR NOT amount_deposit > 700);

To find the average price of all cruises that go to MARMARIS and that starts from RHODOS
or FETHIYE and have a starting time of 16.00 or 17.00, the following syntax applies.

SELECT start_harbor, destination_harbor, start_time, AVG(cruise_price)
FROM cruise
WHERE destination_harbor = ’MARMARIS’

GROUP BY start_time,start_harbor
HAVING (start_harbor = ’RHODOS’ OR start_harbor = ’FETHIYE’)
AND (start_time = 16 OR start_time = 17);

Common Elements
1

87

Functions

A function is an origin of a value; it optionally takes one or more arguments and calculates a
result. The data types of the argument(s) and of the result depend upon each other and the
particular function. Please refer to the section The COUNT Function for the limitations of
usage.

COUNT (*)

SUM

MAX

MIN

AVG

COUNT

)(�

ALL

expression

DISTINCT

Functions can not be nested. For example: MAX (MIN(cruise_id)) is not valid. Under certain
circumstances, an expression may only consist of a column specification. The combination of
the function COUNT with ALL is not permitted.

In ANSI mode, a function which contains the keyword DISTINCT may not be placed in an
expression which contains any diadic operators.

Invalid: SELECT hv - MAX(DISTINCT cruise_id);

Valid: SELECT - MAX(DISTINCT cruise_id);

Furthermore, in ANSI mode, a function whose arguments contain an outer reference may not
contain any operators and may not be placed in an expression which contains any diadic
operators.

Adabas SQL Server Reference Manual
1

88

The following example is correct:

SELECT COUNT (*) FROM cruise GROUP BY cruise_id

HAVING cruise_id = ANY (SELECT id_cruise FROM CONTRACT

WHERE MAX(cruise.cruise_price) > price);

The above example would be incorrect if the last line looked as follows:

WHERE MAX(cruise.cruise_price * 90/100) > price

WHERE MAX(cruise.cruise_price) * 90/100 > price;

Common Elements
1

89

The SUM Function
Function:

The SUM function returns the sum value of the set of values identified by the argument.

Invocation:

In the derived column list or in the HAVING clause of a grouped query specification.

Syntax:

SUM)(�

ALL

expression

DISTINCT

expression is a valid expression as described in the section Expressions in
this chapter.

Description:

In general, the argument of the function is an expression. The expression must not contain
another function.

The data type of the argument is restricted to numeric data types. The length and data type of
the result depend on the length and data type of the argument:

Data Type of Argument Data Type of Result

Small Integer Integer
Integer Integer
Unpacked Decimal(P, S) Unpacked Decimal(M*, S)
Packed Decimal(P, S) Packed Decimal(M*, S)
Single Precision Floating Point Double Precision Floating Point
Double Precision Floating Point Double Precision Floating Point

* M denotes the maximum precision value of 27.

Adabas SQL Server Reference Manual
1

90

The result is the sum value based on the set of values specified by the argument. The set of values
is derived from the rows of the intermediate resultant table as it has been established during the
processing of a query and after applying the GROUP BY clause. NULL values are not included
in the set of values. If the keyword DISTINCT is specified, all duplicate values are also
eliminated from the set of values. If the set of values is an empty set, the result of the function
is the NULL value. The keyword ALL has no influence on the way the function is evaluated.

Limitation:

At least one column must be specified.

ANSI Specifics:

If the keyword DISTINCT is used, the argument must be a column specification.

Adabas SQL Server Specifics:

If the keyword DISTINCT is used, the argument can be an arbitrary expression but with only
one column referenced.

Example:

The following syntax applies when trying to identify the total turnover of all contracts serviced:

SELECT SUM(price)
FROM CONTRACT;

Common Elements
1

91

The MAX Function
Function:

The MAX function returns the maximum value in the set of values identified by the argument.
This usually applies to numeric values but can also apply to characters, in which case their
ASCII values are evaluated.

Invocation:

In the derived column list or in the HAVING clause of a grouped query specification.

Syntax:

MAX �(�

ALL

expression

DISTINCT

expression is a valid expression as described in the section Expressions in
this chapter.

Description:

In general, the argument of the function is an expression. The expression must not contain
another function.

The data type and length of the result are the same as the data type and length of the argument.

The result is the maximum value in the set of values indicated by the argument. The set of values
is derived from the rows of the intermediate resultant table as established during the processing
of a query and after applying the GROUP BY clause. NULL values are not included in the set
of values. If the set of values is an empty set, the result of the function is the NULL value. The
keywords ALL and DISTINCT have no influence on the way the function is evaluated.

Limitation:

At least one column must be specified.

Adabas SQL Server Reference Manual
1

92

ANSI Specifics:

If the keyword DISTINCT is used, the argument must be a column specification.

Adabas SQL Server Specifics:

If the keyword DISTINCT is used, the argument can be an arbitrary expression but with only
one column referenced.

Example:

The following syntax applies when trying to identify the most expensive journey.

SELECT MAX(cruise_price)
FROM CRUISE;

The following syntax applies when trying to identify the biggest difference between the cost of
a cruise and the amount paid for a deposit.

SELECT MAX(price – amount_deposit)
FROM contract ;

Common Elements
1

93

The MIN Function
Function:

The MIN function returns the minimum value in the set of values identified by the argument.
This usually applies to numeric values but can also apply to characters, in which case their
ASCII values are evaluated.

Invocation:

In the derived column list or in the HAVING clause of a grouped query specification.

Syntax:

MIN)(�

ALL

expression

DISTINCT

expression is a valid expression as described in the section Expressions in
this chapter.

Description:

In general, the argument of the function is an expression. The expression must not contain
another function.

The data type of the result is the same as the data type and length of the argument.

The result is the minimum value in the set of values indicated by the argument. The set of values
is derived from the rows of the intermediate resultant table as it has been established during the
processing of a query and after applying the GROUP BY clause. NULL values are not included
in the set of values. If the set of values is an empty set, the result of the function is the NULL
value. The keywords ALL and DISTINCT have no influence on the way the function is
evaluated.

Limitation:

At least one column must be specified.

Adabas SQL Server Reference Manual
1

94

ANSI Specifics:

If the keyword DISTINCT is used, the argument must be a column specification.

Adabas SQL Server Specifics:

If the keyword DISTINCT is used, the argument can be an arbitrary expression but with only
one column referenced.

Example:

The following syntax applies when trying to identify the least expensive journey.

SELECT MIN(cruise_price)
FROM cruise

The following syntax applies when trying to identify the smallest difference between the cost
of a cruise and the amount paid for a deposit.

SELECT MIN(price – amount_deposit)
FROM contract ;

Common Elements
1

95

The AVG Function
Function:

The AVG function returns the average value in the set of values identified by the argument.

Invocation:

In the derived column list or in the HAVING clause of a grouped query specification.

Syntax:

AVG)(�

ALL

expression

DISTINCT

expression is a valid expression as described in the section Expressions in
this chapter.

Description:

In general, the argument of the function is an expression. The expression must not contain
another function.

The data type of the argument is restricted to numeric data types. The length and data type of
the result depend on the length and data type of the argument:

Data Type of Argument Data Type of Result

Small Integer Integer
Integer Integer
Unpacked Decimal(P, S) Unpacked Decimal(M, M-P=S)
Packed Decimal(P, S) Packed Decimal(M, M-P=S)
Single Precision Floating Point Double Precision Floating Point
Double Precision Floating Point Double Precision Floating Point

Adabas SQL Server Reference Manual
1

96

M denotes the maximum precision value of 27.

The result is the average value based on the set of values specified by the argument. The set of
values is derived from the rows of the intermediate resultant table as established during the
processing of a query and after applying the GROUP BY clause. NULL values are not included
in the set of values. If the keyword DISTINCT is specified, all duplicate values are also
eliminated from the set of values. If the set of values is an empty set, the result of the function
is the NULL value. The keyword ALL has no influence on the way the function is evaluated.

Limitation:

At least one column must be specified.

ANSI Specifics:

If the keyword DISTINCT is used, the argument must be a column specification.

Adabas SQL Server Specifics:

If the keyword DISTINCT is used, the argument can be an arbitrary expression but with only
one column referenced.

Example:

The following syntax applies when trying to identify the average cost of a cruise:

SELECT AVG(cruise_price)
 FROM CRUISE;

To select the average amount put down for a deposit when the TOTAL number of deposits placed
is not to be taken into account, ONLY each individual price, the following syntax applies.

SELECT AVG(DISTINCT amount_deposit)
FROM contract ;

Common Elements
1

97

The COUNT Function
Function:

The COUNT function returns the number of rows or values in the set identified by the argument

Invocation:

In the derived column list or in the HAVING clause of a grouped query specification.

Syntax:

COUNT)(DISTINCT

*

column
specification �

column specification is a column of a base table or view.

The argument of the function is either an asterisk ‘*’ or the keyword DISTINCT followed by
an expression.

Description:

The data type of the result is Integer.

If the argument is an asterisk, the result of this function is simply the number of rows contained
in the query specification’s resultant table.

If the argument of the function is an expression, then the expression must not contain another
function. The result is the number of values in the set of values indicated by the argument. The
set of values is derived from the rows of the intermediate resultant table as established during
the processing of a query and after applying the GROUP BY clause. NULL values are not
included in the set of values. If the set of values is an empty set, the result of the function is
ZERO. If the keyword DISTINCT is specified, all duplicate values are eliminated from the set
of values.

Limitations:

None.

Adabas SQL Server Reference Manual
1

98

ANSI Specifics:

None.

Adabas SQL Server Specifics:

None.

 Example:

To find out how many contracts have been signed as of today, the following syntax applies:

SELECT COUNT(*)
 FROM CONTRACT;

To find out how many DIFFERENT destination harbors are available, the following syntax
applies.

SELECT COUNT (DISTINCT destination_harbor)
 FROM cruise ;

Common Elements
1

99

Special Registers

A special register is an origin of a value which is derived by Adabas SQL Server itself. This value
does not depend on any data contained in the database. Currently, only the special registers
USER and SEQNO are supported.

USER
Function:

The special register USER contains the user ID as specified by the last implicit or explicit
CONNECT statement.

Invocation:

The special register USER can be used in an expression as the origin of a value.

Syntax:

USER

Description:

The data type of the special register USER is of type character. The register delivers a fixed
length string of 32 characters. The string may be padded with spaces to the right.

Limitations:

None.

ANSI Specifics:
Currently a CONNECT statement is required to assign a value to the special register USER.

Adabas SQL Server Reference Manual
1

100

Adabas SQL Server Specifics:

The value can be explicitly set in a CONNECT statement.

 Example:

To insert the values ‘5’ and ‘Harris’ into the table PERSONS, the following statement applies,
provided that a prior CONNECT statement set the special register USER to ‘Harris’:

INSERT INTO persons (person_id, surname)
 VALUES (5, USER);

Common Elements
1

101

SEQNO

Function:

The SEQNO concept is Adabas SQL Server’s way to reflect the Adabas record/field addressing
technique. The special register SEQNO contains either the underlying Adabas table’s ISN or,
if it is not a Level 0 table, occurrence numbers of multiple-value fields or periodic groups. By
specifying a level number, the SEQNO of a lower level can be accessed from within a higher
level table.

Invocation:

An explicit SEQNO can be specified as a value source in an expression, in an ORDER BY clause
or in a GROUP BY clause.

Syntax:

table
 specification

correlation
identifier

.

)(

0

1

2

SEQNO

correlation identifier is a valid correlation identifier which is in scope.

table specification is a valid table specification which is in scope.

Adabas SQL Server Reference Manual
1

102

Description:

In the Adabas SQL Server environment, the special register SEQNO is considered to be a
read-only column and can be accessed as such. A SEQNO returns an integer value and can be
embedded in numeric expressions like any other integer data source.

Even if a SEQNO is not explicitly included within the SELECT list of a CREATE VIEW
statement, it can still be accessed when accessing the view as long as the view is neither joined
nor grouped.

The special register SEQNO may or may not be qualified with either:
– a correlation identifier or

– a table specification in an analogous fashion to a simple column specification.

The unqualified SEQNO can be used in those cases where it is possible to relate the SEQNO
unambiguously to one table. This is the case when there is only one table in the FROM clause.

The qualification serves the purpose of identifying the particular table, from which the SEQNO
is to derive its value.

If the SEQNO is not attributed with a table level number, then the level is zero by default.

Level 1 or level 2 tables have SEQNOs derived from the lower levels. These can be specified
by supplying the appropriate level number.

Limitations:

The data type of the SEQNO is integer. However, some restrictions apply:
– a SEQNO can never be NULL

– a SEQNO can never be less than or equal to zero

A SEQNO is always unique.

A special register SEQNO must not be referenced as a target column in an UPDATE or INSERT
statement. The named column SEQNO may be referenced as a target in an UPDATE or INSERT
statement.

An asterisk in a SELECT list will return all columns of a table but not the special register
SEQNO.

When included in the SELECT list of a CREATE VIEW statement, a special register SEQNO
does not provide a derived column label. When used within an ORDER BY clause, a special
register SEQNO does provide a derived column label.

Common Elements
1

103

ANSI Specifics:

The special register SEQNO is not part of the Standard.

Adabas SQL Server Specifics:

This is an Adabas SQL Server extension

Example:

To return the Adabas ISN the following syntax applies:

An unqualified special register SEQNO reference can be used if there is only one table in the
FROM clause:

SELECT cruise_id, SEQNO from cruise ;

Qualification is mandatory when there is more than one table in the FROM clause:

SELECT cruise_id, contract_id, cruise.SEQNO, contract.SEQNO from cruise,
contract ;

Adabas SQL Server Reference Manual
1

104

Table Element

Function:

Table element defines the columns and table attributes of a table. All columns must be unique
within a table. There may be two table attributes the same when one of those attributes is a table
constraint element of type PRIMARY KEY or UNIQUE and the other is a table index element
of type INDEX.

Invocation:

The Table Element specification is used as parts of the following statements:

Create Table/Create Table Description
Create Cluster/Create Cluster Description

Syntax:

table column element

table constraint element

table index element

�

table column element defines a column of a base table. A valid SQL table definition
must contain at least one table column definition that is not of
type SEQNO.

table constraint element specifies a UNIQUE, PRIMARY KEY or FOREIGN KEY
constraint.

table index element Specifies an Index for the table. Table index element is not part
of the ANSI SQL Standard.

Common Elements
1

105

Description:

The definition of foreign keys (part of Table Constraint Element) in the ANSI SQL standard,
differs from that of Adabas SQL Server.

A table constraint element of type FOREIGN KEY may only be specified in the CREATE
CLUSTER/CREATE CLUSTER DESCRIPTION statements.

Adabas SQL Server Reference Manual
1

106

Table Column Element
Function:

A table column element completely defines a column of a base table.

Invocation:

This element is part of the table element and of the alter add element (ALTER TABLE
Statement).

Syntax:

column index element

column constraint element

column default element

column physical element

�data typecolumn
identifier

column identifier is a valid identifier for a column and must conform to the rules
specified earlier in this chapter in sections Identifiers and
Column Specification.

data type specifies the data type of the column according to the rules
specified below in the section Data Type Definition.

column constraint element is optional and specifies constraints such as UNIQUE, NOT
NULL, PRIMARY KEY, etc. For details see section Column
Constraint Element below.

column index element is optional and specifies an index for a column. For details see
section Column Index Element below.

Common Elements
1

107

column default element is optional and specifies what the default value for a column
will be. There can be only one default value per column. For
details see section Column Default Element below.

column physical element is optional and describes the Adabas-specific information for
each column, such as the short name, suppression, etc. For
details see section Column Physical Element below.

Description:

The table column element specifies one column of a table with the attributes of this column (the
attributes are constraints, indexes, default value, etc..).

As a minimum requirement for the CREATE TABLE, CREATE CLUSTER or ALTER TABLE
statements, a column must be specified with the column identifier and the data type definition.

The minimum requirement of the CREATE TABLE DESCRIPTION or CREATE CLUSTER
DESCRIPTION statement is the column identifier. Which must then be a valid Adabas short
name, else it is required to specify the Adabas short name (part of column physical element).

By default, all columns that do not have the explicit attribute NOT NULL, have implicitly the
attribute NULL.

In CREATE TABLE DESCRIPTION and CREATE CLUSTER DESCRIPTION statements,
any unspecified attributes that belong to the underlying Adabas field are automatically
generated. An exception to this is when dealing with the following attribute combinations:
– NOT NULL DEFAULT ADABAS
– NULL DEFAULT ADABAS
– NOT NULL SUPPRESSION
– NULL SUPPRESSION

Limitations:

The column identifier must be unique within a table.

The following must be unique within a schema:
– Index identifier (if specified), one will be generated when not specified.
– Constraint identifier (if specified), one will be generated when not specified.

If a statement type of CREATE TABLE or CREATE CLUSTER is specified then only 926
columns may be specified within one table. For CREATE TABLE DESCRIPTION and
CREATE CLUSTER DESCRIPTION statements this limitation is lifted, as you may specify
elements of a PE or MU in a rotated format.

Adabas SQL Server Reference Manual
1

108

If a column is of data type Character and the precision is greater than 253 characters, then the
following must hold true:

– The column attribute NOT NULL is mandatory.

– The column may not have attributes from Column Constraint Element (other than the
above) or Column Index Element.

– The column may not have the attribute SUPPRESSION.

The following attributes are not allowed to be combined :

– SUPPRESSION and FIXED

– NULL and NOT NULL

– NOT NULL and DEFAULT NULL

The table below shows which parts of table column element are optional for which statements.

STATEMENT

DATA
TYPE
Definition

Column
Constraint
Element

Column
Index
Element

Column
Default
Element

Column
Physical
Element

Create Table Mandatory Optional Optional Optional Disallowed

Create Table
Description

Optional Optional Optional Optional Optional(1)

Create Cluster Mandatory Optional Optional Optional Optional(2)

Create Cluster
Description

Optional Optional Optional Optional Optional(3)

Alter Table Mandatory Optional(4) Optional Optional Optional(5)

(1) The SHORTNAME specification is mandatory for this statement.
(2) The SHORTNAME specification is not allowed in this statement.
(3) The SHORTNAME specification is mandatory for this statement.
(4) The NOT NULL attribute is allowed when combined with either DEFAULT ADABAS or

SUPPRESSION.
(5) The only attributes allowed in this statement are NULL and SUPPRESSION.

Common Elements
1

109

ANSI Specifics:

The following elements are not part of the standard:

– Column Index Element

– Column Physical Element

– In Column Default Element the keyword ADABAS

– In Data Type Definition the keyword SEQNO

Adabas SQL Server Specifics:

None.

 Example:

To create one column of our sample base tables (cruise) the following syntax is used:

CREATE TABLE cruise
 (cruise_id NUMERIC(8) INDEX cruise1 NOT NULL UNIQUE);

To create the same table, but with a named SEQNO column, which enables access to the
underlying Adabas ISN, the following syntax is used:

CREATE TABLE cruise
 (cruise_id NUMERIC(8) INDEX cruise1 NOT NULL UNIQUE, sequence_no SEQNO);

Data Type Definition
Function:

The data type definition specifies the SQL data type for a column.

Invocation:

The data type definition is part of the table column element.

Adabas SQL Server Reference Manual
1

110

Syntax:

CHAR

)(CHARACTER character length

)(NUMERIC precision scale,

)
(DECIMAL

precision scale,

DEC

INTEGER

INT

SMALLINT

NATURAL

DATE

(BINARY binary length)

BIN

(SEQNO)

0

1

2

approximate value
data types

TIME

Common Elements
1

111

)(FLOAT float precision

REAL

DOUBLE PRECISION

�

Approximate Value Data Types

The precision of numeric and decimal data types and the length of the character and binary data
types must, if specified at all, be in the range from 1 to the maximum length allowed for this
data type (see table below for details).

The scale of numeric and decimal data types must, if specified at all, be in the range from zero
to the maximum precision of this data type.

Description:

� CHAR
CHARACTER

determines the maximum length of a character column. If the length of this column is less than
253, then it will be mapped to a standard Adabas field of type alpha.

If the length is greater than this limit, then a different mapping technique is required. Such a
column is called a longalpha column. It‘s mapping platform-dependent:

– UNIX/OpenVMS platforms: to an Adabas MU field

– Mainframe environments: to either an Adabas LA field (if the Adabas version supports this
feature), or like the UNIX and OpenVMS versions to a MU.

This mapping is performed automatically by Adabas SQL Server. The maximum length of such
a column is 16K (the same as the maximum possible for an LA). Nevertheless, the size of a
longalpha column dependents on the maximum compressed record size, which again depends
on the data storage blocksize.

Adabas SQL Server Reference Manual
1

112

For a longalpha column the following must hold true:
– The column attribute NOT NULL is mandatory.
– The column may not have attributes from the column constraint element (other than the

above) or from the column index element.
– The column may not have the attribute SUPPRESSION.

� INT or INTEGER
determines an integer.

� SMALLINT
determines an small integer.

� NATURAL DATE
defines a data type that is compatible to Natural’s DATE format. This data type is an extension
for use by Adabas ODBC Client only.

� NATURAL TIME
defines a data type that is compatible to the normal NATURAL TIME format only, and not to
the extended format which also contains the date. This data type is an extension for use by
Adabas ODBC Client only.

� REAL
determines a single precision floating point number.

� DOUBLE PRECISION
determines a double precision floating point number.

� FLOAT
determines a floating point number. If the float precision is less than 22, the data type is single
precision floating point, otherwise double precision floating point.

� BIN or BINARY
determines a binary column with the length indicated by the number of binary digits.

� SEQNO
rather than being specified as a normal Adabas field with an associated data type, a column can be
defined as a named SEQNO column. The SEQNO concept is the Adabas SQL Server’s way to
reflect the Adabas record/field addressing technique. The special register SEQNO contains either
the underlying Adabas table’s ISN or, if it is not a level 0 table, occurrence numbers of
multiple-value fields or periodic groups. By specifying a level number, the SEQNO of a lower level
can be accesses from within a higher level table. These fields can be accessed by assigning them
a column name. Thereafter, they are accessed like any other column. There are some restrictions
in their use, see section Row Amendment Expression earlier in this chapter.

Common Elements
1

113

The data type of such a named SEQNO column is integer. However, the value is always greater
than zero.

The data type SEQNO does not generate a field in Adabas.

Note:
In the case of a PE data structure containing MU fields only, it is necessary to use an Adabas
short name on the SEQNO(1) of the PE-subtable.

For details refer to sections CREATE CLUSTER DESCRIPTION and SEQNO for more
details.

� NUMERIC
DEC
DECIMAL

determines a packed or unpacked number. Precision constitutes the total number of digits and
the default precision is 27 for all platforms. The scale is the number of digits to the right of the
decimal point which must lie in the range of 0 to the precision.

The following table shows:

– how an SQL data type is translated into an Adabas format and length definition.

– the default precision/length of each data type.

Adabas SQL Server Reference Manual
1

114

Adabas SQL Server Adabas
Data Type Precision Format Length Maximum

in Bytes Length in
Max. Default Bytes

CHARACTER/CHAR 16381 1 A N (1) 16381
INTEGER/INT ./. ./. F 4 ./.
SMALLINT ./. ./. F 4 ./.
REAL ./. ./. G 4 ./.
DOUBLE PRECISION ./. ./. G 8 ./.
FLOAT(1...21) 21 53 G 4 ./.
FLOAT(22...53) 53 53 G 8 ./.
BINARY/BIN 1008 1008 B p/8 (2)(4) 126
DECIMAL/DEC 27 27,0 (3) P p/2+1 (4) 14
NUMERIC 27 27,0 (3) U p (4) 27

(1) When precision is less than 254, else 253.
(2) Rounded up to the nearest byte.
(3) These figures represent precision, scale.
(4) Formula in which p represents the actual precision

Limitations:

Refer to the individual data type descriptions above.

 ANSI Specifics:

The keywords SEQNO, NATURAL DATE and NATURAL TIME are not part of the Standard.

 Adabas SQL Server Specifics:

None.

 Example:

To create a table with a numeric column and a named SEQNO column, which enables access
to the underlying Adabas ISN, the following syntax is used:

CREATE TABLE cruise
 (cruise_id NUMERIC(8), sequence_no SEQNO);

Common Elements
1

115

Column Constraint Element

Function:

A column constraint element specifies the conditions which apply to each column.

Invocation:

This element is part of the table column element.

Syntax:

UNIQUE

PRIMARY KEY

constraint identifierCONSTRAINT

References
Clause

NULL

NULLNOT

constraint identifier is a valid identifier for a constraint and must be unique within
a schema.

UNIQUE only one UNIQUE constraint is allowed.

PRIMARY KEY only one PRIMARY KEY is allowed in a table.

NULL/NOT NULL indicates whether NULL values are permissible for this column.

Adabas SQL Server Reference Manual
1

116

Reference Clause only allowed for subtables. The number of columns allowed in
this particular case is one. For syntax regulations refer to
section: Table Constraint Element, later in this chapter. For
further restrictions refer to sections CREATE CLUSTER
DESCRIPTION/CREATE CLUSTER in chapter SQL
STATEMENTS.

Description

A constraint is a subobject of a base table which is defined to ensure the compliance of the actual
data with the specified conditions.

Adabas SQL Server knows four different types of constraints: NOT NULL, UNIQUE,
PRIMARY KEY and FOREIGN KEY. Syntactically, a constraint referring to a simple column
can be defined within a table column element. Constraints referring to more than one column
have to be defined by a table constraint element. The name (constraint identifier) of a constraint
must be unique within the schema. It will be generated automatically, if not specified.

UNIQUE and PRIMARY KEY constraints are called ‘unique constraints’. A REFERENCES
constraint is called ‘referential constraint’.

