Adabas SQL Server
Programmer’s Guide

Manual Order Number: ESQ143-020AL L

This document applies to Adabas SQL Server Version 1.4 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:

Documentation@softwareag.com
© July 1999 & November 2001, Software AG

All rights reserved
Printed in the Federal Republic of Germany

Software AG and/or dl Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

TABLE OF CONTENTS

2.

PREFACE .. 1
Using This Manual — Some Basic Information 1
Other Helpful Manuals e e e e e 2
INTRODUCTIONTO ADABASSQL SERVER 3
Functionality 3
SQL — Database Query Languagec.oviniiriii i 4
INteraCtive SOL .. ot 4
Embedded SOL i 4
SEHC SOL vttt e 5
DYNAMIC SO . ..ottt e 5
Compiler OPptioNS 6
How Adabas SQL Server FUNCLIONSttt et et 7
ADABASSQL SERVER DATA STRUCTURES............................ 11
DataOrganizationt 1
CaAlOg .ot 11
SO . . oo 12
Tables And Table CIUSLErSot e e 13
T O DACES . . . oo 15
Conversion of Adabas Field Attributes to Adabas SQL Server Column Attributes 17
NS Lottt e 18
Constraints and INAEXESottt 19
Data Definition Language Name Generation Algorithm. 21
Scoping Rules Of Catalog ObjECtS. v it e e et e e 23
DaAaaSES . .. i 24
Datain Table CIUSLErSo e 25
Describing Adabas Nested Data StrUCIUIrES oo oo e e e 25
Using Adabas Nested Data StrUCLUIESottt e e et 31

Adabas SQL Server Programmer’s Guide

3. THE ADABASSQL SERVER SECURITY CONCEPT 33
Introduction to Servers with the Security Features 33
PrIVIIEgES . ..o 33
ViEWS and SECUNTY . .. oottt e e e e 34
ReMOVINg Privileges ... 34
AULNON ZatioN 35
AUthENti CatioN ... e 35
User AdMINIStrationo e e e 36
NON-SECUNLY SEIVEIS e 37
Consequences of Generating a Server Without the Security Features 37
Interaction with Adabas Security Functionality 38
4. GENERAL CONCEPTSOF SQL PROGRAMMING 41
SOL St ementS 41
Comments within an SQL Statement.t e 43
Host Variables. 44
Declaring Host Variables e e e e 45
Using Host Variables i e e e e 45
Host Variable StrUCIUrESo e e e e e e e 46
The SQL Communications Area (SQLCA) ... 47
Declaring the SOL CA .. . i 47
USINg the SOL CA .o 48
Error Handling 51
Program SIIUCIUNE 52
Positioning the SQL Statementttt 53
Default Table Qualification 54
TransaCtion LOGICo 55
NS . 59

Table of Contents

B STATIC SOQL . 61
INtrodUCKION 61
Definingthe SQL DataStruCturest 62
Manipulating Data. 64

Non-cursor-based StalementsSot 64
Cursor-based StalementSt 66

6. DYNAMIC SQL ... 69
INtrodUCKION 69
General ASPECES . ..o 70

Dynamic SQL PrinCiplest 70
Dynamic versus Static SQL - Considerationsciiiiii i 71
LimMitaiONS .ottt 72
NON-SELECT Statements 73
Using EXECUTE IMMEDIATE e e e e 73
Using PREPARE and EXECUTEttt et et et 74
SUMIM I Y ettt e e e e 75
SELECT StatementS. e e 76
Fixed Derived Column List Method i e 76
SUMIM I Y ettt e e e e e e 8l
Varying Derived Column List Method i e 82
SUMIM I Y ettt e e e e 86
Using Host Variable Markers. ... 87
Constant Number of Host Variable Markers i 88
Varying Number of Host Variable Markers i 89
SUMIM I Y ettt e e e e e 91
Updating aDynamicC CUIrSOriuiiriii e 92
Dynamic SQL with Persistent Proceduresocoiiiiiiian... 95
Creating a Persistent Procedurettt e e e e 95
Using aPersistent Procedureooi it e e e 96
Deleting a Persistent Procedure 97

Adabas SQL Server Programmer’s Guide

7.

SQL Descriptor Area (SQLDA)o 98
General INformationot e 98
The SQLDA SHUCIUIE . ..ottt e e e et e e e e 101
Declaring an SQL DA 103
Allocating an SQL DA ..o e 104
Determining the type of SQL statementttt 104

CLIENT/SERVER TOPICS i 105

INtrodUCHION 105

Client/Server Configuration i 108
LINKED-IN MOot e e e e 108
Client/SErver MOOEo e 110
Mode Determinationttt e 112
Features ANd RESINICHIONSt e e e e e 112
Communication Protocolttt 113
Local Client/Server Mode With CSCIo e e 114
Remote Client/Server Mode With CSCl: i e e 115
Client/Server Mode With BroKerttt e e e 115
Time-Out Checkingoo i e e e e e 117

Accessto Adabas SQL Server 119
SOl S O MENES . ..ottt e 119
Default Adabas SQL Server (ESQSRV) ...ttt et 120
Server 1dentification 121
Server Routing File (ESQSRVRT) ... i it e e e 122

UNDERSTANDING SQL QUERY TRANSLATION

AND OPTIMIZATION ... 123
Information Availableon Trandated Queries.........................oooiut. 123
The Generated Adabas Direct Callsand Their Consequences.................. 124
Adabas Access Paths Used for Retrieval i, 124
Adabas HOld QUEUE USAgEottt e e e e 125
Usage of the Adabas MULTIFETCH Option ...ttt 125
Adabas Search Buffer Entries Generated for SLCommands 126
Preconditions for Superdescriptor Usage oottt e 126

10.

Table of Contents

Complex SQL Structuresand Their Trandlation 128
Procedural Code for JoiN ProCESSING oo v vttt e e ettt e 128
Principles of Adabas SQL Server Join Optimizationcccivineun... 130
Join Elimination for Nested Data-Structure ACCESSo v vttt i 131
SUDQUENY PrOCESSING .« v vttt ettt e e e e e e e 132

Reasonsfor External SOrting ... 134

Setting the BLOCK SIZE for Nested Data Structures 135

MULTIFETCH FEATURE 137

SQL MULTIFETCH .. e 138

DBSMULTIFETCH ... 138

RESINCHIONS . .. 139

Howto Use MULTIFETCH 139

EMBEDDING SQL STATEMENTSIN HOST LANGUAGES-C 141

General RUIES 141

Host Variables. ... 143

Adabas SQL Server C-String LOgICt 157

Error Handling 158

SQL Communication Area (SQLCA) 159

SQL Descriptor Area (SQLDA) 160

. EMBEDDING SQL STATEMENTSIN HOST LANGUAGES—-COBOL .. 161

General RUIES 161
Host Variables. ... 163
Error Handling 170
SQL Communication Area (SQLCA) 171
SQL Descriptor Area (SQLDA) ... 172

Adabas SQL Server Programmer’s Guide

12.

13.

\

EMBEDDING SQL STATEMENTSIN HOST LANGUAGES—-PL/I 173
General RUIES 173
Host Variables. ... 175
Error Handling 183
SQL Communication Area (SQLCA) 184
SQL Descriptor Area (SQLDA) ... 185
DB2TRANSACTIONMODE 187
APPENDIX A —THE SAMPLETABLES 191
Data Definition for the Base Table “SAILOR” e 191
Data Definition for the Base Table “YACHT” i i 191
Data Definition for the Base Table “CONTRACT”t 192
Data Definition for the Base Table “CRUISE” i, 192
Data Definition for the Base Table “PERSON” it 193
Data Definition for the Cluster “CITY-GUIDE”ttt 194
APPENDIX B— SAMPLE PROGRAMS i 195
Sample C—Program for the Creation of the Following SQL Tables 195
Sample COBOL Program for the Creation of the Following SQL Tables. 205
Sample PL/I Program for the Creation of the Following SQL Tables 214

APPENDIX C — THE ADABAS SQL SERVER CATALOG STRUCTURE 227

TheSchemas 227
The View Description Tableso e e e e 228

Table of Contents

APPENDIX D — ADABAS SQL SERVER AND

OTHER SOFTWARE AGPRODUCTS 251
AdabasSQL Serverand Adabas.................. . 251
Setting of Adabas Nucleus parametersiiiiiiiiein i, 251
Adabas SESSION CONEXESottt e 252
Adabas OP Command ittt 254
CommMand DSot 256
Global FOrmMat IDS . ..ottt 257
Adabas SQL Server and Entire Net-Work 258
Adabas SQL Server and Entire CSCI i 258
Adabas SQL Server and Entire Broker 262
Adabas SQL Server and Entire Service Manager
(CSCl Interfaceon IBM Mainframes)coiiiiiiiiiiiaan., 263
Adabas SQL Server/ADVANCED Interactive Facilities
(MVSandVSEonly)and Natural ..., 264
Natural UsSer EXItS .. oot e 264
Natural Databhase ACCESS . ..o vttt ettt e 264
Natural Parameter Module o 264
Adabas SQL Server and AdabasODBC Client 265
Adabas SQL Serverand Esperant 265
Adabas SQL Server and Entire Access (Open Systems) 266
Adabas SQL Server and Natural For Adabas SQL (Mainframes) 266
IN DX .o 267

Vi

VIl

PREFACE

Using This Manual — Some Basic Information

This manual describes the considerations necessary to successfully program SQL applications,
both in general and detailed per host language supported. Its intended audience are application
programmers with a basic knowledge of the concepts and facilities of Standard SQL and Adabas
C (in the following, the term Adabas refers to Adabas C).

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 5
Chapter 6

Chapter 7
Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

describes the elements and basic functions of Adabas SQL Server.
describes how Adabas SQL Server data structures are organized.
describes the concepts of the Adabas SQL Server security features.

describes the concepts of SQL programming, such as declaration sections,
comments, positioning of statements and transaction logic.

describes the specifics of static SQL programs.

describes the specifics of dynamic SQL programs.
describes the client/server architecture of Adabas SQL Server.

describes the process of trandating SQL statements into procedural form,
and generating Adabas commands for retrieval.

describes the use of the MULTIFETCH feature which is available in order
to minimize the data transfer and the interprocess communication
between the application, Adabas SQL Server and Adabas.

describes the rules which apply when embedding SQL statements in the
host language C.

describes the rules which apply when embedding SQL statements in the
host language COBOL.

describes the rules which apply when embedding SQL statements in the
host language PL/I.

describes DB2 transaction mode.

Adabas SQL Server Programmer’s Guide

Appendix A

Appendix B

Appendix C
Appendix D

describes the tables (without multiple-value fields and/or periodic groups)
used in examples throughout the manual.

contains the sample programs which are used to create the tables (without
multiple-value fields and/or periodic groups) used in examples
throughout the manual (the same logic isrealized in C, COBOL and PL/I).

describes, in detail, the structure of the Adabas SQL Server catalog.

describes special issues occurring when Adabas SQL Server interacts with
other Software AG Products.

Other Helpful Manuals

Other manuals you may need are:

— Adabas SQL Server Reference Manual

— Adabas SQL Server Installation and Operations Manual (platform-specific)
— Adabas SQL Server Messages and Codes

— aset of platform-specific Adabas Manuals

— aset of platform-specific Entire Net-Work Manuals

— Entire Broker Reference Manual

— ANSI/ISO Standards SQL (X3.135-1989/X3.168-1989, I SO/IEC 9075).

INTRODUCTION TO ADABAS SQL SERVER

Functionality

The product Adabas SQL Server is Software AG's implementation of the ANSI/ISO Standard
for the SQL database language. Adabas SQL Server provides an SQL interface to Software AG's
database management system Adabas. Software AG is committed to making Adabas SQL
Server available in most hardware and operating system environments where Adabas itself is
available. Furthermore, the core functionality of Adabas SQL Server will be identical across
platforms.

The Adabas SQL Utilities enhance the system by offering a basic as well as a comfortable
Interactive SQL Facility and Catalog Retrieval Services.

The SQL statements supported in version 1.4 are in compliance with the ANSI/ISO Standard
SQL (X3.135-1989/X3.168-1989, ISO/IEC 9075).

Main Adabas SQL Server Functionality

As aready stated, Adabas SQL Server provides an SQL interface for the Adabas database
management system. Adabas SQL Server offers three different ways to access and manipulate
data

— Adabas SQL Server supports either static or dynamic SQL statements, embedded in a
variety of 3rd generation host languages.

— Statements can be submitted using an interactive interface.
— Statements can be embedded in a Natural application program.

Currently Adabas SQL Server supports SQL statements embedded in either C, COBOL or PL/I.
Due to the modular design of Adabas SQL Server, the functionality isidentical regardless of the
host language chosen.

Adabas SQL Server Programmer’s Guide

SQL — Database Query Language

Structured Query Language (SQL) is designed to enable the definition of, the access to, and the
control of datain aDBMS. It has been laid down as an industry standard by the ANSI and SO
committees and has been adopted by numerous DBMS suppliers. It must be pointed out,
however, that many of the implementations of SQL do in fact diverge from the ANSI/ISO
standard.

SQL can be split into three main areas:

DML Data Manipulation Language is the means by which datais accessed and
amended.

DDL Data Definition Language defines the various data structures which can
be accessed.

DCL Data Control Language defines the privilegesin regard to users, particular

structures and operations.

SQL statements or commands can be submitted to Adabas SQL Server either interactively or
as part of an application program, in which case they are referred to as embedded.

Interactive SQL

Many SQL statements can be entered at the terminal directly and results will be displayed on
the screen immediately. Interactive SQL is designed for ad hoc queries, submitted by the end
user. Interactive SQL isin fact a special application using the facilities of dynamic SQL.

Embedded SQL

SQL statements can be used from within 3GL Programs and must be incorporated in the program
for this purpose. This procedure is commonly called embedded SQL. Embedded SQL
statements must always be prefixed with the delimiter EXEC SQL and are generaly suffixed
by the delimiter END EXEC. A host program with embedded SQL statements must be
submitted to Adabas SQL Server precompiler before it can be compiled by the respective host
language compiler and be executed.

Introduction to Adabas SQL Server

Static SQL

Static SQL refers to embedded SQL statements which can not be changed or modified after
being processed by Adabas SQL Server precompiler. Static SQL statements are coded at the
same time as the host program and are fixed thereafter.

Dynamic SQL

Dynamic SQL refers to statements which are dynamically constructed during runtime. The
dynamic SQL statements themselves are not directly embedded in the host language program
but are submitted to Adabas SQL Server compiler by special embedded SQL statements like
PREPARE. Using dynamic SQL offers the opportunity of creating highly flexible user
interfaces with minimal coding efforts.

Adabas SQL Server Programmer’s Guide

Compiler Options

SQL comes in many different dialects. Software AG’s implementation was developed taking
into consideration that in certain areas extra functionality, over and above the ANSI/ISO
standard is required. Therefore, useful extensions not provided for by the standard were
implemented; particularly to take full advantage of the functionality offered by Adabas.

It is important for the user to have available the required dialect of SQL to ensure that any
existing applications can be ported to Adabas SQL Server with as little effort as possible.
Compilation only takes place with reference to the current compiler options, which are set either
as a default for the SQL environment or by a particular user.

It should be noted that Adabas SQL Server does not permit the mixing of functionality contained
in different SQL variations. Indeed the user must actively decide upon which variation is
required for a particular application program. The three compatibility modes are:

e ANSI SQL mode
Adabas SQL Server supports standard SQL as described in the ANSI/ISO Standards SQL
(X3.135-1989/X3.168-1989, I1SO/IEC 9075).

e DB2transaction mode
Adabas SQL Server supports standard ANSI SQL and automatically issues transaction—control
statements (COMMIT. ROLLBACK) for a CICS environment. No DB2-specific SQL
statements are supported.

e Adabas extensions mode
Adabas SQL Server also supports extended functionality of its own. In this mode, all extensions
are alowed.

The ADABAS SQL Server Reference Manual states clearly whether a statement contains
extensions or sticks strictly to the ANSI SQL Standard. Divergences will always be brought to
the attention of the user as either a warning or as an error, depending on the current compiler
option settings.

In addition, the use of DDL/DCL statements can be controlled aswell as the ability to mix such
statements with DML ones, within a compilation unit.

For further details, refer to the description of the COMPILER MODE parameter in the
Parameter Processing Language in the platform-specific Adabas SQL Server Installation and
Operations Manuals.

Introduction to Adabas SQL Server

How Adabas SQL Server Functions

The development of an application program can be split up into three phases:
— The precompilation phase.

— The host language compilation and link phase.

— The application execution phase.

The Precompilation Phase

The developer of a 3GL application program must create a source file which contains the host
language program with embedded SQL statements. Such a program can not be passed directly
to the host language compiler because the embedded SQL statements are not part of the host
language. Therefore, prior to host language compilation, the Adabas SQL Server precompiler
must operate on the source file.

The precompiler is responsible for parsing the source file, extracting all SQL statements and
compiling them. It is in fact a three phase precompiler:

. In the first phase the SQL statements are collected and stored in a host-language-independent
way. The host language concerned must be known and all necessary host variable information
must be collected. The validity of the SQL statementsis not checked during this first phase of
precompilation.

e During the second phase, the collected SQL statements are compiled. The origina host
language is irrelevant in this phase. The precompiler checks all statements for validity and if
errors occur, logs these and eventually presents them to the user. Assuming there are no errors
a host language generation directive is generally produced for each SQL statement.

e Onceadl SQL statements have been successfully compiled, the third phase takes contral. In this
phase the original sourceis copied into another file called generated file and all SQL statements
are commented out. In their place the appropriate host language calls are generated, based on
the host language generation directive for the statement. The generated file which contains a
mix of host language code and SQL statements is thus transformed into a file which contains
only host language code.

Adabas SQL Server Programmer’s Guide

EXEC SQL
Insert

.......

Precompiler

/*
EXEC SQL
Insert

.......

esqlnk(...);

e
Catalog

~

Reference was made earlier to the catalog. Thisis an Adabas file which is essential for Adabas
SQL Server because it contains information on the tables, views and databases accessible by
thisinstallation. Thisinformation is required during the compilation of SQL statements and so
all references to any tables or views are fully checked and resolved at compilation time. No

Figure 1-1: The Precompilation Phase

further checking is needed unless the view or table definitions have changed.

Introduction to Adabas SQL Server

Host L anguage Compilation Phase

Assuming no errors were discovered during the precompilation phase, the generated file must
now be submitted to the appropriate host language compiler and, assuming no errors are
discovered during its compilation, linked with the necessary Adabas SQL Server client
communication modules. These vary from platform to platform but jobs or procedures are
provided to facilitate all of these tasks. The application is now ready for execution.

/*

EXEC SQL Host Application
Insert Language Object
,,,,,, : . Compiler e

S Lﬁ]nkder Client Com-
esqlnk(...); mKA”o'SZ‘?f”

Figure 1-2: The Host Language Compilation Phase

Executing the Application Program

The application program may now be executed. Eventually the program will encounter some
generated code and so control passes to the Adabas SQL Server Runtime system (RTS). The RTS
receives enough information to be able to retrieve the appropriate meta program from the
catalog.

However, if the statement has never been executed before, then the meta program will not be
present in the catalog. In such a case, information representing the statement is obtained
automatically from the application program and is used to generate a meta program, which is
subsequently stored in the catalog. This meta program is then retrieved whenever the statement
is to be executed again.

In order to minimize database access, al information kept in the catalog including meta
programs is buffered in an incore buffer. Meta programs are a so re-entrant, meaning that many
users executing the same application program only need one copy of a meta program.

Adabas SQL Server Programmer’s Guide

The meta program describes the steps needed to interface with Adabas and to execute the
original SQL statement. There may be numerous steps involving many Adabas calls before the
meta program will return control to the application program. But, before thisis done, the SQL
communication area (SQLCA) isloaded as appropriate and any host variables are assigned their

values.

Run

. Time
Application
Program ~ System ~

noowar

Adabas

———

Catalog

—

Figure 1-3: The Execution Phase

ADABAS SQL SERVER DATA STRUCTURES

Data Organization

Catalog

Adabas SQL Server needs to keep information about all the data structures known to the SQL
environment. The catalog which contains all the necessary information about tables, views etc.
ismaintained by Adabas SQL Server for this purpose. All relevant information about an object
must, in general, be present in order to compile statements based on that object. During
compilation the validity of a particular statement will be determined based upon the information
contained in the catalog.

In a future release of Predict, Software AG’s data dictionary, there will be an interface to the
catalog enabling the use of dictionary and case tools within the SQL environment.

In addition to various database objects, so called meta programs also reside in the catalog. A
meta program is the internal representation of an SQL statement. In the case of statically
invoked statements and persistent dynamic statements, meta programs are also stored in the
catalog. Any change to the catal og resident objects, is automatically reflected in all dependent
meta programs.

The catalog resides in one Adabas database, however, objects described in the catalog may
reside in other Adabas databases. There is only one catalog for an Adabas SQL Server.

The catalog must always be accessed using Adabas SQL Server. Attempts to access the catalog
using Adabas direct calls could lead to unpredictable results.

11

Adabas SQL Server Programmer’s Guide

Schema

The CREATE SCHEMA statement is used to create alogical container within the catalog. This
container is used to group together subsequently created catalog resident objects.

These objects are:

— table clusters (and their descriptions),
— tables (and their descriptions),

— tablespaces,

— indexes,

— privileges,

— constraints and

- views.

All of these objects may only be created within a schema.
Each schema must have a unique identifier within the catalog.

The schema, and the objects contained in the schema, are considered to have an owner. This
owner is specified by the resulting authorization identifier established during the execution of
the CREATE SCHEMA statement. Only the owner of the schema may subsequently create or
destroy objects within the schema. Furthermore, only the owner can initially grant access
privileges to objects contained within the schema.

Therefore, a schema is a collection of data structures and objects defined by a set of DDL
statements with a set of associated privileges defined by a number of DCL statements.

Only the designated Database Administrator (DBA) can issue CREATE or DROP SCHEMA
statements on behalf of the owner.

12

Adabas SQL Server Data Structures

Tables And Table Clusters

Actua data is contained in tables. A table consists of zero or more rows and of one or more
columns. Thetableis populated with data, i.e. rows are added by the INSERT statement. Tables
which actually physically exist are called base tables. An example of a table which does not
physicaly exists is a viewed table which is an extract of one or more tables. Master tables,
subtables or tables with rotated fields are also considered to be base tables.

A cluster (of tables) is an Adabas SQL Server extension, which enables a complex Adabasfile
structure to be mapped to various associated SQL tables.

An Adabas file without multiple value fields (MU) or periodic groups (PE) is generally
represented in one base table. Additionaly, if an MU or PE field has a fixed number of
occurrences, then it can be represented in a base table. The field is said to be 'rotated’. Thisis
where each occurrence is represented by an explicit SQL column.

An Adabasfile containing either MUs and/or PES, where rotation (see below) is not appropriate,
is generally represented in a table cluster. A table cluster consists of one master table and
generally one or more subtables.

It is permitted to define an Adabas file without MUs and/or PES as atable cluster. Thiswill result
in only one master table.

There are some restrictions which apply when amending subtables. Explicit deletion of rows
in asubtableis not permitted. For details of the restrictions regarding the UPDATE and INSERT
statements refer to the Adabas SQL Server Reference Manual, section ROW AMENDMENT
Expression or the statement information itself.

The execution of a CREATE TABLE statement or a CREATE CLUSTER statement resultsin
the physical creation of an Adabas file and the insertion of atable description(s) in the catal og.
A table description is Adabas SQL Server’sinternal mapping of the Adabas file in terms of the
SQL table. Should the Adabas file already exist, then by executing either a CREATE TABLE
DESCRIPTION statement or a CREATE CLUSTER DESCRIPTION statement the file will be
introduced to the SQL environment. In such a case, only the description (s) isinserted into the
catalog.

Table Levels

Master tables are aways considered to be level 0" tables. Directly dependent subtables,
representing Adabas MU and/or PE fields are always considered to be level ' 1’ tables. Subtables
representing MU fields within a periodic group are always considered to be level ' 2’ tables. The
ruling logic is that one or more lower level tables always reference only one higher level table
within a cluster.

13

Adabas SQL Server Programmer’s Guide

Master Tables And Subtables

The relationship between a master table and its subtables, in SQL terms, is defined using a
primary key/foreign key relationship. Asis compatible with the relational model, aforeign key
must be equal in value to a unique occurrence of the primary key in the referenced table.

In acluster, the foreign key and the primary key are actually physically the same Adabasfields.

In the SQL environment they are perceived to be distinct column sets. In Adabas terms, this

relationship is simply expressed by the existence of :

— an MU or aPE within a particular record (for alevel 1 table) or

— an MU within aparticular PE (for alevel 2 table) which in turn must be within a particular
record.

The definition of the primary/foreign key within a cluster for a level 1 table must therefore
include sufficient columns so that a particular Adabas record can be uniquely identified, in
which the subtable row resides. For a level 2 table, the definition of the key must include
sufficient columns of the level 1 table so that not only can the Adabas record be uniquely
identified, but also the level 1 PE occurrence within that record can be uniquely identified in
which the level 2 row resides.

The significance of thisisthat a particular row, or set of rows of a subtable, can only exist within
an existent master table row and referential integrity is therefore, guaranteed.

Tables with Rotated Fields

If an MU field semantically has a fixed number of occurrences, then thisfield can be 'rotated’.
This means that each occurrence within the field is mapped to an explicit SQL column. For
example, if an MU field has 12 occurrences, each representing a month of the year, then 12
separate columns would be defined (January through December) corresponding to each
occurrence. Such a table with rotated fields is an alternative to a clustered representation and
does not have to be defined within a cluster description.

Columns/Indexes

14

If one or more columns are defined to be unique, then each row is by definition distinct from
any other in the table. Any such column may be considered as a candidate key for the table as
amaximum or one row would be identified if a search were initiated over the table where the
candidate key column equals a particular value.

A particular column, or indeed group of columns, may be defined as an index. Thisis intended
for better performance upon accessing the table. An index need not necessarily be unique.

Adabas SQL Server Data Structures

SEQNO Columns

In addition to the defined columns, each row of a base table always contains a SEQNO value.
Such values can either be accessed using the SEQNO special register, or can be explicitly named
as acolumn. In case of alevel 0 table the SEQNO(0) value holds the Adabas SN otherwise it
is the occurrence number.

Tablespaces

The CREATE TABLESPACE/CREATE DEFAULT TABLESPACE statements are nothing
more than a method of defining the Adabas File Control Block (FCB), which gives details about
the physical limits of an Adabasfile. In an Adabas database, the FCB and the File Description
Table (FDT) are needed to define an Adabas file.

In earlier Adabas SQL Server versions, it has been necessary to specify a tablespace for each
table to be created. From the current version on, the following alternatives will be available:
— Explicit specific tablespace.

— Default tablespace for a specific schema.

— Hard-coded tablespace that is used as a last resort.

To be able to utilize the latter two tablespaces, it is necessary to provide a mechanism to find
afreefile number. Thisis performed by doing an Adabas’LF command; |ooking for the Adabas
Response Code 17. As this response code has more than one meaning, Adabas SQL Server has
been enhanced by the parameter processing capability to specify the range of file numbers to
be searched. Make sure that the file numbers of security-related files and/or otherwise sensitive
files are outside of these search ranges. See Appendix: The Parameter Processing L anguage
in the Adabas SQL Server Installation and Operation Manual for more details).

From the current version onwards, it has also been possible to remove the restrictions on
mandatory tablespace elements, because the hard-coded default tablespace settings are merged
with those of the CREATE TABLESPACE/CREATE DEFAULT TABLESPACE.

15

Adabas SQL Server Programmer’s Guide

Hard-coded Tablespace

The hard-coded default tablespace has been designed to be used in atest environment where the
size of atable (number of rowsin atable) is small. The hard-coded default tablespace values
are quite low compared with production databases. They are defined below in terms of a
CREATE TABLESPACE statement:

CREATE TABLESPACE def aul t
(

dat abase = <cat al og dat abase nane>

maxi sn = 300

ni size = 10 BLOCK
dssize = 10 BLOCK
ui size = 10 BLOCK

dsreuse = yes

)

Note: Thistype of tablespace is used as a last resort; a tablespace for a specific table has highest
priority followed by the default tablespace for the current schema.

Default Tablespace for a Specific Schema
(Specified using the CREATE DEFAULT TABLESPACE Statement).

Defines a tablespace that will be used whenever there is no specific tablespace definition for
atableto be created. Thistablespace is at the schemalevel; in other words, all tables within the
current schema will inherit the values from this tablespace, as long as there is not a specific
tablespace (explicit specific tablespace) for a table.

Note: If no other values are explicitly specified, the hard-coded default tablespace values are
merged with those specified in the CREATE DEFAULT TABLESPACE statement.

Explicit Specific Tablespace
(Specified using the CREATE TABLESPACE Statement).

16

Thisis the optima method of specifying the FCB attributes of an Adabas file.

Note: If no other values are explicitly specified, the hard-coded default tablespace values are
merged with those specified in the CREATE TABLESPACE statement.

Adabas SQL Server Data Structures

Conversion of Adabas Field Attributesto Adabas SQL Server Column

Attributes

The table below shows how the most important Adabas field attributes are converted into
Adabas SQL Server column attributes:

Adabas Field Attributes Adabas SQL Server Column Attributes
Fl FIXED
NU NOT NULL SUPPRESSION or
NULL SUPPRESSION or
SUPPRESSION
NC NULL
NN,NC NOT NULL
No-attribute field NOT NULL DEFAULT ADABAS or
(Adabas field with no attributes, NULL DEFAULT ADABAS or
DE and UQ do not count) DEFAULT ADABAS

From thistable, it can be seen that for the’NU’ and ' no-attribute’ fields, it is possible to specify
both NULL and NOT NULL (NULL is also assumed when neither is specified).

When you specify NULL, the columns of a row that have been compressed will be
converted into the SQL NULL value. Thismeansthat 0 (zero(s)) and’ * (space(s)) can not
be represented.

When you specify the NOT NULL attribute, the compressed data will be converted to
either 0 (zero(s)) or * ' (space(s)).

17

Adabas SQL Server Programmer’s Guide

Views

18

This introduces a restriction of how Adabas SQL Server can use these columnsin a UNIQUE
constraint or UNIQUE INDEX specification. This is because of what Adabas stores in the
inverted list, when the fields with "NU’ attribute or fields without the 'NC’ attribute are used.
— The usage of the Adabas attribute 'NU’ must have the SQL column attributes of

SUPPRESSION or NULL SUPPRESSION, when specified in a column of a UNIQUE
constraint or UNIQUE INDEX specification.

— For fields without the 'NC’ or 'NU’ attributes, the attributes NOT NULL DEFAULT
ADABAS must be specified.

— Inthecase of PRIMARY KEY'’s, the field attribute "NU’ is not allowed.

Note:
DEFAULT ADABAS like all other defaults, allows the insert statement to have column values
implicitly given when they are not specified in the insert statement itself. In the case of
DEFAULT ADABAS the default valueis that which is provided by Adabas for the specified data
type.

Adabas SQL Server supports the concept of views or viewed tables. These are conceptually
virtual tables which are based on the base tables. It should be noted that there are severd
restrictions on the use of views especialy regarding update operations. Views are used either
to make data access easier by abstracting data from base tables, (e.g., grouped views or joined
views) or as a means of security in which certain portions of atable are ‘blanked out’ by the
overlaying view definition. For details refer to the Adabas SQL Server Reference Manual,
section Create View.

Adabas SQL Server Data Structures

Constraintsand I ndexes

Indexes

The following conditions apply when defining and using indexes and/or constraints;

It is not possible to define an index on a column of type ’'long alpha’ (a character column
of greater than 252 character in length).

Indexes which are made up of parts of acolumn areignored by Adabas SQL Server’s query
processor (i.e. if anindex is defined across characters 5 through 7 of a character column,
then thisindex is not valid).

UNIQUE Constraints, UNIQUE INDEX and PRIMARY KEY Constraints.

It is not possible to define an index on a column of type long alpha (a character column
of greater than 253 character in length).

A UNIQUE constraint adds an Adabas UQ attribute to a super-, sub- or column- descriptor.
The difference between a UNIQUE constraint and a UNIQUE INDEX is, that a UNIQUE

INDEX may be used to define sub- or superdescriptors which are only parts of a column.
Like indexes, these are also ignored by the SQL query processor.

A UNIQUE constraint for a subtable (level 1 or 2 table within a CLUSTER), may only be
defined on columns of the FOREIGN KEY constraint plus at least a column of the type
SEQNO(n); where n is either 1 or 2 dependent on the table level. It is also possible to
‘over-qualify’ aUNIQUE constraint on a subtable by defining columns that are part of the
subtable other than the SEQNO column. This can be used to provide extra columnsin a
level 2 subtable (column ¢ of the following example):

19

UQINDEX

20

Adabas SQL Server Programmer’s Guide

CREATE CLUSTER xxx
CREATE TABLE TO (

UNI QUE (a, b)

)

CREATE TABLE T1 (

a

seqgno_| evel _1

b

c

FOREI GN KEY (a, b) REFERENCES TO(a, b)
UNI QUE (a, b, seqno_level _1,c)

)

CREATE TABLE T2 (

a

b

c

Foreign Key (a,b, seqno_level _1,c)

To define an Adabas UQ attribute on column(s) of a subtable that do not obey rule 4, use
the UQINDEX.

A UQINDEX is a method of representing the Adabas UQ attribute which is not considered to
be unique in SQL terms. The following rules apply:

A UQINDEX may only be defined on level 1 or 2 subtables.

The UQINDEX should be used to define the UNIQUE constraint that built the FOREIGN
KEY relationship.

A UQINDEX should be used to either represent the UQ attribute on columns of a Adabas
Periodic group (PE) or Multiple-value field (MU), or represent a sub- or super-descriptor
which contains columns of a Periodic group (PE) or Multiple-value field (MU).

Adabas SQL Server Data Structures

Data Definition L anguage Name Generation Algorithm.

Within the Data Definition Language (DDL), there are two places where names may be
generated. These are:

— Adabas filenames when doing a CREATE TABLE or CREATE CLUSTER statements.
— Catalog objects such as constraints, indexes and internal objects.

Generation of Adabas Filenames

When performing a CREATE TABLE or CREATE CLUSTER statement, DDL generates names
for the Adabas filename. The rule for generating a Adabas filename is:

schema nane. tabl e nanme or schema nane. cl uster nane

Whereby the total length of the filename may not exceed 16 characters. This means that the
schema name and or the table name may need to be truncated (both schema names and table
names are 32 characters long). The following rules exist for this purpose:

— Schema name will be truncated at 7 characters.

— Thetable or cluster name, will be a minimum of 8 characters long. But in the case of a
schema name being less than 7 characters long, the table or cluster name maybe up to 16
(length of schema + 1) long.

Generation of Catalog Object Names

Adabas SQL Server may generate names for the following objects within the catal og:
— Congtraint names
— Index names

— Internal catalog objects
(currently there is only one internal object, this being the object Adabas file)

Note: The generation of names for constraints is a requirement of the SQL-92 standard).

21

Adabas SQL Server Programmer’s Guide

The tota length of the generated name as shown below, may not exceed 32 characters. This
means that it may be necessary to truncate the object name to facilitate this limitation. All
catalog objects use the following name generation rule:

object prefix object name [timestamp]
Whereby:

Object prefix: Is a2 character prefix followed by 2 underline characters (e.g. “TC__").

Object name: Is either a cluster, table or column name dependent on where the object was
defined.

Timestamp lis atimestamp in the format “YYYYMMDDHHMMSS’ (as text).

Note: Timestamp is optional and will only be used to generate a unique name within the objects
scoping rules. For further details about scoping rules, refer to section Scoping Rules Of
Catalog Objects later in this chapter.

The table below givesalist of all currently defined prefixes, what they mean and the object name
type that will be used with them.

Prefix Object Name Origin Description

AF Table or cluster name Adabasfile. Thisisan internal object generated by Adabas
SQL Server for each Adabasfile that is defined in the cata
log.

CcC Column name Column constraint. All column constraints without names
will have objects generated with this prefix.

Cl Column name Column index.

TC Table name Table congtraint.

TI Table name Table index.

PI Table name Phonetic indx. Thisisreserved for future use and will then
represent a PHONETCI descriptor within the catal og.

VI Table name Virtua index. Thisis also reserved for future use and will

then represent a HY PER descriptor within the catalog.

Note: A column level object may be generated at certain points even though a table level object
was originally defined. For example, table constraints and table indexes may be converted if
they only contain one column.

Adabas SQL Server Data Structures

Scoping Rules Of Catalog Objects.

Some Objects within the Adabas SQL Server catalog have different scoping rules, at which level
their names must be unique. The table below shows these objects and their scoping level:

Object Catalog Schema Table
Databasename L~

Database number [l

Column name L~
Constraint name [l

Cluster name L~

File number L~

Index name [l

Schemaname L~

Table name [l

Tablespace name L~

User name [

23

Adabas SQL Server Programmer’s Guide

Databases

24

The term database within Adabas SQL Server, refers to the Adabas definition of the word, i.e.
acollection of zero or more files which are accessible using the unique Adabas file number and
the unique Adabas database ID number. Within Adabas SQL Server, a database is merely the
physical location of the data.

In SQL statements, the physical database number can not be used. Instead a unique logical
database identifier must be used. Thisisan SQL identifier. The connection between the database
number and the database identifier is made by the execution of a CREATE DATABASE
statement.

