
ADABAS SQL Server

Installation and Operations
Manual for OpenVMS

Manual Order Number: ESQ142-010VMS

This document applies to ADABAS SQL Server Version 1.4 for OpenVMS and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover.

� March 1997, SOFTWARE AG, Germany & SOFTWARE AG Americas, Inc.
All rights reserved
Printed in the Federal Republic of Germany

SOFTWARE AG documentation often refers to numerous hardware and software products by their trade
names. In most cases, if not all, these designations are claimed as trademarks or registered trademarks by
their respective companies.

I

TABLE OF CONTENTS

 PREFACE 1.

Using This Manual − Some Basic Information 1.
Who Should Read This Manual 2.
Other Helpful Manuals 2.

1. INSTALLING THE ADABAS SQL SERVER SYSTEM 3.

Installation Activities Overview 3.

Installation Procedure 4.
Step 1 Check Prerequisites 4.
Step 2 Start the Installation 5.
Step 3 Check Directory Structure 17.
Step 4 Install the ADABAS SQL Server System 20.
Step 5 Install the ADABAS SQL Server Demonstration System (SAGTOURS) 26.

Installation File Lists 29.
Directory ESQ$MAIN: 29.
Directory ESQ$VERSION: 29.

2. OPERATING THE ADABAS SQL SERVER 33.

Overview of ADABAS SQL Server Commands 33.

Creating and Executing an Application 36.
Precompile 36.
Compile 39.
Link 40.
Execute 41.
Debug 43.

ADABAS SQL Server Installation and Operations Manual for OpenVMS

II

Driving an ADABAS SQL Server 44.
Set the Default Server 44.
Verify the Default Server 44.
Start a Server 45.
Terminate a Server 46.
Display the Server Log File 47.
Display Shared Memories used by the ADABAS SQL Server: 48.
Display Error Text: 48.
Remove a Server Environment 48.
The ADABAS SQL Server Operator Utility 49.
Start the Utility 49.

Parameter Processing 51.

User Exits 53.

Sort Buffer Size Setting 66.

Exceptions/Exit Handling 67.
Handling Exceptions 67.
Handling Exits 70.

3. OPERATING THE ADABAS SQL SERVER UTILITIES 71.

BASIC Interactive Facilities 72.
Target Users 72.
Overview 72.
BASIC Interactive SQL 76.
Summary: Executing Statements 80.
BASIC Catalog Retrieval 82.

The Migration Utility 84.
Target Users 84.
Overview 84.
Invoking the Migration Utility 88.
Automatic Migration 89.
Semi-Automatic Migration 89.

Table of Contents

III

Generate Table Description Utility 95.
Target User 95.
Overview 95.
Invoking the GTD Utility 97.
Information Sources Overview 100.
How to 106.
Input File Language Syntax 117.
Error Handling 122.
Examples 123.

4. LOGGING FACILITIES 133.

Introduction 133.

Logging Facilities Overview 134.

How to activate Logging 135.

Logging Output 136.

Logging Facilities Reference 136.
Client/Server Characteristics Logging 137.
Brief SQL Command Logging 138.
Static SQL Command-String Logging 141.
Dynamic SQL Command-String Logging 143.
Client/Server Communication Logging 144.
Session Logging on Server Side 150.
Schema Identifier Logging 152.
User Exit Logging 153.
Elapsed Time Logging 155.
Sort Logging 158.
ADABAS Utility Logging 160.
Security Logging 161.
ESQLNK Call Logging 163.
Explain Logging 165.
ADABAS Command Logging 176.

ADABAS SQL Server Installation and Operations Manual for OpenVMS

IV

APPENDIX A — THE PARAMETER PROCESSING LANGUAGE (PPL) 183.

Syntax 183.

What Happens When These Parameters Are Set? 183.

PRECOMPILER Settings 187.
PRECOMPILER C LANGUAGE Settings 188.
PRECOMPILER COBOL LANGUAGE Settings 190.
PRECOMPILER COMPILATION UNIT IDENTIFIER Settings 192.
PRECOMPILER HOST LANGUAGE Setting 194.

COMPILER Settings 196.
COMPILER MAXIMUM Settings 197.
COMPILER EXPECTED UPDATE (Cursor) Setting 200.
COMPILER MODE Settings 201.

RUNTIME Settings 204.
RUNTIME MAXIMUM Settings 205.
RUNTIME ROLLBACK ON ERROR Setting 207.
RUNTIME LOCK WHEN READING Setting 208.
RUNTIME SERVER Settings 209.

GLOBAL Settings 210.
GLOBAL ADABAS Settings 212.
Logging Clause 212.
Features Clause 215.
GLOBAL MULTIFETCH Settings 218.
GLOBAL BUFFER MANAGER (BM) Settings 219.
GLOBAL CATALOG Setting 221.
GLOBAL ERROR Settings 222.
GLOBAL PREDICT Settings 223.
GLOBAL DEFAULT SCHEMA IDENTIFIER Setting 225.
GLOBAL FILE Settings 226.

SERVER Settings 228.
SERVER NAME Setting 229.
SERVER THREADS Setting 229.
SERVER TYPE Setting 230.
SERVER MAXIMUM Settings 230.
SERVER BROKER ID Settings 232.

Table of Contents

V

APPENDIX B — SOFTWARE PROCESS AND ARCHITECTURE 233.

INDEX 239.

VI

1

 PREFACE

The ADABAS SQL Server is SOFTWARE AG’s implementation of the ANSI/ISO Standard for
the SQL database language.

The primary goal of the ADABAS SQL Server is to provide an ANSI/ISO compatible database
language interface to Software AG’s database management system ADABAS.

Using This Manual − Some Basic Information

This manual is part of a set of four ADABAS SQL Server manuals, version 1.4.2. Three manuals
contain information for various environments from mainframe and UNIX to OpenVMS
platforms. This fourth manual, the ADABAS SQL Server Installation and Operation Manual,
is the exeception to that rule. It is produced separately for each operating system.

This manual describes the installation and operation of the ADABAS SQL Server under
OpenVMS on VAX and Alpha AXP platforms, respectively.

The following is a summary of the manual’s chapters and their contents:

Preface gives a brief overview of the manual and other manuals you may need to
install and operate the ADABAS SQL Server;

Chapter 1 explains the prerequisites, the installation procedure and points of special
interest with regard to installing the ADABAS SQL Server.

Chapter 2 explains how to start, operate and terminate the ADABAS SQL Server
 and how to generate user applications.

Chapter 3 explains how to invoke and work with the ADABAS SQL Server Utilities.

Chapter 4 describes the various types of logging facilities and how to activate them.

Appendix A is valid for all supported platforms, not only for OpenVMS. It explains the
parameter processing language (PPL) which allows the configuration of
the various components of the ADABAS SQL Server.

Appendix B A complete overview of the software and process architecture of the
ADABAS SQL Server as a folding diagram (last page of this manual) and
a short description of the elements therein.

ADABAS SQL Server Installation and Operations Manual for OpenVMS

2

Who Should Read This Manual

This manual is for those who plan to perform the installation of the ADABAS SQL Server and
for those who manage or maintain the ADABAS SQL Server (such as database administrators
and system programmers) and SQL application developers.

Other Helpful Manuals

Other manuals you may need are:

� ADABAS SQL Server Reference Manual

� ADABAS SQL Server Programmer’s Guide

� ADABAS SQL Server Messages and Codes Manual

� ADABAS for OpenVMS Set of Documentation

� ENTIRE NET-WORK for OpenVMS Set of Documentation (including CSCI)

� ENTIRE BROKER Set of Documentation

� ANSI/ISO Standards SQL (X3.135-1989, ISO 9075).

1

3

INSTALLING THE ADABAS SQL SERVER SYSTEM

This chapter describes preparing for and installing the ADABAS SQL Server and the ADABAS
SQL Utilities.

The method used for installation is a mixture of manual and automated functions which are
executed in a simple straightforward manner via command files.

Installation Activities Overview

The rest of this chapter describes the steps required to install the ADABAS SQL Server System
and the installation verification of the same.

Step 1 Check Prerequisites

Step 2 Start the Installation

Step 3 Check Directory Structure

Step 4 Install the ADABAS SQL Server System

Step 5 Install the ADABAS SQL Server Demonstration System

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

4

Installation Procedure

Step 1 Check Prerequisites
Disk Space

To install the ADABAS SQL Server, approximately 8000 blocks (VAX) or 14000 blocks (Alpha
AXP) of hard disk space are required.

OpenVMS Operating System Requirements

In order to install the ADABAS SQL Server you must be running:

OpenVMS Version 5.5 or above on VAX platforms or

OpenVMS Version 6.1 or above on Alpha AXP platforms. You must have access to the SYSTEM
account on the machine or to an account with the user privilege SETPRV.

Other Software

Before the ADABAS SQL Server can be installed, the system must be prepared with
SAGBASE, the prerequisite for installing SOFTWARE AG products in an OpenVMS
environment. For further information about SAGBASE, please refer to SOFTWARE AG’s
SAGBASE Installation and Operations Manual.

To use the ADABAS SQL Server, ADABAS for OpenVMS Version 3.2.1 or higher must be
installed.

To operate the ADABAS SQL Server in a client/server mode where client and server are located
on the same node the ENTIRE BROKER/CSCI for OpenVMS Version 1.1.0.3 or higher is
required. In case of client and server being on separate nodes, ENTIRE NET-WORK for
OpenVMS Version 3.2.1 must be installed as well.

Note:
ENTIRE BROKER/CSCI is packed together with ENTIRE NET-WORK.

Quotas and Privileges for the ADABAS SQL Server

The quotas and privileges required by ADABAS are sufficient for the operation of the ADABAS
SQL Server.

Each active server consists of one detached OpenVMS process and one sub-process per server
thread (as specified in the server parameter file). The process quotas PRCLM and MAXJOBS
must be set accordingly. The SYSGEN parameter MAXPROCESSCNT has to be altered
accordingly.

Installing the ADABAS SQL Server System
1

5

Step 2 Start the Installation
Overview

The ADABAS SQL Server is installed using VMSINSTAL, the command procedure that is used
to install software products in the OpenVMS environment. VMSINSTAL guides the user
through the installation procedure step by step, and uses an Installation Verification Procedure
(IVP) to verify whether the installation is successful.

During the installation procedure, the following SYSGEN parameters are checked:

− Maximum number of working sets (WSMAX);

− Number of free global sections;

− Number of free global pages.

If any of these parameters are inadequate, the command procedure nodename_ ESQGEN.COM,
which changes the corresponding SYSGEN parameters, is created on SAG$ROOT:[ESQ], and
may be run by the system manager after installation. nodename is the name of your local node.
If there is no name defined for your local node, the name “NONAME” will be inserted by the
installation procedure.

WSMAX must be set to at least 2048 for VAX or 25000 for Alpha AXP.

To install the images for the ADABAS SQL Server the following system resources are required:

VAX Alpha AXP

Global Sections 8 8
Global Pages/Pagelets 2660 5400

and each server with default settings requires:

VAX Alpha AXP

Global Sections 4 4
Global Pages/Pagelets 760 880

For each additional thread, 2 additional free global pages/pagelets are required.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

6

Process Quotas

The following process quotas are required to start a server with default settings:

VAX Alpha AXP

ASTLM >= DIOLM + 18 >= DIOLM + 18

BYTLM >= 32000 >= 32000
DIOLM >= 32 >= 32
FILLM >= 100 >= 100
PGFLQUO >= 32768 >= 32768
TQELM >= 40 >= 25

WSEXTENT >= 8192 >= 25000
WSQUOTA >= 8192 >= 25000

The installation procedure checks these values and modifies them if they are insufficient for the
DBA account.

Depending on the number of threads started, the following UAF parameters
 must have at least the following values:

BYTLM = number of threads * 1000
FILLM = number of threads * 9
PGFLQUO = number of threads * 5100
PRCLM = number of threads * 2
TQELM = number of threads * 2

The parameter JTQUOTA must be set to at least 8192 for each account which needs the
ADABAS SQL Server logical names in its job environment.

Note:
If the SYSGEN parameters had to be changed it is advisable to run an AUTOGEN to improve
system performance.

Installing the ADABAS SQL Server System
1

7

Installation Kit Structure

Software products which are to be run under OpenVMS are assembled into product kits. These
kits are physically distributed as one or more save sets (files created by the OpenVMS backup
utility).

The file name of each save set must be identical to the product name; it must also be assigned
a unique file type that reflects the order in which the save sets are installed.

An ADABAS SQL Server installation kit, therefore, consists of several save sets with the
following structure:

� ESQ014.A

Standard contents of a product kit’s primary save set

− KITINSTAL.COM
Command procedure invoked by VMSINSTAL to install the ADABAS SQL Server
for OpenVMS

− KIT.DAT
Internal information used by KITINSTAL.COM

− HELP.COM
help information used by VMSINSTAL

− ESQ014.RELEASE_NOTES
Product release notes which can be selected with the N option from VMSINSTAL

� ESQ014.B Patch level 0 specific files

� ESQ014.C Patch level 0 example files

� ESQ014.D Patch level 1 specific files

� ESQ014.E Patch level 1 example files

etc.

If there are no changes for a specific part, the corresponding save sets contained in the kit may
be empty or missing.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

8

Example of an Initial Installation

$ @sys$update:vmsinstal

OpenVMS Alpha AXP Software Product Installation Procedure V7.0

It is 25−JUL−1996 at 18:20.

Enter a question mark (?) at any time for help.

%VMSINSTAL−W−NOTSYSTEM, You are not logged in to the SYSTEM account.

* Do you want to continue anyway [NO]? y

* Are you satisfied with the backup of your system disk [YES]?

* Where will the distribution volumes be mounted: DISK:

Enter the products to be processed from the first distribution volume set.

* Products: ESQ

* Enter installation options you wish to use (none):

The following products will be processed:

 ESQ V1.4

Beginning installation of ESQ V1.4 at 18:21

%VMSINSTAL−I−RESTORE, Restoring product save set A ...

+−−+
| |
| Software AG Product Installation Procedure |
| |
+−−+

 You are preparing a(n)
 ADABAS SQL SERVER (OpenVMS) Version 1.4.2 initial installation
 on a DEC 3000 Model 300 with the cpu−id %X00000000/00000000

%ESQ−I−NOTEXIST, File SAG$ROOT:[ESQ]VERSION.DAT does not exist,
 it will be provided by this installation

%ESQ−I−VERPL, ADABAS SQL SERVER (OpenVMS) V1.4.2−0
 initial installation

%ESQ−I−INSTINFO, The sysgen parameters are setup properly
 to use the ADABAS SQL Server Version 1.4.2

* Do you want to copy the Examples ? [YES]:

Installing the ADABAS SQL Server System
1

9

%ESQ−I−SPACEOK, This ADABAS SQL SERVER (OpenVMS) installation
 requires 13764 blocks

%ESQ−I−DIREXIST, Directory SAG$ROOT:[000000.ESQ] created.

%ESQ−I−DIREXIST, Directory SAG$ROOT:[ESQ.V142] created.

%ESQ−I−DIRCREATED, Directory SAG$ROOT:[ESQ.V142.EXAMPLES] created.

 This ADABAS SQL SERVER kit contains a READ_ME_FIRST file,
 named READ_ME_FIRST.142.
 It will be moved to directory SAG$ROOT:[ESQ]
 by this installation procedure.
 Please read this file after VMSINSTAL has finished.

%ESQ−I−MOVE, Moving file READ_ME_FIRST.142 to SAG$ROOT:[ESQ]

* Print READ_ME_FIRST.142 (queue SYS$PRINT)? [YES]: n

%VMSINSTAL−I−RESTORE, Restoring product save set B ...

%VMSINSTAL−I−RESTORE, Restoring product save set C ...

%ESQ−I−MOVE, Moving files to their target directories ...

%ESQ−I−MOVE, Moving login procedure LOGIN.COM to SAG$ROOT:[ESQ]

* Move STARTUP_ESQ.COM to SYS$STARTUP ? [YES]:

%ESQ−I−MOVE, Moving startup procedure STARTUP_ESQ.COM
 to SYS$STARTUP

* Enable STARTUP_ESQ.COM using SYSMAN ? [YES]:

%ESQ−I−INSTINFO, Remove file entry STARTUP_ESQ.COM in
 system startup database on node NODENAME

%ESQ−I−INSTINFO, Add file entry STARTUP_ESQ.COM in
 system startup database on node NODENAME
 phase END mode DIRECT

%ESQ−I−SETPROT, Setting protection on new files ...

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

10

%ESQ−I−INSTINFO, Modify account DBA with settings required by
 ADABAS SQL SERVER (OpenVMS)
%ESQ−I−INSTINFO, required privilege PRMGBL
%ESQ−I−INSTINFO, required default privilege PRMGBL
%ESQ−I−INSTINFO, validating WSQUOTA >= 25000
%ESQ−I−INSTINFO, validating WSEXTENT >= 25000
%ESQ−I−INSTINFO, validating DIOLM >= 32
%ESQ−I−INSTINFO, validating ASTLM >= 50
%ESQ−I−INSTINFO, validating FILLM >= 100
%ESQ−I−INSTINFO, validating TQELM >= 40
%ESQ−I−INSTINFO, validating BYTLM >= 32000
%ESQ−I−INSTINFO, validating PGFLQUO >= 32768

%ESQ−I−EXECUTE, Executing startup procedure
 SYS$STARTUP:STARTUP_ESQ.COM

%ESQ−I−CREATE, Creating patch level file SAG$ROOT:[ESQ.V142]ESQ_PL.DAT

%ESQ−I−CREATE, Creating version file SAG$ROOT:[ESQ]VERSION.DAT

 Starting Verification Command Procedure for
 ADABAS SQL SERVER (OpenVMS) 1.4.2

%ESQ−I−VERIFY, IVP completed successfully.

 The ADABAS SQL SERVER (OpenVMS) 1.4.2
 initial installation completed successfully

 For further installation steps, please refer to
 installation notes of ADABAS SQL SERVER (OpenVMS) V 1.4.2.

Installation of ESQ V1.4 completed at 18:26

 Adding history entry in VMI$ROOT:[SYSUPD]VMSINSTAL.HISTORY

 Creating installation data file: VMI$ROOT:[SYSUPD]ESQ014.VMI_DATA

Enter the products to be processed from the next distribution volume set.
* Products:

VMSINSTAL procedure done at 18:27

$ logout

Installing the ADABAS SQL Server System
1

11

Step-by-step Installation Description

The ADABAS SQL Server is installed by executing the following steps.

� Invoke VMSINSTAL as follows:

Log in to the system manager’s account.

Note:
For an update installation, the UAF parameter JTQUOTA of the account which is used for the
installation must be set to 8192, because the job table is used to define all necessary logical
names.

Establish the default directory SYS$UPDATE:

$ set default sys$update

Start the installation procedure by entering the following command:

$ @vmsinstal

During the installation procedure, a number of general information messages are displayed.
Read all messages carefully and follow any advice they may provide.

The following messages are displayed when the procedure is started:

VAX/ALPHA AXP Software Product Installation Procedure Vx.y

It is <dd−mmm−yyyy> at <hh:mm>.
Enter a question mark (?) at any time for help.

where <dd-mmm-yyyy> and <hh:mm> are the current date and time.

If DECnet is active on the system, the following message appears:

$VMSINSTAL−W−DECNET, Your DECnet network is up and running.

If other users are accessing the system, the following message appears:

$VMSINSTAL−W−ACTIVE, The following processes are still active:
<name>
.
.
.
* Do you want to continue anyway [NO]?

where <name> refers to the process name of a user logged into the system. Enter YES and
continue processing; the installation of the ADABAS SQL Server is not affected if users are
active.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

12

The following message is then displayed:

* Are you satisfied with the backup of your system disk [YES]?

It is not necessary to back up the system disk because the files and directories that are installed
by the ADABAS SQL Server can be removed easily. The installation of the ADABAS SQL
Server does not affect any files on the system directories.

Press RETURN if you are satisfied.

The following message is then displayed:

* Where will the distribution volumes be mounted:

Enter the name of the device on which the distribution medium is to be mounted.

� Now enter the products to be processed from the first distribution volume set.

* Products: esq
* Enter installation options you wish to use (none):

If the distribution medium is not already mounted on the specified device, VMSINSTAL asks
for the distribution medium to be mounted on the device specified when VMSINSTAL was
invoked or when the response to the device prompt was entered. If, for example, the ADABAS
SQL Server is to be installed from the device DISK:, VMSINSTAL will display the following:

Please mount the first volume of the set on DISK:.

VMSINSTAL then displays the following:

* Are you ready ?

You should now mount the first volume of the distribution medium.

Enter YES and press RETURN when the volume has been mounted. VMSINSTAL now attempts
to mount the distribution medium. If it succeeds, a message is displayed, e.g.:

$MOUNT−I−MOUNTED, <label> mounted on _DISK:

The following products will be processed:
 ESQ V1.x

 Beginning installation of ESQ V1.x at <hh:mm>

$VMSINSTAL−I−RESTORE, Restoring product saveset A ...

Installing the ADABAS SQL Server System
1

13

If you specify “N” in response to the options prompt at the start of this step, the following is
displayed if online release notes are part of this product shipment:
1. Display release notes
2. Print release notes
3. Both 1 and 2
4. Copy release notes to SYS$HELP
5. Do not display, print or copy release notes

* Select option [2]:

Select one of the options. Depending on the option specified, you may be prompted for a queue
name.

VMSINSTAL then displays the following message:
* Do you want to continue the installation? [NO]:

The following message is then displayed:
$VMSINSTAL−I−REMOVED, Product’s release notes have been moved to SYS$HELP

� Create the command procedure <node_name>_ESQGEN.COM.
It changes SYSGEN parameters, if some system parameters have not been set to the values
required to run the ADABAS SQL Server.

VMSINSTAL then displays the following prompt:

* Do you want to execute <node_name>_ESQGEN.COM ? [YES]:

Press RETURN to execute the command procedure <node_name>_ESQGEN.COM. Enter NO
and press RETURN if you do not want to execute the command procedure. Because
<node_name>_ESQGEN.COM changes system parameters, VMSINSTAL displays the
following to ask whether you want to reboot the system:
* Reboot the system after the installation ? [NO]:

Enter YES and press RETURN if the system is to be rebooted after the installation has completed.
This makes the new system parameter settings available.

� VMSINSTAL now displays the following prompt:
* Do you want to copy the Examples ? [YES]:

Press RETURN to copy the examples. Enter NO if the examples are not to be copied to the
examples directory. If the installation kit does not contain any example files, this prompt will
not be displayed.

The ADABAS SQL Server installation procedure continues after this prompt and displays
messages that provide information about the status of the installation (see sample installation).

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

14

� VMSINSTAL then displays the following prompt:

* Move STARTUP_ESQ.COM to SYS$STARTUP? [YES]:

Before the ADABAS SQL Server can be used, the procedure STARTUP_ESQ.COM must be
executed. SOFTWARE AG recommends that the procedure is executed during system startup.
By default, STARTUP_ESQ.COM is moved to the SYS$STARTUP directory; press RETURN to
accept this default. If you enter NO, STARTUP_ESQ.COM is moved to the directory
SAG$ROOT:[ESQ].

If the default value of the last prompt is accepted, VMSINSTAL then displays the following
prompt:

* Enable STARTUP_ESQ.COM using SYSMAN? [YES]:

Press RETURN to generate an entry in the system startup database in order to execute the
procedure automatically during system startup. The following entry will be generated:

Phase Mode File
−−−−−−−−− −−−−−−− −−−−−−−−−−−−−−−−−
END DIRECT STARTUP_ESQ.COM

Enabled on <node_name>
P1: STARTUP

where <node_name> is the name of your local node. If there is no name defined for your local
node, ”All Nodes” is inserted.

VMSINSTAL continues by setting the protections on the files provided, validating the DBA
account, executing STARTUP_ESQ.COM and creating the files ESQ_PL.DAT in directory
ESQ$VERSION and VERSION.DAT in directory ESQ$MAIN.

The Installation Verification Procedure (IVP), which is part of the installation procedure, runs
automatically after the installation.

The ADABAS SQL Server is now installed.

Installing the ADABAS SQL Server System
1

15

The ADABAS SQL Server Startup Procedure

The procedure SYS$STARTUP:STARTUP_ESQ.COM defines the current version of the
ADABAS SQL Server.

The version number can be passed to the procedure via the parameter P1. Alternatively, if P1
is “STARTUP” or not specified, the version number is taken from the first line of the file
VERSION.DAT.

The logical names which are used in the ADABAS SQL Server environment and their
definitions for version 1.4.2 are as follows:

”ESQ$EXAMPLES” = ”SAG$ROOT:[ESQ.V142.EXAMPLES]”
”ESQ$MAIN” = ”SAG$ROOT:[ESQ]”
”ESQ$NODDIR” = ”SAG$ROOT:[ESQ.node]”
”ESQ$VERSION” = ”SAG$ROOT:[ESQ.V142]”
”ESQLNK” = ”ESQ$VERSION:ESQLNK142.EXE”
”ESQSRVRT” = ”ESQ$NODDIR:ESQ_ROUTING.DAT”
”ESQTHS” = ”ESQ$VERSION:ESQTHS142.EXE”
”ESQVOLIB” = ”ESQ$VERSION:ESQVOLIB.EXE”
”ESQVOSYS” = ”ESQ$VERSION:ESQVOSYS.EXE”

If these logical names are not already present in the system table, they are added to it with the
definitions shown above.

If these logical names are already present in the system table (with definitions, for example,
from a previous installation of the software), they are added instead to the job table with the
definitions shown above.

To enforce the use of the system table, de-assign the logical name ESQ$VERSION from the
system table before calling the procedure. This is done with the following command:

$ DEASSIGN/SYSTEM/EXEC ESQ$VERSION

The procedure STARTUP_ESQ.COM installs the images defined by the logical names
ESQLNK, ESQVOLIB, ESQVOSYS, ESQTHS and ADACSL. The privileges CMKRNL,
SYSGBL and PRMGBL are required. If they are not set, no images will be installed. The
installation of the images can be performed version-specific:

� If the procedure is called without a parameter or with the parameter STARTUP, the images
for all versions defined in the file VERSION.DAT will be installed.

� If the procedure is called with a version string as the parameter value, for example 142,
only the specific images for version 1.4.2 will be installed.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

16

Installing the ADABAS SQL Server in a Cluster Environment

In a cluster environment, the ADABAS SQL Server must be installed on each node on which
the ADABAS SQL Server is to be used.

Depending on the preceding SAGBASE installation, the initial ADABAS SQL Server
installation within a cluster will choose either the common or specific root directory. Each node
on which the ADABAS SQL Server is to be used must first be prepared by installing SAGBASE.
The installation procedure checks for an existing ADABAS SQL Server installation in the
cluster.

A subsequent cluster installation will then consist of:

� checking the SYSGEN parameters on the node in question;

� providing the SYSMAN entry for this specific node;

� executing the procedure SYS$STARTUP:STARTUP_ESQ.COM;

� specifying the node name in the file ESQ$VERSION:ESQ_PL.DAT.

Installing the ADABAS SQL Server System
1

17

Step 3 Check Directory Structure

The upper portion of the ADABAS SQL Server directory structure is generated during the
VMSINSTAL steps as described in Step 2: Start the Installation. The lower portion will be
generated during the execution of Step 4: Install the ADABAS SQL Server System later in this
chapter. The logical names pointing to the specified directory are created automatically during
the installation.

SAG

ESQ

V142

ESQ$MAIN

ESQ$VERSION

COMSRV_1

...

COMSRV_x

node_1

ESQ_ROUTING.DAT
LCLSRV_1
...
LCLSRV_x

ESQSRVRT Routing file
ESQ$SRVDIR Local server 1

...
Local server x

Common server 1

Common server x

.

.

.

ESQ$NODDIR Local node 1

... ...

node_x Local node x

ESQ_ROUTING.DAT
LCLSRV_1
...
LCLSRV_x

Routing file
Local server 1
...
Local server x

SAG$ROOT

ESQ$EXAMPLESEXAMPLES

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

18

ESQ$MAIN

This directory contains all currently installed versions of the ADABAS SQL Server together
with the environments for the individual servers.

During installation, the following files are created on this main directory:

LOGIN.COM Login procedure for the ADABAS SQL Server database
administrator (DBA). LOGIN.COM runs the version-depen-
dent command procedure ESQ$VERSION: SYMBOLS.COM
which defines the symbols that are necessary to run the
ADABAS SQL Server under OpenVMS. Set up your working
environment so that LOGIN.COM runs automatically every
time you log in to OpenVMS.

VERSION.DAT ADABAS SQL Server version definition file.

ESQ.LOG Common ADABAS SQL Server log file. This file will be created
when executing ESQGEN.COM.

ESQ$VERSION

This directory contains the executable images, command files, etc. for the current version of the
ADABAS SQL Server.

ESQ$EXAMPLES

This directory contains the command files and source files needed to build the SAGTOURS
demonstration system, which can be used for the installation verification of the ADABAS SQL
Server.

ESQ$NODDIR

This directory contains the server directories for the local server environments generated on the
local node. The directory will be created when executing ESQGEN.COM.

ESQ_ROUTING.DAT ADABAS SQL Server routing file. This file will be copied by
ESQGEN.COM from ESQ$VERSION into this directory.