The following conventions hold true for the following explanations:

– Let C be the column for which this constraint is specified.

– Let T be the table where column C resides.

� UNIQUE:

The UNIQUE constraint ensures, that no two rows of T carries the same value in column C.
Rows with NULL values in column C don’t affect this constraint. A UNIQUE constraint implies
an index definition, that, if not specified, will be generated.

� PRIMARY KEY:

The PRIMARY KEY constraint ensures, that no two rows of T carry the same value in column
C. When specifying a PRIMARY KEY constraint, it is also mandatory to specify the column
attribute NOT NULL. A PRIMARY KEY constraint implies an index definition, that, if not
specified, will be generated.

� NULL:

The NULL constraint indicates, that null values are permissible in any row of the table for the
column C.

Common Elements
1

117

� NOT NULL:

The NOT NULL constraint indicates, that null values are not permissible in any row of the table
for the column C.

� REFERENCES:

For details on how to define the reference clause, refer to the section Table Constraint Element,
particularly the FOREIGN KEY subclause, later in this chapter. Note that the number of
columns allowed in this particular case is one.

For details see section Describing Adabas Nested Data Structures in the Adabas SQL Server
Programmer’s Guide.

Limitations:

The CREATE CLUSTER and CREATE CLUSTER DESCRIPTION statements have the
following restrictions:

– A Column level REFERENCES constraint may only be used to build the referential constraint
between tables of level 0 (base tables) and tables of level 1 (subtables).

– The usage of the REFERENCES clause is only allowed in the CREATE CLUSTER/
CREATE CLUSTER DESCRIPTION statements

There may be a maximum of one PRIMARY KEY for a bases table (this includes a table
constraint of type PRIMARY KEY).

When using a PRIMARY KEY constraint the attribute SUPPRESSION is not permitted.

When using a UNIQUE constraint in conjunction with a SUPPRESSION attribute the attribute
NOT NULL is not permitted. For details refer to the Adabas SQL Server Programmer’s Guide,
chapter Introduction, section Conversion of Adabas Field Attributes to Adabas SQL Server
Column Attributes.

When using a UNIQUE or PRIMARY KEY constraint in conjunction with a DEFAULT Adabas
attribute, the attribute NULL is not permitted.

ANSI Specifics:

The default referential triggered action differs from the ANSI standard. The default is
CASCADE and not NO ACTION.

The NULL constraint is not part of the Standard.

Adabas SQL Server Specifics:

No other option than CASCADE is supported.

Adabas SQL Server Reference Manual
1

118

Example:

The example below shows how to define a column constraint which disallows NULL values and
values which are not unique:

CREATE TABLE contract (
 contract_id integer NOT NULL UNIQUE);

Common Elements
1

119

Column Index Element

Function:

Specifies a column as an index.

Invocation:

This element is part of the table column element.

Syntax:

HAVING UNIQUE INDEX

UQINDEX

index identifier �INDEX

index identifier must be a valid identifier for an index and must conform to the
rules specified earlier in this chapter in section Identifiers.
The specification is optional and has to be unique within a
schema.

Description:

The following conventions hold true for the following explanations:

– Let C be the column for which this column index element is specified.

– Let T be the table where column C resides.

� INDEX:

An INDEX specification in the case that there is no range specification results in an Adabas
descriptor being added. In the case of a range specification across only one column, an Adabas
Subdescriptor will be generated.

Adabas SQL Server Reference Manual
1

120

� HAVING UNIQUE INDEX:

A HAVING UNIQUE INDEX ensures that there are no two rows of T having identical values
in the column C. Rows with NULL values column C do not effect this index. A HAVING
UNIQUE INDEX implies a UNIQUE constraint, and is stored in the Adabas SQL Server catalog
as a UNIQUE constraint.

� UQINDEX:

A UQINDEX is an index that will generate an Adabas unique sub- or superdescriptor on a
column that is part of a subtable. This descriptor is not considered to be unique in SQL terms
and can, therefore, not be represented by a normal ”unique constraint”.

For more details see the section Indexes and Constraints, chapter Adabas SQL Server Data
Structures in the Adabas SQL Server Programmer’s Guide.

Limitations:

A specification of HAVING UNIQUE INDEX is not allowed in subtables. A specification of
UQINDEX is only allowed in subtables.

You are not allowed to specify a HAVING UNIQUE INDEX together with a UNIQUE constraint
or a PRIMARY KEY.

When using a HAVING UNIQUE INDEX in conjunction with a SUPPRESSION attribute the
attribute NOT NULL is not permitted. For details refer to the Adabas SQL Server Programmer’s
Guide, chapter Introduction, section Conversion of Adabas Field Attributes to Adabas SQL
Server Column Attributes.

When using a HAVING UNIQUE INDEX in conjunction with a DEFAULT Adabas attribute,
the attribute NULL is not permitted.

ANSI Specifics:

The Column Index Element is not part of the Standard.

Adabas SQL Server Specifics:

None.

Common Elements
1

121

Column Default Element

Function:

A column default element specifies a default value for a column.

Invocation:

This element is part of the table column element.

Syntax:

literal

DEFAULT

ADABAS

USER

NULL �

+

–

integer constant

float constant

bit. constant

hex. constant

string literal

literal

Adabas SQL Server Reference Manual
1

122

Description:

This element is optional. A default element specifies what the default value for the column is
if no real value is given for the column in question in an insert statement. The following defaults
are possible:

� ADABAS:

With this the ADABAS defaults are defined. In this case for the column the corresponding
Adabas field gets no Adabas options. That is no NC option.

� USER:

A USER default defines that the special register USER will be used to insert a value into the
specified column with the default value of DEFAULT USER. The column must be of type
character and be sufficient in its definition to hold the returned value.

� NULL:

If NULL is specified, the default is the NULL value. The column must of course be able to
support the NULL value.

� Literal:

In this case the default is a literal value of the appropriate data type.

Limitations:

Only one default specification is allowed per column.

The default value of ADABAS when used in conjunction with a UNIQUE, PRIMARY KEY
constraint or HAVING UNIQUE INDEX is only allowed with the column attribute NOT NULL.

ANSI Specifics:

The DEFAULT ADABAS clause is not part of the Standard.

Adabas SQL Server Specifics:

None.

Example:

To give the column amount_deposit the default value of 10:

CREATE TABLE cruise
(amount_deposit NUMERIC (13,3) DEFAULT 10.0)

Common Elements
1

123

Column Physical Element
Function:

A column physical element is used to add Adabas-specific attributes to a column.

Invocation:

This element is part of the column element. This clause is only allowed in CREATE TABLE/
CREATE TABLE DESCRIPTION or a CREATE CLUSTER/CREATE CLUSTER
DESCRIPTION statements.

Syntax:

�

SUPPRESSION

FIXED

SHORTNAME

shortname
identifier

 string literal

)(numeric literal

shortname identifier specifies an Adabas short name for a column.

string literal represents the Adabas short name for a column.

numeric literal is optional and specifies a rotated field. Its value must be less
or equal to 191.

Adabas SQL Server Reference Manual
1

124

Description:

The column physical element can be specified in Adabas SQL Server mode exclusively. It is
used to add Adabas-specific attributes to a column.

The following table shows which Adabas options will be set for the column, given the various
Adabas SQL Server options:

Adabas SQL Server Adabas

FIXED FI

SUPPRESSION NU

A shortname identifier specifies the Adabas short name of the corresponding field in the Adabas
file to be described.

If numeric literal is specified, a so-called rotated field is specified, with the following meaning:

– If a particular MU or PE field has (semantically) a non varying number of occurrences,
then the field can be ’rotated’. This means that each occurrence is mapped to an individual
column. For example, should it be known that an MU will only ever have 12 occurrences,
each representing a month, then each occurrence could be mapped to the columns January
through to December.

A similar technique can be used for PE’s, although here, each field within each occurrence must
be individually mapped to a column.

Limitations:

An Adabas short name must consist of exactly two characters, the first of which must be between
A and Z and the second can be between A and Z or between 0 and 9. The short names E0 to E9
are reserved by Adabas and may, therefore, not be used. If a short name is a reserved word like
AS, it has to be represented in string format i.e. SHORTNAME ’AS’.

The short name specification is not case sensitive.

The keyword FIXED may only be used in the following contexts :

– In a CREATE TABLE DESCRIPTION, CREATE CLUSTER and CREATE CLUSTER
DESCRIPTION statements

– When used with the attribute NULL or NOT NULL, they must be combined with the
attribute DEFAULT ADABAS

– May not be combined with the attribute SUPPRESSION

Common Elements
1

125

The keywords FIXED and SUPPRESSION may only be used in the CREATE TABLE
DESCRIPTION, CREATE CLUSTER and CREATE CLUSTER DESCRIPTION statements
when the underlying Adabas field is defined with these attributes.

When using a SUPPRESSION attribute, the PRIMARY KEY constraint is not permitted.

When using the SUPPRESSION attribute in conjunction with a UNIQUE constraint or
HAVING UNIQUE INDEX clause, the attribute NOT NULL is not permitted. For details refer
to the Adabas SQL Server Programmer’s Guide, chapter Introduction, section Conversion of
Adabas Field Attributes to Adabas SQL Server Column Attributes.

ANSI Specifics:

The column physical element is not part of the Standard.

Adabas SQL Server Specifics:

None.

Example:

This example shows how to store bonus and sales for each month in a multiple-value field (each
month is one occurrence). Each column is then rotated to be seen in one table (each months is
a column of this table). An example of such a table description with rotated columns is:

CREATE TABLE DESCRIPTION rotated_table
DATABASE demo FILE NUMBER 53
(
id CHAR(20) SHORTNAME ”AA”,
january_bonus INTEGER SHORTNAME ”DA”(1),
january_sales INTEGER SHORTNAME ”DB”(1),
february_bonus INTEGER SHORTNAME ”DA”(2),
february_sales INTEGER SHORTNAME ”DB”(2)

 ...

december_bonus INTEGER SHORTNAME ”DA”(12),
december_sales INTEGER SHORTNAME ”DB”(12),
)

where: ”DA” and ”DB” are the short names for the fields within the periodic group.

Adabas SQL Server Reference Manual
1

126

Table Constraint Element
Function:

A table constraint specifies a constraint for a list of columns.

Invocation:

This element is part of the table element.

Syntax:

UNIQUE

PRIMARY KEY

FOREIGN

constraint identifierCONSTRAINT

column
identifier

KEY)(References
Clause

)(

,

column identifier

,

shortname
clause

constraint name a valid name for a constraint and must conform to the rules
specified earlier in this chapter in section Identifiers.

Common Elements
1

127

Shortname clause:

shortname string

SHORTNAME

shortname identifier

Reference clause:

REFERENCES table
specification

column
identifier

referential triggered action �

)(

,

table specification schema identifier:table identifier is the expected format

column identifier optional specification of a list of referenced columns.

referential triggered action optional, and specifies an action to be taken, if a row is updated
or deleted. This clause has been added to reasons of conforming
to the Standard, only.

Adabas SQL Server Reference Manual
1

128

Referential triggered action:

ON

UPDATE CASCADE DELETE CASCADE

�

DELETE CASCADE UPDATE CASCADEON

ON

referential triggered action is optional and specifies an action to be taken if a row is updated
or deleted. If no action is specified CASCADE is assumed.

Description:

UNIQUE and PRIMARY KEY constraints are called ”unique constraints”. A REFERENCES
constraint is called ”referential constraint”. A table constraint element defines a constraint
across one or more column(s).

The following conventions hold true for the following explanations:

– Let CL = (c1,... , cn) be the column list of one or more columns for which this table
constraint element is specified.

– Let T be the table where the columns of CL reside.

� PRIMARY KEY:

There may only be a maximum of one PRIMARY KEY definition in a base table.

A PRIMARY KEY constraint ensures that there are no two rows of T having identical values
in the columns of CL. When specifying a PRIMARY KEY constraint, it is mandatory for all
the columns of CL to have the column attribute of NOT NULL, this therefore means that no
columns of CL may contain the NULL value. A PRIMARY KEY constraint, implies an index
definition, that, if not specified, will be generated.

Common Elements
1

129

PRIMARY KEY’s on subtables of level one or two are limited to using all the columns of the
associated FOREIGN KEY (the FOREIGN KEY that associates this level one or two table with
its parent), plus a column of data type SEQNO on the current level and any other columns of
this level. The important point here is that only PRIMARY KEY’s with a column of data type
SEQNO, for this table level, are classified as fulfilling the requirements for building a ”unique
constraint”.

� UNIQUE:

A UNIQUE constraint ensures that there are no two rows of T having identical values in the
columns of C. Rows with NULL value(s), in any columns of C, do not effect this constraint.
A UNIQUE constraint implies an index definition, that, if not specified will be generated.

Adabas SQL Server Reference Manual
1

130

� FOREIGN KEY:

If specified, the REFERENCE’s column list must conform to the following;

– The number of columns in CL and the number of columns in the references column list
must be equal.

– The ith column of CL must be semantically the same as the ith column of the references
list (i.e., the data type and attributes must match). The attributes UNIQUE and PRIMARY
KEY should be converted to UQINDEX. The attribute REFERENCES is an exception to
this rule.

– The columns of the references clause must match those of a ”unique constraint” in the
referencing table.

– All the columns of the ”unique constraint” must have the attribute NOT NULL defined.

If the REFERENCES column list is not specified, then the above must still hold true, but the
checks are performed against the PRIMARY KEY constraints’ columns for the referenced table.

The Referential Triggered Action clause enables the specification of actions to be taken on a
referential constraint, when a primary key of the referenced table changes.

This clause is part of a references clause in column constraint element and table constraint
element and exists for reasons of conforming to the ANSI standard, only. The default referential
triggered action differs from the ANSI standard. The default is CASCADE and not NO
ACTION.

The following conventions hold true for the explanations below:

– Let T be the referenced table and T0 be the referencing table of a foreign key.

– Let further C be the referenced column and C0 the referencing column list of the foreign
key.

– Let r be a row of T to be updated or deleted with a value v in C.
Let r0 be a row of T0 with the same value v in C0.

If row r is updated where the value of C changes to vu, r0 in T0 is also updated and the value
of C0 changes to the same value vu.

If row r is deleted r0 is also deleted.

For more details see the Adabas SQL Server Programmers Guide section Describing Adabas
Nested Data Structures.

Common Elements
1

131

Limitations:

All columns of Cl must exist in the defining base table, and a column of T may not appear twice
within Cl.

The FOREIGN KEY clause may only be used in a CREATE CLUSTER or CREATE CLUSTER
DESCRIPTION statement.

The SHORTNAME clauses may only be used in a CREATE CLUSTER DESCRIPTION or
CREATE TABLE DESCRIPTION statement.

There may be a maximum of one PRIMARY KEY for a bases table (this includes a column
attribute of type PRIMARY KEY).

When using a PRIMARY KEY constraint the attribute SUPPRESSION is not permitted.

When using a UNIQUE constraint in conjunction with a SUPPRESSION attribute the attribute
NOT NULL is not permitted. For details refer to the Adabas SQL Server Programmer’s Guide,
chapter Introduction, section Conversion of Adabas Field Attributes to Adabas SQL Server
Column Attributes.

When using a UNIQUE or PRIMARY KEY constraint in conjunction with a DEFAULT
ADABAS attribute, the attribute NULL is not permitted.

ANSI Specifics:

The columns of a UNIQUE constraint must under ANSI have the attribute NOT NULL
specified.

The default referential triggered actions differs from that in the SQL standard, in that, the default
action is CASCADE and not NO ACTION.

Adabas SQL Server Specifics:

None.

Adabas SQL Server Reference Manual
1

132

Table Index Element
Function:

Specifies a set of columns as an index.

Invocation:

This element is part of the table element. The shortname identifier is only allowed in a CREATE
TABLE DESCRIPTION or a CREATE CLUSTER DESCRIPTION statement.

Syntax:

columnidentifier start position)(

,

–()end position

shortname identifier

HAVING UNIQUE INDEX

UQINDEX

index identifierINDEX

index identifier represents the name of an index and must conform to the rules
specified earlier in this chapter in section Identifiers.

column identifier name of a column to be used in the forming of an index.

start position the start position within the column when defining an Adabas
descriptor.

end position the end position within the column when defining an Adabas
descriptor. The end position must be greater than the start position.

shortname identifier a valid specification of an Adabas short name. See section Table
Physical Element earlier in this chapter for more details.

Common Elements
1

133

Description:

In order to improve the performance of an existing application, an index can be established for
one or more column(s) of a base table.

The table index element allows for the creation of an Adabas descriptor, that reflects the capabilities
of the Adabas database system’s definition of descriptors. For a detailed discussion of Adabas
descriptors, please refer to the Adabas documentation for your environment, in particular the
Database Design chapter of DBA Reference Manual.

A ranges specification is when start and end positions are specified. This allows an index
specification to be restricted to sub-elements of a column.

The following conventions hold true for the explanations below:

– Let Cl = (c1,... , cn) be a column list of one or more columns for which this table index
element is specified.

– Let T be the table where the columns of Cl resides.

� INDEX:

A INDEX is used to allow more efficient access to a base table. As such, the index is based on
one or more column(s) of a base table, where the columns’ listed are considered as an entity.
If the number of columns in the column list is greater than one, then an Adabas Superdescriptor
will be generated. If the index is over only one column and that column as no range
specification, then the column to which this index references will have an Adabas Descriptor
added. In the case of a range specification across only one column, then an Adabas
Subdescriptor will be generated.

� HAVING UNIQUE INDEX:

A HAVING UNIQUE INDEX ensures that there are no two rows of T having identical values
in the columns of Cl. Rows with NULL value(s), in any columns of Cl, do not effect this index.
A HAVING UNIQUE INDEX implies a UNIQUE constraint, and is stored in the Adabas SQL
Server catalog as a UNIQUE constraint.

� UQINDEX:

A UQINDEX is an index that will generate an Adabas unique sub- or superdescriptor on a
column that is part of a subtable. This descriptor is not considered to be unique in SQL terms
and can, therefore, not be represented by a normal ”unique constraint”.

For more details see the section Indexes and Constraints, chapter Adabas SQL Server Data
Structures in the Adabas SQL Server Programmer’s Guide.

Adabas SQL Server Reference Manual
1

134

Limitations:

The shortname identifier is only used in a CREATE TABLE DESCRIPTION or a CREATE
CLUSTER DESCRIPTION statement.

A specification of a UQINDEX is only valid for level 1 and level 2 base tables (subtables).

You are not allowed to specify a UNIQUE INDEX together with a UNIQUE constraint or a
PRIMARY KEY.

When using a HAVING UNIQUE INDEX in conjunction with a SUPPRESSION attribute the
attribute NOT NULL is not permitted. For details refer to the Adabas SQL Server Programmer’s
Guide, chapter Introduction, section Conversion of Adabas Field Attributes to Adabas SQL
Server Column Attributes.

When using a HAVING UNIQUE INDEX in conjunction with a DEFAULT Adabas attribute,
the attribute NULL is not permitted.

ANSI Specifics:

The table index element is not part of the Standard.

Adabas SQL Server Specifics:

None.

Common Elements
1

135

ORDER BY Clause

Function:

The ORDER BY clause enables the resultant table of a DECLARE CURSOR statement or a
SELECT statement to be sorted in a user-defined sequence.

Invocation:

The ORDER BY clause is part of the DECLARE CURSOR statement and the dynamic or
interactive SELECT statement.

Syntax:

integer constant

derived column
label

ASC

ASCENDING

DESCENDING

DESC

�

ORDER

BY

,

integer constant identifies a derived column of the resultant table

derived column label identifies a derived column of the resultant table

Adabas SQL Server Reference Manual
1

136

Description:

The ORDER BY clause enables the resultant table to be sorted in a user-defined sequence.
Generally, any resultant table is unordered, however, the ORDER BY clause sorts the rows
according to the values of a particular column or columns. Rows are sorted by default in
ascending order although descending may be explicitly specified. If more than one column is
specified then the resultant table is sorted primarily according to the values in the first ordering
column. Thereafter, rows which have the same value for that column are sorted amongst
themselves according to the values of the second ordering column. The entire table is sorted
according to all the columns specified in the ORDER BY clause.

Ordering columns may be specified either by derived column label or by an integer
displacement representing their position in the derived column list.

Derived columns which do not have labels must be referenced by displacement whereas derived
columns with labels may be referenced by either method. An integer displacement simply refers
to a derived column by its position in the derived columns list as numbered from left to right,
i.e. the first column would be referred to as 1, the second as 2, etc.

If a derived column label is used, then it must be sufficiently qualified in order to uniquely
identify the required derived column. If the same column is specified more than once in the
derived columns list, then it is impossible to specify a unique derived column label. In such a
case, an integer displacement must be used to reference the required derived column.

The final order of a column of type character depends on the sorting order of the underlying
hardware.

Limitations:

A derived column may not be specified more than once in the ORDER BY clause regardless
of the type of reference used.

ANSI Specifics:

The keywords ASCENDING and DESCENDING are not part of the Standard.

Adabas SQL Server Specifics:

The keywords ASCENDING and DESCENDING are extensions.

Common Elements
1

137

Example:

To declare a cursor to select all cruise IDs , start harbors and cruise prices where the end resultant
table lists all start harbors in ascending alphabetical order, and, for each ’group’ of identical start
harbors, the rows are then sorted by descending cruise price , the following syntax applies:

DECLARE cursor1 CURSOR FOR SELECT cruise_id,start_harbor,cruise_price
FROM cruise
ORDER BY start_harbor ASCENDING,cruise_price DESCENDING;

To declare a cursor where all resultant rows are ordered by the 6th and 7th columns (in this case
start_harbor and destination_harbor) with the 7th column in descending order, the following
syntax using derived column labels (6,7) applies:

DECLARE cursor1 CURSOR FOR SELECT *
FROM cruise
ORDER BY 6,7 DESCENDING;

To request all information about all cruises with a start date of December 22, 1991, with the
result sorted in ascending alphabetical order of start harbors, and subsequently, any groups of
rows with identical start harbors are sorted in ascending alphabetical order of destination
harbors, the following syntax applies for an interactive SELECT statement.

SELECT *
FROM cruise
WHERE start_date=19911222
ORDER BY start_harbor ASCENDING,destination_harbor ASCENDING;

Adabas SQL Server Reference Manual
1

138

USING Clause

Function:

The USING clause is used to provide references to host variables for use in either a dynamic
FETCH, OPEN or EXECUTE statement.

Invocation:

The USING clause is part of dynamic EXECUTE, FETCH or OPEN statements.

Syntax:

host variable
identifierDESCRIPTOR

�

host variable
specification

USING �

host variable specification is a valid host variable specification and must have been defined
in an application program. The host variable specification may
reference a structure.

host variable identifier is a valid single host variable identifier and which must be the
address of an SQL descriptor area (SQLDA).

Common Elements
1

139

Description:

The USING clause defines a set of host variables for use either as value sources in a dynamic
OPEN or EXECUTE statement or as target receptors in a dynamic FETCH statement.

A host variable specification, which references a host variable structure is equivalent to individual
host variable specifications which reference all the elements of the structure singularly.

For a dynamic OPEN or EXECUTE statement, if the associated PREPAREd statement
contained host variable markers, i.e., ‘?’ then these markers must be satisfied by use of a USING
clause. Prior to use the referenced host variables must have been assigned appropriate values.
Each referenced host variable provides a value for its corresponding host variable marker. The
user must make sure that the host variables are supplied with the correct values and formats in
the correct order.

For a dynamic FETCH statement, the host variables provided are intended to receive the results
of the statement.

Host variables within the USING clause can be provided in two ways:

– by explicitly specifying a list of host variables. The number, type and order of the required
host variables must be known at compilation time of the host program.

– by providing an SQL descriptor area. This facility enables a more dynamic approach to
be adopted. The DESCRIBE statement provides the necessary information in the SQLDA
for each host variable marker or derived column. The user must then provide a pointer in
each field description which references an appropriate host variable. The number, type and
order of the host variables can be completely unknown at compilation time of the host
program. An SQL descriptor area is identified by means of a host variable which contains
the address of the SQLDA.

A host variable specification which references a host variable structure is equivalent to individual
host variable specifications which reference all the elements of a structure singularly.

Adabas SQL Server Reference Manual
1

140

Limitations:

None.

ANSI Specifics:

The USING clause is not part of the Standard.

Adabas SQL Server Specifics:

This is an Adabas SQL Server extension.

 Example:

If an EXECUTE statement requires the input of three values e.g ’SELECT * FROM contract
WHERE price IN (?, ?, ?), then the USING clause will provide these values. The following
syntax applies:

USING :hv1, :hv2, :hv3;

Common Elements
1

141

FOR UPDATE Clause

Function:

The FOR UPDATE clause indicates explicitly that the associated cursor is to be used in
conjunction with either an UPDATE and/or DELETE statement making use of the WHERE
CURRENT OF clause, or that the cursor is explicitly designated as not updatable.

Invocation:

The FOR UPDATE clause is part of the DECLARE CURSOR statement and the dynamic or
interactive SELECT statement.

Syntax:

OF

FOR

UPDATE column
specification

,

FETCH ONLY

�

FOR UPDATE Clause

column specification is a valid column specification of the column which is to be
updated or deleted.

Adabas SQL Server Reference Manual
1

142

Description:
A static cursor can be explicitly declared as being non-updatable by use of the FOR FETCH
ONLY clause. In such a case, the use of positioned UPDATE or DELETE statements associated
with the cursor is not allowed. Furthermore rows will not be locked once they are established
regardless of the default locking specification.