Before any objects can be created in a schema, a suitable database identifier must have been
defined.

Whenever a CREATE TABLE statement is executed, the physical table is created in the
designated Adabas database as specified in the associated CREATE TABLESPACE statement.
At the same time, adescription of the table is entered into the catalog. This description contains
the value of the database number where the table physically resides. Whenever the table is
referenced in a statement, Adabas SQL Server expectsto find the table at this specified location.

A particular Adabas SQL Server may access numerous Adabas databases at the same time and
under some circumstances an Adabas database may be remote. The catalog must reside in an
Adabas database as well, however objects may be described in the catalog which residein other
Adabas databases. Tables from different databases may be freely combined in the same
statement. Adabas SQL Server automatically establishes communications with the given
Adabas databases as and when required.

Additionally, within the same transaction, tables from distinct databases can be amended. After
these changes have been committed, separate Adabas ET commands are issued. If any one of
these fails, then the changes that have been committed in the other databases remain valid.

Adabas SQL Server Data Structures

Datain Table Clusters

Describing Adabas Nested Data Structures

In the context of the conceptual SQL schema, Adabas multiple-value fields (MU) and periodic
groups (PE) can have various meanings.

One possihility is the interpretation of such afield as a summary of columns (and/or column
groups) with the same data type. For details, refer to the section Tables with Rotated Fields
earlier in this chapter.

Another possibility exists for apha-type MU fields; they can simply be interpreted as running
text.

In general, however, MU/PE fields can be approached as set-valued or as list-valued attributes.

Since the relational data model — and thus SQL as well — recognizes only elementary attribute
types, structured attributes must be modeled in individual tables, which are linked to the master
table with the help of foreign keys.

The CREATE CLUSTER DESCRIPTION Statement

The SQL structures resulting from any Adabas file structure with MU/PEs are generated with
the help of a CREATE CLUSTER DESCRIPTION statement.

The drafting of such statements can be a complex, laborious operation. By using the Generate
Table Description Utility (ESQGTD), you can easily draft CREATE TABLE/CLUSTER
DESCRIPTION statements. They can then be edited by hand and be submitted to the server.

The following table shows, for example, the definition of Adabas structures which summarize
information about states, cities, places and buildings in one file.

The PE group “B0” (“cities’) demonstrates a set-valued attribute of “states.” Along with the
simple attributes “city name” and “population” (“BA” and “BB"), “cities’ itself also has
set-valued attributes. While the MU field “DA” (“places’) is compiled smply as alist of places,
the buildings in a city are represented in two MU fields, “CA” (“building name”’) and “CB”
(“height”). Such parallel MU fields, as they are known, substitute for the ability to nest PE
groups within one another, which is not possible.

25

Adabas SQL Server Programmer’s Guide

Field Definition Table (FDT) of Database No. 214, File No. 134 (CITY_GUIDE)

26

Level | Nane | Length | Format | Options | Conment
1 I AA | 2 | A | DE UQ | states.abbreviation
1 I AB | 20 | A I DE, UQ | states.state_nane
1 I AC | 20 | A | DENC | states.capital
1 I AD | 4 | F I NC | states. popul ation
1 I BO | | I PE I cities
2 I BA | 20 | A | DENJ I cities.city_nane
2 I BB | 4 | F 1 N | cities.population
2 I CA | 20 | A I Ny MW I buil di ngs. bui I di ng_nane
2 I CB | 2 | F 1 Ny M I bui I di ngs. hei ght
2 I DA | 20 | A I Ny MW | places. pl ace_nane
Type I Nane | Length | Format | Options | Parent field(s) Fnt
SUPER I X1 1 22 | A I NU, UQ PE I BA (1 - 20) A
[[[[I M (1- 2) A

It cannot be recognized from the definition of the Adabas structure that “CA” and “CB” areto
be seen as parallel, whereas “CA” and “DA” are independent from one ancther.

The following table shows the Adabas SQL Server cluster representation of the above Adabas
file structure. The information available in the FDT is automatically transmitted to the cluster
description and must not be entered by hand anymore.

Therefore, the data types of the individual columns were not shown in the example. The link
from the column to the Adabas field is established using the SHORTNAME clause. A table
description and/or cluster description does not necessarily have to reference all fields of an
Adabas file. In any case, it is not possible, and for good reason, to enter several independent
descriptions for the same Adabas file in the catalog; i.e., unreferenced fields are invisible for
the entire ADBAS SQL Server.

Adabas SQL Server Data Structures

Catalog Representation of the Above Field Definition Table

CREATE CLUSTER DESCRI PTI ON city_gui de
DATABASE DB_214 FILE NUMBER 134

(

CREATE TABLE DESCRI PTION states (

abbrevi ati on SHORTNAME " AA" PRI MARY KEY DEFAULT ADABAS,

st at e_nane SHORTNAME " AB° UNI QUE NOT NULL DEFAULT ADABAS,
capital SHORTNAME ' AC | NDEX state_capital,

popul ati on SHORTNAME ' AD

)

CREATE TABLE DESCRIPTION cities (

st at e_abbrev SHORTNAME ' AA',
city_seqno SEQNQ(1),

city_name SHORTNAME ' BA',
popul ati on SHORTNAME ' BB’ ,

PRI MARY KEY (state_abbrev, city_seqgno),

FOREI GN KEY (state_abbrev) REFERENCES st ates,

I NDEX UNI QUENESS city_state (city_nane, state_abbrev)
)

CREATE TABLE DESCRI PTI ON bui I dings (

st at e_abbrev SHORTNAME ' AA",

city_seqno SEQNQO(1),

bui | di ng_seqgno SEQNQ(2) ,

bui | di ng_nane SHORTNAME ' CA',

hei ght SHORTNAME ' CB'

PRI MARY KEY (state_abbrev, city_seqno, building_seqgno),
FOREI GN KEY (state_abbrev, city_seqno) REFERENCES cities
)

CREATE TABLE DESCRI PTI ON pl aces (

st at e_abbrev SHORTNAME " AA" NOT NULL DEFAULT ADABAS,
city_seqno SEQNQ(1),
pl ace_nane SHORTNAME ' DA,

FOREI GN KEY (state_abbrev, city_seqno) REFERENCES cities
)

27

Adabas SQL Server Programmer’s Guide

Table Levels and Foreign/Primary Key Relationships

Rules for

28

The cluster concept is the only method which alows physical representation of severa base
tables by means of a single Adabas file. The base tables are connected with one another using
referential constraints. In the current version, referential constraints are used solely to describe
the physical relationships among the base tables within a cluster. The genera rule is that a
foreign key must always reference a primary key.

In a cluster, there is exactly one table which does not contain a foreign key. This table is
designated as the master table.

All remaining tables are designated as subtables and are either:
— level 1tables, i.e. tables which contain a foreign key to the master table, or
— level 2 tables, i.e. tables which hold a foreign key to alevel-1 table in the cluster.

In the example cluster “city guide,” “states” isthus the master table, “cities’ alevel-1 table, and
“buildings’ and “places’ are level-2 tables.

The value of aforeign key shows where the row of a subtable belongs. If, for example, R_city
isarow of “cities,” then R_city.state_abbrev shows the state to which the city described by
R _city belongs. In this way, it is also clearly identified which Adabas record contains R_city.
The following rules for CREATE CLUSTER DESCRIPTION must be followed in order to keep
this physical relationship clear:

Cluster Descriptions
Foreign keys reference only unique constraints. A subtable contains exactly one foreign key.

The same rules apply for the columns, constraints and indexes of the master table as for a
CREATE TABLE DESCRIPTION statement.

Columns which are not an element of aforeign key and not of a SEQNO type are called data
columns. The limitations under rules 4—7 apply to data columns in subtables.

The data columns of alevel 1 table correspond either to MU fields which do not lie within a PE
group, or to fields within a single PE group.

The data columns of alevel 2 table correspond to MU fields within a specific PE group — the
group containing those fields which the data columns in the referenced table correspond to.

Not more than one data column may correspond to each field (with rotated fields, each subscript
counts as its own field).

Adabas SQL Server Data Structures

With parallel MU fields, it is assumed that in all Adabas records, the respective counter values
are the same.

For x=1 or x=2, a unique constraint of alevel x table encompasses the elements of the foreign
keys and a column of the type SEQNO(x). Other unique constraints on subtables are not allowed.

For indexes to subtables, the same rules apply asfor level-0 tables, plus the following additional

constraints:

— UNIQUE INDEX is not allowed. In order to model the Adabas UQ option, UQINDEX
is used.

Note: A unique constraint is defined as either a UNIQUE or PRIMARY KEY constraint.

As with CREATE TABLE DESCRIPTION, indexes and UNIQUE constraints are also
automatically supplemented in the catalog for CREATE CLUSTER DESCRIPTION; in the
example, something like an index for the descriptor “BA”. Manual intervention is, however,
necessary if the name of the index or constraint is to be determined by the application. Unique
constraints on subtables, apart from the strongly regulated primary key constraints, are not
allowed because the Adabas UQ option cannot guarantee SQL unique features in structured
fields. The keyword UQINDEX serves as a substitute here.

These rules ensure that apart from afew special cases, which are described in the section below,
the standard DML operations can be carried out on subtables.

Periodic Groups with only Multiple-value Fields

In the case of a PE data structure containing MU fields only, it is necessary to use an Adabas
shortname on the SEQNO(1) of the PE-subtable. In the following example, the table description
"cities' describes the dummy table which has to be created for later reference purposes.

29

Adabas SQL Server Programmer’s Guide

Field Definition Table (FDT) of Database No. 214, File No. 134 (CITY_GUIDE)

Level | Nane | Length | Format | Options | Conment
1 I AA | 2 | A | DE UQ | states.abbreviation
1 I AB | 20 | A I DE, UQ | states.state_nane
1 I AC | 20 | A | DENC | states.capital
1 I AD | 4 | F I NC | states. popul ation
1 I BO | | I PE I cities
2 I CA | 20 | A I Ny MW I buil di ngs. bui I di ng_nane
2 I CB | 2 | F 1 Ny M I bui I di ngs. hei ght
Type I Nane | Length | Format | Options | Parent field(s) Fnt
SUPER I X1 1 22 | A I NU, UQ PE I BA (1 - 20) A
[[[[I M (1- 2) A

Catalog Representation of the Above Field Definition Table

CREATE CLUSTER DESCRI PTI ON city_gui de
DATABASE DB_214 FILE NUMBER 134

(

CREATE TABLE DESCRI PTION states (

abbrevi ati on SHORTNAME " AA" PRI MARY KEY DEFAULT ADABAS,

st at e_nanme SHORTNAME " AB° UNI QUE NOT NULL DEFAULT ADABAS,
capi tal SHORTNAME ' AC | NDEX state_capital,

popul ati on SHORTNAME '’ AD

)

CREATE TABLE DESCRIPTION cities (

st at e_abbrev

SHORTNAME '’ AA’

city_seqno SEQNQO(1) SHORTNAME ' BO' NOT NULL,
PRI MARY KEY (state_abbrev, city_seqgno),
FOREI GN KEY (state_abbrev) REFERENCES st ates,
)
CREATE TABLE DESCRI PTI ON bui |l di ngs (
st at e_abbrev SHORTNAME ' AA',
city_seqno SEQNQO(1) SHORTNAME ' B0’ NOT NULL, ,
bui | di ng_seqgno SEQNQ(2) ,

bui | di ng_nane
hei ght

PRI MARY KEY (state_abbrev,
FOREI GN KEY (state_abbrev,

)

30

SHORTNAME ' CA',
SHORTNAME ' CB',
city_seqno,
city_seqgno)

bui | di ng_seqno),
REFERENCES cities

Adabas SQL Server Data Structures

Using Adabas Nested Data Structures

There is very little difference between manipulating data in table clusters versus non-clustered
tables. However, some limitations apply and are pointed out below. Furthermore, it is
advantageous to know how nested data structures are processed in order to really receive the
maximum performance benefits, which can be gained from the nesting.

Limitations

When modifying subtables, the following restrictions apply:

Individual DELETE is not Supported

The DELETE statement must not be directly applied to a subtable but always to the relevant
master table. An implicit DELETE takes place when deleting a row that is referenced by the
table' s foreign key constraint, i.e. the DELETE cascades from the master table to the subtable.

Non-insertable Columns

You are not allowed to explicitly insert values into SEQNO(1) and SEQNO(2) columns. Their
values are always assigned automatically and can not be set or modified.

Non-updatable Columns
Foreign key columns of subtables and SEQNO columns are not updatable. These contain

information concerning the physical location of a row, which can not be changed during an
update operation.

Anomalies for clustered Tables Containing Non-suppressed Columns

A subtable containing a column without the SUPPRESSION attribute (i.e. the Adabas NU
option), may contain rows where the column values are all defaults, even though these rows have
not been explicitly inserted. Thisis caused by the Adabas policy of expanding the compressed
Adabas records from left to right. The effect does not occur when the SUPPRESSION attribute
has been used.

An INSERT statement on a subtable must specify all elements of the FOREIGN KEY. These
elements must uniquely address one row of the referencing table.

Performance Aspects

When datais being retrieved from table clusters, it will often be necessary to formulate joined
queries. Asageneral ruleit can be assumed, ajoin between a subtable and it's master table does
not require specia join processing, if the join condition compares the foreign key of the subtable
against the referenced key of the master table.

31

32

THE ADABAS SQL SERVER SECURITY CONCEPT

Introduction to Servers with the Security Features

Access to al data can be controlled using the security functionality provided by Adabas SQL
Server. Such functionality is compliant with the ANSI Standard and is, therefore, in addition
to any security mechanisms provided by Adabas itself. SQL security functionality is defined by
Data Control Language Statements (DCL).

SQL contains the concept of a data owner. A schema aways has an owner as specified by the
authorization identifier when the the schemais created. The authorization identifier will specify
a particular user, which is already known to the system. Any data objects created within the
schema, automatically belong to the owner. It is only the owner of the schema who may alter
the contents of a schema by executing DDL statements, e.g. CREATE TABLE, DROP VIEW
etc.

Adabas SQL Server, therefore, also has the concept of a user, as defined by the CREATE USER
statement. The execution of such a statement by the DBA, results in the introduction of a unique
user identifier to the Server.

Privileges

Privileges are access rights to a particular data object e.g. base table or view. The owner of the
data object aways has al privileges for that object. The privileges are :

SELECT aright to read from the table or view
INSERT aright to insert into the table or view
DELETE aright to delete from the table or view
UPDATE aright to update a table or view or a column

Privileges can be given to another user, other than the owner, using the GRANT statement. The
owner initially grants privileges to other users. The owner may not only grant the basic
privileges, but may additionally grant the right to grant the privilege to athird user. Thisisdone
using the WITH GRANT OPTION. Whole hierarchies of privileges may be established.

A privilegeis one of the above access rights for a particular data object for a particular user with
the optional WITH GRANT OPTION qualification. The privileges are stored in the catalog and
are maintained using the GRANT and REVOKE statements.

33

Adabas SQL Server Programmer’s Guide

It is not only a specific user who may be the recipient of a privilege. The’pseudo user’ PUBLIC
may also be granted access rights. This means that everybody may access the data object.

A particular user may only receive a particular privilege once. For example, if user Tim grants
Peter a privilege and Peter in turn grants the same privilege to Kevin, then if Kevin triesto grant
the privilege to Tim again this would be rejected. This means, no cyclic privileges are permitted.
In addition, in another example, if Tim were to grant to Peter and Kevin the same privilege and
then Peter granted Martin the privilege and Kevin tried to grant the privilege to Martin, then
Kevin's attempt would be rejected. This means, no networks of privileges are permitted. Only
simple tree structures of privileges are permitted.

Views and Security

In order to create a view, based upon a data object owned by somebody else, the view's creator
must posses at least the select privilege for that data object. Furthermore, although the creator
of the view is the owner of the view, he may only grant privileges to the view to other usersiif
heisin possession of the WITH GRANT OPTION for the original data object.

If the view is by its nature read-only (e.g. it is a joined view) then the view will only have
associated SELECT privileges. If, however, it is technically possible to update the view, then
any privileges in addition to the SELECT privilege possessed for the data object upon which
the view is based will be inherited.

Any such view is, therefore, dependent upon the SELECT privilege.

Removing Privileges

34

Privileges can be removed from a recipient using the REVOKE statement. The REVOKE
statement explicitly removes a privilege and deletes it from the catalog. No CASCADE
functionality is possible. This means that if there are other privileges dependent upon the one
which isto be revoked, then they must be revoked first. In addition, if there is a dependent view,
then it must be manually dropped, prior to revoking the privilege.

In contrast to the REV OKE statement, if a data object is dropped, then all associated privileges
are indeed automatically revoked.

In an analogous fashion to DDL statements, the GRANT and REVOKE statements are not
subject to transaction logic. This means that neither a GRANT nor a REVOKE statement can
be rolled back. DCL statements cannot be mixed with DML statements within the same
transaction. DCL statements can be mixed with DDL statements within the same transaction.

This means that the action implied by a DCL statement is immediately effective for all users.

The Adabas SQL Server Security Concept

Authorization

The whole point of SQL security isto restrict access for certain users to particular data objects
and to enable it for others. Therefore, a user must be authorized to perform a particular action.
During the execution of a DML statement, the requested action for the particular user against
that data object is checked against the privileges contained in the catalog. The action is either
rejected or authorized and processing continues.

If it is rgjected, then the user will receive the condition code 4286. This states that the object
is either not found or the user was not authorized. This ambiguity is intended, as even the
knowledge that an object exists, although the user is not authorized to access it, is knowledge
that the user is not permitted to obtain. The unauthorized user should not now know if the object
actually exists. In addition, any catalog query, will only present catalog entries for which the
user has privileges.

The mere act of establishing authorization for a user leads to performance losses.

Authentication

The Adabas SQL Server security concept requires that users are known to the system. Users
must, therefore, make themselves known to the system for a particular session using the
CONNECT statement. The specified user ID is compared against alist of users contained in the
catalog. If inthislist a password has been specified, then the user must also provide a password
as a parameter to the CONNECT statement. At client site, this password is encrypted prior to
being sent to the server. If no password is contained in the catal og, then the password is optional
and ignored.

The act of supplying a user identifier and verifying it is called authentication.

35

Adabas SQL Server Programmer’s Guide

User Administration

36

There are two types of users. The special user, with the user identifier 'DBA’ is always present
in the system. The other type of user is called a non-DBA user.

The DBA user is established as part of the server generation. The DBA's user identifier isin fact
hard coded and cannot be dropped. This user has certain additional rights over normal users.

— A DBA can create and drop schemas.
— A DBA can create/drop and alter other user identifiers and passwords.

Only the DBA can create a schema. This inhibits the uncontrolled ability to execute DDL
statements and create data objects. The DBA does not have the right to manipulate the objects
of other users however.

The DBA is aso the only person who can create users using the CREATE USER statement. This
is where a particular unique user identifier is introduced to the system, with an optional
password. The DBA can at any time, alter the password of any user. The DBA can, therefore,
at any time, connect to the system as any user, in order to perform any necessary administration
tasks.

The DBA can remove a user from the system using the DROP USER statement. Should the user
still be in possession of any data objects, then the statement will be rejected. Thereis no cascade
functionality for drop user. Any data objects must be manually dropped prior to removing the
user atogether.

Normal users may change their password as desired using the ALTER USER statement.

The Adabas SQL Server Security Concept

Non-Security Servers

Consequences of Generating a Server Without the Security Features

If the Adabas SQL Server which is generated does not support the security features the following
conseguences apply:

at runtime, no security check is performed. It will not be checked if the active user
possesses the access rights to the specified table, etc. For this reason, the performance of
the server will be more favorable than in a security version.

the execution of GRANT/REVOKE statements is not possible.

those tables, established to hold privilege-related data in the catalog will be created but
are empty (for example, the table: table privileges).

The following three points are valid in either version, security or non-security:

the USER must till be defined using the CREATE USER statement.

the user DBA isthe only one authorized to create a schema. The owner of aschemaisthe
only one authorized to create tables, views, etc. Thisis true, whether Adabas SQL Server
has been generated with or without the security feature.

full password support is included, the CREATE/DROP/ALTER USER statements can be
executed as well as the CONNECT statement with user specification.

37

Adabas SQL Server Programmer’s Guide

Interaction with Adabas Security Functionality

In terms of Adabas, Adabas SQL Server is an application program, which maps client-specific
SQL requests to Adabas session contexts. Therefore, the processing chain consists of of three

elements:

— the Adabas SQL Server Client, placing SQL requests,

— the Adabas SQL Server, placing Adabas calls on behalf of the Client, and
— the Adabas Nucleus, which finally executes the Adabas calls.

The following picture illustrates this structure:

Adabas SQL Server
Client

¢

Adabas SQL Server
(Adabas Client)

¢

Adabas Nucleus
(Adabas Server)

Figure 3-1: The processing chain

Further information on this structure and the implied interaction with Adabas is given in the
following documents: Adabas SQL Server Installation and Operations Manual, section USER
EXISTSand in the Adabas SQL Server Programmer’s Guide, Appendix Adabas SQL Server
and Other Software AG Products.

38

The Adabas SQL Server Security Concept

Accessto an ADASCR protected Adabas Nucleus

If the Adabas Database Administrator has established Adabas security using the Adabas
database security utility (ADASCR), then each Adabas call hasto provide the security password
in Additions 3 of the Adabas control block.

Adabas SQL Server offers the Server user exit 5 as mechanism to insert the Client- specific
security password into the Adabas control block.

The usage and creation of Server user exit 5 is discussed in the Adabas SQL Server Installation
and Operations Manual, Chapter USER EXISTS.

Accessto an ADAESI protected Adabas Nucleus

If the Adabas nucleus is protected using the Adabas External Security Interface (ADAESI), then
an identification protocol must be adhered to between Adabas SQL Server and ADAESI. This
identification protocol is implemetend inside Adabas SQL Server and is executed
automatically.

39

40

GENERAL CONCEPTS OF SQL PROGRAMMING

This chapter describes, in general terms, how to embed SQL statements in an application
program. Embedded SQL statements enable the application program to communicate with the
underlying DBMS like Adabas in order to inspect and manipulate its data.

SQL Statements

SQL Statements are not part of the host language but are embedded in an application written
in the host language. As explained in the previous chapter, the compilation of such a program
consists of two phases, namely the precompilation of the SQL statements contained in the
application program followed by the compilation of the actual program itself.

The SQL statements must be invisible to the host language compiler during the compilation
phase. In fact, the bare embedded SQL statements are commented out by the Adabas SQL Server
precompiler and are replaced by statements generated into the application program in a form
that corresponds to the requirements of the host language.

The Adabas SQL Server precompiler must be able to identify all embedded SQL statements and
therefore all SQL statements are individually delimited by special SQL deimiters. It is not
possible to have more than one SQL statement between one set of delimiters.

The SQL Starting Delimiter
The starting delimiter consists of a sequence of two words, namely:
EXEC SQL

In Adabas SQL Server mode they must be separated by one or more white space characters, i.e
they may be separated by one or more lines or blanks, and may be in either upper or lower case
depending on what the host language permits.

In ANSI mode the two keywords must bein upper case and must be separated by blanks not lines.

41

Adabas SQL Server Programmer’s Guide

The SQL Statement Body

Once the starting delimiter has been specified, the body of the particular statement must be
given. It must be separated from the starting delimiter by at least one white space character and
may be specified on the same or on afollowing line to the starting delimiter. The statement may
be specified in either upper or lower case as appropriate and may be spread out over numerous
lines. Each keyword or token must be separated by at least one white space character and may
not be split over two or more lines. In Adabas SQL Server mode, keywords may be written in
upper or lower case depending on the host language regulations. In ANSI mode, keywords must
be written in upper case letters only.

The SQL Terminating Delimiter

42

The terminator of every SQL statement is either explicitly determined by a terminating
delimiter or is implicitly determined depending on the host language being used. For further
details see the host language dependent chapters later in this manual. The terminating delimiter
itself is also host language dependent and may either be END EXEC or asemi-colon‘ ;. In
Adabas SQL Server mode END EXEC may be specified in upper or lower case letters where
the host language permits. In ANSI mode only upper case letters are permitted.

Host Language Terminating Delimiter

C ;

COBOL END EXEC or END EXEC.
PLI ;

General Concepts of SQL Programming

Commentswithin an SQL Statement.

Two types of comments are supported:

¢ Host language comments may be positioned anywhere within an SQL statement where awhite
space character can appear. Such a comment must obey the rules determined by the host
language in question. For examples refer to the host language chapters later in this manual.

Host language comments are not permitted between the keywords:
EXEC SQL,
BEGIN DECLARE SECTION and
END DECLARE SECTION.

e SQL comments may a so be positioned anywhere within the SQL statement body where awhite
space character can appear. Such a comment is a character string preceded by two minus
characters ‘— —'. All characters following this starting delimiter until the end of the line are
interpreted as part of the comment.

With host languages where nested comments are not permitted, the host language comment
delimiters within a statement will be amended in some way so that the actual SQL statement
is commented out and thus nested comments are avoided.

43

Adabas SQL Server Programmer’s Guide

Host Variables

44

During runtime SQL statements must be able to pass data from the application program to the
Runtime system and vice versa. Thisis achieved through the medium of host variables. Host
variables are variables which are declared by the application program but are accessed (although
not exclusively) from within SQL statements.

The following illustrates the different uses of host variables:

Host variables can be used to receive values derived from the database according to the
specification of a select statement. The derived values are copied into the target host variables
as specified in the statement. The application program can then use the returned values
contained in the host variables.

The result of aquery can be influenced by the use of host variables within a predicate contained
in awhere or having clause. A value is loaded into the host variable prior to the execution of
the SQL statement. Adabas SQL Server then takes this value and ‘ plugs' it into the designated
position in the predicate.

The contents of a table can be changed by taking the value contained in a host variable and
during the execution of an UPDATE or an INSERT statement amending the table accordingly.

Host variables can be used in other more specialized areas for example as dynamic cursor
names, as dynamic SQL statement identifiers and strings, as database identifiers and as an SQL
descriptor area.

General Concepts of SQL Programming

Declaring Host Variables

The declaration of any host variable must follow the rules of the appropriate host language. In
order to be able to access a host variable from within an SQL statement you must declare it in
aBEGIN DECLARE SECTION. Any number of declarations may be grouped together in such
a block which is delimited by the SQL statements BEGIN DECLARE SECTION, END
DECLARE SECTION. Example:

EXEC SQL
BEG N DECLARE SECTI ON

....host I anguage specific declarations
EXEC SQL
END DECLARE SECTI ON

More than one such delimited block of host variable declarations may be specified within a
program, but they can not be nested. An SQL statement which uses host variables must lie within
the scope of the host variables according to the rules of the host language.

ANSI Specifics
In ANSI compatibility mode, regardiess of any scoping rules, all host variables which are
referenced in an SQL statement must have a unique identifier for the whole compilation unit.

Furthermore, host variable structures or their individual elements may not be specified in any
SQL statement when compiling in ANSI compatibility mode.

Using Host Variables

Host variables declared in the above-mentioned manner can be accessed in the host program
without special consideration.

When used within an SQL statement, the variable must be in scope and should be prefixed with
acolon so it can be distinguished from an identifier. The variable identification may be identical
to an SQL keyword.

The type of the host variable will be translated to an appropriate SQL internal type depending
on the host language. Therefore, the type of the variable must fit the context of its use. Refer

to the appropriate host language specific section for more details. In any case, the correct type
will be required and will be checked by Adabas SQL Server.

Any host variable referenced in a static DECLARE CURSOR statement must also be in scope
for the associated OPEN CURSOR statement.

45

Adabas SQL Server Programmer’s Guide

Host Variable Structures

46

Up to now the discussion has centered on single host variables. However, under certain
circumstances a structure may be specified as an aternative. For example, in the fetch statement
it is of course perfectly valid to individualy list host variables to receive the derived values. An
alternative would be to specify a structure whose individual fields matched the format of the
associated projection list. Adabas SQL Server is able to resolve the individual fields of the
structure. This method may also be used within an embedded SELECT statement. Structures
may also be specified in an USING clause, which is an Adabas SQL Server extension.

In other situations whole structures are not permitted as they are meaningless, e.g as a value
specification in a predicate. However, an individual field of a structure may be specified, aslong
as it is uniquely identified according to the host language rules.

If one or more of the fields in the structure require an associated INDICATOR variable then a
completely new structure must be declared which maps all the fields of the original host
structure with INDICATOR variables. There is an one-to-one relationship between the actual
variable fields and their associated indicator values in the two structures. An indicator structure
is specified in the SQL statement by appending its name with a colon to that of the actual host
variable structure. in an analogous fashion to individual host variables and their associated
indicator values.

Note:
Pointer expressions will be supported in the next release version.

General Concepts of SQL Programming

The SQL Communications Area (SQLCA)

Any application program needs to be able to check the success or failure of any particular SQL
statement once it has been executed. At least one special host variable structure needs to be
declared in the program, so that there is always one in scope for each SQL statements. For this
purpose, a host variable structure, called SQL communication area or SQLCA is used. Adabas
SQL Server updates certain fields of the structure depending on the nature of the particular SQL
statement and the outcome of its execution. The application program can verify the successful
execution of an SQL statement by inspecting the contents of the sglcode element of the SQLCA.

Declaring the SQLCA

As stated above, the SQLCA is a specia type of host variable structure. In order to ensure that
the structure has the correct format, the application program should use the definition of the
SQLCA provided by Adabas SQL Server. To facilitate this, the following SQL statement should
be embedded in the application program:

| NCLUDE SQLCA;
Executing this statement has the effect of generating an appropriate SQLCA definition and

declaration at the point where it is specified. Thus, the SQLCA aobeys the rules of scoping set
by the host language relative to the position of the INCLUDE SQLCA statement.

Application programs can explicitly declare an SQLCA without using the INCLUDE statement.
It is then the responsibility of the programmer to ensure that the structure is correctly defined
and declared. Failure to do so may lead to unpredictable results.

a7

Adabas SQL Server Programmer’s Guide

Using the SQLCA

Once the SQL statement execution has completed, the application program should quiz the
SQLCODE field of the SQLCA. The program logic should then be in a position to deal with any
eventuality. This may laboriously be done for every SQL statement. However, by using the
precompiler directive WHENEVER, such coding can be generated automatically. Refer to the
Adabas QL Server Reference Manual, section WHENEVER Statement for more details.

Currently not al fields in the SQLCA are used.

Note:

Following static statements do not result in any update of the SQLCA:

DECLARE CURSOR, BEGIN DECLARE SECTION,

END DECLARE SECTION, WHENEVER

INCLUDE.

Field Description

sqlcaid An eight-byte character string containing the constant ‘' SQLCA'. Thisfield

serves mainly as an eye-catcher for easier memory dump interpretation.

sglcabce A four-byte integer variable containing the length in bytes of the SQLCA.
It normally contains the value 136.

sglcode A four-byte integer variable containing the status of the executed SQL
command. The standard defines three categories of results.

zero
The command has been successfully executed. (There may have been
warning messages c.f. sglwarn0.)

negative

An error has occurred. The negative number indicates the nature of the
error. Adabas SQL Server alows the installation to define its own error
values. Thus compatibility with different SQL DBMSs can be achieved.
(The ANSI/ISO standard does not specify which negative values should
be used with a particular error status).

When a negative code is returned, the SQLERROR condition of the
WHENEVER statement is activated.

48

General Concepts of SQL Programming

Field Description
positive
The command executed successfully, but an exceptional condition occurred.
+100
This value is returned to indicate that the command was successfully
executed but processed no rows. It is used in conjunction with the
following commands:
DELETE FETCH INSERT
SELECT UPDATE
sglerrm A variable containing two fields holding the actual values to replace the
variables contained in error messages.
sglerrml
A two-byte integer field indicating the length of sglerrmc. The range is
from O through 70. If the value is zero, there is no datain the sglerrmc field.
sglerrmc
A character string of variable length which may not exceed 70 characters.
The string contains one or more actual values for the variables of the
associated error messages. As many error messages contain no text
variables thisfield is not always filled.
Each value in the string is terminated by one byte containing the hex value
‘FF.
sglerrp An eight-byte character variable. This field is not currently used.
sglerrdl —6 A group of six integer fields, each four bytes in length.

sglerrdl
is currently unused

sglerrd2
is currently unused

sglerrd3
contains the number of rows affected after the execution of an INSERT,
UPDATE or DELETE statement.

sglerrd4
is currently unused

49

50

Adabas SQL Server Programmer’s Guide

Field

Description

sglwarn0 —

sglext

sglerrd5
is currently unused

sglerrd6
is currently unused

A group of eight character variables, each one byte in length. sglwarn7
The default contents is blank. A “W” denotes a warning.

sglwarnO
When thisvariableis set to “W” it signifiesthat at |east one other sglwarn
variable is aso set to “W”.

When this variable is set, then the SQL WARNING condition of the
WHENEVER statement is activated.

sglwarnl
This variable signifies that truncation has occurred during the assignment
of a character string to a host variable.

sglwarn2
Currently unused.

sglwarn3
This variable is set when a mismatch on the number of columns occurs
between the SELECTs within the DECLARE and the FETCH statements.

sglwar n4
Currently unused.

sglwar n5
Currently unused.

sglwar n6
Currently unused.

sglwarn?
Currently unused.

A character string eight bytes in length. It is unused.

General Concepts of SQL Programming

Error Handling

Errors occurring during the precompilation of an SQL application program produce an error
message in the form of an error number and an associated brief description text. For a more
detailed description of the error and the necessary steps needed to correct this error, refer to the
Adabas SQL Server Messages and Codes Manual.

During runtime however, the only means of communication between Adabas SQL Server and
the application program is using the SQLCA. Although an error number is returned in the
SQLCODE fidd, thereisno provision in the SQLCA for the associated error message text. For
simple application programs relying on static SQL this usually poses no problem. However,
especialy for a PREPARE or EXECUTE IMMEDIATE statement, a dynamic application
program often needs to be able to present a meaningful error message to the user. Such a
requirement can be satisfied by the application program calling the routine ‘esgerr’. Thisis not
an SQL statement but rather a routine delivered as part of Adabas SQL Server. This routine
requires the following parameters:

— the address of the SQLCA,

— the address of the user supplied target buffer,

— the address of the length of the user supplied buffer,

— the address of the language, currently only English is supported,
— the minimum length of the error text buffer.

The function identifies the required error message based on the value contained in the sglcode
field of the SQLCA. Any textual parameters are to be found in the field sglerrmc and these are
merged by the function with the raw error message texts. The final text is then copied into the
user supplied buffer up to the length given in the length parameter. This length parameter is then
updated to show the actual length of the message copied. The function only responds to the
contents of the SQLCA and it is therefore the programmer’s responsibility to ensure that the
SQLCA redly contains the required information. For detailed information refer to the
appropriate host language chapters later in this manual.

Note:
The use of this function may result in a significant increase in the size of the application
program's object code depending on the platform.

51

Adabas SQL Server Programmer’s Guide

Program Structure

To develop correct SQL application programs, it is important to understand the difference
between the physical order of the SQL statementsin a program and the order of their execution.

The Adabas SQL Server precompiler scans the source application program for SQL statements
and effectively skips any host language statements or commands. The Adabas SQL Server
precompiler has no understanding of the underlying logic of the application or indeed of the
context of any particular SQL statement. All it can actually understand is an isolated collection
of SQL statements.

Under the following circumstances, the physical order of the statementsis relevant and does not

have anything to do with the actual order in which the statements will be executed.

— When running in ANSI compatibility mode, any statements which reference a cursor must
physicaly follow the associated DECLARE CURSOR statement. In Adabas SQL Server
mode, this restriction does not exist and so the physical order of such statements is
irrelevant.

— In Adabas SQL Server mode, although the DECLARE and OPEN CURSOR statements
must be in the same source file, other associated statements need not be. Refer to the
chapter Static SQL, later in this manual, for more details.

— The physical ordering of other statements can now follow freely as long as any host
variables accessed within an SQL statement have been declared physically prior to usage
and an SQLCA isin scope for each statement.

52

General Concepts of SQL Programming

Positioning the SQL Statement

Almost all SQL statements may be positioned anywhere within an application program where
a host language statement would be permitted. Thisis, because in general, SQL statements are
replaced with appropriate generated host language statements by the Adabas SQL Server
precompiler. The rules governing the positioning of host language statements also apply to the
embedding of SQL statements. Obviously the positioning of the SQL statement must also
conform to the context of the logic of the application program. Aslong as each SQL statement
isindividually delimited and where the host language permits, more than one SQL statement
may be positioned on a single line.

The following statements are exceptions to the above rules:

BEGIN DECLARE SECTION these statements can only be positioned where host
END DECLARE SECTION language declarations are allowed.

INCLUDE

WHENEVER these statements can be placed anywhere dependent
DECLARE CURSOR (static) on the desired control flow

53

Adabas SQL Server Programmer’s Guide

Default Table Qualification

54

When referring to a particular table from within an SQL statement, the table identifier can be
qualified by an explicit schema identifier. However, if no such identifier is specified then
Adabas SQL Server assumes that the current default schema identifier isintended. Adabas SQL
Server will, therefore, append this identifier to the unqualified table identifier in order to
produce a table specification. The default schema identifier may be specified as a system
parameter.

If a default schema identifier has not been set explicitly, the unqualified table name will
implicitly be qualified by the user identifier as has been set by a CONNECT statement. In the
precompiler environment this user identifier is derived from the operating system user name.