Installing the ADABAS SQL Server System
1

19

ESQ$MAIN:[COMSRV_x]

This directory contains the server-specific files for the common server COMSRV_x, namely:
parameter files, log files, etc.

ESQSRV.LOG ADABAS SQL Server log file for the server COMSRV_x. This
file will be created when executing ESQGEN.COM.

ESQ$NODDIR:[LCLSRV_x]

This directory contains the server-specific files for the local server LCLSRV_x on node node_x,
namely: parameter files, log files, etc.

ESQSRV.LOG ADABAS SQL Server log file for the server LCLSRV_x. This
file will be created when executing ESQGEN.COM.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

20

Step 4 Install the ADABAS SQL Server System

To run the ADABAS SQL Server, it is necessary to create an SQL catalog and the SQL error
message text file in an ADABAS database. This is done as follows:

� If the database does not already exist, create it using DBGEN. Make sure that the sizes of the
containers DATA, WORK and ASSO are adjusted to fit your needs.

� Customize the files ESQCAT1.FDUINP, ESQCAT2.FDUINP, ESQCAT3.FDUINP and
ESQERR.FDUINP in the directory ESQ$VERSION to meet your current ADABAS
environment. The default values are as follows:

ESQCAT(1−3).FDUINP ESQERR.FDUINP

DSSIZE = 100B DSSIZE = 40B

MAXISN = 5000 MAXISN = 1500

NISIZE = 1000B NISIZE = 20B

UISIZE = 100B UISIZE = 10B

Before loading the SQL catalog and SQL error message text file, you should verify that there
is sufficient free storage in the database. This can be done using the ADABAS utility ADAREP:

$ arep db=dbid, free_space

Analyze the output and ensure that there is sufficient space in the ADABAS database. If there
is insufficient space, use the ADABAS utility ADADBM to add new space to the database.

� Before starting your ADABAS database, ensure that the nucleus parameters are set as required
for the ADABAS SQL Server. These values may have to be adapted according to the size of the
container files for your ADABAS database. The ideal values are:

LBP = 1000000 LDEUQP = 150000 LFP = 20000
LP = 1000 LS = 10000 LU = 33000
LWP = 100000 NAB = 64 NH = 1000*

Note:
* The NH parameter should be set by the DBA depending on the local requirements. For the
installation verification of the ADABAS SQL Server we recommend a value of 1000.

Note:
* The Migration Utility requires a WORK Block Size of 8192 with the LP parameter set to 1000.

Installing the ADABAS SQL Server System
1

21

� Start the ADABAS database.

� Generate one or more server environments within the ADABAS SQL Server.

$ esqgen servername dbid catalog_base_file error_file [desc][sec][common].

The expected values for the specification of the above parameters are:

servername is the name of the server to be generated with a maximum length
of 8 characters. Server names are always treated as uppercase,

dbid is the ADABAS database ID for the catalog and error files,

catalog_base_file is the ADABAS file number which is to be used for the catalog
base file.
IMPORTANT: This file number and the next two file numbers
in addition must be free prior to server generation, because the
catalog occupies three consecutive ADABAS files.

error_file is the ADABAS file number for the ADABAS SQL Server
error texts which may be shared by several servers,

[desc] is an optional short description of the server with a maximum
length of 35 characters. A description must be entered,
whereby an empty string qualifies, when either keyword ’sec’
and/or ’common’ is specified. If the description contains an
empty string/blanks or lowercase characters, it must be
enclosed in doubles quotes.

[sec] is an optional keyword for a server to be generated with security
features. If omitted, a server specification without security
features is assumed. For details refer to the following pages,
section To be Considered when Deciding for/against a Server
with Security Features for a brief overview or to the ADABAS
SQL Server Programmer’s Guide, chapter The ADABAS SQL
Server Security Concept.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

22

[common] optional keyword for a common server. If omitted, a local server
specification is assumed.
A local server can only be activated on the same node where
the corresponding ESQGEN command was executed.
A common server can be activated on any node that shares the
ESQ$MAIN file system with the node where the corresponding
ESQGEN command was executed.

The result of the installation process so far is a new catalog (three consecutively placed ADABAS
files containing meta data of the schema and table structures) and an SQL error message text file
(one ADABAS file containing SQL error message text records) within your ADABAS database.
Furthermore, a server-specific directory (ESQ$SRVDIR, set by an ESQSET command as described
below) has been generated to contain server-specific parameter template files, log files, trace files,
etc. Furthermore, the user DBA has been created without a password.

To be Considered when Deciding for/against a Server with Security Features

To switch between security/non-security servers:

If an ADABAS SQL Server has been generated without the security feature, it is not easily
possible to change it to a version that supports security features, and vice versa.

� The following steps are necessary to change from a non-security version to a security
version:

− use the Migration Utility to extract all information from the catalog. This results in
a file containing numerous relevant DDL statements.

− edit this file and manually enter all necessary GRANT statements.

− generate a new server with the security feature. Use the amended Migration Utility
file to populate the new catalog via the BASIC Interactive Facilities (esqint).

� The following steps are necessary to change from a security version to a non-security
version:

− produce a Migration Utility output file.

− edit the file and remove all GRANT statements.

− generate a new server without the security feature. Use the amended Migration
Utility file to populate the new catalog via the BASIC Interactive Facilities (esqint).

Installing the ADABAS SQL Server System
1

23

The following three points are valid in either version, security or non-security:

� the USER must still be defined via the CREATE USER statement.

� the user DBA is the only one authorized to create a schema. The owner of a schema is the
only one authorized to create tables, views, etc. This is true, whether the ADABAS SQL
Server has been generated with or without the security feature.

� full password support is included, the CREATE/DROP/ALTER USER statements can be
executed as well as the CONNECT statement with user specification.

Consequences of Generating a Server Without the Security Feature:

If the ADABAS SQL Server is generated without the security features the following
consequences apply:

� at runtime, no security check is performed. Access rights to a specified table, etc. will not
be checked. For this reason, the performance of the server will be more favorable than in
a security version.

� the execution of GRANT/REVOKE statements is not possible.

� those tables established to hold privilege-related data in the catalog will be created but will
be empty (for example, the table: table_privileges).

Consequences of Generating a Server With the Security Feature:

The following point must be regarded if an ADABAS SQL Server is generated with the security
features:

� The user DBA is treated like any other user. A SELECT statement against any of the
INFORMATION_SCHEMA tables will return results for those objects only which have
been GRANTed access to. To see all information, the DBA should use the DBA_SCHEMA
tables (which are only accessible to the DBA). For further details, see ”Appendix C − The
ADABAS SQL Server Catalog Structure” of the Programmer’s Guide.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

24

Verification

To verify that the catalog and the SQL error message text file for the generated server have been
loaded correctly, use the ADABAS utility ADAREP. The following files should have been
established by the esqgen command:
ESQCAT1_servername
ESQCAT2_servername
ESQCAT3_servername
ESQERR_servername

If, for some reason (e.g., not enough space in the database) an ‘esqgen’ aborts or concludes
unsuccessfully, the file system directory for the server can be removed by typing:

$ esqremove servername

The catalog and error text files in ADABAS can be removed by typing:

$ esqremove servername /all

Once the problem has been solved, re-try the server generation using ‘esqgen’ as described in
Step 4, instruction No. 5.

	 Customize the server parameter files. Set a newly created server to your current default by
typing:

$ esqset servername

The logical name ESQ$SRVDIR now points to the server-specific OpenVMS directory. This
directory holds three parameter files which are preset with default values but may be customized
to your needs:

− ESQSRV.PAR (server parameter file)
This parameter file is used when starting a server process (for client/server processing),
for example, to adjust the number of thread processes started by the server, depending on
the number of concurrent sessions.

− ESQPC.PAR (precompiler parameter file)
This parameter file is used when starting the precompiler.

− ESQRUN.PAR (runtime parameter file)
This parameter file is used when starting an application using an ADABAS SQL Server.

For details on how to modify the above parameters refer to Appendix B — The Parameter
Processing Language (PPL) in this manual.

Installing the ADABAS SQL Server System
1

25

 Assign a password to the user DBA

During the installation of the server, a DBA user was created without a password. If the server
has been created with the security feature turned on, you may wish to assign a password to the
DBA account now.

$ esgint

ESQ User: dba
Password: (carriage return)

esqint: alter user dba set password ”<new password>”;

The password will have to be dropped again if you later wish to install the Demonstration System
(SAGTOURS) as described below.

� The ADABAS SQL Server installation is now complete.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

26

Step 5 Install the ADABAS SQL Server Demonstration System
(SAGTOURS)
The ADABAS SQL Server Demonstration System allows you to establish an environment from
which the ADABAS SQL Server installation can be tested. Before this demonstration system
can be installed, a server environment, for example a server named SAGTOURS, must have
been generated via the esqgen command.

The SAGTOURS system consists of five SQL tables CONTRACT, CRUISE, PERSON,
SAILOR and YACHT, and optionally BOOKING, contained as files in your ADABAS
database. The table BOOKING is needed only, if the demonstration package for the ADABAS
SQL SERVER / WWW Common Gateway Interface will be installed.

Example:
Create the SAGTOURS demonstration system tables by typing the following:

$ set default ESQ$EXAMPLES
$ esqset SAGTOURS
$ @crttabs 4 5 6 7 8 9

The create table command file (CRTTABS.COM) creates the ADABAS file CONTRACT with
file number 4, CRUISE with file number 5, PERSON with file number 6, SAILOR with file
number 7, YACHT with file number 8, and BOOKING with file number 9. In addition, the
schema SAGTOURS is created with an owner of ‘esq’. This schema contains the tables
established using CRTTABS.COM.

Note:
The tables are established with the schema identifier SAGTOURS.

Any warnings that may be produced by the Precompiler should be ignored as they are of
informational value only.

The ADABAS Utility ADAREP can be used to verify that the ADABAS files containing the
SAGTOURS tables have been successfully created.

If, for any reason, the creation of the SAGTOURS tables aborted, or was completed
unsuccessfully, for example, because the database is too small, the SAGTOURS system can be
cleared by typing:

$ set default ESQ$EXAMPLES
$ @drptabs

which drops all tables already created. Once the cause of the failure has been located and
repaired, the SAGTOURS system can be restarted using “crttabs.com” as described above.

Installing the ADABAS SQL Server System
1

27

To perform a single row SELECT on the SAGTOURS tables, type either one of the following:

$ @seltabs (for all tables in succession)

or (for individual tables)

$ ESQSCHEMAID:=SAGTOURS

$ esqmak sel_cont
$ esqrun sel_cont ! (table CONTRACT)

$ esqmak sel_crui
$ esqrun sel_crui ! (table CRUISE)

$ esqmak sel_pers
$ esqrun sel_pers ! (table PERSON)

$ esqmak sel_slr
$ esqrun sel_slr ! (table SAILOR)

$ esqmak sel_yht
$ esqrun sel_yht ! (table YACHT)

To perform a DECLARE CURSOR operation on the SAGTOURS tables, type either one of the
following:

$ @crstabs (for all tables in succession)

or (for individual tables)

$ ESQSCHEMAID:=SAGTOURS

$ esqmak crs_cont
$ esqrun crs_cont !(table CONTRACT)

$ esqmak crs_crui
$ esqrun crs_crui !(table CRUISE)

$ esqmak crs_pers
$ esqrun crs_pers !(table PERSON)

$ esqmak crs_slr
$ esqrun crs_slr !(table SAILOR)

$ esqmak crs_yht
$ esqrun crs_yht !(table YACHT)

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

28

To drop the SAGTOURS tables after having verified the successful installation of BASIC, type
the following:

$ @drptabs (for all tables in succession)

The SAGTOURS tables can also be used to verify that the BASIC Interactive Facility has been
successfully installed. The SAGTOURS tables should not be dropped beforehand.

Verify that the tables have been dropped by using the ADABAS Utility ADAREP to see that the
ADABAS files no longer exist.

To start the BASIC Interactive Facility, type the following:

$ esqint

The system prompt requests user ID and password. In the case, where the security feature is not
turned on, press ENTER to bypass this input. If the security feature is turned on enter ’esq’ for
the user and a RETURN for the password.

ESQ User: esq (string ’esq’ should be entered by the user)
Password: (press carriage return)

To display all tables owned by the current user, type the following:

esqint: select * from information_schema.tables;

To display all columns of table SAILOR, type the following:

esqint: select * from information_schema.columns
where table_schema = ”SAGTOURS” and table_name = ”SAILOR”;

Installing the ADABAS SQL Server System
1

29

Installation File Lists

Directory ESQ$MAIN:

LOGIN.COM Product-specific login procedure
VERSION.DAT Product Version File

Directory ESQ$VERSION:
Image Files:

ESQBIF.EXE Basic Interactive Facility
ESQC.EXE C Precompiler
ESQCOB.EXE COBOL Precompiler
ESQCGI.EXE WWW Common Gateway Interface Program
ESQERL.EXE Precompiler Error Logger Utility
ESQGTD.EXE Generate SQL Table Descriptions Utility
ESQINI.EXE Server Initialization Image
ESQKILL.EXE Server Termination (Kill) Utility
ESQMIG.EXE Migration Utility
ESQOPR.EXE Operator Utility
ESQSRV.EXE Server Thread Image

Shareable Image Files:

ESQLNK142.EXE Client/Server Interface
ESQTHS142.EXE Server Thread Image (for ESQSRV)
ESQVOLIB142.EXE Virtual Operating System (VO)
ESQVOSYS142.EXE VO Protected Code

ADABAS SQL Server Installation and Operations Manual for OpenVMS
1

30

User Command Files:

ESQCC.COM Compile ’C’ Application
ESQGEN.COM Generate Server Environment
ESQINT.COM Interactive SQL Facility
ESQKILL.COM Terminate (Kill) Server
ESQLINK.COM Link ADABAS SQL Server Application
ESQLOG.COM Show Server Log File
ESQMAK.COM Make ADABAS SQL Server Application
ESQMEM.COM Show ADABAS SQL Server Shared Memories
ESQMIGRATE.COM Start Migration Utility
ESQPC.COM Precompile ADABAS SQL Server Application
ESQPROC.COM Show Active ADABAS SQL Server Processes
ESQREMOVE.COM Remove Server Environment
ESQRUN.COM Run ADABAS SQL Server Application
ESQSET.COM Set Default Server
ESQSHOW.COM Show Server(s)
ESQSTART.COM Start Server
ESQSTOP.COM Stop Server
START_ESQSRV.COM Start Server
SYMBOLS.COM Define ADABAS SQL Server Symbols
ESQCVT.COM File Conversation Utility

Internally Used Command Files:

ESQADU.COM Activate ADABAS Utility
ESQCGM.COM Check For Global Memory
ESQDBV.COM Check ADABAS Version
ESQEXE.COM Activate Server Thread
ESQFDU.COM Activate ADAFDU Utility
ESQLOD.COM Activate ADALOD Utility
ESQLOGGER.COM Write Logs to ESQ$MAIN:ESQ.LOG
ESQSED.COM String Substitution Utility
ESQSRV.COM Start Server
ESQTAIL.COM Dynamically Show Tail Of Textfile

Installing the ADABAS SQL Server System
1

31

Miscellaneous Files:

ESQCAT.SQL;1 Catalog Meta Data File
ESQCAT1.FDU:1 Input File for ADABAS FDU Utility (FDU/FDT Information)
ESQCAT1.FDUINP;1 Input File for ADABAS FDU Utility (Command Statements)
ESQCAT2.FDU;1 Input File for ADABAS FDU Utility (FDU/FDT Information)
ESQCAT2.FDUINP;1 Input File for ADABAS FDU Utility (Command Statements)
ESQCAT3.FDU;1 Input File for ADABAS FDU Utility (FDU/FDT Information)
ESQCAT3.FDUINP;1 Input File for ADABAS FDU Utility (Command Statements)
ESQERR.CMPINP;1 Input File for ADABAS CMP Utility
ESQERR.DAT;1 Error Messages Data File
ESQERR.FDU,1 Input File for ADABAS FDU Utility (FDU/FDT Information)
ESQERR.FDUINP;1 Input File for ADABAS FDU Utility (Command Statements)
ESQERR.MUPINP;1 Input File for ADABAS MUP Utility
ESQPC.PAR;1 Precompiler Parameter File (Template)
ESQRUN.PAR;1 Run-time (Client) Parameter File (Template)
ESQSRV.PAR;1 Server Parameter File (Template)
ESQ_ROUTING.DAT;1 Server Routing File (Template)
ESQLINK.OPT Linker Options File for ADABAS SQL Server applications
ESQ_PL.DAT Patch Lever File (internal use).

32

2

33

OPERATING THE ADABAS SQL SERVER

This chapter contains information pertaining to the operation and administration of the
ADABAS SQL Server, the ADABAS SQL Utilities and user applications which communicate
with the ADABAS DBMS using ANSI/ISO SQL (Structured Query Language) in an OpenVMS
environment.

Overview of ADABAS SQL Server Commands

This is a brief overview of the server commands as defined for the OpenVMS DCL command
line interface. A detailed description of each command can be found in the this manual,
depending on the context where they apply.

Note:
Before any of the following commands can be accessed, ESQ$MAIN:LOGIN.COM must have
been executed.

Generate one or more Server Environments

Generate (common/local) server environments:
$ esqgen servername dbid catalog_base_file error_file [desc] [sec] [common]

Starting the Utilities:

Start BASIC Interactive SQL:
$ esqint [[servername] [communication destination]]

Start the Migration Utility:
$ esqmigrate server_name dir_fnr [[−v] [−t] [−n] [−s] [−h]]

Start the Generate Table Description Utility:

Command line operation mode:
$ define/user sys$output output_file
$ esqgtd [option] database_name database_number file_number [ddm_name]

Input file operation mode:
$ define/user sys$output output_file
$ define/user sys$input input_file
$ esqgtd

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

34

Creating and Executing an Application

Precompile a module:
$ esqpc module [/list] [/nowarnings]

Compile a module:
$ esqcc module [compiler_options]

Link a multi-module application:
$ esqlink module [module_1 ... module_x]

Create a single-module application:
$ esqmak module [precompiler_options] [compiler_options] [link_option]

Run an application:
$ esqrun module

Driving an ADABAS SQL Server:

Set a default server:
$ esqset servername

Verify the default server / all known servers:
$ esqshow [/all]

Start a server:
$ esqstart [servername] [user_id]

Terminate a server
$ esqopr [servername]
esqopr: shutdown

$ esqstop [servername]

$ esqopr [servername]
esqopr: abort

$ esqkill servername

Start the Operator Utility:
$ esqopr [servername]

Display the server log file
$ esqlog [servername] [/tail]

Operating the ADABAS SQL Server
2

35

Display shared memories used by the ADABAS SQL Server:

$ esqmem

Display error text:
$ esqerr error_number

Remove a server environment:
$ esqremove servername [/all]

Starts the tool which converts SYSTRANS files into a format acceptable to the GTD Utility:
$ esqcon systrans_file_name [/del]

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

36

Creating and Executing an Application

An application program is prepared for execution in a 3-step procedure (precompile, compile
and link).

For single-module SQL applications the ADABAS SQL Server provides a command for these
3 steps. To execute this command enter the following:

$ esqset servername
$ esqmak prog [precompiler_options] [compiler_options] [linker_options]

For multi-module applications or if the steps are to be executed separately, the procedures − as
described in the following sections − apply.

Precompile
The ADABAS SQL Server Precompiler currently supports the 3rd generation host languages
C and COBOL. The respective precompilers and commands are found in the directory defined
by the logical name ESQ$VERSION, which was created during the installation of the ADABAS
SQL Server.

If the application program design and coding are complete, the source statements are ready to
be prepared for execution. Before a program can be executed, it must be compiled by the
respective host language compiler. Before this compilation, however, the SQL statements
embedded in the 3rd generation host language must first be prepared by the ADABAS SQL
Server Precompiler for compilation as host language statements.

The ADABAS SQL Server Precompiler scans every statement of the program source and
produces a modified program in which every SQL statement has been replaced by host language
statements such as variable definitions and calls to the ADABAS SQL Server. Make sure that
the ADABAS nucleus containing the SQL catalog and error files is active.

Before the precompiler can be started, the current server has to be set by entering the following:

$ esqset servername

The precompiler is started by entering the following:

$ esqpc modulename [/list] [/nowarnings] [/keep]

The optional parameter /list generates a precompiler listing file and the optional parameter
/nowarnings suppresses precompiler warnings. The optional parameter /keep results in the
output file ESQ$OUTPUT being kept inspite of errors.

Operating the ADABAS SQL Server
2

37

The precompiler searches in the current working directory for a precompiler source file
according to the file extension convention shown in the following table, and then starts a
language-dependent precompilation. For example, if the precompiler finds the source file with
the name modulename.pc first, the host language precompiler for the language C is started.

The following table shows the file extension convention for precompiler source files:

Programming
Language

Precompiler Input File Precompiler
Output File

Precompiler Listing

C modulename.CPC
or
modulename.PC

modulename.C modulename.PCLIS

COBOL modulename.COBPC or
modulename.PCOB

modulename.COB modulename.PCLIS

The symbol ESQSCHEMAID, if set, determines the default schema ID for the application
module. The default value for ESQSCHEMAID is the user ID.

The symbol ESQLIBRARY, if set, determines the library name under which the application
module’s meta programs are stored in the SQL catalog at runtime. The default value for
ESQLIBRARY is the user ID. Setting this variable allows distinction between different sets of
applications.

By default, the precompilers uses the server-specific parameter file ESQPC.PAR from the server
directory ESQ$SRVDIR. If entry changes in the parameter file are necessary, there are two
recommended procedures:

For permanent user- and server-specific changes enter:

$ copy esq$srvdir:esqpc.par esq$srvdir:esqpc.par_uid
$ edit esq$srvdir:esqpc.par_uid

where uid is the OpenVMS user name.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

38

For temporary working-directory-specific changes enter:

$ copy esq$srvdir:esqpc.par *.*
$ edit esqpc.par

 uid or [ESQLIBRARY]
[ESQSCHEMAID]

Parameter file

modulename.CPC or
modulename.PC

Input file

modulename.C
[modulename.PCLIS]

Output file(s)

Symbols

 ESQPC

 Precompiler

ESQPC.PAR or
ESQ$SRVDIR:ESQPC.PAR_uid or
ESQ$SRVDIR:ESQPC.PAR

modulename.COBPC
or modulename.PCOB

modulename.COB
[modulename.PCLIS]

Figure 2-1: Precompilation data flow chart for an SQL application module

Operating the ADABAS SQL Server
2

39

Compile

After precompilation, the application program is compiled using the standard compilation
procedure suitable for the host language. For SQL applications the ADABAS SQL Server
provides a compilation command. To start the compilation process enter the following:

$ esqcc modulename [compiler_options]

modulename.C or
modulename.cob

Input file Output file

modulename.OBJ
ESQCC

Compiler

Figure 2-2: Compilation data flow chart for an SQL application module

Note that the ADABAS SQL Server works with the D_FLOAT data format. This is the
C-Compiler default under OpenVMS for VAX.

Under OpenVMS for Alpha AXP, a C−application is compiled with /float=d to ensure that the
D_FLOAT data format is presented to the ADABAS SQL Server.

Under OpenVMS for either VAX or Alpha AXP, a DEC Cobol−application is compiled with the
ANSI_FORMAT qualifier.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

40

Link

Linking is performed after compilation. The logical name ESQLNK must be set at link time
pointing to the shared image ESQLNK142.EXE which will be linked to the application. To start
the linking process enter the following:

$ esqlink prog [,module_1 ... ,module_x] [linker_options]

 ESQLNK

ADABAS SQL
Server library

 prog.OBJ
 [module_1.OBJ]

 [module_x.OBJ]

Input file

prog.EXE

Output file

ESQLINK

Linker

 ESQLNK142.EXE

Figure 2-3: Link data flow chart for an SQL multi−module application

Operating the ADABAS SQL Server
2

41

Execute

Before an ADABAS SQL Server application can be executed, the default server must have been
set via the following command:

$ esqset servername

To re-direct input for or output from the application, the logical names ESQ$INPUT and
ESQ$OUTPUT may be defined before entering the ESQRUN command. The modification of
SYS$INPUT and SYS$OUTPUT may result in unpredictable conditions.

To run the application enter the following:

$ esqrun prog [command arguments]

The optional command arguments are passed on directly to the application.

The symbol ESQSILENT, if set, prevents log lines to generated by the ESQRUN command.

The symbol ESQSCHEMAID, if set, determines the default SQL schema ID for the application
module. For details, refer to Appendix B of this manual: The Parameter Processing
Language, section: Global Default Schema Identifier Setting.

By default, the runtime system uses the server specific parameter file ESQRUN.PAR from the
server directory ESQ$SRVDIR. If any changes in the parameter file are necessary, there are two
recommended procedures:

For permanent user- and server-specific changes, enter:

$ copy esq$srvdir:esqrun.par esq$srvdir:esqrun.par_uid
$ edit esq$srvdir:esqrun.par_uid

where uid is the OpenVMS user name.

For temporary working-directory-specific changes, enter:

$ copy esq$srvdir:esqrun.par *.*
$ edit esqrun.par

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

42

ESQRUN.PAR or
ESQ$SRVDIR:ESQRUN.PAR_uid or
ESQ$SRVDIR:ESQRUN.PAR

Parameter file

prog

Input file

ESQRUN

ESQLNK
[ESQSCHEMAID]
[ESQSILENT]

Logical name/symbol

Figure 2-4: Runtime data flow chart

Operating the ADABAS SQL Server
2

43

Debug

To build an application in debug mode, there are two different procedures depending on whether
the application is being a single or multi-module application.

For single-module applications, enter:

$ esqmak prog ““ /debug /debug

For multi-module applications, enter:

$ esqpc prog
$ esqcc prog /debug
$ esqpc module_1
$ esqcc module_1 /debug
......
$ esqpc module_x
$ esqcc module_x /debug
$ esqlink prog, module_1,... module_x /debug

To start the application, enter:

$ esqdebug :=/debug
$ esqrun prog

The result will be that a debugger session will be started for your application.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

44

Driving an ADABAS SQL Server

The ADABAS SQL Server provides a set of commands and an Operator Utility to operate and
maintain servers. A server environment is generated via the ESQGEN command, as described
in the chapter Installing the ADABAS SQL Server System. The server environment is mainly
characterized by the ADABAS file which holds the SQL catalog for that server. The server itself,
however, is referenced by its name only.

Set the Default Server

The command that sets the current default server within a user session is:

$ esqset servername

Server names are generally treated in uppercase. If a lowercase server name must be specified,
for example, when refering to a remote server on a UNIX system, the server name must be
enclosed in double quotes.

Any following statement (including precompiler and SQL application execution) will take this
server as default server if no other server name is specified.

Verify the Default Server

The command to verify the current default server settings is:

$ esqshow [/all]

The /all option shows also all known ADABAS SQL Servers on the current node.

Operating the ADABAS SQL Server
2

45

Start a Server
A server process has to be started, if you want to perform one of the following computing
methods:

� local (client and server on same node) or

� remote (client and server on different nodes) client/server computing.

Server-specific environments may be defined in a server-specific startup procedure
(ESQ$SRVDIR:STARTUP.COM) which will - if present - be executed automatically before server
startup (controlled by the ESQSTART command). The procedure may contain, for example, the
setting of logging variables to enable logging during the time the server is active.

Before the server can be started, the client/server communication interface (CSCI) has to be
activated. Refer to the Appendix The ADABAS SQL Server and other Software AG
Products in the manual ADABAS SQL Server Programmer’s Guide or the ENTIRE BROKER:
CSCI Manual for details.

For remote client/server computing NET-WORK for OpenVMS must also be active and
parameterized properly on both sides. Refer to the chapter Client/Server Topics in the ADABAS
SQL Server Programmer’s Guide.

To start the ADABAS SQL Server, use the following command:

$ esqstart [servername][user−id]

The optional specification user_id is the identification of the user under which the server is to
be started as a detached VMS process. The default user_id is the identification of the user
entering the ESQSTART command.

The detached VMS process needs write access to the server-specific directory ESQ$SRVDIR
for its log file. If this write access has not been granted for the specific user, this VMS process
can not even be initiated. Note that in this case the server log file of the most recent server start
will be displayed.

Note:
If the server is not active after the execution of the ESQSTART command and the log file
displayed is that of the recent server start, it is most likely that no write access has been granted
for that specific user. To verify this condition, use the OpenVMS Accounting Utility.

Note:
For information regarding quotas and privileges, refer to the section Quotas and Privileges for
the ADABAS SQL Server in chapter Installing the ADABAS SQL Server System earlier in this
manual.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

46

Note:
The login command procedure of the user user_id must not modify its process name if in detached
mode.

The server processes are started using the parameter file ESQ$SRVDIR:ESQSRV.PAR, which
among others defines the number of thread processes to be started for this server.

Note:
One server thread can handle only one client session at a time, so the number of threads
determines the maximum number of concurrent client sessions at a given time.

The ESQSTART command prints out the beginning of the server’s log file on the requesting terminal
after a few seconds so that you can verify if the server startup was performed successfully.

Terminate a Server

There are 4 ways to terminate an ADABAS SQL Server ranging from a normal shutdown to a
fast kill.