Alternatively, a static cursor can be declared as FOR UPDATE, as long as it is updatable of
course. In such a case, rows will be locked regardless of the default locking specification. In
general, this clause need not be specified. However, if the associated UPDATE or DELETE
statement is actually in a separate compilation unit, as is possible with Adabas SQL Server, then
this clause is required in order to avoid a runtime error.

If neither a FOR FETCH ONLY clause nor a FOR UPDATE clause is specified and there are
no associated UPDATE or DELETE statements within the same compilation unit, then the
resulting rows will or will not be locked according to the system default locking specification.

Similar behavior can be ensured for a dynamic cursor by appending the clause to the dynamic
SELECT statement. A column specification list is optional and indeed has no effect.

Limitations:

None.

ANSI Specifics:

The FOR UPDATE clause is not part of the Standard.

Adabas SQL Server Specifics:

This is an Adabas SQL Server extension.

 Example:

To ensure that the cursor as declared in the first example can only be used for retrieval the
following syntax applies:

DECLARE cursor1 CURSOR FOR
SELECT cruise_id,start_date FROM cruise

 WHERE start_harbor = ’BARBADOS’
 FOR FETCH ONLY;

2

143

SQL STATEMENTS

ALTER TABLE

 Function:

The ALTER TABLE statement changes the logical and physical structure of a base table.

 Invocation:

Embedded Mode Dynamic Mode Interactive Mode

 Syntax:

ALTER

integer constant

TABLE

ADD alter add element

DROP alter drop element

ALTER alter change element

SET BLOCK SIZE

table specification

�

table specification identifier of the base table to be modified, optionally qualified
by the schema identifier.

Adabas SQL Server Reference Manual
2

144

Alter add element:

�

table column element

table constraint
element

table index element

COLUMN

Alter drop element:

INDEX

constraint identifier

index identifier

CONSTRAINT

INDEX

�

CASCADE

RESTRICT

KEEPING

SQL Statements — ALTER TABLE
2

145

Alter change element:

DROP

literal

column identifier

SET DEFAULT

USER

ADABAS

NULL

DEFAULT

CHAR

CHARACTER

)(integer constant

�

 Description:

The ALTER TABLE statement allows the modification of characteristics of base tables. The
following alteration can be made:

� Adding a new column to a base table.
This function may only be performed on base tables. In the case of a cluster, a column may only
be added to the master table.

� Changing the length of a character column.
The changing of a character column length (only increasing the length), may be performed on
any base table (including character columns of a subtable). It is though, only possible to increase
a column’s length up to either 253 characters for a column of less than this length or up to 16381
characters for a column that is originally greater than 253 characters in length.

� Changing/adding/dropping a column’s default value.
The deletion of a column’s default value is not allowed for a column with a default value of
ADABAS. For changing/adding a default value to a column see the section Column Default
Definition in the section Common Elements.

Adabas SQL Server Reference Manual
2

146

� Creating/Dropping a Constraint or Index for the base table.

� Adding an Index or Constraint.
In order to improve the performance of an existing application, an index or constraint can be
established for one or more column(s) of a base table.

� Dropping an Index or Constraint.
Allows the removal of an existing constraint or index from the specified base table. The
KEEPING INDEX clause on dropping a constraint provides for the Adabas functionality of
being able to remove the ’UQ’ attribute from a descriptor.

� Changing the BLOCK SIZE of a Subtable in a Cluster.
The ability to change the BLOCK SIZE of subtables allows the optimization regarding the
number of occurrences that, if possible, will be multifetched in a MU/PE group. In the cases of
a MU within a PE, the MULTIFETCH size is the multiplication of the level one (PE) table’s
BLOCK SIZE with that of the level 2 (MU). The following limitations apply to the changing
of the BLOCK SIZE: default value = 7, minimum value = 1, maximum value = 191.

The ALTER TABLE statement enables the creation of an Adabas descriptor, that reflects the
capabilities of the Adabas database system’s definition of descriptors. For a detailed discussion
of Adabas descriptors, please refer to the Adabas documentation for your environment, in
particular the Database Design chapter of the DBA Reference Manual.

For more details on defining Indexes and Constraints, see the sections Create Index Statement,
Table Index Definition or Table Constraint Definition in this manual and Indexes and
Constraints in the Adabas SQL Server Programmer’s Guide.

Limitations:

When adding a new column to a base or master table the following limitations exist in regard
to the column attributes allowed within this statement. The specification of Column Indexes or
Constraints are not allowed. The specification of NOT NULL without it being qualified with
either SUPPRESSION or DEFAULT ADABAS.

When dropping a Constraint or Index, the following limitations exist. When attempting to drop
an index, there may not be a constraint with the exact column list definition as the index (if there
is, this index is classified as being the ”defining index of the constraint”).

Constraints and indexes that make up a FOREIGN KEY/REFERENCES constraint may not be
dropped. FOREIGN KEY/REFERENCES constraints may not be dropped.

In the context of alter a character columns length, it is only possible to increase its length.

SQL Statements — ALTER TABLE
2

147

ANSI Specifics:

The following are not part of the SQL standard:

– When dropping a Constraint, the ability to use the ”KEEPING INDEX” suffix.

– The adding/dropping of Indexes.

– The in-ability to drop a FOREIGN KEY/REFERENCES constraint.

– The clause ”SET BLOCK SIZE”.

– The default value of ”ADABAS”.

 Adabas SQL Server Specifics:

KEEP INDEX, SET BLOCK SIZE, INDEX and DEFAULT ADABAS are Adabas SQL Server
extensions.

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

To add one column to our base tables (cruise), the following syntax applies:

ALTER TABLE cruise ADD COLUMN fun_factor INTEGER;

Adabas SQL Server Reference Manual
2

148

ALTER USER

Function:

With the ALTER USER statement the password for an existing user can be added, changed or
dropped.

Invocation:

Syntax:

USERALTER user
identifier

DROP

SET

PASSWORD

PASSWORD

�

string literal

user identifier: a unique identifier for a an existing user.

string literal: the user’s password.

Description:

A password for an existing user may be changed or added with the SET PASSWORD option.
Naturally, from this point on, the user must provide the full user identification when connecting
to Adabas SQL Server.

A password may be deleted with the DROP PASSWORD option. From this point on, connection
to Adabas SQL Server will be granted with only the user ID.

Limitations:

Non-DBA users may only drop or set their own passwords. The DBA may execute this statement
for all users.

SQL Statements — ALTER USER
2

149

ANSI Specifics:

The ALTER USER statement is not part of the Standard.

Adabas SQL Server Specifics:

DDL and D:CL statements may be mixed in one transaction. DML statements must not be mixed
with DDL/DCL statements in the same transaction. For details, see the chapter General
Concepts of SQL Programming, section Transaction Logic in the Adabas SQL Server
Programmer’s Guide.

Example:

The existing user TIM wants to change his own password. The following syntax applies:

ALTER USER TIM SET PASSWORD ’XIYIZ’;

The DBA wants to drop the password for the existing user PETER. The following syntax
applies:

ALTER USER PETER DROP PASSWORD;

Adabas SQL Server Reference Manual
2

150

BEGIN DECLARE SECTION

Function:

This statement is the starting delimiter for a host variable declaration block.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�BEGIN DECLARE SECTION

Description:

SQL application programs need to retrieve and provide values to and from Adabas SQL Server
during runtime. This is achieved by using host variables which are specified in embedded SQL
statements. During compilation, the nature of the host variables has to be known. To identify
the relevant host variables it is suggested to declare these in a special section. This section is
delimited by the BEGIN DECLARE SECTION and END DECLARE SECTION statements.
These statements are always paired and can not be nested. The host variable declarations must
be specified between the two statements and more than one of these sections are permitted. The
statement does not result in an update of the SQLCA.

Limitations:

The positioning of the statement must conform to the rules governing the positioning of host
variable declarations with the host applications. At least one host variable should be declared
in such a block.

ANSI Specifics:

Any host variable referenced within an embedded SQL statement must have been declared with
a host variable declaration section. Structures are not permitted in this context.

SQL Statements — BEGIN DECLARE SECTION
2

151

Adabas SQL Server Specifics:

For reasons of compilation efficiency it is recommended, although it is not absolutely necessary,
to declare host variables in a host variable declaration section.

Example:

To specify the start of the host variable declaration section, the following syntax applies:

BEGIN DECLARE SECTION
char a [5]

END DECLARE SECTION;

Adabas SQL Server Reference Manual
2

152

CLOSE

Function:

The CLOSE statement closes a cursor.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

cursor
identifier

host variable
specification

CLOSE �

cursor identifier is a valid cursor identifier which identifies the cursor to be used
in the CLOSE operation.

host variable specification is a valid single host variable specification and must have been
defined in the application program according to the host-
language-dependent rules.

Description:

The CLOSE statement closes a cursor, i.e., releases resources allocated by an OPEN cursor
statement. The value of the host variable must be a valid cursor identifier. A host variable can
be used as cursor identifier only if the cursor is a dynamically declared cursor.

Limitations:

The cursor to be closed must have been opened.

SQL Statements — CLOSE
2

153

ANSI Specifics:

All cursors opened within a transaction are automatically closed by a COMMIT or ROLLBACK
statement. The associated DECLARE CURSOR statement must precede the CLOSE statement
in the host program.

Adabas SQL Server Specifics:

The CLOSE statement does not have to be preceded by the associated DECLARE CURSOR
statement. It may appear anywhere in the host program, even in another compilation unit.

 Example:

To close a cursor that is assigned the identifier ‘cursor1’, the following syntax applies.

CLOSE cursor1;

Adabas SQL Server Reference Manual
2

154

COMMIT

Function:

The COMMIT statement terminates a transaction and makes permanent all changes that were
made to the database during the terminated transaction.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

WORK �COMMIT ALLKEEPING

Description:

The COMMIT statement terminates the current transaction and starts a new transaction. All
changes to the database that have been made during the terminated transaction are made
permanent. All cursors that have been opened during the current transaction are closed.

If KEEPING ALL is specified, none of the currently opened cursors are closed after the
execution of the COMMIT statement.

Limitations:

In DB2 mode, all statements which have been prepared during the current transaction are
deleted.

In DB2 mode, when running under CICS, the use of the COMMIT statement is not permitted.
In this environment, a COMMIT is automatically issued by the transaction system itself.

ANSI Specifics:

The keyword WORK is mandatory. The keywords KEEPING ALL are not part of the Standard.

SQL Statements — COMMIT
2

155

Adabas SQL Server Specifics:

The keyword KEEPING ALL is an Adabas SQL Server extension.

 Example:

To commit all changes made to the database in the current transaction, the following syntax
applies:

COMMIT WORK;

Adabas SQL Server Reference Manual
2

156

CONNECT

Function:

The CONNECT statement explicitly establishes an SQL session between a user application and
Adabas SQL Server.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

CONNECT

TO

�

DEFAULT

connection
specification

user
specification

server
specifier

user
 specifier

AS

connection specification

connection
 specifier

user specification

PASSWORDUSER user
specifier

 password
specifier

SQL Statements — CONNECT
2

157

The four specifiers can either be character-string constants or single host variable identifiers.
The host variables must have been defined in the application program according to the host-
language-dependent rules and their values must be character strings.

The lengths of these specifiers are as follows:

Server specifier up to 8 case sensitive (see note below) or
Server specifier up to 27 characters case sensitive (see note below)
Connection specifier up to 32 characters case sensitive
User specifier up to 32 characters upper case
Password specifier up to 32 characters upper case

Note:
The server may be declared as a simple server specifier or as a server specifier (up to 8 characters)
with communication mode (up to 9 characters) and node name (up to 8 characters) separated by
blanks.

Description:

The CONNECT statement explicitly establishes an SQL session between the user application
and Adabas SQL Server.

The user user specifier with the password password specifier is connected to Adabas SQL Server
server specifier under the connection connection specifier.

The user specifier must exist on the server side. The user DBA is able to create other users with
CREATE USER. If you do not specify the user specifier, the default user is the user identifier
known by the operating system (login user). Exceptions to this rule apply for some mainframe
environments as stated in the Limitation section below. If a password specifier is not specified,
blanks will be generated as default password.

Adabas SQL Server checks authentication based on the user and password passed on.

If a server specifier is not specified, a default server is evaluated. The connection specifier is
user-defined and will be used to set different connections. If a connection specifier is not specified,
the server name will be used as connection name. For details, refer to the Adabas SQL Server
Programmer’s Guide, chapter Client/Server Topics.

Although an application can issue multiple CONNECT statements, it is set to only one Adabas SQL
Server at a time. The Adabas SQL Server environment used in the most recently executed
CONNECT statement is the active one. Multiple CONNECT statements can be issued to the same
Adabas SQL Server to work with a few parallel connections at the same time.

Adabas SQL Server Reference Manual
2

158

If the application does not issue any CONNECT statement then the first SQL statement executes
an implicit CONNECT to the default server. For further details regarding the default server refer
to the Adabas SQL Server Programmer’s Guide, chapter Client/Server Topics.

Limitations:

Adabas SQL Server determines the user ID for an implicit CONNECT as follows:

– in batch or under TSO
The security logon identification is used.
When this is not available, the job name is taken.
 Under VSE, the job name is used as User ID.

– under CICS
The user (or default user) identification is used.
When the user identification is not available, for example for asynchronous tasks, a user
identifier is constructed using the four-byte CICS System Identification (SYSID) and the
four-byte CICS Transaction ID.
 For Example:
 CICS System ID: ’fct4’
 Transaction ID: ’na22’
 User ID: ’fct4na22’

– under Com-plete
the Com-plete logon user identification is used.

Note:
When you are using the external security interface, the user and password identifiers are limited
to a maximum of 8 characters.This is a restriction of the external security products; e.g. RACF,
ACF2, Top–Secret.

ANSI Specifics:

The CONNECT statement is not part of the Standard.

Adabas SQL Server Specifics:

The Version 1.2 syntax of the CONNECT statement (CONNECT USER user identifier) is still
supported and is logically equal to the Version 1.3 and higher counterpart (CONNECT TO
DEFAULT USER user identifier).

SQL Statements — CONNECT
2

159

Example:

To establish an SQL session identified by the connection MYSESSION between the server
ESQUNIX and user John the following syntax applies:

CONNECT TO :esqunix AS :mysession USER :john PASSWORD :xyz;

Adabas SQL Server Reference Manual
2

160

CREATE CLUSTER

Function:

The CREATE CLUSTER statement is used to combine a number of base tables in one internal
table.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

CREATE table specificationCLUSTER

)(

,

cluster element �

table specification specifier of the master table to be created for this cluster,
qualified by the schema identifier

cluster element specifies a base table in the described cluster.

SQL Statements — CREATE CLUSTER
2

161

Cluster element:

CREATE table specificationTABLE

)(

,

table element �

BLOCK integer constantSIZE

table specification identifier of the subtable to be created for this cluster, qualified
by the schema identifier

integer constant a value between 1 and 191 is expected.

table element see section Table Elements in chapter Common Elements of
this manual.

Description:

A CREATE CLUSTER statement is used to combine a set of base tables into one Adabas file.

The BLOCK SIZE defined in a cluster element specifies the number of occurrences that will
be multi-fetched in a MU/PE group. In the case of a MU within a PE, that Multifetch size is the
multiplication of the level one (PE) table BLOCK SIZE with that of the level 2 (MU). A good
value for a BLOCK SIZE is either a prime number or odd number. The BLOCK SIZE has the
following limitations: default value = 7, minimum value = 1, maximum value = 191.

Each subtable within the CLUSTER represents either a PE group or an MU field. It is also
possible to group MU’s together into one single subtable, this assumes that all MUs have the
same number of occurrences and that when accessing them, the occurrence number of each MU
will be equal.

Adabas SQL Server Reference Manual
2

162

There is a different file creation behaviour on mainframe platforms compared to open systems
platforms due to the possibility of keeping the FDTs of unloaded files:

– When using the FILE parameter, only the specified file number will be used to create the
corresponding Adabas file. If a file with the specified file number already exists an error
occurs. This is true for all platforms. On mainframe platforms only; if the specified file number
is that of an unloaded file where the FDT has been kept, the FDT will be overwritten.

– When using the ADABAS FREE FILE SEARCH RANGE method, an unloaded file with
existing FDT is not classified as a valid candidate for the CREATE TABLE or CREATE
Cluster statement.

For a detailed description see the chapter Adabas SQL Server Data Structures, section Describing
Adabas Nested Data Structures in the Adabas SQL Server Programmer’s Guide.

SQL Statements — CREATE CLUSTER
2

163

Limitations:

The column attributes/table clause SHORTNAME definition may not be specified in this statement.

A CREATE CLUSTER statement will always represent tables of level one as a PE group within
Adabas. Following rules apply:

� Foreign keys reference only unique constraints. A subtable contains exactly one foreign key.

� The same rules apply for the columns, constraints and indexes of the master table as for a
CREATE TABLE statement.

� Columns which are not an element of a foreign key and not of a SEQNO type are called data
columns. The limitations under rules 4 – 7 apply to data columns in subtables.

� The data columns of a level 1 table correspond only to fields of a single PE group.

� The data columns of a level 2 table correspond to MU fields within a specific PE group – the
group containing those fields which the data columns in the referenced table correspond to.

	 Not more than one data column may correspond to each field (with rotated fields, each subscript
counts as its own field).

 With parallel MU fields, it is assumed that in all Adabas records, the respective counter values
are the same.

� For x=1 or x=2, a unique constraint of a level x table encompasses the elements of the foreign
keys and a column of the type SEQNO(x). Other unique constraints on subtables are not allowed.

� For indexes to subtables, the same rules apply as for level-0 tables, plus the following additional
constraints:

– HAVING UNIQUE INDEX is not allowed. In order to model the Adabas UQ option,
UQINDEX is used.

Note:
A unique constraint is defined as either a UNIQUE or PRIMARY KEY constraint.

 All level 0 columns must be grouped within one CREATE TABLE of a cluster.

Note:
In the case of a PE data structure containing MU fields only, it is necessary to use an Adabas
short name on the SEQNO(1) of the PE–subtable.

ANSI Specifics:

The CREATE CLUSTER statement is not part of the Standard.

Adabas SQL Server Reference Manual
2

164

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

To create a cluster named city_guide , enter the following syntax:

CREATE CLUSTER city_guide
(
 CREATE TABLE states
 (
 abbreviation CHAR (2) PRIMARY KEY NOT NULL DEFAULT ADABAS,
 state_name CHAR (20) UNIQUE NOT NULL DEFAULT ADABAS,
 capital CHAR (20) INDEX state_capital,
 population INT
),
 CREATE TABLE cities
 (
 state_abbrev CHAR (2) UQINDEX NOT NULL DEFAULT ADABAS,
 city_seqno SEQNO (1) NOT NULL,
 city_name CHAR (20),
 population INT,
 PRIMARY KEY (state_abbrev, city_seqno),
 FOREIGN KEY (state_abbrev) REFERENCES states (abbreviation),
 UQINDEX city_state (city_name, state_abbrev)
),
 CREATE TABLE buildings
 (
 state_abbrev CHAR (2) UQINDEX NOT NULL DEFAULT ADABAS,
 city_seqno SEQNO(1) NOT NULL,
 building_seqno SEQNO(2) NOT NULL,
 building_name CHAR (20) NOT NULL SUPPRESSION,
 height INT NOT NULL SUPPRESSION,
 PRIMARY KEY (state_abbrev, city_seqno, building_seqno),
 FOREIGN KEY (state_abbrev, city_seqno)
 REFERENCES cities (state_abbrev, city_seqno)
),

SQL Statements — CREATE CLUSTER
2

165

CREATE TABLE places
 (
 state_abbrev CHAR (2) UQINDEX NOT NULL DEFAULT ADABAS,
 city_seqno SEQNO(1) NOT NULL,
 place_name CHAR (20) NOT NULL SUPPRESSION,
 FOREIGN KEY (state_abbrev, city_seqno)
 REFERENCES cities (state_abbrev, city_seqno)
)
);

Adabas SQL Server Reference Manual
2

166

CREATE CLUSTER DESCRIPTION

Function:

This statement introduces an existing Adabas file including MU/PE fields to the SQL
environment.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

CREATE table specification1CLUSTER DESCRIPTION

DATABASE database
 identifier

FILE NUMBER
Adabas

file number

)(

,

cluster description
element �

table specification1 represents the cluster to be created, qualified by the schema
identifier

database identifier represents the database in which the existing Adabas file
resides.

Adabas file number is a valid file number within an Adabas database system.

SQL Statements — CREATE CLUSTER DESCRIPTION
2

167

Cluster description element:

CREATE table specificationTABLE

)(

,

table element �

BLOCK integer constantSIZE

DESCRIPTION

table specification specifies the base tables (master tables and subtables) of the
described cluster.

integer constant a value between 1 and 191 is expected.

table element see section Table Elements in chapter Common Elements of
this manual.

Description:

A CREATE CLUSTER DESCRIPTION statement allows the description of an existing Adabas
file that contains Adabas MU’s and/or PE’s, to Adabas SQL Server.

The BLOCK SIZE defined in a cluster element specifies the number of occurrences that will
be multi-fetched in a MU/PE group. In the case of a MU within a PE, that multi-fetch size is
the multiplication of the level one (PE) table BLOCK SIZE with that of the level 2 (MU). A
good value for a BLOCK SIZE is either a prime number or odd number. The BLOCK SIZE has
the following limitations: default value=: 7, minimum value = 1, maximum value = 191.

For further details of how to use this statement, refer to the Adabas SQL Server Programmer’s
Guide, chapter Adabas SQL Server Data Structure, section Data in Table Clusters.

Note:
The formulation of CREATE CLUSTER DESCRIPTION statements can be aided by the use of
the Generate Table Description (ESQGTD) Utility.

Adabas SQL Server Reference Manual
2

168

Limitations:

Following rules apply:

� Foreign keys reference only unique constraints. A subtable contains exactly one foreign key.

� The same rules apply for the columns, constraints and indexes of the master table as for a
CREATE TABLE DESCRIPTION statement.

� Columns which are not an element of a foreign key and not of a SEQNO type are called data
columns. The limitations under rules 4 – 7 apply to data columns in subtables.

� The data columns of a level 1 table correspond either to MU fields which do not lie within a PE
group, or to fields within a single PE group.

� The data columns of a level 2 table correspond to MU fields within a specific PE group – the
group containing those fields which the data columns in the referenced table correspond to.

	 Not more than one data column may correspond to each field (with rotated fields, each subscript
counts as its own field).

 With parallel MU fields, it is assumed that in all Adabas records, the respective counter values
are the same.

� For x=1 or x=2, a unique constraint of a level x table encompasses the elements of the foreign
keys and a column of the type SEQNO(x). Other unique constraints on subtables are not allowed.

� For indexes to subtables, the same rules apply as for level-0 tables, plus the following additional
constraints:

– HAVING UNIQUE INDEX is not allowed. In order to model the Adabas UQ option,
UQINDEX is used.

Note:
A unique constraint is defined as either a UNIQUE or PRIMARY KEY constraint.

 All level 0 columns must be grouped within one CREATE TABLE of a cluster.

Note:
In the case of a PE data structure containing MU fields only, it is necessary to use an Adabas
short name on the SEQNO(1) of the PE–subtable.

ANSI Specifics:

This statement is not part of the ANSI standard

SQL Statements — CREATE CLUSTER DESCRIPTION
2

169

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

 CREATE CLUSTER DESCRIPTION city_guide
 DATABASE DB_214 FILE NUMBER 134
 (
 CREATE TABLE DESCRIPTION states (
 abbreviation SHORTNAME ’AA’ PRIMARY KEY DEFAULT ADABAS,
 state_name SHORTNAME ’AB’ UNIQUE NOT NULL DEFAULT ADABAS,
 capital SHORTNAME ’AC’ INDEX,
 population SHORTNAME ’AD’
),
 CREATE TABLE DESCRIPTION cities (
 state_abbrev SHORTNAME ’AA’,
 city_seqno SEQNO(1) NOT NULL DEFAULT ADABAS,
 city_name SHORTNAME ’BA’ INDEX NULL SUPPRESSION,
 population SHORTNAME ’BB’ NULL SUPPRESSION,
 PRIMARY KEY (state_abbrev, city_seqno),
 FOREIGN KEY (state_abbrev) REFERENCES states,
 UQINDEX (city_name, state_abbrev)
),
 CREATE TABLE DESCRIPTION buildings (
 state_abbrev SHORTNAME ’AA’,
 city_seqno SEQNO(1) NOT NULL DEFAULT ADABAS,
 building_seqno SEQNO(2) NOT NULL DEFAULT ADABAS,
 building_name SHORTNAME ’CA’ NOT NULL SUPPRESSION,
 height SHORTNAME ’CB’ NOT NULL SUPPRESSION,
 PRIMARY KEY (state_abbrev, city_seqno, building_seqno),
 FOREIGN KEY (state_abbrev, city_seqno) REFERENCES cities
),
 CREATE TABLE DESCRIPTION places (
 state_abbrev SHORTNAME ’AA’ NOT NULL,
 city_seqno SEQNO(1) NOT NULL DEFAULT ADABAS,
 place_name SHORTNAME ’DA’ NULL SUPPRESSION,
 FOREIGN KEY (state_abbrev, city_seqno) REFERENCES cities
)
);

Adabas SQL Server Reference Manual
2

170

Below is the corresponding Adabas FDT definition:

 Level I Name I Length I Format I Options I Comment
––
 1 I AA I 2 I A I DE,UQ I states.abbreviation
 1 I AB I 20 I A I DE,UQ I states.state_name
 1 I AC I 20 I A I DE,NC I states.capital
 1 I AD I 4 I F I NC I states.population
 1 I B0 I I I PE I cities
 2 I BA I 20 I A I DE,NU I cities.city_name
 2 I BB I 4 I F I NU I cities.population
 2 I CA I 20 I A I NU,MU I buildings.building_name
 2 I CB I 2 I F I NU,MU I buildings.height
 2 I DA I 20 I A I NU,MU I places.place_name
––
 Type I Name I Length I Format I Options I Parent field(s) Fmt
––
 SUPER I X1 I 22 I A I NU,UQ,PE I BA (1 – 20) A
 I I I I I AA (1 – 2) A
––

SQL Statements — CREATE DATABASE
2

171

CREATE DATABASE

Function:

The CREATE DATABASE statement assigns a logical database identification to a physical
database number.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�AS DATABASE NUMBER integer constant

CREATE DATABASE database identifier

database identifier a valid database identifier representing a logical database name
which must be known to Adabas SQL Server at runtime.

integer constant the Adabas database number.