The same application program precompiled with different default schema identifiers may
produce different results. This could result in a particular table not being found, as the table
specification isnot listed in the catalog or at runtime, the two instances of the application might
run against different physical tables.

In practice, such a mechanism can be used during the application program’s development. The
program can be devel oped against certain test tables with test data, whose table identifiers match
those of real existing tables but whose schema identifiers differ. When developing and testing,
the default schema identifier should be set to that of the test tables and the table identifiersin
the application program should not be explicitly qualified. When the development is finished
and the program is ready to go into production, all that is needed is a change of default schema
identifier, to match that of the production tables and to recompile.

General Concepts of SQL Programming

Transaction Logic

Modifying data in the database involves the execution of at least two statements.

The normal INSERT, DELETE, or UPDATE statements. Such statements define the changes
which are to take place.

A COMMIT statement which ‘fixes' the changes or makes them permanent.

The period of time between the execution of two such COMMIT statements or between the
beginning of a program and the firss COMMIT statement is called a transaction or a unit of
recovery.

It may, however, be determined that the changes should not be ‘fixed' in the database. By issuing
a ROLLBACK statement, all the changes are backed out or recovered. This means that all
changes that have been made during the current transaction are reversed and the database is reset
to the state it was in at the beginning of the transaction.

Note:
Only changes initiated by the user during the current transaction are affected by the COMMIT
or ROLLBACK statements.

Any rows in the database which are modified are set in hold by Adabas SQL Server until the
transaction is completed. This blocks any conflicting modification by other users as they must
wait until the row is released from hold, i.e the transaction has been completed. Only then may
any other waiting users access the row. It is important to realize that other users only have to
wait if they attempt to modify arow that isin hold. If thereis no conflict then no waiting occurs.
Other users may always read rows which are currently in hold but can not put that same row in
hold.

Static Cursors

It isnot just rows which are directly affected by modification statements which are put in hold.
If acursor is determined to be FOR UPDATE then rows which it reads are also set in hold in
case those rows are going to be amended. Even if they are not actually amended they are kept
in hold until the transaction is terminated.

55

56

Adabas SQL Server Programmer’s Guide

A cursor is determined to be FOR UPDATE:

— if it has an associated UPDATE or DELETE statement within the same compilation unit
or

— if itisexplicitly attributed as FOR UPDATE or

— if the default, when not explicitly labelled as FOR FETCH ONLY, is that it should be
determined to be marked as FOR UPDATE.

If such a cursor reads an entire table, then all rows are eventually put into hold, thus blocking
amendment of the table by other users.

A row isonly put into the hold status when it is actually read for the first time. It is therefore
possible that two competing users can mutually lock each other out. In other words a dead lock
situation can occur. In such a case, both user will have to wait until the prevailing system
time-out period has passed before they can be backed out. For the user this means that eventually
an exception condition will be received by the application program.

Numerous changes can be specified within a transaction. There is no theoretical limit to the
number of amendment statements which can be executed within a transaction. It is however
advisable to keep transaction units small and manageable because:

— large numbers of rows in hold severely effect system performance.
— if aback-out isrequired alarge number of changes will be lost and not just the most recent.

— if the system terminates abnormally, the changes within an uncommitted transaction will
be lost.

The termination of a transaction also has the effect that all cursors that were open are closed
automatically. This means that they must be re-opened in order to use them again.

General Concepts of SQL Programming

Dynamic Cursors

For dynamically created cursors the same rules apply as for normal static cursors with the
following exceptions:

If the associated positioned UPDATE or DELETE statements is generated dynamically or
if the cursor name is a host variable, the Adabas SQL Server precompiler can not determine
at precompiletimeif there are any associated UPDATE or DELETE statementsin the same
compilation unit or not. Therefore, whether a dynamic cursor is FOR UPDATE or not is
solely determined by the explicit specification of a FOR UPDATE or FOR FETCH ONLY
clause and by the global default. You are recommended to always use the FOR UPDATE
or FOR FETCH ONLY clause for dynamic cursors.

Another difference isthat the FOR UPDATE and FOR FETCH ONLY clauses are not part
of the dynamic DECLARE CURSOR statement but must be specified in the SELECT
statement. Example:

EXEC SQL

PREPARE fetch_id FROM " SELECT crui se_id FROM crui se

VWHERE crui se-id = 10000001 FOR UPDATE";

EXEC SQL

DECLARE c1 CURSOR FOR fetch_id;
EXEC SQL

OPEN c1;
EXEC SQL

FETCH c1 USI NG : hv;
EXEC SQL

PREPARE update_id FROM " DELETE FROM crui se WHERE CURRENT OF cl”;
EXEC SQL

EXECUTE updat e_i d;

DDL/DCL Statements

The processing logic for DDL/DCL transactions differs in some points from the rules outlined
above. Even though all transactions must be closed by a COMMIT or ROLLBACK statement,
it is important to know, that in case of DDL/DCL statements:

the ROLLBACK statement does not cancel the changes that were made to the database
during that transaction,

the COMMIT statement does not permanently fix the changes that were made to the
database during that transaction, but changes become effective immediately after the
execution of each individual statement within the transaction.

57

Adabas SQL Server Programmer’s Guide

Transactions Containing Different Types of Statements

58

The execution of DDL and DCL statements may be mixed in the same transaction, but may not
be mixed with the execution of DML statements.

The mixing of DML and DDL/DCL statements execution within one transaction will be
detected, the violating statements’ execution will be rejected and an error message will be
issued. The current transaction status will not be affected. For example, in a transaction with
all DDL/DCL statements a DML statement will be considered a violating statement and vice
versa,

Transaction neutral statements (PREPARE, EXECUTE, EXECUTE IMMEDIATE and
DESCRIBE) may be mixed with all other statements in one transaction, i.e. they may be
contained in aDDL transaction, a DCL transaction, amixed DDL and DCL transaction and also
in an DML transaction.

A COMMIT/ROLLBACK statement with a KEEPING ALL clause will not change the
transaction status.

General Concepts of SQL Programming

Views

Creating Views

Views are established by the execution of a CREATE VIEW statement. Unlike the CREATE
TABLE statement, no physical data structures are established. Only the definition of the view
is stored in the catalog.

A view can be thought of as a virtual table, one which does not exist physically. Whenever a
view is referenced, conceptualy a temporary table is established, based on the query
specification in the CREATE VIEW statement and data is derived from the underlying base
tables. The view referenced can then conceptually be processed as if it were a normal table.

Any view reference is replaced with appropriate references to the underlying base tables as
defined by the query specification in the CREATE VIEW statement during compilation.

Any statement which references views can be expressed by a valid equivalent statement which
only references the underlying base tables. The view references are said to be merged. This
imposes certain restrictions on the use of views, which bring their use into conflict with the
conceptual ideathat a virtua table is established when required.

The process of merging occurs during compilation of statements which reference the view.
There is no performance disadvantage to be considered with the use of views. The use of views
in dynamic statements will also not lead to a significant performance loss.

Updating Views
A view can not be have the status read-only if data is to be amended.

A view is caled a “read-only view” if the view is either grouped or joined or at |east one of
the derived columns does not have alabel. For details on derived column labels see the Adabas
L Server Reference Manual, chapter Common Elements, section Query Specification.

A view iscaled a“joined view” if more than one table has been specified or ajoined view has
been referenced in the FROM clause.

A view is called a“ grouped view” if the view is derived from a grouped query specification.

When an UPDATE, INSERT or DELETE statement is applied to aview, it is not the view which
is updated, rather the underlying base table. If arow isinserted or changed such that its contents
take it out of the domain of the view as defined by the WHERE clause in the view definition,
then the row still physically existsin the base table, but is no longer accessible to the view user.

When issuing an INSERT statement on a view which does not enclose all columns of the base
table, default values will be assigned to those columns not referenced in the statement.

59

Adabas SQL Server Programmer’s Guide

Dropping Views

A DROP VIEW statement also has no effect on the underlying data. Only the definition is
deleted from the catalog and any statements referencing this view are marked invalid.

Dropping a view which has other dependent views based on it will result in these dependent
views being invalid. A DROP VIEW statement can not be successfully completed if dependent
views exist. In this case, the option CASCADE has to be specified which will drop the desired
view and its dependent views.

Reasonsfor Using Views

By only specifying certain columns in the derived column list of the query specification in the
CREATE VIEW statement, access to the other columns of any table is effectively restricted.
Such columns are simply not part of the view definition and hence can not be referenced in
conjunction with the view. This can act asan aid to security asif certain users only have access
to particular views then access to the 'omitted’ information is denied them.

Similarly by specifying a suitable WHERE clause in the view definition, particular rows can
be selected for the view and other rows will never be part of the views domain.

It can therefore be seen that by using the above techniques, a view can be used to present
carefully chosen portions of any underlying base tables as if the view were in fact area table.

Views can also be used simply to save typing effort. If a particular complex expression is going
to often be used, then it may be easier to include it in a view.

Views may also be used to present datain a differing format to that of the raw data in the base
tables. This can be achieved by the use of humeric expressions in the derived column list of the
view definition.

Limitations on Using Views

60

A grouped view, i.e one that is based on a grouped query specification can not in turn be
referenced in a grouped query. Otherwise, once merged, the resulting statement would be
"doubly’ grouped which is then not a valid equivalent statement.

The keyword 'DISTINCT* must not appear in the derived column list of a view.

If the view is said to be read-only, it can not be referenced in an INSERT, a DELETE or an
UPDATE statement.

STATIC SQL

| ntroduction

Static SQL refers to a particular type of application where SQL statements are fixed or static.
Thisis as opposed to dynamic SQL where the actual statement to be executed against a database
is created at run time. Thus static SQL statements are embedded SQL statements that do not vary
during the execution of the application program.

Strictly speaking, embedded statements like the PREPARE statement, for instance, are also
static. They are embedded in an application program but they enable the use of dynamic SQL
statements. Such statements are described in the chapter Dynamic SQL later in this manual.

The statements of this product version comprise:

J DDL Statements
Data Definition Language. This defines the structures which are to reside in the database, e.g.,
the CREATE TABLE statement

J DML Statements
Data Manipulation Language. This enables operations to be performed on the data contained
in the structures in the database, e.g., the SELECT statement.

J DCL Statements
Data Control Language. This enables the controlled access of all data using specially designed
security functionality, e.g., the GRANT/REVOKE statements.

61

Adabas SQL Server Programmer’s Guide

Defining the SQL Data Structures

62

Before any manipulation of any data can take place, the necessary data structures have to be
defined. Adabas SQL Server needs to store information on these structures which are
established or amended using DDL statements. This information is stored in the catalog
associated with Adabas SQL Server. The structures themselves are established in the desired
Adabas database. It is essential that the information in the catalog reflects the current state of
the structures and this is ensured by the correct use of DDL statements.

Note:

Through the use of Adabas Utilities or Adabas Online Servicesit is possible to change the nature
of the structures in the ADABAS database. However, this must not be attempted in an SQL
environment because the catalog will not be updated correspondingly and this will lead to
unpredictable results.

DDL statements can be statically embedded like any other SQL statement. New Tables and
views can be created or deleted using the CREATE TABLE, CREATE TABLESPACE and
CREATE VIEW statements or the corresponding DROP statements. All of these statements
change the appropriate entries in the catalog and possibly in any underlying Adabas file which
represents a table.

Note:

Dropping a base table using the DROP TABLE statement destroys all the data contained in it.
Once the statement has been executed, Adabas SQL Server provides no means of recovering the
data. The only chance to restore the data and catalog is to load a backup tape.

Before a CREATE TABLE statement can be executed successfully, the corresponding CREATE
TABLESPACE must have been executed without an error. The CREATE TABLESPACE
statement sets the specific parameters for the resulting Adabas file. The default settings of this
statement are identical to the default values specified when using Adabas Online Services.

If atable already exists in Adabas (i.e., was created using Adabas Online Services or Predict)
its description must be introduced to Adabas SQL Server using the CREATE TABLE
DESCRIPTION statement. Even though Adabas SQL Server is able to generate the Adabas
short names, they should be explicitly specified to ensure that the SQL table description and
Adabas file description matches. The corresponding DROP TABLE DESCRIPTION statement
removes the table's description from the SQL environment.

Static SQL

The use of the Generate Table Description Utility can simplify the creation of CREATE TABLE
DESCRIPTION/CREATE CLUSTER DESCRIPTION statements and at the same time ensure
accuracy.

Note:
Dropping a base table using the DROP TABLE DESCRIPTION statement does not destroy the
data contained in it but merely deletes the description of it in the catalog.

The execution, not merely the compilation of a CREATE TABLE statement will result in anew
table being listed and defined in the catalog as well asin a new Adabas file in the appropriate
Adabas database. At compilation time, Adabas SQL Server does not check to see if atable
referenced in a CREATE or DROP statement actually exists. Only during execution will it be
recognized that atableisto be created which aready exists, or that atableisto be dropped which
does not exist. Attempts to access undefined tables will result in a runtime exception condition.
A newly created table may be dropped in the same application program.

When creating or dropping viewsthere is no underlying Adabasfile, only an entry in the catalog.
Therefore, the tables and views referenced in a CREATE VIEW statement within an application
program must exist at compilation time, which means the appropriate CREATE statements and
the CREATE VIEW statement based on this newly created table can not be within the same
application program.

It is possible, if the correct compiler options have been set, to mix DDL and DML in the same
application program. However, any table or view referenced in aDML statement must also exist
at compilation time. Attempts to reference undefined tables will result in an compiler error as
the compiler needs to gather information on the particular tables at this point.

The CREATE DATABASE and CREATE TABLESPACE statements act in a somewhat
different manner. No compiler checks are performed. Therefore, a CREATE DATABASE
statement can be followed by table creation statements referencing the newly created database
identifier.

63

Adabas SQL Server Programmer’s Guide

Manipulating Data

The DML (Data Manipulation Language) component of SQL encompasses the following
functionality:

— populating the data structures as described in the previous section with actual data,
— enabling the retrieval of data from the data structures,
— amending the actual data by either changing or removing values.

Two distinct concepts exist in order for the program to be able to manipulate data. They are
NON-CUrsor Or Cursor operations.

Non-cur sor-based Statements

64

Statements which are not based on a cursor are not associated with other statementsin any way.

Datais generally retrieved by using the SELECT statement and when embedded it is sometimes
called the single row SELECT statement. An INTO clause and an appropriate host variable list
must be provided in order to receive the returned data. This mechanism, therefore, does not
facilitate the retrieval of more than one row asit isimpossible to be able to accept multiple rows
in one go. An embedded static SELECT statement may only generate one row, otherwise an
exception condition will occur during run time. It is the programmer’s responsibility to ensure
that the SELECT statement really does only return a single row. It is not possible for thisto be
checked in any way during the compilation of the statement.

Note:
In Interactive SQL or Dynamic SQL there is no such restriction on the number of rows which
can be retrieved by a SELECT statement.

The host variable list should match the derived columnsllist in every aspect. There is an one-to-
one correspondence between a derived column and a host variable. The basic type of the host
variable must match that of the corresponding derived column. The relative number of items
should be the same but strictly need not be. If there are insufficient host variables then data will
belogt. If there are too many then the contents of the extra host variables will be undefined after
the statement has completed. In either case a compiler warning isissued. Should an error occur
during the execution of the query, the values in the host variables are undefined.

Static SQL

Inserting Single Rows

Datais put into atable using the INSERT statement. Dataisinserted on arow by row basis. The
source of the data can either come from literals or host variables (i.e., non-SQL derived data)
or from a subquery (i.e., SQL derived data). By specifying non-SQL data, only one row may
be inserted for one execution of the statement. If a subquery is used then as many rows as the
subquery delivers are inserted for one execution of the statement. The subquery may not access
the target table. There is no corresponding cursor-based INSERT statement.

Updating Rows

Data should be changed by using the UPDATE statement or more correctly the searched
UPDATE statement. Data is changed on a row by row basis as identified by the search
expression. Therefore, more than one row can be updated at a time.

Deleting Rows

Rows of data can be removed from the table by using the searched DELETE statement. Again
this works on arow by row basis as identified by the search condition and, therefore, many rows
can be deleted at once. If no search condition is specified, then al rows are identified and the
table is cleared of al its data.

Leve 1orlevel 2 tablescan not be the target of DELETE statements. Data from such tables can
only be removed by deleting the associated level 0 row. In such a case the referencing level 1
and level 2 rows are automatically deleted with the level O row. Thisis analogousto a DELETE
CASCADE in pure referential integrity terminology.

65

Adabas SQL Server Programmer’s Guide

Cursor-based Statements

From the above description of non-cursor-based statements it can be seen that the retrieval and
subsequent manipulation of more than one row is not possible without some other mechanism.
The use of cursors addresses this restriction.

Declaring and Opening a Cur sor

66

A cursor is declared in a DECLARE CURSOR statement along with the underlying query
expression. The query expression defines a resultant table and so the cursor can be thought of
as apointer to aparticular row of thistable. At runtime, a static DECLARE CURSOR statement
has no effect, it is purely a declaration for the SQL compiler.

Only once the cursor is opened by an OPEN CURSOR statement does the run time system
conceptually establish the resultant table with the cursor pointing to just before the first row.

Other SQL compilers insist on the physical order of the DECLARE CURSOR statement
followed by the open statement. This is because the information contained in the DECLARE
CURSOR statement has to be 'attached’ to the OPEN statement. Adabas SQL Server does not
have this restriction because it effectively has a multiple pass compilation phase. As the static
DECLARE CURSOR statement has no effect in itself at run time, the logical order is also
irrelevant.

Once the cursor has been opened, other statements can be executed against it.

Static SQL

Retrieving Data Using a Cur sor

Data is retrieved from the resultant table using the FETCH statement. This statement specifies
the cursor in question and atarget buffer list which is similar to that of the single row SELECT
statement. Thetarget buffer list must match the projection list of the query expression. Each time
the FETCH is executed it moves the cursor on one row and copies the values of the derived
columns into the corresponding host variables of the target buffer list. For a newly opened
cursor, the first row of the resultant table will be retrieved and the values will be made available
to the application program in the host variables. The cursor now points to the first row. Each
execution of the FETCH statement results in successive rows of the resultant table being
retrieved.

Once al the rows have been fetched, the cursor is said to be exhausted and conceptually points
past the last row. After the last row has been fetched, the next and any subsequent FETCH
statements will result in areturn code of +100 being issued by the runtime system. This needs
to be checked for by the application program either explicitly or by specifyingaWHENEVER
statement with the NOT FOUND option. Once a cursor is exhausted, it should generally be
closed.

The current row, as determined by the cursor’s position in the resultant table can be amended
by using a positioned UPDATE statement. The use of such a statement does not affect the
position of the cursor. Only one row, i.e., the current one, can be amended by using this
statement. However, by embedding the statement in the same loop as the FETCH statement,
each row of the resultant table can be successively amended. For this reason, Adabas SQL
Server permits the use of a FETCH statement without having to specify a target buffer.

Similarly, the current row can be removed from the underlying base table by executing a
positioned delete statement against the cursor. After execution of the DELETE statement, the
row no longer exists, but a FETCH statement must till be executed in order to position the
cursor onto the next row.

Both the positioned UPDATE and DELETE statements are only valid if it is determined during
compilation that the cursor can be updated as specified in the Adabas SQL Server Reference
Manual, Chapter: SQL Statements.

67

Adabas SQL Server Programmer’s Guide

Closing a Cursor

A cursor can be closed at any time but is generally closed once all rows have been fetched and
the cursor is positioned past the last row. Closing the cursor means that the resultant table is
discarded along with any internal resources required for the cursor’s processing. A cursor isaso
implicitly closed if a COMMIT or ROLLBACK statement is executed without the KEEPING
ALL option.

Programming Logic for Cursor Usage

68

In general the FETCH, the positioned UPDATE or DELETE and the CLOSE statements should
appear in the same compilation unit as the associated DECLARE CURSOR statement. Thisis
because all the necessary checks to see if the statement is valid can be performed at compile
time. Adabas SQL Server, however, does permit such statements to be physically contained in
another compilation unit. This is intended to aid the modular design of the application.
However, it should be noted that the necessary compile time checks are effectively performed
at run time and could lead to a loss of performance.

An application program may contain many DECLARE CURSOR statements but each cursor
identifier must be unique. For each DECLARE CURSOR statement there must be at least one
OPEN CURSOR statement and it must be in the same compilation unit. Aslong as not compiled
under ANSI compatibility mode the OPEN CURSOR statement need not physically follow the
DECLARE CURSOR statement. There may also be many instances of the FETCH, positioned
UPDATE or DELETE and the CLOSE CURSOR statements. Aslong asacursor is closed, either
explicitly or implicitly, it may be opened as many times as required.

Closing the cursor does not commit any changes made to the underlying base table. However,
these changes are visible to the user, once the cursor is re-opened during the current transaction.

DYNAMIC SQL

| ntroduction

The principle difference between static and dynamic SQL statements lies in the point in time
when the SQL statements are constructed and compiled.

Static SQL Statements

A static SQL statement is embedded in a host language program. The type of statement, the
tables, views and columns referenced are known, and the format of the search conditionsisfixed
at the time the program is coded. Of course, by using host variables it is possible to postpone
the search values until runtime. But at runtime it is not possible to change anything in the layout
of the statement, e.g. the derived column list, the search conditions. A static SQL statement is
compiled by Adabas SQL Server at precompile time.

Dynamic SQL Statements

A dynamic SQL statement is constructed at runtime. The whole statement, including the tables,
views and columns referenced, the way the search condition is built up, etc. is only determined
at runtime. A dynamic SQL statement is compiled at runtime.

The way to use dynamic SQL statements in a program is through some special SQL statements:
PREPARE, EXECUTE, EXECUTE IMMEDIATE and DESCRIBE.

There are also a number of SQL statements which are normally used as static SQL statements,
but have an extended functionality for dynamic SQL.:

DECLARE CURSOR, OPEN and FETCH.

Note:

The above statements are embedded in the application program like any other static SQL
statement, However, they enable the use of dynamic SQL statements which are not embedded
in the application program.

There are various methods of using dynamic SQL statements, mainly depending on the type of
SQL statement, i.e.
SELECT or NON-SELECT statements,

and the degree of flexibility required. These methods are all described in this chapter, starting
from the least flexible and, therefore, smplest form, and ending with the most flexible and
therefore also most complex one.

69

Adabas SQL Server Programmer’s Guide

General Aspects

Dynamic SQL Principles

70

The processing of a dynamic SQL statement consists of the following steps:

A string containing the SQL statement is created. The application program has complete
control over the contents of the string and therefore, the SQL statement is dynamic in
nature.

After the SQL statement has been constructed it needs to be passed on to Adabas SQL
Server for compilation. This is done either using a PREPARE statement or using an
EXECUTE IMMEDIATE statement. The compiled form of the dynamic SQL statement
is called the prepared statement.

If the statement was processed using an EXECUTE IMMEDIATE statement then it is not
only compiled but also executed at the same time. The prepared form of the statement is
not retained.

If the statement was processed using a PREPARE statement, then the prepared statement
can be executed using an EXECUTE statement or using cursor processing, as many times
as required.

Sometimes additional information about the prepared statement may be required before
it can be executed. This is for example true for statements with an unknown derived
column list. This information can be retrieved from Adabas SQL Server through an SQL
descriptor area (SQLDA) using a DESCRIBE statement. An SQLDA can also be used to
resolve host variable markers. Such information must be obtained prior to execution.

A special form of the PREPARE Statement is capable of storing the prepared statement in the
catalog. The prepared statement is thus called a persistent procedure.

After the dynamic SQL statement has been prepared, it may be executed more than once, by
using the same statement identifier. The lifespan of a prepared statement ends with the
completion of the current session, unless it has been prepared as a persistent procedure. In that
case, it may also be executed later on by different sessions. The existence of a prepared
statement can be terminated by a DEALLOCATE PREPARE statement.

Dynamic SQL

Dynamic versus Static SQL - Considerations

The choice between static and dynamic SQL is a choice of flexibility versus complexity and
performance. It is easier to code static SQL statements into a program than to dynamically
construct the SQL statements. In most cases, it will be possible to use static SQL, but there are
some applications where the use of dynamic SQL is unavoidable. One of those applications is
ADVANCED (ADVANCED Interactive Facilities) where the user may formulate almost any
possible SQL statement. Obviously, such a requirement may only be resolved with dynamic
SQL. But also in less obvious cases, it may be recommended to use dynamic SQL. If the number
of static SQL statements that would be required for a certain application exceeds a manageable
amount, dynamic SQL may be the solution.

In principle, the question to be answered is:

— Isit possible to define all necessary SQL statements in my application and will this be a
manageable and feasible amount of coding?
If the answer is no, then dynamic SQL needs to be considered.

Once dynamic SQL has been identified as a viable possibility, the particular variation or degree

of complexity of dynamic SQL must be decided upon. The following questions to be answered

are:

— Must the program contain dynamically constructed SELECT statements or not?

— If SELECT statements are dynamically constructed, does the derived column list vary
dynamicaly?

— Are host variable markers going to be used, and if so, does the number and type of host
variable markers vary dynamically per prepared statement or not?

Another point of consideration, when deciding whether to use dynamic SQL, is the issue of
performance. Obviously, compiling SQL statements at runtime has an influence on the overall
performance of the execution of that SQL statement. The compilation of an SQL statement also
includes the access of information stored in the catalog, like table and column descriptions.
These descriptions are buffered, but the possibility exists that additional database requests need
to be issued.

The consequence of the fact that a dynamic SQL statement is compiled at runtime is also that
the statement is compiled with more accurate, i.e. more current information concerning the
existence of indices and other optimization information.

Using dynamic SQL, also means that syntactical and semantical errors are only detected during
runtime. This means that the PREPARE and EXECUTE IMMEDIATE statements may return
an SQLCODE indicating a syntactical or semantical error.

71

Adabas SQL Server Programmer’s Guide

Limitations

72

The following SQL statements can not be used as dynamic SQL statements, i.e. they can not
be prepared or executed:

BEGIN DECLARE, CLOSE, DEALLOCATE PREPARE DECLARE,
DESCRIBE, DISCONNECT, END DECLARE, EXECUTE,
EXECUTE IMMEDIATE, FETCH, INCLUDE, OPEN,
PREPARE, WHENEVER.

Dynamic SQL may require the use of addresses and pointers within the application program.
It may also require dynamically obtained memory. As a consequence, dynamic SQL is not
completely supported from within a COBOL application program. Therefore, the use of SQL
descriptor areas is not supported directly in COBOL.

Dynamic SQL

NON-SELECT Statements

The simplest form of dynamic SQL programs do not contain SELECT statements. In such a
case, there is no resultant table and no data has to be passed back to the application program.

There are two ways to execute a NON-SELECT SQL statement dynamically: one is using the
EXECUTE IMMEDIATE statement the other is using the PREPARE and EXECUTE
statements.

Using EXECUTE IMMEDIATE

The EXECUTE IMMEDIATE statement takes only one parameter. This parameter must be a
character string which contains the dynamic SQL statement. The string has to be properly
constructed by the application program. The dynamic SQL statement is then compiled and
immediately executed. The compiled form of the SQL statement (the prepared statement) is
discarded after execution.

Example:

EXEC SQL
EXECUTE | MMEDI ATE : dyn_sql _st at enent;

dyn sgl_statement s acharacter string containing the dynamic SQL statement.

All SQL statements which can be PREPAREd can be given to the EXECUTE IMMEDIATE
statement except for a SELECT.

Note:

If the string representing the dynamic SQL statement can not be compiled, e.g., due to a syntax
error, the SQLCODE will indicate this error after execution of the EXECUTE IMMEDIATE
statement.

Note:
It is not possible to use host variable markers in the dynamic SQL statement when using the
EXECUTE IMMEDIATE statement.

73

Adabas SQL Server Programmer’s Guide

Using PREPARE and EXECUTE

74

By using the PREPARE and EXECUTE method, the compilation and the execution of the dynamic
SQL statement is split over two statements. The dynamic SQL statement is again contained in a
string and is congtructed by the application program. The PREPARE statement initiates the
compilation of the dynamic SQL statement, and the EXECUTE statement executes it.

The result of a PREPARE statement is a statement ready for execution. This prepared statement is
identified by an SQL statement identifier which can either be set by the user as a fixed identifier
or is generated by Adabas SQL Server when a host variable has been specified. The prepared
statement is kept for later execution. If it isintended that the statement identifier isto be generated
by Adabas SQL Server it is necessary to initialize the variable with blanks or an empty string prior
to execution. Otherwise, Adabas SQL Server will use the actua (non-blank) value of the variable.
The same statement identifier must then be specified with the EXECUTE statement.

Example:

EXEC SQL
PREPARE st atenent _id FROM : dyn_sql _statenent;

EXEC SQL
EXECUTE STATEMENT | D;

dyn sgl_statement: is a character string containing the dynamic SQL statement.

All SQL statements except those mentioned earlier in this chapter in section: Limitations can
be PREPAREd by the PREPARE statement. Only NON-SELECT statements can be executed
by the EXECUTE statement.

It is possible for the dynamic SQL statement to contain host variable markers. For a general
discussion of this subject, see the section: Using Host Variable Markers later in this chapter.

Note:
If the string representing the dynamic SQL statement can not be compiled, e.g. due to a syntax
error, the SQLCODE will indicate this error upon return from the PREPARE statement.

Dynamic SQL

Summary

A program which issues dynamic NON-SELECT statements must include the following steps:

Construct the dynamic SQL statement.

The dynamic SQL statement must be constructed as a character string. The process of creating
this string is application-dependent. It may be that the user enters the SQL statement or part
thereof direct using a terminal, or that the application program dynamically builds up the
statement based on other sources of information.

PREPARE and EXECUTE the dynamic SQL statement.
One of two methods must be used, either the EXECUTE IMMEDIATE method or the PREPARE
and EXECUTE method to execute the dynamic SQL statement.

Variable input values, as specified by a host variable marker *? may have to be provided by
specifying an USING clause and specifying an SQLDA in an EXECUTE statement.

Check the resullt.

All the statements involved, the EXECUTE IMMEDIATE, the PREPARE and the EXECUTE
statement can result in errors which are reported back by Adabas SQL Server to the application
program using the SQLCODE in the SQLCA. This has to be handled just like any other error
situation.

75

Adabas SQL Server Programmer’s Guide

SELECT Statements

SELECT statements can only be dynamically executed by using a separate PREPARE statement
and the dynamic cursor logic. The statements DECLARE CURSOR, OPEN, FETCH and
CLOSE must be used.

There are two ways to execute a SELECT statement dynamically. The method to use depends

on the characteristics of the SELECT statements to be processed:

— If thederived column list of the SELECT statement has a constant format, i.e. the number
of elements in the resultant table and their data types stay constant, the fixed derived
column list method can be used.

— If the derived column list varies, the varying derived column list method must be used. In
the latter case, an SQL descriptor area (SQLDA) is required.

Note:
It is not possible to dynamically execute a single-row SELECT.

Fixed Derived Column List M ethod

76

Dynamic SELECT statements with a fixed derived column list produce resultant tables which
have a fixed layout, i.e. the number of columns is the same and the data type of each column
is fixed and known at the time the application program is precompiled.

The fixed derived column list method assumes that the dynamically created SELECT
statements have a fixed derived column list, so that a normal FETCH statement can be used to
retrieve the rows of the resultant table. This FETCH statement requires that the columns of the
resultant table are each assigned to specific hard-coded host variables. As these host variables
have to be known at precompilation time, the layout of the derived column list must be
determined at the sametime. All other clauses of the SELECT statement, the FROM clause, the
WHERE clause, etc., can vary dynamically every time the statement is prepared. This means
that the fixed derived column list method can be used in those cases where the result and format
of the query is known, but the search criteria etc. can vary to such a degree that the rest of the
guery needs to be constructed dynamically at runtime.

Dynamic SQL

The fixed derived column list method consists of a number of steps:

PREPARE

The entire SELECT statement must be constructed in a host variable which is passed on to
Adabas SQL Server as a parameter of a PREPARE statement. The application needs to ensure
that the resulting format of the query can not vary dynamically.

Example:

EXEC SQL
PREPARE st atenent _id FROM : dyn_sql _statenent;

dyn sgl_statement is a character string containing the dynamic SQL statement.

Note, that as an Adabas SQL Server extension a host variable may be used to identify a
statement. If so, Adabas SQL Server returns a unique value in this variable which must have
been initialized with blanks upon return from the PREPARE statement. This valueisthen to be
used for all subsequent references to the prepared statement.

Example:

EXEC SQL
PREPARE : st atenent _id FROM : dyn_sql _statenent;

DECLARE

The prepared statement must then be associated with a cursor. This can either be achieved
explicitly by means of a dynamic DECLARE CURSOR statement or implicitly by an OPEN
statement. The dynamic DECLARE CURSOR statement is similar to the static DECLARE, but
instead of specifying the SELECT statement, it specifies the statement identifier as defined in
the PREPARE statement,thus associating the prepared SELECT statement with the cursor. Such
a DECLARE statement may also be executed prior to the associated PREPARE statement or
may be omitted altogether, if the associated OPEN statement specifies the SQL statement
identifier instead.

Example:

EXEC SQL
DECLARE ABC CURSOR FOR st at enent _i d;

Note:

Alternatively, an Adabas SQL Server extension allows a host variable to be used to identify the
cursor. This host variable must be initialized with a suitable value by the application program
before use.

77

78

Adabas SQL Server Programmer’s Guide

Example:

EXEC SQL
DECLARE : cursor_nane CURSOR FOR STATEMENT_I D

Note:

If in the original PREPARE statement, a host variable was used to express the statement
identifier, then a host variable containing the same assigned value must be used here in order
to identify the statement. If used at all, the DECLARE statement must be executed after the
PREPARE statement.

Example:

EXEC SQL
DECLARE ABC CURSCR FOR :statenent _id;

It can be seen that the dynamic DECLARE CURSOR statement differs from its normal static
counterpart in that during runtime the statement is of significance, i.e., the prepared statement
is associated to the particular cursor. The order of execution is important in a dynamic SQL
application. Once the PREPARE and then the DECLARE CURSOR statements have been
successfully executed, other cursor associated statements can be executed in the normal way,
except that the cursor may need to be expressed as a host variable. The normal OPEN, FETCH,
CLOSE logic is still applicable.

OPEN

Dynamic SQL

The cursor associated with the dynamic SELECT statement is opened by means of an OPEN
statement. Note that the cursor name may be expressed as a host variable.

Example:

EXEC SQL
OPEN ABC,

If the SELECT statement contains host variable markers, the parameters can be submitted by
the USING clause or the USING DESCRIPTOR clause. For more details see the section: Using
Host Variable Markers, later in this chapter.

Example:

EXEC SQL
OPEN ABC USI NG : hvl, :hv2;

or using an SQL descriptor area:

EXEC SQL
OPEN ABC USI NG DESCRI PTOR : i nput _sql _da;

In addition, an SQL statement identifier can be specified in case the DECLARE CURSOR
statement has been omitted.

Example:

EXEC SQL
OPEN ABC CURSOR FOR : statenent _id;

79

FETCH

CLOSE

80

Adabas SQL Server Programmer’s Guide

As the format of the derived column list of the dynamic SELECT statement is constant, the
FETCH statement can be identical to the static case. For each one of the columnsin the resultant
table, a host variable needs to be specified which is of a compatible data type.

Note:

Although the format of the derived column list does not vary dynamically, it is till not ‘visible’
to the Adabas SQL Server compiler. Therefore, the compiler can not actually check the validity
of the FETCH statement and in particular its target buffer list. Naturally, at run time, such
checks are performed.

Note:

An attempt to fetch a dervied column of type binary, using a dynamically prepared select
statement and a fetch statement which is identical to the static counterpart, will always result
in an error condition. This is because, upon pre-compiling the fetch statement, the fact that a
character host variable is going to be used for the retrieval of a derived column of type binary
is not foreseeable. If a derived column of type binary is to be retrieved using a dynamically
prepared select statement, even if has a fixed derived column list, then a fetch statement which
uses a descriptor area must be used.

Example:

EXEC SQL
FETCH ABC | NTO : hvl, :hv3;

The closing of the cursor isidentical to the static case. By executing the CLOSE statement, all
resources reserved by the cursor are released.

Example:

EXEC SQL
CLOSE ABC,

Likewise, once closed, the cursor may simply be re-opened again.

Dynamic SQL

Summary

A program which issues dynamic fixed derived column list SELECT statements must include
the following steps:

Construct the dynamic SELECT statement. The statement is constructed as a character string
in asimilar fashion to NON-SELECT dynamic statements. However, the derived column list
must remain fixed and its format must have been determined at compile time.

PREPARE the dynamic SQL statement.

Optionaly, DECLARE a cursor for the prepared statement using a dynamic DECLARE
CURSOR statement.

OPEN the cursor in a similar way to a normal static cursor.

Variable input values, as specified by a host variable marker *? may have to be provided by
using an USING clause appended to the OPEN statement and specifying an SQLDA.

[6] FETCH from the cursor as required until al rows have been processed.

CLOSE the cursor.

81

Adabas SQL Server Programmer’s Guide

Varying Derived Column List Method

Dynamic SELECT statements with a varying derived column list are SELECT statements
which produce resultant tables which have differing formats, i.e., the format of the resultant
table is dynamically specified and may vary from instance to instance.

This method is more complicated than the one of using a fixed derived column list but is only
required if indeed the format of the possible resultant tables can vary. Otherwise the fixed
derived column list method may be used. In order to be able to use the varying list method, the
application program must be able to acquire dynamic storage and be able to manipulate pointers
or addresses. This obviously limits the use of this method to those host languages which provide
these facilities, or appropriate specially written sub-routines are needed.