� SHUTDOWN

The normal server shutdown is done via the ADABAS SQL Server Operator Utility
(ESQOPR) with the SHUTDOWN command:

$ esqopr [servername]
esqopr: shutdown

� STOP

An equivalent command but without being prompted for confirmation and shutdown
reasons is the ESQSTOP command:

$ esqstop [servername]

After execution of these two commands any new client sessions will be rejected by the
server. All server threads that currently have no active client session will shut down within
one minute. The other server threads remain active until the clients disconnect from the
server or the session being timed-out by the server. Only if there are no more active sessions
will the server shut down completely.

As this method may take some time, it is advisable to use the ADABAS SQL Server
Operator Utility to watch the server activities (active session, requests etc.)

Operating the ADABAS SQL Server
2

47

� ABORT

The next degree in stopping a server is done via the ADABAS SQL Server Operator Utility
with the ABORT command.

$ esqopr [servername]
esqopr: abort

After execution of this command, any new client sessions and requests will be rejected by
the server. All server threads continue with their current client requests if any are active,
and will shutdown within one minute regardless of any active client sessions, i.e. the
sessions are terminated.

� KILL

This command terminates the server at once, regardless of any active client sessions or
requests. Nevertheless, a proper clean-up will be performed.

$ esqkill servername

Display the Server Log File

To display the server log file at any time enter the following command:

$ esqlog [servername] [/tail]

If only the latest incoming log lines are to be displayed dynamically use the command with the
/tail-option. Control-C has to be pressed to terminate the display.

There are also logical names for the current server log file (ESQ$SRVLOG) and for the log file
of the previous server startup (ESQ$SRVOLDLOG), which can be used in conjunction with any
DCL commands, e.g.

$ edit/read ESQ$SRVLOG

When an ADABAS SQL Server is started, a log file will be created in the directory pointed to
by the logical ESQ$SRVDIR. Each time the server is started, a new log file will be created. For
the ADABAS SQL Server to create a new version of the log file, either the server must be started
under the same user name as the ownership on the previous log file OR the user name starting
the server must have the BYPASS default privileges.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

48

Display Shared Memories used by the ADABAS SQL Server:

For reasons described in the original OpenVMS Install Utility Manual, shared memory is used
for the ADABAS SQL Server. The information displayed as a result of the ESQMEM command
is the output of the OpenVMS Install Utility with the /full option having the same effect. To
display the global sections installed for the ADABAS SQL Server enter the following
command:

$ esqmem [/full]

Display Error Text:

The following command displays the corresponding error text to the specified error number.
The error text is documented in the file ESQ$VERSION:ESQERR.DAT.

$ esqerr error_number

Remove a Server Environment

The ESQREMOVE command removes an existing server environment which was generated
using the ESQGEN command. Default functionality removes the server-specific files from the
operating system directory. If the option /all is specified, additionally, the catalog file and the
error file in ADABAS will be removed.

$ esqremove servername [/all]

Operating the ADABAS SQL Server
2

49

The ADABAS SQL Server Operator Utility
The ADABAS SQL Server Operator Utility provides the functionality to obtain actual and
statistical information about a specific ADABAS SQL Server running on the local node, and
commands to terminate a server. These last commds are described in detail under the section:
Terminating a Server, a few pages before.

Start the Utility
The utility is invoked by typing:

$ esqopr [servername]

The following sample sessions shows the usage and functionality of the ADABAS SQL Server
Operator Utility. The commands entered by the user are printed in bold.

Example:

$ esqopr SAGTOURS
$ESQOPR−I−STARTED, 23−JUN−1996 15:17:28, Version 1.4/2, (VAX/OpenVMS)
$ESQOPR−I−ONLINE, Server SAGTOURS attached online on node ENT
esqopr: help

ESQ operator utility online help display

 help − Online help display (this display)
 dis=act − Display active servers on local node
 dis=scb − Display Server Control Block (SCB)
 rep=n − Repeat display every n seconds (VTxxx only)
 server=SS − Attach to server named SS
 . − Redisplay most recent display
 shutdown − Shutdown server (wait for disconnects)
 abort − Abort server (disconnect sessions)
 quit − Leave esqopr

esqopr: dis=scb

ESQ Server Control Block (SCB) Information

 Server name = SAGTOURS on node ALF1
 Startup time = 19−AUG−1996 16:45:20
 Version = 1.4/2
 Server type = CSCI
 Catalog Files = DB 101, Files 30−32
 Thread processes = 5
 Sessions / Thread = 1
 Last active thread = none

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

50

Server Users: Client/Server Linked−in Precompiler Total

 Active sessions = 0 0 0 0
 Active requests = 0 0 0 0
 Active threads = 5 0 0 5
 Total sessions = 0 0 0 0
 Total requests = 0 0 0 0

19−AUG 17:03:36.68 Server SAGTOURS Thread 5 pid 559940102 up and running

esqopr: dis=act

Active ADABAS SQL servers on node ALF1:

 Name Catalog Last Activity act.ses act.req tot.ses tot.req

 SAGTOURS 101/030 19−AUG−1996 16:45 0 0 0 0
 TEST 101/040 19−AUG−1996 12:28 3 1 193 3456
 NIST 101/050 19−AUG−1996 17:01 2 2 2001 40561

esqopr: shutdown
Really SHUTDOWN server SAGTOURS ? y
Enter reason for shutdown: System Maintenance
%ESQOPR−I−SHUTDWN, Server shutdown initiated at 19−AUG−1996 17:03:40.53
%ESQOPR−I−DETACH, Server SAGTOURS now detached
esqopr: quit
%ESQOPR−I−TERMINATED, 19−AUG−1996 17:04:54

Operating the ADABAS SQL Server
2

51

Parameter Processing

The execution of the 3 major components of the ADABAS SQL Server (Server, Precompiler,
and Runtime System) can be influenced by parameter settings via PPL (Parameter Processing
Language).

When generating a server environment, the following three parameter files are created in the
server-specific directory $ESQSRVDIR:

� ESQ$SRVDIR:ESQSRV.PAR (server parameter file)

This parameter file is read in at server startup time. For example, one purpose could be to
adjust the number of threads started by the server, depending on the number of concurrent
sessions.

Among other things, it defines parameters, such as: server name, server catalog
DBID/FNR, communication type (ENTIRE CSCI, ENTIRE BROKER), number of server
threads, default client parameters, request/reply buffer lengths, optional: server trace/log
control statements.

� ESQ$SRVDIR:ESQPC.PAR (precompiler parameter file)

This parameter file is read in at precompiler startup time.

Among others, it defines parameters, such as: default schema identifier, maximal number
of compile errors, server catalog DBID/FNR (for single-user linked-in mode), optional:
precompiler trace/log control statements.

� ESQ$SRVDIR:ESQRUN.PAR (client parameter file)

This optional parameter file is read in at client application startup time.

Among other things, it defines parameters, such as: default schema identifier, server
session timeout value, maximum number of cursors, server catalog DBID/FNR (for
single-user linked-in mode), optional: client trace/log control statements.

These files can be customized to meet server-specific needs.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

52

Parameter Processing and Global Symbols

The standard parameter files contain various values which reference global symbols. The
various commands, e.g., ESQRUN attempt to find these references in order to replace them with
the values contained in the global symbols. This is achieved via a simple text substitution.
Should the original references have been previously hard-coded, no substitution can take place
and, therefore, the values of the global symbols are effectively ignored.

The following values are subject to substitution:

� ESQDBID

� ESQCATF

� ESQERRF

� ESQSCHEMAID

� ESQLIBRARY

� ESQPROG

Example of Substitution:

If the current parameter file contains the following line:

DEFAULT SCHEMA IDENTIFIER = ”$ESQSCHEMAID”

and the global symbol ESQSCHEMAID has been set to ‘RAINER’, then the command
ESQRUN will perform the substitution resulting in the value ‘RAINER’ being the default
schema identifier.

Example of Non-substitution:

If the current parameter file contains the following line:

DEFAULT SCHEMA IDENTIFIER = PETER

regardless of the value of the global symbol ESQSCHEMAID, the command ESQRUN will not
perform any substitution and the resulting value for the default schema identifier will be
‘PETER’.

For additional information refer to Appendix B: The Parameter Processing Language (PPL)
later in this manual.

Operating the ADABAS SQL Server
2

53

User Exits

Overview

A user exit is a user-written routine that enables the user to participate in the processing
performed by the ADABAS SQL Server. The user-written routine is dynamically loaded at the
startup of the server or application, and is called at predefined stages in the processing of either.

The routines may be written in any programming language that conforms to the OpenVMS
calling standard.

The following user exits are available:

User Exit Use

Client User Exit 1 user processing on an ESQLNK call before it is processed by
the server.

Client User Exit 2 user processing on an ESQLNK call after it is processed by the
server.

Server User Exit 5 user processing on an ADABAS call. The function is called
before the ADABAS call is executed.

Server User Exit 6 user processing on an ADABAS call. The function is called
after the ADABAS call is executed.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

54

 S E R V E R

 C L I E N T

Application Program

ESQLNK

COMMUNICATION

COMMUNICATION

ADABAS SQL Server

AI − LAYER

VO − LAYER

ADALNK

COMMUNICATION

ADABAS

ESQUEX_1

ESQUEX_5 ESQUEX_6

ESQUEX_2x x

x x

Figure 2-5: Locations of user exits within the ADABAS SQL Server

Operating the ADABAS SQL Server
2

55

Client User Exit 1
Description

ADABAS SQL Server User Exit 1 is a user exit that performs user processing on an ESQLNK
call. The routine is called when the processing of a statement begins.

Input Parameters

Format: UEX_1 ()

Client User Exit 2
Description

ADABAS SQL Server User Exit 2 performs user processing on an ESQLNK call. The routine
is called when the processing of a statement ends. The input parameter that is specified enables
the user exit to change the response code of the ESQLNK call.

Input Parameters

Format: UEX_2 (SQLCA)

SQLCA usage: SQLCA
type: SQLCA (refer to esqca.h)
access: read/write
mechanism: by reference

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

56

Server User Exit 5
Description

ADABAS SQL Server User Exit 5 is a function that performs user processing on an ADABAS
call. The user exit is called when the processing of an SQL request causes an ADABAS call and
before this ADABAS call is executed.

Input Parameters

Format: UEX_5 (CB, p_acc, FB, RB, SB, VB, IB)

CB usage: CB
type: unsigned char *
access: read/write
mechanism: by reference

ESQACC usage: p_acc
type: ESQACC (refer to esqacc.h)
access: read/write_
mechanism: by reference

FB usage: FB
type: unsigned char *
access: read/write
mechanism: by reference

RB usage: RB
type: unsigned char *
access: read/write
mechanism: by reference

SB usage: SB
type: unsigned char *
access: read/write
mechanism: by reference

Operating the ADABAS SQL Server
2

57

VB usage: VB
type: unsigned char *
access: read/write
mechanism: by reference

IB usage: IB
type: unsigned char *
access: read/write
mechanism: by reference

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

58

Server User Exit 6
Description

ADABAS SQL Server User Exit 6 is a function that performs user processing on an ADABAS
call. The user exit is called after an ADABAS call has been executed.

Input Parameters

Format: UEX_6 (CB, p_acc, FB, RB, SB, VB, IB)

SQLCA usage: FB
type: unsigned char
access: read/write
mechanism: by reference

CB usage: CB
type: unsigned char *
access: read/write
mechanism: by reference

ESQACC usage: p_acc
type: ESQACC (refer to esqacc.h)
access: read/write_
mechanism: by reference

FB usage: FB
type: unsigned char *
access: read/write
mechanism: by reference

RB usage: RB
type: unsigned char *
access: read/write
mechanism: by reference

Operating the ADABAS SQL Server
2

59

SB usage: SB
type: unsigned char *
access: read/write
mechanism: by reference

VB usage: VB
type: unsigned char *
access: read/write
mechanism: by reference

IB usage: IB
type: unsigned char *
access: read/write
mechanism: by reference

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

60

Common Rules for Server User Exits 1 and 2
Parameters

p_sqlca provides access to the SQLCA
p_inp provides reads access to the input data (user ID, password, etc.)
p_out provides write acesss to the output data (user ID, password, etc.)

Examples

The user exit calls the function my_security() for a CONNECT statement. If this function fails,
value −6701 is returned via sqlcode field of SQLCA. The parameters of the function
my_security() are user-ID and password. This information is passed on to the user exit via the
parameter struct esq_uex1_inp.

#include <stdio.h>
#include <esqacc.h>
#include <esqerr.h>
#include <esquex1.h>
void uex_1(

struct sqlca * p_sqlca,
struct esq_uex1_inp * p_inp,
struct esq_uex1_out * p_out)

{

if (p_inp−>sql_command == ESQ_CONNECT)
{

if (my_security(
p_inp−>l_name, p_inp−>c_name,
p_inp−>l_pwd, p_inp−>c_pwd))

 p_sqlca−>sqlcode = −6701;
}
return;

}

Operating the ADABAS SQL Server
2

61

The following routine changes the user ID to JOHN for a CONNECT statement.

#include <stdio.h>
#include <esqacc.h>
#include <esqerr.h>
#include <esquex1.h>

void uex_1(
struct sqlca * p_sqlca,
struct esq_uex1_inp * p_inp,
struct esq_uex1_out * p_out)

{
if (p_inp−>sql_command == ESQ_CONNECT)
{

p_out−>1_name = strlen(”JOHN”);
strcpy(p_out−>c_name, ”JOHN”);

}
return;

}

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

62

Common Rules for Server User Exits 5 and 6

Parameters

The following explains the parameters of the function’s prototype for the ADABAS SQL Server
User Exit 5 and 6:

� CB provides access to the ADABAS control block, as specified in the ADABAS
Command Reference Manual.

� ESQACC provides access to the ADABAS SQL Server session context.

� FB provides access to the ADABAS format buffer.

� RB provides access to the ADABAS record buffer.

� SB provides access to the ADABAS search buffer.

� VB provides access to the ADABAS value buffer.

� IB provides access to the ADABAS ISN buffer.

Note:
Ensure that the user exit is prepared to handle NULL pointer values for some of the parameters.

ADABAS SQL Server Session Contexts

The ADABAS SQL Server session context is provided in the include file <esqacc.h>, and is
defined as follows:

#define ESQRTS_CONTEXT (−1)
#define L_CLIENTS_NAME (18)
#define L_CLIENTS_PWD (32)
#define L_CLIENTS_NODE (8)

typedef struct esqacc
 {
 long c_sid; /* session id */
 long c_con; /* current context */
 unsigned char c_node [L_CLIENTS_NODE];
 unsigned char c_name [L_CLIENTS_NAME];
 unsigned char c_pwd [L_CLIENTS_PWD];
 } ESQACC;

Operating the ADABAS SQL Server
2

63

As stated in the ADABAS SQL Server Programmer’s Guide, Appendix D, one active client may
occupy up to two ADABAS session contexts (user queue elements). To enable distinction
between these contexts, the following rules have been established:

RULE_0: c_pwd will be set to binary zeroes and is, therefore, not visible.

RULE_1: c_sid is the session identifier for the currently active client session. The
value is assigned by the ADABAS SQL Server.

RULE_2: c_con is the currently active operation context for the current ADABAS call.

RULE_3: If c_con is equal to c_sid, then the current ADABAS call is executed on
behalf of the client, for example, to retrieve data.

RULE_4: If c_con is equal to ESQRTS_CONTEXT, then the current ADABAS call
is executed on behalf of the ADABAS SQL Server, for example, to store
a meta program.

Embedding Server User Exits 5 and 6

The user exit processing has been realized within the ADABAS SQL Server as follows (pseudo
language example):

.

.
if (ESQUEX5 defined)
 BEGIN

rc = ESQUEX5 (CB,ESQACC,FB,RB,SB,VB,IB);
if (rc <> 0)

BEGIN
CB −> response_code = rc;
goto do_not_call_ADABAS;
END

END

ADABAS (CB,);

if (ESQUEX6 defined)
BEGIN
rc = ESQUEX6 (CB,ESQACC,FB,RB,SB,VB,IB);
if (rc <> 0)

BEGIN
CB −> response_code = rc;
END

END
do_not_call_ADABAS:
.
.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

64

User Exist Response Codes

Both user exits are specified to return an integer value via the ‘return’ statement. The returned
value is interpreted within the ADABAS SQL Server as an ADABAS response code.

User Exit 5

� If User Exit 5 returns the value zero, the current ADABAS call is executed.

� If the returned value is non-zero, the value is placed in the provided ADABAS control
block and the ADABAS call is not executed.

User Exit 6

� If User Exit 6 returns the value zero, the processing continues as if no user exit was called.

� If the returned value is non-zero, the value is placed in the provided ADABAS control
block as if ADABAS had returned this value.

Based on the above, any returned non-zero value may be visible to the ADABAS SQL Server
client (application program). It is, therefore, advisable to use appropriate values, such as reponse
code 200, to signal security violations. Refer to the ADABAS MESSAGES AND CODES Manual
for further response codes.

The value passed on must be within the following range: 0 <= value <= 255

Note:
Some original ADABAS response codes trigger special exception handling routines. For the
original ADABAS response code 9, an ADABAS SQL Server internal ‘reopen’ logic for the
ESQRTS context is started.

Operating the ADABAS SQL Server
2

65

Creation and Definition

User exits can be written in any high-level language that conforms to the OpenVMS calling
standard. The directory ESQ$EXAMPLES contains examples of user exits written in C.

Create and define your user exit by executing the following steps:

� Write a user exit in any high-level language that conforms to the OpenVMS calling standard.
The exits should be written with default function names. The convention is: “uex_” followed
by the number of the user exit.

� Compile the source file of the user exit.

For example, to compile the example supplied for User Exit 1 type:

$ CC esquex1.c

� Link the user exit.

For VAX platforms, to link the example supplied for User Exit 1 type:

$ LINK esquex1, SYS$INPUT/OPTIONS/SHARE
UNIVERSAL=UEX_1
<CTRL/Z>

For Alpha AXP platforms, to link the example supplied for User Exit 1 type:

$ LINK esquex1, SYS$INPUT/OPTIONS/SHARE
SYMBOL_VECTOR=UEX_1
<CTRL/Z>

The /SHARE command qualifier must be specified with LINK since the UNIVERSAL/
SYMBOL_VECTOR option may only be specified in the creation of a shareable image. The
UNIVERSAL option directs the linker to include the user exit’s entry point name into the image’s
global symbol directory. This entry is required by the ADABAS SQL Server when activating the
user exit.

The /SHARE command qualifier must also be specified with LINK if references to relocatable
data have to be resolved by the image activator when the ADABAS SQL Server activates this
image.

� Make the user exit available to the ADABAS SQL Server by the following definition:

$ DEFINE ESQUEX_number filespec

where;
number is the user exit number,
filespec specifies the name of the image to be loaded (the file type defaults to “.EXE“).

User exits are dynamically loaded at the startup of the ADABAS SQL Server application.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

66

Sort Buffer Size Setting

Using the ORDER BY or the GROUP BY clause may sometimes force the ADABAS SQL
Server to perform internal sorting of data.

If the default size (16 KB) of the internal buffer which holds the data to be sorted is exceeded,
the overflow will be written to a temporary file. To balance this behavior, the buffer size can
be set externally via the symbol ESQSRTBUF.

A detailed analysis of the resource usage during the sort can be obtained by setting the global
symbol ESQLG to ‘sort’. An example with the use of the default buffer size (16KB) can be found
in the chapter Logging Facilities, section Sort Logging in the ADABAS SQL Server
Programmer’s Guide.

Operating the ADABAS SQL Server
2

67

Exceptions/Exit Handling

Handling Exceptions

Using the ADABAS SQL Server, special attention must be paid when making use of OpenVMS
exception handling.

General Exception Handling

Parts of the ADABAS SQL Server (ESQTHS, ADALNK, CPI, etc) handle exceptions by use
of the functions:

LIB$ESTABLISH() (Assembler) or
VAXC$ESTABLISH() (C)

The ADABAS SQL Server temporarily establishes a condition handler to run clean-up routines
to avoid inconsistencies in the database(s). These condition handlers do not have to be coded
in your application anymore.

Explicitly Handled Exceptions

In contrast to the general exception handling as explained above, the signal() function is used
to catch the SIGINT (CTRL-C) exceptions for the Linked-in mode. This constitutes the
exception handling concept of the UNIX implementation of the ADABAS SQL Server.

This exception is temporarily delayed and subsequently re-raised using an internal condition
handling function. A delay will be initiated in two explicit cases to avoid inconsistencies:

� if an ADABAS utility was spawned to execute ADABAS SQL Server DDL statements.

� if an ADABAS call was performed by the ADABAS SQL Server.

The previously marked signal handling routines for these exceptions are re-established after
return.

An application which establishes its own condition handler implicitly forces this self-defined
condition handler to be active even inside ADABAS SQL Server. In the following examples,
you will see how to use existing condition handlers in your application.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

68

How to Use the VAXC$ESTABLISH() Function

If your application is designed to run in OpenVMS environments only, this function is the
preferred function to be used. The following example shows how to use VAXC$ESTABLISH
in your ADABAS SQL Server application.

#include <ssdef.h>
int sig_handler()
{
 printf(“my sig−handler ...\n“);
 /* do whatever needs to be done */
 return(SS$_RESIGNAL);
}
main()
{
 int a;
 /* −− */
 /* establish ’sig_handler’ */
 /* −− */

 LIB$ESTABLISH(sig_handler);

 /* −− */
 /* execute CONNECT */
 /* −− */

 exec sql connect to default;

 /* do whatever needs to be done */

 /* −− */
 /* force exception */
 /* −− */
 a=a/0;
 /* do whatever needs to be done */
}

In the above example, only the exception handler sig_handler is executed because the exception
is generated by the application. If any exception during the CONNECT statement occurred, first
the ADABAS SQL Server exception handler would be executed and then sig_handler.

Operating the ADABAS SQL Server
2

69

How to Use the signal() Function

If your application is to be run in environments other than OpenVMS as well, the signal()
function is the exception handling function to be used. The following example shows how to
use the signal() function in your ADABAS SQL Server application.

#include <signal.h>
#include <ssdef.h>
void (*prev)() = SIG_DFL;
void sig_handler(int sig)
{
 printf(“my sig−handler ... \n“);
 /* do whatever needs to be done */
 if (prev != SIG_DFL) (*prev)(sig);
 exit(−1);
}
main()
{
 int a;
 /* −− */
 /* establish ’sig_handler’ */
 /* −− */

 prev = signal(SIGFPE, sig_handler);

 /* −− */
 /* execute CONNECT */
 /* −− */

 exec sql connect to default;

 /* do whatever needs to be done */

 /* −− */
 /* force exception */
 /* −− */
 a=a/0;
 /* do whatever needs to be done */
}

ADABAS SQL Server Installation and Operations Manual for OpenVMS
2

70

Handling Exits

When entering ESQLNK for the first time, the ADABAS SQL Server system layer tries to
register a function which is to be called at program termination.

This is done to prevent that the application program terminates silently without issuing a
DISCONNECT statement.

This functionality is implemented using the OpenVMS system call: SYS$DCLEXH()

How to Use the SYS$DCLEXH()/atexit() Functions

If you want to set up your own exit handler for your application the SYS$DCLEXH() or atexit()
functions can be used depending on the environments in which your application is to be run.
Example:

void exi_handler()
{
 printf(“my exi−handler ... \n“);
 /* do whatever needs to be done */
}
main()
{
 /* −− */
 /* establish ’exi_handler’ */
 /* −− */

 atexit(exi_handler);

 /* −− */
 /* execute CONNECT */
 /* −− */

 exec sql connect to default;

 /* do whatever needs to be done */
}

In this example, the ADABAS SQL Server exit handler, which is activated during the
CONNECT statement, will be executed first. Then “exi_handler” will be called by OpenVMS.

Note:
If you place your exit handler behind the first ESQLNK call (first EXEC SQL in your program),
then the order of the exit handler calls is reversed.

3

71

OPERATING THE ADABAS SQL SERVER UTILITIES

This chapter contains a detailed description of how to work with the three ADABAS SQL Server
Utilities.

� BASIC Interactive Facilities (BASIC)

The BASIC Interactive Facilities consist of two elements which can be used on any platform.

� BASIC Interactive SQL allows the user to enter SQL statements interactively and see
results displayed on the screen immediately.

� BASIC Catalog Retrieval allows the user to retrieve catalog information via predefined
views.

� ADABAS SQL Server Migration Utility

This utility serves as a migration tool especially designed for the upgrade from the ADABAS
SQL Server Version 1.3.x to the ADABAS SQL Server Version 1.4.2.

� Generate Table Description Utility

If existing ADABAS files must be introduced to the ADABAS SQL Server via the CREATE
TABLE/CLUSTER DESCRIPTION statements, the drafting of such statements can be a
complex operation, as well as a laborious one. By using this utility, you can easily draft up
CREATE TABLE/CLUSTER DESCRIPTION statements. They may then be edited by hand
and be submitted to the server via the BASIC Interactive SQL Utility.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

72

BASIC Interactive Facilities

Target Users

BASIC has been designed for users who require quick and easy access to:

� interactively entered SQL statements and immediate results.

� catalog information, for example, databases, tables, views.

Overview

The BASIC Interactive Facilities are an interactive SQL query tool which supports basic
functionality and is fast and effective. The BASIC Interactive Facilities consist of two elements:

� BASIC Interactive SQL and

� BASIC Directory Retrieval

Statements containing cursor names, host variables or parameter markers cannot be executed
interactively. Statements marked for embedded or dynamic mode in the ADABAS SQL Server
Reference Manual, for example, the CLOSE, DECLARE or CONNECT statements cannot be
used in this context.

Operating the ADABAS SQL Server Utilities
3

73

Invoking the BASIC Interactive Facilities

To invoke the BASIC Interactive Facilities, type the following:

$ esqint [[servername] [communication] [destination]]

The optional parameters must be specified according to the same rules as in the Server Routing
File. For details see the ADABAS SQL Server Programmer’s Guide, chapter: Client/Server
Topics.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

74

Setting Server Name, Communication and Destination

Examples:

To connect to a local server named LOCESQ, enter:

$ esqint LOCESQ

To connect to the remote server named VAXESQ via CSCI on node SAGVAX11, enter:

$ esqint VAXESQ CSCI SAGVAX1

To connect to the remote server named IBMESQ via the ENTIRE BROKER with the broker ID
IBMBROKER11, enter:

$ esqint IBMESQ BROKER IBMBROKER11

Operating the ADABAS SQL Server Utilities
3

75

Setting User ID and Password

BASIC will then issue prompts asking for the user ID and password which will be used to
perform a CONNECT statement to the server. When the input is redirected to a file, the user ID
and password must be in the first two lines of that file.

Alternatively, the symbol ESQUSER can be defined with user ID and password. The prompting
will be suppressed in this case. In a system with the security feature, the symbol ESQUSER must
contain both the user and the password, separated by a comma: ‘userid,password’. In a
non-security system, the environment variable needs to contain the user ID only.

If, in a non-security system, an empty string is used for the user ID, a default CONNECT will
be executed. The user ID is then identical to the operating system user ID.

$ esqint

ESQ User:
Password:

esqint:

A system prompt will appear and ad-hoc SQL statements may be entered at this point. For details
on how to work with BASIC, refer to the platform-independent Appendix A to this manual.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

76

BASIC Interactive SQL
BASIC Interactive SQL allows the user to enter SQL statements interactively and see results
displayed on the screen. Conceptually it consists of 3 elements:

− Input Mode with a set of Input Mode Commands,

− Output Mode with a set of Output Mode Commands,

− Help Mode with Online Help Texts.

In addition to these three elements, there is a set of Global Commands for general navigation
purposes.

Global Commands

Command Description

exit returns to the higher level.
help activates the help function.
quit returns to the higher level.
spawn command spawns the specified DCL command.
$ command spawns the specified DCL command (abbreviated form).

Input Mode (esqint:)

When you receive the prompt ‘esqint:’ BASIC is automatically in the input mode and a line
editor is provided. SQL statements can now be entered or edited. An SQL statement can consist
of several lines. Each statement must end with a semicolon. If ENTER or RETURN is pressed and
no semicolon is found, the line editor provides a new line with a descending line number. If a
semicolon is found the statement is executed immediately after pressing ENTER or RETURN.
Executing a statement automatically activates the output mode where the results are displayed.
Only one statement can be active at a time and this so-called currently active statement can be
run or edited again. In the case of syntax errors or other reasons for re-editing the statement:
leave the output mode, list and edit the statement and run it again. Already saved statements
have to be read into the input session to take the place of the currently active statement. If the
previously active statement has not been saved, it is no longer available. The compressed
maximum length of a statement is 63000 characters, whereby the term compressed means that
multiple white spaces are replaced one blank.

Operating the ADABAS SQL Server Utilities
3

77

Executing Interactive SQL Statements

After entering a new valid SQL statement on the blank input screen, properly end it with a
semicolon and press ENTER or RETURN to immediately execute the statement.

A currently active and valid statement can be executed via the ‘run’ command.

A saved and valid statement must be read into the input area and executed via the ‘run’
command.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

78

Input Mode Commands

Command Description

continuation ’x’ defines the character ’x’ as a line continuation marker.
edit nn edit line nn of the current SQL statement.
list lists the current SQL statement.

read xx reads the file xx into the input session.
run executes/runs the current SQL statement.
save xx saves the SQL statement with the name xx.
server displays server information.