Description:

The CREATE DATABASE statement is used to assign a logical database identifier to databases
otherwise defined by Adabas database numbers. In addition, the database number need not exist
at compilation time.

Adabas SQL Server Reference Manual
2

172

Limitations:

The specified database identifier must be unique within the catalog. In addition, the database
number must not already be associated with another database identifier within the catalog. The
integer constant must be in the range from 1 to the maximum number of databases allowed by
the underlying Adabas.

ANSI Specifics:

The CREATE DATABASE statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

To assign the logical database identifier ‘yachting’ to an Adabas database number (75), the
following syntax is used:

CREATE DATABASE yachting AS DATABASE NUMBER 75;

SQL Statements — CREATE INDEX
2

173

CREATE INDEX

Function:

The CREATE INDEX statement establishes an index on one or more columns of an existing base
table. Also, see section Table Elements in chapter Common Elements.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

UNIQUE INDEX

UQINDEX

index identifierINDEXCREATE

table
specification

derived
column

)(

,

ON

Description:

In order to improve the performance of an existing application, an index can be established for
one or more column(s) of a base table.

The CREATE INDEX statement allows for the creation of an Adabas descriptor that reflects the
capabilities of the Adabas C database system’s definition of descriptors. For a detailed
discussion of Adabas descriptors, please refer to the Adabas documentation for your
environment, in particular the Database Design chapter of the DBA Reference Manual.

Adabas SQL Server Reference Manual
2

174

The following conventions hold true for the following explanations:

– Let C be the column for which this column index element is specified.

– Let T be the table where column C resides.

� INDEX:

An INDEX is used to enable more efficient access to a base table. As such, the index is based
on one or more column(s) of a base table, where the columns listed are considered to be an entity.

– If the index is over only one column and that column has no range specification, then the
column to which this index references will have an Adabas descriptor added.

– If the number of columns in the column list is greater than one, then an Adabas
superdescriptor will be generated.

– In the case of a range specification across only one column an Adabas subdescriptor will
be generated.

� UNIQUE INDEX:

A UNIQUE INDEX ensures that there are no two rows of T having identical values in the
columns of C. Rows with NULL value(s), in any columns of C, do not effect this index.

A UNIQUE INDEX implies a UNIQUE constraint, and is stored in the Adabas SQL Server
catalog as a UNIQUE constraint.

� UQINDEX:

The UQINDEX is used to have a mapping for the Adabas UQ option in cases where it can not
be mapped to an SQL UNIQUE constraint. UQINDEX will generate an Adabas unique
descriptor on a column that is part of a subtable. This descriptor is not considered to be unique
in SQL terms and, therefore, can not be represented by a normal ’UNIQUE constraint’.

A UQINDEX specification of C results in the definition of an unique Adabas descriptor in the
physical representation of T.

For more details see the section Indexes and Constraints, chapter Adabas SQL Server Data
Structures in the Adabas SQL Server Programmer’s Guide.

Limitations:

The UQINDEX is allowed in subtables (tables of level 1 or 2) only.

ANSI Specifics:

The CREATE INDEX statement is not part of the ANSI Standard.

SQL Statements — CREATE INDEX
2

175

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

To create a unique index on the column id_customer of the table contract, the following syntax
applies:

CREATE UNIQUE INDEX contract_2 ON contract(id_customer);

Adabas SQL Server Reference Manual
2

176

CREATE SCHEMA

Function:

The CREATE SCHEMA statement creates creates an SQL-Schema which serves as a logical
container for the subsequent creation of catalog resident objects e.g. tables, views etc.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�

CREATE

schema
 identifier

SCHEMA

user
identifierAUTHORIZATION

AUTHORIZATION
user

identifier

schema identifier is a valid schema identifier representing the schema to be created.

user identifier is a valid user identifier of an existing user.

SQL Statements — CREATE SCHEMA
2

177

Description:

The CREATE SCHEMA statement causes a schema to be entered into the catalog. The name
of the schema is:

– explicitly provided as the schema identifier in the CREATE SCHEMA statement or

– derived from the user identifier, if the schemas identifier has been omitted.

A schema must have an owner. This owner can be explicitly specified in the AUTHORIZATION
clause as a user identifier. If this step is omitted, however, the user identifier is derived from the
user identifier of the executor of the statement. In either case the resulting user identifier must
be equal to a known user of the server.

If the statement is invoked statically, then during pre-compilation, any user identifier need not
exist in the catalog. For successful execution, however, the user identifier must exist in the
catalog, regardless of how it is invoked.

Limitations:

The resulting schema identifier must be unique within the catalog.

The user identifier must be equal to an already defined user identifier as defined using a
CREATE USER statement.

Note:
The CREATE SCHEMA statement can only be executed by the DBA.

ANSI Specifics:

The CREATE SCHEMA statement provided by Adabas SQL Server is a cut-down version of
that specified in the SQL-2 standard. In particular, it is not possible to specify the object that
belongs to a schema in this statement (i.e., base tables, views and constraints).

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Adabas SQL Server Reference Manual
2

178

Example:

To create a schema with the name Wiltshire and assign it to the owner TIM the following syntax
is used :

CREATE SCHEMA Wiltshire AUTHORIZATION TIM ;

To create a schema with the name TIM and assign it to the owner TIM the following syntax is
used :

CREATE SCHEMA AUTHORIZATION TIM ;

SQL Statements — CREATE TABLE
2

179

CREATE TABLE

Function:

The CREATE TABLE statement defines a table in the catalog and physically creates the table
in Adabas.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

)table element(

,

CREATE TABLE table
specification �

table specification the expected format is: schema identifier.table identifier. The
default schema identifier is assumed if only a table identifier is
specified.

table element either a table column element, table constraint element or table
index element. For details, see chapter Common Elements,
section Table Elements.

Description:

The CREATE TABLE statement defines the logical structure of a base table. From this logical
structure the physical structure is derived. A stand-alone CREATE TABLE statement always
allocates one physical table and defines one base table. The necessary physical table attributes
are derived from the tablespace with the same table specification or from a default tablespace
definition.

Adabas SQL Server Reference Manual
2

180

Compiling the statement does not create a table. Therefore, other statements cannot reference
the table.

There is a different file creation behaviour on mainframe platforms compared to open systems
platforms due to the possibility of keeping the FDTs of unloaded files:
– When using the FILE parameter, only the specified file number will be used to create the

corresponding Adabas file. If a file with the specified file number already exists an error
occurs. This is true for all platforms. On mainframe platforms only; if the specified file
number is that of an unloaded file where the FDT has been kept, the FDT will be
overwritten.

– When using the ADABAS FREE FILE SEARCH RANGE method, an unloaded file with
existing FDT is not classified as a valid candidate for the CREATE TABLE or CREATE
Cluster statement.

Limitations:

The table specification must be unique within a schema. A table must have at least one column.
Adabas SQL Server does not permit tables to have more than 926 columns.

Adabas SQL Server adheres to the relational database theory where tables are strictly two
dimensional and, therefore, periodic groups and multiple fields which are available in Adabas
are not permitted for tables specified with the CREATE TABLE statement. For cases where
nested data structures, i.e., MU/PE fields are involved, a special statement, CREATE
CLUSTER, is provided.

The underlying Adabas database system has to run on the same machine as Adabas SQL Server
and can not be accessed using Net-Work.

The following column attributes may not be specified in this statement:
UQINDEX
SUPPRESSION
FIXED
SHORTNAME definition
REFERENCES.

The following table clause(s) may not be specified in this statement:
UQINDEX
FOREIGN KEY.

ANSI Specifics:

The ANSI SQL Standard does not allow for independent table creation outside of an CREATE
SCHEMA statement Therefore, this statement is not part of the ANSI SQL Standard.

SQL Statements — CREATE TABLE
2

181

Furthermore, the column default value of “ADABAS” is not part of the ANSI SQL Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

The example below illustrates the syntax required to define and create the table CONTRACT
(as defined in Appendix A – The Sample Table of the Adabas SQL Server Programmer’s
Guide).

 CREATE TABLE contract (contract_id
 integer index ind_contract not null unique,
 price numeric (13,3) not null,
 date_reservation integer,
 date_booking integer,
 date_cancellation integer,
 date_deposit integer,
 amount_deposit integer,
 date_payment integer,
 amount_payment numeric (13,3),
 id_customer integer not null,
 id_cruise integer not null);

Adabas SQL Server Reference Manual
2

182

CREATE DEFAULT TABLESPACE

Function:

This statement introduces the definition of a default tablespace template for an Adabas file to
the catalog. The definition is schema-specific and will be used as a default for all CREATE
TABLE statements under this schema. These default settings can be modified for individual
tables within this schema by using the CREATE TABLESPACE statement.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

)tablespace
element

(�
schema
identifier

TABLESPACECREATE FOR

,,

DEFAULT

SCHEMA

SQL Statements — CREATE DEFAULT TABLESPACE
2

183

schema identifier identifies the SCHEMA for which this default tablespace is to
be created.

tablespace element one element in a set of parameters describing the
Adabas-specific file definitions. The syntax is listed below:

ASSOPFAC = numeric_int_literal
DATABASE = database_identifier
DATAPFAC = numeric_int_literal
DSDEV = numeric_int_literal
DSREUSE = (YES | NO)
DSSIZE = numeric_int_literal [BLOCK|MEGABYTE]
ISNREUSE = (YES | NO)
ISNSIZE = numeric_int_literal
MAXDS = numeric_int_literal
MAXISN = numeric_int_literal
MAXNI = numeric_int_literal
MAXRECL = numeric_int_literal
MAXUI = numeric_int_literal
MIXDSDEV
NISIZE = numeric_int_literal [BLOCK|MEGABYTE]
[NO] CONTIGUOUS_AC
[NO] CONTIGUOUS_DS
[NO] CONTIGUOUS_NI
[NO] CONTIGUOUS_UI
PGMREFRESH = (YES | NO)
REUSE = ((ISN | DS) [, (ISN | DS)])
UISIZE = numeric_int_literal [BLOCK | MEGABYTE]

where:
[NO] = optional, separated by a blank
(YES | NO) = alternatives

Adabas SQL Server Reference Manual
2

184

Description:

The CREATE DEFAULT TABLESPACE statement describes the Adabas-specific file
attributes to the SQL environment. The scope is not one single table, like the CREATE
TABLESPACE statement, but it will define default settings for all tables to be created under the
referenced schema.

The default settings defined by the CREATE DEFAULT TABLESPACE statement may be
overridden for individual tables under that schema by explicitly using the CREATE
TABLESPACE statement.

Compiling the statement does not create the table or tablespace. Therefore, other statements
cannot reference the tablespace specified in the CREATE DEFAULT TABLESPACE statement
until the statement has been successfully executed.

The following is a list of the parameters available for the individual platforms. A check for
reasonable values is not executed. For further details, refer to the Adabas Utilities Manual for
your platform.

If the statement is invoked statically, then during pre-compilation, the schema need not exist
in the catalog. For successful execution, however, the schema must exist in the catalog,
regardless of how it is invoked.

For general details about tablespaces see the chapter The ADBAS SQL Server Data
Structures in the Adabas SQL Server Programmer’s Guide.

On mainframe platforms, when using the FREE FILE SEARCH RANGE (specified using the
parameter processing language PPL), a file number referencing an unloaded file with a kept
FDT, will not be classified as a valid candidate in a CREATE TABLE or CREATE CLUSTER
statement.

SQL Statements — CREATE DEFAULT TABLESPACE
2

185

Parameter MVS VMS UNIX Description

ASSOPFAC x x x Associator padding factor
CONTIGUOUS_DS x x Contiguous allocation for file loading
CONTIGUOUS_AC x x Contiguous allocation for file loading
CONTIGUOUS_NI x x Contiguous allocation for file loading
CONTIGUOUS_UI x x Contiguous allocation for file loading
DATABASE x x x Database identifier (name)*
DATAPFAC x x x Data storage padding factor
DSDEV x Data storage device type
DSREUSE x x x Data storage reusage
DSSIZE x x x Extent size for data storage
ISNREUSE x x x ISN reusage
ISNSIZE x x x ISN size in the normal index **
MAXDS x Max. secondary allocation f. data storage
MAXISN x x x Highest ISN to be allocated
MAXNI x Max. secondary alloc. for normal index
MAXRECL x Max. compressed record length
MAXUI x Max. secondary alloc. for upper index
MIXDSDEV x Data storage mixed device types
NISIZE x x x Normal index size
PGMREFRESH x Program-generated file refresh
REUSE x x x Reusage of data storage or ISNs
UISIZE x x x Upper index size

x = available on marked platform

Note:
* In contrast to Adabas, where DBID is specified as a number, the parameter DATABASE within
the CREATE DEFAULT TABLESPACE/CREATE TABLESPACE statements is specified as a
database identifier.

Limitations:

If neither a CREATE DEFAULT TABLESPACE nor a CREATE TABLESPACE statement has
been established before executing a CREATE TABLE statement, an Adabas SQL Server default
setting will be used.

Adabas SQL Server Reference Manual
2

186

The REUSE parameter can only be used to activate, not to deactivate, DS and/or ISN re–usage.
For example, if REUSE = (ISN) is specified, then an implicit REUSE = DS is generated by
default. To deactivate the unwanted DS re–usage the explicit specification of the parameter
DSREUSE = NO is necessary.

ANSI Specifics:

The CREATE DEFAULT TABLESPACE statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programmaing, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

The example below illustrates how to define possible attributes of a schema-specific DEFAULT
TABLESPACE.

For details on the Adabas file definition elements, refer to the Adabas Utilities Manual for your
platform.

CREATE DEFAULT TABLESPACE FOR SCHEMA sagtours
(
ASSOPFAC=3,
DATAPFAC=2,
DSSIZE=20BLOCK,
NISIZE=10BLOCK,
UISIZE=10BLOCK,
MAXISN=2000,
REUSE=(ISN,DS)
);

SQL Statements — CREATE TABLESPACE
2

187

CREATE TABLESPACE

Function:

This statement introduces the specific definitions of an Adabas file to the catalog. These
definitions must be known to Adabas SQL Server before the related CREATE TABLE statement
may be executed.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

)tablespace
element

(�

table
 specificationTABLESPACECREATE FOR TABLE

,,

Adabas SQL Server Reference Manual
2

188

tablespace element one element in a set of parameters describing the Adabas-
specific file definitions. For details/limitations (for example:
FILENAME= max. of 16 chars) also refer to the Adabas
Utilities Manual for your platform. The syntax is listed below:

ACRABN = numeric_int_literal
ASSOPFAC = numeric_int_literal
DATABASE = database_identifier
DATAPFAC = numeric_int_literal
DSDEV = numeric_int_literal
DSRABN = numeric_int_literal
DSREUSE = (YES | NO)
DSSIZE = numeric_int_literal [BLOCK|MEGABYTE]
FILE = numeric_int_literal
FILENAME = string_literal
ISNREUSE = (YES | NO)
ISNSIZE = numeric_int_literal
MAXDS = numeric_int_literal
MAXISN = numeric_int_literal
MAXNI = numeric_int_literal
MAXRECL = numeric_int_literal
MAXUI = numeric_int_literal
MIXDSDEV
NIRABN = numeric_int_literal
NISIZE = numeric_int_literal [BLOCK|MEGABYTE]
[NO] CONTIGUOUS_AC
[NO] CONTIGUOUS_DS
[NO] CONTIGUOUS_NI
[NO] CONTIGUOUS_UI
PGMREFRESH = (YES | NO)
REUSE = ((ISN | DS) [, (ISN | DS)])
UIRABN = numeric_int_literal
UISIZE = numeric_int_literal [BLOCK | MEGABYTE]

[NO] = optional, separated by a blank
(YES | NO) = alternatives

SQL Statements — CREATE TABLESPACE
2

189

Description:

The following is a list of the parameters available for the individual platforms. A check for
reasonable values is not executed. For further details, refer to the Adabas Utilities Manual for
your platform.

Parameter MVS VMS UNIX Description

ACRABN x x x Starting RABN for address converter
ASSOPFAC x x x Associator padding factor
CONTIGUOUS_DS x x Contiguous allocation for file loading
CONTIGUOUS_AC x x Contiguous allocation for file loading
CONTIGUOUS_NI x x Contiguous allocation for file loading
CONTIGUOUS_UI x x Contiguous allocation for file loading
DATABASE x x x Database identifier (name) *
DATAPFAC x x x Data storage padding factor
DSDEV x Data storage device type
DSRABN x x x Starting RABN for data storage
DSREUSE x x x Data storage reusage
DSSIZE x x x Extent size for data storage
FILE x x x File number
FILENAME x x x File name (limited to 16 characters)
ISNREUSE x x x ISN reusage
ISNSIZE x x x ISN size in the normal index **
MAXDS x Max. secondary allocation f. data storage
MAXISN x x x Highest ISN to be allocated
MAXNI x Max. secondary alloc. for normal index
MAXRECL x Max. compressed record length
MAXUI x Max. secondary alloc. for upper index
MIXDSDEV x Data storage mixed device types
NIRABN x x x Starting RABN for normal index
NISIZE x x x Normal index size
PGMREFRESH x Program-generated file refresh
REUSE x x x Reusage of data storage or ISNs
UIRABN x x x Starting RABN for upper index
UISIZE x x x Upper index size

x = available on marked platform

Adabas SQL Server Reference Manual
2

190

Note:
* In contrast to Adabas, where DBID is specified as a number, the parameter DATABASE within
the CREATE DEFAULT TABLESPACE/CREATE TABLESPACE statements is specified as a
database identifier.

Note:
** Under MVS, the parameter ISNSIZE is valid only for Adabas Version 6.1 and higher.

The CREATE TABLESPACE statement describes the Adabas-specific file attributes to the SQL
environment.

If the default settings of file attributes for a given schema, as specified using the CREATE
DEFAULT TABLESPACE statement, do not match the table-specific requirements, then the
CREATE TABLESPACE statement can be used.

Compiling the statement does not create the table or tablespace. Therefore, other statements
cannot reference the tablespace specified in the CREATE TABLESPACE statement until the
statement has been successfully executed.

If the statement is invoked statically, then during pre-compilation, the schema need not exist
in the catalog. For successful execution, however, the schema must exist in the catalog,
regardless of how it is invoked.

There is a different file creation behaviour on mainframe platforms compared to open systems
platforms due to the possibility of keeping the FDTs of unloaded files:

– When using the FILE parameter, only the specified file number will be used to create the
corresponding Adabas file. If a file with the specified file number already exists an error
occurs. This is true for all platforms. On mainframe platforms only; if the specified file
number is that of an unloaded file where the FDT has been kept, the FDT will be
overwritten.

– When using the ADABAS FREE FILE SEARCH RANGE method, an unloaded file with
existing FDT is not classified as a valid candidate for the CREATE TABLE or CREATE
Cluster statement.

For general information about tablespaces see the section Adabas SQL Server Data
Structures in the Adabas SQL Server Programmer’s Guide.

SQL Statements — CREATE TABLESPACE
2

191

Limitations:

If FILENAME is not specified, the qualified table identifier is used by default. Should the latter
exceed the length of 16 characters, it will be cut, as the FILENAME parameter value is limited
to 16 characters.

The table specified in the CREATE TABLESPACE statement must not exist at runtime.

The REUSE parameter can only be used to activate, not to deactivate, DS and/or ISN re–usage.
For example, if REUSE = (ISN) is specified, then an implicit REUSE = DS is generated by
default. To deactivate the unwanted DS re–usage the explicit specification of the parameter
DSREUSE = NO is necessary.

ANSI Specifics:

The CREATE TABLESPACE statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:
– On successful execution of this statement, an implicit COMMIT will take place.
– DDL and DCL statements may not be mixed with DML statements within the same

transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

The example below illustrates how to define possible attributes of an Adabas file to the catalog
for the creation of the table CONTRACT.

For details on the Adabas file definition elements please refer to the Adabas Utilities Manual
for your platform.
CREATE TABLESPACE FOR TABLE contract

(
DATABASE=yacht_db,
FILE=21,
FILENAME=”CONTRACT”,
ASSOPFAC=5,
DATAPFAC=5,
DSSIZE=10BLOCK,
NISIZE=10BLOCK,
UISIZE=10BLOCK,
MAXISN=300,
REUSE=(ISN,DS)
);

Adabas SQL Server Reference Manual
2

192

CREATE TABLE DESCRIPTION

Function:

Introduces an existing Adabas file to the SQL environment.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

)table element(�

table
specification

DESCRIPTIONTABLECREATE

database
identifier

DATABASE

NUMBER Adabas
file number

FILE

,

SQL Statements — CREATE TABLE DESCRIPTION
2

193

table specification the expected format is: schema identifier.table identifier. The
default schema identifier is assumed if only a table identifier
is specified.

database identifier as defined in the CREATE DATABASE statement with a length
of 32 characters.

Adabas file number is a valid file number within an Adabas database system.

table element table column element, table unique element or table index
element. For details, see chapter Common Elements, section
Table Elements.

Description:

The CREATE TABLE DESCRIPTION statement is used to specify the already existing Adabas
files for the SQL environment in the catalog. The statement consists of a table specification and
a list of table elements. If a schema identifier is given in the table specification, then the table
identifier will thus be explicitly qualified, otherwise the current default schema identifier will
be used.

Compiling the statement does not create the table. Therefore, other statements can not reference
the table specified in the CREATE TABLE DESCRIPTION statement until the statement has
been successfully executed.

If the statement is invoked statically, then during pre-compilation, the schema need not exist
in the catalog. For successful execution, however, the schema must exist in the catalog,
regardless of how it is invoked.

This statement may also use the technique of rotating a MU/PE’s fields into base columns. This
allows each element of a MU/PE field, to be referenced as a separate column within a base table.

Because this statement executes on an already existing Adabas file, it is possible to specify a
minimal of information, the rest will be generated for you by the SQL compiler. The minimal
information that must be specified in this statement is the column identifier and the Adabas short
name for this column. All other information will be generated from the underlying Adabas file.

Note:
If you specify more than the minimal information, it will be checked for correctness against that
of the underlying Adabas file. More specifically, if you specify the column attributes NULL or
NOT NULL on a field that does not have NC or NN,NC attributes, then the extra qualification
of SUPPRESSION or DEFAULT ADABAS is needed.

Adabas SQL Server Reference Manual
2

194

For more details on what Adabas field attributes represent which Adabas SQL Server column
attributes, see the section: Data Structures, sub-heading Converting Adabas Fields To
Adabas SQL Server Columns in the Adabas SQL Servers Programmer’s Guide.

Limitations:

The table specification must be unique within the catalog at runtime. A table must have at least
one column. Adabas SQL Server does not permit tables to have more than 900 columns. The
limit of 926 may be exceeded when rotated fields are being used.

The following column attributes may not be specified in this statement:
UQINDEX
REFERENCES

The following table clause(s) may not be specified in this statement:
UQINDEX
FOREIGN KEY

ANSI Specifics:

This statement is not part of the SQL standard.

The column default value of ”ADABAS” is not part of the SQL standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Examples:

The examples below illustrates the syntax required to define and create the table CONTRACT
(as defined in Appendix A of the Adabas SQL Server Programmer’s Guide) where an Adabas
file already exists but there is no table definition in the catalog.

SQL Statements — CREATE TABLE DESCRIPTION
2

195

1 a: Detailed format

CREATE TABLE DESCRIPTION contract DATABASE SAGTOURS FILE NUMBER 21
(contract_id integer SHORTNAME AA

index ind_contract not null unique,
price NUMERIC (13,3) SHORTNAME AB not null,
date_reservation INTEGER SHORTNAME AD,
date_booking INTEGER SHORTNAME AG,
date_cancellation INTEGER SHORTNAME AH,
date_deposit INTEGER SHORTNAME AJ,
amount_deposit NUMERIC (13,3) SHORTNAME BA,
date_payment INTEGER SHORTNAME BB,
amount_payment NUMERIC (13,3) SHORTNAME BE,
id_customer INTEGER SHORTNAME CA not null,
id_cruise INTEGER SHORTNAME CD not null);

1 b: Minimal format

CREATE TABLE DESCRIPTION contract
DATABASE SAGTOURS FILE NUMBER 21

(contract_id SHORTNAME AA,
price SHORTNAME AB,
.
.
id_cruise SHORTNAME CD);

The next example shows how the elements of an MU may be rotated into base columns. The
examples is for a table containing a sales persons bonuses for each month of the current year.