The application program needs to get information about the layout of the resultant table for a
varying derived column list statement as target buffers must be dynamically provided. Adabas
SQL Server provides special functions to aid the application program in this task. This
information is passed to the program using an SQL descriptor area or an SQLDA.

Note:

As the use of an SQLDA involves the use of dynamically acquired memory and addresses, the
varying derived column list method can not be directly used froma COBOL program. Specially
written sub-routines are needed.

PREPARE

82

The SELECT statement must be constructed in a host variable which is passed on to Adabas
SQL Server as a parameter to a PREPARE statement.

Example:

EXEC SQL
PREPARE st atenent _id FROM : dyn_sql _statenent;

Note that aternatively an Adabas SQL Server extension allows a host variable to be used to
identify the statement. If so, Adabas SQL Server returns a unique value in this variable which
must have been initialized with blanks upon return from the PREPARE statement. This value
is then to be used for all subsequent references to the prepared statement.

Example:

EXEC SQL
PREPARE : st atenent _id FROM : dyn_sql _statenent;

Dynamic SQL

DECLARE

The prepared statement must then be associated with a cursor. This can either be achieved
explicitly by means of a dynamic DECLARE CURSOR statement or implicitly by an OPEN
statement. The dynamic DECLARE CURSOR statement is similar to the static DECLARE, but
instead of specifying the SELECT statement, it specifies the statement identifier as defined in
the PREPARE statement,thus associating the prepared SELECT statement with the cursor. Such
a DECLARE statement may also be executed prior to the associated PREPARE statement or
may be omitted altogether, if the associated OPEN statement specifies the SQL statement
identifier instead.

Example:

EXEC SQL
DECLARE ABC CURSOR FOR st at enent _i d;

Note:

Alternatively, an Adabas SQL Server extension allows a host variable to be used to identify the
cursor. This host variable must be initialized with a suitable value by the application program
before use.

Example:

EXEC SQL
DECLARE : cursor _nanme CURSOR FOR statenent _id;

Note:

If in the original PREPARE statement, a host variable was used to express the statement
identifier, then a host variable containing the same assigned value must be used here in order
to identify the statement. If used at all, the DECLARE statement must be executed after the
PREPARE statement.

Example:

EXEC SQL
DECLARE ABC CURSCR FOR :statenent _id;

83

Adabas SQL Server Programmer’s Guide

DESCRIBE

OPEN

84

A description of the resulting format of the query may now be retrieved from Adabas SQL
Server. Thisisdone using an SQLDA and a DESCRIBE statement. Note, that the functionality
of the DESCRIBE statement can also be achieved by using an INTO clause in the PREPARE
statement.

Example:

EXEC SQL
DESCRI BE STATEMENT_I D | NTO : out put _sql da;

After successful execution of the DESCRIBE statement, the SQLDA contains detailed
information concerning the resulting format of the SELECT statement.

The total number of columns and the particular type of each column will be supplied. The
application program must act on this information by dynamically supplying an appropriate
target buffer for each of the columns. The address of each target buffer must be written into the
SQLDA. In addition, an associated indicator value may have to be assigned.

The cursor associated with the dynamic SELECT statement is opened by means of an OPEN
statement. Note, that the cursor name may be expressed as a host variable.

Example:

EXEC SQL
OPEN ABC,

If the SELECT statement contained host variable markers, the parameters can be submitted by
the USING clause or the USING DESCRIPTOR clause. For more details see the section: Using
Host Variable Markers, later in this chapter.

Example:

EXEC SQL
OPEN ABC USI NG : hvl, :hv2;

or using an SQL input descriptor area:

EXEC SQL
OPEN ABC USI NG DESCRI PTOR : i nput _sql da;

FETCH

CLOSE

Dynamic SQL

In addition, an SQL statement identifier can be specified in case the DECLARE CURSOR
statement has been omitted.

Example:

EXEC SQL
OPEN ABC CURSOR FOR :statenent_id
USI NG DESCRI PTOR : i nput _sql da;

The FETCH statement must be executed in conjunction with the SQLDA that has been
constructed for this particular dynamic SELECT statement. The resulting values are copied into
the locations specified in the corresponding column description in the SQLDA. Note that
Adabas SQL Server can only assume that such locations are of sufficient size to accommodate
the returned data. It is the responsibility of the application program to properly provide such
locations. Using a DESCRIBE statement greatly simplifies this task.

Example:

EXEC SQL
FETCH ABC USI NG DESCRI PTOR : out put _sql da;

The closing of the cursor isidentical to the static case. By executing the CLOSE statement, all
resources reserved by the cursor are released.

Example:

EXEC SQL
CLOSE ABC,

Likewise, once closed, the cursor may simply be re-opened again within the current transaction.

85

Adabas SQL Server Programmer’s Guide

Summary

86

A program which issues dynamic varying derived column list SELECT statements must include
the following steps:

Construct the dynamic SELECT statement. The statement is constructed as a character string
in asimilar fashion to NON-SELECT dynamic statements. The nature of the SELECT statement
is completely determined by the application program.

PREPARE the dynamic SQL statement.

Allocate and build an appropriate SQLDA. This may be done using a DESCRIBE statement.
Assign appropriate target buffers.

Optionaly, DECLARE a cursor for the prepared statement using a dynamic DECLARE
CURSOR statement.

OPEN the cursor in a similar way to a normal static cursor.

Variable input values, as specified by a host variable marker *? may have to be provided by
supplying a USING clause appended to the OPEN statement specifying an SQLDA.

FETCH from the cursor as required until all rows have been processed. The output SQLDA must
be specified in order to receive retrieved data.

CLOSE the cursor.

Dynamic SQL

Using Host Variable Markers

A dynamic SQL statement can not contain host variables directly. It is, however, possible to
provide a dynamic SQL statement after it has been prepared with value parameters at execution
time. The dynamic statement must then contain a host variable marker for every host variable.
A host variable marker is represented by a question mark (?).

Example:

EXEC SQL
PREPARE st atenent _i d FROM “ DELETE FROM CRU SE WHERE CRUI SE_ID = ?";

EXEC SQL
EXECUTE STATEMENT_I D USI NG : cruise_id;

The dynamic DELETE statement contains one host variable marker, so the USING clause in
the EXECUTE statement contains one host variable. The host variable cruise id is used to
provide a parameter for the PREPAREd DELETE statement. It is, asif the following static SQL
statements were executed:

EXEC SQL
DELETE FROM CRUI SE WHERE CRUI SE_ID = : crui se_i d;

Obviously the host program can repeatedly re-execute the PREPAREd statement by supplying
a fresh value in the host variable with each iteration.

Restrictions

In principle, a host variable marker may appear everywhere in a statement where a host variable

may appear. Because of the nature of dynamic SQL, however, there are certain restrictions. The

following rules apply:

— A host variable marker is not allowed to appear in a derived column list

— Only one operand of a diadic arithmetic operator or comparison operator may be a host
variable marker, e.g. ?=?or ?* ?isnot alowed.

— Thefirst two operands of aBETWEEN or IN operator can not be host variable markers,
e.g. ?IN (?...) is not alowed, however, 5+ ?IN (?,...) is alowed.

The reason for these restrictionsis that at the time the dynamic SQL statement is compiled, the
data type of each one of the host variable markers needs to be determined. In the cases described
above this can not be done.

87

Adabas SQL Server Programmer’s Guide

Different M ethods

As with SELECT statements, there are different methods to deal with host variable markers.
One method can be applied in situations where the number of host variable markersis constant
and their type is known and a so constant. Another method must be applied if the number of host
variable markers varies. Both methods are described in the following sections.

Constant Number of Host Variable Markers

When the number and data types of the host variable markers are constant and known at
compilation time in adynamic SQL statement, a matching set of host variables can be defined
to be used to provide values prior to the execution of the prepared dynamic statement. These
host variables can be specified in the USING clause of either an EXECUTE or an OPEN
statement.

NON-SELECT Statements

For NON-SELECT statements, the host variables used to resolve the host variable markers must
be specified in the USING clause on the EXECUTE statement. The host variables in the USING
clause must be specified in the same order as the host variable markers were specified in the
dynamic SQL statement.

Example:

EXEC SQL
PREPARE statenent i d FROM “| NSERT | NTO CRUI SE VALUES (?,7?,7,72,2)";

EXEC SQL
EXECUTE statenent _id USING : hvl, : hv2,:hv3,: hv4,: hv5;

SELECT Statements

88

For SELECT statements, the host variables used to resolve the host variable markers must be
specified in the USING clause appended to the OPEN statement. The host variables in the
USING clause must be specified in the same order as the host variable markers were specified
in the dynamic SQL statement.

Example:

EXEC SQL
PREPARE st atenent i d FROM “ SELECT CRUI SE_I D FROM CRUI SE WHERE CRUI SE_ID = ?”;

EXEC SQL
DECLARE ABC CURSOR FOR st at enent _i d;

EXEC SQL
OPEN ABC USI NG : hvi;

Dynamic SQL

Varying Number of Host Variable Markers

When the number and data types of the host variable markers varies with each dynamically
PREPAREd statement and/or their data type can not be pre-determined, it is not possible to
define amatching set of host variables to provide values prior to the execution of the PREPAREd
statement.

In that case, the application program needs to get information about the host variable markers
in a prepared statement dynamically. The application program can either do this itself by
analyzing the dynamic SQL statement, or Adabas SQL Server can provide this information in
an SQL descriptor area using a PREPARE or DESCRIBE statement.

Upon return from an appropriate PREPARE or DESCRIBE statement, Adabas SQL Server will
have filled the SQLDA with information about each one of the host variable markers. This
information can then be used by the application program to allocate and assign host variables
for each one of the host variable markers. Note that it is possible at this stage to change the data
type description of ahost variable in the SQLDA. Be aware that this may lead to runtime errors
if the data type of ahost variable is changed to one that isincompatible with the one established
by Adabas SQL Server.

Note:
Such an input SQLDA is a separate instance of an output SQLDA but has the same structure.
NON-SELECT Statements

For NON-SELECT statements, the input SQLDA must be supplied with the EXECUTE
statement. The host variables described in the SQLDA must be specified in the same order as
the host variable markers were specified in the dynamic SQL statement.

Example:

EXEC SQL
PREPARE statenent i d FROM “| NSERT | NTO CRUI SE VALUES (?,7?,7,72,2)";

EXEC SQL
DESCRI BE statenent _id | NTO | NPUT :i nput _sql da;

EXEC SQL
EXECUTE st atenent _id USI NG DESCRI PTOR : i nput _sql da;

89

Adabas SQL Server Programmer’s Guide

SELECT Statements

For SELECT statements, the input SQLDA must be supplied with the OPEN statement. The host
variables in the input SQLDA must be specified in the same order as the host variable markers
were specified in the dynamic SQL statement.

Example:
EXEC SQL

PREPARE st at enent _i d
FROM “ SELECT CRUI SE_| D FROM CRUI SE WHERE CRUI SE_ID = ?7;

EXEC SQL
DESCRI BE statenent _id | NTO | NPUT :i nput _sql da;

EXEC SQL
DECLARE ABC CURSOR FOR st at enent _i d;

EXEC SQL
OPEN ABC USI NG DESCRI PTOR : i nput _sql da;

90

Dynamic SQL

Summary

A program which issues dynamic statements which contain host variable markers must cover

the following steps:
Construct the dynamic SQL statement.

The dynamic SQL statement must be constructed as a character string, which will contain host

variable markers (?).

Prepare the dynamic SQL statement.

The dynamic SELECT statement always has to be prepared using a PREPARE statement.

Establish information about the host variable markers.

If the host variable markers are constant in number and data type, host variables may be
statically supplied. Otherwise an INTO input clause in the PREPARE or DESCRIBE statement
must be used in order to obtain the information about the host variable markers. Variables must

then be dynamically allocated.

a Either assign values to any static host variables.
b: Or load the input SQLDA.

If the host variables are assigned dynamically, the SQLDA has to be supplied with information

about them. The host variables themselves must have appropriate values assigned to them

Execute the dynamic SQL statement.

A USING clause containing either references to the static host variables or the input SQLDA

is appended to either the EXECUTE statement or the OPEN statement as required.

91

Adabas SQL Server Programmer’s Guide

Updating a Dynamic Cursor

92

In dynamic SQL, it isnot possible for Adabas SQL Server to determine automaticaly if a cursor

has been established in order to be updated or not. Note that there are important performance

consequences based on this information. Two methods of letting Adabas SQL Server know that

acursor is FOR UPDATE or FOR FETCH ONLY are available:

— Thefirst possibility isto set a system wide default using Adabas SQL Server parameters.
All dynamic cursors will be assumed to be of this default type.

— The second possibility is to use the FOR UPDATE and FOR FETCH ONLY clauses
appended to the dynamic SELECT statement. Such an explicit specification overrides any
defaullt.

There isadifference in the positioning of both clauses compared to static SQL, where the clauses
can be specified only in conjunction with the DECLARE CURSOR statement. In dynamic SQL,
they can only be specified in conjunction with a SELECT statement. In case a DELETE or
UPDATE statement isissued against a cursor which is not FOR UPDATE, a negative SQLCODE
is returned to the calling program.

Example:

EXEC SQL
PREPARE st atenent i d FROM “ SELECT CRUI SE_I D
FROM CRUI SE WHERE CRUI SE_I D = ? FOR UPDATE;

Note, that the second method overrides the system default in either case.

There are again two methods of using positioned UPDATE or DELETE statements:
— thefirst method uses the normal static positioned UPDATE and DELETE statements,

— the second method requires that the UPDATE or DELETE statements are dynamically
constructed.

Dynamic SQL

Static Method

Using the static method, the UPDATE or DELETE statement is statically embedded in the
application program. Thisimplies that the table to be updated must be statically specified in the
UPDATE or DELETE statement and can not be dynamically substituted with another table
specification.

Example:

EXEC SQL
PREPARE st at enent _i d
FROM “ SELECT CRUI SE_| D FROM CRUI SE WHERE CRUI SE_I D = ? FOR UPDATE’;

EXEC SQL
DECLARE ABC CURSOR FOR st at enent _i d;

EXEC SQL
OPEN ABC,

EXEC SQL
FETCH ABC | NTO : cruise_id;

EXEC SQL
UPDATE CRUI SE SET CRUI SE_NAME = : crui se_name WHERE CURRENT OF ABC,

Adabas SQL Server will check that the table specified in the SELECT statement is indeed
consistent with the desired target table. If not, a runtime error will be produced.

The FOR UPDATE clause of the SELECT statement or the appropriate setting of the system
default is required.

Using the static method, it is possible to specify the cursor name in al statements using a host
variable.

93

Adabas SQL Server Programmer’s Guide

Dynamic Method

94

Using the dynamic method, the positioned UPDATE or DELETE statement is dynamically
constructed. The normal methods of EXECUTE IMMEDIATE or PREPARE and EXECUTE
can be used. Using this method, there are no restrictions on the dynamic SELECT statement
regarding the choice of target tables.

Example:

EXEC SQL
PREPARE st at enent _i d
FROM “ SELECT CRUI SE_| D FROM CRUI SE WHERE CRUI SE_I D = ? FOR UPDATE";

EXEC SQL
DECLARE ABC CURSOR FOR st at enent _i d;

EXEC SQL
OPEN ABC,

EXEC SQL
FETCH ABC | NTO : cruise_id;

EXEC SQL

PREPARE UPDATE_STATEMENT
FROM “ UPDATE CRU SE SET CRU SE_NAME = :crui se_nane
WHERE CURRENT OF ABC’;

EXEC SQL
EXECUTE UPDATE_STATEMENT;

Adabas SQL Server will check if the dynamic cursor allows updates and if the update is on the
same table as specified by the cursor, otherwise a runtime error will be produced.

Using the dynamic method it is not possible to specify the cursor name as a host variable in
UPDATE or DELETE statements, i.e. a‘WHERE CURRENT OF ? is not valid.

Dynamic SQL

Dynamic SQL with Persistent Procedures

When dynamic SQL statements are compiled using a normal PREPARE statement they result
in prepared statements that can only be executed within the same session which issued the
PREPARE statement. This means that these prepared statements are temporary and can not be
shared. For an application that issues the same SQL statements dynamically and is used by a
large number of users simultaneously, this can lead to an unnecessarily high amount of
superfluous compilation processes and resource usage. By using the possibility of persistent
procedures, dynamically prepared statements can be made permanent and can then be shared
amongst an unlimited number of sessions.

Creating a Persistent Procedure

Example:

A dynamic SQL statement is made into a persistent procedure by specifying the MODULE
clause on a PREPARE statement. Normally, with the PREPARE statement a dynamic SQL
statement is compiled and turned into a prepared statement which is given an SQL statement
identifier. Using the MODULE clause, the prepared statement is not given a temporary SQL
statement identifier, but a permanent one instead. Each persistent procedure has to be given an
unique identification consisting of a 27 character module name and a 5 character procedure
name. Both names are concatenated to form the identification of the persistent procedure as
stored in the catalog. In addition a version indicator must be specified, which is used to
distinguish different versions of the same persistent procedure from each other. The version
indicator specified when using a persistent procedure must conform with the version indicator
as it present in the catalog. By re-definition of the module name, a more finer subdivision of
persistent procedures can be achieved.

EXEC SQL
PREPARE MODULE "esq_t est” PROCEDURE "00001” VERSI ON :t st np
FROM " SELECT CRUI SE_I D FROM CRUI SE
WHERE CRUI SE_I D = ? FOR UPDATE”;
tmstmp is a variable which contains an 8 byte binary value.

95

Adabas SQL Server Programmer’s Guide

Using a Persistent Procedure

Example:

96

Once a persistent procedure has been established it can be used by any user session knowing the
name and version of the procedure. In principle, the MODULE clause can be used with any SQL
statement instead of an SQL statement identifier. Specifically, this means with the DECLARE
CURSOR, DESCRIBE, OPEN and EXECUTE statements. In order to minimize the number of
statements required in cursor processing, the DECLARE CURSOR statement is optional. By
specifying the MODULE clause with the OPEN statement the DECLARE CURSOR statement
is not required.

Ideally, an application using persistent procedures would first attempt to execute a persistent
procedure by means of either an OPEN or EXECUTE statement. If the execution fails due to
the fact that the persistent procedure is not present in the catalog or has the wrong version, the
persistent procedure can be established using a PREPARE statement.

EXEC SQL
DESCRI BE MODULE "esq_t est” PROCEDURE ”"00001” VERSION :tmstnp
I NTO : out put _sql da I NPUT :i nput _sql da;
EXEC SQL
OPEN ABC CURSOR FOR MODULE "esq_test” PROCEDURE "00001”
VERSI ON : t mst np
USI NG DESCRI PTOR : i nput _sql da;
EXEC SQL
FETCH ABC USI NG : out put _sql da;
EXEC SQL
CLOSE ABC,
Note:

It is also possible to omit the DECLARE CURSOR statement for non persistent dynamic SQL,
i.e. when using an SQL statement identifier. The SQL statement identifier may be specified with
the OPEN statement directly as well.

Dynamic SQL

Deleting a Persistent Procedure

A particular or a set of persistent procedures can be deleted by means of a DEALLOCATE
PREPARE statement. A DEALLOCATE PREPARE statement also specifies the MODULE
clause, but without the version indicator. By specifying a procedure name, one specific

persistent procedure is deleted, by omitting the procedure name, all persistent procedures with
the same module name are deleted.

Example

EXEC SQL
DEALLOCATE PREPARE MODULE ”esq_test” PROCEDURE 0001

EXEC SQL
DEALLOCATE PREPARE MODULE "esq_test”;

97

Adabas SQL Server Programmer’s Guide

SQL Descriptor Area (SQLDA)

General Information

98

An SQL descriptor area is used as a communication area between an application program and
Adabas SQL Server for dynamic SQL. It is used for communicating information between
Adabas SQL Server and the application program in both directions.

The information on a dynamic SQL statement that can be retrieved from Adabas SQL Server
by an application program using an SQLDA originates from either of two sources:

— OUTPUT SQLDA:

The derived column list of a dynamic SELECT statement. The application program can
retrieve information about the layout of the resulting format of a SELECT statement. The
information comprises alist of elements where each element describes the corresponding
derived column. An SQLDA describing this type of information is called an output
SQLDA. The information is assigned to the output SQLDA by either an extended
PREPARE statement (example 1a) or a separate DESCRIBE statement (example 1b). The
keyword OUTPUT is the default and therefore optional.

Example 1a:

EXEC SQL
PREPARE st atenent _id | NTO : out put _sql da FROM dyn_sql _st at enent ;

Example 1b:

EXEC SQL

PREPARE st atenent _id FROM : dyn_sql _statenent;
EXEC SQL

DESCRI BE st atenent _id | NTO OUTPUT : out put _sql da;

Dynamic SQL

— INPUT SQLDA:

The host variable markers in a dynamic SQL statement.

The application program can retrieve information about all host variable markers used in
a dynamic SQL statement. The information comprises a list of elements where each
element describes the corresponding host variable marker. An SQLDA describing thistype
of information is called an input SQLDA. Theinformation is assigned to the input SQLDA
by either an extended PREPARE statement (example 2a) or a separate DESCRIBE
statement (example 2b). The keyword INPUT is mandatory.

Example 2a:

EXEC SQL
PREPARE st atenment _id | NTO I NPUT :input_sql da FROM dyn_sql _st at enent;

Example 2b:

EXEC SQL

PREPARE st atenent _id FROM : dyn_sql _statenent;
EXEC SQL

DESCRI BE statenent _id | NTO | NPUT :i nput _sql da;

Note, that both input and output SQLDAS can be specified in the sasme PREPARE and
DESCRIBE statements if desired. However, one SQLDA can not be used for both an input and
an output SQLDA simultaneously.

Once Adabas SQL Server hasfilled an SQLDA with this information the application program
must provide a host variable reference for each element. This must be done prior to the execution
of the PREPAREd statement.

99

100

Adabas SQL Server Programmer’s Guide

Corresponding to the two types of SQLDAS two types of host variable references must be
supplied.

Target host variables for receiving resultant data.

The elements of an output SQL DA associated with a PREPAREd SELECT statement each
describe the expected format of the data to be received. The application program must
assign to each element a suitable host variable which is capable of receiving the expected
data. Adabas SQL Server can now determine where to copy the resulting data to by means
of the pointer reference in each element. Such an output SQLDA is only used in
conjunction with a FETCH statement.

Example 1:

EXEC SQ

FETCH ABC USI NG DESCRI PTOR : out put _sql da;

Host variables as host variable marker replacements.

The elements of an input SQLDA each describe the expected format of any additional
parameters required by the PREPAREd statement as represented by host variable markers.
The application program must assign a suitable host variable to each element of the input
SQLDA and each host variable must be loaded with the desired value before execution of
the PREPARED statement. Such an input SQLDA is used in conjunction with either an
OPEN statement (example 2a) or an EXECUTE statement (example 2b).

Example 2a:

EXEC SQL
OPEN ABC USI NG DESCRI PTOR : i nput _sql da;

Example 2 b:

EXEC SQL
EXECUTE st atenent _id USI NG DESCRI PTOR : i nput _sql da;

Dynamic SQL

The SQLDA Structure

Exactly the same structure is used for both, input and output SQLDA. It consists of two distinct
parts:

— aheader containing general information about the PREPAREd statement,

— aconsecutive list of elements corresponding to fields in the derived column list or the host
variable markers.

The whole structure consists of the four fields of the SQLDA header immediately followed as
many occurrences of the sglvar structure as stated in the sgln field.

Field Description

sgldaid An eigth-bytes character string containing the constant SQLDA, serves as
an eye catcher for easier memory dump interpretation.

sgldabc A four-bytes integer field containing the total length of the SQLDA in
bytes, i.e. the length of the header plus the length of the variable descriptor
elements multiplied by the number of available elements (sgln)

sqln A two-bytes integer field containing the total number of variable
descriptor elements available in the SQLDA.

sqld A two-bytes integer field containing the total number of variable descriptor
elements filled during the execution of a DESCRIBE statement.

sglvar An array containing sqgln variable descriptor elements.
sgltype

A two-bytes integer field containing the data type of the required/specified
host variable and whether there is an INDICATOR variable present or not.
sgllen

A two-bytes integer field containing the length of the required/specified
host variable. The interpretation of this field depends on the data type.
sgldata

containing the typespecific pointer to the host variable which isto receive
or which should contain the data.

101

102

Adabas SQL Server Programmer’s Guide

Field Description

sglind

A two-bytes integer field containing the typespecific pointer to the host
variable acting as an indicator value, if one is required.

sqlname

An array of 32 bytes containing the derived column label of the resulting
column. The first two bytes contain the length of the label.

The sglname field is only relevant for an output SQLDA and only in the particular case of the
corresponding derived column having a derived column label.

The sltypefield is set by Adabas SQL Server to reflect the particular type of the required field.

In addition the sgllen field is also set by Adabas SQL Server depending on the value assigned
to the sgltype field. This field specifies the required size of the host variable.

The sgltype field also specifies whether anull indicator variable is required or is supplied. This
is shown by the type value being increment by 1.

The following table lists the various values and combinations:

Type Name Value Data Type SQLLEN

SQL_TYP_CHAR 452 fixed length length of string in bytes
SQL_TYP_NCHAR 453 character string

SQL_TYP_CSTR 460 null terminated length of string in bytes,
SQL_TYP_NCSTR 461 C string including the null terminator
SQL _TYP_FLOAT 480 floating point set to 4 for single precision
SQL_TYP_NFLOAT 481 set to 8 for double precision
SQL TYP_DECIMAL 484 decimal first byte specifies the precision
SQL_TYP_NDECIMAL 485 second byte specifies the scale

Dynamic SQL

Type Name Value Data Type SQLLEN

SQL TYP_INTEGER 496 integer set to 4, equating to number of bytes
SQL_TYP_NINTEGER 497

SQL _TYP_SMALL 500 small integer set to 2, equating to number of
SQL_TYP_NSMALL 501 bytes

SQL_TYP_BINARY 4 binary length of binary value in bytes
SQL_TYP_NBINARY 5

SQL_TYP_NUMERIC 16 numeric first byte specifies the precision

SQL_TYP_NNUMERIC 17

second byte specifies the scale

Declaring an SQLDA

The SQLDA is a specia type of host variable structure. To ensure that the structure has the
correct format, the application program should use the definition of the SQLDA provided by
Adabas SQL Server. To facilitate this, an SQL statement like the following one should be

embedded in the application.

EXEC SQL
| NCLUDE SQLDA AS sql da_ptr;

This statement has the effect of generating a declaration of a variable sglda_ptr at the point
where it is specified. This variable can then be used as a pointer to a descriptor area.

103

Adabas SQL Server Programmer’s Guide

Allocating an SQLDA

When using an SQL DA to retrieve descriptive information from Adabas SQL Server either for
input or output purposes, the application program normally does not know the number of
variable descriptions required. The application program however has to allocate an SQLDA of
a certain dimension before the PREPARE or DESCRIBE statements can be issued. In general,
there are two techniques which can be used:

The application program allocates an SQLDA of maximum size to cater for the maximum
possible number of derived column list elements or host variable markers. Obviously, this
might cause a significant waste of storage if the maximum has to be set very high.

The application program allocates an SQLDA of minimum size. The dimension of the
SQLDA is determined by the sgin element in the SQLDA header. If the number of derived
column list elements or host variable markers exceeds this number, Adabas SQL Server
will refrain from attempting to provide information on the remaining elements or markers.
Adabas SQL Server, however, does return the correct number of elements in the sgld
element of the SQLDA. The application program can then use this number to allocate a
new SQLDA of sufficient size and re-issue the PREPARE or DESCRIBE statement. The
application program must explicitly have an SQLDA declaration such that the resulting
structure is in scope for all SQL statements which access it. Such a declaration does not
need to be in a BEGIN DECLARE SECTION.

Determining the type of SQL statement

104

Although the SQLDA does not explicitly return the SQL statement type, enough information
is returned in the SQLDA for the application program to determine whether the dynamic
statement is a SELECT statement or not. If the field sgln is O, the statement did not contain a
derived column list and must therefore be a NON-SELECT statement.

CLIENT/SERVER TOPICS

| ntroduction

In the past, the traditional set-up was that an application program had to run on the same
hardware platform as the database it accessed. Utilizing the client/server architecture, Adabas
SQL Server isdivided into a client and a server part, and makes the best use of both hardware

and software resources.

It is now possible, for example, for a Windows application to access Adabas SQL Server located

on an UNIX platform or on a mainframe platform, as the following figure shows:

User A on HP-UNIX User B on WINDOWS

Client Client
Application Application
Program Program
Adabas SQL Adabas SQL
Server Server
Mainframe Server UNIX Server

interprocess
communication

Figure 7-1: Client/Server Architecture

The following diagram shows a detailed flow of data and control in a Adabas SQL Server

client/server computing environment:

106

Adabas SQL Server Programmer’s Guide

Client Application
Program

CONNECT TO * ESQ BM
CONNECT TO * ESQUX”
CONNECT TO * ESOUME”
SET CONNECTI ON * ESQUX”
SET CONNECTI ON .. .

Di SCONNECT ALL

ESQLNK

—

Client Parameter
File ESQPARMS

Sessi on Ti neout =
Max Cursors = ..

N— _—

—

Server Parameter
File ESQPARMS

Server Nanme = ESQUMS
No. of Threads = ..

CscCl

Broker

—

Server Routing
File ESQSRVRT

ESQUMS CSC VAX3
ESQ BM CSCl | BML
ESQUX CSCI HP2

ESQB2 BROKER BRK2

—| Net-Work |—

Type = CSC
VAX3
OpenVMS Server
ESQVMS
IBM1
MVS Server
ESQIBM
HP2
UNIX Server
ESQUX
BS2
BS2000 Server
ESQBS2

N— —

—

Server Parameter
File ESQPARMS

Server Nanme = ESQB2
No. of Threads = ..
Type = BROKER

N— —

Figure 7-2: Client/Server Data Flow Diagram

Client/Server Topics

After generating a server environment (on UNIX/OpenVM S with the esggen command) a server
parameter file (ESQPARMYS) is generated. This file contains the default server and client
parameters. This file must be modified if you want to change these default values.

During server start-up, Adabas SQL Server reads the server parameter file to establish and use
the current server parameters and to establish the default client (session) parameters.

This file contains the following information: the server name, the communication protocol
(CSCI or Broker) , the number of threads of the server. After start-up, the server waits for
incoming client requests delivered by CSCI or Broker.

The client application program uses the statements CONNECT, DISCONNECT, and SET
CONNECTION to establish, set, and terminate sessions to active Adabas SQL Servers. Each
CONNECT statement that is executed on the client side reads the server routing file ESQSRVRT
to get the routing information about the desired server. Also, the client parameter file
ESQPARMS isread in to get the client parameter to overwrite the session-dependent parameter
on server side. ESQLNK packs all SQL requests, sends it using CSCI or Broker to the server
and waits for the reply. After receiving the reply, the returned data is unpacked and offered to
the client application program.

107

Adabas SQL Server Programmer’s Guide

Client/Server Configuration
LINKED-IN Mode

If the SQL request execution is performed in the process context of the client application, it is
called LINKED-IN mode. The SQL request execution is done by ESQTHS.

. If a LINKED-IN application uses the shared memories of a server, then this is called
LINKED-IN multi-user mode. The shared memories are used by an application process if
Adabas SQL Server that is used is active.

. If the server is not active, then the application isrunning in LINKED-IN single-user mode. No
shared memories are used.

Client No Server available

Application
Program

ESQLNK

ESQTHS

Figure 7-3: LINKED-IN Single-User Mode

108

Client/Server Topics

Client Server
Application
Program Adabas SQL Server
ESQLNK ESQSRV

Server Control

o Block o
ESQTHS and ESQTHS

Catalog Buffer

Figure 7-4: LINKED-IN Multi-User Mode

Note:
UNIX: Adabas SQL Server allows a server to start with 0 threads. In such a case, only the shared
memories of a server exist and can be used by LINKED-IN applicationsin the multi-user mode.

109

Adabas SQL Server Programmer’s Guide

Client/Server Mode

If the SQL request execution is performed by a server and not by the application program, then

110

this is called Client/Server mode. The SQL request execution is done by ESQTHS on server
side. ESQLNK does al packing, C/S communication, and unpacking of the SQL requests. No
shared memories of any server are used by the application program. If the client and the server
are on one and the same node, we talk about local client/server mode. If the server is located

on a remote node, we talk about remote client/server mode.

Client

Application
Program

ESQLNK

Server

ESQSRV
Server Control
Block s
and ESQTHS

Catalog Buffer

Figure 7-5:

Local Client/Server Mode

Client/Server Topics

Client Server
Node 2
Application
Program
ESQLNK ESQSRV

Server Control

Block B
and ESQTHS

Catalog Buffer

Node 1

Figure 7-6: Remote Client/Server Mode

For details about the platform-dependent server architecture refer to the Adabas SQL Server
Installation and Operations Manual, Chapter: Operating Adabas SQL Server.

111

Adabas SQL Server Programmer’s Guide

M ode Deter mination

The following table shows how the various modes of Adabas SQL Server can be achieved:

Server active Entry in routing file
(CSCI or Broker)
v N v N Mode
- X - X SINGLE-USER LINKED-IN (DEFAULT)
X - - X MULTI-USER LINKED-IN
LCL - X - LOCAL CLIENT/SERVER
RMT - X - REMOTE CLIENT/SERVER

Y(LCL) stands for "server active on local node” and Y(RMT) stands for "server active on
remote node’. LINKED-IN single-user is the default. On UNIX and OpenVMS platforms, the
"esgshow” command gives information about the above topics. With the Mode or Client/Server
Communication Logging, you are able to find out in which mode your application is currently
running. For more information about logging refer to the chapter L ogging Facilities in the
Adabas SQL Server Installation and Operations Manual.

Features And Restrictions
The following is alist of some features and restrictions that apply to the various client modes:

LINKED-IN Mode

An application can only connect to one Adabas SQL Server at a time. No paralel multiple
connections are possible in LINKED-IN mode. An application can connect to multiple servers
only by connecting one server after the other (CONNECT, ..., DISCONNECT, ..., CONNECT,

o).
Client/Server Mode

Only applicationsin client/server mode can communicate to multiple servers at the same time.
It is possible to have multiple connections to the same or different servers.

Mixed Mode

Mixed usage of the above modes is possible. Simultaneous usage of the modes is possible.

112

Client/Server Topics

Communication Protocol

The communication protocol used by Adabas SQL Server for the interprocess communication
between client and server is the Client Server Communication Interface (CSCI) or the Entire
Broker (Broker).

CSCl or Broker are programming interfaces to a transport service in a client/server
environment. CSCI and Broker use Net-Work as the basic transport layer.

For details about Entire Net-Work, Entire Broker and CSCI refer to the relevant Software AG
documentation.

Application Program

ESQLNK

‘ CSCl/Broker

interprocess communication
using Net-Work

‘ CSCl/Broker

Adabas SQL Server

Figure 7-7 Client/Server using CSCI/Broker

113

Adabas SQL Server Programmer’s Guide

L ocal Client/Server Mode with CSCI

The default communication protocol of Adabas SQL Server is CSCI.

The following diagrams show the different configurations of the CSCI communication protocol
and how Adabas SQL Server uses CSCl:

Client Server
Application
Program ——— CSCI/SPI
ESQLNK ESQSRV
CSCI/CPI
CscCl
_ Shared ESQTHS
Memory

Figure 7-8: Local Client/Server with CSCI

Net-Work must not be active for this mode, only CSCI must be active on the local node.

CPI and SPI are either client or server programming interfaces. For more information about
CSCl, refer to the Adabas SQL Server Programmer’s Guide, Appendix D, section Adabas SQL
Server and Entire CSCI.

114

Client/Server Topics

Remote Client/Server Mode with CSCI:

Client on Node 1 Server on Node 2
Net-Work
Application
Program CSCI/SPI
ESQLNK ESQSRV
CSCI/CPI
ESQTHS
Net-Work

Figure 7-9: Remote Client/Server with CSCI

For this mode you need an active CSCI as well as an active Net-Work.

Client/Server Mode with Broker

As an adternative to CSCl, Adabas SQL Server can also use Broker as client/server
communication protocol.

The following diagram shows one possible configuration of the Broker communication protocol
and how Adabas SQL Server uses Broker, mostly used on BS2000 platforms:

115

116

Adabas SQL Server Programmer’s Guide

Client on Node 1

Application
Program

ESQLNK

Broker Stub

Net-Work

Server on Node 2

Net-Work

Broker Stub

ESQSRV

ESQTHS

Net-Work

Entire Broker

Node 3

Figure 7-10: Remote Client/Server with Broker

Client/Server Topics

If client, server, and Broker are located on one and the same node then Net-Work does not need
to be active. If only one of the three componentsis not located on the local node then you need
and active Net-Work for the participated nodes.

To set up an Adabas SQL Server with Entire Broker communication, the following two entries
must be made in the parameter file:

SERVER BEG N

TYPE = Broker
Broker 1D = <broker_id>

For more information about Broker, refer to the Adabas SQL Server Programmer’s Guide,
Appendix D, section Adabas SQL Server and Entire Broker.

Time-Out Checking

ADABAS SQL Server provides two types of client/server time-outs: these apply only in real
client/server mode and not for LINKED-IN mode.