Note:
On mainframe platforms for the read and save commands the file xx is the name of the DD-card.

Output Mode (output (col l-r of t):)

The output mode is invoked by executing a valid SQL statement and is indicated by the prompt
‘output (col l-r of t):’. The numbers in brackets indicate the offset in spaces when executing the
output mode command ‘right’.

Where (l) and (r) mark the left and right margin of the output window in reference to the size
of the total output window (t) which depends on the number of columns requested.

The other output mode commands available are ‘left’ which moves the display window to the
left and ‘home’ which returns to column 1. Scrolling down page by page is achieved by pressing
ENTER or RETURN. To return to the input mode, the global commands ‘quit’ or ’exit’ are used.

Operating the ADABAS SQL Server Utilities
3

79

Output Mode Commands

Command Description

home scrolls back to the first column.
left scrolls output window to the left.
right scrolls output window to the right.

Online Help

Typing ‘help’ after the prompt will display the online help text informing the user about the
commands available in BASIC.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

80

Summary: Executing Statements
Working with the Currently Active Statement:

� At the prompt ‘esqint:’ type in the statement considering the syntax regulations. The statement
may exceed one line,

� delimit each statement with a semicolon (;),

� to immediately execute the statement, press ENTER or RETURN. You are now in the output mode.
If you want to edit the statement (it is still active) or simply want to return to the input mode,

� enter ‘quit’ at the prompt output(col l-r of t):,

� enter ‘list’ which will list the entire statement and note the line number(s) to be edited (only one
line can be edited per edit command),

	 enter ‘edit n’ where n is the number of the line to be edited. After editing, you can either execute
the statement again by entering ‘run’ or save it with a name by entering ‘save name’.

Operating the ADABAS SQL Server Utilities
3

81

Working with a Previously Saved Statement:

� A saved statement has to be read into the input session to gain the status of an currently active
statement. Enter ‘read name’,

� now you may list, edit, run or save the statement as described above.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

82

BASIC Catalog Retrieval
BASIC Catalog Retrieval allows the user to retrieve information stored in the catalog, like
tables, columns, etc.

Operating the ADABAS SQL Server Utilities
3

83

How to Retrieve Information from the Catalog

The following views are available: databases, views, indexes, metaprograms, tables and columns.
After starting the BASIC Interactive Facilities, the following statements may be entered:

To display all databases, type the following:

esqint: select * from information_schema.databases;

To display all tables, type the following:

esqint: select * from information_schema.tables;

To display all tables, type the following:

esqint: select * from information_schema.tablespaces;

To display all columns of table SAILOR, type the following:

esqint: select * from information_schema.columns where table_name =
”SAGTOURS.SAILOR”;

To display all views, type the following:

esqint: select * from information_schema.views;

To display all indexes, type the following:

esqint: select * from information_schema.indexes;

Note:
The results of the SELECT statements are displayed in output mode in the same manner as other
SELECT statements entered in BASIC Interactive SQL. The same set of commands applies.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

84

The Migration Utility

Target Users

The Migration Utility is to be used as an aid migrating the contents of an ADABAS SQL Server
Version 1.3 directory to an SQL catalog as supported by the ADABAS SQL Server Version 1.4.

Overview

Despite the extensive increase in functionality offered by the 1.4 version of the ADABAS SQL
Server, in general, upward compatibility is assured. However, certain steps are necessary in
order to ensure a smooth migration. These steps are supported by the provision of a Migration
Utility. Migration primarily concerns itself with the problems posed by a radically new catalog
structure. The new catalog complies with the 1992 ANSI SQL Standard and is not compatible
with the directory structure contained in the ADABAS SQL Server Version 1.3.

The Migration Utility takes the the 1.3 directory contents as input and produces a file containing
the generated DDL statements (in the following referred to as ‘generated file’). The Migration
Utility then starts the BASIC Interactive Facilities to process the contents of this generated file.

Although the catalog must be established completely afresh, the underlying user data, contained
in the target ADABAS files, can remain undisturbed during the process of migration. We
recommend that a backup of all data is made prior to migration.

It may, however, not be necessary to use the services of the Migration Utility. If the contents of
the existing directory are well documented and all create table description statements and all
create view statements have been saved, then this is effectively equivalent to the output of the
Migration Utility. However, the three concepts of users, schemas and security must still be
considered (see below). In addition, as CREATE TABLE DESCRIPTION statements are now
actively checked for accuracy, it may be, in isolated cases, that what was previously permitted
is now rejected.

Once migration has been completed, the old 1.3 server must be removed. It is not recommended
to run a 1.4 server and a 1.3 server in parallel, serving the same set of ADABAS target files.

Operating the ADABAS SQL Server Utilities
3

85

Prerequisites

� A prerequisite for the use of the Migration Utility is an installed ADABAS SQL Server
Version 1.4. It is strongly recommended that the new catalog is empty prior to migration
to avoid conflicting situations.

� Another prerequisite is that the 1.3 directory file and 1.4 target catalog files reside in the
same ADABAS database.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

86

New Concepts

Due to the various new concepts, it may be necessary to provide manual input to the generated
file. In particular, the following issues must be considered:

� A user concept. It is now necessary to introduce the concept of authenticated users. All
users of the ADABAS SQL Server must be made known via the CREATE USER
statement.

� A schema concept. Data structures are “contained” in schemata. A schema implies
ownership.

� A security concept. If the server has been installed with the security option, then privileges
must be granted to users as required.

Operating the ADABAS SQL Server Utilities
3

87

Special Considerations

In general, pre-compiled applications will not require modification or indeed re-building in any
way. However, non-upwardly compatible features will result in the need for modification:

� Existing identifiers now equivalent to a new keyword. New keywords have been
introduced. If an existing identifier is the same as one of these keywords, then the identifier
must be modified.

� DDL and DML statements mixed within the same transaction. Such statements must be
in separate transactions.

� Certain DDL statements may not be upwardly compatible. These are:
CREATE DATABASE (if host variable was used)
CREATE TABLE DESCRIPTION

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

88

Invoking the Migration Utility

This utility serves as a migration tool especially designed for the upgrade from version 1.3 to
version 1.4.

To invoke the Migration Utility type the following:

$ esqmigrate server_name dir_fnr [−v] [−t] [−n] [−s] [−h]

server name name of the destination server for the migration.

dir_fnr ADABAS file number of the version 1.3 server directory.

−v no generation of VIEWs.

−t generation of CREATE TABLE and CREATE TABLESPACE statements.

−n no generation of CREATE TABLE DESCRIPTION or CREATE TABLE
statements.

−s no generation of CREATE TABLESPACE statements. Only valid in
conjunction with the −t option.

−h preparation for semi-automatic migration. Do not specify in the case of
automatic, non-security migration.

The default statement leads to the generation of TABLE DESCRIPTIONs and VIEWs. The
Migration Utility requires an ADABAS SQL Server Version 1.4 environment.

During invocation, a file named ESQ$SRVDIR:ESQMIG_dir_fnr.SQL will be generated,
where dir_fnr is the version 1.3 directory file number. The file will be referred to as the
‘generated file’ throughout this section.

Operating the ADABAS SQL Server Utilities
3

89

Automatic Migration

The generation and the loading of the objects takes place in one step. This type of migration
makes no provision for the use of the new concepts of the Version 1.4, which means, no security
features, no user concept, and no schema concept.

The owner of all objects in this case is the user DBA.

For each specified database a CREATE DATABASE statement is generated. Should there be
more than one database identifier for a particular database number in the original directory, then
the Migration Utility will still only generate one CREATE DATABASE statement.

The BASIC Interactive Facilities (esqint command) will not be performed if errors or warnings
occur. In this case:

� check the error messages issued by the Migration Utility,

� correct the generated file,

� start the BASIC Interactive Facilities manually using the esqint command.

Note:
For more information on servers generated without security features refer to Step 4 in the
chapter Installing the ADABAS SQL Server System earlier in this manual.

Semi-Automatic Migration

If the new concepts of ADABAS SQL Server Version 1.4 are to be used, it is necessary to
postprocess the generated file ESQ$SRVDIR:ESQMIG_dir_fnr.SQL in a second step before
submitting it to the BASIC Interactive Facilities for execution.

For each user, a CREATE USER statement is to be generated and for the schemas to be created,
the appropriate authorization is to be specified.

If further databases, other than the default database, are already defined in the catalog, it may
also be necessary to postprocess the generated file. This is particularly true, if table descriptions
existed in the version 1.3 specifying a database that is already defined in ADABAS SQL Server
Version 1.4. In this case, the generated CREATE DATABASE statements are to be adapted by
hand.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

90

2-Steps Semi-automatic Migration:

� Invoke the Migration Utility to establish the generated file.

� Adapt the file to reflect the required data structures. Adaptations are necessary for the following
three cases:

Operating the ADABAS SQL Server Utilities
3

91

Case I: If you want to use the owner concept for schemas, perform the command esqmigrate with
the −h option and a file is generated with the following structure:

 # !!!!!!!!!!!! START PART1 !!!!!!!!!!!!!
 DBA
 # ***
 # * REPLACE THE FOLLOWING ??? BY A USER NAME *
 # * AND A PASSWORD SUCCESSIVELY! *
 # ***
 # CREATE USER ??? PASSWORD ???;
 # .
 # .
 # CREATE USER ??? PASSWORD ???;
 # !!!!!!!!!!!! END PART1 !!!!!!!!!!!!!
 # !!!!!!!!!!!! START PART2 !!!!!!!!!!!!!
 # DBA
 # ***
 # * REPLACE THE FOLLOWING ??? BY THE USER *
 # * WHO WILL BE THE OWNER OF THE SCHEMA! *
 # ***
 # CREATE SCHEMA schema1 AUTHORIZATION ???;
 CREATE SCHEMA schema1;
 # !!!!!!!!!!!! END PART2 !!!!!!!!!!!!!
 # !!!!!!!!!!!! START PART3 !!!!!!!!!!!!!
 # ***************************************
 # * REPLACE THE FOLLOWING ??? BY THE *
 # * OWNER OF THE SCHEMA schema1! *
 # ***************************************
 #
 CREATE DATABASE...;
 CREATE TABLE DESCRIPTION schema1.table1...;
 CREATE TABLE DESCRIPTION schema1.tablen...;
 # !!!!!!!!!!!! END PART3 !!!!!!!!!!!!!
 # !!!!!!!!!!!! START PART4 !!!!!!!!!!!!!
 DBA
 # ***
 # * REPLACE THE FOLLOWING ??? BY THE USER *
 # * WHO WILL BE THE OWNER OF THE SCHEMA! *
 # ***
 # CREATE SCHEMA schema2 AUTHORIZATION ???;
 CREATE SCHEMA schema2;
 # !!!!!!!!!!!! END PART4 !!!!!!!!!!!!!
 # !!!!!!!!!!!! START PART5 !!!!!!!!!!!!!
 # ***************************************
 # * REPLACE THE FOLLOWING ??? BY THE *
 # * OWNER OF THE SCHEMA schema2! *

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

92

 # ***************************************
 CREATE TABLE DESCRIPTION schema2.table1...;
 ...
CREATE TABLE DESCRIPTION schema2.tablen...;
 # !!!!!!!!!!!! END PART5 !!!!!!!!!!!!!

Edit the file as follows:

� copy each part (all between START PARTx − END PARTx) into a file (for example: filex),

� change ’’???” to user name or password as indicated in the comment,

� delete the comment signs and CREATE SCHEMA statements where needed.

� call the BASIC Interactive Facilities (esqint) with filex as input.

Operating the ADABAS SQL Server Utilities
3

93

Case II: If you want to to use database names other than those generated:

� generating an output file using the command esqmigrate with the −h option.

� change the database names in the generated CREATE DATABASE statements from old
name to new name.

� replace each old name by a new name in the CREATE TABLE DESCRIPTION statements.

� calling the BASIC Interactive Facilities (esqint) with file1 as input.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

94

Case III: There are table and/or column names in the version 1.3 directory, which are keywords in the
version 1.4. Delimited identifiers are not supported in version 1.4, therefore, the following
steps have to be taken:

� look into the error file esqmig.err and search for warnings: ESQMIG−W−KEYWORD:
”Column/Table name int is also a keyword”

� if there are warnings of this kind, replace the names in question by new names that are not
keywords in ADABAS SQL Server Version 1.4

� Call the BASIC Interactive Facilities (esqint) using the generated file as input.

Note:
Make sure to change your applications to reflect the change of identifiers.

Operating the ADABAS SQL Server Utilities
3

95

Generate Table Description Utility

Target User

Anyone who wants to introduce an existing ADABAS file to the ADABAS SQL Server

Overview

The Generate Table Description Utility (in the following called GTD Utility) is used to generate
either CREATE TABLE DESCRIPTION statements or CREATE CLUSTER DESCRIPTION
statements for existing ADABAS files. To make existing ADABAS files accessible, they must
be introduced to the ADABAS SQL Server by means of these statements. The drafting by hand
of such statements can be a complex operation, as well as a laborious one. Therefore, the GTD
Utility is used to automatically generate a text file containing such statements. This text file
must then be submitted to the Basic Interactive Utility for execution, thus introducing the
existing ADABAS file to the ADABAS SQL Server.

The GTD Utility can be operated in two distinct operative modes:

� Command Line Operation
Command line operation is best suited for quick and easy use. From command line
operation the dialog mode can be activated as an option. The dialog mode provides a large
subset of the full functionality of the utility.

� Input File Operation
The full functionality of the utility is only available in input file operation. Fine tuning of
the resulting generated statements is possible by modifying and resubmitting the input file.

It can be seen from the following diagram, that the GTD Utility obtains information from
various sources, depending upon the operative mode. The resultant generated statement is
dependent upon the information which the GTD Utility will obtain from one or more of these
sources:

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

96

Command Line
Operation*

Default Rules

Command Line
Contents

Dialog Input

Systrans File

Input File
Operation

Default Rules

Input File

Systrans File

GTD Utility
Resulting
Statement
File

BASIC

ADABAS
FDT

* Command Line Operation
not available on Mainframe
platforms

optional additional
editing by hand

Note:
Some of the above information sources are mutually exclusive. Please refer to the section:
Informations Sources Overview later in this chapter.

Operating the ADABAS SQL Server Utilities
3

97

The resultant statement output file is not automatically presented to the ESQINT Basic
Interactive Utility. There is therefore always the opportunity to review the generated output and
indeed edit it further by hand.

Because the GTD Utility must obtain information from the relevant ADABAS FDT, during its
execution, it is therefore a pre-requisite that the appropriate ADABAS database is online and
accessible.

Invoking the GTD Utility
As mentioned in the Overview, there are two distinct operative modes. These modes are
mutually exclusive.

Command Line Operation

In command line operation mode, the GTD Utility is invoked as follows:

$ define/user sys$output output_file
$ esqgtd [option] database_name database_number file_number [ddm_name]

where:

output_file must indicate a valid file path name. The indicated file will be
generated containing the resultant statement.

option none, one or more of the following options may be specified in
any order:

−f dialog mode is suppressed: default rules therefore apply.
−d the generation of the column’s data type is forced in the

statement. Normally, the data type is only generated for
longalpha character fields, or numeric or decimal fields where
a scale is specified in a NATURAL DDM SYSTRANS file.

−t systrans_file this option has an additional parameter. The option indicates
that a NATURAL DDM SYSTRANS file is to be used as an
additional information source. The parameter systrans_file
must indicate a valid file path name, where the file contains the
SYSTRANS DDM information to be considered.

−s schema_name this option has an additional parameter. The option indicates
that an explicit schema identifier is to be generated in the
resultant statement. The parameter schema_name specifies
this identifier.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

98

−a in dialog mode, a prompt is issued for all fields. Normally, only
MU/PE fields are prompted.

−o in dialog mode, a prompt is issued for the column and subtable
identifiers.

−h invokes on-line help only.

database_name specifies the name of the ADABAS SQL Server target
database. This name will appear in the final statement.

database_number specifies the number of the ADABAS source database. The
ADABAS file to be described must reside in this database.

file_number specifies the number of the ADABAS source file to be
described.

ddm_name this optional parameter specifies the particular SYSTRANS
DDM in the systrans_file which is to be used as additional
information. If the ddm_name contains a period ’.’, the part
before the period is the NATURAL library name and the part
after the period is the real DDM name. If the ddm_name is
omitted, then the DBID and file number are used for the
purposes of identification.

For example:

$ define/user sys$output esqgtd.out
$ esqgtd −f −t systrans.file DBNAME 202 181

Note:
The files esqgtd.out and systrans.file are to be found in the local directory.

Operating the ADABAS SQL Server Utilities
3

99

Input File Operation

In input file operation mode, the GTD Utility is invoked as follows:

$ define/user sys$output output_file
$ define/user sys$input input_file
$ esqgtd

where:

input_file must indicate a valid file path name. The indicated file must
contain a valid input file specification. For details refer to the
section: Input File Language Syntax later in this chapter.

output_file must indicate a valid file path name. The indicated file will be
generated containing the resultant statement.

For example:

$ define/user sys$output esqgtd.out
$ define/user sys$input esqgtd.in
$ esqgtd

Note:
The files esqgtd.out and esqgtd.in are to be found in the local directory.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

100

Information Sources Overview

The interpretation that can be placed upon an ADABAS file in terms of SQL table mapping is
numerous. The GTD Utility can generate differing statements based upon the same ADABAS
FDT depending on the information that is presented to it. The information sources and the
information presented within these sources, control the nature of the resultant statement.

Please refer to the diagram earlier in this chapter.

The ADABAS FDT

The GTD Utility has the task of producing a description of an ADABAS file in terms of SQL.
It therefore takes, as its starting point, the ADABAS FDT (Field Description Table) of the file
to be described. The appropriate ADABAS database must be online and accessible to the GTD
Utility. The information derived from this source is:

� The ADABAS file structure.

� The ADABAS field short names.

� The ADABAS field data types.

Operating the ADABAS SQL Server Utilities
3

101

Command Line Information

When in Command Line Operation mode, the GTD Utility obtains vital information via the
command line input. The presence of command line input, automatically suppresses Input File
Operative mode. Some of the information is mandatory. Some of the information also indicates
if further information sources are available. The information derived from this source is:

� The DBID and file number of the ADABAS file to be described (mandatory).

� An indication if dialog mode is to be used as an information source (optional).

� An indication if a NATURAL DDM SYSTRANS file is to be used as an information source
(optional).

Should additional information sources not be available, i.e. the dialog mode has been suppressed
(the −f option) and no SYSTRANS file has been specified, then the resultant statement is
generated according to the default rules.

Dialog Input

If in the command line information, dialog input has not been explicitly suppressed, then a dialog
will be initiated by the GTD Utility with the user. The user dialog is intended as a comfortable
interface to the GTD Utility, which is quick and easy to use and will cover most cases. The user
always has the option to manually edit the resultant file. Via the dialog, the interpretation of the
ADABAS fields themselves can be controlled and the following can be influenced:

� PE groups can be interpreted as a subtable.

� PE groups can be suppressed, in which case:

− PE fields can be interpreted as a rotated field.

− PE fields can be interpreted as long-alpha (if of data type character).

− MU fields within the PE group are automatically suppressed.

� MU fields can be interpreted as a subtable.

� MU fields can be suppressed.

� MU fields can be interpreted as a rotated field.

� MU fields can be interpreted as long-alpha (if of data type character).

If the GTD Utility is additionally invoked with the ’−o’ option, then the user is prompted for
the column and subtable identifiers. Otherwise the default rules for identifier generation are
employed.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

102

If the GTD Utility is invoked with the −a option, then a prompt is issued for all fields, thus
enabling the suppression of a non MU or PE field. Otherwise only fields where a decision is
required would be presented within the dialog i.e. MU or PE fields.

Default Rules

Default rules apply when no other information is available to the GTD Utility. This may be that
no information is available at all for the specified ADABAS file, in which case the default rules
apply to all aspects of the statement generation. Alternatively, no additional information is
available for a particular field, in which case the default rules apply only to that particular field.

By default:

� Any MU field will be interpreted as a subtable.

� Any PE group will be interpreted as a subtable.

� If the file contains no MU or PE fields, then a CREATE TABLE DESCRIPTION statement
is generated.

� If the file contains MU or PE fields, then a CREATE CLUSTER DESCRIPTION statement
is generated.

� All available SEQNO columns will be generated into the table descriptions.

� Any foreign key relationship will always be based upon appropriate SEQNO column(s).

� The cluster identifier will be ’CLUSTER_XXX’, where ’XXX’ is the file number.

� The master table identifier will be ’TABLE_XXX’, where ’XXX’ is the file number.

� The table identifier of a subtable derived from a PE group will be ’TABLE_XXX_YY’,
where ’XXX’ is the file number and ’YY’ is the PE group short name.

� The table identifier of a subtable derived from an MU field will be ’TABLE_XXX_YY’,
where ’XXX’ is the file number and ’YY’ is the field short name.

� The table identifier of a subtable derived from numerous MU fields in parallel will be
’TABLE_XXX_YY’, where ’XXX’ is the file number and ’YY’ is the field short name of
the first MU field. Note this interpretation of numerous MU fields is itself not by default.

� The column identifier will be ’COL_YY’, where ’YY’ is the field short name.

The pure default operation is intended for quick spontaneous use. It does, however, lead to very
cryptic column and table names and may also lead to cluster structures which are not what the
user requires. This approach is intended as a starting point. The user always has the option of
either editing the generated statement by hand or introducing additional information sources.

Operating the ADABAS SQL Server Utilities
3

103

The NATURAL DDM SYSTRANS File

A NATURAL DDM SYSTRANS file can be introduced to the GTD Utility, primarily for the
purpose of supplying long names for columns and indeed, in some cases, for the tables
themselves. The information that it contains is merged with the basic information of the
ADABAS FDT.

Note:
If introducing the SYSTRANS file to the GTD Utility results in the error message:
% ESQGTD−E−INVREC, Invalid record structure found in SYSTRANS file <name>, refer to the
description of the NATURAL DDM SYSTRANS File Conversion Tool below.

The following information is extracted from a NATURAL DDM SYSTRANS file:

� Long names for master tables.

� Long names for periodic group-based (PE) subtables.

� Long names for multiple-value fields (MU) based subtables.

� Long names for column identifiers (except SEQNO columns).

� The precision and scale of a column of data type numeric or decimal.

� The explicit data type of natural date or natural time columns.

Names of master tables, or tables which do not appear in a cluster description, are derived from
the actual DDM name itself. If this name is qualified with a library name, then this is ignored
for the purposes of table identifier generation.

Names of subtables based upon a PE group are derived from the concatenation of the generated
table identifier (itself derived from the DDM name) with the PE group long name.

Names of subtables based upon an MU are derived from the concatenation of the generated table
identifier (itself derived from the DDM name) with the MU field long name.

Names of subtables based upon numerous MU fields in parallel are derived from the
concatenation of the generated table identifier (itself derived from the DDM name) with the first
MU field long name.

Column names are simply derived from the long name associated with the appropriate
ADABAS field. If the column is derived from a rotated field, then a numeric suffix is
concatenated.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

104

Should any resultant identifiers not correspond to a legal SQL identifier, then it will be
appropriately amended. Such an action will result in a warning being generated. Examples of
common conversions are as follows:

� A delimiter character has been used in the long name e.g. ’yearly−bonus’ would become
’yearly_bonus’

� An SQL keyword has been used for a long name e.g. ’group’ would become ’group_’

� The long name does not start with an alphabetic character e.g. ’1stbonus’ would become
’col_1stbonus’.

Should any resultant long name contain more than the permitted 32 characters, then a warning
is generated. It is then necessary to amend such identifiers by hand in the output file. Failure
to do so will result in an error when attempting to execute the generated statement.

Any information extracted from a DDM file is subordinate to any contradictory information
presented to the GTD Utility from other sources.

It is sometimes the case that the DDM in a SYSTRANS file refers to a DBID and a file number
that does not correspond with the physical DBID and file number of the file concerned. In such
a case, an explicit DDM name must be supplied, in order to identify the desired DDM. In such
a case the DBID and the file number given in the DDM are ignored.

It is sometimes the case that the SYSTRANS DDM file actually contains more than one DDM
representation. Only one DDM may be considered by the GTD Utility during execution. If the
SYSTRANS DDM file does contain more than one DDM representation and the desired DDM
is not explicitly specified, then the DBID and file number are used for the purposes of
identification. A DBID of ’0’ in the SYSTRANS DDM file, will be recognized as a match. The
first DDM to be found will be the one used during execution, should there be more than one
DDM in the file which match the search criterion. Alternatively if an explicit name was given,
then the first instance of the specified DDM will be used.

For information on how to create a NATURAL SYSTRANS DDM file, refer to the appropriate
NATURAL documentation.

Operating the ADABAS SQL Server Utilities
3

105

NATURAL DDM SYSTRANS File Conversion Tool

The formatting of the SYSTRANS files generated by several NATURAL versions differs on the
various platforms.

Should the GTD Utility reject one of these formats, the following error message will be issued:
% ESQGTD−E−INVREC, Invalid record structure found in SYSTRANS file <name>. In this
case, the NATURAL DDM SYSTRANS File Conversion Tool must be applied on the file, which
will convert the original file into a GTD-acceptable format. The tool is started via the ESQCON
command:

$ esqcon systrans_file_name [/del]

If the optional parameter /del is specified the original SYSTRANS file will be deleted
automatically. If not specified, a copy of the original file will remain and the extension ‘_orig’
will be added to the original file name.

The Input File

The input file can only be presented to the GTD Utility in Input File Operation Mode.

All aspects of the statement generation can be controlled via the input file. In addition to this
information source, the information sources NATURAL SYSTRANS DDM file and default
information can also be employed. However, information contained in the input file has
precedence over any other information source.

In addition to the control which is available in dialog mode, the following functionality is
available when using an input file:

� Suppression of SEQNO columns.

� Long names for SEQNO columns.

� Non-SEQNO primary keys in master tables.

� Long names for foreign key columns.

� Specific names for columns derived from rotated field members.

� Subtables consisting of more than one MU field.

Should a particular optional piece of information be omitted from the input file, then the default
rules will apply in this particular regard.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

106

How to

As already mentioned above, the whole purpose of the GTD Utility is to produce a CREATE
TABLE/CLUSTER DESCRIPTION statement, which maps an existing ADABAS file to an
SQL data structure. In doing so, choices between various alternatives must be made. A clear
understanding of what is to be achieved is required. This section sets out what particular actions
are possible and how to invoke them.

Generate a Cluster Description

The GTD Utility can generate a CREATE CLUSTER DESCRIPTION statement or
alternatively a CREATE TABLE DESCRIPTION based upon a single ADABAS file.

Default Rules
If the ADABAS file contains MU or PE fields, then a CREATE CLUSTER DESCRIPTION
statement is generated by default. Otherwise a CREATE TABLE DESCRIPTION statement is
generated.

Dialog Mode
If the ADABAS file does not contain MU or PE fields, then a CREATE TABLE DESCRIPTION
statement is always generated. If however, the ADABAS file does contain MU or PE fields and
if these fields are either suppressed or rotated or (if applicable) determined to be long alpha
columns, then a CREATE TABLE DESCRIPTION statement is also generated. Otherwise a
CREATE CLUSTER DESCRIPTION statement is generated

Input File
If the ADABAS file does not contain MU or PE fields, then a CREATE TABLE DESCRIPTION
statement is always generated. If however, the ADABAS file does contain MU or PE fields and
if these fields are either suppressed or rotated or (if applicable) determined to be long alpha
columns, then a CREATE TABLE DESCRIPTION statement is also generated. Otherwise a
CREATE CLUSTER DESCRIPTION statement is generated

Generate a Table Description

The GTD Utility can generate a CREATE TABLE DESCRIPTION statement or alternatively
a CREATE CLUSTER DESCRIPTION based upon a single ADABAS file.

Default Rules

If the ADABAS file does not contain MU or PE fields, then a CREATE TABLE DESCRIPTION
statement is always generated.

Operating the ADABAS SQL Server Utilities
3

107

Dialog Mode
If the ADABAS file does not contain MU or PE fields, then a CREATE TABLE DESCRIPTION
statement is always generated. If however, the ADABAS file does contain MU or PE fields and
if these fields are either suppressed or rotated or (if applicable) determined to be long alpha
columns, then a CREATE TABLE DESCRIPTION statement is also generated. Otherwise a
CREATE CLUSTER DESCRIPTION statement is generated.

Input File
If the ADABAS file does not contain MU or PE fields, then a CREATE TABLE DESCRIPTION
statement is always generated. If however, the ADABAS file does contain MU or PE fields and
if these fields are either suppressed or rotated or (if applicable) determined to be long alpha
columns, then a CREATE TABLE DESCRIPTION statement is also generated. Otherwise a
CREATE CLUSTER DESCRIPTION statement is generated.

Generate a Database Identifier

A database identifier is required as part of the syntax of a CREATE TABLE/CLUSTER
DESCRIPTION statement.

Default Rules
No default available.

Command Line
The database identifier is specified as one of the command line parameters.

Dialog Mode
Not available.

Input File
The database identifier is specified via a database directive.

For example:

DATABASE 214 DB_NAME

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

108

 Generate a File Number

A file number is required as part of the syntax of a CREATE TABLE/CLUSTER
DESCRIPTION statement.

Default Rules
No default available.