CREATE TABLE DESCRIPTION sales_bonuses
DATABASE ESQDEMO_203 FILE NUMBER 15
(id SHORTNAME ”AA”,

surname SHORTNAME ”AB”,
first_name SHORTNAME ”AC”,
jan_bonus SHORTNAME ”AD” (1),
feb_bonus SHORTNAME ”AD” (2),
mar_bonus SHORTNAME ”AD” (3),
apr_bonus SHORTNAME ”AD” (4),
may_bonus SHORTNAME ”AD” (5),
jun_bonus SHORTNAME ”AD” (6),
jul_bonus SHORTNAME ”AD” (7),
aug_bonus SHORTNAME ”AD” (8),
sept_bonus SHORTNAME ”AD” (9),
oct_bonus SHORTNAME ”AD” (10),
nov_bonus SHORTNAME ”AD” (11),
dec_bonus SHORTNAME ”AD” (12));

Adabas SQL Server Reference Manual
2

196

CREATE USER

Function:

The CREATE USER statement establishes a user as a prerequisite to having access to Adabas
SQL Server.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

string
literalUSERCREATE �PASSWORD

user
identifier

user identifier: a unique identifier for a user.

string literal: a valid password string with a maximum length of 20 bytes.

Description:

The CREATE USER statement installs a user with an optional password. If a password has been
specified, it must be entered by the user to gain access to the system. If no password has been
specified, there will be no password protection for this user. A password can be added later using
the ALTER USER statement.

Note:
The password to be provided is visible in this statement. It will then be encrypted internally.

Limitations:

Only the designated DBA may execute this statement.

The user identifier must be unique.

SQL Statements — CREATE USER
2

197

ANSI Specifics:

The CREATE USER statement is not part of the Standard

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

To install and define the user TIM with a password, the following syntax applies. If this user
identification TIM already exists, an error message will be issued. The password must be typed
in as it appears:

CREATE USER TIM PASSWORD ”&M%I?T”;

Adabas SQL Server Reference Manual
2

198

CREATE VIEW

Function:

The CREATE VIEW statement is used to create a viewed table derived from one or more base
tables or views.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

column identifier

table specification

�

VIEWCREATE

(

AS query specification

)

,

table specification the expected format is: schema identifier.table identifier. The
default schema identifier is assumed if only a table identifier
is specified.

column identifier specifies the column identifiers of a view and must not be
longer than 32 characters.

query specification must be any valid query specification. For details see chapter
Common Elements section Query Specification.

SQL Statements — CREATE VIEW
2

199

Description:

The CREATE VIEW statement is used to specify a viewed table, also called view. A view is a
virtual table and therefore, has no physical representation. Values are conceptually derived from
base tables as the need arises. If a schema identifier is given in the table specification, than the
table identifier will thus beexplicitly qualified, otherwise the current default schema identifier
will be used.

The column identifier list specifies the number and order in which the columns will appear in
the view. The number of column identifiers must equal the number of derived columns defined
in the query specification. The ith column identifier represents the ith derived column and
assumes its data type. Furthermore, two columns within the column identifier list may not be
called the same.

If no column identifier list is specified, then the columns of the view are identified by the
unqualified derived column labels of the query specification. If there is no label for a particular
derived column, then the complete column identifier list must be specified.

– A view is called a “joined view” if more than one table has been specified or a joined view
has been referenced in the FROM clause.

– A view is called a “grouped view” if the view is derived from a grouped query
specification.

– A view is called a “read-only view” if the view is either grouped or joined or at least one
of the derived columns does not have a label.

Only after successful execution of the statement is the view generally available. During
execution the view description is stored in the catalog.

Limitations:

The table specification must be unique within an SQL environment, at runtime.

The number of column identifiers specified in the desired column list must be identical to the
number of derived columns given in the query specification.

If no column identifier list is specified, all derived columns must have labels.

The query specification may not reference host variables.

The query specification may not reference the view which is the subject of the CREATE VIEW
statement.

Adabas SQL Server Reference Manual
2

200

A view can not be updated when:

– it is a joined or grouped view, as described above

– a derived column is a literal
(CREATE VIEW xyz AS SELECT col1, ’London’ FROM table1)

– a derived column is an expression
(CREATE VIEW xyz AS SELECT col1+3 FROM table1)

ANSI Specifics:

Within the ANSI concept the CREATE VIEW statement must be embedded in a CREATE
SCHEMA statement. The SCHEMA as defined in ANSI is not fully supported by Adabas SQL
Server.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

In this example a view named ‘United States’ is created which contains all of the information
about people who live in United States.

CREATE VIEW united_states
AS SELECT * FROM persons
WHERE country = ’USA’ ;

Once the above view is created it can be used to access information as if it is a normal table and
the syntax below shows how to select the person ID of all the people living in PHILADELPHIA.

SELECT person_id
FROM united_states
WHERE united_states.city = ’PHILADELPHIA’ ;

SQL Statements — DEALLOCATE PREPARE
2

201

DEALLOCATE PREPARE

Function:

The DEALLOCATE PREPARE statement deallocates a prepared statement by releasing all
associated resources. After the successful execution of a DEALLOCATE PREPARE statement
the relevant prepared statement no longer exists and can, therefore, not be addressed anymore.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

DEALLOCATE

statement identifier

host variable
identifier

persistent procedure
specification

�PREPARE

statement identifier is a valid identifier used to identify the statement to be
deallocated

host variable identifier is a valid single host variable identifier and must hold the
statement identifier.

persistent procedure specifies the identification of the prepared statement that has
specification been stored in the catalog. The persistent procedure

specification must not include a VERSION clause. If the
PROCEDURE clause is omitted all procedures of the specified
module will be deallocated.

Adabas SQL Server Reference Manual
2

202

Description:

The effect of a DEALLOCATE PREPARE statement is that the identified statement will be
destroyed.

If a persistent procedure specification is given the statement will be deleted from the catalog.
In case a PROCEDURE clause is present, a single procedure will be deleted from the catalog.
Otherwise, the execution affects one whole module.

The effect of a DEALLOCATE PREPARE statement is also achieved implicitly when an
already existing prepared statement is specified in a PREPARE statement. For non-persistent
statements, an implicit DEALLOCATE PREPARE statement also occurs in either of the
following situations:
– a COMMIT or ROLLBACK executed in DB2 mode
– a DISCONNECT is issued to end a session.

Limitations:

All cursors must be closed before executing a DEALLOCATE PREPARE statement.

The relevant persistent procedure specification must not contain a VERSION clause.

If the relevant persistent procedure specification does not contain the PROCEDURE clause, all
procedures of the specified module will be deallocated.

ANSI Specifics:

The DEALLOCATE PREPARE statement is not part of the Standard.

Adabas SQL Server Specifics:

This statement may be mixed with any other DML, DDL and/or DCL statements in the same
transaction.

Example:

The statement identified by statement_id will be explicitly destroyed by:

DEALLOCATE PREPARE statement_id;

A persistent procedure identified by the names in the host variables mod and proc will be
destroyed by following statement:

DEALLOCATE PREPARE MODULE :mod PROCEDURE :proc;

The whole module can be destroyed as follows:

DEALLOCATE PREPARE MODULE :mod;

SQL Statements — DECLARE CURSOR
2

203

DECLARE CURSOR

Function:

The DECLARE CURSOR statement associates a query expression and hence a resultant table
with a cursor identifier. The statement only defines the contents of the resultant table; it does
not establish it.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

cursor identifier

host variable
identifier 1

DECLARE CURSOR FOR

host variable
identifier 2

persistent procedure
specification

statement identifier

�

query expression

ORDER BY
clause

FOR UPDATE
clause

Adabas SQL Server Reference Manual
2

204

cursor identifier is a valid identifier of no more than 18 characters and which has
not previously been used as a cursor identifier within the same
compilation unit.

host variable identifier 1 is a valid single host variable which is used to contain a unique
dynamic cursor identifier.

query expression is the specification of the resultant table associated with this
cursor.

statement identifier is a valid SQL identifier identifying a SELECT statement which
has previously been prepared.

host variable identifier 2 is a valid single host variable. The value of the host variable
must be the value returned by the PREPARE statement and thus
identify the prepared statement.

persistent procedure specifies the identification of the prepared statement that has
specification been stored in the catalog. The persistent procedure

specification must include both clauses.

ORDER BY clause is the specification of a user-defined ordering of the resultant
table. Otherwise the resultant table is not ordered.

FOR UPDATE clause is the explicit indication that this cursor is to be used in
conjunction with either an UPDATE and/or DELETE WHERE
CURRENT OF cursor-id statement.

Description:

A cursor can be declared either as static using a static DECLARE CURSOR statement or as
dynamic using a dynamic DECLARE CURSOR statement.

The static DECLARE CURSOR statement

A static DECLARE CURSOR statement associates a query expression and the definition of a
resultant table with an SQL identifier, namely the cursor identifier. The DECLARE CURSOR
statement is only a definition. The OPEN statement associated with this cursor establishes the
resultant table at execution time.

SQL Statements — DECLARE CURSOR
2

205

Although the characteristics of the derived column list are completely defined, the actual
number of rows returned is unknown until execution time. In other words the format of each row
associated with the cursor is known but the number of rows established upon opening the cursor
is not. This is in direct contrast to the SINGLE ROW SELECT where by definition only one row
may be returned. The host program is, therefore, not in a position to receive all the data
established upon opening and must sequentially execute associated FETCH statements in order
to retrieve one row at a time. This is the classic DECLARE-OPEN-FETCH cycle. The cursor
identifier can be thought of as a pointer into the resultant table identifying the row currently
under consideration. In general, executing an associated FETCH statement advances the pointer
by one row.

In addition to the OPEN and FETCH statements, other associated statements are positioned
UPDATE, positioned DELETE and CLOSE.

The query expression defines the resultant table associated with the cursor. In theory, the
expression can be unlimited in complexity. Certain query expressions are considered to be
‘updatable’, i.e. the positioned DELETE or UPDATE statements are valid for this cursor.

Updatable Cursors

For a cursor to be updatable the following rules must be observed:

– The specification of a UNION operator in a query expression is not allowed. Therefore,
the expression must consist of only one query specification.

– Derived columns in the derived column list must be based on base tables not views. No
operators, functions or literals are allowed in the derived column list.

– No column may be specified more than once in the derived column list of the query
specification.

– The specification of DISTINCT in the derived column list is not allowed.

– A grouped or joined query specification is not allowed.

– If a subquery is specified, it may not reference the same table as that one referenced in the
outer query, i.e the table which would be the subject of any amendment statement.

– If the query specification is derived from a view that view must be updatable.

– An ORDER BY clause is not specified.

– A FOR FETCH ONLY clause is not specified.

If the above conditions for a read-only cursor have been met, positioned UPDATE or DELETE
statements will result in compilation errors.

Adabas SQL Server Reference Manual
2

206

��������	�
��
�������

A static cursor can be explicitly declared as being non-updatable by use of the FOR FETCH
ONLY clause. In such a case, the use of positioned UPDATE or DELETE statements associated
with the cursor is not allowed. Furthermore rows will not be locked once they are established
regardless of the default locking specification.

Alternatively, a static cursor can be declared as FOR UPDATE, as long as it is updatable of
course. In such a case, rows will be locked regardless of the default locking specification. In
general, this clause need not be specified. However, if the associated UPDATE or DELETE
statement is actually in a separate compilation unit, as is possible with Adabas SQL Server, then
this clause is required in order to avoid a runtime error.

If neither a FOR FETCH ONLY clause nor a FOR UPDATE clause is specified and there are
no associated UPDATE or DELETE statements within the same compilation unit, then the
resulting rows will or will not be locked according to the system default locking specification.

Similar behavior can be ensured for a dynamic cursor by appending the clause to the dynamic
SELECT statement. A column specification list is optional and indeed has no effect.

The Dynamic DECLARE CURSOR Statement

A dynamic DECLARE CURSOR statement associates a dynamically created and prepared
SELECT statement with a cursor identifier. The prepared SELECT statement can be identified
either by a hard-coded SQL identifier or by a host variable containing the unique statement
identification provided by the relevant PREPARE statement. Note, the use of such a host
variable is not supported in DB2 compatibility mode.

As an Adabas SQL Server extension the statement can also be identified by a persistent
procedure specification in which case the PREPARE statement may have occurred within the
same or a different session.

The dynamic DECLARE CURSOR statement thus associates this previously prepared SELECT
statement with a cursor identifier. The cursor can be identified in the normal way or by a host
variable, which Adabas SQL Server fills with a unique cursor identifier. Note, the use of such
a host variable is not supported in DB2 compatibility mode.

SQL Statements — DECLARE CURSOR
2

207

Limitations:

The syntax elements host variable identifier 1, host variable identifier 2 and statement identifier
are not valid within a static DECLARE CURSOR statement.

Within a dynamic DECLARE CURSOR statement such host variables must be of data type
character-string.

Any ORDER BY clause, FOR UPDATE clause is part of the prepared SELECT and the use of
these clauses is not valid within a dynamic cursor statement, but only in a static DECLARE
CURSOR statement.

ANSI Specifics:

The use of the FOR UPDATE and FOR FETCH ONLY clauses as well as the use of the persistent
procedure specification is not permitted.

The DECLARE CURSOR statement must precede any other associated statement in the source.
All associated statements must be contained within one compilation unit.

Adabas SQL Server Specifics:

The physical order of the associated statements within a compilation unit is irrelevant. The
OPEN statement must be present in the same compilation unit as the DECLARE statement
although its relative position is irrelevant. Associated UPDATE, DELETE, FETCH and CLOSE
statements need not be in the same compilation unit. However, such a program design is more
error prone as full compilation checks cannot be performed.

The physical position of any associated PREPARE statement relative to the dynamic
DECLARE CURSOR statement is irrelevant.

The function of a dynamic DECLARE CURSOR statement can also be accomplished by an
extended OPEN statement. This saves one request to Adabas SQL Server, since a dynamic
DECLARE CURSOR statement is an executable statement.

Adabas SQL Server Reference Manual
2

208

 Example:

The following syntax applies when declaring a cursor to find all the cruise and start dates for
every cruise that leaves BARBADOS.

DECLARE cursor1 CURSOR FOR
SELECT cruise_id,start_date FROM cruise

WHERE start_harbor = ’BARBADOS’;

To declare a cursor to list all the start harbor’s in ASCENDING alphabetical order and each
related cruise id, for each cruise that costs less than 1000 the following syntax applies:

DECLARE cursor1 CURSOR FOR
SELECT cruise_id,start_harbor FROM cruise

WHERE cruise_price < 1000
ORDER BY 2 ASCENDING;

To ensure that the cursor as declared in the first example can only be used for retrieval the
following syntax applies:

DECLARE cursor1 CURSOR FOR
SELECT cruise_id,start_date FROM cruise
 WHERE start_harbor = ’BARBADOS’
 FOR FETCH ONLY;

The following statement will declare a cursor for a statement that has been stored in the catalog
using a persistent procedure specification:

DECLARE cursor1 CURSOR FOR
MODULE :mod PROCEDURE :proc Version :vers;

SQL Statements — DELETE
2

209

DELETE

Function:

The DELETE statement removes a particular row or set of rows from the target table. There are
two forms of the statement, namely positioned DELETE and searched DELETE.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

FROMDELETE correlation
identifier

table
specification

WHERE search condition

WHERE CURRENT OF cursor
identifier

�

table specification is the table to be amended. The table must be defined at
compilation time. If the table specification is a view reference,
then the view must be updatable. See chapter Common
Elements, section Table Specification for more details.

correlation identifier allows the table to be referenced by another SQL identifier. See
chapter Common Elements, section Correlation Identifier
for more details.

Adabas SQL Server Reference Manual
2

210

search condition is the specification of a resultant table which is to be deleted
from the target base table.

cursor identifier is a valid identifier of no more than 18 characters and which has
not previously been used as a cursor identifier within the same
compilation unit.

Description:

A DELETE statement removes from the target table the row or rows identified in the WHERE
clause.

Rows in Level 1 or level 2 tables can not be deleted directly using a DELETE statement. They
can only be removed by deleting the associated level 0 row in the master table. The referencing
level 1 and level 2 rows are automatically deleted with the level 0 row. This is analogous to a
DELETE CASCADE in pure referential integrity terminology.

A DELETE statement with a WHERE CURRENT OF cursor identifier as its means of
identifying the row to be deleted is called a positioned DELETE statement.

If the DELETE statement is positioned, then only the row to which the cursor is currently
pointing is deleted. Hence, the cursor must be OPEN and pointing to a row otherwise a runtime
error will occur. In addition, the cursor must be in itself updatable. See section DECLARE
CURSOR for further details. Once the row has been deleted, the cursor is not advanced, it
simply no longer points to a row.

A DELETE statement with a WHERE search condition is called a searched DELETE statement.
If the DELETE is searched, a resultant table is established at execution time in a similar manor
to a query specification. Each row in the target table which has a corresponding row in the
resultant table is, then deleted. If no rows are identified for deletion, the field SQLCODE in the
SQLCA is set to +100.

A DELETE statement without any WHERE clause is really a special case of the searched
DELETE alternative as a resultant table is established which contains all the rows of the target
table. In such a case, all rows of the table are deleted.

SQL Statements — DELETE
2

211

Limitations:

If the specified table is in fact a view, then that view must be updatable. See section DECLARE
CURSOR for more details.

In a positioned DELETE CURSOR statement, the table reference must be identical to that
referenced in the associated DECLARE CURSOR statement.

In addition, if the associated DECLARE CURSOR statement was defined in another
compilation unit, then it must have been specified with the FOR UPDATE clause.

Also the associated cursor must be updatable, open and positioned on a row of the resultant table.

A positioned DELETE statement is not allowed in interactive SQL.

In a searched DELETE statement, any view referenced must be updatable.

The DELETE statement may not be applied to subtables directly but must always address the
related master table (cascaded DELETE).

ANSI Specifics:

A positioned DELETE statement must appear in the same compilation unit as the associated
DECLARE and OPEN and must appear physically after the DECLARE.

The use of correlation identifiers in this context is not supported in ANSI compatibility mode.

Adabas SQL Server Specifics:

A positioned DELETE statement can be in a different compilation unit to that of the associated
DECLARE as long as a FOR UPDATE clause is specified. If the DELETE is in the same
compilation unit as the associated DECLARE CURSOR statement, then there is no restriction
as to the relative positions of the two statements.

The possibility to use a correlation identifier is an Adabas SQL Server extension.

DML statements must not be mixed with DDL/DCL statements in the same transaction. For
details see the section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Adabas SQL Server Reference Manual
2

212

 Example:

To delete all cruises that depart from VIRGIN ISLANDS, the following syntax is required.

DELETE FROM cruise
WHERE start_harbor = ’VIRGIN ISLANDS’;

To delete ALL information contained within table ‘cruise’, the following syntax is required.

DELETE FROM cruise;

To delete the row in table cruise to which a cursor named ’cursor1’ is currently pointing, the
following syntax is used.

DELETE FROM cruise
WHERE CURRENT OF cursor1;

SQL Statements — DESCRIBE
2

213

DESCRIBE

Function:

The DESCRIBE statement makes information about a prepared statement available to the
application program.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�hvuOUTPUT hvuINPUT

statement identifier

host variable
identifier 1

DESCRIBE INTO

persistent procedure
specification

Adabas SQL Server Reference Manual
2

214

statement identifier is a valid identifier denoting the prepared statement of which
the information is to be retrieved.

host variable identifier is a valid single host variable identifier and must have been
defined in the application program according to the host-
language-dependent rules. The value of the host variable must
be the value returned by the PREPARE statement and thus
identifying the prepared statement.

persistent procedure specifies the identification of the prepared statement that has
specification been stored in the catalog. The persistent procedure specification

must include both the VERSION and PROCEDURE clause.

OUTPUT hvu is the definition of the SQL descriptor area used to describe the
expected output of the identified statement.

INPUT hvu is the definition of the SQL descriptor area used to describe the
expected input of the identified statement.

 NAMES �
host variable

identifier 2
USING

hvu

host variable identifier is a valid single host variable identifier and must have been
defined in the application program according to the host-
language-dependent rules. The value of the host variable must
be the address of an SQL descriptor area (SQLDA).

SQL Statements — DESCRIBE
2

215

Description:

The DESCRIBE statement places information about the prepared statement identified by
statement identifier or host variable identifier in one or two SQL descriptor areas.

The keyword OUTPUT is relevant only if the prepared statement is a SELECT statement. In
this case, the SQL descriptor area indicated by host variable identifier 2 is filled with
information concerning the elements in the derived column list of the SELECT statement. For
each element in the derived column list, an element in the SQL descriptor area is filled. The
elements in the derived column list are processed from left to right and the descriptive elements
in the SQL descriptor area are filled in the that order.

The keyword INPUT is relevant only if the prepared statement contains host variable markers,
i.e. ‘?’. In this case, the SQL descriptor area indicated by host variable identifier 2 is filled with
information concerning the host variable markers used in the prepared statement. For each host
variable marker, an element in the SQL descriptor area is filled. The host variable markers are
processed in the order that they appear in the prepared statements. The descriptive elements in
the SQL descriptor area are filled in that order.

If the prepared statement is a SELECT statement where host variable markers have been used,
the usage of not only the OUTPUT clause but also the INPUT clause is recommended.

The USING NAMES option is currently not effective.

Limitations:

The statement indicated by statement identifier or host variable identifier 1 must be a
successfully prepared statement.

If not enough elements have been provided in the SQL descriptor area to cater for the total
number of elements that need to be described, all the elements that can be catered for are
described, the rest of the information is ignored. The actual number of elements required is
returned in field SQLN in the SQLDA.

ANSI Specifics:

The DESCRIBE statement is not part of the Standard.

Adabas SQL Server Specifics:

This statement may be mixed with any other DML, DDL and/or DCL statements in the same
transaction.

Adabas SQL Server Reference Manual
2

216

Example:

To make available information about a statement that has been prepared, where the information
required is of a dynamic statement’s derived column list (i.e OUTPUT), the following syntax
applies:

DESCRIBE statement_id INTO
OUTPUT :sqlda_address ;

If the prepared statement resides in the catalog, a persistent procedure specification must be
used:

DESCRIBE MODULE :mod PROCEDURE :proc
INTO :sqlda_address;

SQL Statements — DISCONNECT
2

217

DISCONNECT

Function:

The DISCONNECT statement explicitly terminates an SQL session between a user and the
Adabas SQL Server environment.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

DISCONNECT �

connection
specifier

DEFAULT

CURRENT

ALL

connection specifier can either be a character-string constant or single host variable
identifier. The host variable must have been defined in the
application program according to the host-language-dependent
rules and its value must be a character string. The maximum
length is 32 characters.

Description:

The DISCONNECT statement terminates an SQL session between an application program and
Adabas SQL Server. The DISCONNECT statement performs an implicit ROLLBACK.

Adabas SQL Server Reference Manual
2

218

DISCONNECT/
DISCONNECT CURRENT: are logically equal and terminate the current SQL session. The

Version 1.2 syntax of the DISCONNECT statement is still sup-
ported and is represented in Version’s 1.3 and higher as the DIS-
CONNECT CURRENT statement.

DISCONNECT ALL: terminates all SQL sessions
A DISCONNECT ALL statement is performed automatically
by the exit handler of Adabas SQL Server when terminating an
application.

DISCONNECT DEFAULT: terminates the SQL session with the default server

DISCONNECT
connection specifier: terminates the SQL session with the server specified by the

connection identifier.

Limitations:

None.

ANSI Specifics:

The DISCONNECT statement is not part of the ANSI standard.

Adabas SQL Server Specifics:

The DISCONNECT statement is an Adabas SQL Server extension.

The Version 1.2 syntax of the DISCONNECT statement is still supported and is logically equal
to Version’s 1.3 counterpart: DISCONNECT CURRENT.

 Example:

To disconnect from the session identified by the connection specifier MYSESSION the
following syntax applies:

DISCONNECT :MYSESSION;

SQL Statements — DROP CLUSTER
2

219

DROP CLUSTER

Function:

This statement deletes the logical and physical representation of a cluster.

Note:
Dropping a cluster causes all the data contained within to be destroyed. Once the statement has
been executed, there is no way of recovering the data.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�

DROP

table specification

CLUSTER

CASCADE

RESTRICT

table specification schema identifier and table identifier of the master table in the
cluster to be dropped. The default schema name is assumed if
not specified here.

Description:

A cluster and all associated information will be deleted from Adabas SQL Server’s catalog and
the underlying Adabas file will be deleted. Any other statements referencing this table will no
longer be valid. In addition, any attempts to compile statements which reference this table will
fail. Even if the table is re-specified, all previously compiled statements remain invalid.

Adabas SQL Server Reference Manual
2

220

If the CASCADE option is specified, all view descriptions based on the cluster to be dropped
will be deleted as well.

If the RESTRICT option is specified, the statement execution will be rejected if there are
dependent views.

If neither of these two options is specified, RESTRICT is assumed.

Limitations:

The specified table specification must denote an existing cluster at runtime.

ANSI Specifics:

The DROP CLUSTER statement is not part of the ANSI standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

To delete all data and data structures (except the tablespace) of the cluster PRESIDENTS and
all related views, the following syntax applies:

DROP CLUSTER presidents CASCADE;

SQL Statements — DROP CLUSTER DESCRIPTION
2

221

DROP CLUSTER DESCRIPTION

Function:

This statement deletes the logical representation of a cluster but not the underlying Adabas file.

Note:
Dropping a cluster description does not cause all data contained within to be destroyed. Only
the cluster description in the catalog is deleted.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

�

DROP

table specification

CLUSTER

CASCADE

RESTRICT

DESCRIPTION

table specification schema identifier and table identifier of the master table in the
cluster description to be dropped. The default schema name is
assumed if not specified here.

Description:

A cluster definition and all its associated information will be deleted from Adabas SQL Server’s
catalog. Any other statements referencing this cluster will no longer be valid. In addition, any
attempts to compile statements which reference this cluster will fail. Even if the cluster
description is re-specified, all previously compiled statements remain invalid. The tablespace
with the same name remains unchanged and must be dropped separately if desired.