Server Session Time-Out

The server session time-out is a client inactivity time out and is checked on the server side. It
prevents server threads from being occupied by "lazy” or even "dead” clients (e.g. PC crash,
clients exit-handler was not executed).

The time-out means that a particular client session is terminated by the server after a specified
period of inactivity. The default value for al clientsis specified in the server’s parameter file.
The default is 15 minutes.

The client can overwrite this value by using a client parameter file containing a SERVER
SESSION TIMEOUT clause. A value of zero disables any server session time-out checks.

Note:
In the current version of Adabas SQL Server (UNIX and OpenVMS) there is no way to terminate
a specific client session on the server side using an operator command.

117

Adabas SQL Server Programmer’s Guide

Server Reply Time-Out

The server reply time-out is checked on the client side. It prevents client applications from
hanging up if (for any reason) the server does not reply to the client’s request. The modifications
of the server reply time-out currently depends on the client/server protocol.

CSCl
If CSCI isused, this time-out is implemented in the CSCI/CPI layer, which defines a default
value of 1 minute. This default may be overwritten on the client side by using the CSCI
environment variable CSC_TIMEOUT.

Broker

If Broker is used, the time-out value is modifiable using the parameter file with the SERVER
REPLY TIMEOUT clause. The default value is 5 minutes.

118

Client/Server Topics

Access to Adabas SQL Server

The SQL application uses the CONNECT, SET CONNECTION, and DISCONNECT
statements to define or change the current SQL session.

An SQL session starts with the CONNECT statement and ends with the DISCONNECT
statement. The CONNECT statement establishes two things:

— communication between client and server,
— an SQL session on the server side.

SQL Statements

The statements referenced below are described in detail in the Adabas SQL Server Reference
Manual, chapter SQL Statements.

CONNECT Statement

The CONNECT statement establishes an SQL session between the application and Adabas SQL
Server.

Although an application can issue multiple CONNECT statements, it is set to only one Adabas
SQL Server at a time. Adabas SQL Server used in the most recently executed CONNECT
statement is the active one.

SET CONNECTION Statement

If a least two SQL sessions are active, the SET CONNECTION statement is used to switch from
the current session to the specified one. The session context of Adabas SQL Server is restored
to its exact state at the time of the suspension.

DISCONNECT Statement

The DISCONNECT statement terminates the SQL session and performs an implicit
ROLLBACK.

119

Adabas SQL Server Programmer’s Guide

Default Adabas SQL Server (ESQSRV)

120

To avoid having to specify a server name in an application, Adabas SQL Server offers the
concept of adefault Adabas SQL Server. This prevents unnecessary editing, precompilation and
linking steps, when wanting to switch to another server.

It is not required to specify any server namein a CONNECT statement. The client environment
can be set up in such away that the default server is determined an environment variable named
ESQSRV. The content of this variable is simply a server identifier or a complete server
identification.

Note:
On the mainframe, the default server is specified in the parameter unit VOPRM. In UNIX and
OpenVMS environments ESQSRV is set by ‘esgset’.

ESQSRYV is available in any user environment and is set by the Adabas SQL Server system
administrator but may be overwritten by any user. If no default server name is specified, then
SAGESQSYV is assumed to be the server name.

Client/Server Topics

Server |dentification

The server identification holds information that gives answers to the following questions:
e Which Adabas SQL Server names are known from the client side?

e Which type of client/server communication protocol has to be used to address the server
(LINKED-IN, CSCI, BROKER)?

e What is the server's destination specification? For CSClI = node name, for BROKER =
BROKER-ID.

Server identification

LINKED-IN
/

—| Serer BROKER j—— broker-ID
identifier

< CSCI \— node name

LINKED-IN no communication protocol isused. The server thread (ESQTHS) islinked
together with the SQL application.

BROKER the client is using BROKER protocol to communicate with the specified
Adabas SQL Server.

CsCl the client is using CSCI protocol to communicate with the specified

Adabas SQL server.

If no server identification is specified for a server, then LINKED-IN is assuned. In such acase
ESQLNK triesto load ESQTHS.

The server identification can be set using the environment variable ESQSRV or in the routing
file. The following is a UNIX example to set ESQSRV:

> setenv ESQSRV "MYSRV CSCI HPE”

121

Adabas SQL Server Programmer’s Guide

Server Routing File (ESQSRVRT)

The server routing file is located on the client side (defined using the environment variable
ESQSRVRT) and holds server identifications. Each line of ESQSRVRT contains a complete
server identification.

If aserver and itsidentification are not found in ESQSRV during the execution of a CONNECT
statement, then ESQLNK uses ESQSRVRT to get the server identification. This technique
allows the application to issue multiple CONNECT statements to different servers without
knowing the communication protocol and server location.

Note:
On mainframes, ESQSRVRT is contained in the VOPRM unit.

In the first column of each line you can specify a comment line with a hash character: “#".
Example of the Server Routing File:

HHHBHHBHHBHH BB R R R R R R R R R R R R R R
#
Fil e nane: esqg_routing. dat

Description: Define ESQ server Conmunication
Usage: This file is used by the ESQ client interface

Each line in this file defines an ESQ server, it's location and the
type of communication to be used by the ESQ client interface

Syntax: <server—nanme> <conmuni cati on> <desti nati on>

Wher e: server—nane

- ; ESQ server nane (nmax. 8 chars case sensitive)
conmuni cati on

"CSCl” or "BROKER' or "LINKED-I N

destination for CSCl: <node—nane>
for BROKER <br oker —i d>
for LINKED-IN <>

node—nane = Network node nane where the server resides on
(max. 8 chars not case sensitive)

br oker —i d = Id of the ENTI RE BROKER

(max. 32 chars case sensitive)
Exanpl e: SAGESQ1 CSCI SAGVAX01
SAGESQ02 BROKER BKR34
SAGESQ03 LI NKED-I N

Version: 1.3 95/01/31 16:15:47 (co) Software AG

HHEHFHFHFFHFHH TS

BHHHHHABHHHHH BB HHH AR HHHH BB HHH AR HH AR HHH R HH AR AR

H*

<server—nanme> <communi cati on> <desti nati on>
#

ESQUMS CSCI VAX3
ESQ BM CSCl | BML
ESQUX CSCI HP2

ESQB2 BROKER BRK2

122

UNDERSTANDING SQL QUERY TRANSLATION
AND OPTIMIZATION

The following sections discuss a number of topics that refer to the process of translating SQL
statements into procedural form, and generating Adabas commands for retrieval.

The mechanism that Adabas SQL Server uses to carry out the execution of an SQL statement
is the meta program. The meta program can be thought of as a series of instructions for avirtual
machine. This virtual machine isimplemented inside the Adabas SQL Server runtime system.
Most of the Adabas commands performed during the execution of atransated SQL statement
result from a particular instruction of that virtual machine.

Information Available on Trandated Queries

There are three ways of visualizing the behavior of atrandated SQL statement:

First, the generated code can be displayed in pseudo code form by turning on the EXPLAIN
logging. This provides a view of the procedural code resulting from the compilation: in
particular the structure of the loops and the Adabas commands will be shown. Thislogging
is generated by the time a meta program has been compiled, that is, trandations of static
embedded SQL statements can only be logged during their first execution.

Second, the generated meta program can be dumped after compilation. In comparison to
the pseudo code logging, this shows the exact code that will be executed by the virtual
machine at run time. Thusit is more detailed and usually less readable, because it does not
present a structured view of the generated program. However, the Adabas access
information is displayed more accurately here. The meta program dump is also written at
compile time, that is, for static embedded statements during their first execution.

Third, the Adabas command logging can be used to monitor the execution of an SQL

statement. Thiswill show the dynamic behavior of the program as each Adabas command
is executed.

More details on how to use any of these methods can be found in the chapter L ogging Facilities
of this manual.

123

Adabas SQL Server Programmer’s Guide

The Generated Adabas Direct Calls and Their
Consequences

Adabas Access Paths Used for Retrieval

Adabas SQL Server uses one of four methods to access data in an Adabas file:

124

An Sl to get the first record, followed by an L1 with the GET NEXT option to get
additional records. The S1 makes use of the HOLD ISN LIST option should the ISN list
need to be processed more than once (from within aloop) or if acomplex search expression
requires a combination of that ISN list with further search conditions.

L3 commands. These may be used in order to retrieve a range of descriptor values; the
VALUE START option will be set in this case. Another occasion where L3 will be used
iswhen thereis an ORDER BY clause present in the SQL statement that requires sorting
in descriptor order.

L1 commands with the READ ISN SEQUENCE option. This method is used when the
retrieval is based on a range of ISNs. Additionally, it is necessary to use it in case the
complete file must be scanned and a subsequent UPDATE may have to be carried out at
a later stage (L2 cannot be used because the UPDATE may affect the physical order of
records).

L2 commands to read a full file, with no subsequent UPDATE.

Understanding SQL Query Translation and Optimization

AdabasHold Queue Usage

In any of the following situations, the above commands will be dynamically replaced by their
respective equivalents that enter records into the hold queue ($4, L4, L5, L6):

The LOCK WHEN READING option has been used in the Adabas SQL Server parameter
file. This will have the effect of setting each and every record in hold condition upon
reading it.

The retrieval occurs on behalf of an UPDATE or DELETE command on the table that will
be affected by the UPDATE or DELETE operation.

The commands areissued for the target table of an updatable cursor. In this case, positioned
UPDATE or DELETE commands have to be expected. The ‘updatable’ property for a
cursor may be specified explicitly for each individual cursor by means of the FOR
UPDATE clause or globally by using the UPDATE EXPECTED parameter in the Adabas
SQL Server parameter file. In static embedded SQL, cursors are automatically determined
to be updatable when there is a positioned UPDATE or DELETE present in the same
compilation unit as the cursor declaration.

Usage of the Adabas MULTIFETCH Option

In general, al read commands are issued using the MULTIFETCH option. There are three
exceptions to this rule;

Records read from the target table of an updatable cursor will not be multifetched. This
is because COMMIT or ROLLBACK, when used with KEEPING ALL, might remove
locks established for multifetched records before these records have been FETCHed by
the SQL application and thus before an UPDATE or DELETE occurs which requires the
lock to be held.

When all of the M (MULTIFETCH), N (GET NEXT), and R (RETURN) options are to
be used for an L1 command, and Adabas SQL Server is communicating with Adabas
UNIX v1.2 not supporting the O option, the M (MULTIFETCH) option will be dropped.
The R (RETURN) option may have been set in accordance of the Adabas SQL Server
parameter HOLD = OFF.

When MULTIFETCH has been explicitly turned off by the Adabas SQL Server parameter
line COMPILER (EXTENDED FEATURES = (4)) in the parameter file.

The number of records and the memory size used for MULTIFETCH may be influenced by run
time parameters.

125

Adabas SQL Server Programmer’s Guide

Adabas Search Buffer Entries Generated for S1 Commands

Adabas SQL Server can generate the following search buffer entries:

Comparison operators EQ, GE, LE, GT, LT

Range operator S

Boolean connectors D and R

Single field descriptors

Superdescriptors (see below for conditions of use)

Nondescriptors, where supported by the Adabas nucleus

Command IDs for combining ISN lists with extra search conditions

Adabas SQL Server does not use the NE operator. Also, the O connector is not used.

For aLIKE predicate, arange will be constructed containing all values that start with theinitial
non-wildcard portion of the pattern to be matched.

Preconditionsfor Superdescriptor Usage

126

The following preconditions must be met for Adabas SQL Server to choose the search for a
superdescriptor:

The WHERE clause must contain comparisons for a leading portion of the superdescriptor,
i.e. apredicate for at least the first element must be present.

The superdescriptor definition must include its elements with their respective standard
lengths as per their definition.

The comparison predicates must occur in an AND conjunction.

Superdescriptors can be used with both L3 and S1 accesses. If the superdescriptor is chosen for
S1 access, the individual comparisons will not show up in the search buffer.

Understanding SQL Query Translation and Optimization

When a superdescriptor contains component fields defined with the Adabas NU or NC (without
NN) options, any records containing NULL and Adabas default values in these component
fields are not represented by the superdescriptor. This means that these values can not be
retrieved by a descriptor search, as shown in the following example:

create table t (a char, b char);

create index ii ont (a, b);
commit;

insert intot values ("A, null);
select * fromt where a = "A';

The superdescriptor that implements index ii can not be used for the specified query, because
due to the NULL value of column B, no descriptor value will be stored. By specifying an
additional predicate which will exclude NULL values from the results, the descriptor search can
be performed as follows:

select * fromt where a ="'A and b is not null;

127

Adabas SQL Server Programmer’s Guide

Complex SQL Structures and Their Translation

Procedural Codefor Join Processing

128

When processing joins, the Adabas SQL Server query compiler will generate a system of nested
loops, where each loop is associated with a particular table that occurs in the join. Thus the
principal structure of atwo-table join is as follows:

for (each row of first table satisfying sonme predicate eval uation)

{

for (each row of second tabl e satisfying sonme predicate eval uation)

{

add a record to the result set

}
}

The actual number of loops is identical to the number of tables in the from clause.

The evaluation of the predicates applying to each table may come out in four different ways:

— A predicate may be evaluated beforehand (that is, by an Adabas search command) and the
loop must then run only across the set of rows that are known to fulfill the condition.

— A predicate may be evaluated only if an tabled is accessed and filtered for the result once
each record has been read. It might be necessary to open inner loops before a predicate can
be evaluated.

— There may be combinations of the above, that is, an Adabas search command gives us a
superset that we may further reduce with extra filters.

— There may be no predicates at all, in which case a full table scan has to be performed.

In order for the system of loops to execute with acceptable performance, the predicates of the

WHERE clause must be mapped on to table restrictions such that they can be:

— Most selective, that is, they should result in asmall set because this will save on the number
of passes for any inner loop.

— Cheap to apply, that is, Adabas descriptor search must be preferred over applying filters
after reading.

Understanding SQL Query Translation and Optimization

Example:

sel ect person. person_id, person.surnane,
yacht.yacht _id, yacht.yacht_nane

from person, yacht

where person.person_id = yacht.id_owner

and yacht _nane = ' CUCA RACHA';

There are two tables in this query, so there will be two loops in the trandlation. There are two
possible choices of arranging these loops: which of the tables should be associated with the outer
loop needs to be chosen; the inner loop will then apply to the other table.

Provided that person id is a descriptor and id_owner and yacht _name are not, the following
code will be generated:

for (each row of yacht read by L2)

{
if (yacht_name = ' CUCA RACHA')
{
create SN list by S1 for person, person_id = yacht.id_owner
for (each row of the above ISN list)
{
add a record to the result set
}
}
}

Note that the inner loop will, in fact, degrade to a single record access if person_id isa unique
descriptor.

129

Adabas SQL Server Programmer’s Guide

Principles of Adabas SQL Server Join Optimization

130

With the fixed structure of the code shown above, the primary degree of freedom that will be
used to achieve the above goalsis the ordering of the loops within each other. Whereas logically
any arbitrary order of the loops will do, there are, of course, large differences in terms of
performance.

The goal of Adabas SQL Server join optimization is to find an optimal arrangement of these
loops. The input criteria for this decision are:
— Theinformation on which descriptors and superdescriptors may be applied.

— The structure of the query, that is, the information about which restrictions and join
conditions are present in the WHERE clause and their interdependencies.

The Adabas SQL Server join optimizer does not currently consider any information about
Adabas file size.

The technique that Adabas SQL Server uses for join optimization is called “query

decomposition”. Thisis agraph-based algorithm that works on a query graph. The query graph

is constructed from a query by assigning a node to each table and an edge to each predicate

conjunction element. The join conditions are mapped onto edges connecting several nodes.

Simple restrictions are mapped into loops that touch on a single node. The edges in the query

graph are then labeled with the following information:

— Predicate classification, for example, an equality comparison predicate is considered
simpler than one using different operators.

— Descriptor information, that is, which predicates are covered by an Adabas descriptor. For
join predicates this information is given for each participating node.

During the decomposition process, the nodes may be labeled with

— Sizeinformation, i.e. some nodes are considered as representing smaller tables than others,
because they have previously been reduced by applying some restriction.

Understanding SQL Query Translation and Optimization

The query decomposition algorithm will successively remove edges and nodes from the query
graph in order to decompose it. The order of the meta program table loops will be derived from
the order in which the algorithm removes nodes from the graph. The algorithm repeatedly
applies the following basic operations to the graph (ordered by decreasing precedence):

— Replace a node that has aloop labeled ‘simple’ by a node that is labeled ‘small’.
— Remove anode that is labeled ‘small’.

— Remove anode that is connected by an edge which indicates a descriptor only for the other
nodes.

— Remove a node that will disconnect parts of the graph. Nodes having simple edges will
be preferred.

— Remove a node. Nodes having simple edges will be preferred.

Whenever two nodes have the same properties and cannot be distinguished by the above criteria,
preference will be given according to the order specified in the FROM clause. Note that if all
fields have descriptors, then, for purposes of join optimization, thisisjust as if there were no
descriptors at all, because the descriptor information then does not contribute anything to the
decision process.

Join Elimination for Nested Data-Structure Access

When a subtable is accessed, it is often necessary to combine the subtable data with data from
the master table according to the clustering.

These joins can be eliminated by the query compiler, that is, it is not necessary to consider the
subtable and the master table as two independent entities. Rather these queries can be
implemented by going along the records of the master table and associating the subtable records
as they are clustered with each master table record.

In order for joins to be eliminated this way, the join condition must make it clear that a given
subtable record must be combined with nothing but the master table record it is clustered with.
In terms of referential integrity, the join condition thus has to be formulated as an equijoin (join
condition with EQUALS operator) on those columns making up the referential constraint
between the subtable and the master table.

131

Adabas SQL Server Programmer’s Guide

Subquery Processing

132

Adabas SQL Server will generate the code for a subquery to be similar to the code for the
primary queries. The subquery code will be positioned inside the system of loops generated for
its superior query.

The Adabas SQL Server compiler will attempt to move the code generated for a subquery to
the outermost position so that the subquery can be evaluated. This aims at evaluating the
subquery as early as possible in order to save processing any inner loops in the case where the
subquery predicate evaluates as false.

For positioning the subquery code into the code for the surrounding query, you must consider

whether a subquery is

— Correlated or non-correlated, that is, whether or not it depends on its environment by
referencing it;

— Single-row or multiple-row, that is, whether the result is asingle row (by definition) or can
be a set of rows (asin a quantified subquery) that must be processed in order to evaluate
the subquery predicate.

The simplest case of course is a non-correlated, single-row subquery. It can be evaluated
independently of its environment and it can be replaced by a single value for purposes of
evaluating the surrounding query. Its code will be generated outside any other loops.

Understanding SQL Query Translation and Optimization

Example:

sel ect person_id, surnane

from person

where person_id = (select id_owner
from yacht
where yacht_nane = ' CUCA RACHA'
)

The subqguery here is a non-correlated, single-row subquery, so its associated code will not be
positioned inside of the outer queries code, but it will be evaluated beforehand. The following
code will be generated:

for (each row of yacht read by L2)

if (yacht_name = ' CUCA RACHA')

{
make sure subquery produces a single result row
save i d_owner val ue

}

if (subquery result does exist)

{
create ISN list by S1 for person, person_id = subquery result
for (each row of the above ISN list)

{

}
}

add a record to the result set

133

Adabas SQL Server Programmer’s Guide

Reasons for External Sorting

134

As already mentioned, Adabas SQL Server can exploit the ordering provided by an Adabas
descriptor by using the Adabas L3 command to implement the ORDER BY clause.

In cases where thisis not possible, external sorting — driven by the Tuple Manager — will occur.
This is a component of Adabas SQL Server that has been designed for storing, sorting, and
retrieval of intermediate result sets.

The Tuple Manager implementation uses both main memory and disk space for storing itsfiles.
Disk space will not be used until some size threshold has been exceeded. This behavior can be
influenced by setting environment variables (see chapter Operating Adabas SQL Server,
section Sort Buffer Size Setting intheAdabas SQL Server Installation and Operation Manual).

The SQL language constructs that require sorting are:

— SELECT DISTINCT, it may be necessary to sort a result in order to perform duplicate
elimination.

— DISTINCT functions, for example, COUNT (DISTINCT column), sorting required for
duplicate elimination.

— UNION (without an ALL specification) requires sorting for duplicate elimination.

— GROUPBY, sorting required to identify groups and perform the aggregation.

— ORDER BY, sorting required to deliver a sorted resullt.

One SQL statement may require several of these constructs and thus it may become necessary
to sort several times for different purposes.

The Adabas SQL Server compiler contains an optimization that will attempt to combine the
sorting generated for ORDER BY and that for GROUP BY. The precondition for thisisthat all
elements of the ORDER BY clause show up in the GROUP BY clause.

Adabas SQL Server does not generally detect whether any duplicate elimination is applied to
data that cannot contain duplicates by definition. In such cases, it will be necessary to modify
the SQL statements to remove the unnecessary sorting.

Understanding SQL Query Translation and Optimization

Setting the BLOCK SIZE for Nested Data Structures

For a nested subtable, the DDL definition allows for the specification of a BLOCK SIZE.

The number of occurrences that can be nested into arow of the referenced table is not limited
by the specified size. Rather, it drives the allocation of a memory buffer that is used to hold the
retrieved data. By setting this to an appropriate value, it is possible to specify the number of
occurrences of amultiple field or periodic group that are read by a single Adabas command.

When scanning a nested subtable, the Adabas read command may have to deal with up to three
different levels: the Adabas records, the first-level nested fields and the second-level nested

fields.

Two different mechanisms are used to control the buffering of data during these scans:

— Adabas records are accessed using the Adabas MULTIFETCH option, that is, several
records are read at atime. The characteristics of this operation can be influenced using

parameter processing directives.

— Extra buffering occurs for first-level and second-level nested data. A BLOCK SIZE is

associated with each level of nesting.

If the BLOCK SIZE chosen istoo small for a particular record, then additional read commands
will beissued to refill this buffer. This may happen several times until al of the information of

this record has been read.

If, on the other hand, the BLOCK SIZE istoo large, space will be wasted in the meta program,
especialy in the format and record buffers of the Adabas command. This will also lead to a

dlightly increased processing time.

Thus the BLOCK SIZE should be set appropriately for each application near the expected

average of nested records.

135

136

MULTIFETCH FEATURE

The MULTIFETCH feature is available in order to minimize the data transfer and the
inter-process communication between the application, Adabas SQL Server and Adabas.
MULTIFETCH means that more than one record is transported per READ or FETCH request.
Adabas SQL Server offers two different levels of MULTIFETCH:

— SQL MULTIFETCH
The SQL MULTIFETCH applies between the application and Adabas SQL Server.

— DBSMULTIFETCH
The DBS MULTIFETCH applies between Adabas SQL Server and Adabas.

ESQ Application

ESQLNK

MULTIFETCH Buffer

SQL FETCH Request SQL MULTIFETCH

Adabas SQL Server

MULTIFETCH Buffer

Adabas Lx call DBS MULTIFETCH

Adabas

Figure 9-1: Overview of MULTIFETCH Activities

137

Adabas SQL Server Programmer’s Guide

SQL MULTIFETCH

The MULTIFETCH feature offered by Adabas SQL Server is used by ESQLNK on the
application client side. The MULTIFETCH featureis used for all SQL FETCH requests. For the
first FETCH request performed by the application, ESQLNK fetches a variable number (block
factor) of records and usesaloca MULTIFETCH buffer to store this data. Each FETCH request
performed by the application picks one record out of this buffer until the buffer is empty. When
the buffer is empty, a variable number of records are fetched from the server and stored in this
buffer.

The SQL MULTIFETCH istransparent, that is, the application does not realize whether a record
was fetched out of the local buffer or from the server.

ESQLNK uses this feature per default. It is possible to switch off the SQL MULTIFETCH. The
number of records (block factor) transferred from Adabas SQL Server into the local buffer can
be set using the parameter file. The default is 16. For details, refer to the Adabas SQL Server
Installation and Operations Manual, Appendix A — The Parameter Processing L anguage,
section: GLOBAL Settings.

DBS MULTIFETCH

138

Adabas offersaMULTIFETCH feature which is being used by Adabas SQL Server. Thisfeature
of Adabasis called DBSMULTIFETCH here. The MULTIFETCH featureis used for any of the
Adabas commands L1/L4, L2/L5, L3/L6 and L9. For thefirst Lx call performed by Adabas SQL
Server, it reads a variable number (block factor) of records and uses the server MULTIFETCH
buffer to store this data. Each Lx call picks up one record out of this buffer until the buffer is
empty. When the buffer is empty again, a variable number of records are read from Adabas and
stored into this buffer.

Adabas SQL Server uses this feature per default. It is possible to switch off the DBS
MULTIFETCH. The number of records (block factor) transferred from Adabas into the buffer
of Adabas SQL Server by the Lx can be set using the parameter file. The default is 16. For details
refer to the Adabas SQL Server Installation and Operation Manual, Appendix B — The
Parameter Processing Language, section: GLOBAL Adabas Settings.

For details about DBS MULTIFETCH, see a so the Adabas Command Reference Manual, Using
the MULTIFETCH Feature.

Multifetch Feature

Restrictions

Under afew conditions, the MULTIFETCH is switched off internally by ESQLNK or Adabas
SQL Server:

e The SQL MULTIFETCH is switched off if memory is not reliable between SQL requests. This
can be valid if ESQLNK is used under CICS with pseudo-conversational mode.

e The SQL MULTIFETCH is switched off if you use a mixed version environment, that is,
ESQLNK v13x with Adabas SQL Server v14x.

e Both MULTIFETCHs are switched off if you use an updatable cursor.

In addition to this, it is not possible to use different host variable types between FETCH requests
of one and the same cursor. If you try to do this, you will get the response code —8647: “FETCH
host variable differs from that of previous FETCH statement”. In such a situation, you have to
change your FETCH host variables (make them homogeneous) or you have to switch off the
SQL MULTIFETCH.

Please note that the maximum amount of data which can be transferred between application and
Adabas SQL Server or between Adabas SQL Server and Adabas is limited to 64KB (on some
platforms only 32KB). Example: If your record length (sum of all host variable lengths) is 500
Bytes, then the maximum MULTIFETCH block factor is 128.

How to Use MULTIFETCH

The block factor specifies the number of records to be transferred for one FETCH request or for
one Lx call. The default for both block factors is 16. These parameters can be changed using
the parameter file.

If you want to change these defaults, please keep in mind that the DBS MULTIFETCH block
factor should be a integer factor of the SQL MULTIFETCH block factor. Example:

DBS MULTIFETCH block factor 32
SQL MULTIFETCH block factor 16

In general, this rule will give you the maximum performance.

If you want to monitor the SQL MULTIFETCH, please use the Brief SQL Command L ogging.
If you want to monitor the performance, please use the Elapsed Time Logging.

139

140

EMBEDDING SQL STATEMENTS
IN HOST LANGUAGES-C

Genera Rules

SQL Statement Delimiters

SQL statements are delimited by the prefix EXEC SQL and the terminator *;’. The prefix may
be written in upper or lower case letters. In Adabas SQL Server mode, upper or lower caseis
permitted and the prefix may be split over numerous lines, separated by any white space
character. In ANSI and DB2 modes, upper caseis required and only white spaces may separate
the prefix keywords.

SQL Statement Placement

SQL statements may be specified wherever a C statement may be specified within a C function
block, asthe Adabas SQL Server compiler replaces them with generated C statements. Included
C source code must not contain any SQL statements nor any host variable declaration for the
use in SQL statements. Similar restriction apply to C macro bodies.

The INCLUDE SQLCA statement may be positioned anywhere a C variable declaration could
be positioned. As this statement results in a declaration of an SQLCA structure, it must be
positioned to be in scope for any statement using this SQLCA declaration. The C scoping rules

apply.
The SQL WHENEVER statement may be coded anywhere in the C program.

141

Adabas SQL Server Programmer’s Guide

Comments

SQL statements may contain C comments wherever a blank is permitted. Comments are not
allowed in strings and may not be nested. The C comment delimiters ‘/*’ and ‘*/* are replaced
by ‘**.

C Example:
EXEC SQL WHENEVER SQLERRCR

/* CONTI NUE */
GOTO HANDLE-ERROR,

SQL Example:
EXEC SQL WHENEVER SQLERRCR

— — CONTI NUE
GOTO HANDLE-ERROR,

142

Embedding SQL Statements in Host Languages — C

Host Variables

C host variables used in SQL statements must be declared within the SQL BEGIN DECLARE
SECTION and END DECLARE SECTION statements. Adabas SQL Server allows the use of
single host variables, arrays of host variables and host variable structures.

Host Variable Declar ation

C arrays and structures are named sets of C single host variables and must conform to the ANSI
Standard (X3.159-1989) for C. The use of C structures and arrays within SQL statementsis an
Adabas SQL Server extension and not part of the ANSI SQL Standard. In this version of Adabas
SQL Server it is not possible to declare host variables as pointers or to use a union of host
variables. The use of the ’enum’ typeis aso not possible.

Binary Data Type

There is no intrinsic binary data type in the C host language. In order to retrieve and supply
binary data using host variables, the intrinsic C data type of character must be mapped to the
Adabas/Adabas SQL Server data type of binary. A pseudo type has been introduced using an
Adabas SQL Server 'macro’. Therefore, host variables which are to be used for binary datatype
transportation, must be declared as ESQ_BINARY. Adabas SQL Server will then associate such
variables with the type binary. Such variables can, therefore, only be used as binary host
variables. The type declaration, is indeed a C macro, provided by Adabas SQL Server and
defined in esgca.h. An ESQ_BINARY variable is declared as follows :

EXEC SQL BEG N DECLARE SECTI ON ;
ESQ BI NARY (hv_nane, x) ;
EXEC SQL END DECLARE SECTI ON ;

where hv_name is the name of the host variable.
X is the length in hits of the variable.

The macro is resolved as follows :

char hv_name [y] ;

where y istherequired length in bytes.

143

Adabas SQL Server Programmer’s Guide

Binary host variables are not subject to byte swapping, nor are they subject to any ASCII/
EBCDIC conversion. No string terminator is to be provided for binary host variables. Therefore,
the direct binary contents of a host variable will be received by Adabas SQL Server, with each
element of the character array representing a full 8 bytes.

Numeric Strings

144

Thereis an intrinsic limit to the size of a C host variable integer value. This is because such
variables are limited to 31 bits. Adabas SQL Server however, supports the SQL data types
DECIMAL and NUMERIC, which are limited to 27 digits. This represents significantly larger
numbers than is possible within a C long variable.

The host languages Cobol and PL/1 do support such variables using the variable types numeric
and decimal. Adabas SQL Server, within the C language supports the numeric data type by
mapping it to a character string representation.

Such variables must however be declared in a specia way:

ESQ NUMERI C_STRING (hv_nane, pr, sc, signed, point, termnator) ;

where: hv_name is the intended name of the host variable.
pr is the precision. Maximum 27. Greater than O.
sc isthe scale. Minimum 0 and <= pr.
signed is either ESQ SIGN or ESQ NO_SIGN.
point is either ESQ POINT or ESQ NO_POINT.
terminator is either ESQ_TERM or ESQ NO_TERM

It can be seen that the precision and scale of the variable must be fully defined at pre-compile
time. Furthermore, the provision of a sign character can be defined, as well as the insertion of
a decima point character and provision of an extra character to accommodate a C string
terminator ('\0’).

For example the following declaration would result in a host variable called tax_number of type
character array with 21 elements:

EXEC SQL BEG N DECLARE SECTI ON ;

ESQ NUMERI C_STRI NG (tax_nunber, 20, 0, ESQ NO SI G\,
ESQ NO PO NT, ESQ TERM) ;

EXEC SQL END DECLARE SECTI ON ;

Syntax

Embedding SQL Statements in Host Languages — C

The inclusion of the switches ESQ_SIGN and ESQ_POINT would increase the array sizeto 23
elements.

The host program interacts with such variables as it would with any other character array. It
must, however, ensure that the contents conform to the original declaration, e.g. the position of
any decimal point, the provision of any sign character and that, otherwise, only numeric
characters are present.

The use of such host variables within SQL statements, is subject to the same restrictions as for
any other numeric host variable.

The pre-compiler must run prior to the C macro processor. No corresponding functionality is
supported for the C language when using dynamic SQL and the SQLDA.

declaration

__ | declaration-specifiers w / Qi

K init-declarator-list J

init-declarator-list

init-declarator

[N
() J
L/

145

Adabas SQL Server Programmer’s Guide

init-declarator

E— declarator w (
\\—@— initializer J

declaration-specifiers

E— storage-class- declaration-specifiers

™ specifiers /w (
N type-qualifier N J
N type-specifier

N large-numbers-
specifier

4 binary-specifier

146

Embedding SQL Statements in Host Languages — C

storage-class-specifier

N register)/
N static }
N extern v
N typedef)/

type-qualifier

volatile

147

Adabas SQL Server Programmer’s Guide

type-specifier

char

short

)

int

long

float

double

i

signed

unsigned
N typedef-name J
K struct-specifier /

148

Embedding SQL Statements in Host Languages — C

large-numbers-specifier

B q N - constant
<ESQ_NUMERIC_STRING}@ identifier @ expression @H

~(Esa_ NO SIGN
_| constant @ > @
expression

ESQ_SIGN

ESQ_NO_POINT

ESQ_POINT

>® JC ESQNO_TERM | o

ESQ_TERM >

binary-specifier

- B g) . B constant >
ESQ_BINARY @ identifier Q expression @

[constant |
expression

149

150

Adabas SQL Server Programmer’s Guide

typedef-name

— identifier

struct-specifier

identifier

identifier

struct-declaration-list

struct-declaration-list

struct-declaration

:

struct-declaration

specifier-qualifier-

struct-declarator-

list

list

Embedding SQL Statements in Host Languages — C

specifier-

qualifier-list

type-specifier

L

(]

i

tvoe-qualifi N specifier-qualifier-
ype-qualifier list
struct-declarator-list
[struct-declarator \
struct-declarator
— declarator
declarator 4@7 constant- J
expression

151

Adabas SQL Server Programmer’s Guide

declarator
identifier
declarator
declarator m constant-
identifier-
list
parameter-
list
identifier-list
[identifier]
parameter-list
| parameter-
w declaration J
-li parameter-
N parameter-list 4@7 declaration

152

Embedding SQL Statements in Host Languages — C

parameter-declaration

declaration-
specifiers

declarator

direct-abstract-
declarator

direct-abstract-declarator

O

direct-abstract-
declarator

direct-abstract-
declarator

20
N
i constant-
/\ Q/ expression
J parameter-
\ type-list
N

\
-0~

parameter-type-list

parameter-

—

153

Adabas SQL Server Programmer’s Guide

initializer

assignment-

expression (
initializer-list @J
N .

initializer-list

—_— initializer —
()

\J

Within embedded SQL statements the C naming qualification rules for structure and array
elements are as defined in the ANSI standard (X3.159-1989) for C. There may be any number

of SQL BEGIN DECLARE SECTIONSs. Host variables must not be explicitly initialized in the
declaration.

154

Embedding SQL Statements in Host Languages — C

Ambiguous References and Multiple Declar ations

A declaration that appears more than once with the same identifier is called a muliple
declaration. If ahost variable refers to such amultiple declaration, and the different declarations
are of different types, an error occurs. Otherwise the host variable is accepted.

Data Type Conversion

The following table shows the conversion of C data types to SQL data types:

C Data Types SQL Data Types

char (array) CHARACTER
ESQ BINARY (char array) BINARY

long int/int long/long INTEGER

unsigned long int/unsigned int long/unsigned long INTEGER

signed long int/signed int long/signed long INTEGER

float REAL

double/long double/double long DOUBLE PRECISION
short/short int/int short SMALLINT

unsigned short/unsigned short int/unsigned int short SMALLINT

signed short/signed int short/signed short int SMALLINT
int/unsigned int/signed int SMALLINT/INTEGER

(machine-dependent)

In addition, all SQL numeric data types can be assigned to/from the pseudo data type
ESQ_NUMERIC_STRING.

For more details on SQL data types and their usage in SQL statements refer to the Adabas SQL
Server Reference Manual, chapter Common Elements. The C datatype ‘int’ is only permitted
in Adabas SQL Server mode. The size of an ‘int’ is usually dependent on the underlying
hardware. Adabas SQL Server usesthe C ‘sizeof’ macro to determine the exact size of an ‘int’
which will be equivalent to either a’short’ or a‘long’ and will be integrated as such.

155

Adabas SQL Server Programmer’s Guide

The following tables shows the conversion of SQL data types to C data types:

SQL Data Types C Data Types

CHAR (more than one character) char (array)

BINARY ESQ BINARY (char array)
INTEGER long

SMALLINT short

REAL float

DOUBLE PRECISION double

FLOAT float

DECIMAL float, double or long
NUMERIC float, double or long

Any C numeric data type is compatible with any SQL numeric datatype. However, conversion
between data types may be necessary and accuracy or fractional values may be lost.

156

Embedding SQL Statements in Host Languages — C

Adabas SQL Server C-String Logic

When passing strings to and from Adabas SQL Server, the host variables used have to be
declared as arrays of data type char. One extra character space has to be declared to
accommodate the '\0’ string terminator.

The Adabas SQL Server precompiler option TRAILING BLANK SUPPRESSION specifies
whether the values returned from Adabas SQL Server will contain any trailing blanks before
the terminator or not.