Command Line
The file number is specified as one of the command line parameters.

Dialog Mode
Not available.

Input File
The file number is specified via the file specification directive.

For example:

FILE 181

Generate a Cluster Identifier

A cluster identifier is required as part of the syntax of a CREATE CLUSTER DESCRIPTION
statement.

Default Rules
The cluster identifier is generated as ’CLUSTER_XXX’ where ’XXX’ is the source ADABAS
file number.

Dialog Mode
Not available

Input File
The cluster identifier can be specified via the file specification directive.

For example:

FILE 181 CLUSTER_ID

Operating the ADABAS SQL Server Utilities
3

109

Generate a PE Group or an MU Field as a Subtable

Default Rules
By default, a PE group or an individual MU field are always interpreted as a subtable.

Dialog Mode
When a PE group or an MU field is encountered, a prompt will be issued. At this point, the option
’T’ should be entered.

Input File
By specifying a subtable directive, a PE group or an MU field can be interpreted as a subtable.
The following directive would map the field AB to a subtable.

For example:

AB SUBTABLE

Generate Multiple MU Fields Subtable

Multiple MU fields can be brought together in one subtable. The fields are then in ’parallel’.

Default Rules
Not possible.

Dialog Mode
Not possible

Input File
This can be specified by use of the SUBTABLE directive. The following directive would map
the MU fields to a single subtable containing the fields AB and AC plus the various sequence
number columns (total 3 in this example).

For example:

AB, AC SUBTABLE

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

110

Generate a Rotated MU Field

An MU field can also be interpreted as a rotated field.

Default Rules
Not possible

Dialog Mode
When an MU field is encountered, a prompt will be issued. At this point, the option ’R’ should
be entered. A further prompt will be issued which requires the depth of the rotated field.

Input File
An MU field can be interpreted as a rotated field. The following directive would map the 12
occurrences of the field AB to 12 individual SQL columns.

For example:

AB ROTATE 12

Generate a Rotated PE Field

An individual PE group member field can also be interpreted as a rotated field.

Default Rules
Not possible

Dialog Mode
Initially, when a PE group is encountered the prompt is issued in order to generate a subtable.
However, if at this point the table is suppressed (enter ’S’), then further prompts can be issued
which refer to the individual PE group member fields. These can be rotated by entering ’R’ in
response to the prompt. A further prompt will be issued which requires the depth of the rotated
field.

Input File
In order to rotate fields within a PE group, the group itself must be suppressed so that it does
not form a subtable. Thereafter, PE group member fields can be rotated. The following
directives would generate 12 individual columns based upon the field BA and 20 individual
columns based upon the field BB rather than one subtable based upon the PE group BO.

For example:

SUPPRESS BO

BA ROTATE 12
BB ROTATE 20

Operating the ADABAS SQL Server Utilities
3

111

Generate a Long-Alpha MU Field

An MU field can also be interpreted as a long-alpha field, provided that the field is of type
character.

Default Rules
Not possible

Dialog Mode
When an MU field is encountered, a prompt will be issued. At this point, the option ’L’ should
be entered. A further prompt will be issued which requires the size of the character column.

Input File
An MU field can be interpreted as a long-alpha field. The following directive would map the
field AB to an SQL column of 1024 characters.

For example:

AB LONGALPHA 1024

Generate Table Identifiers

The generation of table identifiers can be specified.

Default Rules
The master table identifier will be generated as ’TABLE_XXX’, where ’XXX’ is the file
number.

� The table identifier of a subtable derived from a PE group will be ’TABLE_XXX_YY’,
where ’XXX’ is the file number and ’YY’ is the PE group short name.

� The table identifier of a subtable derived from an MU field will be ’TABLE_XXX_YY’,
where ’XXX’ is the file number and ’YY’ is the field short name.

� The table identifier of a subtable derived from numerous MU fields in parallel will be
’TABLE_XXX_YY’, where ’XXX’ is the file number and ’YY’ is the field short name of
the first MU field. Note this interpretation of numerous MU fields is itself not by default

Dialog Mode
In general, the provision of explicit table identifiers in dialog mode is not possible. However,
with the specification of the command line option ’−o’, where appropriate, a prompt is issued
requesting a suitable table identifier.

Note:
the specification of a table identifier in dialog mode has precedence over any specification in
a NATURAL DDM SYSTRANS file.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

112

Input File
The master table identifier can be specified within the file directive.

For example:

FILE 181 Cluster_name City

A subtable identifier is specified via the following subtable directive.

For example:

B0 SUBTABLE Cities

Note:
The specification of a table identifier in the input file has precedence over any specification in
a NATURAL DDM SYSTRANS file.

NATURAL DDM SYSTRANS File

� The master table identifier will be generated from the DDM name.

� The table identifier of a subtable derived from a PE group will be concatenation of the
DDM name and the PE group name (if available) or the PE shortname.

� The table identifier of a subtable derived from an MU field of level 1 will be the concatenation
of the DDM name and the MU field name (if available) or the MU shortname.

� The table identifier of a subtable derived from an MU field of level 2 will be the
concatenation of the DDM name, the PE name and the MU field name (if available) or the
MU shortname.

Operating the ADABAS SQL Server Utilities
3

113

Generate Column Identifiers

The generation of column identifiers can be specified.

Default Rules
A column identifier will be generated as ’COL_YY’, where ’YY’ is the field short name.

Dialog Mode
The specification of a column identifier in dialog mode has precedence over any specification
in a NATURAL DDM SYSTRANS file.

Input File
A column identifier is explicitly specified via the name directive. This specification would
cause the field AB to be generated with the name state_name.

For example:

NAME AB state_name

Note:
The specification of a column identifier in dialog mode has precedence over any specification
in a NATURAL DDM SYSTRANS file.

NATURAL DDM SYSTRANS File
Any name associated with a particular field will be used as the column’s identifier.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

114

Generate Columns Identifiers for Rotated Field Members

Each occurrence of a rotated field must be uniquely identified as a column within the table.

Default Rules
Although rotated fields themselves are not by default generated, identifiers for them are. The
default column identifier for a rotated field is ’COL_YY_Z’ where ’YY’ is the field shortname
of the MU field or the PE group member field and ’Z’ is the occurrence number of the particular
column.

Dialog Mode
In general, the provision of explicit column identifiers in dialog mode is not possible. However,
with the specification of the command line option ’−o’, where appropriate, a prompt is issued
requesting a suitable column identifier prefix. The generated column identifier is the
concatenation of this prefix plus the occurrence number of the particular column.

Input File
A rotated field column identifier is explicitly specified via the name directive:

For example:

NAME MA 3 BONUS_MARCH

NATURAL DDM SYSTRANS File
Any name associated with a particular field will be used as the column’s identifier prefix.

Generate SEQNO Column Identifiers

Any generated SEQNO column will have a column identifier. The contents of a NATURAL
DDM SYSTRANS file has no influence on the generation of column identifiers for SEQNO
columns

Default Rules
A SEQNO column identifier is by default ’COL_SEQNO_0’ for level 0 sequence number
column, ’COL_SEQNO_1’ for level 1 and ’COL_SEQNO_2’ for level 2.

Dialog Mode
No action possible.

Input File
A SEQNO column identifier is explicitly specified via the name directive. The shortname is
given as ’*0’ for a level 0 sequence number, ’*1’ for a level 1 and ’*2’ for a level 2:

For example:

NAME *0 STATE_ID

Operating the ADABAS SQL Server Utilities
3

115

Generate a Primary/Foreign Key Specification

It is possible to generate primary/foreign key relationships for the various master and subtables,
other than what is available by default.

Default Rules

� The primary key for a master table is the column COL_SEQ_0.

� The primary key for a level 1 subtable is the columns COL_SEQ_0 and COL_SEQ_1.

� The primary key for a level 2 subtable is the columns COL_SEQ_0, COL_SEQ_1 and
COL_SEQ_2.

Dialog Mode
No action possible.

Input File
If a primary key is required, based on columns other than just the SEQNO column then this is
specified via the primary directive.

For example:

PRIMARY AA abbreviation

Similarly, if a foreign key is required, based on columns other than just the SEQNO column then
this is specified via the FOREIGN directive.

For example:

FOREIGN AA stat_abrv

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

116

Suppression of Columns

It may be that certain fields are not required in the generated statement.

Default Rules
All fields are included in the generated statement.

Dialog Mode
Fields that would ’naturally’ induce a prompt can be suppressed via the input ’S’. These are
fields which are either members of a PE group or are MU fields.

In general in dialog mode, ’normal’ fields do not induce a prompt. However, with the
specification of the command line option ’−a’, a prompt is issued for all fields. All fields can
therefore be suppressed via the input ’S’.

Input File
Fields can be explicitly suppressed via the SUPPRESS directive.

For example:

SUPPRESS BA

Operating the ADABAS SQL Server Utilities
3

117

Input File Language Syntax

The input file is used to provide information to the GTD Utility. All aspects of the generation
can be controlled via the provision of an input file.

The file consists of directives. Each directive is started by a new line and is terminated by an
end of line. The order of the directives is of no significance.

The GTD Utility is only able to process one ADABAS file at a time.

Comments

Comments are delimited by the appearance of a # character in the first column and by a new
line.

SYSTRANS DDM File Specification

Should a SYSTRANS DDM file be required it must be specified by using the following
directive:

SYSTRANS systrans_file

where:

systrans_file is a valid file name concerned and indicates the SYSTRANS
DDM file.

For example:

SYSTRANS systrans.ddm

Database Specification

The appropriate ADABAS database must be specified by using the following directive:

DATABASE db_nr database_name

where:

db_nr is the target ADABAS database number

database_name is the associated database name which will be used in the
generated description statements.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

118

For successful eventual execution of the generated statement, a CREATE DATABASE statement
must already have been executed associating this database name with the given database number.

For example:

DATABASE 202 TEST_DB

Schema Identifier

In order to specify the schema identifier, the following directive is used:

SCHEMA schema_name

For example:

SCHEMA production_schema

File Specification

The source ADABAS file is specified by the following syntax:

FILE file_nr [DDM=ddm_name] [[cluster_name] table_name]

where:

file_nr specifies the ADABAS file from which the description
statement will be generated.

DDM=ddm_name optionally specifies the exact DDM representation in the
SYSTRANS DDM file which is to be used. If the ddm_name
contains a period ’.’, the part before the period is the NATURAL
library name and the part after the period is the real DDM name.

table_name optionally specifies the table name which will be used either
for the master table or for the single table if there is no cluster.

cluster_name optionally specifies the cluster name which will be used in the
generated statement. If both a cluster name and a table name are
present, then this forces the generation of a CREATE CLUSTER
DESCRIPTION statement, even if such a statement is not strictly
necessary.

For example:

FILE 32 DDM=employees cluster_employees employees

Operating the ADABAS SQL Server Utilities
3

119

Subtable Specification

A subtable can be built around a PE group, a single MU field or a number of MU fields which
act in parallel. The subtable directive is able to express either of these possibilities and to enable
the optional specification of an identifier for the resultant subtable. In the first two cases, only
a single field is required. In the third case, numerous MU fields can be specified in the form of
a list separated by commas. The syntax is as follows:

short_name [, short_name]... SUBTABLE [table_name]

where:

short_name is as it suggests.

table_name represents the intended table identifier for the subtable.

For example:

AB SUBTABLE

would map the field AB to a subtable and would generate a table name accordingly.

AC SUBTABLE Employee_number

would map the field AC to a subtable but would use the name as indicated.

AE, AF SUBTABLE Employee_status

would map the two MU fields to the single subtable Employee_status.

Rotated Field Interpretation

If a field is to be interpreted as a rotated field, then the following syntax applies:

short_name ROTATE value

where:

short_name is as it suggests.

value is the fixed number of occurrences to be rotated e.g. 12 in our
example above.

For example:

MA ROTATE 12

would map the twelve occurrences of the field MA to twelve individual SQL columns.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

120

Longalpha Field Interpretation

If an MU field of type character is to be interpreted as a longalpha field, then the following
syntax applies:

short_name LONGALPHA <value>

where:

short_name is as it suggests.

value is the number of bytes which are to be considered in the
character field.

For example:

LT LONGALPHA 512

This would map the field LT to a character column of 512 characters.

Long name Specification

A column identifier for a particular field can be specified as follows:

NAME short_name [index] column_name

where:

short_name is as it suggests.

index optionally refers to the occurrence number of an MU if the field
is rotated.

column_name is a valid SQL identifier representing the intended column
identifier.

For example:

NAME MA 3 BONUS_MARCH

Any name directive overrides any long name for the column derived from a SYSTRANS DDM
file.

Operating the ADABAS SQL Server Utilities
3

121

Field Suppression

If a field is not to be included in a description, then its suppression is specified as follows:

SUPPRESS short_name

where:

short_name is as it suggests.

For example:

SUPPRESS BA

Foreign Key Specification

The GTD Utility, by default forms the primary key/foreign key relationship, based upon the
SEQNO columns. If a different basis for this relationship is required, then the FOREIGN
directive is necessary. This directive (or directives) must immediately follow the SUBTABLE
directive. A foreign key may consist of one or more columns and this is represented simply by
a repetition of the directive. The syntax is as follows:

FOREIGN short_name [column_name]

where:

short_name is as it suggests.

column_name is a valid SQL identifier representing the intended column
identifier. This is therefore equivalent to the FOREIGN directive
without a column name and an appropriate NAME directive.

For example:

FOREIGN AA

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

122

Primary Key Specification

By default, the utility forms the primary key of a table based upon the SEQNO column. By using
the PRIMARY KEY directive, a different basis can be taken. A primary key may consist of one
or more columns and this is represented simply by a repetition of the directive. The syntax is
as follows:

PRIMARY short_name [column_name]

where:

short_name is as it suggests.

column_name is a valid SQL identifier representing the intended column
identifier. This is therefore equivalent to the PRIMARY directive
without a column name and an appropriate NAME directive

For example:

PRIMARY AA

Data Type Generation

In general, the GTD Utility does not generate the explicit data type declaration for a column in
the resultant generated statement. The explicit data type declaration is however not strictly
necessary as the ADABAS SQL Server can operate on a minimum create table/cluster
statement, i.e. the server will fill in any missing information automatically. In such a case, the
resultant generated statement can be significantly longer. The forced generation of the column’s
data type is helpful for documentation purposes. The syntax is as follows:

DATATYPE

Error Handling

Should the GTD Utility encounter an error condition during execution, then it will generally
terminate with an exit code and in addition an error message.

The possible exit codes are:

 0 Successful completion / or warnings.
−1 Error detected.

The error text can be found in the standard error file.

Operating the ADABAS SQL Server Utilities
3

123

Examples

The examples presented here are all based upon the following FDT:

Field Definition Table:

Level Name Length Format Options Flags

1 AA 2 A DE,UQ SP

1 AB 20 A DE,UQ

1 AC 20 A DE,NC

1 AD 4 F NC

1 B0 PE

2 BA 20 A DE,NU SP

2 BB 4 F NU

2 CA 20 A NU,MU

2 CB 2 F NU,MU

2 DA 20 A NU,MU

It is assumed that the file is to be found in database 202, file number 181.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

124

Example 1: Default Command Line Invocation

This example shows the simplest way of invoking the GTD Utility, namely via the command
line input without any extra information sources other that the default rules.

Invoking the GTD Utility as shown below:

$ esqgtd WS2V14 202 181

will generate the following output, based upon no dialog and the default rules.

ESQGTD Version : 1.4D.2
Date/Time : 12−SEP−1996 17:17:49.49
File : 202:181

continuation ’\’
create cluster description CLUSTER_181 database WS2V14 file number 181
(
 create table description TABLE_181
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_AA shortname ’AA’
 ,COL_AB shortname ’AB’
 ,COL_AC shortname ’AC’
 ,COL_AD shortname ’AD’
 ,primary key (COL_SEQNO_0)
Number of columns for this table: 5.
)
 ,create table description TABLE_181_B0
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_BA shortname ’BA’
 ,COL_BB shortname ’BB’
 ,foreign key (COL_SEQNO_0) references TABLE_181
 ,primary key (COL_SEQNO_0, COL_SEQNO_1)
Number of columns for this table: 4.
)
 ,create table description TABLE_181_CA
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_SEQNO_2 seqno(2) not null
 ,COL_CA shortname ’CA’
 ,foreign key (COL_SEQNO_0, COL_SEQNO_1) references TABLE_181_B0

Operating the ADABAS SQL Server Utilities
3

125

 ,primary key (COL_SEQNO_0, COL_SEQNO_1, COL_SEQNO_2)
Number of columns for this table: 4.
)
 ,create table description TABLE_181_CB
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_SEQNO_2 seqno(2) not null
 ,COL_CB shortname ’CB’
 ,foreign key (COL_SEQNO_0, COL_SEQNO_1) references TABLE_181_B0
 ,primary key (COL_SEQNO_0, COL_SEQNO_1, COL_SEQNO_2)
Number of columns for this table: 4.
)
 ,create table description TABLE_181_DA
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_SEQNO_2 seqno(2) not null
 ,COL_DA shortname ’DA’
 ,foreign key (COL_SEQNO_0, COL_SEQNO_1) references TABLE_181_B0
 ,primary key (COL_SEQNO_0, COL_SEQNO_1, COL_SEQNO_2)
Number of columns for this table: 4.
)
);

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

126

Example 2: Command Line Invocation With a Systrans File

$ esqgtd −t systrans.file WS2V14 202 181

The following NATURAL DDM SYSTRANS file was used in this example:

*H**ANAT2201199702251127127OVMS/AXP 1
*C** SYSTEM CITY_GUIDE V S
*D01NAT2201V SYSTEM CITY_GUIDE KJO S
*D02 1997020215450001995102515450000000001061
*D03OVMS/AXP
*D040020200181
*S** 1AASTATES_ABBREVIATION A0020 D
*S** 1ABSTATES_STATE_NAME A0200 D
*S** 1ACSTATES_CAPITAL A0200 D
*S** 1ADSTATES_POPULATION I0040
*S**P1B0CITIES 0000
*S** 2BACITIES_CITY_NAME A0200ND
*S** 2BBCITIES_POPULATION I0040N
*S**M2CABUILDINGS_BUILDING_NAME A0200N
*S**M2CBBUILDINGS_HEIGHT I0020N
*S**M2DAPLACES_PLACE_NAME A0200N
*S**P1X1X1−1 A0220 S
*S*** −−−−−−−− SOURCE FIELD(S) −−−−−−−
*S*** CITIES_CITY_NAME(1−20)
*S*** STATES_ABBREVIATION(1−2)
*S********DDM OUTPUT TERMINATED******
*E

Invoking the GTD Utility as follows:

$ define/user sys$output output_file
$ esqgtd −f −t systrans.file WS2V14 202 181

will produce the following output:

Operating the ADABAS SQL Server Utilities
3

127

ESQGTD Version : 1.4D.2
Date/Time : 12−SEP−1996 17:18:13.58
File : 202:181

continuation ’\’
create cluster description CLUSTER_181 database WS2V14 file number 181
(
 create table description CITY_GUIDE
 (
 COL_SEQNO_0 seqno(0) not null
 ,STATES_ABBREVIATION shortname ’AA’
 ,STATES_STATE_NAME shortname ’AB’
 ,STATES_CAPITAL shortname ’AC’
 ,STATES_POPULATION shortname ’AD’
 ,primary key (COL_SEQNO_0)
Number of columns for this table: 5.
)
 ,create table description CITY_GUIDE_CITIES
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,CITIES_CITY_NAME shortname ’BA’
 ,CITIES_POPULATION shortname ’BB’
 ,foreign key (COL_SEQNO_0) references CITY_GUIDE
 ,primary key (COL_SEQNO_0, COL_SEQNO_1)
Number of columns for this table: 4.
)
 ,create table description CITY_GUIDE_BUILDINGS_BUILDING_NAME
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_SEQNO_2 seqno(2) not null
 ,BUILDINGS_BUILDING_NAME shortname ’CA’
 ,foreign key (COL_SEQNO_0, COL_SEQNO_1) references CITY_GUIDE_CI\
TIES
 ,primary key (COL_SEQNO_0, COL_SEQNO_1, COL_SEQNO_2)
Number of columns for this table: 4.
)
 ,create table description CITY_GUIDE_BUILDINGS_HEIGHT
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_SEQNO_2 seqno(2) not null
 ,BUILDINGS_HEIGHT shortname ’CB’
 ,foreign key (COL_SEQNO_0, COL_SEQNO_1) references CITY_GUIDE_CI\

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

128

TIES
 ,primary key (COL_SEQNO_0, COL_SEQNO_1, COL_SEQNO_2)
Number of columns for this table: 4.
)
 ,create table description CITY_GUIDE_PLACES_PLACE_NAME
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_SEQNO_2 seqno(2) not null
 ,PLACES_PLACE_NAME shortname ’DA’
 ,foreign key (COL_SEQNO_0, COL_SEQNO_1) references CITY_GUIDE_CI\
TIES
 ,primary key (COL_SEQNO_0, COL_SEQNO_1, COL_SEQNO_2)
Number of columns for this table: 4.
)
);

Operating the ADABAS SQL Server Utilities
3

129

Example 3: Input File Usage (Default Rules)

The following input file was used in this example:

DATABASE 202 WS2V14
FILE 181

Invoking the GTD Utility as follows:

$ define/user sys$output output_file
$ define/user sys$input input_file
$ esqgtd

will produce in this case, the same output as example #1.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

130

Example 4: Input file with Natural Systrans DDM File

In this example, the following input file was used. It references the same NATURAL
SYSTRANS DDM file as above:

DATABASE 202 WS2V14
FILE 181
SYSTRANS systrans.file

Invoking the GTD Utility as follows:

$ define/user sys$output output_file
$ define/user sys$input input_file
$ esqgtd

will produce in this case, the same output as example #2.

Operating the ADABAS SQL Server Utilities
3

131

Example 5: Input File With Directives

In this example the following input file was used:

DATABASE 202 WS2V14
FILE 181
B0 SUBTABLE LEVEL_1_TABLE
CA,CB SUBTABLE LEVEL_2_TABLE
SUPPRESS DA

Invoking the GTD Utility as follows:

$ define/user sys$output output_file
$ define/user sys$input input_file
$ esqgtd

will produce in this case, the following output:

ADABAS SQL Server Installation and Operations Manual for OpenVMS
3

132

ESQGTD Version : 1.4D.2
Date/Time : 12−SEP−1996 17:18:24.85
File : 202:181

continuation ’\’
create cluster description CLUSTER_181 database WS2V14 file number 181
(
 create table description TABLE_181
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_AA shortname ’AA’
 ,COL_AB shortname ’AB’
 ,COL_AC shortname ’AC’
 ,COL_AD shortname ’AD’
 ,primary key (COL_SEQNO_0)
Number of columns for this table: 5.
)
 ,create table description LEVEL_1_TABLE
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_BA shortname ’BA’
 ,COL_BB shortname ’BB’
 ,foreign key (COL_SEQNO_0) references TABLE_181
 ,primary key (COL_SEQNO_0, COL_SEQNO_1)
Number of columns for this table: 4.
)
 ,create table description LEVEL_2_TABLE
 (
 COL_SEQNO_0 seqno(0) not null
 ,COL_SEQNO_1 seqno(1) not null
 ,COL_SEQNO_2 seqno(2) not null
 ,COL_CA shortname ’CA’
 ,COL_CB shortname ’CB’
 ,foreign key (COL_SEQNO_0, COL_SEQNO_1) references LEVEL_1_TABLE
 ,primary key (COL_SEQNO_0, COL_SEQNO_1, COL_SEQNO_2)
Number of columns for this table: 5.
)
);

4

133

LOGGING FACILITIES

Introduction

Numerous actions and operations performed by the ADABAS SQL Server can be logged. The
act of logging records that a particular event has occurred and also records additional
information associated with the event. Events are recorded chronologically. This record of
events can then be examined at a later date. Different types of events can be recorded
simultaneously and the types of events to be logged can be specified as required.

Logging can be activated before executing the client application or before starting the server.
Logging for the server can be activated without having to interrupt the server by activating the
logging on the client side. The client stub (ESQLNK) informs the server about the additional
logging parameters. These additional logging parameters are valid for the current client session
only.

Logging Facilities are always available, even in the non-trace version. However, their use will
affect the overall system performance. In addition, certain logging facilities are extremely
detailed and liable to produce very large amounts of information.

Logging can provide information necessary for performance analysis, problem diagnosis and
system access monitoring.

For example, the Explain Logging Facility provides detailed information about the access paths
used when executing DML statements. Using this information, it may be possible to construct
statements which are more efficient, or to introduce appropriate indices to improve
performance. The Client/Server Communication Logging can be used to investigate any
problems experienced in a particular client/server link. Finally, the Security Logging can be
used to monitor changing privileges.

Logging is activated by setting the symbol ESQLG appropriately. By setting this symbol, a
particular type of logging with options, if applicable, can be activated. Furthermore, combinations
of types of logging can be specified. The character “*” activates the complete logging.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

134

Logging Facilities Overview

The following tables outline the types of logging available and the string setting for ESQLG
required to activate it:

Logging Facilities Activated by the Symbol (ESQLG)

Client/Server Characteristics Logging MODE
Brief SQL Command Logging

Client and Server side CMD
Client side only CCMD
Server side only SCMD

Static SQL Command Logging
80-Character Block Format STATEMENT
Continuous Stream Format STATEMENT=STREAM

Dynamic SQL Command Logging
80-Character Block Format DYNHVS
Continuous Stream Format DYNHVS=STREAM

Client/Server Communication Logging CSC

Server Session Logging SES

Schema Identifier Logging SCHEMAIDENT

User Exit Logging USEREXIT

Elapsed Time Logging
without component time TIME
with component time TIME = ALL

Sort Logging SORT

ADABAS Utility Logging ADU

Security Logging
User authentication check logging AUTH
Simple statement logging SEC
ALL resultant actions logged SEC=ALL

ESQLNK Call Logging ENTRY

Explain Logging EXPL

Logging Facilities
4

135

Logging Facilities Activated by Parameter File Specification

ADABAS Command Logging

How to activate Logging

With the exception of the ADABAS Command Logging (which is controlled via the ADABAS
SQL Parameter file and is discussed later in this chapter), all other logging is controlled via the
ESQLG symbol.

Logging is activated by assigning a string to ESQLG containing one or more keywords,
specifying the entity for logging.

Logging may be activated on both the client side and the server side. To activate logging on
the client side, the symbol ESQLG must be defined in the local symbol table.

Example:

$ ESQLG := CMD, CSC turns on the brief SQL command logging,
and the client/server communications logging.

To activate logging on the server side, the symbol ESQLG must be defined as a global symbol
in a file called startup.com located in the server directory (ESQ$SRVDIR).

Example: The contents of ESQ$SRVDIR:startup.com

$ ESQLG:== CMD, CSC

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

136

Logging Output

The Logging Facility logs information from the either the client or the server standpoint, or both,
depending on the value assigned to ESQLG. Therefore, the destination of the logging
information will depend on who is performing the work:

− the client or

− the server

and the client/server configuration being used:

− LINKED-IN Mode
When logging is used in LINKED-IN mode, the work performed by both the client and
the server is logged to the standard output of the client.

− Client/Server Mode
When logging is used in Client/Server mode, the work performed by the client is logged
to the client’s standard output and the work performed by the server is logged to the server
log file ESQ$SRVDIR/esqsrv.log.

Logging Facilities Reference

The following sections describe all types of logging. You will find information about:

� actions and information to be logged

� examples of how to activate and run logging

Most of the following examples were executed in LINKED-IN mode. This has the advantage
that the server logging also appears on the client side. For examples executed in Client/Server
mode, the symbol ESQLG has to be used to get the server’s logging output.

Logging Facilities
4

137

Client/Server Characteristics Logging

This logging gives information about:

� Server, client stub, precompiler version

� Trace availability

� Thread mode (single/multi user linked-in)

� Application was linked/loaded with esq.o, ESQLNK or ESQTHS

Example:

$ esqlg:=mode
$ show symbol esqlg
 ESQLG = ”MODE”
$ esqint
%ESQINT−I−STARTED, 22−NOV−1996 09:49:44, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’MODE’
%ESQRTS−I−ESQINFO, MT/TR trace is NOT available
%ESQRTS−I−ESQINFO, ESQ application was linked/loaded with ESQLNK V1.4B.2.1
%ESQRTS−I−ESQINFO, session/process memory is reliable between requests
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;

 TABLE_SCHEMA TABLE_NAME TABLE_TYPE

 INFORMATION_SCHEMA SERVER_INFO VIEW
 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
 INFORMATION_SCHEMA BASE_TABLES VIEW
...
esqint: q
%ESQINT−I−TERMINATED, 22−NOV−1996 09:50:59

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

138

Brief SQL Command Logging

The brief SQL Command Logging is available on both, client and server side. The log lines are
produced at the end of each SQL request so that the response code is visible.