Adabas SQL Server Reference Manual
2

222

If the CASCADE option is specified, all dependent view descriptions based on the cluster to be
dropped, will be deleted as well.

If the RESTRICT option is specified, the statement execution will be rejected if there are
dependent views.

If neither of these two option is specified, RESTRICT is assumed.

If the statement is invoked statically, then during pre-compilation, the schema need not exist
in the catalog. For successful execution, however, the schema must exist in the catalog,
regardless of how it is invoked.

Limitations:

The specified table specification must denote an existing cluster at runtime.

ANSI Specifics:

The DROP TABLE DESCRIPTION statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

To delete all cluster descriptions (except the tablespace) of the cluster PRESIDENTS and all
related views, the following syntax applies:

DROP CLUSTER DESCRIPTION presidents CASCADE;

SQL Statements — DROP DATABASE
2

223

DROP DATABASE

Function:

The statement deletes an existing logical database identifier but does not destroy the underlying
data.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�DROP database identifierDATABASE

database identifier a valid database identifier representing a logical database name
which must be known to Adabas SQL Server at runtime.

Description:

The logical name of the specified database is removed from the catalog. Even though the
database still exists, it can not be accessed by use of this name again.

The DROP DATABASE statement will fail if there are any objects remaining in the catalog
which are dependent upon the database identifier to be deleted.

If the statement is invoked statically, then during pre-compilation, the database need not exist
in the catalog. For successful execution, however, the database must exist in the catalog,
regardless of how it is invoked.

Limitations:

The specified database name must exist.

Adabas SQL Server Reference Manual
2

224

ANSI Specifics:

The DROP DATABASE statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

The following syntax applies when dropping a database named ’yachting’:

DROP DATABASE yachting ;

SQL Statements — DROP INDEX
2

225

DROP INDEX

Function:

This statement removes an index from a base table.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

index identifierINDEXDROP ON �
table

specification

index identifier identifies the index to be dropped.

table specification identifies the table from which an index is to be removed.

Description:

The specified index is removed from the specified base table. It does not matter whether the
index was created during the table creation or later by a CREATE INDEX statement.

If the statement is invoked statically, then during pre-compilation, the schema need not exist
in the catalog. For successful execution, however, the schema must exist in the catalog,
regardless of how it is invoked.

Adabas SQL Server Reference Manual
2

226

Limitations:

The underlying Adabas database system has to run on the same machine as Adabas SQL Server
and can not be accessed using Entire Net-Work.

ANSI Specifics:

This statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

To drop an index named iname on the column cruise_id of our sample base table (cruise) the
following syntax is used:

DROP INDEX iname ON cruise;

SQL Statements — DROP SCHEMA
2

227

DROP SCHEMA

Function:

The DROP SCHEMA statement removes the schema from the catalog.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�

DROP

schema identifier

SCHEMA

RESTRICT

schema identifier a valid schema identifier representing the schema to be dropped.

Description

An SQL schema entry will be deleted from Adabas SQL Server’s catalog.

If the statement is invoked statically, then during pre-compilation, the schema need not exist
in the catalog. For successful execution, however, the schema must exist in the catalog,
regardless of how it is invoked.

Adabas SQL Server Reference Manual
2

228

Limitations

The schema must be empty prior to deletion. Attempts to delete a non-empty schema will fail
and a corresponding error message will be issued.

Only the designated DBA and not even the owner is permitted to drop a schema.

ANSI Specifics

ANSI requires that the statement is qualified with either of the keywords CASCADE or
RESTRICT. The CASCADE functionality is not supported in Adabas SQL Server. However,
when in ANSI mode, the presence of the keyword RESTRICT is mandatory .

Adabas SQL Server Specifics

The inclusion of the keyword RESTRICT is optional. The functionality is the same in both cases.

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example

In order to drop the schema ‘Wiltshire’ the following syntax applies:

DROP SCHEMA Wiltshire ;

SQL Statements — DROP TABLE
2

229

DROP TABLE

Function:

The statement removes a base table, all dependent views and all data.

Note:
Dropping a table causes all the data contained within to be destroyed. Once the statement has
been executed, there is no way of recovering the data.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�table specificationDROP TABLE

CASCADE

RESTRICT

table specification the expected format is: schema identifier.table identifier. The
default schema identifier is assumed if only a table identifier
is specified.

Description:

A table and all associated information will be deleted from Adabas SQL Server’s catalog and the
underlying Adabas file will be deleted. Any other statements referencing this table will no longer
be valid. In addition, any attempts to compile statements which reference this table will fail. Even
if the table is re-specified, all previously compiled statements remain invalid.

Adabas SQL Server Reference Manual
2

230

If the CASCADE option is specified, all view descriptions based on the table to be dropped, will
be deleted. Statement execution will be rejected if attempts are made to drop a table with
dependent views but without the CASCADE option.

If the statement is invoked statically, then during pre-compilation, the schema need not exist
in the catalog. For successful execution, however, the schema must be existent in the catalog,
regardless of how it is invoked.

Limitations:

The specified table specification must denote an existing table at runtime.

If a table has been created as a part of a cluster, then it can not be dropped individually. The
cluster must be dropped in order to remove this table.

The underlying Adabas database system has to run on the same machine as Adabas SQL Server
and can not be accessed using Net-Work.

ANSI Specifics:

ANSI requires that the statement is qualified with either of the keywords CASCADE or
RESTRICT. The CASCADE functionality is not supported in Adabas SQL Server. However,
when in ANSI mode, the presence of the keyword RESTRICT is mandatory .

.Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

The following syntax applies when dropping the table ’cruise’ and all dependent views.

DROP TABLE cruise CASCADE;

SQL Statements — DROP DEFAULT TABLESPACE
2

231

DROP DEFAULT TABLESPACE

Function:

The DROP DEFAULT TABLESPACE statement removes the default tablespace definitions
from the catalog but not the underlying Adabas file.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

TABLESPACEDROP

FOR

DEFAULT

SCHEMA
schema
identifier �

schema identifier a valid identifier describing an existing schema

Description:

The default settings as defined by the CREATE DEFAULT TABLESPACE statement will be
removed from the catalog. The default settings will be removed regardless of any tables already
created.

Limitations:

A previously defined tablespace must be present for the referred schema.

ANSI Specifics:

The DROP DEFAULT TABLESPACE statement is not part of the Standard.

Adabas SQL Server Reference Manual
2

232

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

The following syntax applies when dropping the default tablespace for the schema SAGTOURS.

DROP DEFAULT TABLESPACE FOR SCHEMA sagtours;

SQL Statements — DROP TABLESPACE
2

233

DROP TABLESPACE

Function:

The statement removes the Adabas-specific file definitions from the catalog.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�
table

specificationTABLESPACEDROP

table specification the expected format is: schema identifier.table identifier. The
default schema identifier is assumed if only a table identifier is
specified.

Description:

The Adabas-specific file definitions of an SQL table and all associated information are deleted
from Adabas SQL Server. A tablespace may be dropped regardless of the related table
specification.

If the statement is invoked statically, then during pre-compilation, the tablespace need not exist
in the catalog. For successful execution, however, the tablespace must exist in the catalog,
regardless of how it is invoked.

Limitations:

The specified table specification must denote an existing tablespace at runtime.

Adabas SQL Server Reference Manual
2

234

ANSI Specifics:

The DROP TABLESPACE statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

The following syntax applies when dropping the Adabas-specific file definitions for the table
’cruise’.

DROP TABLESPACE cruise;

SQL Statements — DROP TABLE DESCRIPTION
2

235

 DROP TABLE DESCRIPTION

Function:

The statement removes a base table description in the catalog but does not destroy the data.

Note:
Dropping a table description does not cause all data contained within to be destroyed. Only the
table description in the catalog is deleted.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�
table

specification
DROP TABLE

CASCADE

RESTRICT

DESCRIPTION

table specification the expected format is: schema identifier.table identifier. The
default schema identifier is assumed if only a table identifier
is specified.

Description:

A table description and all its associated information will be deleted from Adabas SQL Server’s
catalog. Any other statements referencing this table will no longer be valid. In addition, any
attempts to compile statements which reference this table will fail. Even if the table is
re-specified, all previously compiled statements remain invalid.

If the CASCADE option is specified, all dependent view descriptions based on the table to be
dropped, will also be deleted. Statement execution will fail when attempting to drop a table
description with dependent view descriptions but without the CASCADE option.

Adabas SQL Server Reference Manual
2

236

If the statement is invoked statically, then during pre-compilation, the table description need not
exist in the catalog. For successful execution, however, the table description must exist in the
catalog, regardless of how it is invoked.

Limitations:

The specified table specification must denote an existing table at runtime.

If a table description has been created as a part of a cluster, then it can not be dropped
individually. The cluster must be dropped in order to remove this table description.

ANSI Specifics:

The DROP TABLE DESCRIPTION statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

The following syntax applies when dropping the description of the table ‘cruise’ and all
dependent view descriptions.

DROP TABLE DESCRIPTION cruise CASCADE;

SQL Statements — DROP USER
2

237

DROP USER

Function:

The DROP USER statement eliminates the user from Adabas SQL Server.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�user identifierDROP USER

user identifier: an existing user identifier.

Description:

The DROP USER statement removes an existing user identifier and the associated password.

Limitations:

Before issuing this statement, the DBA will have to make sure that the user to be removed does
not own any objects in the catalog. Otherwise, an error message will be issued. The statement
may only be executed by the DBA.

ANSI Specifics:

The DROP USER statement is not part of the Standard

Adabas SQL Server Reference Manual
2

238

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

Example:

The user PETER, who does not own any objects in the catalog, is to be removed from the system.
The following syntax applies:

DROP USER PETER;

SQL Statements — DROP VIEW
2

239

DROP VIEW

Function:

The statement deletes a view.

Note:
Dropping a view does not destroy any underlying data as a view is a logical table and not a
physical or base table.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�table specificationDROP VIEW

CASCADE

RESTRICT

table specification the expected format is: schema identifier.table identifier. The
default schema identifier is assumed if only a table identifier
is specified.

Description:

A view and its description in Adabas SQL Server is deleted. Any other statements referencing
this view will no longer be valid. In addition, any attempts to compile statements which
reference this view will fail. Even if the view is re-specified, all previously compiled statements
remain invalid.

If the CASCADE option is specified, all views based on the view to be dropped, will be deleted.
Statement execution will fail when attempting to drop a view description with dependent views
without the CASCADE option.

Adabas SQL Server Reference Manual
2

240

If the statement is invoked statically, then during pre-compilation, the view need not exist in the
catalog. For successful execution, however, the view must exist in the catalog, regardless of how
it is invoked.

Limitations:

The specified table specification must denote an existing view, at runtime.

ANSI Specifics:

The DROP VIEW statement is not part of the Standard.

Adabas SQL Server Specifics:

The following transaction limitations apply to this statement:

– On successful execution of this statement, an implicit COMMIT will take place.

– DDL and DCL statements may not be mixed with DML statements within the same
transaction.

For more details on transaction limitations see the chapter General Concepts of SQL
Programming, section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

The following syntax applies when dropping the view ’Canada’ with all its related views.

DROP VIEW Canada CASCADE;

SQL Statements — END DECLARE SECTION
2

241

END DECLARE SECTION

Function:

This statement is the terminating delimiter for a host variable declaration section.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

�END DECLARE SECTION

Description:

This statement terminates a host variable declaration section. Please refer to the BEGIN
DECLARE SECTION statement earlier in this chapter for more details.

Limitations:

Please refer to the BEGIN DECLARE SECTION statement earlier in this chapter for more details.

ANSI Specifics:

Please refer to the BEGIN DECLARE SECTION statement earlier in this chapter for more details.

Adabas SQL Server Specifics:

Please refer to the BEGIN DECLARE SECTION statement earlier in this chapter for more details.

Example:

To specify the end of the host variable declaration section, the following syntax applies:

BEGIN DECLARE SECTION
char a [5]

END DECLARE SECTION;

Adabas SQL Server Reference Manual
2

242

EXECUTE

Function:

The EXECUTE statement executes a prepared statement.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

statement identifier

persistent procedure
specification

EXECUTE �USING clause
host variable

identifier

statement identifier is a valid identifier denoting the name of the prepared statement
which is to be executed.

host variable identifier is a valid single host variable identifier and must have been
defined in the application program according to the host-
language-dependent rules. The value of the host variable must be
the value returned by the PREPARE statement and thus
identifying the prepared statement.

persistent procedure specifies the identification of the prepared statement that has
specification been stored in the catalog. The persistent procedure specification

must include both the VERSION and PROCEDURE clause.

USING clause defines an SQL descriptor area used to provide dynamic input
variables if required by the statement to be executed.

SQL Statements — EXECUTE
2

243

Description:

The EXECUTE statement executes the prepared statement identified by a statement identifier
or host variable identifier. If the prepared statement contains host variable markers, then values
must be provided to satisfy these. In this case, a USING clause is required.

Limitations:

The statement indicated by statement identifier, host variable identifier or persistent procedure
specification must be a successfully prepared statement.

A previously prepared SELECT statement cannot be submitted to the EXECUTE statement.

ANSI Specifics:

The EXECUTE statement is not part of the Standard.

Adabas SQL Server Specifics:

A host variable identifier or persistent procedure specification can be used to identify the
prepared statement.

This statement may be mixed with any other DML, DDL and/or DCL statements in the same
transaction.

Example:

The following syntax is required to execute an already prepared statement (with a statement id
of ‘statement_id’).

EXECUTE statement_id ;

To execute a prepared statement that requires 3 values, then the following syntax applies:

EXECUTE statement_id USING :hv1, :hv2, :hv3 ;

To execute a prepared statement where the input information is stored in the SQLDA, the
following syntax applies:

EXECUTE statement_id USING DESCRIPTOR :input_sqlda;

To execute a prepared statement that has been stored in the catalog the following syntax applies:

EXECUTE MODULE :mod PROCEDURE :proc VERSION :vers
USING DESCRIPTOR :input_sqlda;

Adabas SQL Server Reference Manual
2

244

EXECUTE IMMEDIATE

Function:

The EXECUTE IMMEDIATE statement prepares and executes an SQL statement for
immediate execution. After execution, the prepared statement is deleted.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

EXECUTE
IMMEDIATE

character
string constant

host variable identifier

�

host variable identifier is a valid single host variable identifier and must have been
defined in the application program according to the host-
language-dependent rules. The data type of the host variable
must be a character-String.

character-string constant is a valid character-string constant.

SQL Statements — EXECUTE IMMEDIATE
2

245

Description:

The EXECUTE IMMEDIATE statement performs the following actions:

� COMPILATION:
The SQL statement in a character-string representation is compiled into a prepared SQL
statement. If an error is encountered by the SQL compiler which prevents the SQL statement
being compiled successfully, an error is passed back to the application program in the
SQLCODE field of the SQLCA. In this case, no prepared statement is created and the execution
phase is not entered.

� EXECUTION:
The prepared SQL statement is executed. If an error is encountered during the execution of the
prepared statement, the error is passed back to the application program in the SQLCODE field
of the SQLCA.

� DELETION:
The prepared SQL statement is deleted. The prepared statement is deleted after execution. This
means, that even if the exact same statement will have to be executed twice with two separate
EXECUTE IMMEDIATE statements within the same transaction, it will have to be compiled
twice.

Limitations:

The character-string must contain one of the following statements:

COMMIT, CREATE, DELETE, DROP, INSERT, ROLLBACK, or UPDATE.

Host variable markers or references are not permitted in the statement.

ANSI Specifics:

The EXECUTE IMMEDIATE statement is not part of the Standard.

Adabas SQL Server Specifics:

This statement may be mixed with any other DML, DDL and/or DCL statements in the same
transaction.

Example:

To immediately execute the statement ‘DELETE FROM cruise’ the following syntax applies:

EXECUTE IMMEDIATE ’DELETE FROM cruise’ ;

Adabas SQL Server Reference Manual
2

246

FETCH

Function:

The FETCH statement positions the cursor on a row within the resultant table and makes the
values of that row available to the application program.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

USING clause

host variable
specification

FETCH �

INTO

cursor identifier

host variable
identifier

,

cursor identifier identifies the cursor to be used in the FETCH operation.

host variable identifier is a valid single host variable identifier and must have been de-
fined in the application program according to the host-
language-dependent rules.

The value of the host variable must be a valid cursor identifier.
A host variable can be used as cursor identifier only if the
cursor is a dynamically declared cursor.

host variable specification is a valid host variable specification and must reference a structure
and must have been defined in the application program according
to the host-language-dependent rules.

USING clause defines an SQL descriptor area used to receive data from the
associated dynamic cursor.

SQL Statements — FETCH
2

247

Description:

The FETCH statement performs two functions: it moves the cursor in the resultant table from
top to bottom, one row at a time, and makes the relevant values of a row available to the
application program according to the specification of the INTO clause or the USING clause. The
mechanism used when the USING clause has been specified, is described in chapter Common
Elements, section USING Clause.

The FETCH statement changes the position of the cursor as follows:

– If the cursor is positioned before the first row of the resultant table (as would be the case
if the cursor had just been opened), it is moved to the first row.

– If the cursor is positioned on a row of the resultant table, it is moved to the next one.

– If the cursor is positioned on the last row of an resultant table, it is moved past the last row
and the SQLCODE field in the SQLCA is set to +100.

– If the row on which the cursor is positioned is deleted, the cursor is, then positioned in front
of the next row in the table.

A host variable specification which references a host variable structure is equivalent to individual
host variable specifications which reference all the elements of a structure singularly.

Each host variable corresponds to a resultant column of the resultant table of the cursor in
question, where the first host variable is passed with the first column and so on.

Each value of a resultant column is assigned to the corresponding host variable. The assignment
operation follows the normal conversion rules as described in chapter Common Elements,
section Expressions.

Limitations:

The cursor must have been prepared and opened prior to the execution of the FETCH statement.

The data type of a host variable must be compatible with the data type of its corresponding
resultant column. If the data type is not compatible, an error occurs. The value of the unassigned
host variable is unpredictable.

If the number of resultant columns is smaller than the number of host variables, as many host
variables as possible are assigned the values of their corresponding resultant columns. The
remaining host variables are left untouched.

If the number of resultant columns is greater than the number of host variables, an error message
(warning) is generated.

A USING clause may only be used in association with a dynamic cursor.

Adabas SQL Server Reference Manual
2

248

ANSI Specifics:

An INTO clause is mandatory, the USING clause must not be used. Only single host variable
specifications are permitted.

Adabas SQL Server Specifics:

A FETCH statement without an INTO or USING clause is legal. The effect of this FETCH
statement is that the cursor is moved, but no data is exchanged. This enables the cursor to
progress in conjunction with an UPDATE or DELETE statement without actually retrieving any
data.

The OPEN statement and the FETCH statement can be in different compilation units (see also
the section: DECLARE CURSOR).

For details about MULTIFETCH, refer to the Adabas SQL Server Programmer’s Guide, chapter
The MULTIFETCH Feature.

 Example:

To fetch data from a cursor (identified as cursor_id) and place the data into 3 host variable the
following syntax is applied.

 FETCH cursor_id
 INTO :host_var1,
 :host_var2,
 :host_var3 ;

SQL Statements — GRANT
2

249

GRANT

Function:

The GRANT statement gives users privileges to access tables or views.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

table
specification

GRANT
privilege

specification

TO

TABLEON

grantee
specification

�WITH GRANT OPTION

table specification is an already existing table or view for which the grant is to be
performed. The table or view name should only be specified once.

privilege specification is a list of one or more privileges that are to be granted.

grantee specification is a user, a list of users or PUBLIC for which the grant is to be
executed. A user should only be specified once.

Note:
See chapter Common Elements for more details.

Adabas SQL Server Reference Manual
2

250

Description:

The GRANT statement gives the specified privileges to a user, a list of users or PUBLIC for the
specified table(s) or view(s). Neither the user identifier nor the table or view identifier should
be specified multiple times.

By default, owners of a table have all privileges for that table and should, therefore, not grant
themselves rights on that table.

For details about what privileges are possible, what they mean and the constraints on them see
chapter Common Elements, section Privilege Specification.

A privilege given with the WITH GRANT OPTION permits this user to grant other users
privileges on the specified table(s) or view(s). The WITH GRANT OPTION can be specified
for ALL PRIVILEGES, and so enables the grantee to grant all privileges to another user; or it
can be specified for a particular set of privileges (see examples below).

Unsuccessful execution of the GRANT ALL PRIVILEGES statement results in response code
0, even though the ANSI Standard prescribes a Warning.

Limitations:

General rules:

� Each user can have a privilege only once. If, for example, Peter received the privilege SELECT
on CRUISE from Tim, no one else can grant Peter the same SELECT on CRUISE privilege.

� Privileges on views are not automatically granted, just because privileges have been granted for
the underlying base tables(s). For example, Peter has created an updatable view based on the
base table CRUISE. He has SELECT and UPDATE privilege on this view. The granting of
INSERT on the base table CRUISE to Peter will not result in INSERT privilege on the view.

� Granting UPDATE privileges on a table always means an implicit UPDATE on all columns of
the table on which the grantor also has the GRANT option. In addition, a table privilege means
that, when a column is added, all grantees that have the table privilege also receive the column
privilege for the new column.

Authority to grant privileges:

� The grantor is the owner of the table or view.

� The grantor has been given the WITH GRANT OPTION by the owner of the table or view.

SQL Statements — GRANT
2

251

Granting privileges on Views:

� The creator of a view must have at least the SELECT privilege on all the base tables.

� In case of a read-only view, the SELECT privilege is the only privilege the owner has and may
grant.

� The grantee must have at least a SELECT privilege, as above.

� If the above is not true, then the owner of the view must have at least the SELECT privilege plus
the “WITH GRANT OPTION” to be able to grant privileges to other users for all base tables.

The execution of the GRANT statement is an atomic action that is closed by an implicit
COMMIT and is, therefore, not capable of ROLLBACK.

ANSI Specifics:

The optional keyword TABLE in ON TABLE table specification is not supported.

Adabas SQL Server Specifics:

The keyword TABLE in ON TABLE table specification is optional.

Examples:

� Tim decided to GRANT ALL privileges to Peter on his table CRUISE.

GRANT ALL ON CRUISE TO PETER;
GRANT ALL PRIVILEGES ON CRUISE TO PETER; [ANSI-specific grant]

� Tim decided to GRANT the privilege SELECT to Anne on his table CRUISE.

GRANT SELECT ON CRUISE TO ANNE;

� Tim decided to GRANT the privileges SELECT, INSERT and DELETE to Martin with the
”WITH GRANT OPTION” on his table CRUISE. Martin then decides to GRANT the select
privilege to Chris.

Tim : GRANT SELECT, INSERT, DELETE ON CRUISE TO MARTIN WITH GRANT OPTION;
Martin : GRANT SELECT ON CRUISE TO CHRIS;

� Peter decided to GRANT Roland the SELECT privilege on table CRUISE for which he has no
“WITH GRANT OPTION”. Roland himself has no privileges for the table CRUISE.

GRANT SELECT ON CRUISE TO ROLAND;

This statement fails as Peter has no privileges to perform this operation.

� Peter decided to GRANT Roland the SELECT privilege on his view CRUISE_YACHTS.

GRANT SELECT ON TABLE CRUISE_YACHTS TO ROLAND;

Adabas SQL Server Reference Manual
2

252

INCLUDE

Function:

This statement includes the data description for the SQLCA or SQLDA.

Syntax:

identifier

INCLUDE

SQLCA

SQLDA AS

�

AS identifier a host-language-specific identifier used to explicitly name the
pointer variable to the SQLDA structure.

Description:

The application programs must be able to find out if an SQL statement has been successfully
completed or if it failed. The respective control values are available in the host variable structure
called SQLCA. Although, such a structure may be defined and declared explicitly, it is much
easier to let Adabas SQL Server generate a definition and a declaration into the host program’s
source code. Such a generation will occur whenever the SQL statement INCLUDE SQLCA is
specified. The position of this statement must conform to the rules of the declaration of host
variables and the resulting structure will be represented by the identifier SQLCA. For a
comprehensive explanation regarding SQLCA please refer to the Adabas SQL Server
Programmer’s Guide. The SQLCA is not updated as a result of an INCLUDE statement.

Note:
An explicit identifier can not be specified for an SQLCA structure.

SQL Statements — INCLUDE
2

253

Certain embedded dynamic SQL statements require the use of an SQLDA. Again, such a
structure could be defined explicitly, but it is much easier to let Adabas SQL Server generate
a definition into the host program’s source code. Only an SQLDA structure definition is
generated along with a declaration of a pointer to such a structure. The user must actually
provide an appropriate structure himself. Please refer to the Adabas SQL Server Programmer’s
Guide for details. The generated pointer will, by default, be identified by SQLDA unless the AS
clause is supplied in which case the given identifier is used. The use of such an identifier within
an appropriate SQL statement identifies this instance of the SQLDA pointer variable.

Limitations:

This statement must be placed outside of a BEGIN DECLARE SECTION. It must also be
positioned so that it obeys the rules regarding the declaration of host variables. In accordance
with the host language rules governing the declaration of variables and their scope, any number
of INCLUDE statements may be specified.

ANSI Specifics:

The INCLUDE statement is not part of the Standard.

Adabas SQL Server Specifics:

The AS clause is an Adabas SQL Server extension.