Passing data to Adabas SQL Server

When such a string variable is supplied to Adabas SQL Server only characters up to the ‘\O" are
significant and the '\0’ is effectively removed from the string. The length of the string for SQL
purposes is therefore up to — but not including — the ‘\0’.

Should the variable not contain a’\0' then only thefirst n-1 characters are significant to Adabas
SQL Server, where n isthe declared length of the host variable character array. If such avariable
isused to insert or update afield, then any discrepancies between the value length and the field
length are corrected by either truncating the string or appending sufficient blanks at the end of
the string.

Receiving data from Adabas SQL Server

Example:

When Adabas SQL Server assigns a string value to such avariable e.g., in a FETCH statement,
then a’\0' is appended to the value. Thisisthe reason for reserving the last position of a character
array for the '\0'. Should the variable not provide enough space only the first n-1 characters are
returned with a’\0’ being added into the nth (last) position.

Should the field be smaller than the variable, blanks are appended between the end of the value
and the '\O’ terminator in the final position. If, however, the precompiler option TRAILING
BLANK SUPPRESSION is set, al string values returned from Adabas SQL Server come with
trailing blanks removed. In this case, the '\O' terminator is after the last non-blank character.

EXEC SQL BEG N DECLARE SECTI ON;
char h_surnane [20];
EXEC SQL END DECLARE SECTI ON,

157

Adabas SQL Server Programmer’s Guide

Error Handling

158

As aready explained in the chapter General Concepts of SQL Programming earlier in this
manual, textual error messages associated with a particular error number may be retrieved using
the function esgerr.

The C program must also declare acharacter array to receive the error text, and an integer, which
initially holds the length of this array. The length of the array must have the length of
ESQ ERROR_MESSAGE_SIZE, which is amacro generated at precompilation time. Both of
these data items must be in scope whenever the esqgerr() function is called. The appropriate
SQLCA must also be in scope.

A programming example with a call to esgerr looks like this:

/* */
/* container for error-—text */
/* (one character nore for C string term nator EQOS) */
/* */
char nmy_error_text [ESQ ERROR_MESSAGE SIZE + 1];

/* */
/* length and | anguage contai ner */
/* */

| ong ny_| engt h;
| ong ny_| anguage;

/ */
/* for each esqgerr() call you have to update the */
/* length and | anguage contai ner */
/* */
ny_l ength = ESQ ERROR _MESSAGE_SI ZE;
ny_| anguage = ESQ ENGLI SH;

/* */
/* call esqerr() */
/* */
esqerr (

&sql ca,

ny_error_text,

&my_| engt h,

&my_| anguage)
/* */
/* set C string term nator */
/* */
ny_error_text [ny_length] = (char)O0;
/* */
/* fromhere on you can use the error-text as known */
/* C string, for exanple: */
/* */

printf(nmy_error_text);

Embedding SQL Statements in Host Languages — C

Where: sqlca isthe SQLCA structure variable
my_error_text is the target buffer
nmy_l ength is the length of the target buffer
ny_| anguage is a macro generated by the precompiler
ESQ ENGLI SH is the English language indicator
ESQ ERROR MESSAGE_SI ZE is the maximum length of the error-text-buffer

returned by esgerr(). Value is 162.

The value contained in my_length informs the esgerr function of theinitial target buffer sizein
bytes so that memory locations are not overwritten. This value must be reset with each call to
esgerr. Upon return it contains the length of text contained in the buffer. The text itself is not
null-terminated.

SQL Communication Area (SQLCA)

The SQLCA provides the programmer with comprehensive information about the success or
failure of each SQL command. For further details refer to chapter General Concepts of SQL
Programming earlier in this manual.

The following is the declaration of the SQLCA structurein C:;

struct sqlca

{ unsi gned char sqglcaid [8]; /* eye catcher ’sqglca’ */
I ong sql cabc; /* size of SQLCA in bytes (136) */
| ong sql code; /* SQL return code */
short sqglerrm; /* length of error nessage */
unsi gned char sqglerrnc [70]; /* error nessage */
unsi gned char sqglerrp [8]; /* internal error infornation */
long sqglerrd [6]; /* internal error infornation */
unsi gned char sqglwarn [8]; /* warning flags */
unsi gned char sqglext [8]; /* reserved */

h

159

Adabas SQL Server Programmer’s Guide

SQL Descriptor Area (SQLDA)

The SQLDA provides the programmer with comprehensive information about each resulting
column of adynamic SELECT statement. For further details refer to chapter General Concepts
of SQL Programming earlier in this manual.

The following is the declaration of the SQLDA structure in C:

struct sqlda

{ char sqgldaid [8]; /* eye catcher: ' SQLDA */
ESQ4 sql dabc; /* size of sqglda in bytes */
short sql n; /* #sql var el enents all ocated */
short sql d; /* #sql var el enents returned */
struct sqlvar
{ short sqltype; /* data type of variables */

short sqllen; /* length of variable */

char *sql dat a; /* pointer to value of variable */

short *sqlind; /* pointer to null indicator */

struct sql name

{ short |ength; /* length of el enent nane */
char data [30]; /* nanme of el ement */

} sql name ;

} sglvar [1];

#defi ne SQLDASI ZE(n) (sizeof (struct sql da)+(n-1)*sizeof (struct sqlvar))

/* macros definitions for data types returned or set in sqltype */
#defi ne SQL_TYP_BI NARY (4) /* BI NARY bi nary data */
#define SQL_TYP_NBI NARY (SQL_TYP_BI NARY + SQL_TYP_NULLI NC)

#define SQL_TYP_NUMERI C (16) /* NUMERIC(n,m fixed point nunber */
#define SQL_TYP_NNUMERI C (SQL_TYP_NUMERI C + SQL_TYP_NULLI NO)

#define SQL_TYP_CHAR (452) /* CHAR(n) fixed length string */
#define SQL_TYP_NCHAR (SQL_TYP_CHAR + SQL_TYP_NULLI NC)

#define SQL_TYP_CSTR (460) /* variable length C string */
#define SQL_TYP_NCSTR (SQL_TYP_CSTR + SQL_TYP_NULLI NC)

#define SQL_TYP_FLQAT (480) /* FLOAT floating point nunber */
#define SQL_TYP_NFLOAT (SQL_TYP_FLOAT + SQL_TYP_NULLI NC)

#defi ne SQL_TYP_DECI MAL (484) /* DECIMAL(n, m) fixed point nunber */
#define SQL_TYP_NDECI MAL (SQL_TYP_DECI MAL + SQL_TYP_NULLI NC)

#define SQL_TYP_I NTEGER (496) /* | NTEGER integer nunber */
#define SQL_TYP_NI NTEGER (SQL_TYP_I NTEGER + SQL_TYP_NULLI NC)

#define SQL_TYP_SMALL (500) /* I NTEGER integer nunber */
#define SQL_TYP_NSMALL (SQL_TYP_SMALL + SQL_TYP_NULLI NC)

160

EMBEDDING SQL STATEMENTS IN HOST
LANGUAGES - COBOL

Genera Rules

SQL Statement Delimiters

SQL statements are delimited by the prefix EXEC SQL and the terminator END-EXEC. The
prefix may be written in upper or lower case letters. In Adabas SQL Server mode upper or lower
case is permitted and the prefix may be split over numerous lines, separated by any white space
character. In ANSI mode upper case is required and only white spaces may separate the prefix
keywords.

The terminator END-EXEC may be followed by an optional period’.’. It hasto be coded at the
same line to be recognized. However, the generated code is different for the two COBOL
standards that are supported.

For the ANSI 74 standard (Precompiler setting COBOL |1 = off) every SQL statement istreated
asif the optional period was coded. That means the generated code will always be terminated
with a period. It is not possible to code more than one SQL statement in an |F statement.

For the ANSI 85 standard (Precompiler setting COBOL |l = on) the terminating period is only
generated if aperiod was coded. If SQL statements are nested in an IF-set of COBOL statements,
the ending period must not be coded.

SQL Statement Placement

All SQL statements with the exception of the BEGIN/END DECLARE and INCLUDE
statements may be specified wherever a COBOL statement may be specified within the
Procedure Division of the embedded SQL COBOL program. Included COBOL source code
must not contain any SQL statements nor any host variable declaration to be used in SQL
statements.

The SQL INCLUDE , BEGIN/END DECL ARE statements must be specified in the WORKING
STORAGE SECTION of the COBOL program.

161

Adabas SQL Server Programmer’s Guide

Comments

SQL statements may contain COBOL comments marked with an asterisk in column 7 or SQL
comments preceded by two minus characters.

COBOL Example:

000015 EXEC SQL WHENEVER SQLERRCR

000016* CONTI NUE

000017 GOTO HANDLE-ERRCR
000018 END-EXEC.

SQL Example:

000015 EXEC SQL WHENEVER SQLERRCR

000016 —— CONTI NUE

000017 GOTO HANDLE-ERRCR
000018 END-EXEC.

162

Host Variables

Embedding SQL in Host Languages — COBOL

COBOL host variables used in SQL statements must be declared within the SQL BEGIN
DECLARE SECTION and END DECLARE SECTION statements as well asin the COBOL
DATA DIVISION. There may be any number of SQL BEGIN DECLARE SECTIONS. The host
variable definition must be a valid COBOL data declaration, as described below. Adabas SQL
Server alows the use of single host variables and host variable structures.

Host Variable Declar ation

COBOL host structures are a named set of COBOL single host variables and must conform to
the ANSI Standard for COBOL.

Host Variable Structures

The use of COBOL host structures within SQL statementsis an Adabas SQL Server extension
and not part of the SQL ANSI Standard.

Data Definition

integer
constant

data |
definition
% host variable ‘

identifier
data |
declaration

integer constant
host variable
identifier

data definition

data declaration

level number as described in the ANSI Standard for COBOL.

specifies the identifier of the COBOL single variable or structure. Any
valid COBOL identifier may be used.

recursive definition for nested structure level specification.

see the syntax diagram below.

163

164

Adabas SQL Server Programmer’s Guide

Example of a structure definition:

01 LEVEL1.
02 LEVEL2.

05 ELEMENT1 PIC 9.

05 ELEMENT2 PIC 9.

Within embedded SQL statements the COBOL naming qualification rules for structure
elements do not apply. Instead they must be specified top down to read LEVELL
LEVEL2.ELEMENT1 as shown in the example above.

In COBOL statements, however, the structure elements must still be specified (bottom up)
according to the ANSI COBOL rules: eg. ELEMENTL IN LEVEL2 IN LEVEL1.

When referencing a structure element which is not uniquely identified within the compilation
unit it must be sufficiently qualified with enough containing structure identifiers to
unambiguously identify the variable concerned. If for example the identifier ELEMENT1 has
been used in more than one structure definition then it must be qualified to give either
LEVEL2.ELEMENT1 or even if necessary LEVEL1.LEVEL2.ELEMENTL.

For more information about the general usage of host variables within SQL the chapter
Common Elementsin the Adabas SQL Server Reference Manual or chapter General Concepts
of SQL Programming in the Adabas SQL Server Programmer’s Guide.

Embedding SQL in Host Languages — COBOL

SingleHost Variables

The declaration must conform to the following COBOL syntax.

data declaration

float type —

character

d type ™

PICTURE integer
(prorure) =N
N
numeric W
type

N decimal 4

type
l VALUE clause L.

VALUE clause specifies any valid COBOL VALUE clause.

character type

n)
S f@%

N g

USAGE G DISPLAY
USAGE

The number of significant characters must not exceed 253.

165

166

Adabas SQL Server Programmer’s Guide

integer type

v

COMPUTATIONAL

BINARY

COMPUTATIONAL-4

The number of digits must not exceed 9.

Embedding SQL in Host Languages — COBOL

numeric type
J
®

LEADING SEPARATE >

\@/
CHARACTER

The number of digits must not exceed 27.

DISPLAY SIGN

\J

167

168

Adabas SQL Server Programmer’s Guide

decimal type

COMPUTATIONAL-3

USAGE @\
USAGE

[]

PACKED-DECIMAL

The number of digits must not exceed 27.

float type

COMPUTATIONAL-1

USAGE @
\
USAGE

COMPUTATIONAL-2

Embedding SQL in Host Languages — COBOL

Data Type Conversion
The following table shows the conversion of COBOL data types to SQL data types and vice
versa
COBOL Data Types SQL Data Types
character CHARACTER
char (array) BINARY
integer (5-9 digits) INTEGER
integer (1-4 digits) SMALLINT
numeric NUMERIC
decimal DECIMAL
float (comp-1) REAL
float (comp-2) DOUBLE—PRECISION

For more details on SQL data types and their usage in SQL statements refer to the Adabas SQL
Server Reference Manual, Chapter Common Elements. The COBOL data type 'COMP-3' is
not permitted in ANSI compatibility mode. The number of digits for an integer type must not

exceed 9.

169

Adabas SQL Server Programmer’s Guide

Error Handling

170

As dready generally explained in the Chapter: General Concepts of SQL Programming,
earlier in this manual, textual error messages associated with a particular error number may be
retrieved using the sub-program “esgerr”.

Using the SQL statement INCLUDE SQL CA the declaration of the SQLCA structure must be
made known to the COBOL program.

The COBOL program must also contain the declaration of a character variable to receive the
error text and an integer variable holding the length of it. The length should be 300 bytes and
must be set to that value prior to every call of “esgerr”. Upon return it contains the length of the
retrieved error text.

Furthermore an integer variable must be declared to receive a language code number
determining the natural language of the message texts.

An example using the sub-program “esgerr” could look like this:

000001 | DENTI FI CATI ON DI VI SI ON.

000002 PROGRAM-I D. TEST.

000003 ENVI RONVENT DI VI SI ON.

000004 DATA DI VI SI ON.

000005 WORKI NG-STORAGE SECTI ON.

000006 EXEC SQL BEG N DECLARE SECTI ON END-EXEC.
000007 01 U D Pl C X(18) VALUE "ESQ'.
000008 EXEC SQL END DECLARE SECTI ON END-EXEC.
000009 EXEC SQL | NCLUDE SQLCA END-EXEC.

000010 01 ERR-MESSAGE PI C X(300).

000011 01 MESSAGE-LEN COWP PIC S9(5) VALUE 300.
000012 01 ESQ-LANGUAGE COWP PIC S9(5) VALUE O.
000013 PROCEDURE DI VI SI ON.

000014 FI RST SECTI ON.

000015 EXEC SQL WHENEVER SQLERROR CONTI NUE END-EXEC.
000016 EXEC SQL CONNECT : U D END-EXEC.

000017 IF SQLCODE = 0

000018 DI SPLAY " CONNECTED"

000019 ELSE PERFORM ERROR-MESSAGE.

000020 EXEC SQL DI SCONNECT END-EXEC.

000021 STOP RUN.

000022 ERROR-MESSACE.

000023 DI SPLAY " FAI LED W TH SQLCODE " SQLCODE.
000024 MOVE SPACES TO ERR-MESSAGE.

000025 MOVE 0O TO ESQ-LANGUAGE.

000026 CALL " ESQERR’ USI NG BY REFERENCE SQLCA
000027 BY REFERENCE ERR-MESSACE
000028 BY REFERENCE MESSAGE-LEN
000029 BY REFERENCE ESQ-LANGUAGE.
000030 DI SPLAY "ERROR : " ERR-MESSAGE.

Embedding SQL in Host Languages — COBOL

SQL Communication Area (SQLCA)

The SQLCA provides the programmer with comprehensive information about the success or
failure of each SQL command. For further details refer to chapter General Concepts of SQL
Programming earlier in this manual.

The following is the declaration of the SQLCA structure in COBOL ;

01 SQLCA.

05 SQLCAI D
05 SQLCABC
05 SQLCODE
05 SQLERRM

49
49

SQLERRM.
SQLERRMC

05 SQLERRP
05 SQLERRD

05 SQLWARN.

10
10
10
10
10
10
10
10

SQLWARNO
SQLWARNL
SQLWARN2
SQLWARNS
SQLWARNA
SQLWARNS
SQLWARNG
SQLWARN?

05 SQLEXT

PI C X(8) VALUE "sql ca
PI C S9(9) COW VALUE +136.
PIC S9(9) COVP VALUE +0.

PI C S9(4) COWP.
PI C X(70).
PI C X(8).
OCCURS 6 TI MES
PIC S9(9) COWP.

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

P
®
&

171

Adabas SQL Server Programmer’s Guide

SQL Descriptor Area (SQLDA)

The SQLDA provides the programmer with comprehensive information about each resulting
column of adynamic SELECT statement. For further details refer to chapter General Concepts
of SQL Programming earlier in this manual.

The following is the declaration of the SQLDA structure in COBOL.:

01 SQLDA.
05 SQLDAI D PI C X(8) VALUE “sql da
05 SQLCABC PI C S9(9) COMP VALUE +15360.
05 SQLN PIC S9(9) COMP VALUE +256.
05 SQLD PI C S9(4) COMP VALUE +0.

05 SQLERRM OCCURS 1 TO 256 TI MES
DEPENDI NG ON SQLN.
10 SQLTYPE PIC S9(4) COMWP.
10 SQLLEN PIC S9(4) COWP.
10 SQLDATA PO NTER
10 SQLIND POl NTER
10 SQLNAME.
15 SQLNAMEL PIC S9(4) COWP.
15 SQLNAMEC PI C X(30).

This structure may be used in COBOL |1 only. The COBOL statement SET has to be used to
set the pointers SQLDATA and SQLIND to a storage area. Programs for other compilers must
provide an assembler or C subroutine to do this.

172

EMBEDDING SQL STATEMENTS IN HOST
LANGUAGES - PL/I

Genera Rules

SQL Statement Delimiters

SQL statements are delimited by the prefix EXEC SQL and the terminator ’;’ . The prefix may
be written in upper or lower case letters. In Adabas SQL Server mode upper or lower caseis
permitted and the prefix may be split over numerous lines, separated by any white space
characters. In ANSI mode upper case is required and only white spaces may separate the prefix
keywords.

SQL Statement Placement

An SQL statement with the exception of BEGIN DECLARE, END DECLARE and INCLUDE
statements may be specified wherever a PL/I statement may be specified within a procedure
block. Included PL/I source code must not contain any SQL statements nor any host variable
declaration to be used in SQL statements.

The SQL INCLUDE statement must be specified inside the procedure block. The BEGIN
DECLARE and END DECLARE statements may be specified wherever a PL/I declaration is
permitted, with the exception that a host variable has to be declared before its usage.

173

Adabas SQL Server Programmer’s Guide

Comments

174

A comment begins with a /* and ends with */. Any character may appear between /* and */
except the consecutive pair */. A comment is permitted wherever a PL/I comment is permitted.
In addition, PL/I comments are also allowed between EXEC SQL and ’;'.

PL/I host variables used in SQL statements must be declared within the SQL BEGIN DECLARE
and END DECLARE section statements. Adabas SQL Server allows the use of single host
variables, arrays of host variables and host variable structures.

EXEC SQL WHENEVER SQLERROR
/* CONTI NUE */
GOTO HANDLE-ERROR;

SQL Example:
EXEC SQL WHENEVER SQLERRCR
—— CONTI NUE
GOTO HANDLE-ERRCR
END-EXEC.

Embedding SQL Statement in Host Languages — PL/I

Host Variables

PL/I host variables used in SQL statements must be declared within the SQL BEGIN DECLARE
SECTION and END DECLARE SECTION statements. Adabas SQL Server allows the use of
single host variables, arrays of host variables and host variable structures.

Host Variable Declar ation

PL/I arrays and structures are named sets of PL/I single host variables and must conform to the
ANSI Standard (X3.53-1576) for PL/I. The syntax diagrams below show the PL/I Declare
Statement:

The values to be entered must conform to the ANSI Standard for PL/I.

DECLARE declaration @—
!.DECL [j
1 N

175

176

Adabas SQL Server Programmer’s

Guide

attribute

declaration
\ / letter
\, integer |/
constant _| identier |-/
@ declaration @
\ r)
\, dimension suffix J

v

dimension suffix

@7‘ integer constant 1

:

@7‘ integer constant 2 ‘/

o

)
0

@

Embedding SQL Statement in Host Languages — PL/I

attribute

BINARY
e

precision j

WK
o

CHARACTER
CHAR \@ integer-constant

\

PIC

N
~

picture

DECIMAL

DEC

precision

PRECISION

-

precision

= O

precision

e

N S S

precision

FLOAT

VARYING ~ \®» integer-constant

\

VAR

177

178

Adabas SQL Server Programmer’s Guide

precision

@

integer-constant

O

integer-constant

Embedding SQL Statement in Host Languages — PL/I

SingleHost Variables, Arraysand Structures

The host variable reference in an SQL statement is reflected in the following diagram:
7@7 basic hv reference —

basic hv reference

host variable

— letter >

()
N

identifier integer-constant

W

basic-hv- J
reference

The use of PL/I structures within SQL statementsis an Adabas SQL Server extension and not
part of the SQL ANSI standard.

Within embedded SQL statements the PL/I naming qualification rules for structure and array
elements are as defined in the ANSI standard (X3.53-1576) for PL/I.

If a host variable refers to an elementary data type a single host variable of that data type is
generated. If ahost variable refersto a structure/substructure or array/sub—array it will be broken
down to elementary data types as the following example shows:

179

180

Adabas SQL Server Programmer’s Guide

Example: single host variables

DECLARE HV (5) BIN FI XED;
EXEC SQL

SELECT col umm_xxx | NTO : HV(2) fromtabl e_xxx
END EXEC,

In this example, HV (2) refersto asingle host variable of type REAL BIN FIXED, therefore, only
one host variable is generated.

Example: arrays

EXEC SQL
SELECT colum_a, colum_b, columm_c, colum_e, columm_f
I NTO : HV fromtabl e_xxx
END EXEC;

In this example, HV refersto an array of 5 host variables of type REAL BIN FIXED, therefore,
five host variables with the same type are generated.

Example: structures

DECLARE 11, 2J, 3 K (2) BIN FIXED;
3L BI N FI XED,
2 M 3N BI N FI XED,

In this example, host variable references are as follows:

1.JK(D) refers to a single host variable of type BIN FIXED.
1.J refersto 1.JK(1), .JK(2) and 1.J.L.
: refersto 1.J.K (1), .JK(2), 1.J.L and [.M.N.

Embedding SQL Statement in Host Languages — PL/I

Ambiguous References and Multiple Declar ations

A declaration that appears more than once with the same identifier is caled a multiple
declaration. If ahost variable refers to such amultiple declaration, and the different declarations
are of different types, an error occurs. Otherwise, the host variable is accepted.

When referencing a structure element which is not uniquely identified within the compilation
unit it must be sufficiently qualified with enough containing structure identifiers to
unambiguously identify the variable concerned: as shown in the example below:.

DCL 1 1,

w W w

J,
J,
K,

4 L,
3 L;

The declaration of Jis multiple. I.L refers to the L of level 3 because this is a complete
qualification. A referenceto L of level 4 would be I.K.L.

The following examples show unambiguous declarations.
DL 11,

I.K is ambiguous

DCL 11,
21,
31;

| refersto | of level 1, 1.1tol of level 2and .11 to | of level 3.
DCL J;
DCL 1 1,
2 J,
3
3

X

3
3

X

Jrefersto the first DCL statement. |.K is ambiguous. I.J.K refersto thefirst K and I.1.K to the
second one.

181

Adabas SQL Server Programmer’s Guide

Data Type Conversion

The following table shows the conversion of PL/I datatypesto SQL datatypes and vice versa:

PL/I Data Types SQL Data Types
CHARACTER CHARACTER
CHARACTER BINARY

BIN FIXED INTEGER

DEC FIXED NUMERIC

DEC FLOAT REAL

BIN FLOAT (4 Bytes) REAL

BIN FLOAT (8 Bytes) DOUBLE PRECISION

For more details on SQL data types and their usage in SQL statements refer to the Adabas SQL
Server Reference Manual, Chapter Common Elements.

182

Embedding SQL Statement in Host Languages — PL/I

Error Handling

As dready generaly explained in the chapter General Concepts Of SQL Programming
earlier in this manual, textual error messages associated with a particular error number may be
retrieved using the sub-routine "esgerr”.

The PLI program must also declare a character variable to receive the error text and an integer
variable holding the length of it. The array should be 300 bytesin length. Both of these dataitems
must be in scope whenever the esgerr subroutine is called. The appropriate SQLCA must also
be in scope.

An example using the subroutine "esgerr” looks like this:

DCL ESQERR ENTRY (ANY, ANY, ANY, ANY) EXTERNAL (' esqerr’); EXAMPLE: PROCEDURE
OPTIONS (MAIN);
EXEC SQL

BEG N DECLARE SECTI ON;

DCL U D CHARACTER (18) VARYI NG
EXEC SQL

END DECLARE SECTI ON; EXEC SQL

| NCLUDE SQLCA;
DCL MESSAGE_LEN FIXED BIN (16) INIT (300);
DCL ERR_MESSAGE CHARACTER (300);
DCL FINAL_ERR MESS CHARACTER (300);
DCL ESQ ENGLISH FIXED BIN (16) INIT (0);
EXEC SQU

WHENEVER SQLERROR CONTI NUE;
ON ERROR BEG N;

PUT EDI T (' ERROR CODE : G\JOGDE()) (A F(6)) SKIP
PUT LI ST (' Program abor ted!”) SKIP
PUT SKIP (1);
STOP,
END;
UD="ESQ;
PUT EDIT ('Connecting to ESQAS ',UD,” ... ") (AAA SKP
EXEC SQL

CONNECT : Ul D
| F SQLCODE = 0 THEN
DG,
PUT EDI T (' CONNECTED) (A);
END;
ELSE
DG,
PUT EDIT (' FAILED with SQLCODE ', SQLCODE) (A F(5));
CALL ESQERR(SQLCA, ERR_NESSAGE, MESSAGE_LEN, (ESQ ENGLI SH)) ;
FI NAL_ERR MESS = COPY(’ 300)
FI NAL ERR_NESS = ERR_ NESSAGE
PUT LIST ('ERROR
PUT LI ST (FINAL_ERR_ NESS) SKIP ;
END ;

183

SQL Communication Area (SQLCA)

Adabas SQL Server Programmer’s Guide

184

The SQLCA provides the programmer with comprehensive information about the success or
failure of each SQL command. For further details refer to the chapter General Concepts of SQL

Programming earlier in this manual.

In PL/I, the SQLCA structure is declared as follows:

DCL 1 SQLCA,

NNNMNDNDDNDDN

SQLWARN,
SQLWARNO
SQLWARNL
SQLWARN2
SQLWARNS
SQLWARNA
SQLWARNS
SQLWARNG
SQLWARN?
2 SQLEXT

WWwWwwwwww

CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(8)

SQLCAI D CHAR(8) INIT (’SQLCA '),
SQLCABC BIN FIXED(31) INIT (136),
SQLCCDE BIN FIXED(31) INIT (0),
SQLERRM CHAR(70) VAR INIT ('),
SQLERRP CHAR(8) INIT ('),
SQLERRD(6) BI N FI XED(31),

INT ('
INT ('
INT ('
INT ('
INT ('
INT ('
INT ("
INT ('
INT (')

—

Embedding SQL Statement in Host Languages — PL/I

SQL Descriptor Area (SQLDA)

The SQLDA provides the programmer with comprehensive information about each resulting
column of a dynamic SELECT statement. For further details refer to the chapter General
Concepts of SQL Programming earlier in this manual.

In PL/I, the SQLDA structure is declared as follows:

DCL 1 SQLDA BASED(SQLDAPTR)

2 SQLDAI D CHAR(8) ,

2 SQLDABC BI N FI XED(31),

2 SQLN BI N FI XED(15)

2 SQLD BI N FI XED(15)

2 SQLVAR (SQLSI ZE REFER (SQLN)),
3 SQLTYPE BI N FI XED(15)
3 SQLLEN BI N FI XED(15)
3 SQLDATA POl NTER,
3 SQLIND POl NTER,

3 SQLNAME CHAR(30) VAR,

185

186

DB2 TRANSACTION MODE

Adabas SQL Server does not support DB2-specific SQL statements, and was not designed to
provide standard application packages SQL-based access to Adabas.

Adabas SQL Server provides a compiler mode setting for “DB2 transaction mode”, which must
be set during the precompilation of the source program. The DB2 compiler mode setting
restricts the precompiler, permitting only the use of ANSI standard statements.

DB2 transaction mode also enables Adabas SQL Server to issue transaction control statements
(COMMIT, ROLLBACK) in aCICS environment and under certain circumstances also in batch
mode.

DB2 transaction mode enables Adabas SQL Server
e To automatically create and destroy user sessions (CONNECT, DISCONNECT), and
e To issue transaction-control statements (COMMIT, ROLLBACK).

Note:
DB2 transaction mode is only available on IBM mainframe platforms.

187

Adabas SQL Server Programmer’s Guide

I nterface Requirements

The interface requirements are described in the installation manual and are environment

dependent.
Environment | Module Description
Batch mode ESQCTRL Adabas SQL DB2-mode control program
CICS ESQRMCI Enables the Adabas SQL / CICS interface

ESQOCI Adabas SQL link interface
ESQTRUE Adabas SQL task-related user exit
ESQLNKCI Adabas SQL link module

Please note that when you are executing under CICS, specia parameter settings are required in
the VO-parameter module (VOPRM).

For a detailed description of the installation requirements, please refer to the section Phase D:
Installing Clientsin Chapter 3 Installing the Adabas SQL Server System of the Adabas SQL
Server Installation and Operation Manual.

188

DB2 Transaction Mode

User Session

Adabas SQL Server requires that all users be defined in the server catalog by using the DDL
statement CREATE USER and that a user registers with the server by using a CONNECT
statement, prior to issuing any other SQL statement.

The CONNECT and DISCONNECT statements are extensions to the ANSI standard, and thus
are not permitted in DB2 transaction mode.

To solve this, an ‘implicit’ CONNECT statement is generated and passed with the first SQL
statement. The user identification which isused in the ‘implicit CONNECT is dependent upon
many factors and is described in the section CONNECT in Chapter 2 SQL Statements of the
Adabas SQL Reference Manual.

Under CICS, the user session is automatically terminated via an ‘implicit’ DISCONNECT at
the end of a CICS transaction or at the end of a CICS task.

In batch mode, the user session is terminated at the end of program execution.

189

Adabas SQL Server Programmer’s Guide

Transaction Logic

Under CICS, the Adabas SQL Server module ESQTRUE is called by the following CICS
services to manage the transaction logic:

The CICS SYNCPOINT Manager, and
The CICS Task Manager

When called, ESQTRUE executes the appropriate SQL statement, either a ROLLBACK or a
COMMIT.

In batch mode, the control program ESQCTRL issues a COMMIT upon program completion.

Note:
The size of the ADABAS Hold Queue limits the size of a SQL transaction.

Security Considerations

190

The use of DB2 transaction mode with external security is not recommended.

In DB2 transaction mode, an ‘implicitt CONNECT is generated and issued with the first SQL
statement. A password is not provided in the ‘implicit CONNECT statement.

The external security interface used by the Adabas SQL server requires BOTH -
The user identification and

The user password.

As the password has not been supplied, the authentication check will aways terminate
unsuccessfully with the SQL response code ESQ6701.

Note:
You are not recommended to use DB2 transaction mode with the external security interface.

APPENDIX A — THE SAMPLE TABLES

Throughout the entire Adabas SQL Server manual set reference is made to and examples are
based on the tables SAILOR, YACHT, CONTRACT, CRUISE and PERSON of the database

YACHT_DB.

These tables do not contain multiple-value fields or periodic groups (MU/PE). To create
MU/PE-related examples the cluster city guide was added to the catalog.

Data Definition for the Base Table “SAILOR”

(sailor_id
age

sai | or _nane
experi ence
1

|2

|3
id_contract
id_cruise

i nt eger
i nt eger
char (30)
char (1)
char (3)
char (3)
char (3)
i nt eger
i nt eger

i ndex ind_sailor not null unique,

not nul |,
not null);

Data Definition for the Base Table “YACHT”

(yacht_id
uni que,

yacht _nane

i d_owner
yacht _type
yacht _| ength
yacht _width
yacht _draft
sail _surface
not or

head_r oom
bunks

i nt eger

char (30)
i nt eger
char (30)
nuneric (5, 2)
nuneric (5, 2)
nuneric (5, 2)
i nt eger
i nt eger
nuneric (5, 2)
i nt eger

i ndex i nd_yacht not null
not null,
not null);

191

Adabas SQL Server Programmer’s Guide

Data Definition for the Base Table“ CONTRACT”

(contract_id i nt eger index ind_contract not null unique,
price nuneric (13, 3) not nul |,
date_reservation i nt eger ,

dat e_booki ng i nt eger ,

dat e_cancel | ati on i nt eger ,

dat e_deposi t i nt eger ,

anmount _deposi t nuneric (13, 3) ,

dat e_paynent i nt eger ,

anount _paynent nuneric (13, 3) ,

i d_cust oner i nt eger not nul |,
id_cruise i nt eger not null)

Data Definition for the Base Table “CRUISE”

(cruise_id i nt eger index ind_cruise not null unique,
start_date i nt eger ,

start_time i nt eger ,

end_date i nt eger ,

end_time i nt eger ,

start_harbor char (20) ,

destinati on_har bor char (20) ,

crui se_price nuneric (13, 3) not nul |,
bunk_nunber i nt eger ,

bunks_free i nt eger not null,

i d_yacht i nt eger not null,

i d_ski pper i nt eger not null,

i d_predecessor i nt eger ,

i d_successor i nt eger)

192

Appendix A

Data Definition for the Base Table “PERSON”

(person_id i nt eger i ndex i nd_person not null
uni que, bi rth_date i nt eger ,
sex char (1) ,
sur name char (20) ,
first_nane_1 char (20) ,
first_nane_2 char (20) ,
title char (20) ,
form of _address char (8) ,

address_addi tion_1 char (20) ,
address_addi ti on_2 char (20) ,

street _nunber char (20) ,
country char (3) ,
zi p_code char (10) ,
city char (20) ,
area_code_priv char (6) ,
phone_nunber _priv char (15) ,
area_code_office char (6) ,
phone_nunber _office char (15));

193

Adabas SQL Server Programmer’s Guide

Data Definition for the Cluster “CITY-GUIDE”

The following shows the SQL definition of Adabas structures which summarize information
about states, cities, places and buildings in one file and serve as sample data for MU/PE
examples.