� Following logging lines are produced on client side:

%ESQRTS−I−ESQINFO, Clt: PREPARE cnt= 7/ 3 rsp=0
 | | | |
 | | | |
 | | | response code
 | | |
 | | C/S communication count
 | |
 | SQL request count
 |
 SQL statement

� Following logging lines are produced on server side:

30−NOV 14:00:07.58 Th0: PREPARE −cnt= 7/ 2 usr=wsesq7:JOHN rsp=0
 | | | | | | |
 | | | | | | |
 | | | | | | response
 | | | | | | code
 | | | | | |
 | | | | | CONNECT client
 | | | | | user ID
 | | | | |
 | | | | Client node name
 | | | |
 | | | C/S communication count
 | | |
 | | SQL request count
 | |
 | + : Meta program found in the catalog buffer
 | − : Meta program loaded into the catalog buff.
 | = : Meta program generated and loaded
 |
 SQL statement

Logging Facilities
4

139

� Especially for the SQL statement FETCH (with MULTIFETCH) following logging lines are
produced:
30−NOV 14:00:08.37 Th0: mFETCH (rf=16) +cnt= 12/ 7 usr=wsesq7:JOHN rsp=0

MULTIFETCH was executed on server side. 16 records were fetched and transported to the
client. ”rf” stands for ”records fetched”.
%ESQRTS−I−ESQINFO, Clt: mFETCH (rf=16) cnt= 12/ 8 rsp=0

MULTIFETCH was executed on client side. 16 records were received by the client. First record
is offered to the application.
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=2) cnt= 13/ 8 rsp=0

Single FETCH was executed on client side only. The second record on client side is offered to
the application. ”rp” stands for ”record position”.

Example:

$ esqlg:=cmd
$ show symbol esqlg
 ESQLG = ”CMD”
$ esqint
%ESQINT−I−STARTED, 22−NOV−1996 09:55:48, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’CMD’
%ESQRTS−I−ESQINFO, Clt: CONNECT cnt= 1/ 2 rsp=0
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;
%ESQRTS−I−ESQINFO, Clt: PREPARE cnt= 7/ 3 rsp=0
%ESQRTS−I−ESQINFO, Clt: DESCRIBE cnt= 8/ 4 rsp=0
%ESQRTS−I−ESQINFO, Clt: DESCRIBE cnt= 9/ 5 rsp=0
%ESQRTS−I−ESQINFO, Clt: DYN DECL CURSO cnt= 10/ 6 rsp=0
%ESQRTS−I−ESQINFO, Clt: OPEN CURSOR cnt= 11/ 7 rsp=0
%ESQRTS−I−ESQINFO, Clt: mFETCH (rf=16) cnt= 12/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=2) cnt= 13/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=3) cnt= 14/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=4) cnt= 15/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=5) cnt= 16/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=6) cnt= 17/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=7) cnt= 18/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=8) cnt= 19/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=9) cnt= 20/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=10) cnt= 21/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=11) cnt= 22/ 8 rsp=0

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

140

%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=12) cnt= 23/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=13) cnt= 24/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=14) cnt= 25/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=15) cnt= 26/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=16) cnt= 27/ 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: mFETCH (rf=12) cnt= 28/ 9 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=2) cnt= 29/ 9 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=3) cnt= 30/ 9 rsp=0
%ESQRTS−I−ESQINFO, Clt: sFETCH (rp=4) cnt= 31/ 9 rsp=0

 TABLE_SCHEMA TABLE_NAME TABLE_TYPE

 INFORMATION_SCHEMA SERVER_INFO VIEW
 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
 ...
esqint: q
%ESQRTS−I−ESQINFO, Clt: CLOSE CURSOR cnt= 32/ 10 rsp=0
%ESQRTS−I−ESQINFO, Clt: DISCONNECT cnt= 33/ 11 rsp=0
%ESQINT−I−TERMINATED, 22−NOV−1996 09:56:12
%ESQRTS−I−ESQINFO, Clt: DISCONNECT ALL cnt= 34/ 11 rsp=0

Logging Facilities
4

141

Static SQL Command-String Logging

The Static SQL Command String Logging produces log lines containing the complete SQL
statements. This logging type is available for runtime and for precompilation time. Two logging
formats are supported:

� 80-character Block Format (ESQLG:=STATEMENT)

� Continuous Stream Format (ESQLG:=STATEMENT=STREAM)

Example:

$ esqlg:=statement
$ show symbol esqlg
 ESQLG = ”STATEMENT”
$ esqint
%ESQINT−I−STARTED, 22−NOV−1996 10:10:07, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’STATEMENT’
%ESQRTS−I−ESQINFO, CONNECT TO DEFAULT USER : ”&sql_user[0]” CHARACTER(,32,0,0,8
_01 ,33)
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;
%ESQRTS−I−ESQINFO, PREPARE : ”&sql_id[0]” CHARACTER(,32,0,0,46,33) FROM : ”&sma
_01 ll_sql_statement[0]” CHARACTER(,128,0,0,47,129)
%ESQRTS−I−ESQINFO, DESCRIBE : ”&sql_id[0]” CHARACTER(,32,0,0,55,33) INTO INPUT
_01 : ”if_sql_input_sqlda” (”if_sql_input_sqlda” POINTER (,0,0,0,0))
%ESQRTS−I−ESQINFO, DESCRIBE : ”&sql_id[0]” CHARACTER(,32,0,0,56,33) INTO OUTPUT
_01 : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, DECLARE : ”&sql_cursor[0]” CHARACTER(,18,0,0,87,19) CURSOR F
_01 OR : ”&sql_id[0]” CHARACTER(,32,0,0,88,33)
%ESQRTS−I−ESQINFO, OPEN : ”&sql_cursor[0]” CHARACTER(,18,0,0,89,19)
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

142

_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))
%ESQRTS−I−ESQINFO, FETCH : ”&sql_cursor[0]” CHARACTER(,18,0,0,91,19) USING DESC
_01 RIPTOR : ”if_sql_output_sqlda” (”if_sql_output_sqlda” POINTER (,0,0,0,1))

 TABLE_SCHEMA TABLE_NAME TABLE_TYPE

 INFORMATION_SCHEMA SERVER_INFO VIEW
 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
...
esqint: q
%ESQRTS−I−ESQINFO, CLOSE : ”&sql_cursor[0]” CHARACTER(,18,0,0,90,19)
%ESQRTS−I−ESQINFO, DISCONNECT CURRENT
%ESQINT−I−TERMINATED, 22−NOV−1996 10:10:20
%ESQRTS−I−ESQINFO, DISCONNECT ALL

Logging Facilities
4

143

Dynamic SQL Command-String Logging

The Static SQL Command String Logging produces log lines containing the dynamic SQL
statements passed on to a PREPARE or EXECUTE IMMEDIATE statement. Two logging
formats are supported:

� 80-character Block Format (ESQLG:=DYNHVS)

� Continuous Stream Format (ESQLG:=DYNHVS=STREAM)

Example:
$ esqlg:=dynhvs
$ show symbol esqlg
 ESQLG = ”DYNHVS”
$ esqint
%ESQINT−I−STARTED, 22−NOV−1996 10:03:46, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’DYNHVS’
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;
%ESQRTS−I−ESQINFO, HV01: sql_i
%ESQRTS−I−ESQINFO, HV02: select * from information_schema.table

 TABLE_SCHEMA TABLE_NAME TABLE_TYPE

 INFORMATION_SCHEMA SERVER_INFO VIEW
 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
 ...
esqint: q
%ESQINT−I−TERMINATED, 22−NOV−1996 10:04:03

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

144

Client/Server Communication Logging

The Client/Server Communication Logging gives information about messages sent between the
ADABAS SQL Server client and the ADABAS SQL Server. It can be enabled on client and/or
on server side and applies only to real client/server mode (not in linked-in mode):

� Following logging lines are produced on client side for one SQL request within one session:

%ESQRTS−I−ESQINFO, Clt: sending an OPEN to WSESQ7:ESQV14 ...
%ESQRTS−I−ESQINFO, Clt: ONS cid=0 sndl=0 rcvl=0 retl=0
%ESQRTS−I−ESQINFO, Clt: ONS cid=400842E8 sndl=0 rcvl=0 retl=0
%ESQRTS−I−ESQINFO, Clt: ... OPEN was successful
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=400842E8 sndl=1024 rcvl=338 retl=0
%ESQRTS−I−ESQINFO, Clt: QNS cid=400842E8 sndl=1024 rcvl=338 retl=338
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CLOSE ...
%ESQRTS−I−ESQINFO, Clt: CNS cid=400842E8 sndl=0 rcvl=0 retl=310
%ESQRTS−I−ESQINFO, Clt: CNS cid=400842E8 sndl=0 rcvl=0 retl=310
%ESQRTS−I−ESQINFO, Clt: ... CLOSE was successful

%ESQRTS−I−ESQINFO, Clt: QNS cid=400842E8 sndl=1024 rcvl=338 retl=0
 ||| | | | |

 ||| | | | returned
 ||| | | | length
 ||| | | |
 ||| | | receive−buffer length
 ||| | |
 ||| | send−buffer length
 ||| |
 ||| connection ID
 |||
 ||Mode S : synchronous
 ||
 |Type N : native
 |
 Function O : open

Q : request
 C : close

Logging Facilities
4

145

� Following logging lines are produced on server side for one SQL request within one session:

01−DEC 10:47:47.51 Th2: f=ION c=1, , l=0,0,0
01−DEC 10:47:52.30 Th2: waiting for a request ...
01−DEC 10:50:41.60 Th2: f=LOS c=0,grg ,WSESQ7 l=0,8240,0
01−DEC 10:50:41.60 Th2: accept OPEN
01−DEC 10:50:41.61 Th2: f=AOS c=40030A08,grg ,WSESQ7 l=0,8240,0
01−DEC 10:50:41.61 Th2: waiting for a request ...
01−DEC 10:50:41.63 Th2: f=LQS c=40030A08,grg ,WSESQ7 l=0,8240,1024
01−DEC 10:50:45.89 Th2: sending the reply
01−DEC 10:50:45.90 Th2: f=PQS c=40030A08,grg ,WSESQ7 l=338,0,0
01−DEC 10:50:45.90 Th2: waiting for a request ...
01−DEC 10:51:01.33 Th2: f=LCS c=40030A08,grg ,WSESQ7 l=0,8240,0
01−DEC 10:51:01.33 Th2: accept CLOSE
01−DEC 10:51:01.34 Th2: f=PCS c=40030A08,grg ,WSESQ7 l=0,8240,0

01−DEC 10:50:41.63 Th2: f=LQS c=40030A08,grg ,WSESQ7 l=0,8240,1024
 ||| | | | | | |
 ||| | | | | | returned
 ||| | | | | | length
 ||| | | | | |
 ||| | | | | receive−buffer
 ||| | | | | length
 ||| | | | |

 ||| | | | send−buffer length
 ||| | | |

 ||| | | client node name
 ||| | |
 ||| | OS client user−ID
 ||| |

 ||| connection ID
 |||

 ||Mode S : synchronous
 ||

 |Type O : open
 | Q : requet
 | C : close

 |
 Function I : initialise

 L : listen
A : accept open
P : reply / close

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

146

 Example:

$ esqlg:=csci
$ show symbol esqlg
 ESQLG == ”CSCI”
$ esqset ESQ140AT
$ type esq$srvdir:startup.com
 $ esqlg:== csci
$ esqstart
%RUN−S−PROC_ID, identification of created process is 00000E45
%ESQSTART−I−STARTDET, Server ESQ140AT started as detached process
$ esqint
%ESQRUN−I−PAR, Using parameter file ESQRUN.PAR
%ESQINT−I−STARTED, 14−JAN−1997 13:41:28, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:
%ESQRTS−I−ESQINFO, ESQLG is enabled for ’CSCI’
%ESQRTS−I−ESQINFO, Clt: CSCI ident 1/1
%ESQRTS−I−ESQINFO, Clt: sending an OPEN to SCALOS:ESQ140AT ...
%ESQRTS−I−ESQINFO, Clt: ONN cid=0 sndl=0 rcvl=0 retl=0
%ESQRTS−I−ESQINFO, Clt: ONN cid=2FEB48 sndl=0 rcvl=0 retl=0
%ESQRTS−I−ESQINFO, Clt: ... OPEN was successful
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=1122 rcvl=338 retl=0
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=1122 rcvl=338 retl=338
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=432 rcvl=342 retl=338
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=432 rcvl=342 retl=342
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=306 rcvl=1532 retl=342
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=306 rcvl=1532 retl=1532
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=306 rcvl=1532 retl=1532
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=306 rcvl=1532 retl=1532
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=304 rcvl=310 retl=1532
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=304 rcvl=310 retl=310
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=264 rcvl=310 retl=310

Logging Facilities
4

147

%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=264 rcvl=310 retl=310
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=324 rcvl=2118 retl=310
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=324 rcvl=2118 retl=2118
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=324 rcvl=2118 retl=2118
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=324 rcvl=2118 retl=2118
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply

 TABLE_SCHEMA TABLE_NAME TABLE_TYPE

 INFORMATION_SCHEMA SERVER_INFO VIEW
 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
...
esqint: quit
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=264 rcvl=310 retl=2118
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=264 rcvl=310 retl=310
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CSCI request ...
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=264 rcvl=310 retl=310
%ESQRTS−I−ESQINFO, Clt: QNS cid=2FEB48 sndl=264 rcvl=310 retl=310
%ESQRTS−I−ESQINFO, Clt: ... received CSCI reply
%ESQRTS−I−ESQINFO, Clt: sending a CLOSE ...
%ESQRTS−I−ESQINFO, Clt: CNS cid=2FEB48 sndl=0 rcvl=0 retl=310
%ESQRTS−I−ESQINFO, Clt: CNS cid=2FEB48 sndl=0 rcvl=0 retl=310
%ESQRTS−I−ESQINFO, Clt: ... CLOSE was successful
%ESQINT−I−TERMINATED, 14−JAN−1997 14:09:00
$ esqlog
Log file of ESQ server ESQ140AT:
%ESQSRV−I−EXECUTE, Executing SAG$ROOT:[ESQ.ESQ140AT]STARTUP.COM;1 ...
%ESQINI−I−ESQINFO, ESQLG is enabled for ’CSCI’
%ESQINI−I−ESQINFO, Software AG ADABAS SQL Server starting up on ALPHA
AXP/OpenVMS
%ESQINI−I−ESQINFO, Version: 1.4B.2.1
%ESQINI−I−ESQINFO, Startup time: 14−JAN−1997 14:07:37
%ESQINI−I−ESQINFO, Server name: ESQ140AT on node SCALOS
%ESQINI−I−ESQINFO, Server type: CSCI
%ESQINI−I−ESQINFO, Catalog files: DB 222, Files 30−32
%ESQINI−I−ESQINFO, Server pid: 3669
%ESQINI−I−ESQINFO, Server image: SAG$ROOT:[ESQ.V142]ESQINI.EXE;1
%ESQINI−I−ESQINFO, Thread image: SAG$ROOT:[ESQ.V142]ESQSRV.EXE;1

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

148

%ESQINI−I−ESQINFO, Thread library: SAG$ROOT:[ESQ.V142]ESQTHS142.EXE
%ESQINI−I−ESQINFO, Threads: 3
%ESQINI−I−ESQINFO, Sessions/Thread: 1
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’CSCI’
14−JAN 14:07:38.56 Th1: initializing C/S Interface
%ESQSRV−I−ESQINFO, Th1: compile−time CSC_VERSION=1, run−time csc.ident=1
14−JAN 14:07:39.09 Th1: f=ION c=1, , l=0,0,0
14−JAN 14:07:39.09 Server ESQ140AT Thread 1 pid 3671 up and running
14−JAN 14:07:39.09 Th1: waiting for a request ...
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’CSCI’
14−JAN 14:07:41.40 Th2: initializing C/S Interface
%ESQSRV−I−ESQINFO, Th2: compile−time CSC_VERSION=1, run−time csc.ident=1
14−JAN 14:07:41.51 Th2: f=ION c=1, , l=0,0,0
14−JAN 14:07:41.51 Server ESQ140AT Thread 2 pid 3672 up and running
14−JAN 14:07:41.51 Th2: waiting for a request ...
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’CSCI’
14−JAN 14:07:42.49 Th3: initializing C/S Interface
%ESQSRV−I−ESQINFO, Th3: compile−time CSC_VERSION=1, run−time csc.ident=1
14−JAN 14:07:42.60 Th3: f=ION c=1, , l=0,0,0
14−JAN 14:07:42.60 Server ESQ140AT Thread 3 pid 3673 up and running
14−JAN 14:07:42.60 Th3: waiting for a request ...
14−JAN 14:07:48.34 Server ESQ140AT up and running
14−JAN 14:08:48.71 Th3: f=LOS c=0,SAGDBA ,SCALOS l=0,8240,0
14−JAN 14:08:48.72 Th3: accept OPEN
14−JAN 14:08:48.72 Th3: f=AOS c=4005E0,SAGDBA ,SCALOS l=0,8240,0
14−JAN 14:08:48.72 Th3: waiting for a request ...
14−JAN 14:08:48.73 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,1122
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’CSCI’
14−JAN 14:08:49.28 Th3: sending the reply
14−JAN 14:08:49.29 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=338,0,0
14−JAN 14:08:49.29 Th3: waiting for a request ...
14−JAN 14:08:56.84 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,432
14−JAN 14:08:57.46 Th3: sending the reply
14−JAN 14:08:57.46 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=342,0,0
14−JAN 14:08:57.46 Th3: waiting for a request ...
14−JAN 14:08:57.47 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,306
14−JAN 14:08:57.48 Th3: sending the reply
14−JAN 14:08:57.48 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=1532,0,0
14−JAN 14:08:57.48 Th3: waiting for a request ...
14−JAN 14:08:57.49 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,306
14−JAN 14:08:57.50 Th3: sending the reply
14−JAN 14:08:57.50 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=1532,0,0
14−JAN 14:08:57.50 Th3: waiting for a request ...
14−JAN 14:08:57.51 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,304
14−JAN 14:08:57.52 Th3: sending the reply
14−JAN 14:08:57.52 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=310,0,0
14−JAN 14:08:57.52 Th3: waiting for a request ...

Logging Facilities
4

149

14−JAN 14:08:57.53 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,264
14−JAN 14:08:57.55 Th3: sending the reply
14−JAN 14:08:57.55 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=310,0,0
14−JAN 14:08:57.55 Th3: waiting for a request ...
14−JAN 14:08:57.56 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,324
14−JAN 14:08:58.15 Th3: sending the reply
14−JAN 14:08:58.15 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=2118,0,0
14−JAN 14:08:58.15 Th3: waiting for a request ...
14−JAN 14:08:58.18 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,324
14−JAN 14:08:58.28 Th3: sending the reply
14−JAN 14:08:58.28 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=2118,0,0
14−JAN 14:08:58.28 Th3: waiting for a request ...
14−JAN 14:09:00.08 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,264
14−JAN 14:09:00.08 Th3: sending the reply
14−JAN 14:09:00.08 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=310,0,0
14−JAN 14:09:00.08 Th3: waiting for a request ...
14−JAN 14:09:00.09 Th3: f=LQS c=4005E0,SAGDBA ,SCALOS l=0,8240,264
14−JAN 14:09:00.12 Th3: sending the reply
14−JAN 14:09:00.12 Th3: f=PQS c=4005E0,SAGDBA ,SCALOS l=310,0,0
14−JAN 14:09:00.12 Th3: waiting for a request ...
14−JAN 14:09:00.13 Th3: f=LCS c=4005E0,SAGDBA ,SCALOS l=0,8240,0
14−JAN 14:09:00.13 Th3: accept CLOSE
14−JAN 14:09:00.13 Th3: f=PCS c=4005E0,SAGDBA ,SCALOS l=0,8240,0
14−JAN 14:09:00.13 Th3: waiting for a request ...

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

150

Session Logging on Server Side

Session Logging only works on the server side and, only if CSCI is used, for C/S
communication. It gives information about:

� Opening of a client session

� Closing of a client session

� Time-out of a client session

This type of logging is also switched on with the SQL command logging (CMD).

Example:

$ esqlg:=ses
$ sh sym esqlg
 ESQLG = ”SES”
$ esqset ESQ140AT
$ type esq$srvdir:startup.com
$ esqlg:== ses
$ esqstart
%RUN−S−PROC_ID, identification of created process is 00000C64
%ESQSTART−I−STARTDET, Server ESQ140AT started as detached process
Log file of ESQ server ESQ140AT:
%ESQSRV−I−EXECUTE, Executing SAG$ROOT:[ESQ.ESQ140AT]STARTUP.COM;2 ...
%ESQINI−I−ESQINFO, ESQLG is enabled for ’SES’
%ESQINI−I−ESQINFO, Software AG ADABAS SQL Server starting up on ALPHA
AXP/OpenVMS
%ESQINI−I−ESQINFO, Version: 1.4B.2.1
%ESQINI−I−ESQINFO, Startup time: 14−JAN−1997 14:40:06
%ESQINI−I−ESQINFO, Server name: ESQ140AT on node SCALOS
%ESQINI−I−ESQINFO, Server type: CSCI
%ESQINI−I−ESQINFO, Catalog files: DB 222, Files 30−32
%ESQINI−I−ESQINFO, Server pid: 3172
%ESQINI−I−ESQINFO, Server image: SAG$ROOT:[ESQ.V142]ESQINI.EXE;1
%ESQINI−I−ESQINFO, Thread image: SAG$ROOT:[ESQ.V142]ESQSRV.EXE;1
%ESQINI−I−ESQINFO, Thread library: SAG$ROOT:[ESQ.V142]ESQTHS142.EXE
%ESQINI−I−ESQINFO, Threads: 3
%ESQINI−I−ESQINFO, Sessions/Thread: 1
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’SES’
14−JAN 14:40:07.05 Server ESQ140AT Thread 1 pid 3430 up and running
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’SES’
14−JAN 14:40:10.13 Server ESQ140AT Thread 2 pid 3431 up and running
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’SES’
14−JAN 14:40:11.22 Server ESQ140AT Thread 3 pid 3688 up and running
14−JAN 14:40:16.97 Server ESQ140AT up and running

Logging Facilities
4

151

$ esqint
%ESQRUN−I−PAR, Using parameter file ESQRUN.PAR
%ESQINT−I−STARTED, 14−JAN−1997 14:41:51, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’SES’
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;

 TABLE_SCHEMA TABLE_NAME TABLE_TYPE

 INFORMATION_SCHEMA SERVER_INFO VIEW
 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
...
esqint: q
%ESQINT−I−TERMINATED, 14−JAN−1997 14:42:07
$ esqlog
Log file of ESQ server ESQ140AT:
%ESQSRV−I−EXECUTE, Executing SAG$ROOT:[ESQ.ESQ140AT]STARTUP.COM;2 ...
%ESQINI−I−ESQINFO, ESQLG is enabled for ’SES’
%ESQINI−I−ESQINFO, Software AG ADABAS SQL Server starting up on ALPHA
AXP/OpenVMS
%ESQINI−I−ESQINFO, Version: 1.4B.2.1
%ESQINI−I−ESQINFO, Startup time: 14−JAN−1997 14:40:06
%ESQINI−I−ESQINFO, Server name: ESQ140AT on node SCALOS
%ESQINI−I−ESQINFO, Server type: CSCI
%ESQINI−I−ESQINFO, Catalog files: DB 222, Files 30−32
%ESQINI−I−ESQINFO, Server pid: 3172
%ESQINI−I−ESQINFO, Server image: SAG$ROOT:[ESQ.V142]ESQINI.EXE;1
%ESQINI−I−ESQINFO, Thread image: SAG$ROOT:[ESQ.V142]ESQSRV.EXE;1
%ESQINI−I−ESQINFO, Thread library: SAG$ROOT:[ESQ.V142]ESQTHS142.EXE
%ESQINI−I−ESQINFO, Threads: 3
%ESQINI−I−ESQINFO, Sessions/Thread: 1
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’SES’
14−JAN 14:40:07.05 Server ESQ140AT Thread 1 pid 3430 up and running
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’SES’
14−JAN 14:40:10.13 Server ESQ140AT Thread 2 pid 3431 up and running
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’SES’
14−JAN 14:40:11.22 Server ESQ140AT Thread 3 pid 3688 up and running
14−JAN 14:40:16.97 Server ESQ140AT up and running
14−JAN 14:41:53.53 Th3: OPEN SESSION csusr=SCALOS:SAGDBA
%ESQSRV−I−ESQINFO, ESQLG is enabled for ’SES’
14−JAN 14:42:07.28 Th3: CLOSE SESSION csusr=SCALOS:SAGDBA

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

152

Schema Identifier Logging

ADABAS SQL Server schema identifier logging gives information about the schema identifier
setting on the client and on the server side.

Example:

$ esqlg:=schemaident
$ sh sym esqlg
 ESQLG = ”SCHEMAIDENT”
$ esqint
%ESQINT−I−STARTED, 14−JAN−1997 14:58:38, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’SCHEMAIDENT’
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;
14−JAN 14:58:46.80 Th0: schema−ident srv=ESQ clt=ESQ
14−JAN 14:58:46.95 Th0: schema−ident srv=ESQ clt=ESQ
14−JAN 14:58:46.95 Th0: schema−ident srv=ESQ clt=ESQ
14−JAN 14:58:46.95 Th0: schema−ident srv=ESQ clt=ESQ
14−JAN 14:58:46.96 Th0: schema−ident srv=ESQ clt=ESQ
14−JAN 14:58:46.98 Th0: schema−ident srv=ESQ clt=ESQ
14−JAN 14:58:47.58 Th0: schema−ident srv=ESQ clt=ESQ

 TABLE_SCHEMA TABLE_NAME TABLE_TYPE

 INFORMATION_SCHEMA SERVER_INFO VIEW
 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
...
esqint: quit
14−JAN 14:58:56.21 Th0: schema−ident srv=ESQ clt=ESQ
%ESQINT−I−TERMINATED, 14−JAN−1997 14:58:56

Logging Facilities
4

153

User Exit Logging

The User Exit Logging gives information about the execution of user exits. Following
information is logged:

� call of any user exit

� return of any user exit

� important parameters and return values

Example:

$ esqlg:=userexit
$ show symbol esqlg
 ESQLG = ”USEREXIT”
$ esqint
%ESQINT−I−STARTED, 14−JAN−1997 15:00:46, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’USEREXIT’
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select yacht_id from yacht;

%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:OP)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:LF)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:LF)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:L2)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:S1)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:2158, cc:OP)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:L3)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:S1)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:S1)

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

154

%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:S2)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:L1)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:RC)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:2158, cc:LF)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:L3)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:S1)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:L3)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:2158, cc:L2)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
 YACHT_ID

 6230
 6228
 6200
 5001
 157
 156
 155
 154
 153
 152
 151
 150
 149
 148
 147
 146
 145
 144
esqint: q

%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:2158, cc:BT)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:2158, cc:CL)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)
%ESQRTS−I−ESQINFO, Th0: > uex5(sid:2158, con:−1, cc:CL)
%ESQRTS−I−ESQINFO, Th0: < uex5(rc=0)

%ESQINT−I−TERMINATED, 14−JAN−1997 15:01:24

Logging Facilities
4

155

Elapsed Time Logging

Elapsed Time Logging gives information about the total elapsed time of each SQL request as
well as split up into the elapsed time of each software component involved in milliseconds and
as a percentage.

The elapsed time values displayed are:

tot total elapsed time for one SQL request

clt elapsed time spent by the ADABAS SQL Server client software

net elapsed time spent by the communication to the server

srv elapsed time spent by ADABAS SQL Server server

vo/net elapsed time spent by the communication to ADABAS

ada elapsed time spent by the ADABAS nucleus

appl

clt

srv

net

Client Application

ADABAS SQL Server Client Software

Client/Server Communication

ADABAS SQL Server Server

ada

vo/net Communication to ADABAS

ADABAS Nucleus

total time

Figure 4-1: Data Flow and Time Portions

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

156

Log lines of the following style are displayed with each SQL request:

%ESQRTS−I−Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−Clt: ms 7599 9 42 4013 640 2895
%ESQRTS−I−Clt: % 100 0 1 53 8 38

Note:
If ESQLG is set to “ALLTIME” or “TIME=ALL” then additionally the total times spent on each
software layer will be displayed.

Example:

$ esqlg:=time
$ show symbol esqlg
 ESQLG = ”TIME”
$ esqint
%ESQINT−I−STARTED, 14−JAN−1997 15:05:18, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’TIME’
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 163 21 0 110 32 0
%ESQRTS−I−ESQINFO, Clt: % 100 13 0 67 20 0
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 153 1 0 152 0 0
%ESQRTS−I−ESQINFO, Clt: % 100 1 0 99 0 0
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 3 1 0 2 0 0
%ESQRTS−I−ESQINFO, Clt: % 100 33 0 67 0 0
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 3 0 0 3 0 0
%ESQRTS−I−ESQINFO, Clt: % 100 0 0 100 0 0
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 2 0 0 2 0 0
%ESQRTS−I−ESQINFO, Clt: % 100 0 0 100 0 0
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 19 2 0 2 4 11
%ESQRTS−I−ESQINFO, Clt: % 100 11 0 11 21 58
...
 TABLE_SCHEMA TABLE_NAME TABLE_TYPE

 INFORMATION_SCHEMA SERVER_INFO VIEW

Logging Facilities
4

157

 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
 ...
esqint: quit
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 0 0 0 0 0 0
%ESQRTS−I−ESQINFO, Clt: % 100 0 0 0 0 0
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 37 1 0 5 8 23
%ESQRTS−I−ESQINFO, Clt: % 100 3 0 14 22 62
%ESQRTS−I−ESQINFO, Clt: elapsed time for ESQ session 1066 ms
%ESQINT−I−TERMINATED, 14−JAN−1997 15:05:48
%ESQRTS−I−ESQINFO, Clt: ti−quot tot clt net srv vo/net ada
%ESQRTS−I−ESQINFO, Clt: ms 0 0 0 0 0 0
%ESQRTS−I−ESQINFO, Clt: % 100 0 0 0 0 0
%ESQRTS−I−ESQINFO, Clt: elapsed time for ESQ session 0 ms

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

158

Sort Logging

When using ORDER BY or GROUP BY clauses, ADABAS SQL Server is in some cases forced
to perform an explicit internal sorting of data. The sorting itself is done by the VO layer of the
ADABAS SQL Server. This implies that on different platforms different sorting algorithms are
used. This sorting may become a bottleneck during processing. To allow monitoring and
analysis of the sort step, a special sort logging is offered by ADABAS SQL Server.