Example:

To enable Adabas SQL Server to generate a definition and declaration of the SQLCA structure,
the following syntax applies:

INCLUDE SQLCA;

To enable Adabas SQL Server to generate a definition of the SQLDA structure and generate a
pointer to the structure where the pointer name is specified by the user (in this case sql_pointer),
the following syntax applies:

INCLUDE SQLDA AS sql_pointer;

Adabas SQL Server Reference Manual
2

254

INSERT

Function:

The INSERT statement inserts a new row into the target table using values derived from the row
amendment expression.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

INTOINSERT row amendment
expression

table
specification �

table specification is a qualified or unqualified identifier which refers to the table
to be amended. The table must be defined at this statement’s
compilation time. If the table specification is a view reference
this view must be updatable. See chapter Common Elements,
section Table Specification for more details.

row amendment expression specifies the new values to which the columns in the row(s) under
consideration will be assigned. See chapter Common Elements,
section Row Amendment Expression for more details.

SQL Statements — INSERT
2

255

Description:

An INSERT statement simply inserts a number of new rows into the target table as specified by
the row amendment expression.

If the target table in an INSERT statement is a subtable, then the values assigned to the foreign
key columns must be equal to the values contained in the associated referenced key columns
of the master table. This is compatible with the concepts of referential integrity. Adabas SQL
Server uses these key values to identify the record, and in case of a level 2 target table the
periodic group within the record, into which the new candidate row is to be inserted. The
insertion of a row should not result in an insertion of a new record but rather in the insertion of
a new occurrence. If the specified foreign key values do not correspond to any referenced key
values, then a referential constraint violation is issued.

If the row amendment expression uses a query specification as its means of defining the input,
then multiple rows may be inserted, otherwise the insertion of a single row will result.

If the query specification results in no rows, then no rows are inserted and the field sqlcode in
the SQLCA is set to +100.

Limitations:

If the target table is a view, this view must be updatable as described in the section DECLARE
CURSOR in this chapter.

It is only possible to insert rows into subtables, if the corresponding referenced key columns in
the master table exit and are specified with the same value.

The special register SEQNO must not be specified as a target column. However, a value can be
specified for a level 0 named SEQNO column. This value will then be the Adabas ISN. The
values for level 1 and level 2 named SEQNO columns are occurrence numbers which are
generated automatically and can not be specified in an insert operation. One exception is that
the level 1 named SEQNO column may be assigned a value when the target table is a level 2
table and the value assigned to the level 1 named SEQNO column already exists.

An empty string or zero value can not be inserted into columns which have been defined with
SUPPRESSION (i.e. the Adabas NU option) and with the NOT NULL option, as these two
values actually represent the NULL value.

An empty string or zero value can not be inserted into a column that maps to an Adabas
multiple-value field defined with SUPPRESSION, as these values are not representable under
these conditions.

Adabas SQL Server Reference Manual
2

256

ANSI Specifics:

The use of a row amendment expression based on the SET format of the syntax diagram is not
valid.

Adabas SQL Server Specifics:

The use of a row amendment expression based on the SET format of the syntax diagram is
permitted.

DDL and DCL statements may be mixed in one transaction. DML statements must not be mixed
with DDL/DCL statements in the same transaction. For details see the chapter General
Concepts of SQL Programming, section Transaction Logic in the Adabas SQL Server
Programmer’s Guide.

DML statements must not be mixed with DDL/DCL statements in the same transaction. For
details see the section Transaction Logic in the Adabas SQL Server Programmer’s Guide.

 Example:

To insert a whole new row into the table cruise, the following syntax applies:

INSERT INTO cruise
SET cruise_id = 1234,

start_date = 19920925,
start_time = 12,
end_date = 19921206,
end_time = 14,
start_harbor = ’ACAPULCO’,
destination_harbor = ’LIVERPOOL’,
cruise_price = 2050,
bunk_number = 7
bunks_free = 10
id_yacht = 146,

 id_skipper = 244,
id_predecessor = 5037,

 id_successor = 5039;

SQL Statements — OPEN
2

257

OPEN

Function:

An OPEN statement establishes the contents of a cursor.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

cursor
identifier

host variable
identifier 1

CURSOR FOR

statement identifier

host variable
identifier 2

persistent procedure
specification

USING clause

OPEN

�

cursor identifier identifies the cursor to be used in the OPEN operation.

host variable identifier 1 is a valid single host variable identifier and must have been de-
fined in the application program according to the host-
language-dependent rules.

The value of the host variable must be a valid cursor identifier.
A host variable can be used as cursor identifier only if the
cursor is a dynamically declared cursor.

Adabas SQL Server Reference Manual
2

258

statement identifier is a valid identifier denoting the name of the prepared statement.

host variable identifier 2 is a valid single host variable identifier and must have been de-
fined in the application program according to the host-
language-dependent rules.

The value of the host variable must be the value returned by the
PREPARE statement and thus identifying the prepared statement.

persistent procedure specifies the identification of the prepared statement that has
specification been stored in the catalog. The persistent procedure specification

must include both the VERSION and PROCEDURE clause.

USING clause defines an SQL descriptor area used to supply data to the
associated dynamic cursor.

Description:

The OPEN statement causes the contents of the associated resultant table to be established. The
cursor is initially positioned before to the first row. The cursor can be identified by use of a host
variable only if the cursor is declared dynamically. Likewise, the USING clause can be used to
provide input values only if the cursor is a dynamically declared cursor. Alternatively, values
can be provided by the direct use of host variables.

Limitations:

The cursor to be opened must have been declared and must not be open. If the statement does
not contain a CURSOR FOR clause the cursor must have been declared before.

The statement must be in the same compilation unit as the associated DECLARE CURSOR
statement.

ANSI Specifics:

All cursors opened within a transaction are automatically closed by a COMMIT or ROLLBACK
statement.

The persistent procedure specification and the USING clause must not be used.

The associated DECLARE CURSOR statement must physically precede the OPEN statement
in the host program.

SQL Statements — OPEN
2

259

Adabas SQL Server Specifics:

The CLOSE statement is the only statement apart from the DISCONNECT statement that closes
a cursor.

The cursor identifier can be given as a host variable if the cursor has been dynamically prepared.

The OPEN statement may appear anywhere in relation to the associated cursor statement in the
host language.

DML statements must not be mixed with DDL/DCL statements in the same transaction. For
details see the chapter General Concepts of SQL Programming, section Transaction Logic
in the Adabas SQL Server Programmer’s Guide.

Example:

The following syntax is required for opening a cursor of name cursor1.

OPEN cursor1 ;

The following syntax applies to opening a dynamic cursor and needing to supply that cursor with
values within host variables (in this example 3 values).

OPEN cursor1 USING :hv1, :hv2, :hv3 ;

The following syntax is used to open a dynamic cursor using a persistent procedure
specification:

OPEN cursor1 CURSOR FOR MODULE :mod PROCEDURE :proc Version :vers;

Adabas SQL Server Reference Manual
2

260

PREPARE

Function:

The PREPARE statement prepares an SQL statement for later execution.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

PREPARE

FROM

character-string
constant

host variable
identifier 2

�

hvuINPUTINTO hvuOUTPUT

statement identifier

host variable
identifier 1

persistent procedure
specification

SQL Statements — PREPARE
2

261

statement identifier is a valid single identifier used to identify the statement to be
prepared.

host variable identifier 1 is a valid single host variable identifier of type character- string.
It receives the unique value which is either generated by Adabas
SQL Server or defined in the application program. This value
identifies the statement to be prepared.

persistent procedure specifies the identification of the prepared statement that has
specification been stored in the catalog. The persistent procedure specification

must include both the VERSION and PROCEDURE clause.

OUTPUT hvu is the definition of the SQL descriptor area used to describe the
expected output of the identified statement.

INPUT hvu is the definition of the SQL descriptor area used to describe the
expected input of the identified statement.

character-string constant explicitly contains the source statement to be prepared

host variable identifier 2 is a valid single host variable identifier which contains the
character-string representation of the statement to be prepared.

 NAMES �
host variable

identifier
USING

hvu

host variable identifier is a valid single host variable identifier and must have been
defined in the application program according to the
host-language-dependent rules. The value of the host variable
must be the address of an SQL descriptor area (SQLDA).

Adabas SQL Server Reference Manual
2

262

Description:

The PREPARE statement performs the following actions:

� COMPILATION:
An SQL statement in a character-string representation is compiled into an executable SQL
statement which is called the prepared statement. If an error is encountered by Adabas SQL
Server which prevents the SQL statement to be compiled successfully, an error is passed back
to the application program in the SQLCODE field of the SQLCA. In this case no prepared
statement is created.

� IDENTIFICATION:
The prepared statement is kept for later execution. It is identified by the statement identifier
provided by the application program or is generated by Adabas SQL Server and passed back into
host variable 1. If it is intended that the statement identifier is to be generated by Adabas SQL
Server it is necessary to initialize the variable with blanks or an empty string prior to execution.
Otherwise, Adabas SQL Server will use the actual (non-blank) value of the variable. This
identification will be used to refer to the prepared statement in a DESCRIBE, DECLARE
CURSOR or EXECUTE statement.

� RETENTION:
In DB2 mode a non-persistent prepared statement is kept for the duration of the transaction. This
means that it can be executed repeatedly as long as this is done within the same transaction. The
prepared statement is deleted by a COMMIT, ROLLBACK or DISCONNECT statement. A new
statement can always be prepared using this identifier and deleting the originally prepared
statement, except, when the identified statement refers to a SELECT statement whose cursor
is currently open.

DEALLOCATE PREPARE may be used to explicitly delete a prepared statement.

� DESCRIPTION:
The nature of the prepared statement can be determined and conveyed to the user by supplying
appropriate SQL descriptor area variables. The functionality of a DESCRIBE statement can be
incorporated into the PREPARE statement. For a full description of this functionality refer to
the relevant passages of the section DESCRIBE Statement in this chapter.

SQL Statements — PREPARE
2

263

Limitations:

The character-string must contain one of the following statements:

COMMIT, CREATE, DELETE, DROP, INSERT, ROLLBACK, SELECT, or UPDATE.

The statement string cannot contain host variables, instead it may contain host variable markers.
A host variable marker is represented by a question mark (?). Host variable markers mark those
places where values are to be inserted at the time the prepared statement is executed. For a
description of how host variable markers are replaced by real values, see section EXECUTE
in this chapter. In general, a host variable marker can be used in an SQL statement wherever a
host variable can normally appear with the following restriction:

Note:
At compilation time, it must be possible to determine the data type resulting from the
expression(s) contained in this statement.

ANSI Specifics:

The PREPARE statement is not part of the Standard.

Adabas SQL Server Specifics:

This statement may be mixed with any other DML, DDL and/or DCL statements in the same
transaction.

Example:

To prepare an SQL statement, with an Id ‘identifier1’ to remove all rows from the table cruise,
the following syntax applies:

PREPARE identifier1 FROM
’delete from cruise’;

To prepare an SQL statement to delete a single row from the table cruise, where the row to be
deleted is identified by it’s cruise id given in a host variable, the following syntax is applied.
Note the use of the host variable marker ‘?’.

PREPARE statement_id FROM
’delete from cruise where cruise_id = ?’;

To prepare a dynamic SELECT statement where the format of the derived columns is not known
until runtime, and hence, the SQLDA needs to be used, the following syntax applies:

PREPARE statement_id INTO OUTPUT :sqlda
FROM :dyn_select_id ;

Adabas SQL Server Reference Manual
2

264

REVOKE

Function:

The REVOKE statement removes privileges from a user, a list of users or PUBLIC on tables
or views.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

table
specification

FORREVOKE GRANT OPTION
privilege

specification

FROMTABLEON

grantee
specification �

CASCADE

RESTRICT

SQL Statements — REVOKE
2

265

table specification is an already existing table or view for which the revocation is to
be performed. The table or view name should only be specified
once.

privilege specification is a list of one or more privileges that are to be revoked.

grantee specification is a user, a list of users or PUBLIC for which the revocation is
to be executed. A user should only be specified once.

Note:
See chapter Common Elements for more details.

Description:

The REVOKE statement revokes the specified privileges from a user, a list of users or PUBLIC
for the specified table(s) or view(s). Neither the user identifier nor the table or view identifier
should be specified more than once.

Unsuccessful execution of the REVOKE ALL PRIVILEGES statement results in response code
0, even though the ANSI Standard prescribes a Warning.

For details about what privileges are possible, what they mean and the constraints on them, see
chapter Common Elements, section Privilege Specification.

Limitations:

General rules:

� If a revoke from PUBLIC is specified then only those privileges that have been granted to
PUBLIC will be revoked.

� You can not revoke privileges from yourself.

� The keyword RESTRICT only affects the current user plus constraints.

� For the privilege UPDATE a revocation of the table privilege causes an implicit revocation of
all column privileges for the specified table. If only the column privilege is revoked, an existing
table privilege remains unaltered.

� REVOKE CASCADE is not supported yet. If the revokee has granted the privilege to a third
grantee, the privilege cannot be revoked from the revokee unless he has revoked it from the third
grantee. Trying to revoke these privileges will fail and result in an error condition.

Adabas SQL Server Reference Manual
2

266

Authority to revoke privileges:

� The revoker is the owner of the table or view.

� The revoker gave the privileges that are to be revoked.

Revoking privileges from Views:

Revoking privileges from a base table which would affect any view that relies upon that table
will fail and result in an error conditions. To revoke these privileges, the view must be dropped
first.

The execution of the REVOKE statement is an atomic action that is closed by an implicit
COMMIT and can, therefore, not be rolled back.

ANSI Specifics:

It is mandatory to specify:

� ON specified table. The keyword TABLE in ON TABLE table specification is not supported.

� either CASCADE or RESTRICT.

Adabas SQL Server Specifics:

It is optional (and has no effect) to specify the keyword TABLE in ON TABLE table
specification.

If neither CASCADE nor RESTRICT is specified, then RESTRICT is the default action.

The CASCADE functionality is not yet implemented.

Examples:

Simple revocation:

Tim has given Peter ALL privileges on table CRUISE. Tim then decides to revoke the DELETE
privilege from Peter.

REVOKE DELETE ON CRUISE FROM PETER;
REVOKE DELETE ON CRUISE FROM PETER RESTRICT; [ANSI-specific method]

This has the effect of removing the DELETE privilege from Peter, but will still leave him with
the SELECT, INSERT and UPDATE privileges for this table.

SQL Statements — REVOKE
2

267

Simple revocation (no cascading):

Tim has given Peter ALL privileges including the “WITH GRANT OPTION” on table CRUISE.
Peter then gives Anne the privileges to SELECT and DELETE on table CRUISE. Tim then
decides to revoke the DELETE privilege from Peter.

Tim: REVOKE DELETE ON CRUISE FROM PETER;
Tim: REVOKE DELETE ON CRUISE FROM PETER RESTRICT; [ANSI-specific method]

This will fail and result in the error message that there are still dependent privileges. First, Peter
has to revoke the privileges SELECT and DELETE from Anne:

Peter: REVOKE SELECT, DELETE ON CRUISE FROM ANNE;
Peter: REVOKE SELECT, DELETE ON CRUISE FROM ANNE RESTRICT;

[ANSI-specific method]

After that, Tim can revoke the DELETE privilege from Peter.

Assume that Tim has also given Peter the UPDATE table privilege. Now he wants to revoke the
UPDATE privilege on column xx from Peter.

Tim: REVOKE UPDATE (XX) ON CRUISE FROM PETER;

The result will be that the UPDATE table privilege still exists: only the column privilege for
column xx is destroyed. If Peter then tries to grant the UPDATE privilege to Gary, this will have
the effect that Gary also gets UPDATE column privileges for all columns of table CRUISE with
the exception of column xx. That means Gary is allowed to update all columns in CRUISE
except xx.

Adabas SQL Server Reference Manual
2

268

ROLLBACK

Function:

The ROLLBACK statement terminates a transaction and cancels all changes to the database that
were made during the current transaction.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

WORK �ROLLBACK ALLKEEPING

Description:

The ROLLBACK statement terminates the current transaction and starts a new transaction. All
changes to the database that have been made during the transaction are cancelled and the
situation is reinstated as it existed at the time the transaction was started. All cursors that have
been opened during the current transaction are closed.

If KEEPING ALL is specified, none of the currently opened cursors are closed, i.e., all cursors
can be processed further after the execution of the ROLLBACK statement.

Limitations:

In DB2 mode all statements that have been prepared during the current transaction are deleted.

ANSI Specifics:

The keyword WORK is mandatory. The keywords KEEPING ALL are not supported.

SQL Statements — ROLLBACK
2

269

Adabas SQL Server Specifics:

The keyword WORK is optional.

Example:

To negate all changes in the current transaction the following syntax applies:

ROLLBACK WORK ;

Adabas SQL Server Reference Manual
2

270

SELECT (SINGLE ROW)

Function:

The single row SELECT statement obtains a single row of data from the database according to
the specified conditions.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

DISTINCT

SELECT

ALL

table
specification

FROM WHERE

,

INTO

correlation
identifier

host variable
specification

,

�
search

condition

derived column

,

SQL Statements — SELECT (SINGLE ROW)
2

271

Elements which are also part of the query specification are described in detail in chapter
Common Elements section Query Specification.

derived column are the specification of the corresponding columns in the final
resultant table derived by the query. Derived columns are
separated by commas and all of them together are referred to as
the derived column list.

* is an abbreviated form of listing all derived columns of all
tables in the table name list. In ANSI compatibility mode, it is
not permitted to qualify the asterisk by using the correlation
identifier or the table specification.

host variable specification is a valid single host variable and is only relevant for (INTO
clause) single row SELECT. The host variables are intended to receive

the returned data as specified by the SELECT statement’s
derived column list.

table specification a valid table specification as described in chapter Common
Elements section Table Specification.

correlation identifier is a means of giving an alternative name to a particular table for
use within the query and subqueries which are in scope.

WHERE clause is the specification of a search condition which candidate rows
must fulfil in order to become part of the resultant table.

Description:

The single row SELECT statement is used to obtain a single row of data from the database.
Please refer to the description of a query specification (chapter Common Elements, section
Query Specification) for information on the processing of a SELECT statement.

The single row SELECT statement can only be embedded and can only return one or no rows.
A negative error code is returned in the sqlcode field of the SQLCA, if the resultant table actually
contains more than one row. This is because the specified host variables in the INTO clause can
only receive one row of data. A host variable specification which references a host variable
structure is equivalent to individual host variable specifications which reference all the elements
of a structure singularly.

The single row SELECT statement is the only invocation of a SELECT statement where an
INTO clause is allowed and required. The only other way to specify an INTO clause is as a part
of the FETCH statement. For details refer to the section FETCH Statement of this chapter.

Adabas SQL Server Reference Manual
2

272

Limitations:

A maximum of one row may be returned. The use of a valid INTO clause is required.

ANSI Specifics:

None.

Adabas SQL Server Specifics:

DML statements must not be mixed with DDL/DCL statements in the same transaction. For
details see the chapter General Concepts of SQL Programming, section Transaction Logic
in the Adabas SQL Server Programmer’s Guide.

Example:

To find out how many persons the yacht no. 6230 can accommodate, the following syntax
applies:

SELECT bunks
INTO :bunks

FROM yacht
WHERE yacht_id = 6230;

SQL Statements — SELECT
2

273

SELECT

Function:

The SELECT statement obtains data from the database according to the specified conditions.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

query expression �

FOR UPDATE
clause

ORDER BY
clause

For details about the elements of query expression see chapter Common Elements.

ORDER BY clause is the specification of a user-defined ordering of the resultant
table. Otherwise the resultant table is not ordered (not valid
within a single row SELECT statement).

FOR UPDATE clause is the explicit indication that this cursor is to be used in
conjunction with either an UPDATE and/or DELETE WHERE
CURRENT OF CURSOR statement.

Adabas SQL Server Reference Manual
2

274

Description:

The SELECT statement is used to obtain data from the database. Please refer to the description
of a query expression or query specification (chapter Common Elements) for information on
the processing of a SELECT statement.

When submitted either dynamically the statement must be associated with a PREPARE
statement and an associated dynamic cursor. The statement may then select more than one row.

When used interactively, the statement may again select more than one row. The use of the INTO
clause is not permitted.

Limitations:

The use of an ORDER BY clause is only valid within a dynamic or interactive SELECT
statement. Its use enables the resultant table to be sorted in a user-defined sequence.

The use of the FOR UPDATE clause is only valid within a dynamic or interactive SELECT
statement.

ANSI Specifics:

The use of a FOR UPDATE clause is not supported.

Adabas SQL Server Specifics:

DML statements must not be mixed with DDL/DCL statements in the same transaction. For
details see the chapter General Concepts of SQL Programming, section Transaction Logic
in the Adabas SQL Server Programmer’s Guide.

Example:

To select the addresses of all persons living in Frankfurt the following syntax applies:

SELECT address_addition_1,address_addition_2
FROM persons
WHERE city = ’FRANKFURT’;

To list all individual start and destination harbors, the following syntax applies:

SELECT start_harbor
FROM cruise

UNION
SELECT destination_harbor
FROM cruise ;

SQL Statements — SET CONNECTION
2

275

SET CONNECTION

Function:

The SET CONNECTION statement is used to switch between SQL sessions.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

CONNECTION

connection
 specifier

�SET

DEFAULT

connection specifier can either be a character-string constant or single host variable
identifier. The host variable must have been defined in the
application program according to the host-language-dependent
rules and its values must be a character string. The maximum
length is 32 characters.

Description:

The SET CONNECTION statement is used to switch from one SQL session to the next specified
SQL session. The context of the Adabas SQL Server environment is restored to its exact state
at the time of suspension.

Limitations:

None.

Adabas SQL Server Reference Manual
2

276

ANSI Specifics:

The SET CONNECTION statement is not part of the ANSI standard.

Adabas SQL Server Specifics:

None.

 Example:

To switch from the current session to MYSESSION the following syntax applies:

SET CONNECTION :MYSESSION;

SQL Statements — UPDATE
2

277

UPDATE

Function:

The UPDATE statement modifies the data contained in a particular row or set of rows. There
are two forms, namely positioned UPDATE and searched UPDATE.

Invocation:

Embedded Mode Dynamic Mode Interactive Mode

Syntax:

UPDATE correlation
identifier

table
specification

WHERE
CURRENT

cursor
identifier

WHERE search
condition

row amendment
expression

OF

�

Adabas SQL Server Reference Manual
2

278

table specification is a qualified or unqualified identifier which refers to the table
to be amended. The table must be defined at this statement’s
compilation time. If the table specification is a view reference
this view must be updatable. See chapter Common Elements,
section Table Specification for more details.

correlation identifier allows the table to be referenced by another identifier. See
chapter Common Elements, section Correlation Identifier
for more details.

row amendment expression specifies the new values to which the columns in the row(s)
under consideration will be assigned. See chapter Common
Elements, section Row Amendment Expression for more
details.

WHERE CURRENT OF signifies that the UPDATE is positioned. The cursor cursor
identifier identifier refers to a cursor which is currently open and pointing

to a row.

WHERE search condition signifies that the UPDATE statement is searched. Omission of the
WHERE clause really equates to a special case of a searched
UPDATE statement.

Description:

An UPDATE statement modifies the columns of the rows identified in the WHERE clause with
the values specified in the row amendment expression.

Updates of key column values in the master table will be cascaded to the related subtables. All
other columns of a subtable can be updated with new values as usual, provided that the values
of foreign keys and SEQNOs remain the same as already stored.

If the UPDATE statement is positioned, then the UPDATE is only applied to the row to which
the cursor is currently pointing. The cursor must be open and pointing to a row otherwise a
runtime error will occur. In addition, the cursor must be updatable. See section DECLARE
CURSOR Statement for further details. Updating does not alter the position of the cursor. In
addition, any locks on the row are not released until either a COMMIT or a ROLLBACK
statement is executed.

SQL Statements — UPDATE
2

279

Alternatively, in case of a searched UPDATE statement, a resultant table is established at
execution time in a similar manor to a query specification. The UPDATE, then occurs for each
row in the resultant table as specified by the row amendment expression. All the rows of the
resultant table are locked and are not released until either a COMMIT or a ROLLBACK is
executed. If no rows are identified for updating, then the field SQLCODE of the SQLCA will
be set to +100.

An UPDATE statement without a WHERE clause is really a special case of the searched
alternative as a resultant table is established which contains all the rows of the target table.

Limitations:

If the table referenced is a view, then this view must be updatable. See the section DECLARE
CURSOR Statement earlier in this chapter for more details.

In a positioned UPDATE statement the table reference must be identical to that referenced in
the associated DECLARE CURSOR statement.

In addition, if the associated DECLARE CURSOR statement was defined in another
compilation unit, then it must have been specified with the FOR UPDATE clause.

Also, the associated cursor must be updatable, open and positioned on a row of the resultant
table.

A positioned UPDATE statement is not allowed in interactive mode.

For reasons of enforcing referential integrity it is not possible to change the value of foreign key
columns in level 1 or level 2 tables. In a clustered environment this would require to physically
move a row to a new location.

Restrictions which apply when updating views can be found in the Limitation section of the
CREATE VIEW statement description.

A SEQNO column is not updatable. The SEQNO columns map to the information that is used
for internal Adabas addressing, and no rows will be moved to a new location using an UPDATE
statement.

An empty string or zero value can not be inserted into columns which have been defined with
SUPPRESSION (i.e. the Adabas NU option) and with the NULL capability, as these two values
are actually not representable under this condition. Same applies to columns with just the NULL
capability, as the empty string or zero value represent the NULL value.

Adabas SQL Server Reference Manual
2

280

ANSI Specifics:

The use of the VALUES format in the row amendment expression is not permitted.

A positioned UPDATE statement must appear in the same compilation unit as the associated
DECLARE and OPEN statements and must appear physically after the DECLARE statement.

The use of correlation identifiers in this context is not supported in ANSI compatibility mode.

Adabas SQL Server Specifics:

The use of either format (SET or VALUES) of the row amendment expression is permitted.