CREATE CLUSTER DESCRI PTI ON city_gui de
DATABASE DB_214 FI LE NUMBER 134

(
CREATE TABLE DESCRI PTI ON st at es

abbrevi ati on SHORTNAME " AA" PRI MARY KEY DEFAULT ADABAS,

st at e_nanme SHORTNAME " AB° UNI QUE NOT NULL DEFAULT ADABAS,
capi tal SHORTNAME * AC | NDEX,

popul ati on SHORTNAME * AD

)

CREATE TABLE DESCRI PTION cities (

st at e_abbrev SHORTNAME ' AA',

city_seqno SEQNQO(1) NOT NULL DEFAULT ADABAS,
city_name SHORTNAME ' BA" | NDEX NULL SUPPRESSI ON,
popul ati on SHORTNAME ' BB' NULL SUPPRESSI ON,

PRI MARY KEY (state_abbrev, city_seqgno),

FOREI GN KEY (st ate_abbrev) REFERENCES st at es,
UQ NDEX (city_nane, state_abbrev)

)

CREATE TABLE DESCRI PTI ON bui | di ngs (
st at e_abbrev SHORTNAME ' AA',
city_seqno SEQNQO(1) NOT NULL DEFAULT ADABAS,
bui | di ng_seqgno SEQNQ(2) NOT NULL DEFAULT ADABAS,
bui | di ng_nane SHORTNAME ' CA" NOT NULL SUPPRESSI ON,
hei ght SHORTNAME ' CB° NOT NULL SUPPRESSI ON,
PRI MARY KEY (state_abbrev, city_seqno, building_seqgno),
FOREI GN KEY (state_abbrev, city_seqno) REFERENCES cities
)

CREATE TABLE DESCRI PTI ON pl aces (

st at e_abbrev SHORTNAME * AA" NOT NULL,
city_segno SEQNO(1) NOT NULL DEFAULT ADABAS,
pl ace_nane SHORTNAME ' DA NULL SUPPRESSI ON,

FOREI GN KEY (state_abbrev, city_seqno) REFERENCES cities
)

194

APPENDIX B — SAMPLE PROGRAMS

Sample C—Program for the Creation of the Following
SQL Tables

IR RS EEEEEEEEEEEEEEREEEEEREEEREEEEEEEEEREEEEEEEEEEEEE]

* *
* Nane —— yacht _cr. pc *
* *
* Description — Programto create the tables : *
* *
* contract *
* cruise *
* person *
* sail or *
* yacht *
* *
* *
* for the SAG Tours denonstration system. *
* *
* 95/05/18 07:30: 00 (co) Software AG *
* *
)\'***********************/

#i ncl ude <stdio. h>

EXEC SQL
BEG N DECLARE SECTI ON,
char uid[80];

EXEC SQL
END DECLARE SECTI ON,;
EXEC SQL
| NCLUDE SQLCA;
int esqg_|language = 0 ;
int nmessage_len = 300;
char err_message [3007 ;
char final _err_mess [3007 ;
mai n()
{

195

196

Adabas SQL Server Programmer’s Guide

EXEC SQL
VWHENEVER SQLERROR CONTI NUE;

strcpy (uid, "ESQ , strlen ("ESQ)) ;

EXEC SQL
CONNECT :uid ;

if (SQLCODE == 0)
printf (”\nCONNECT performed successfully\n”);
el se
{
nmessage_| en = 300;
esqgerr (&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;
nmenset (final _err_mess,’ ', 300);
strncpy(final _err_mness, err_nessage, message_| en);
printf(”\nError: %\n”,final_err_mness);

}

AR EEEEE SRR EREEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE DATABASE YACHT_DB *

LEEEA R EEEE R EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEY]

EXEC SQL
CREATE DATABASE yacht _db AS DATABASE NUVBER 240;

printf(”\nCreating database YACHT_DB as 240 ...\n");

if (SQLCODE == 0)
printf (”\nDatabase YACHT_DB created successfully\n”);
el se
{
nmessage_| en = 300;
esqgerr (&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;
nmenset (final _err_mess,’ ', 300);
strncpy(final _err_mness, err_nessage, message_| en);
printf(”\nError: %\n”,final_err_mess);

}

Appendix B

AR EEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE TABLE CONTRACT

*

LEEEA R EEEE R EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEY)

EXEC SQL

CREATE TABLESPACE FOR TABLE contract

(

DATABASE=yacht _db,

Fl LE=4,

FI LENAME=" CONTRACT" ,
ASSOPFAC=5,
DATAPFAC=5,

DSS| ZE=10BLOCK,

NI SI ZE=10BLOCK,

Ul SI ZE=10BLOCK,

MAXI SN=300,

REUSE=(| SN, DS)

)

if (SQLOODE == 0)

printf (”\nTable space for CONTRACT created successfully\n”);

el se

{

nmessage_| en = 300;

esqgerr(&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;

nmenset (final _err_ness,’

*, 300) ;

strncpy(final _err_ness, err_nessage, mnessage_| en) ;
printf(”\nError: %\n”,final_err_ness);

}

printf(”\nCreating table CONTRACT ...\n");

EXEC SQL
CREATE TABLE contract
(contract_id

price
date_reservation
dat e_booki ng

dat e_cancel | ation
dat e_deposi t
anount _deposi t

dat e_paynent
anount _payment

i d_custoner
id_cruise

i nt eger i ndex i nd_contract
not null
uni que,

nuneric (13,3) not null,

i nt eger ,

i nt eger ,

i nt eger ,

i nt eger ,

nuneric (13,3) ,

i nt eger ,

nuneric (13,3) ,

i nt eger not nul |,

i nt eger not null);

197

Adabas SQL Server Programmer’s Guide

if (SQLCODE == 0)
printf (”\nTabl e CONTRACT created successfully\n”);
el se
{
nmessage_| en = 300;
esqgerr(&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;
menset (final _err_mess,’ ', 300);
strncpy(final _err_ness, err_nessage, message_| en);
printf(”\nError: %\n”,final_err_mness);

}

AR R EEEEEEEEEEEEEREEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE TABLE CRU SE *

AR EEEEEE R EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEY]

EXEC SQL
CREATE TABLESPACE FOR TABLE crui se
(
DATABASE=yacht _db,
FI LE=5,
FI LENAME=" CRUI SE”,
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=300,
REUSE=(| SN, DS)
)

if (SQLCODE == 0)
printf (”"\nTable space for CRU SE created successfully\n”);
el se
{
nmessage_| en = 300;
esqgerr(&sql ca, err_nessage, &ressage_| en, &sq_| anguage) ;
nmenset (final _err_mess,’ ', 300);
strncpy(final _err_mness, err_nessage, message_| en);
printf(”\nError: %\n”,final_err_mess);

}

printf("\nCreating table CRUSE ...\n");

198

EXEC SQL
CREATE TABLE crui se
(cruise_id i nt eger i ndex ind_cruise

not null
uni que,

start_date i nt eger ,

start_time i nt eger ,

end_date i nt eger ,

end_tinme i nt eger ,

start_harbor char (20) ,

destinati on_harbor char(20) ,

crui se_price nuneric (13,3) not null,

bunk_nunber i nt eger ,

bunks_free i nt eger not nul |,

i d_yacht i nt eger not nul |,

i d_ski pper i nt eger not nul |,

i d_predecessor i nt eger ,

i d_successor i nt eger)

if (SQLOODE == 0)

printf ("\nTable CRU SE created successfully\n”);

el se

{

nmessage_| en = 300;

esqgerr(&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;

nmenset (final _err_mess,’ ', 300);

strncpy(final _err_ness, err_nessage, nessage_| en);
printf(”\nError: %\n”,final_err_ness);

}

Appendix B

199

200

Adabas SQL Server Programmer’s Guide

AR AR EE LSRR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

*

CREATE TABLE PERSON

*

LEEEA SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEY]

EXEC SQL

if

CREATE TABLESPACE FOR TABLE person
(

DATABASE=yacht _db,

Fl LE=6,

FI LENAME=" PERSON" ,

ASSOPFAC=5,

DATAPFAC=5,

DSSI ZE=10BLOCK,

NI SI ZE=10BLOCK,

Ul SI ZE=10BLOCK,

MAXI SN=300,

REUSE=(| SN, DS)

)

(SQLCODE == 0)
printf (”\nTabl e space for PERSON created successfully\n”);

el se

{

nmessage_| en = 300;

esqgerr(&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;
nmenset (final _err_mess,’ ', 300);

strncpy(final _err_mness, err_nessage, message_| en);
printf(”\nError: %\n”,final_err_mness);

}

printf(”\nCreating table PERSON ...\n");

Appendix B

EXEC SQL
CREATE TABLE person
(person_id i nt eger i ndex i nd_person

not null
uni que,

birth_date i nt eger ,

sex char (1) ,

sur name char (20) ,

first_nane_1 char (20) ,

first_nane_2 char (20) ,

title char (20) ,

form of _address char (8) ,

address_addition_1 char(20) ,
address_addition_2 char(20) ,

street _nunber char (20) ,
country char (3) ,
zi p_code char (10) ,
city char (20) ,
area_code_priv char (6) ,
phone_nunber _priv char (15) ,
area_code_office char (6) ,

phone_nunber _office char(15))

if (SQLCODE == 0)
printf (”\nTabl e PERSON created successfully\n”);
el se
{
nmessage_| en = 300;
esqgerr(&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;
nmenset (final _err_mess,’ ', 300);
strncpy(final _err_ness, err_nessage, message_| en);
printf(”\nError: %\n”,final_err_ness);

}

201

202

Adabas SQL Server Programmer’s Guide

AR AR EE LSRR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE TABLE SAI LOR *

LEEEA SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEY]

EXEC SQL
CREATE TABLESPACE FOR TABLE sail or

(

DATABASE=yacht _db,
FI LE=7,

FI LENAME=" SAI LOR’,
ASSOPFAC=5,
DATAPFAC=5,

DSSI ZE=10BLOCK,

NI SI ZE=10BLOCK,

Ul SI ZE=10BLOCK,
MAXI SN=500,
REUSE=(| SN, DS)

)

if (SQLCODE == 0)
printf (”\nTable space for SAILOR created successfully\n”);
el se
{
nmessage_| en = 300;
esqgerr(&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;
menset (final _err_mess,’ ', 300);
strncpy(final _err_ness, err_nessage, message_| en);
printf(”\nError: %\n”,final_err_ness);

}

printf(”\nCreating table SAILOR ...\n");

EXEC SQL
CREATE TABLE sai |l or
(sailor_id i nt eger i ndex ind_sail or

not null
uni que,

age i nt eger ,

sai | or _name char (30) ,

experi ence char (1) ,

I_1 char (3) ,

I_2 char (3) ,

I_3 char (3) ,

id_contract i nt eger not nul |,

id_cruise i nt eger not null);

Appendix B

if (SQLCODE == 0)
printf ("\nTable SAILOR created successfully\n”);
el se
{
nmessage_| en = 300;
esqgerr(&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;
menset (final _err_mess,’ ', 300);
strncpy(final _err_mness, err_nmessage, message_| en);
printf(”\nError: %\n”,final_err_mess);

}

AR AR EE SRR EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEE]

* CREATE TABLE YACHT *

AR EEEE R EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEY]

EXEC SQL
CREATE TABLESPACE FOR TABLE yacht
(
DATABASE=yacht _db,
Fl LE=8,
FI LENAME=" YACHT" ,
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLCOCK,
Ul SI ZE=10BLOCK,
MAXI SN=100000,
REUSE=(| SN, DS)
)

if (SQLCODE == 0)
printf (”"\nTable space for YACHT created successfully\n”);
el se
{
nmessage_| en = 300;
esqgerr(&sql ca, err_nmessage, &ressage_| en, &sq_| anguage) ;
nmenset (final _err_mess,’ ', 300);
strncpy(final _err_ness, err_nessage, message_| en);
printf(”\nError: %\n”,final_err_ness);

}

printf(”\nCreating table YACHT ...\n");

203

204

EXEC SQL
CREATE TABLE yac
(yacht_id

yacht _nane
i d_owner
yacht _type
yacht _| engt
yacht _width
yacht _draft
sail _surfac
not or
head_r oom
bunks

if (SQLCODE == 0

Adabas SQL Server Programmer’s Guide

ht
i nt eger i ndex i nd_yacht
not nul
uni que
char (30) ,
i nt eger not nul |
char (30) ,
h nuneric (5, 2)
nuneric (5, 2)

nuneric (5, 2)

e i nt eger
i nt eger

nuneric (5, 2)

i nt eger

)

not null)

printf ("\nTable YACHT created successfully\n”)

el se
esq_l anguage
nmessage_| en

0,
300;

esqgerr(&sql ca, err_nessage, &ressage_| en, &sq_| anguage)

nmenset (final _er

r_mess,’ ', 300)

strncpy(final _err_ness, err_nessage, nessage_| en)
: 9%s\n”, final _err_ness)

printf(”\nError
}

EXEC SQL
DI SCONNECT;

printf ("\n\nEnd of the ESQ exanple program\n”)

return;

}

Appendix B

Sample COBOL Program for the Creation of the
Following SQL Tables

| DENTI FI CATI ON DI VI SI ON.
PROGRAM-I D. YACHTCR.
ENVI RONMENT DI VI S| ON.
CONFI GURATI ON SECTI ON.
SQURCE-COWPUTER. xyz.
OBJECT-COWPUTER. xyz.
DATA DI VI SI ON.

WORKI NG-STORAGE SECTI ON.

R R R R R R R R R

* *
* Nanme —— yacht _cr. pco *
* *
* Description — Programto create the tables : *
* *
* contract *
* cruise *
* person *
* sail or *
* yacht *
* *
* for the SAG Tours denonstration system. *
* *
* 95/05/07 07:30:00 (co) Software AG *
* *

Khkhhkhhhkhhkhhhhhhhhhkhhhhhkhhkhhhkhhkhhkhhhhhkhhkhhhkhhkhhkhhkhkhhkhhkhkhkkhkhk k%

EXEC SQL BEG N DECLARE SECTI ON END-EXEC
01 UD PI C X(18).

EXEC SQL END DECLARE SECTI ON END-EXEC

EXEC SQL | NCLUDE SQLCA END-EXEC

01 MESSAGE-LEN COVP PI C S9(5) VALUE 300.
01 ERR-MESSAGE Pl C X(300).

01 FINAL-ERR-MESS PI C X(300).

01 ESQ-LANGUAGE COWP PIC S9(5) VALUE O.

EXEC SQL WHENEVER SQLERROR CONTI NUE
END-EXEC

PROCEDURE DI VI SI ON.
PR SECTI ON.

205

206

Adabas SQL Server Programmer’s Guide

MOVE "ESQ TO Ul D.
DI SPLAY " .
DI SPLAY "Connecting to ESQ as " U D NO ADVANCI NG

EXEC SQL CONNECT : U D END-EXEC

| F SQLCODE = 0
DI SPLAY * CONNECTED'
ELSE
PERFORM FAI LED-MESSAGE.

Khhkhhkhhkhkhhkhhkhhhkhhkhkhhhhhkhhkhhhhhkhhkhhhkhhkhhkhhkhhkhhkhhkkhkhkhhkhkhk k%

* CREATE DATABASE YACHT_DB *

R R R R R R R R

DI SPLAY " .
DI SPLAY "Creating dat abase YACHT_DB as 240 ... ”
NO ADVANCI NG

EXEC SQL
CREATE DATABASE yacht _db AS DATABASE NUMBER 240
END-EXEC

| F SQLCODE = 0
DI SPLAY ” CREATED’

ELSE
PERFORM FAI LED-MESSAGE.

Appendix B

R R R R R R

* CREATE TABLE CONTRACT *

R R R R R R R

DI SPLAY ” .
DI SPLAY "Creating table space for CONTRACT ... ”
NO ADVANCI NG

EXEC SQL
CREATE TABLESPACE FOR TABLE contract
(
DATABASE=yacht _db,
Fl LE=4,
FI LENAME=" CONTRACT",
ASSOPFAC=5,
DATAPFAC=5,
DSS| ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=300,
REUSE=(| SN, DS)

)
END-EXEC

| F SQLCODE = 0
DI SPLAY " CREATED’

ELSE
PERFORM FAI LED-MESSAGE.

DI SPLAY "Creating table CONTRACT ... ”
NO ADVANCI NG
EXEC SQL
CREATE TABLE contract
(contract_id i nt eger i ndex i nd_contract
not null
uni que,
price nuneric (13,3) not null,
date_reservation i nt eger ,
dat e_booki ng i nt eger ,
date_cancel l ation integer ,
dat e_deposi t i nt eger ,
anmount _deposi t nuneric (13,3) ,
dat e_paynent i nt eger ,
anount _paynent nuneric (13,3) ,
i d_cust oner i nt eger not nul |,
id_cruise i nt eger not null)
END-EXEC

207

Adabas SQL Server Programmer’s Guide

| F SQLCODE = 0
DI SPLAY " CREATED’

ELSE
PERFORM FAI LED-MESSAGE.

R R R R R

* CREATE TABLE CRU SE *

R R R R R R R

DI SPLAY "Creating table space for CRUSE "
NO ADVANCI NG

EXEC SQL

CREATE TABLESPACE FOR TABLE crui se

(
DATABASE=yacht _db,
FI LE=5,
FI LENAME=" CRUI SE”,
ASSOPFAC=5,
DATAPFAC=5,
DSS| ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=300,
REUSE=(| SN, DS)

)
END-EXEC
| F SQLCODE = 0
DI SPLAY " CREATED’
ELSE
PERFORM FAI LED-MESSAGE.

DI SPLAY "Creating table CRU SE "
NO ADVANCI NG

208

Appendix B

EXEC SQL
CREATE TABLE crui se
(cruise_id i nt eger i ndex ind_crui se
not null
uni que,
start_date i nt eger ,
start_time i nt eger ,
end_date i nt eger ,
end_tinme i nt eger ,
start_harbor char (20) ,
destinati on_harbor char(20) ,
crui se_price nuneric (13,3) not null,
bunk_nunber i nt eger ,
bunks_free i nt eger not nul |,
i d_yacht i nt eger not nul |,
i d_ski pper i nt eger not nul |,
i d_predecessor i nt eger ,
i d_successor i nt eger)
END-EXEC
IF SQLCCDE = 0
DI SPLAY " CREATED’
ELSE
PERFORM FAI LED-MESSAGE.
khkkhkkhkhkkhkhkhkhhkkhhkkhhkhhhhhdhdhhkhhhhdhdhhhhdhdrhkrhkdhdhrdrhdhdrxdrdrhxdxkxx
* CREATE TABLE PERSON *

R R R R R R R R R

DI SPLAY "Creating table space for PERSON "
NO ADVANCI NG

EXEC SQL

CREATE TABLESPACE FOR TABLE person

(
DATABASE=yacht _db,
Fl LE=6,
FI LENAME=" PERSON" ,
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=300,
REUSE=(| SN, DS)

)
END-EXEC

209

210

Adabas SQL Server Programmer’s Guide

| F SQLCODE = 0
DI SPLAY " CREATED’

ELSE
PERFORM FAI LED-MESSAGE

DI SPLAY "Creating table
NO ADVANCI NG

EXEC SQL
CREATE TABLE person
(person_id

birth_date

sex

sur name

first_nane_1

first_nane_2

title

form of _address

address_addi tion_1

address_addi tion_2

street _nunber

country

zi p_code

city

area_code_priv

phone_nunber _priv

area_code_office

phone_nunber _office
END-EXEC

| F SQLCODE = 0
DI SPLAY " CREATED’

ELSE
PERFORM FAI LED-MESSAGE

i nt eger

i nt eger
char (1)
char (20)
char (20)
char (20)
char (20)
char (8)
char (20)
char (20)
char (20)
char (3)
char (10)
char (20)
char (6)
char (15)
char (6)
char (15)

i ndex i nd_person
not nul
uni que

Appendix B

R R R R R R

* CREATE TABLE SAI LOR *

R R R R R R R

DI SPLAY "Creating table space for SAILOR "
NO ADVANCI NG

EXEC SQL
CREATE TABLESPACE FOR TABLE sai | or
(
DATABASE=yacht _db,
FI LE=7,
FI LENAME=" SAI LOR",
ASSOPFAC=5,
DATAPFAC=5,
DSS| ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=500,
REUSE=(| SN, DS)
)
END-EXEC

| F SQLCODE = 0
Dl SPLAY " CREATED’
ELSE
PERFORM FAI LED-MESSAGE.

DI SPLAY "Creating table SAILOR "
NO ADVANCI NG

EXEC SQL
CREATE TABLE sai |l or
(sailor_id i nt eger i ndex ind_sail or
not null
uni que,
age i nt eger ,
sai | or _nane char (30) ,
experi ence char (1) ,
I_1 char (3) ,
I_2 char (3) ,
I_3 char (3) ,
id_contract i nt eger not null,
id_cruise i nt eger not null)
END-EXEC

211

Adabas SQL Server Programmer’s Guide

| F SQLCODE = 0
DI SPLAY " CREATED’

ELSE
PERFORM FAI LED-MESSAGE.

R R R R R

* CREATE TABLE YACHT *

R R R R R R R

DI SPLAY "Creating table space for YACHT "
NO ADVANCI NG

EXEC SQL

CREATE TABLESPACE FOR TABLE yacht

(
DATABASE=yacht _db,
Fl LE=8,
FI LENAMVE=" YACHT" ,
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=100000,
REUSE=(| SN, DS)

)
END-EXEC
| F SQLCODE = 0
Dl SPLAY " CREATED’
ELSE
PERFORM FAI LED-MESSAGE.

DI SPLAY "Creating table YACHT "
NO ADVANCI NG

212

EXEC SQL

CREATE TABLE yacht

(

yacht _id

yacht _nane

i d_owner
yacht _type
yacht _| ength
yacht _width
yacht _draft
sail _surface
not or

head_r oom
bunks

END-EXEC

| F SQLCODE = 0

DI SPL
ELSE

AY " CREATED’

i nt eger

char (30)
i nt eger
char (30)

Appendix B

i ndex
not nul
uni que

i nd_yacht

not null

nuneric (5, 2)
nuneric (5, 2)
nuneric (5, 2)

i nt eger
i nt eger

nuneric (5, 2)

i nt eger

PERFORM FAI LED-MESSACE

DI SPLAY

n

DI SPLAY " Di sconnecting from ESQ

EXEC SQL

DI SCONNECT
END-EXEC

not null)

DI SPLAY "End of the ESQ exanpl e program”.
STOP RUN.

FAI LED-MESSACE

DI SPLAY " FAI LED wi th SQLCODE ”

MOVE SPACES TO ERR-MESSACE

MOVE 0 TO ESQ-LANGUAGE.

CALL

DI SPL

SQLCCDE.

"esgerr” USI NG BY REFERENCE SQLCA

BY REFERENCE ERR-MESSAGE
BY REFERENCE MESSAGE-LEN
BY REFERENCE ESQ-LANGUAGE

AY " ERRCR :

FAI LED-MESSAGE-END.

ERR-MESSACE

213

Adabas SQL Server Programmer’s Guide

Sample PL/l Program for the Creation of the Following
SQL Tables

IR AR E RS EEEEEEEEEEEEEEREEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEE]

* *
* Nane —— yacht _cr.pli *
* *
* Description — Programto create the tables : *
* *
* contract *
* cruise *
* person *
* sail or *
* yacht *
* *
* *
* for the SAG Tours denonstration system. *
* *
* 95/05/07 07:30:00 (co) Software AG *
* *

LR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEREY]

DCL ESQERR ENTRY (ANY, ANY, ANY, ANY) EXTERNAL (’esqerr’);
YACHT _CR PROCEDURE OPTI ONS (MAIN) ;

EXEC SQL
BEG N DECLARE SECTI ON;
DCL U D CHARACTER (18) VARYI NG

EXEC SQL
END DECLARE SECTI ON,

EXEC SQL
| NCLUDE SQLCA:;

DCL MESSAGE_LEN FIXED BIN (16) INIT (300);
DCL ERR_MESSAGE CHARACTER (300);

DCL FINAL_ERR MESS CHARACTER (300);

DCL ESQ LANGUAGE FIXED BIN (16) INIT (0);

EXEC SQL
WHENEVER SQLERROR CONTI NUE;

214

Appendix B

ON ERROR BEG N,

PUT EDI T (' ERROR CODE :' , ONCODE()) (A F(6)) SKIP;
PUT LI ST (' Program aborted!’) SKIP;
PUT SKIP (1);
STOP,
END;
UD="ESQ;
PUT EDIT ('Connecting to ESQAS ',UD,” ... ") (AAA SKP
EXEC SQL

CONNECT : Ul D

| F SQLCODE = 0 THEN
DO,
PUT EDI T (* CONNECTED') (A);
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A F(5));
CALL ESQERR
(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ_LANGUAGE) ;
FI NAL_ERR MESS = COPY(’ ', 300);
FI NAL_ERR _MESS = ERR MESSAGE :
PUT LIST ('ERROR ')
PUT LIST (FINAL_ERR MESS) SKIP ;
END ;

AR R EE SRR EEEEEEREEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE DATABASE YACHT_DB *

LEEEA SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEY]

PUT LI ST (' Creating database YACHT_DB as 240 ...') SKIP(2);

EXEC SQL
CREATE DATABASE yht_db AS DATABASE NUVBER 240;

215

Adabas SQL Server Programmer’s Guide

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED) (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FI NAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);
END ;

PUT SKIP (1);

AR AR R EEREEEEEEEEEEEEE]

* CREATE TABLE CONTRACT *

LEEEA SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEERY]

PUT LIST ('Creating table space for CONTRACT ...') SKIP;

EXEC SQL
CREATE TABLESPACE FOR TABLE contract
(
DATABASE=yht _db,
FI LE=29,
FI LENAME=" CONTRACT”
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=300,
REUSE=(| SN, DS)

216

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED) (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A, F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FI NAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);

END ;
PUT LIST ('Creating table CONTRACT ...") SKIP;
EXEC SQL
CREATE TABLE contr act
(contract_id i nt eger i ndex ind_contract
not null
uni que,
price nuneric (13,3) not null,
date_reservation i nt eger ,
dat e_booki ng i nt eger ,
dat e_cancel | ati on i nt eger ,
dat e_deposi t i nt eger ,
anmount _deposi t nuneric (13,3) ,
dat e_paynent i nt eger ,
anount _paynent nuneric (13,3) ,
i d_cust oner i nt eger not nul |,
id_cruise i nt eger not null);

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED') (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A, F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FI NAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);
END ;

Appendix B

217

Adabas SQL Server Programmer’s Guide

AR AR EE LSRR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE TABLE CRU SE *

LEEEA SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEY]

PUT LIST ('Creating table space for CRUSE ") SKIP;

EXEC SQL

CREATE TABLESPACE FOR TABLE crui se

(
DATABASE=yht _db,
FI LE=30,
FI LENAME=" CRUI SE”,
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=300),
REUSE=(| SN, DS)

)

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED) (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A, F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FINAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);
END ;

PUT LIST ('Creating table CRU SE ") SKIP;

218

EXEC SQL
CREATE TABLE crui se
(cruise_id i nt eger i ndex ind_cruise

not null
uni que,

start_date i nt eger ,

start_time i nt eger ,

end_date i nt eger ,

end_tinme i nt eger ,

start_harbor char (20) ,

destinati on_harbor char(20) ,

crui se_price nuneric (13,3) not null,

bunk_nunber i nt eger ,

bunks_free i nt eger not nul |,

i d_yacht i nt eger not nul |,

i d_ski pper i nt eger not nul |,

i d_predecessor i nt eger ,

i d_successor i nt eger)

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED) (A) ;
END;
ELSE
DO,

PUT EDIT (’ FAILED with SQLCODE ’,
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;

FI NAL_ERR MESS = COPY(' ', 300);

FI NAL_ERR MESS = ERR_MESSAGE ;

PUT LIST ('ERROR ') SKIP;

PUT EDIT (FINAL_ERR MESS) (A);
END ;

SQLCCDE) (A, F(5));

Appendix B

219

Adabas SQL Server Programmer’s Guide

AR AR EE LSRR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE TABLE PERSON *

LEEEA SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEY]

PUT LIST (' Creating table space for PERSON ") SKIP;

EXEC SQL

CREATE TABLESPACE FOR TABLE person

(
DATABASE=yht _db,
FI LE=31,
FI LENAME=" PERSON'
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=300),
REUSE=(| SN, DS)

)

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED) (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A, F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FINAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);
END ;

PUT LIST ('Creating table PERSON ") SKIP;

220

Appendix B

EXEC SQL
CREATE TABLE person
(person_id i nt eger i ndex i nd_person

not null
uni que,

birth_date i nt eger ,

sex char (1) ,

sur name char (20) ,

first_nane_1 char (20) ,

first_nane_2 char (20) ,

title char (20) ,

form of _address char (8) ,

address_addition_1 char(20) ,
address_addition_2 char(20) ,

street _nunber char (20) ,
country char (3) ,
zi p_code char (10) ,
city char (20) ,
area_code_priv char (6) ,
phone_nunber _priv char (15) ,
area_code_office char (6) ,

phone_nunber _office char(15))

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED) (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FINAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);
END ;

221

Adabas SQL Server Programmer’s Guide

AR AR EE LSRR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE TABLE SAI LOR *

LEEEA SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEY]

PUT LIST ('Creating table space for SAILOR ") SKIP;

EXEC SQL

CREATE TABLESPACE FOR TABLE sai | or

(
DATABASE=yht _db,
FI LE=32,
FI LENAME=" SAI LOR’,
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=500),
REUSE=(| SN, DS)

)

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED) (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A, F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FINAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);
END ;

PUT LIST ('Creating table SAILOR ") SKIP;

222

EXEC SQL

CREATE TABLE sai |l or

(

sailor_id

age
sai | or _nane
experi ence
1
|2
I3
id_contract

id_cruise

IF SQLCODE = 0 THEN

DO,

PUT EDI T (' CREATED) (A)

END;
ELSE
DG,

i nt eger

i nt eger
char (30)
char (1)
char (3)
char (3)
char (3)
i nt eger
i nt eger

PUT EDI T (’ FAILED with SQLCODE ’,
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;

FI NAL_ERR_MESS = COPY(’

", 300) ;

FI NAL_ERR _MESS = ERR MESSAGE ;

PUT LI ST (' ERROR

) SKIP;

PUT EDIT (FINAL_ERR MESS) (A);

END ;

i ndex ind_sailor
not nul
uni que

not nul |
not null)

SQLCCDE) (A, F(5));

Appendix

B

223

224

Adabas SQL Server Programmer’s Guide

AR AR EE LSRR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEEEEE]

* CREATE TABLE YACHT *

LEEEA SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEY]

PUT LIST ('Creating table space for YACHT ") SKIP;

EXEC SQL

CREATE TABLESPACE FOR TABLE yacht

(
DATABASE=yht _db,
FI LE=33,
FI LENAME=" YACHT”
ASSOPFAC=5,
DATAPFAC=5,
DSSI ZE=10BLOCK,
NI SI ZE=10BLOCK,
Ul SI ZE=10BLOCK,
MAXI SN=100000,
REUSE=(| SN, DS)

)

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED') (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A, F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FI NAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);
END ;

PUT LIST ('Creating table YACHT ") SKIP;

EXEC SQL
CREATE TABLE yacht
(yacht_id i nt eger i ndex i nd_yacht

not null
uni que,

yacht _nane char (30) ,

i d_owner i nt eger not nul |,

yacht _type char (30) ,

yacht _| ength nuneric (5,2) ,

yacht _width nuneric (5,2) ,

yacht _draft nuneric (5,2) ,

sai | _surface i nt eger ,

not or i nt eger ,

head_r oom nuneric (5,2) ,

bunks i nt eger not null);

| F SQLCODE = 0 THEN
DO,
PUT EDI T (' CREATED) (A) ;
END;
ELSE
DO,
PUT EDIT (’ FAILED with SQLCODE ', SQLCODE) (A, F(5));
CALL ESQERR(SQLCA, ERR_MESSAGE, MESSAGE_LEN, ESQ LANGUAGE) ;
FI NAL_ERR MESS = COPY(' ', 300);
FI NAL_ERR MESS = ERR_MESSAGE ;
PUT LIST ('ERROR ') SKIP;
PUT EDIT (FINAL_ERR MESS) (A);
END ;

PUT LI ST (' Disconnecting fromESQ) SKIP(2);

EXEC SQL
DI SCONNECT;

PUT LI ST (' End of the ESQ exanple program’) SKIP;
PUT SKIP (1);

END YACHT CR;

Appendix B

225

226

APPENDIX C— THE ADABAS SQL SERVER
CATALOG STRUCTURE

In this appendix, the structure of the Adabas SQL Server catalog (in the following called
catalog) is explained and displayed in various tables.

The Schemas

The Adabas SQL Server catalog consists of three schemas: The DEFINITION_SCHEMA, the
DBA_SCHEMA, and the INFORMATION_SCHEMA.

The schema DEFINITION_SCHEMA contains the base tables used internally by Adabas SQL
Server, whereas the two others offer views on this information which are relevant to
administration. Their structures (view and column names) are absolutely identical.

Warning:
Data manipulation performed on the DEFINITION_SCHEMA may result in catalog
inconsistencies and is therefore not recommended.

If the security mode is on, the schema DBA_SCHEMA can be accessed only by the user DBA,
whereas the schema INFORMATION SCHEMA is aways public. But the
INFORMATION_SCHEMA restricts the information to those objects, on which the current user
has privileges.

The user DBA istreated like any other user. For example, a SELECT statement against any of
the INFORMATION_SCHEMA tables will return results for those objects only which have
been GRANTed access to. To see al information, the DBA should use the DBA_SCHEMA
tables (which are only accessible to the DBA).

227

Adabas SQL Server Programmer’s Guide

The View Description Tables

228

The tables on the following pages describe the views of the DBA_SCHEMA and the
INFORMATION_SCHEMA. For each view, the columns are listed with their names, data types,
indications, if NULL is possible, and short descriptions of the semantics. The data types are
shown here as symbolic identifiers to describe a specific role:

yes no stands for CHAR(1) with a content of ‘Y’ or ‘N’.

identifier stands for CHAR(32).

enumeration stands for CHAR(40) with possible values listed in the column
“Description”.

long_alpha stands for CHAR(>253).

timestamp stands for BINARY (8).

Note, that al identifiers in the catalog are represented in upper case characters.

Note:
y in the column “ N” means that the column may contain NULL values,
n in the column “ N’ means that the column must not contain NULL values.

Note:

—> (arrow) in the column “ Description” references an explanation in the glossary of the
Adabas SQL Server Reference Manual. For somevalues, “ n/a” (not applicable) indicates that
they do not appear in the current product version, but they are listed for reason of standard
compatibility and/or for use in future versions.

Appendix C

SERVER_INFO View:

Gives some information about the server.

Column Data Type N Description
SERVER_NAME identifier n —> Saver
isidentical with the catalog name.
NODE_NAME identifier n —> Saver
ESQ_VERSION identifier n —> Sever
SECURITY_ON yes no n 'Y if serverisinsecurity mode.
"N’ if not.
—> Security Mode
Role:
SERVER_NAME identifies the server.

INFORMATION_SCHEMA_ CATALOG_NAME View:
Gives the name of the catalog.
Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description

CATALOG_NAME identifier n —> Catog
isidentical with the server name.

Role:
CATALOG_NAME identifies the catalog.

229

Adabas SQL Server Programmer’s Guide

SCHEMATA View:

Describes the schemas of the catalog.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
SCHEMA_NAME identifier n —> Schema
SCHEMA_OWNER identifier n —>User

—> Privileges
Role:

SCHEMA_NAME

CLUSTERS View:

Describes the clusters of the catalog.

identifies the selected schema.

Column Data Type N Description
CLUSTER_SCHEMA identifier n —> Schema
CLUSTER_NAME identifier n —> Cluster
DATABASE_NAME identifier n —> Database
FILE_ NR integer n —>AdabasFile
Roles:

CLUSTER_SCHEMA,
CLUSTER_NAME

DATABASE_NAME, FILE_NR

230

identifies the selected cluster.
identifies the realizing Adabas file.

TABLES View:

Lists the tables defined in the catalog.

Appendix C

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type Description
TABLE_SCHEMA identifier —> Schema
TABLE_NAME identifier —> Table
TABLE TYPE enumeration —> Table
"BASE TABLE’
"VIEW’
Roles:

TABLE_SCHEMA, TABLE_NAME

BASE_TABLES View:

Lists the base tables defined in the catalog.

identifies the selected table.

Column Data Type Description
TABLE_SCHEMA identifier —> Schema
TABLE_NAME identifier —> Table
DATABASE_NAME identifier —> Database
FILE_ NR integer —> Adabas File
TABLE_LEVEL smallint possible vaues:

-1,0,1,2

—> Table Level

Roles:

TABLE_SCHEMA, TABLE_NAME
DATABASE_NAME, FILE_NR

identifies the selected base table.
identifies the realizing Adabas file.

231

Adabas SQL Server Programmer’s Guide

VIEWS View:
Lists the views defined in the catalog.
Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —> Table
VIEW_DEFINITION long_alpha n The SQL source string of the view definition.
—> View
CHECK_OPTION enumeration n 'NONE
"CASCADED’ n/a
"LOCAL’ n/a
IS UPDATABLE yes no n 'Y’ if viewisupdatable,
"N’ if not
—> View
Roles:

TABLE_SCHEMA, TABLE_NAME identifies the selected view.

232

COLUMNS View:

Appendix C

Describes the columns of the tables defined in the catalog.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —> Table
COLUMN_NAME identifier n —> Column
ORDINAL_POSITION integer n Ordinal position inside the containing table.
—> Column
COLUMN_DEFAULT long_alpha y Default option in character representation.
—> Default Clause
IS NULLABLE yes no n 'Y' if NULL ispossble,
"N’ if certainly not possible.
—> Constraint
DATA_TYPE enumeration n "CHAR’
'DECIMAL
"NUMERIC
"INT’
"SMALLINT’
"FLOAT’
'REAL’
"'DOUBLFE’
'BINARY"’
—> Data Type
CHARACTER_MAXI- integer n Physica length of datain bytes.
MUM_LENGTH —> Data Type
NUMERIC_PRECISION integer n Physica length of datain bytes.
—> Data Type
NUMERIC_SCALE integer y Binary precision for approximate numeric data
types.
—> Data Type

233

234

Adabas SQL Server Programmer’s Guide

Column Data Type

N Description

COLUMN_LEVEL smallint

COLUMN_TYPE enumeration

Roles:

TABLE_SCHEMA, TABLE _NAME,
COLUMN_NAME
TABLE_SCHEMA, TABLE _NAME,
ORDINAL_POS

n possiblevalues: -1, 0, 1, 2
—> Column Level

n "ORDINARY’
"SEQ NR'
"COMPUTED’ n/a
"SEARCH_ONLY’ n/a
"CONSTANT’
"SIMULATED_LONG’
—> Column

identifies the selected column.

isunique in this view.

TABLE_PRIVILEGESView:

Appendix C

Describes the privileges on the tables defined in the catalog.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
GRANTOR identifier n —> Privileges
—> User
GRANTEE identifier n —> Privileges
—> User
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —> Table
PRIVILEGE_TYPE enumeration n "SELECT’
"INSERT’
'DELETFE
"UPDATFE’
'REFERENCES n/a
—> Privileges
IS GRANTABLE yes no n 'Y’ ifprivilegeisgrantable.
"N’ if not.
—> Privileges
Roles:

GRANTEE, TABLE_SCHEMA,
TABLE_NAME, PRIVILEGE_TYPE

TABLE_SCHEMA, TABLE_NAME

identifies the selected table privilege.
identifies the accessible table.

235

Adabas SQL Server Programmer’s Guide

COLUMN_PRIVILEGESView:
Describes the privileges on the columns defined in the catalog.
Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
GRANTOR identifier n —> Privileges
—> User
GRANTEE identifier n —> Privileges
—> User
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —> Table
COLUMN_NAME identifier n —> Column
PRIVILEGE_TYPE enumeration n 'SELECT n/a
"INSERT’ n/a
"UPDATFE’
'REFERENCES n/a
—> Privileges
IS GRANTABLE yes no n 'Y’ ifprivilegeisgrantable.
"N’ if not.
—> Privileges
Roles:

GRANTEE, TABLE_SCHEMA,
TABLE_NAME, COLUMN_NAME,

PRIVILEGE _TYPE identifies the selected column privilege.
TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME identifies the accessible column.

236

TABLE_CONSTRAINTS View:

Describes the table constraints.