If the symbol ESQLG is set to “SORT”, the sort step will log statistical information about the
resource usage. These statistics can be analyzed. Based on the analysis, default sort buffer sizes
may be newly assigned, thus improving the performance.

Example:

$ esqlg:=sort
$ show symbol esqlg
 ESQLG = ”SORT”
$ esqint
%ESQINT−I−STARTED, 14−JAN−1997 15:11:23, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’SORT’
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select sailor_name,sailor_id from sagtours.sailor order by 1,2;
%SAGVO−I−SORTBYTES, sum 16452, core 16380, file 72, core_size 16KB
%SAGVO−I−SORTRECS, sum 457, core 455, file 2, ratio 99:1
%SAGVO−I−SORTTIME, sum 10, load 0, sort 10, unload 0

 SAILOR_NAME SAILOR_ID

 ADAM DERFLER 216503
 ADAM KING 215602
 AGNES GRGOIRE 209602
 ALAIN 207303
...
esqint: quit
%ESQINT−I−TERMINATED, 14−JAN−1997 15:11:44

Logging Facilities
4

159

Discussion:

SORTBYTES:

Total volume sort data : 16452 Bytes
In buffer : 16380 Bytes
In temporary file : 72 Bytes
Current core area : 16 KB (DEFAULT)
SORTRECS:
Total number of records : 457
In buffer : 455
In file : 2
Ratio buffer/temp. file : 99:1
SORTTIME:
Load time : 0 Milliseconds
Sort time : 10 Milliseconds
Unload time : 0 Millisecond
Total sort time : 10 Milliseconds

Note:
Loading/Unloading of records is performed in 16 KB chunks.

If the default sort-buffer size is set to 48 (unit = KB), the sort logging will change as follows.
$ esqsrtbuf:=48
$ show symbol esqsrtbuf
 ESQSRTBUF = ”48”
$ esqint
%ESQINT−I−STARTED, 14−JAN−1997 15:17:34, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’SORT’
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select sailor_name,sailor_id from sagtours.sailor order by 1,2;
%SAGVO−I−SORTBYTES, sum 16452, core 16452, file 0, core_size 48KB
%SAGVO−I−SORTRECS, sum 457, core 457, file 0, ratio 100:0
%SAGVO−I−SORTTIME, sum 10, load 0, sort 10, unload 0

 SAILOR_NAME SAILOR_ID

 ADAM DERFLER 216503
 ADAM KING 215602
 AGNES GRGOIRE 209602
...
esqint: quit
%ESQINT−I−TERMINATED, 14−JAN−1997 15:18:09

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

160

ADABAS Utility Logging

ADABAS SQL Server ADABAS Utility logging gives information about calls from the
ADABAS SQL Server run-time system to a ADABAS utility. ADABAS utilities are used by
ADABAS SQL Server to execute SQL DDL statements like CREATE TABLE.

Example:

$ esqlg:=adu
$ show symbol esqlg
 ESQLG = ”ADU”
$ esqint
%ESQINT−I−STARTED, 14−JAN−1997 15:21:42, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: dba
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’ADU’
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: create schema john;
%ESQINT−I−SUCCESS, SQL statement completed successfully
esqint: create table john (col1 int);
14−JAN 15:21:59.24 Th0: ADU > adafdu
%ESQRTS−I−ESQINFO, Th0: ADU − DBID=222
%ESQRTS−I−ESQINFO, Th0: ADU − FILE=243
%ESQRTS−I−ESQINFO, Th0: ADU − NAME=DBA.JOHN
%ESQRTS−I−ESQINFO, Th0: ADU − DSSIZE=10B
%ESQRTS−I−ESQINFO, Th0: ADU − NISIZE=10B
%ESQRTS−I−ESQINFO, Th0: ADU − UISIZE=10B
%ESQRTS−I−ESQINFO, Th0: ADU − MAXISN=300
%ESQRTS−I−ESQINFO, Th0: ADU − REUSE=(DS)
%ESQRTS−I−ESQINFO, Th0: ADU − FIELDS
%ESQRTS−I−ESQINFO, Th0: ADU − 01,AA,4,F,NC
;COL
1
%ESQRTS−I−ESQINFO, Th0: ADU − END_OF_FIELDS
14−JAN 15:22:02.09 Th0: ADU < rsp=0/0/0
%ESQINT−I−SUCCESS, SQL statement completed successfully
esqint: quit
%ESQINT−I−TERMINATED, 14−JAN−1997 15:22:06

Logging Facilities
4

161

Security Logging

The logging mechanism of an ADABAS SQL Server also enables logging of GRANT and
REVOKE statements and user system access via CONNECT statements. Logging for this can
be enabled via the symbol ESQLG.

Examples:

Example 1:

$ esqlg:=sec

The GRANT/REVOKE statement will be logged. If any errors occur, the corresponding
response codes are also displayed.

13−APR 13:41:19.93 Th0: VDK: GRANT SELECT, INSERT ON VDK.TABLE1 TO BRU
==> Finished (Rsp: 0)

The grant statement has successfully finished.

13−APR 13:41:59.79 Th0: BRU: GRANT UPDATE ON VDK.TABLE1 TO TRO
==> Finished (Rsp: −6702)

The grant statement has finished with an error, in this case with a security violation, i.e. the
grantor is not allowed to grant this privilege.

13−APR 13:43:42.37 Th0: VDK: GRANT ALL ON VDK.TABLE1 TO FS WITH GRANT OPTION
==> Finished (Rsp: 0)

The grant statement has successfully finished.

The CONNECT statement results in a password verification which will also be logged if
ESQLG is set to SEC.

13−APR 13:49:54.88 Th0: User VDK has connected successfully.
13−APR 13:51:28.96 Th0: Authentication error during CONNECT for user BRU.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

162

Example 2:

$ esqlg:=sec=all

In this case, additionally, every single GRANT/REVOKE step resulting from a GRANT ALL/
REVOKE ALL is logged.

13−APR 13:56:23.41 Th0: VDK: REVOKE ALL ON VDK.TABLE1 FROM AE ==> Started

A REVOKE ALL statement has started.

13−APR 13:56:23.52 Th0: VDK: REVOKE UPDATE(COL1) ON VDK.TABLE1 FROM AE
==> (generated from ALL)
13−APR 13:56:24.04 Th0: VDK: REVOKE UPDATE(COL2) ON VDK.TABLE1 FROM AE
==> (generated from ALL)
13−APR 13:56:24.11 Th0: VDK: REVOKE UPDATE(COL4) ON VDK.TABLE1 FROM AE
==> (generated from ALL)
13−APR 13:56:24.22 Th0: VDK: REVOKE SELECT ON VDK.TABLE1 FROM AE
==> (generated from ALL)
13−APR 13:56:24.30 Th0: VDK: REVOKE INSERT ON VDK.TABLE1 FROM AE
==> (generated from ALL)

The individual REVOKE steps result from the above REVOKE ALL statement.

13−APR 13:56:24.38 Th0: VDK: REVOKE ALL ON VDK.TABLE1 FROM AE ==> Finished
(Rsp: 0)

A REVOKE ALL statement has sucessfully finished.

Example 3:

$ esqlg:=−sec

No GRANT/REVOKE statements will be logged. The same is true if nothing is specified.

Logging Facilities
4

163

ESQLNK Call Logging

ESQLNK Call Logging gives information about:

� the point in time where the application is calling ESQLNK, esqerr or esqint and

� the point in time when control is returned to the application

Example:

$ esqlg:=entry
$ show symbol esqlg
 ESQLG = ”ENTRY”
$ esqint
%ESQINT−I−STARTED, 14−JAN−1997 15:26:56, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, ESQLG is enabled for ’ENTRY’
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 1
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 1 rsp=0
%ESQRTS−I−ESQINFO, Clt: > esqinf() cnt= 2
%ESQRTS−I−ESQINFO, Clt: < esqinf() cnt= 2 rsp=0
%ESQRTS−I−ESQINFO, Clt: > esqinf() cnt= 3
%ESQRTS−I−ESQINFO, Clt: < esqinf() cnt= 3 rsp=0
%ESQRTS−I−ESQINFO, Clt: > esqinf() cnt= 4
%ESQRTS−I−ESQINFO, Clt: < esqinf() cnt= 4 rsp=0
%ESQRTS−I−ESQINFO, Clt: > esqinf() cnt= 5
%ESQRTS−I−ESQINFO, Clt: < esqinf() cnt= 5 rsp=0
%ESQRTS−I−ESQINFO, Clt: > esqinf() cnt= 6
%ESQRTS−I−ESQINFO, Clt: < esqinf() cnt= 6 rsp=0
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select * from information_schema.tables;
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 7
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 7 rsp=0
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 8
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 8 rsp=0
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 9
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 9 rsp=0
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 10
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 10 rsp=0
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 11
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 11 rsp=0
..
 TABLE_SCHEMA TABLE_NAME TABLE_TYPE
INFORMATION_SCHEMA SERVER_INFO VIEW

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

164

 INFORMATION_SCHEMA INFORMATION_SCHEMA_CATALOG_NAME VIEW
 INFORMATION_SCHEMA SCHEMATA VIEW
 INFORMATION_SCHEMA CLUSTERS VIEW
 INFORMATION_SCHEMA TABLES VIEW
...
esqint: quit
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 32
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 32 rsp=0
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 33
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 33 rsp=0
%ESQINT−I−TERMINATED, 14−JAN−1997 15:27:15
%ESQRTS−I−ESQINFO, Clt: > ESQLNK() cnt= 34
%ESQRTS−I−ESQINFO, Clt: < ESQLNK() cnt= 34 rsp=0
%ESQRTS−I−ESQINFO, Clt: > esqtrm() cnt= 35
%ESQRTS−I−ESQINFO, Clt: < esqtrm() cnt= 35 rsp=0

Logging Facilities
4

165

Explain Logging

This logging facility provides information about the execution of an SQL statement within the
ADABAS SQL Server. It provides a pseudo-code representation of the execution path of the
statement. Within the pseudo-code the following information is available:

� ADABAS access commands

� Descriptors used for searching the tables

� Restriction evaluation after fetch has occurred

� Group by and order by information

� Predicates and subqueries

Detailed knowledge of ADABAS and SQL is needed in order to be able to fully interpret the
resultant logging information.

To turn the logging facility on, the ESQLG symbol must be set to EXPL as follows:.

$ esqlg:=expl

To produce an output, a DML statement must be executed. If the meta-program already exists,
then no output will be produced, but the statement needs to be one of the following types:

SELECT Explains the statements execution fully

DELETE Explains the searching phase of the delete statement

UPDATE Explains the searching phase of the update statement

INSERT Explains the searching phase on nested tables

Note:
If a view is used within the statement, then the statement is ‘view merged’. View merging is where
all references to the view are replaced by appropriate references to the base table/tables upon
which the view is based. Hence the explain logging output will not contain any view references,
rather table references.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

166

Example:

� The created view:
create view view_1 as

select start_harbor, destination_harbor
 from cruise
 where cruise_price < 1000;

� The executed statement:
select destination_harbor

from view_1
 where start_harbor = ’MIAMI’;

� The explained statement:
select destination_harbor

from cruise
 where start_harbor = ’MIAMI’
 and cruise_price < 1000;

The result of the explained statement :
 ******** Start of EXPLAIN logging ********
 for (L2 ;SAGTOURS.CRUISE−0; L2) /* GET NEXT */
 {
 (((SAGTOURS.CRUISE.START_HARBOR = ’MIAMI’)
 (SAGTOURS.CRUISE.CRUISE_PRICE < 1000)))
 }
 ******** End of EXPLAIN logging ********

Logging Facilities
4

167

ADABAS Access Commands

In an SQL query statement, there is generally some access to the underlying database. The SQL
is translated to ADABAS database access commands. The ADABAS commands that are used
in the explained statement are displayed as the actual ADABAS command names, for example,
S1, L3, L2. For details on the ADABAS commands, refer to the ADABAS Command Reference
Manual.

The Explain logging for a fetch is similar to a ‘FOR’ construct in ‘C’. It has two parts for the
ADABAS commands: one for get first record, and another for get next record. The S1 command
cannot be used in the get next section; one of the other commands, normally an L1(N) is used.
S1s and L3s are displayed before the ‘for’ loop header, along with their search buffers, rather
than as part of the loop header. Also, there is a section which shows the table name, the schema
name and the table level, whether it is LEVEL 0, 1 or 2. With an L1I, additional information
of upper and lower searching bounds is displayed before the ‘for’ loop header as with the S1s
and L3s.

Examples:

Example 1: An example fetch header for a simple table access.

select cruise_id from cruise;
******** Start of EXPLAIN logging ********
S1 (AA > 00AA EOF)
for (;SAGTOURS.CRUISE−0; L1N) /* GET NEXT */
{
}
******** End of EXPLAIN logging ********

or
select * from contract;
******** Start of EXPLAIN logging ********

for (L2;SAGTOURS.CONTRACT−0;L2) /* GET NEXT */
{
}
******** End of EXPLAIN logging ********

If a query on a clustered table is logged, then a different output is used so that the access on the
tables with lower table levels than the requested table can be documented.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

168

Example 2: The table BUILDINGS is a level 2 table.

select building_name, height
from buildings;
******** Start of EXPLAIN logging ********

for (L2 ;SAGTOURS.BUILDINGS−0; L2) /* GET NEXT */
{
 for (every occurrence SAGTOURS.BUILDINGS−1;)
 {
 if (buffer exhausted)
 L1 refill
 for (every occurrence SAGTOURS.BUILDINGS−2;)
 {
 if (buffer exhausted)
 L1 refill
 }
 }
 }
 ******** End of EXPLAIN logging ********

Here an access is made for every subtable below the requested table if the buffer for that subtable
access is exhausted. The L1 refill should only occur if the buffering factor is incorrectly set. This
factor can be altered via a DDL statement.

Logging Facilities
4

169

Descriptor Searching

Descriptor searching occurs when ADABAS S1 or L3 commands are issued. It shows what
descriptor/super descriptors and operands are used for the search criteria. The search buffer is
displayed as the ADABAS SQL Server internal format. Prefixing the search buffer is the
ADABAS command that is associated with the buffer. So a typical example of a search buffer
is:

S1 (AA = 0078 EOF)

− AA is the ADABAS shortname of the descriptor used.

− The ‘=’ is the comparison operator used for filtering unwanted records.

− The 4-digit hexadecimal number is an offset into an internal ADABAS SQL Server storage
table which holds the value that is to be compared against.

− EOF is the end-of-buffer marker, not present with L3 search buffers.

With an L3 it is possible to receive a search buffer like the following:

L3 (AA <= {temp value})

The {temp value} is a value that has not been calculated yet, i.e. it is not a constant. This may
be a value that has be retrieved from a previous table access, and therefore is not know at compile
time.

Also an L1I produces an output similar to S1s and L3s. However, they are not based on a
descriptor but on the ADABAS ISN column (SEQNO). Below is an example L1I buffer:
L1I (ISN >= 2 AND ISN <= 4)

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

170

There may be a case where an S1 may be produced without a loop. This is where a set of ISNs
needs to be established for processing multiple times or where the resultant set is accessed by
another S1. At most, this command will be executed only once for that specific table. These will
then be displayed as:

select cruise_id from cruise where exists
(select * from yacht where yacht_id > 0);
******** Start of EXPLAIN logging ********
if (first execution for SAGTOURS.YACHT−0;)
{
 S1 (AA > 006E EOF)
}
 for (R1 ;SAGTOURS.YACHT−0; L1N) /* GET NEXT */
 {
 }
 for (L2 ;SAGTOURS.CRUISE−0; L2) /* GET NEXT */
 {
 }
******** End of EXPLAIN logging ********

The other case where an S1 may be produced without a loop is where there will
only be one result returned from the S1 (a unique descriptor search). Then the
display will look like:

select * from yacht where yacht_id = 152;
******** Start of EXPLAIN logging ********

S1 (AA = 0082 EOF) on SAGTOURS.YACHT−0;
******** End of EXPLAIN logging ********

Logging Facilities
4

171

Restriction Evaluation

Restriction evaluation is the process of removing unwanted records from the set returned by the
ADABAS database access. The format of its display is similar to the same predicate in the SQL
statement that is being explained. However, the only logical connector that is displayed is the
‘OR’ operator. No ‘AND’ operators will be displayed. Therefore, between each factor, if an
‘OR’ is not displayed, then it should be assumed that the operator is an ‘AND’.

If a ‘NOT’ predicate is used, this will not be shown. The statement that is displayed will be the
negated version of the original statement according to the rules of DeMorgan’s theorem. The
data type BINARY is displayed as its hexadecimal value.

Example:

SQL Statement Explain Output

where NOT (column_1 > 65) ; (((column_1 <= 65)))

where bin_col > Y’10101100’; (((bin_col > H’AC’)))

The predicates are split up into expressions, terms and factors. Each section has its opening and
closing brackets, to mark the start and end of each. Each expression can have many terms and
each term can have many factors.

Example:
select yacht_id, yacht_name
from yacht
where yacht_id = :host_variable_1
or yacht_name = :host_variable_2
and yacht_id = 23 * yacht_length;
******** Start of EXPLAIN logging ********
for (L2 ;SAGTOURS.YACHT−0; L2) /* GET NEXT */
{
 (((SAGTOURS.YACHT.YACHT_ID = ?))
 OR ((SAGTOURS.YACHT.YACHT_NAME = ?)
 (SAGTOURS.YACHT.YACHT_ID = 23 * SAGTOURS.YACHT.YACHT_LENGTH)))
}
******** End of EXPLAIN logging ********

Note:
The ’?’ is used to indicate a host variable or a parameter marker.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

172

Grouping and Ordering

These actions are caused by the GROUP and ORDER clauses of SQL. An order clause may be
obsolete if the equivalent occurs in the group clause or if it can be implemented by an ordered
retrieval (L3). In the output, there is an indication of what sorting is done, and then what
constraints are done on each of the groups. The constraints are defined in a HAVING clause.
Each SQL statement with grouping will, at its most inner point of the query, have a ‘save tuple’
command.

Example:

select yacht_type from yacht
group by yacht_type
having min(yacht_name) =’AQUIVA’;
******** Start of EXPLAIN logging ********
for (L2 ;SAGTOURS.YACHT−0; L2) /* GET NEXT */
{
 save tuple
}
Sort by:
 SAGTOURS.YACHT.YACHT_TYPE
for (every group)
{
 HAVING:
 (((MIN() = ’AQUIVA’)))
}
******** End of EXPLAIN logging ********

Logging Facilities
4

173

Predicates and Subqueries

The predicates BETWEEN and IN are not displayed in their original versions. The BETWEEN
is transformed to a range consisting of an upper and a lower bound value. IN predicates are
transformed to comparison predicates, which are connected by an OR.

Example:

SQL Statement Explain Output

where column_1 between 3 and 78; (((table_name.column_1 >= 3)
(table_name.column_1 <= 78)))

where column_1 in (12, 13, 14) (((table_name.column_1 = 12))
((table_name.column_1 = 13))
((table_name.column_1 = 14)))

Other predicates are not transformed.

There are two sorts of subqueries: there are those that can be solved before the main execution,
and then there are those that are solved during the main execution. If a subquery contains a
reference to a table declared in the outer query then no distinction is made about which table
it actual is if the tables have the same name.

In predicates where a subquery is used, what is displayed depends on the type of subquery. Those
that have been solved before the main query execution are replaced by ‘pre_evaluated
subquery’. Those that are to be executed within the main execution because of the need of values
obtained from outside the subquery or because there is more than one record returned are
displayed at the point where they would be executed.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

174

Example:

select id_customer
from contract
where id_cruise = ALL(select cruise_id from cruise);
******** Start of EXPLAIN logging ********
for (L2 ;SAGTOURS.CONTRACT−0; L2) /* GET NEXT */
{
 (((SAGTOURS.CONTRACT.ID_CRUISE =)))
 S1 (AA <> 0096 EOF)
 for (;SAGTOURS.CRUISE−0; L1N) /* GET NEXT */
 {
 }
}

******** End of EXPLAIN logging ********

If the ‘NOT’ predicate is used with an EXISTS, where the subquery has an outer reference, then
any table joins will show the inner table columns first.

Example:

select * from person a
where NOT EXISTS (select * from yacht b

 where a.person_id >= b.id_owner);

is explained as:

 for (L2 ;SAGTOURS.PERSON−0; L2) /* GET NEXT */
 {

for (L2 ;SAGTOURS.YACHT−0; L2) /* GET NEXT */
 {

 (((SAGTOURS.YACHT.ID_OWNER <= SAGTOURS.PERSON.PERSON_ID)))
}

 }

UNIONs have no special representation within Explain. Each part of the UNION is treated as
a separate statement, and the representation of the UNIONs execution path is placed one part
after another.

Logging Facilities
4

175

Example:

This is an example of a subquery which can be evaluated before the main execution:

select cruise_id, destination_harbor
from cruise
where cruise_price < (select min(cruise_price)
 from cruise
 where id_yacht < 145);
******** Start of EXPLAIN logging ********
for (L2 ;SAGTOURS.CRUISE−0; L2) /* GET NEXT */
{
 (((SAGTOURS.CRUISE.ID_YACHT < 145)))
}
for (L2 ;SAGTOURS.CRUISE−0; L2) /* GET NEXT */
{
 (((SAGTOURS.CRUISE.CRUISE_PRICE < {pre−evaluated subquery})))

}
******** End of EXPLAIN logging ********

Example:

This is an example of a level 1 subtable:

select city_name, population
from cities;
******** Start of EXPLAIN logging ********
for (L2 ;SAGTOURS.CITIES−0; L2) /* GET NEXT */
{
 for (every occurrence SAGTOURS.CITIES−1;)
 {
 if (buffer exhausted)
 L1 refill
 }
}
******** End of EXPLAIN logging ********

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

176

Additional Logging Facilities

ADABAS Command Logging

In terms of ADABAS, the ADABAS SQL Server is an application program which processes
SQL requests. To process SQL requests the ADABAS SQL Server makes use of the standard
ADABAS call interface. A detailed discussion of the interaction with ADABAS is given in the
ADABAS SQL Server Programmer’s Guide, Appendix D.

To allow the monitoring and analysis of an application, the ADABAS SQL Server offers the
possibility to log the usage of ADABAS. In addition to this, the ADABAS command logging
may be used for trouble shooting.

Due to its internal structure, the ADABAS SQL Server has two software layers which logically
interface to ADABAS:

� The AI (ADABAS Interface) layer

This layer maps CLIENT contexts to the matching ADABAS session contexts (“User queue
elements”) and performs various optimizations (Multifetch, RC optimization, and so on.)

� The VO (Virtual Operating-system) layer

This layer performs the real “call ADABAS()” for different contexts.

Logging Facilities
4

177

Based on this, the ADABAS SQL Server offers four logging points:

1 AI − LAYER 4

ADALNK

COMMUNICATION

ADABAS

ADABAS SQL Server

adabas()

ai_ada()

vo_ada()2 VO − LAYER 3

Log Point(1) Upon entering the AI layer (AI IN)
Log Point(2) Upon entering the VO layer (VO IN)
Log Point(3) Upon leaving the VO layer (VO OUT)
Log Point(4) Upon leaving the AI layer (AI OUT)

All the above log points offer the standard ADABAS call interface, consisting of:

Control Block (CB)
Format Buffer (FB)
Record Buffer (RB)
Search Buffer (SB)
Value Buffer (VB)
ISN Buffer (IB)

Each buffer can be displayed in part or full.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

178

Note:
Remember that, in case of Multifetch, the buffers may be really huge (up to 32KB). So great care
should be taken if full buffer logging is chosen.

Additionally, there is also an ADABAS command log (CLOG) style logging available. This
logging is done at the log point ”VO OUT” (right after returning from the real “call
ADABAS()”) and provides a compact yet informative logging.

Enabling ADABAS SQL Server ADABAS Command Logging

The ADABAS SQL Server ADABAS command logging is enabled and controlled via the
ADABAS SQL Server parameter file. Depending on whether logging is to be enabled for the
complete server or just a particular client, it is marked in the server’s or in the client’s parameter
file in the GLOBAL section.

The active logging is defined as a union of the server’s parameter settings and the client’s
parameter settings.

Example: Enabling ADABAS CLOG-style logging on server side

/*##
*
* File name : esqsrv.par
*
* Description: ADABAS SQL Server Server parameter file
*
 ##*/
 GLOBAL
 BEGIN
 ...
 ADABAS LOG (CLOG)
 ...
 END

Logging Facilities
4

179

Syntax examples for ADABAS logging specification:
ADABAS LOG (CLOG)

Does a compact logging at the “VO OUT” log point.
ADABAS LOG (CLOG, VO OUT(CB(FULL)))

Does a compact logging at the “VO OUT” log point. Additionally, the ADABAS CB is logged
at the “VO IN” log point.
ADABAS LOG (AI OUT (CB(10,10),SB(FULL),RB(FULL)))

At the log point “AI OUT”, the first 10 and the last 10 Bytes of the CB, and the whole SB and
RB are logged.
ADABAS LOG (AI IN(FULL))

At the log point ”AI IN”, all buffers (CB,FB,RB,SB,IB,VB) are logged in the full length.
ADABAS LOG (FULL)

At all four log point, all buffers are logged in full length.

Warning:
This may result in a dramatic logging output.

I/O Channel for ADABAS Logging Data

The logging information is written to standard output SYS$OUTPUT.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

180

Examples of an ADABAS Command Log

 1. ADABAS LOG (CLOG)

$ esqint
%ESQRUN−I−PAR, Using parameter file ESQRUN.PAR
%ESQINT−I−STARTED, 14−JAN−1997 15:55:23, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

14−JAN 15:55:24.75 Th0: CLOG 3625 *ESQRTS 1 S1 I 222/ 30 IM00+ 0 ISQ:1
14−JAN 15:55:24.77 Th0: CLOG 3625 *ESQ 2 OP.. 222/ 0 0 RB=”.”
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select yacht_id from sagtours.yacht;
14−JAN 15:55:42.73 Th0: CLOG 3625 *ESQRTS 1 S1 I 222/ 30 IH00+ 0 ISQ:1
14−JAN 15:55:42.74 Th0: CLOG 3625 *ESQ 1 L2M 222/ 38 S001 0 ISN:1
14−JAN 15:55:42.76 Th0: CLOG 3625 *ESQ 1 L2M 222/ 38 S001 0 ISN:17

 YACHT_ID

 144
...
esqint: select count(*) from sagtours.sailor;
14−JAN 15:56:11.11 Th0: CLOG 3625 *ESQRTS 1 S1 I 222/ 30 IH00+ 0 ISQ:1
14−JAN 15:56:11.13 Th0: CLOG 3625 *ESQ 2UOP.. 222/ 0 22 RB=”UTI.”
14−JAN 15:56:11.20 Th0: CLOG 3625 *ESQ 3 L1MI 222/ 37 S002 0 ISN:1

 NO_COLUMN_NAME

 457
esqint: quit
14−JAN 15:56:17.93 Th0: CLOG 3625 *ESQ 1 BT 222/ 0 0 ISN:0
14−JAN 15:56:17.95 Th0: CLOG 3625 *ESQ 2 CL 222/ 0 0 ISN:0
14−JAN 15:56:17.96 Th0: CLOG 3625 *ESQRTS 3 CL 222/ 0 0 ISN:0
%ESQINT−I−TERMINATED, 14−JAN−1997 15:56:17

Logging Facilities
4

181

Discussion of CLOG-style Logging

Each executed ADABAS call is logged with one clog line. The clog line can be read as follows:

30−AUG 13:39:29.81 Th0: CLOG 24934 *ESQRTS 5 L1MN 215/230 IB00+ 0 ISN:2232
 ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^
 | | | | | | || | | | | |
 Thread id −−−+ | | | | | || | | | | |
 CLOG style −−−−+ | | | | || | | | | |
 ESQ session id −−−−−−+ | | | || | | | | |
 ADABAS session context −−−−−+ | | || | | | | |
 ADABAS call counter/ESQ request −−−−−+ | || | | | | |
 ADABAS command code −−−−−−−−−−−−−−−−−−+ || | | | | |
 (Preceeding ’U’ indicates ADABAS || | | | | |
 Utility call context) || | | | | |
 Command option 1/2 −−−−−−−−−−−−−−−−−−−−−−++ | | | | |
 Accessed ADABAS File number/ dbid −−−−−−−−−+−−−+ | | |
 Used ADABAS command id −−−−−−−−−−−−−−−−−−−−−−−−−−−+ | |
 (Succeeding ’+’ marks global Format ID) | |
 ADABAS response code on call −−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ |
 Either current ISN or ISN quantity or Record Buffer −−−−−−−−−+

ADABAS SQL Server Installation and Operations Manual for OpenVMS
4

182

 2. ADABAS LOG (CLOG, VO IN(FB(FULL)))

$ esqint
%ESQRUN−I−PAR, Using parameter file ESQRUN.PAR
%ESQINT−I−STARTED, 14−JAN−1997 16:00:07, Version 1.4B/2.1 (ALPHA AXP/OpenVMS)

ESQ User: esq
Password:

%ESQRTS−I−ESQINFO, Th0: ADALOG 3625 *ESQRTS > VO_ADA FB FULL (LENGTH: 300)
004EFA88 00000000: 53412C33 322C412C 53422C33 322C422E SA,32,A,SB,32,B.
004EFA98 00000010: 00000000 00000000 00000000 00000000
 16 lines identical to line above
004EFBA8 00000120: 00000000 00000000 00000000
14−JAN 16:00:09.30 Th0: CLOG 3625 *ESQRTS 1 S1 I 222/ 30 IM00+ 0 ISQ:1
14−JAN 16:00:09.31 Th0: CLOG 3625 *ESQ 2 OP.. 222/ 0 0 RB=”.”
%ESQINT−I−CONNECT, Server ESQ140AT connected successfully
esqint: select yacht_id from sagtours.yacht;
%ESQRTS−I−ESQINFO, Th0: ADALOG 3625 *ESQRTS > VO_ADA FB FULL (LENGTH: 300)
004EF5C8 00000000: 4F412C33 322C412C 4F422C33 322C412C OA,32,A,OB,32,A,
004EF5D8 00000010: 4F432C33 322C412C 4F442C33 322C412C OC,32,A,OD,32,A,
004EF5E8 00000020: 4F452C34 302C412C 4F462C31 2C412E00 OE,40,A,OF,1,A..
004EF5F8 00000030: 00000000 00000000 00000000 00000000
 14 lines identical to line above
004EF6E8 00000120: 00000000 00000000 00000000
14−JAN 16:00:28.06 Th0: CLOG 3625 *ESQRTS 1 S1 I 222/ 30 IH00+ 0 ISQ:1
%ESQRTS−I−ESQINFO, Th0: ADALOG 3625 *ESQ > VO_ADA FB FULL (LENGTH: 7)
005F64D0 00000000: 41412C34 2C462E AA,4,F.
14−JAN 16:00:28.07 Th0: CLOG 3625 *ESQ 1 L2M 222/ 38 S001 0 ISN:1
%ESQRTS−I−ESQINFO, Th0: ADALOG 3625 *ESQ > VO_ADA FB FULL (LENGTH: 7)
005F64D0 00000000: 41412C34 2C462E AA,4,F.
14−JAN 16:00:28.09 Th0: CLOG 3625 *ESQ 1 L2M 222/ 38 S001 0 ISN:17

 YACHT_ID

 144
...