A positioned UPDATE statement can be in a different compilation unit to that of the associated
DECLARE as long as a FOR UPDATE clause is specified. If the UPDATE is in the same
compilation unit as the associated DECLARE CURSOR statement,, then there is no restriction
as to the relative positions of the two statements.

The use of correlation identifiers is permitted.

DML statements must not be mixed with DDL/DCL statements in the same transaction. For
details see the chapter General Concepts of SQL Programming, section Transaction Logic
in the Adabas SQL Server Programmer’s Guide.

 Example:

To update all prices in the cruise table by adding 100 to the original cost, the following syntax
is required.

UPDATE cruise
SET cruise_price = cruise_price + 100 ;

To decrease a particular customers amount to pay by 100 (customer id = 816), the following
syntax applies:

UPDATE contract
SET amount_payment = amount_payment - 100

WHERE id_customer = 816;

SQL Statements — WHENEVER
2

281

WHENEVER

Function:

This statement specifies the action to be performed when an SQL statement results in an
exception condition.

Syntax:

label �

WHENEVER

:

NOT FOUND

SQLERROR

SQLWARNING

GOTO

GO TO

CONTINUE

CALL procedure

label a valid host language label

procedure a valid host language procedure, routine or function identifier

Adabas SQL Server Reference Manual
2

282

Description:

The variables in the SQLCA are updated during program execution and should be verified by
the application program. This may be done in two different ways:

– by explicitly testing the contents of the appropriate variable in the SQLCA, usually the
SQLCODE field.

– by specifying the SQL statement WHENEVER.

Note:
If no testing takes place, the default action for errors is to continue with the application program.

An application program may contain any number of WHENEVER statements. The WHENEVER
statement may appear anywhere after the declaration of an SQLCA. WHENEVER statements are
pre-processed strictly in the order of their physical appearance in the source code, regardless of the
execution order or conditional execution that the application program might imply. They will also
only refer to the SQLCA which is currently in scope.

Should two or more WHENEVER statements contradict each other, then the statement which
was physically specified last is relevant for a particular SQL statement.

The SQLCA is not updated as a result of a WHENEVER statement.

The condition is determined to be true according to the value of the variable SQLCODE and
may be one of the following:

– NOT FOUND if the value is +100, indicating that no rows were found.

– SQLERROR if the value is negative, indicating an error.

– SQLWARNING if the value is positive other than +100, indicating a warning.

The action taken, should the condition be true, may be one of the following:

– CONTINUE ignores the exception condition and continues with the next executable
statement.

– GOTO label continues the application program’s logic with the statement identified by the
label. The label must conform to the rules of the host language. The label may be prefixed
with or without a ‘:’ . GOTO may also be specified as GO TO.

– CALL procedure continues the application program’s logic with the procedure identified
by procedure. The procedure name must conform to the rules of host language. The
procedure may not specify any host language parameters.

SQL Statements — WHENEVER
2

283

Generally, a single WHENEVER statement will be valid for all SQL statements in the program.
If an error occurs, control can be passed to an error handling routine. If SQL statements are to
be executed from within this error handling routine, they too are subject to the conditions of the
relevant WHENEVER statement. This means, if an error occurs during execution of the called
error handling routine, an attempt will be made to call this same routine again, because the initial
WHENEVER statement is still valid. This situation can be avoided by having a second
WHENEVER statement in the error handling routine which specifies the option CONTINUE.
It is recommended to test the SQLCA explicitly within the error routine.

Limitations:

For the ANSI 74 standard (Precompiler setting COBOL II = off) every SQL statement is treated
as if the optional period was coded. That means the generated code will always be terminated
with a period. It is not possible to code more than one SQL statement in an IF statement. Also
refer to the host language sections of the Adabas SQL Server Programmers Guide.

ANSI Specifics:

The SQLWARNING condition and the CALL option are not part of the Standard.

Adabas SQL Server Specifics:

This is an Adabas SQL Server extension.

Example:

To continue normal execution of a program if, after an SQL query returned no rows, the
following syntax would apply:

WHENEVER NOT FOUND CONTINUE;

To continue a programs execution at another point (where that point is specified by a label) when
an SQL statement produces a warning, the following syntax applies:

WHENEVER SQLWARNING GOTO label_name;

To divert a program’s flow to a ‘Procedure’ when an SQL statement produces an error, the
following syntax applies:

WHENEVER SQLERROR CALL procedure_name;

284

A

285

APPENDIX A — GLOSSARY

Adabas File

Each SQL base table – contained or not contained in a cluster – is represented by one Adabas
file. Before issuing the CREATE TABLE or CREATE CLUSTER statements, this Adabas file
must be tailored using parameters specified in a CREATE TABLESPACE statement. An
existing Adabas file is introduced to the catalog using CREATE TABLE DESCRIPTION/
CREATE CLUSTER DESCRIPTION statements.

Adabas Short Name

A shortname identifier specifies the Adabas short name of the corresponding field in the
underlying Adabas file.

Base Table

A base table (and the data contained herein) is directly physically present and is not computed
as in the case of viewed tables (views). A base table is defined by a CREATE TABLE/CREATE
TABLE DESCRIPTION statement or a corresponding substatement in a CREATE CLUSTER/
CREATE CLUSTER DESCRIPTION statement. A base table which is not part of a cluster is
the sole representation of one Adabas file.

Boolean Operator

An operator with predicates as its operands constitute a boolean expression. It can be: AND, OR,
NOT.

Boolean Expression

An expression of predicates linked with boolean operators delivering boolean results.

Candidate Row

Any row within an intermediate resultant table which is to be considered for the next resultant
table.

Candidate Group

A set of candidate rows which are grouped together during the processing of a GROUP BY
clause.

Adabas SQL Server Reference Manual
A

286

Case Sensitive

Differences between lowercase and uppercase strings are significant.

Catalog

The catalog is a group of Adabas files which hold all data objects and their descriptions for the
SQL environment and including any meta programs. The catalog, therefore, contains all
information necessary for the operation and maintenance of Adabas SQL Server. The
DBA_SCHEMA and the INFORMATION_SCHEMA contain views extracting those data
relevant for administration purposes.

Cluster

Refer to Table Cluster

Column

A column is a subobject of a table and is the smallest unit of a table that can be selected and
updated. Adabas SQL Server supports column types ORDINARY, SEQ-NO., and
SIMULATED-LONG. The order in which columns are specified during the creation of a table
is the order in which the columns will be displayed in a SELECT * request. Unless explicitly
specified, this is also the order which Adabas SQL Server expects when rows are to be inserted.

Column Level

The level of a column describes its Adabas realization. Level 1 means an multiple-value field
(MU field) not in a periodic group (PE group), whereas Level 2 means an MU field in a PE group.
Note that only those columns whose level is equal to the level of the table in which they are
contained can be updated.

Compilation Unit

A user’s source code file containing embedded SQL commands, which is submitted to Adabas
SQL Server compilation system.

Appendix A — Glossary
A

287

Constraint

A constraint is a subobject of a base table which is defined to ensure the compliance of the actual
data with the specified conditions. Adabas SQL Server knows four different types of constraints:
NOT NULL, UNIQUE, PRIMARY KEY and FOREIGN KEY. Syntactically, a constraint referring
to a simple column can be defined within a table column element. Constraints referring to more than
one column have to be defined by a table constraint element. The name of a constraint is unique
within the schema. It is automatically generated if not specified.

Cursor

The cursor concept was developed to aid 3GLs (e.g., COBOL) to process selected resultant
tables. A cursor is essentially a pointer used to proceed through the rows of the resultant table.

Database

The database is the implementation of the SQL schema concept consisting of tables (Adabas
files) which in turn consist of rows (Adabas records) and columns (Adabas fields).

Database Identifier

Adabas SQL Server enables a string identifier to be associated with an Adabas database
identifier for use within certain statements.

Data Control Language (DCL)

DCL handles the data security aspects by providing statements for privilege granting and
revoking.

Data Definition Language (DDL)

DDL handles the creation, alteration and deletion of SQL data structures.

Data Manipulation Language (DML)

DML handles the manipulation of SQL data structures.

Declare Cursor-Open-Fetch Cycle

These three statements are interdependent. Wherever a DECLARE CURSOR statement defines
a resultant table, an associated OPEN statement establishes it and then successive FETCH
statements retrieve rows. This is the classic method of retrieving data.

Adabas SQL Server Reference Manual
A

288

Default Schema Identifier

The qualifier which automatically prefixes an unqualified table or view name when attempting
to resolve it.

Default Database

A table created using a CREATE TABLE statement is assigned an Adabas file number and an
Adabas database ID. This is the default database for that table. When no override database
(either local or global) has been specified, this is the current database. See Appendix C of the
Adabas SQL Server Programmer‘s Guide for details.

Default Locking Specification

A default locking specification may be defined for Adabas SQL Server. This determines the
locking of rows upon executing retrieval operations.

Derived Column

A column of a query’s projection list (derived columns list) which is derived from one or more
value sources.

Derived Column Label

Under certain circumstances, a derived column also has an associated derived column label
which can be referenced from the ORDER BY clause, for instance.

Derived Column List

A list of derived columns in a query specification which define the resultant table’s format.

Descriptor Area

See “SQLDA”

Dynamic Cursor

A cursor associated with a dynamic SELECT statement. See also: DECLARE
CURSOR-OPEN-FETCH Cycle.

Dynamic SQL

An SQL statement which is generated at runtime only. Host programs submit this statement in
the form of a string.

Appendix A — Glossary
A

289

Embedded Statement

An SQL statement which is embedded in the host program directly rather then being
interactively submitted to Adabas SQL Server.

Host Language

The language in which the host or application program is written (C, COBOL, etc) and into
which SQL statements will be embedded.

Host Variable

A variable declared within the host program, which is the medium of exchange of data between
the host program and Adabas SQL Server at runtime.

Host Variable Markers

A marker which may be specified in dynamic statements where a value is to be inserted by
Adabas SQL Server at runtime.

Indicator Variable

A variable which primarily denotes whether the associated host variable contains the NULL
value or not. Alternatively, it also denotes whether the associated host variable’s contents have
been truncated by Adabas SQL Server.

Index

An index is a subobject of a base table improving the performance of queries on columns which
it is referring to. The current version of Adabas SQL Server supports the representation of
Adabas (super-/subdescriptors). The Adabas UQ option leads to an UQ index. An index is called
multiple, if an only if it refers to at least one column with a level greater than zero.

Joined Query

A query specification with more than one table specified in the FROM clause.

Master Table

A table cluster consists of one master table and one or more subtables. The relationship between
master table and subtable is defined using a referenced key/foreign key relationship. The master
table of a table cluster is the only table which contains no (clustering) referential constraint.

Adabas SQL Server Reference Manual
A

290

MU/Multiple-value Field

A field that can have a maximum of 199 multiple values (occurrences) within an Adabas record.
It is preceded by an one-byte count field indicating the number of occurrences. For further
details refer to the current Adabas C documentation.

NULL value

A special status of a field signifying that the value is unknown.

Outer Reference

A column in a subquery which is derived from a table which is declared in another query
specification. This query specification in turn contains, either directly or through several levels,
the subquery in question.

PE/Periodic Group

One of many fields that may repeat multiple times within an Adabas record and which is always
preceded by an one-byte count field. For further details refer to the current Adabas C
documentation.

Positioned UPDATE/DELETE

A DELETE or UPDATE statement in which the row to be considered in the base table is
identified by the position of the associated cursor.

PREPAREd Statement

A statement which has been dynamically generated and submitted to the embedded static
PREPARE statement for compilation.

Privileges

A privilege is the authorization to perform predefined operations (INSERT, UPDATE, DELETE,
SELECT). This authorization is given by an owner of a database object to a particular user.

Query Expression

A query expression is an expression involving one or more query specifications connected using
the UNION operator. It is used exclusively in a DECLARE CURSOR statement.

Appendix A — Glossary
A

291

Query Specification

A query specification defines the resultant table specified in the projection list derived from the
tables or views given in the table list, subject to the conditions imposed by the optional WHERE
and/or HAVING clause and optionally grouped according to the GROUP BY clause.

Referential Constraint

A referential constraint is a constraint of type FOREIGN KEY. Adabas SQL Server supports this
constraint type only in order to build table clusters. Therefore, the columns used by such a
constraint, the referencing columns, are physically identical with the referenced columns. As
a consequence the only referential triggered actions supported are the cascaded DELETE and
UPDATE operations.

Resultant Table

A query specification conceptually produces a virtual table as its result. This is called a resultant
table.

Rotated Field

If a MU field has a fixed number of occurrences, then this field can be rotated. Each occurrence
is mapped to an SQL column.

Row

A row is the smallest unit of data that can be inserted into or deleted from a table. The order in
which Adabas SQL Server returns rows is not necessarily consistent from query to query. If a
specific order is desired, the ORDER BY clause must be used.

Runtime

Applications, after having been compiled at compile time are executed at runtime. Runtime is
the point where SQL statements are executed and data is returned.

Runtime Error

During execution of a previously precompiled SQL statement, certain conditions may occur
which result in runtime errors.

Schema

The Schema is a logical container within the catalog to group together subsequently created
catalog resident objects. A Schema is a collection of data structures and objects defined by a
set of DDL statements and privileges defined by DCL statements.

Adabas SQL Server Reference Manual
A

292

Scope

For example, he scope of a correlation identifier consists of the query specification or statement
where it has been defined and all the subqueries present within that query specification or statement.

Search Criteria

A generic term for the search condition of a WHERE clause.

Searched UPDATE/DELETE

An UPDATE or DELETE statement, which establishes its own resultant table by means of an
integral WHERE clause (see also: Positioned UPDATE/DELETE).

Search Expression

A collection of predicates linked by boolean operators.

Search Term

A predicate.

Select List

See “derived column list”.

SEQNO (Sequence Number)

The SEQNO is an SQL column or a special register. At table level 0 the SEQNO is used to
retrieve or insert the Adabas ISN, at table level 1 and 2 the SEQNO is used to retrieve or insert
the Adabas occurrence numbers in connection with MU/PE.

Short name

Refer to Adabas short name.

SQLCA

The SQL Communications Area is a host variable structure used to provide the programmer with
comprehensive information about the success or failure of each SQL statement.

sqlcode Field

As part of the SQLCA, the sqlcode field is a special integer field and functions as a carrier of
a status code, i.e. unsuccessful/successful execution of the command.

Appendix A — Glossary
A

293

SQLDA

The SQLDA is a host variable structure defined by Adabas SQL Server and used to
communicate information about a recently prepared dynamic statement. This SQL Descriptor
Area provides the programmer with comprehensive information about each result column of a
dynamic SELECT statement.

SQL Identifier

An identifier which, rather than refer to a variable in a host program, refers to an SQL entity
pertinent to the program, e.g., cursor identifier, statement identifier.

Statement Id(entifier)

Any dynamic statement which is prepared for later processing needs a unique identifier in order
to reference these prepared statement in other DESCRIBE, EXECUTE or dynamic DECLARE
CURSOR statements.

Static SQL

An SQL statement which is processed at compilation time and is fixed thereafter.

Subquery (Subselect)

A query specification which is nested in another query specification, e.g., as part of an IN
predicate.

Subtable

Subtables are all tables in a table cluster other than the master table. Each subtable contains exactly
one (clustering) referential constraint. From a physical point of view, subtables represent the
multiple structures of Adabas, the MU fields and PE groups. There are some update restrictions on
subtables: No deletion of columns/rows, update of columns not referenced as foreign key, only and
insertion of values for each referenced row up to the Adabas limit (191 or 99) only.

Table

A table is a subobject of a schema or a table cluster. It is the only structure for storing and
accessing data. Adabas SQL Server supports the table types: base table and view.

Table Cluster

A table cluster is a subobject of a schema. It contains base tables which are interconnected by
referential constraints. It is implemented by one Adabas file.

Adabas SQL Server Reference Manual
A

294

Table Level

A subtable referencing the master table is a level 1 table, whereas a subtable referencing another
(level 1) subtable has level 2. All other base tables are level 0 tables.

Tablespace

A tablespace is a subobject of a schema. It contains the Adabas file attribute for a base table or
a table cluster with the same name.

Transaction

A transaction is initiated as soon as the first SQL statement is being executed provided that no other
transaction is currently active. Termination of a transaction requires a COMMIT or ROLLBACK
statement.

Tri-State Logic

A predicate may return any of the following results: TRUE, FALSE, UNKNOWN.

UNIQUE CONSTRAINT

A unique constraint is a constraint of type UNIQUE or PRIMARY KEY. It implies a UQ index
on the column list which it is defined for (without SEQNO columns).

UNKNOWN Status

The result of a predicate may be UNKNOWN if an operand equates to the NULL value.

User

A user is established as a result of a CREATE USER statement. It defines a particular user
identification which must be supplied to the system upon connection using the CONNECT
statement. The subsequent session then runs under this user identification. The user identification
is furthermore used to establish ownerships in regard to schemas and associated database objects
and in the evaluation of privileges.

Appendix A — Glossary
A

295

Value Source

A value can result from several different origins: a constant, a host variable, a column, a
function, an expression or a subquery.

View (Viewed Table)

Views are virtual tables not based upon their own, physically separate, distinguishable stored
data. The view definition in terms of base tables is specified within the CREATE VIEW
statement. Retrieval operations on a view are translated into equivalent operations on the
underlying base table(s). Grouped views contain columns which are derived by using built-in
functions like SUM, MAX, etc. Therefore, grouped views cannot be updated or joined with
other tables.

296

	 �

INDEX

A
Adabas file definitions, 188
Adabas short name, 124
Adabas Superdescriptor, 133
ALTER Statements

TABLE, 143
USER, 148

AVG Function, 95

B
BEGIN DECLARE Statement, 150
BETWEEN Predicate, 65
Binary Assignment, 53

C
Candidate

group(s), 36, 84
row(s), 33, 84, 271
table specification, 20

CASCADE Option, 230, 235, 239
Catalog, 42

remove Adabas file definitions from, 231, 233
remove database name from, 223
remove table description from, 235
statement deleted from, 202

Character Set, 3
Character String Assignment, 53
CLOSE Statement, 152
Cluster Elements, 160
Column Constraint Element, 115
Column Default Element, 121
Column Default Value, 121

Column Definition, table column element, 106
Column Identifier, 11, 198
Column Index Element, 119
Column Physical Element, 123
Column Specification, 19

correlated, 21
qualified, 21
unqualified, 20

COMMIT Statement, 154
Comparable Data Types, 52
Comparison Predicate, 67
CONNECT Statement, 156
Connection, CONNECT statement, 157
Connection Identifier, 11
Constant Specification

binary, 10
character strings, 8
numeric, 9

Constraint, 116
Constraint Identifier, 11
Correlation Identifier, 11, 18, 21, 209
Correlation Name, 39
COUNT Function, 97
CREATE INDEX Statement, 173
CREATE Statements

CLUSTER, 160
CLUSTER DESCRIPTION, 166
DATABASE, 171
DEFAULT TABLESPACE, 182
INDEX, 173
SCHEMA, 176
TABLE, 179
TABLE DESCRIPTION, 192
TABLESPACE, 187
USER, 196
VIEW, 198

Adabas SQL Server Reference Manual

298

Cursor, updatable, 205
Cursor Identifier, 11

D
Data Type Definition, 109
Data Types, 3

character string, 4
comparable, 52
conversion rules, 7
numeric, 5

DATABASE, NUMBER, 171
Database Identifier, 11
DATABASE NUMBER, 192
DATE and TIME, NATURAL data types, 4
DEALLOCATE PREPARE Statement, 201
DECLARE CURSOR Statement, 203
Default Values, for columns, 60
DELETE Statement, 209
Delimiters, 15
Derived Columns, 204, 270, 273

label, 38, 56, 135

DESCRIBE Statement, 213
Descriptor Identifier, 243
Diadic Operators, 49
DISCONNECT Statement, 217
DISTINCT, 97
DROP Statements

CLUSTER, 219
CLUSTER DESCRIPTION, 221
DATABASE, 223
DEFAULT TABLESPACE, 231
INDEX, 225
SCHEMA, 227
TABLE, 229
TABLE DESCRIPTION, 235
TABLESPACE, 233
USER, 237
VIEW, 239

E
END DECLARE Statement, 241
Escape Character, 79
Exceptional Condition, 281
EXECUTE IMMEDIATE Statement, 244
EXECUTE Statement, 242
EXISTS Predicate, 73
Expressions, 48

F
FETCH ONLY, 141
FETCH Statement, 246
FILE NUMBER, 192
File number

FILE parameter, 162, 180, 190
FREE FILE SEARCH RANGE parameter,

162, 180, 190

FOR FETCH ONLY, 141
FOR UPDATE Clause, 141, 204, 273
FROM Clause, 32
Functions, 87

AVG, 95
COUNT, 97
MAX, 91
MIN, 93
SUM, 89

G
GRANT Priviliges, 46
GRANT Statement, 249
Grantee Specification, 46
GROUP BY Clause, 34, 39
Groups, how to establish, 35

Index

	

H
HAVING Clause, 36
Having unique index, 119
Hexadecimal Literal, 10
Host Structures, 26
Host Variable Identifier, 11
Host Variable Markers, 26, 139, 215, 243, 263
Host Variable Specification, 23
Host Variables

declaration section, 150, 241
in USING clause, 139

I
Identifiers, 11
IN Predicate, 75
INCLUDE Statement, 252
Index Identifier, 11
INDEX Specification, 115
INDICATOR, 24, 26
INDICATOR Variable, 25, 53
INPUT, host variable, 213, 260
INSERT Statement, 254
INTO Clause, 271

K
Keywords, 13

L
LIKE Predicate, 78
Literal, syntax, 121
Longalpha Columns, Adabas LA field, 111

M
MAX Function, 91
Meta Programs, 42
MIN Function, 93
Module Name, 42
Monadic Operators, 49
Multifetch, block size, 161, 167

N
NOT NULL Specification, 115
NULL Predicate, 82
NULL Value, 69
Numeric Assignment, 53

O
OPEN Statement, 257
ORDER BY Clause, 135, 136, 204, 273
Order Specification, 273
Outer References, 17, 22
OUTPUT, host variable, 213, 260

P
Password Identifier, 12, 148, 196
Pattern, 79
Persistent Procedure Specification, 41, 202, 214,

242, 258, 261
Predicates, 64

BETWEEN, 65
COMPARISON, 67
EXISTS, 73
IN, 75
LIKE, 78
NULL, 82

PREPARE Statement, 260
Primary Key, 115
Privilege specification, 44

Adabas SQL Server Reference Manual

300

PROCEDURE Clause, 202
Procedure Name, 42

Q
Query Expression, 55, 204
Query Specification, 28, 199

R
Reference Clause, syntax, 127
Referential Triggered Action:, 128
Revoke Privileges, 46
REVOKE Statement, 264
ROLLBACK Statement, 268
Row Amendment Expression, 58, 254, 277

S
Schema Identifier, 12
Search Condition, 84
Security, CONNECT statement, 157
SELECT Statement, 273

single row, 270

SEQNO
asterisk abbreviation, 37
create named column, 109, 114
derived column label, 38
in GROUP BY clause, 34
in INSERT statements, 255
in ORDER BY clause, 38
in Row Amendment Expressions, 62
in UPDATE statements, 278
special register, 101

Server Identifier, 12
Session, CONNECT statement, 157
SET Format, 58
Shortname Clause, syntax, 127

Shortname Definition, 124
Shortname Identifier, 12
Single Variable, 24
Special Registers, 99
SQL descriptor area, 215, 262
SQLCA, 252
SQLDA, 252
Statement Identifier, 12
Subtables, 160

Insert/Update, 61

SUM Function, 89

T
Table Constraint Elements, 126
Table Elements, 104
Table Identifier, 12, 16
Table Index Element, 132
Table Qualifier, 16
Table Specification, 16

correlated, 18
qualified, 17
unqualified, 17

TIME and DATE, NATURAL data types, 4
Truth Tables, 85

U
UNION Operator, 55
UNIQUE Specification, 115
Updatable Cursor, 205
UPDATE Statement, 277
UQINDEX, 119
USER

CONNECT statement, 157
IN predicate, 75
special registers, 99

User Identifier, 12, 148, 196, 237
USING Clause, 138, 242, 246, 257
USING NAMES, 213, 260

Index

���

V
Value Specification, 59
VALUES Format, 59
Values

assignment, 52
comparison, 52, 54, 67
origin, 3

Version Clause, 202
Version Code, 42

W
WHENEVER Statement, 281
WHERE Clause, 33, 210, 271, 278
WHERE CURRENT OF, 209, 277
Wildcard Character, 79

302

Notes

303

ADABAS SQL Server Reference Manual

304

Notes

305

ADABAS SQL Server Reference Manual

306

	Adabas SQL Server Reference Manual
	Table of Contents
	Preface
	Common Elements
	SQL Statements
	Alter Table
	Alter User
	Begin Declare Section
	Close
	Commit
	Connect
	Create Cluster
	Create Cluster Description
	Create Database
	Create Index
	Create Schema
	Create Table
	Create Default Tablespace
	Create Tablespace
	Create Table Description
	Create User
	Create View
	Deallocate Prepare
	Declare Cursor
	Delete
	Describe
	Disconnect
	Drop Cluster
	Drop Cluster Description
	Drop Database
	Drop Index
	Drop Schema
	Drop Table
	Drop Default Tablespace
	Drop Tablespace
	Drop Table Description
	Drop User
	Drop View
	End Declare Section
	Execute
	Execute Immediate
	Fetch
	Grant
	Include
	Insert
	Open
	Prepare
	Revoke
	Rollback
	Select (Single Row)
	Select
	Set Connection
	Update
	Whenever

	Glossary
	Index