Appendix C

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type Description

CONSTRAINT_SCHE- identifier —> Constraint

MA —> Schema

CONSTRAINT_NAME identifier —> Constraint

TABLE_SCHEMA identifier —> Schema

TABLE_NAME identifier —> Table

CONSTRAINT_TYPE enumeration "NOT NULL’
"UNIQUE’
'PRIMARY KEY’
"FOREIGN KEY’
"CHECK’ n/a
—> Constraint

IS DEFERRABLE yes no 'Y' if condtraint isdeferrable na
"N’ if not.
—> Constraint

INITIALLY_DEFERRED yes no 'Y' if condraint isinitialy deferred n/a
"N’ if not.
—> Constraint

IMPLEMENTING_IN- identifier —> Constraint

DEX —> Index

Roles:

CONSTRAINT_SCHEMA,

CONSTRAINT_NAME

TABLE_SCHEMA, TABLE_NAME

identifies the table constraint.
identifies the containing table.

237

Adabas SQL Server Programmer’s Guide

TABLE_INDEXESView:

Describes the indices of the tables and gives the type of the index.

Column Data Type N Description
INDEX_SCHEMA identifier n —> Index
—> Schema
INDEX_NAME identifier n —>Index
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —>Table
INDEX_TYPE enumeration n "ORDINARY’

"PHONETIC’ n/a
"VIRTUAL’ n/a
—> Index

SHORT_NAME char(2) n Internal Adabas identification of the index.
—> SHORTNAME

IS MULTIPLE yes no n —>Index
IS UQINDEX yes no n —> Index

INDEX_DATA_TYPE enumeration n 'CHAR'
'DECIMAL’
"NUMERIC’
"INT
"SMALLINT’
'"FLOAT’
"REAL’
"'DOUBLFE’
'BINARY’
—> Data Type
—> Index

Roles:
INDEX_SCHEMA, INDEX_NAME identifies the index.
TABLE _SCHEMA, TABLE NAME identifies the containing table.

238

Appendix C

ALL_TABLE_INDEX_ELEMENTSView:

For every constraint of the type PRIMARY KEY or UNIQUE and every index, which is of type
INDEX or UNIQUE, the used columns and their ordinal position within this order are listed.

Strictly speaking:

A PRIMARY KEY congtraint implies an index and leads to two rowsin this view for each column,
one with CONSTRAINT_TYPE 'PRIMARY KEY’ and onewith CONSTRAINT_TYPE'INDEX’
or "UNIQUE'.

A "UNIQUE’ constraint implies an index and leads to two rows in this view for each column, one
with CONSTRAINT_TYPE 'UNIQUE and one with CONSTRAINT_TYPE 'INDEX’ or
"UNIQUE'.

A UNIQUE INDEX implies a constraint and leads to two rows in this view for each column, one
with CONSTRAINT_TYPE 'UNIQUE and one with CONSTRAINT_TYPE 'INDEX’ or
"UNIQUE'.

An INDEX, which is not UNIQUE, leads to one row in this view for each column with
CONSTRAINT_TYPE 'INDEX’.

Column Data Type N Description
CONSTRAINT_SCHE- identifier n —> Constraint
MA —> Schema
CONSTRAINT_TABLE identifier n —> Table
CONSTRAINT_NAME identifier n —> Constraint
CONSTRAINT_TYPE enumeration n "UNIQUE’

"PRIMARY KEY’

"INDEX’

—> Constraint

—> Index

—> UNIQUE CONSTRAINT
COLUMN_NAME identifier n —> Column
ORDINAL_POSITION integer n Ordinal position of the column element inside

the containing index

—> Congtraint

239

Adabas SQL Server Programmer’s Guide

Roles:

CONSTRAINT_SCHEMA,

CONSTRAINT_NAME identifies the using constraint.
CONSTRAINT_SCHEMA,

CONSTRAINT_TABLE,

COLUMN_NAME identifies a used colum.
CONSTRAINT_SCHEMA,

CONSTRAINT_NAME,

ORDINAL_POSITION isunique in this view.

240

Appendix C

KEY_COLUMN_USAGE View:

For every constraint (except NOT_NULL) and every index, the used columns and their ordinal
positions within this order are listed.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description

CONSTRAINT_SCHE- identifier n —> Constraint

MA —> Schema

CONSTRAINT_NAME identifier n —> Constraint

TABLE_SCHEMA identifier n —> Schema

TABLE_NAME identifier n —> Table

COLUMN_NAME identifier n —> Column

ORDINAL_POSITION integer n Ordinal position of the column element inside

the containing key —> Constraint

Roles:

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME,

COLUMN_NAME isunique in this view.
CONSTRAINT_SCHEMA,

CONSTRAINT_NAME identifies the using constraint.
TABLE_SCHEMA, TABLE_NAME,

COLUMN_NAME identifies the used column.

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME,
ORDINAL_POSITION isunique in this view.

241

Adabas SQL Server Programmer’s Guide

VIEW_TABLE_USAGE View:
Identifies the tables on which the catalog’s views are dependent.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
VIEW_SCHEMA identifier n —> View

—> Schema
VIEW_NAME identifier n —> View
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —>Table
Roles:

VIEW_SCHEMA, VIEW_NAME,
TABLE_SCHEMA, TABLE_NAME is unique in this view.

VIEW_SCHEMA, VIEW_NAME identifies the using view.
TABLE_SCHEMA, TABLE_NAME identifies the used table.

242

VIEW_COLUMN_USAGE View:

Appendix C

Identifies the columns on which the catalog's views are dependent.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
VIEW_SCHEMA identifier n —> View

—> Schema
VIEW_NAME identifier n —> View
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —>Table
COLUMN_NAME identifier n —> Column
Roles:

VIEW_SCHEMA, VIEW_NAME,
TABLE_SCHEMA

TABLE_NAME, COLUMN_NAME
VIEW_SCHEMA, VIEW_NAME
TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME

isunique in thisview.
identifies the using view.

identifies the used column.

243

Adabas SQL Server Programmer’s Guide

CONSTRAINT_TABLE_USAGE View:
Identifies the tables that are referenced by referential constraints.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —>Table
CONSTRAINT_SCHE- identifier n —> Constraint
MA —> Schema
CONSTRAINT_NAME identifier n —> Constraint
Roles:

CONSTRAINT_SCHEMA,

CONSTRAINT_NAME isunique in this view.
CONSTRAINT_SCHEMA,

CONSTRAINT_NAME identifies the referential constraint.

TABLE _SCHEMA, TABLE NAME identifies the referenced table.

244

CONSTRAINT_COLUMN_USAGE View:

Appendix C

Identifies the columns that are referenced by referential constraints.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
TABLE_SCHEMA identifier n —> Schema
TABLE_NAME identifier n —>Table
COLUMN_NAME identifier n —> Column
CONSTRAINT_SCHE- identifier n —> Constraint
MA —> Schema
CONSTRAINT_NAME identifier n —> Constraint

Roles:

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME,

COLUMN_NAME isuniquein this view.

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME

TABLE_SCHEMA, TABLE_NAME,

COLUMN_NAME

identifies the referential constraint.

identifies the referenced column.

245

Adabas SQL Server Programmer’s Guide

REFERENTIAL_CONSTRAI NTSView:
Describes the referential constraints.

Thisview is part of the ANSI SQL2 standard Information Schema.

Column Data Type N Description
CONSTRAINT_SCHE- identifier n —> Constraint
MA —> Schema
CONSTRAINT_NAME identifier n —> Constraint
UNIQUE_CONSTRAINT identifier n —> Schema
_SCHEMA
UNIQUE_CONSTRAINT identifier n —> Constraint
_NAME
MATCH_OPTION enumeration n 'NONE n/a
"PARTIAL’ n/a
"FULL
—> Referential Constraint.
UPDATE_RULE enumeration n 'NOACTION n/a
"CASCADFE’
"SET NULL' n/a
"SET DEFAULT na
—> Referential Congtraint.
DELETE RULE enumeration n 'NOACTION n/a
"CASCADFE’
"SET NULL' n/a
"SET DEFAULT’ n/a
—> Referential Constraint.
IS CLUSTERING yes no n 'Y’ ifthereferential constraintisimpl. by a
table cluster.
‘N’ dse. n/a
—> Cluster

246

Appendix C

Roles:

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME identifies the referential constraint.

UNIQUE_CONSTRAINT_SCHEMA,
UNIQUE_CONSTRAINT_NAME identifies the referred constraint.

DATABASES View:

Identifies the databases.

Column Data Type N Description

DATABASE NAME identifier n Name of the database.
—> Database

DATABASE NUMBER integer n Number of the containing database.

—> Database

Roles:

DATABASE_NAME identifies the database for ESQ.

DATABASE_NUMBER identifies the database for Adabas.

247

TABLESPACES View:

248

Describes the tablespaces.

Adabas SQL Server Programmer’s Guide

Column Data Type N Description
SCHEMA_NAME identifier n —> Schema
TABLESPACE_NAME identifier n —> Tablespace
DATABASE NAME identifier y —> Database
FILE_ NR integer y —>AdabasFile
FILE_ NAME identifier y —>AdabasFile
TS ACRABN integer n —> Tablespace
TS ASSOPFAC integer n —> Tablespace
TS CONTIGUOUS AC yes no n —> Tablespace
TS CONTIGUOUS DS yes no n —> Tablespace
TS CONTIGUOUS NI yes no n —> Tablespace
TS CONTIGUOUS Ul yes no n —> Tablespace
TS DATAPFAC integer n —> Tablespace
TS DSDEV integer n —> Tablespace
TS DSRABN integer n —> Tablespace
TS DSREUSE yes no n —> Tablespace
TS DSSIZE integer n —> Tablespace
TS DSSIZE_UNIT enumeration n "BLOCK’
"MEGABYTE’
—> Tablespace
TS ISNREUSE yes no n —> Tablespace
TS ISNSIZE integer n —> Tablespace
TS MAXDS integer n —> Tablespace
TS MAXISN integer n —> Tablespace
TS MAXNI integer n —> Tablespace
TS MAXRECL integer n —> Tablespace
TS MAXUI integer n —> Tablespace

Appendix C

Column Data Type Description
TS MIXDSDEV yes no —> Tablespace
TS NIRABN integer —> Tablespace
TS NISIZE integer —> Tablespace
TS NISIZE_UNIT enumeration "BLOCK’
"MEGABYTE'
—> Tablespace
TS PGMREFRESH yes no —> Tablespace
TS UIRABN integer —> Tablespace
TS UISIZE integer —> Tablespace
TS UISIZE UNIT enumeration "BLOCK’
"MEGABYTE'
—> Tablespace

Roles:

SCHEMA_NAME, TABLESFACE_NAME

SCHEMA_NAME

identifies the tablespaces.
identifies the schema of the tablespace.

249

250

APPENDIX D — ADABAS SQL SERVER AND
OTHER SOFTWARE AG PRODUCTS

This appendix discusses points of special interest when Adabas SQL Server interacts with other
Software AG Products.

Adabas SQL Server and Adabas

In terms of Adabas, Adabas SQL Server is an application program which uses the standard
Adabas call interface.

In order to make best use of the capabilities of the Adabas database system, Adabas SQL Server
makes use of some special Adabas features.

The information given below may help the Adabas database administrator to tune the Adabas
nucleus for best performance.

Setting of Adabas Nucleus parameters

There are some sensitive Adabas nucleus parameters which should be set to appropriate values.
For details refer to the Adabas documentation for your platform.

251

Adabas SQL Server Programmer’s Guide

Adabas Session Contexts

Each client using Adabas SQL Server may require up to three independent Adabas session
contexts (Adabas user queue elements):

252

The “Adabas SQL Server context”:

This session context is used to execute client-specific Adabas calls, derived from Adabas
SQL Server interna operations on the Adabas SQL Server catalog files (for example: read
table information).

The “CLIENT’s DML context”:

This session context is used to execute client-specific Adabas calls, which are placed by
Adabas SQL Server on behalf of the client while executing SQL statements (for example:
SELECT * FROM CUSTOMER).

The “CLIENT’s UTILITY context”:

This session context is used similarly to the CLIENT's DML context. To process a
client-specific SQL statement, in very special cases Adabas utility calls can be used. As
these calls are privileged and strictly Software AG internal, a separate context is used. The
lifetime of this contextsis kept as short as possible.

The above mentioned contexts have to be independent because of different transaction scopes.

The identification of the different contextsis built up by Adabas SQL Server automatically, and
is different from the default Adabas session context constructed by ADALNK. This is
important, because the Adabas session contexts must be distinguishable even if the client places
native Adabas calls. This may be the case when Adabas SQL Server is used in LINKED-IN
mode.

Appendix D

Client

call Adabas();

! !

ESQLNK ADALNK_1

v

Adabas SQL
Server

W @@ @
v v v

ADALNK_2

v v v

Adabas

General overview on ADALNK usage

Adabas SQL Server is using up to three Adabas session contexts ((1), (2) and (3)).

If Adabas SQL Server is used in LINKED-IN mode, then ADALNK_1 and ADALNK 2 are
identical. Thisimpliesthat aclient using native Adabas calls (using ADALNK 1) may occupy
an additional Adabas session context (4).

253

Adabas SQL Server Programmer’s Guide

Adabas OP Command

Adabas SQL Server issues an explicit Adabas OP command when an Adabas nucleus is
addressed in a client-specific manner for the first time. Thiswill be done for each of the above
mentioned Adabas session contexts.

Exclusive File Usage

The Adabas database system offers different classes of users. For details refer to the Adabas
Command Reference Manual, section Concepts and Facilities.

Per default, each client residesinside Adabas as an ET-user. For special operations (for example:
mass updates using SQL), it might be useful to switch the default status ET-user to the status
EXU-user. To become an EXU-user the following steps must be taken:

— enable the EXU filelist processing in the client’s parameter file by setting the following
parameter:

EXCLUSI VE UPDATE USER = ON

— define the EXU filelist by setting the environment variable ESQ_EXULIST. The specified
EXU filelist wlll be used to build up arestricted file list. Thislist will be sent along in the
Adabas Record Buffer when issuing the corresponding Adabas OP command.

If aclient is an EXU-user, the EXU-sensitive Adabas commands like ET/BT are not issued by
Adabas SQL Server for this client.

ESQ_EXULIST
The syntax of the environment variable ESQ EXULIST is:

——— db_id @

file @

—(—

/

'R

()
NG

254

Appendix D

Example:
ESQ EXULI ST 22(4, 12)

will result in RB = 4,12 for the OP command on database 22.

Set ESQ_EXULIST on Various Platforms

Mainframe:

Enter following syntax into the corresponding line of the VOPRM parameter module:
VOENV NAME=ESQ EXULI ST, VALUE=22(4, 12)

VAX/OpenVMS:

Define alogica name:

DEFI NE ESQ EXULI ST " 22(4, 12)”

UNIX:
Use shell-specific commands to set an environment variable:
setenv ESQ EXULI ST "22(4,12)" (GC-Shel I)

ESQ EXULI ST=22(4, 12)
export ESQ EXULI ST (Bourne Shel l)

WINDOWS ODBC:
Enter the following line to the sagprod.ini file within the Adabas SQL group:
ESQ EXULI ST=22(4, 12)

ADDITIONSL Field

The ADDITIONSL field of the Adabas control block may be used to ship a user identification
to the Adabas nucleus. For details refer to the Adabas Command Reference Manual.

Adabas SQL Server uses the following setting in AdditionsL:

For the Adabas SQL Server context: "*ESQRTS .
For the CLIENT context: "*<user_name>".

Where <user_name> is derived from the first seven characters of the CONNECT 1D,

padded with blanks.

The usage of "*’ in thefirst byte of Additionsl implies that no check for uniquenessis performed
by the addressed Adabas nucleus.

The above mentioned setting may be used by ADASTAR or can be analyzed using special
ADALNK user exits.

255

Adabas SQL Server Programmer’s Guide

Command IDs

Adabas SQL Server makes use of Adabas command IDs. Within Adabas SQL Server, there are
two types of command IDs, namely internal command IDs and temporary command |Ds.

Internal Command IDs

Adabas SQL Server uses internal command IDs to access the information in the catalog files.
Each internal, low-level access to the catalog uses a special command I1D.

Aninternal command ID consists of four bytes, giving amnemonic abbreviation of the executed
low-level function. The naming rule for internal command IDs is:

XYZzZ

where:

X is‘l’,

Y € {'A —'P} indicating an internal function,

ZZ € {'00" —'99'} indicating an internal level number.

For metaprogram processing, four further command IDs, IRMP, MRMP, ISTM and IDMP are
defined.

Each command ID refers to a specific Adabas Format Buffer.

Temporary Command IDs

256

Adabas SQL Server dynamically generates temporary command |Ds which are used to identify
intermediate ISN lists within the Adabas nucleus. The internal generation algorithm attempts
to minimize the number of Adabas RC commands.

Temporary command IDs have the following structure:
Snnn

with nnn running from ”001” till "999".

Appendix D

Global Format | Ds

Adabas SQL Server uses Glaobal format IDs to make best use of the Adabas format pool.

The current version of Adabas SQL Server uses global format 1Ds for most Adabas SQL Server
internal command IDs.

Global format I1Ds used by Adabas SQL Server have the following structure:

EScceexy

where:

ES is an Adabas SQL Server internal prefix

ccee is the used internal command 1D

X is the binary value of the catalog file

y is the version indicator, assigned by Software AG.

Different versions of Adabas SQL Server may run against one Adabas nucleus. Make sure that
none of your global format IDs start with the characters 'ES'.

Example:

Assuming an ASCII platform and the catalog being the Adabas file number 15, then the global
format ID used to read meta programs would look like this:

"ESIRMP.” Hex: 0x455349524D500F01
On an EBCDIC platform, the same global format ID would look like this:
"ESIRMP.” Hex: OxC5E2C9D9D4D70F01

Since global format IDs for all users are held only once in the Adabas format pool, it must be
assured that the global format 1Ds used by Adabas SQL Server do not collide with global format
IDs otherwise used at an installation. This would result in an unpredictable condition.

Note:
Ensure that no global format id starting with 'ES is used at your site.

257

Adabas SQL Server Programmer’s Guide

Adabas SQL Server and Entire Net-Work

Adabas SQL Server uses the Entire Broker or Entire CSCI for its client/server communication.
Both in turn use Entire Net-Work to forward requests from the client to the server. Entire
Net-Work must be installed and must be active if you want to use client/server with Adabas SQL
Server.

This means that the Entire Net-Work parameters concerning message size and buffer pool size
need to be set to appropriate values to accommodate Adabas SQL Server. Especially the
parameter TRANSFER_UNIT (old LU parameter) specifies the maximum size of the request
and reply buffer. The default is 8000 bytes; the absolute maximum is 64kB.

For more details, please refer to the Entire Net-Work Reference Manual for the client or server
platform.

Adabas SQL Server and Entire CSCI

258

Entire CSCI is used by Adabas SQL Server as default client/server communication protocol.
Adabas SQL Server uses the connection oriented communication mode of CSCI.

After generating a server environment (on UNIX/OpenVMS with "esggen”), a Server
Parameter File was generated with no information about the client/server communication
protocol to be used. In such acase, CSCI is assumed. If you want to use Broker, please refer to
the next section, Adabas SQL Server and Entire Broker.

For UNIX, OpenVMS, and WINDOWS, CSCI is part of the Entire Net-Work installation. For
IBM Mainframes, CSCI is part of the Entire Service Manager.

For UNIX and OpenVMS platforms, the operator utility cscopr is provided to administer CSCI.
For WINDOWS and IBM Mainframes, this utility does not exist.

Appendix D

CSCl isrepresented by a shared memory (also called global section) on UNIX and OpenVMS
platforms. This shared memory is structured as follows:

Request/Reply
Buffer BUFFERSIZE
Addresses I MAXADDRESSES
Requests I MAXREQUESTS
Server
MAXSERVER

The existence of this shared memory indicates that CSCI is active. You can create this shared
memory with the cscopr utility:

> cscopr
YCSCOPR-| —STARTED, 15-AUG-1995 14:22:30, Version 1.2.1.0 (HP-UX)
YCSCOPR-| —GSNOTAVAL, No gl obal section avail able

cscopr: create=nem

YCSCOPR-| —CREMEMOK, Menory creat ed

cscopr: quit

YCSCOPR-| —TERM NATED, 15-AUG-1995 14:22:40, Version 1.2.1.0 (HP-UX)

259

260

Adabas SQL Server Programmer’s Guide

The default size of the request/reply buffer is 40kB (10 x 4kB units). If you get the response code
ESQ8645 (" no space in communication protocol buffer”) or asimilar message, then use cscopr
to increase the size of this part of the CSCI shared memory. Before you can do this, you have
to shut down all active Adabas SQL Server as well as CSCI. Refer to the following example:
> cscopr

YCSCOPR-I —STARTED, 15-AUG-1995 14:22:30, Version 1.2.1.0 (HP-UX)

YCSCOPR-| —GSATTACHED, CSCl gl obal section attached

cscopr: del et e=mem

Y%CSCOPR-| —-DELMEMOK, Menory del et ed

cscopr: quit

Y%CSCOPR-1 —TERM NATED, 15-AUG-1995 14:22: 40, Version 1.2.1.0 (HP-UX)

> cscopr

YCSCOPR-I —STARTED, 15-AUG-1995 14:22:50, Version 1.2.1.0 (HP-UX)

YCSCOPR-| —GSNOTAVAL, No gl obal section avail abl e

cscopr: buffersize=20

cscopr: cr eat e=nem

Y%CSCOPR-| —CREMEMOK, Menory creat ed

cscopr: quit

Y%CSCOPR-1 —TERM NATED, 15-AUG-1995 14:23:10, Version 1.2.1.0 (HP-UX)

With this setting, the size of the request/reply buffer is 80kB (20 x 4kB units) now. After this,
you can restart all Adabas SQL Server.

In addition to the request/reply buffer size, you are able to specify three additional parts of the
CSCl shared memory: MAXADDRESSES, MAXREQUESTS, and MAXSERVERS. For
Adabas SQL Server you should follow the following rules:

MAXADDRESSES >= 3 * n_threads
MAXREQUESTS >=n_threads
MAXSERVER >=2* n_threads + n_servers

n_threads isthe sum of al active Adabas SQL Server thread processes for one node. Example:
If you have two active servers on one node, one with 5 threads, the other one with 2 threads, then
n_threadsis 7. n_serversisthe sum of all active Adabas SQL Server. For our example, n_servers
would be 2. For al three parameters, the default is 50.

Appendix D

To get information about the current parameter setting use cscopr:

> cscopr
YCSCOPR-| —STARTED, 15-AUG-1995 14:22:30, Version 1.2.1.0 (HP-UX)
YCSCOPR-| —GSATTACHED, CSCl gl obal section attached
cscopr: di spl =param

CSC Configuration Paraneter
Node Nane: WSESQ7 Tabl e Nunber: 0 Tabl e Size: 49644
Creation Date: 16-AUG-1995 11:41: 33

Structurel evel : CSCOPR 1 CSCl dat abase 1

Tabl e Num of entries Size in byte
Admi ni stration 50 1876
Adr ess broker 50 1856
Request Queue 50 4800
Buf f er 10 41000

cscopr: quit
Y%CSCOPR-| —TERM NATED, 15-AUG-1995 14:23:10, Version 1.2.1.0 (HP-UX)

Table size is the complete length of the CSCI shared memory.

To get information about the client/server requests performed by the application program and
the server, use the client/server communication logging. For more information, see the Adabas
0L Server Programmer’s Guide, chapter: Logging Facilities.

For more information about CSCI, see the Entire Net-Work Reference Manual of your client or
server platform.

261

Adabas SQL Server Programmer’s Guide

Adabas SQL Server and Entire Broker

262

As an dternative to CSCI, Adabas SQL Server can also use the Entire Broker as client/server
communication protocol. Adabas SQL Server uses the conversational communication mode of
Broker.

Before starting your Broker, make a SERV ER-specific entry in the Entire Broker Attribute File
for Adabas SQL Server, as described in the Entire Broker Reference Manual, Section Attribute
File. The following in an example:

*

* Adabas SQ. Server Service

*

DEFAULTS = SERVI CE

CONV—-NONACT = <conv-nonact >
SERVER-NONACT = <server-nonact >
CLASS = SAG
SERVER = ESQ
SERVI CE = <service-nanme>

where:
<conv-nonact> >= max. Adabas SQL Server session time—out (default 15 minutes)
<server—nonact> >= max. Adabas SQL Server reply time—out (default 5 minutes)

Note:
The SERVER-Non-Activity-Time (SERVER-NONACT) should be minimally smaller than the
value assigned the Entire Net-Work Reply-Time parameter (REPLYTIM).

Note:
Do not define trandlation services for Adabas SQL Services.

Furthermore, modify the Entire Broker specific attributes according to the needs of your
application. The following is an example:

DEFAULTS = BROKER
NUM CLI ENT
NUM SERVER
NUM SHORT- BUFFER
NUM LONG- BUFFER
CLI ENT-NONACT

<max_nunber _of clients>
<max_nunber _of _server>
<nunber _of _short_buffers>
<nunber _of _| ong_buffers>
<cl i ent —nonact >

where:
<client-nonact> >=max. Adabas SQL Server session time-out (default 15 minutes)

Appendix D

Note:
The relationship of Adabas SQL Clients to Adabas SQL Servers is one to one. Therefore, the
number of servers should equal the number of concurrent clients.

Note:
Adabas SQL Server issues requests in conversational mode, which should be taken into regard
when calculating the number of long and short buffers.

The average length of a Adabas SQL request or reply is application dependent and controlled
by the Adabas SQL Server Parameter (PPL):

— SERVER MAXIMUM REPLY LENGTH
— SERVER MAXIMUM REQUEST LENGTH

These parameters are described in the Adabas SQL Server Installation and Operations Manual,
Appendix A — The Parameter Processing Language (PPL).

To get information about the client/server requests performed by the application program and
the server, use the client/server communication logging. For more information, see chapter
Logging Facilities in the Adabas SQL Server Installation and Operations Manual

For more information about Broker, see the Entire Broker Reference Manual of your client,
server, or Broker platform.

Adabas SQL Server and Entire Service Manager (CSCI
Interface on IBM Mainframes)

The CSCI protocol is used for communication between client and server. This may be conducted
using Entire Net-Work if the client and server are on different machines, or using partition
communication (ADALNK) if they are on the same machine.

The CSCl interface on the ESG server is supplied as a component of the Entire Service Manager
(ESG) and is loaded into the resident page of that server. For communication with Entire
Net-Work, the NETCSI module is also supplied as part of the Entire Service Manager (ESG)
and needs to be copied into the Entire Net-Work component before installing Adabas SQL
Server and the Entire Service Manager.

The CSCI interface on the client side has been modified for mainframe activities and is also
supplied as a component of the Entire Service Manager (ESG).

263

Adabas SQL Server Programmer’s Guide

Adabas SQL Server/ADVANCED Interactive Facilities
(MVS and VSE only) and Natura

The ADVANCED Interactive Utilities is an application which is based on Software AG's
products Natural and the Software AG Editor. It can only be used in environments where these
products are available.

Natural User Exits

The ADVANCED Interactive Facilities (AIF) make use of Natural User Exits to communicate
with Adabas SQL Server. The User Exit functions process the dynamic SQL statements entered
by the user. For details refer to the chapter Dynamic SQL earlier in this manual. During the
installation process, the modules with the appropriate functions are delivered. To make these
functions available, the delivered file must be linked to the existing Natural nucleus. This will
be done during the installation of AIF.

The handling of Natural User Exits varies depending on the hardware platform and the Natural
version. For details refer to the appropriate Natural documentation.

Natural Database Access

To enable the retrieval functions, the ADVANCED Interactive Facilities (AIF) makes use of
Natural data definition modules (DDM). They are created for the physical file in the database
which represents the catalog. In order to specify the location of the catalog dynamically, AlIF
uses logical DDMs. The LFILE parameter in the Natural parameter module contains the
information about the file like database ID and actual file number.

Natural Parameter M odule

264

ADVANCED Interactive Fecilities (AlIF) need a specific Natura environment which is assigned
by Natural profile parameters. In order to run the ADVANCED Interactive Utilities, the Natural
administrator has to modify the Natural Parameter M odule ESQPARM which is delivered with
the installation. For details refer to the Adabas SQL Server Installation and Operations Manual.

Appendix D

Adabas SQL Server and Adabas ODBC Client

Open Database Connectivity (ODBC) is Microsoft’s open, vendor-neutral, and communication-
protocol independent, database connectivity Application Programming Interface (API). ODBC
is based on the Call Level Interface (CLI) specification of the SQL Access Group and is
sponsored by the X/OPEN group.

Adabas ODBC is Software AG's standard for data access from Windows-based clients to
Adabas databases. SQL-based end-user tools can now access Adabas with the help of Adabas
ODBC, thus eliminating the need for users to create their own data access requests.

Adabas SQL Server and Esperant

Esperant is Software AG's end-user tool enabling the user to generate SQL statements without
having a knowledge of either SQL or the underlying database structure. Statements can be
entered in the English language and the expert system Esperant will generate valid SQL
statements. Esperant supports the Microsoft ODBC Standard and has a direct interface to Entire
Access. Esperant provides data access to Adabas using the ODBC Interface and Adabas ODBC.

265

Adabas SQL Server Programmer’s Guide

Adabas SQL Server and Entire Access (Open Systems)

Software AG's SQL -based middleware product Entire Access enables distributed computing by
providing interfaces to multiple relational DBMSs in both client/server and single-platform
environments. With an interface to Adabas SQL Server and an application programming
interface (API) to Natural, it is possible to use either original Natural DML or common SQL
statements embedded in Natural programs against Adabas SQL Server as well as other DBMSs.

Adabas SQL Server and Natural For Adabas SQL
(Mainframes)

With the Natural For Adabas SQL interface, Natural users can access Adabas SQL Server using
the Natural DML and DDL statements. Depending on the parameter setting the interface uses
either standard dynamic SQL or Adabas SQL Server-specific persistent procedures. Using the
latter avoids overhead by not having to compile the SQL statements each time they are used.

266

INDEX

A

ADABAS Direct Calls, 124
ADABAS Field Attributes, conversion to SQL
column attributes, 17
ADABAS File Names, 21
ADABAS HOLD Queue, 125
Adabas OP Command, 254
ADDITIONSL Field, 255
exclusive file usage, 254

Adabas Session Context, 252
Adabas User Queue, 252
ADAESI, ADABAS External Security Interface,
39
ADALNK, 252
user exits, 255

ADASCR, ADABAS Database Security Utility,
39

Adastar, 255

ADDITIONSS, 39

B

Binary Data Type (C), 143

Block Factor, 138

BLOCK SIZE, for nested structures, 135
BROKER, 115

Broker, 262

C

C Data Types, 155

C-String Logic, 157

Catalog, 11, 62

Catalog Object Names, 21

Catalog Structure, schemas, tables, etc., 227

Client Parameter File, 107

Client Server Mode, 110

Client/Server Data Flow, 107

Closing Cursors, 68

Cluster Description
catalog representation, 27, 30
Sample Table “CITY-GUIDE” (MU/PE), 194
statement, 25

Cluster generation, general description, 25

Clusters, general description, 13

COBOL Data Types, 169

Columns, general description, 14

COMMIT/ROLLBACK, DDL/DCL statements,
58

Compiler Options, 6

Comunication Modes, 121

Constraints and Indexes, general description, 19

Creating Tables/'Views, 62

CSCl, 113, 114, 258

Cursors, working with, 66

D

Data Structures, 11
Database Identification, 24
DBA_SCHEMA, 227
DDL/DCL Statements, transaction/session logic,
57
Dead Lock, 56
Declaring and Opening Cursors, 66
Declaring the SQLCA/SQLDS
inC, 159
in COBOL, 171, 172
in PL/I, 184

Default ADABAS SQL Server, 120
Default Authorization 1D, 54
Default Tablespace, 16

267

ADABAS SQL Server Programmer’s Guide

Defining SQL Data Structures, 62
DEFINITION_Schema, 227
Dropping Tables/Views, 62
Dynamic Cursors, transaction logic, 57
Dynamic SQL
general aspects, 70
limitations on usage of, 72
Non-SELECT statements, 73
persistent procedures, 95
SELECT statement, 76
updating cursors, 92
using host variable markers, 87
using the SQLDA, 98

E

Encrypted Password, 35
Entire Access, 266
Entire Broker, 262
Entire CSCI, 258
Entire Net-Work, 258
Enum C-Data Type, 143
Error Handling, 51
inC, 158

Esperant, 265

ESQ_EXULIST, 254
ESQPARMS, 107

ESQSRV, 120

ESQSRVRT, 122

Exclusive File Usage, Adabas, 254
EXECUTE IMMEDIATE, 73
Execution of Applications, 9
Existing ADABAS files, 62
Explicit Specific Tablespace, 16
External Sorting, 134

268

F

FDT, 26, 30
Foreign/Primary Keys, 28

G

Generation of ADABAS File Names, 21
Generation of Catalog Object Names, 21

H

Hard-coded Tablespace, 16

HOLD ISN List, 124

HOLD QUEUE, 125

Host Language Compilation, 9

Host Variable Markers
constant number of, dynamic SQL, 88
varying number of, dynamic SQL, 89

Host Variables, 44, 143, 163, 175
declaration, 44
declaration in C, 143
declaration in COBOL, 163
declaration in PL/I, 175
working with, 45

Indexes, general description, 14, 19
INFORMATION_SCHEMA, 227
Inserting Single Rows, 65
Interprocess Communication, 113
Introduction, 3, 11

J

Join Elimination for Nested Data Structures, 131
Join Operation, sub-/master tables, 31

Join Optimization, 130

Join Processing, 128

L

Large Numbers Type (C), 144
LINKED-IN Mode, 108, 121
Adabas session context, 252

M

Manipulating Data, 64

Master Table, general description, 14
Meta Programs, 123

MU/PE, describing structures, 25
Multi-user Mode (LINKED-IN), 108
MULTIFETCH, 138

MULTIFETCH Option, 125

N

Name Generation (DDL), 21
Natural
database access, 264
parameter module, 264
user exits, 264

Nested Data Structures, using, 31
Nested data structures, describing, 25
Net-Work, 258

Index

O

Operating Modes
Embedded, 4
Interactive, 4

P

Parallel MU Fields, in clusters, 25
Persistent procedures, 95
PL/I Data Types, 182
Pre-compilation Phase, 7
Predicate Evaluation, 128
PREPARE and EXECUTE, 74
Primary/Foreign Keys, 28
Programming Dynamic SQL
using SQLDA, 98
with fixed derived column list, 76
summary, 81
with host variable markers, 87
summary, 91
with persistent procedures, 95
with updatable cursors, 92
with varying derived column list, 82
summary, 86

Pseudo Code Logging, 123

R

READ ISN SEQUENCE, 124

Referential Integrity, 28

Retrieving Data Using Cursors, 67

ROLLBACK/COMMIT, DDL/DCL statements,
58

Rotated Fields, general description, 14

269

ADABAS SQL Server Programmer’s Guide

S Subquery processing, 132
Subtable, general description, 14
i Superdescriptors, 126
Sample Database Yachting .
Table: CONTRACT, 192 System Time-out, 56

Table: CRUISE, 192
Table: PERSONS, 191, 193

Sample MU/PE Cluster, city_guide, 194 T

Schema, genera description, 12 Table Levels, general description, 13, 28
Scoping Rules of Catalog Object, 23 Tables and Clusters, general description, 13
Search Buffer Entries (S1), 126 Tables with Rotated Fields, general description,
Searched UPDATE/DELETE, 65 14

Segno Columns, general description, 15 Tablespaces, general description, 15

Server Parameter File, 107 Time-out

Server Routing File, 107, 122 server reply, 117

Single-row SELECT, 64 server session, 117

Single-user Mode (LINKED-IN), 108

SOL Statements, 41 Transaction Logic, 55

Trandated SQL Statement, 123

comments, 43
C, 142
COBOL, 162
PL/I, 174 U
delimiters, 41
C, 141 UPDATE (L2), 124
COBOL, 161 User EXxits, security aspects, 39
PL/I, 173 Using Cursors in Programs, 68
positioning, 53
C, 141
COBOL, 161
PL/I, 173 V
VALUE START, 124
SQLCA, 47 Views, 18, 59
defining and using (C), 159 limitations, 60
defining and using (COBOL), 171, 172 reasons for using, 60
defining and using (PL/I), 184 ,
Views on DBA_Schema, 228
SOLDA Structure, 101 Views on INFORMATION_SCHEMA, 228

SQLTYPE Field, 102
Standard-Schemas in Catalog, Definition, DBA,

Information,, 227 W
Static Cursors, transaction logic, 55
Structuring Application Programs, 52 Working with Cursors, 64

270

Notes

271

ADABAS SQL Server Programmer’s Guide

272

Notes

273

ADABAS SQL Server Programmer’s Guide

274

	Adabas SQL Server Programmer's Guide
	Table of Contents
	Preface
	Introduction to Adabas SQL Server
	Adabas SQL Server Data Structures
	The Adabas SQL Server Security Concept
	General Concepts of SQL Programming
	Static SQL
	Dynamic SQL
	Client/Server Topics
	Understanding SQL Query Translation and Optimization
	Multifetch Feature
	Embedding SQL Statements in Host Languages
	- C
	- COBOL
	- PL/I

	DB2 Transaction Mode
	Appendices
	The Sample Tables
	Sample Programs
	The Adabas SQL Server Catalog Structure
	Adabas SQL Server and Other Software AG Products

	Index