 6230
esqint: quit
14−JAN 16:00:47.80 Th0: CLOG 3625 *ESQ 1 BT 222/ 0 0 ISN:0
14−JAN 16:00:47.81 Th0: CLOG 3625 *ESQ 2 CL 222/ 0 0 ISN:0
14−JAN 16:00:47.82 Th0: CLOG 3625 *ESQRTS 3 CL 222/ 0 0 ISN:0
%ESQINT−I−TERMINATED, 14−JAN−1997 16:00:47

A

183

APPENDIX A — THE PARAMETER PROCESSING
LANGUAGE (PPL)

The Parameter Processing Language (PPL) has been developed to enable suitable settings of
individual parts of the ADABAS SQL Server system. The list on the following two pages shows
in which mode each parameter can be set and what the effects are.

This version of the PPL is presented in 5 logical sections. These sections are: PRECOMPILER,
COMPILER, RUNTIME, GLOBAL and SERVER.

Syntax

PPL works via a text parameter file, which can be of any size (including lines/record lengths)
and can contain comments.

The comments can be in the form of ’C’ comments, starting with ’/*’ and ending with ’*/’.

Comments can also start with ’<<’ and end with ’>>’ or start with ’−−’ and end with ’−−’.

The file must not contain line numbers. Statements in the file can span multiple lines and there
can be multiple statements on a line. If supported by the given operating system, some
parameters can be specified directly in the command line.

Each logical unit of parameter settings is individually described in a block which starts with
either the keyword BEGIN or ((parenthesis) with one or more settings for that block then being
defined. The block is then terminated with either the keyword END or) (parenthesis). A block
for the same logical section can occur several times within the parameter file.

What Happens When These Parameters Are Set?

The following table shows in which mode each parameter can be set and what the effects are.

For example, PRECOMPILER COBOL LANGUAGE SETTINGS (COBOL II = ON), if set
for a client, affects that particular client while in Client/Server Mode, and, if set on the server
side in the same mode, sets the default for all clients. If set while in Precompiler mode, it affects
both single-user and multi-user applications. This particular setting has no effect in Runtime
Mode.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

184

Individual settings of the same parameter (for example the GLOBAL ERROR Setting with
DBID, FNR and LANGUAGE) may in some cases affect the client, in other cases the server.
Therefore, these parameters have been broken down to reflect each possibility.

One of the following statuses will apply:

D = Default for the Client
Y = Used in this mode
− = No effect / is ignored or issues a warning

Parameter Settings Client-Server
Mode

Precompiler
Mode

Runtime-
Linked-In Mode

Client Server Single-
user

Multi-
user

Single-
user

Multi-
user

PRECOMPILER

C LANGUAGE Y D Y Y − −

COBOL LANGUAGE Y D Y Y − −

COMPILATION UNIT IDENTIFIER Y D Y Y Y Y

HOST LANGUAGE Y D Y Y − −

COMPILER

MAXIMUM Y D Y Y Y Y

EXPECTED UPDATE Y D Y Y Y Y

MODE Y D Y Y Y Y

RUNTIME

MAXIMUM Y D − − Y Y

ROLLBACK ON ERROR Y D − − Y Y

LOCK WHEN READING Y D − − Y Y

SERVER Y D − − − Y

Appendix A
A

185

Parameter Settings Runtime-
Linked-In Mode

Precompiler
Mode

Client-Server
Mode

Parameter Settings

Multi-
user

Single-
user

Multi-
user

Single-
user

ServerClient

GLOBAL

ADABAS Settings

− ADABAS MULTIFETCH − Y Y − Y Y

− ADABAS HOLD ON/OFF Y D Y Y Y Y

− ADABAS FREE FILE SEARCH R. Y D − − Y Y

− ADABAS EXU/EXCLUSIVE
UPDATE

Y D − − Y Y

MULTIFETCH Y D − − Y Y

BUFFER MANAGER − Y Y − Y −

CATALOG − Y Y − Y −

ERROR Settings

− ERROR DBID − Y Y − Y −

− ERROR FNR − Y Y − Y −

− ERROR LANGUAGE Y Y Y Y Y Y

PREDICT

− PREDICT DBID − Y Y − Y −

− PREDICT FNR − Y Y − Y −

− PREDICT CROSS REFERENCE Y D Y Y Y Y

− PREDICT CROSS REFERENCE
LIB.

Y D Y Y Y Y

DEFAULT SCHEMA IDENTIFIER Y − Y Y Y Y

FILE Y D Y Y Y Y

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

186

Parameter Settings Runtime-
Linked-In Mode

Precompiler
Mode

Client-Server
Mode

Parameter Settings

Multi-
user

Single-
user

Multi-
user

Single-
user

ServerClient

SERVER

NAME − Y − − − −

THREADS − Y − − − −

TYPE − Y − − − −

 MAXIMUM − Y − − − −

Appendix A
A

187

PRECOMPILER Settings

The precompiler-specific settings influence the behavior of the ADABAS SQL Server
precompiler.

The types of settings for the precompiler are:

− C LANGUAGE SETTINGS

− COBOL LANGUAGE SETTINGS

− COMPILATION UNIT IDENTIFIER SETTINGS

− HOST LANGUAGE SETTINGS

SYNTAX

PRECOMPILER OPTION
SETTINGS

PRECOMPILER
C LANGUAGE SETTINGS

PRECOMPILER CUID
SETTINGS

)

PRECOMPILER

(

BEGIN

END

PRECOMPILER

PRECOMPILER COBOL
 LANGUAGE SETTINGS

PRECOMPILER HOST LAN-
GUAGE SETTING

�

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

188

PRECOMPILER C LANGUAGE Settings
Function

To specify the C language environment.

Syntax

C LANGUAGE SETTINGS

CHARACTER =SET)CHARACTER SETS

(

PRIMARY

SASC

SECONDARY

DIGRAPHS

TRIGRAPHS

TRIGRAPHS

DIGRAPHS

IBM

ANSI

TRIGRAPHS

BS2000

Character Sets

Appendix A
A

189

Description

These settings allow you to specify the character set used The character sets available are:

ANSI Normal ASCII character set. There is an added option of
TRIGRAPHS which some versions of C have.

IBM SASC PRIMARY IBM’s C compilers primary character set. There are the added
options of TRIGRAPHS and DIGRAPHS.

IBM SASC IBM’s C compilers secondary character set. Also has
SECONDARY TRIGRAPHS and DIGRAPHS.

BS2000 Siemens BS2000 series C compiler character set.

Limitations

None.

Examples

PRECOMPILER
BEGIN

C LANGUAGE SETTINGS (CHARACTER SET = ANSI TRIGRAPHS)
END

PRECOMPILER
BEGIN

C LANGUAGE SETTINGS (CHARACTER SET = IBM SASC PRIMARY)
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

190

PRECOMPILER COBOL LANGUAGE Settings
Function

To set whether the COBOL compiler used is COBOL II compatible or not.

Syntax

LANGUAGE SETTINGS

ON

OFF

COBOL

DOUBLE

SINGLE

II =COBOL

ARE QUOTES

)

,

(

STRINGS

Description

If the COBOL compiler used is not COBOL II compatible, it is mandatory to set the COBOL
language setting to OFF. In this case, the code generated by the ADABAS SQL SERVER
COBOL Precompiler will not include the END-IF or END-PERFORM, etc. clauses and is thus
compatible with COBOL as well as COBOL II. If the COBOL II compiler is used, this setting
may be set to ON or may be omitted because this is also the default setting.

Furthermore, setting the STRINGS option will determine whether a COBOL string is single or
double quoted. The default setting is: DOUBLE

Appendix A
A

191

Limitations

None

Examples

PRECOMPILER
BEGIN

COBOL LANGUAGE SETTINGS (COBOL II = ON, STRINGS ARE SINGLE QUOTES)
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

192

PRECOMPILER COMPILATION UNIT IDENTIFIER Settings
Function

To set the compilation unit ID. Specification of program is mandatory.

Syntax

CUID

COMPILATION UNIT IDENTIFIER

(

= string literal

LIBRARY

= string literal

PROGRAM

= string literal

QUALIFIER

= string literal

QUALIFIER

)

,

PRIMARY

SECONDARY

Appendix A
A

193

Description

The compilation unit identifier is stored in a key field and is used to identify a meta program.
This field consists of four user-definable elements and one host language element predefined
by the precompiler:

PRIMARY QUALIFIER any user-defined string of up to 5 characters.
SECONDARY QUALIFIER any user-defined string of up to 5 characters.
LIBRARY any user-defined string of up to 8 characters.

PROGRAM any user-defined string of up to 8 characters.

Note:
The specification of the PROGRAM setting is mandatory.

The default values for the above elements are: blank

Strict naming conventions should be established to make sure that the entire key field amounts
to a unique value. A new meta program with the same compilation unit identifier will overwrite
an existing one in the catalog.

Limitations

None.

Examples

PRECOMPILER
BEGIN

CUID (LIBRARY = ’ESQ’, PROGRAM = ’CR_BASE’)
END

PRECOMPILER
BEGIN

CUID (PROGRAM = “CR_ACC”, LIBRARY = ’BANKS’)
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

194

PRECOMPILER HOST LANGUAGE Setting
Function

To specify the host language environment.

Syntax

LANGUAGE SETTINGSHOST (

SPECIFICVARIABLES ARE ANSI

ON

OFF

ON

OFF

=

NESTED COMMENTS =

TRAILING BLANK SUPPRESSION

,

)

=WIDTHTAB numeric int literal

Appendix A
A

195

Description

VARIABLES ARE This setting defines that the Precompiler only
ANSI SPECIFIC searches for host variables within an SQL statement when used

according to the ANSI specification, i.e. :<host_var>. This is
the default condition and can presently not be altered.

NEST COMMENTS Offsetting the default, this setting defines that the host
language compiler allows nested comments. The default
setting is OFF.

TRAILING BLANK This setting defines whether trailing blank strings returned by
the SUPPRESSION ADABAS SQL Server are suppressed or not. The default =

OFF is also the only valid setting in ANSI mode.

TAB WIDTH This setting defines the width of a TAB character. This is
particularly important for COBOL compilers when a TAB
character is used to get to a specific column, i.e. column 8. The
default value is 8 characters.

Limitations

None.

Examples

PRECOMPILER
BEGIN

HOST LANGUAGE SETTINGS (VARIABLES ARE ANSI SPECIFIC, TAB WIDTH = 2)
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

196

COMPILER Settings

The compiler-specific settings influence the behavior of the ADABAS SQL Server compiler.

The types of COMPILER settings are:

− MAXIMUM Settings

− EXPECTED UPDATE Setting

− MODE Settings

Syntax

(

BEGIN

COMPILER

COMPILER MAX
SETTINGS

COMPILER MODE
SETTINGS

COMPILER EXP UPD
SETTINGS

)

END

�

Appendix A
A

197

COMPILER MAXIMUM Settings
Function

To set the compile-time system’s maximum values.

Syntax

TREE

�

MAX

MAXIMUM

CURSORS = numeric int literal

TABLES IN SCOPE = numeric int literal

ERRORS = numeric int literal

numeric int literal

SIZE

FACTOR

(TOKENISER =)

,

= numeric int literalQUERIES

VARIABLES

HOST = numeric int literal

VARS

= numeric int literalPARSE SIZE

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

198

Description

Allows the setting of maximum compile-time system values. The minimum value to be
specified is usually 1, with the exception of maximum parse tree size whose minimum setting
is 10000 bytes. The maximum value depends on the underlying hardware. Default values are
as follows:

CURSORS The number of different cursors which can be declared in one
compilation unit. Default: 32

TABLES IN SCOPE The number of tables that may be in scope within an SQL
statement. Default: 32

ERRORS The number of errors that can be logged in a compilation unit.
Default: 100

PARSE TREE SIZE The number of bytes in memory reserved for each parse tree
generated by the SQL Compiler.
Default (as well as minimum value): 10,000.

TOKENISER SIZE The size of a tokeniser buffer in bytes. Default: 4000

TOKENISER FACTOR The number of identifiers, strings constants etc... per 100
tokens. Default: 10

QUERIES The number of subqueries allowed within an SQL statement.
Default: 32

HOST VARIABLES The number of host variables allowed in a compilation unit.
Default: 250

Limitations

The higher these values are set, the more memory will be required by the compile-time system.

If the PARSE TREE SIZE is set too small, the compiler attempts to acquire more buffer space
and start parsing again, which will result in reduced performance. If the compiler fails in
acquiring a larger buffer, then it will abort with a fatal error.

Appendix A
A

199

Examples

COMPILER
BEGIN

MAX TOKENISER (SIZE = 32000)
MAX CURSORS = 32
MAX TABLES IN SCOPE = 15
MAX ERRORS = 50
MAX QUERIES = 5
MAX HOST VARS = 32
MAX PARSE TREE SIZE = 20000

END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

200

COMPILER EXPECTED UPDATE (Cursor) Setting
Function

To set whether the default is an updatable cursor or a read-only cursor.

Syntax

EXPECTED =

ON

UPDATE

OFF

�

Description

If a cursor is defined in one compilation unit without the FOR UPDATE clause and without any
UPDATE or DELETE statements, the default results in a read-only cursor. If this cursor is
referred to in another compilation unit, a runtime error will be raised. This clause alters the
default for cursors.

Limitations

None.

Examples

COMPILER
BEGIN

EXPECTED UPDATE = ON
END

COMPILER
BEGIN

EXPECTED UPDATE = OFF
END

Appendix A
A

201

COMPILER MODE Settings
Functions

To set the particular mode of operation for the compiler.

Syntax

DDL

DML

ALLOWED

DISALLOWED

ANSI

DB2

SYNTAX CHECK

EMBEDDED DYNAMIC DISALLOWED

WARNINGS DISALLOWED

,

MODE (
)ESQ

GENERATE CODE

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

202

Description

When a particular mode is set, only statements or options which conform to that mode will be
permitted. For example, if DDL is disallowed, it will not be possible to compile DDL statements
like CREATE TABLE or DCL statements like GRANT or REVOKE. If the default mode ESQ
is set, warnings will still be issued if the ANSI standard is violated. To suppress these warnings,
use the option WARNINGS DISALLOWED.

DDL all DDL/DCL statements can be explicitly
ALLOWED/DISALLOWED permitted or forbidden. There is no special keyword

for DCL but DDL implicitly includes DCL.

DML DML statements can be explicitly permitted
ALLOWED/DISALLOWED or forbidden.

ANSI in this mode, only statements which conform to the
ANSI standard will be permitted. All deviations
from the standard, i.e., ADABAS SQL Server
extensions, will result in compilation errors. The
same is true for embedded dynamic statements.

DB2 in this mode, only statements which conform to the
DB2 syntax will be permitted. All deviations from
the standard, i.e., ADABAS SQL Server extensions,
will result in compilation errors.
Under CICS, implicit COMMIT or ROLLBACK
statements are used at runtime at the end of each
CICS task:
COMMIT in case of a normal task end and
ROLLBACK in case of an abnormal task end.

ESQ this is the ADABAS SQL Server default mode. The
use of all extensions is permitted.

SYNTAX CHECK the output of object code is suppressed and only a list
of syntax errors (if any) is displayed.

GENERATE CODE object code is produced and a list of syntax errors (if
any) is displayed.

Appendix A
A

203

EMBEDDED DYNAMIC this setting is only valid for the default mode
DISALLOWED and explicitly excludes embedded dynamic

statements.

WARNINGS DISALLOWED warning messages are suppressed, actual error
messages will be displayed.

Limitations

DDL and DML must not both be disallowed at the same time. In ANSI mode, DML and DDL
must not both be allowed at the same time, while in ADABAS SQL Server and DB2 modes, this
is possible.

The specification of only one mode, ANSI, DB2 or ADABAS SQL Server, is permitted per
statement/ compilation unit.

Examples

COMPILER
BEGIN

MODE (DDL ALLOWED, DML ALLOWED, ESQ)
END

COMPILER
BEGIN

MODE (ANSI, SYNTAX CHECK)
END

COMPILER
BEGIN

MODE (DDL ALLOWED, DML ALLOWED, DB2, EMBEDDED DYNAMIC DISALLOWED)
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

204

RUNTIME Settings

The Runtime System-specific settings influences the behavior of the Runtime System.

The types of settings for the Runtime System are:

− MAXIMUM RUNTIME SETTINGS

− ROLLBACK ON ERROR SETTING

− LOCK WHEN READING SETTING

− SERVER SETTINGS

Syntax

RUNTIME OPTION
SETTINGS

RUNTIME MAXIMUM
SETTINGS

RUNTIME LOCK WHEN READING
SETTINGS

)

RUNTIME

(

BEGIN

END

 RUNTIME

RUNTIME ROLLBACK ON
ERROR SETTINGS

RUNTIME SERVER
SETTINGS

�

Appendix A
A

205

RUNTIME MAXIMUM Settings
Function

To set the maximum Runtime System parameters.

Syntax

numeric
int literal

MAX

MAXIMUM

STACK SIZE

CURSORS

MPS

PROGRAMSMETA

=DYNAMIC �

Description

These settings are designed so that applications with abnormal requirements do not affect other
applications, for example, in memory required.

MAX STACK SIZE The maximum size of the runtime system stack. Default value
is 100, minimum is 1.

MAX CURSORS The maximum number of cursors expected to be opened.
Default value is 3.

MAX DYNAMIC MPS The maximum number of DYNAMIC meta programs which
are expected to be executed. Dynamic meta programs are only
in existence while an application is running. Default value is
2.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

206

Limitations

The higher these values are set, the more memory is required. If they are set too low, the Runtime
System will terminate with errors.

Examples

RUNTIME
BEGIN

MAX STACK SIZE = 64 MAX CURSORS = 32
END

Appendix A
A

207

RUNTIME ROLLBACK ON ERROR Setting
Function

To set that a ROLLBACK occurs when an error is encountered.

Syntax

ROLLBACK =

ON

ON ERROR

OFF

Description

If this setting is set to ON, the Runtime System issues a ROLLBACK command (backout
transaction) whenever an error occurs. The default setting is OFF.

Limitations

None.

Examples

RUNTIME
BEGIN

ROLLBACK ON ERROR = ON
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

208

RUNTIME LOCK WHEN READING Setting
Function

To set whether table rows are locked while they are being retrieved from the database.

Syntax

LOCK =

ON

WHEN READING

OFF

Description

If LOCK WHEN READING is set to ON, each time a table row is retrieved from the database,
that particular row is locked.

If it is set to the default value = OFF, the row will not be locked.

Limitations

None.

Examples

RUNTIME
BEGIN

LOCK WHEN READING = ON
END

RUNTIME
BEGIN

MAX STACK SIZE = 128 MAX CURSORS = 48 MAX DYNAMIC MPS = 32
END

Appendix A
A

209

RUNTIME SERVER Settings
Function

To set the length of a timeout for a particular client.

Syntax

SERVER

SESSION TIMEOUT

REPLY TIMEOUT

= numeric int.
literal

Description

This setting defines the server’s timeout for a particular client. Each client may set how long
it takes for a timeout in minutes.

Zero minutes is infinite (�).

SESSION TIMEOUT The length of time a session must be idle before timing out.
Default value: 15 minutes.

REPLY TIMEOUT The length of time a reply may take before timing out. Default
value: 15 minutes.

Limitations

For use in client/server mode only.

Examples

RUNTIME
BEGIN

SERVER SESSION TIMEOUT = 5
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

210

GLOBAL Settings

Within the global section, all parameters which are not limited to the precompiler, compiler,
runtime system or trace facility are described. Options set here are effective throughout the
entire ADABAS SQL Server system.

The types of settings for the GLOBAL section are:

− ADABAS SETTINGS

− MULTIFETCH SETTINGS

− BUFFER MANAGER SETTINGS

− CATALOG SETTINGS

− ERROR SETTINGS

− PREDICT SETTINGS

− DEFAULT SCHEMA IDENTIFIER SETTINGS

− FILE SETTINGS

Appendix A
A

211

Syntax

GLOBAL

GLOBAL MULTIFETCH SETTINGS

GLOBAL BUFFER MANAGER
SETTINGS

GLOBAL CATALOG SETTINGS

GLOBAL DEFAULT SCHEMA
IDENTIFIER SETTINGS

GLOBAL FILE
SETTINGS

GLOBAL ERROR
SETTINGS

(

BEGIN

)

END
GLOBAL PREDICT

SETTINGS

GLOBAL ADABAS SETTINGS

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

212

GLOBAL ADABAS Settings
Function

To set ADABAS-specific values that are valid throughout all phases of processing (from
precompilation to runtime functions).

Syntax

�ADABAS

Logging CLAUSE

Features CLAUSE

For information on the individual clauses refer to the description section directly below the
relevant syntax diagrams.

Logging Clause

FULL

Specifications
Clause �)

CLOG

LOG

,

(

FULL Full logging of all ADABAS buffers at all log points will be
performed, which may be very extensive.

CLOG If no other details are specified, a compact command logging
at the VO−OUT point will be performed. For details regarding
the specifications clause see below.

Appendix A
A

213

Description

Within the ADABAS logging clause it can be specified at which of the four log points ADABAS
calls can be logged. Furthermore, it can be specified which buffer is to be displayed and to what
extent. For details on ADABAS Command Logging refer to the chapter Logging Facilities
earlier in this manual.

Specifications Clause

AI

(

Buffer
area

IN

(,

,

AI OUT

VO IN

VO OUT

CB

FB

RB

CB

FB

RB

FULL

()

FULL

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

214

Buffer Area

numeric
 integer literal

, numeric
 integer literal

AI IN/OUT − VO IN/OUT Indicates the log point.

CB − SB FULL Indicates the buffer to be displayed in full.

CB − SB buffer area Indicates the buffer area to be displayed.

Limitations

None

Example

GLOBAL BEGIN
ADABAS LOG (AI OUT (CB(10,10),SB(FULL),RB(FULL)))
END

ADABAS LOG (CLOG)

Does a compact logging at the “VO OUT” log point.

Appendix A
A

215

Features Clause

For information on the individual clauses refer to the description section directly below the
relevant syntax diagrams.

(

=

ON

�

HOLD

)

OFF

EXCLUSIVE UPDATE USER
CLAUSE

MULTIFETCH CLAUSE

FREE FILE SEARCH RANGE
CLAUSE

HOLD = ON Indicates that if a record is locked by another user, the
application will wait until the record becomes available.

HOLD = OFF Indicates that if a record is locked by another user, the
application will NOT wait, but will get an appropriate response
code.

Multifetch Clause

MULTIFETCH =

ON

OFF

Multifetch sub-clause

MULTIFETCH ON/OFF Turns ON/OFF the ADABAS MULTIFETCH feature between
ADABAS and the ADABAS SQL Server. If multifetching is
not used, severe performance losses can be expected.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

216

Multifetch Sub-clause

BLOCK FACTOR numeric int
 literal

=
numeric int

 literal
OPERATIONSMAX

�)

,

=

MULTIFETCH Defines the number of ADABAS commands which can be used
MAX OPERATIONS simultaneously with the MULTIFETCH logic.

Minimum value : 4
Maximum value : 32
Default value : 8

MULTIFETCH To optimize the data transfer between the ADABAS SQL
BLOCK FACTOR Server and ADABAS, the MULTIFETCH logic of ADABAS

is used. The BLOCK FACTOR defines how many records
should be retrieved with one ADABAS call.
Minimum value: 8
Maximum value: 512
Default value: 16

Free File Search Range Clause

numeric int.
literal

FREE FILE SEARCH RANGE = (

−
numeric int.

literal

)

Appendix A
A

217

FREE FILE Defines the range of file numbers that will be checked when
SEARCH RANGE creating a table or cluster. No files reserved for security should

be within the specified range. This setting is used when the file
number is not specified in the tablespace for a CREATE
TABLE/CREATE CLUSTER statement or when one of the
two default tablespaces is used (hardcoded/schema default
tablespace). Specifying only the first value will result in a
search starting at that number up to the highest file number
supported by the particular ADABAS version.

Exclusive Update User Clause

UPDATEEXCLUSIVE USER

EXU

=

ON

OFF

EXCLUSIVE UPDATE USER If set to ON, the user will have exclusive update rights
according to the predefined EXU-List. See the original
ADABAS manuals or the ADABAS SQL Server Programmer’s
Guide, The ADABAS SQL Server and other SOFTWARE
AG Products. The default value is OFF.

Limitations

The ADABAS MAXIMUM OPERATIONS setting is only necessary in client/server mode.

Examples

GLOBAL BEGIN
ADABAS (MULTIFETCH (BLOCK FACTOR = 256))
END

GLOBAL BEGIN
ADABAS (HOLD = ON)
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

218

GLOBAL MULTIFETCH Settings
Function

Allows the setting of the following client-specific MULTIFETCH logic:

Syntax

Multifetch Clause

MULTIFETCH =

ON

OFF

=BLOCK FACTOR numeric int
 literal

MULTIFETCH ON/OFF Turns ON/OFF the MULTIFETCH feature of the client.
Default value: ON

MULTIFETCH Optimizes the data transfer between the client and the
BLOCK FACTOR ADABAS SQL Server. The BLOCK FACTOR defines how

many rows will be retrieved from the ADABAS SQL Server
with one FETCH statement.
Minimum value: 8
Maximum value: 512
Default value: 16

Note:
If a cursor has been defined to be updatable, the use of MULTIFETCH logic will be turned off
automatically by the client.

Appendix A
A

219

GLOBAL BUFFER MANAGER (BM) Settings
Function

The ADABAS SQL Server catalog buffer stores the objects of the catalog. The buffer is a shared
memory in a multi-user environment and a process local memory in a single-user environment.

Syntax

(

MANAGERBUFFER

BM

numeric int.
literal

GLOBAL BM STATISTICS
SETTING

BUFFER =SIZE

GLOBAL BM HASH
SETTING

GLOBAL BM NUMBER OF
USER LOCKS SETTING

)

BUFFER SIZE The size of the catalog buffer in bytes.
Default: 262 144 bytes.
Minimum: 32 768 bytes (also depends on the length of the hash
table), for details refer to the section GLOBAL BM HASH
SETTINGS below.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

220

GLOBAL BM STATISTICS SETTING

OFF

ON

=STATISTICS

STATISTICS Defines whether statistics are collected concerning the
operation of the buffer manager (slows the system down).
Default: OFF

GLOBAL BM HASH SETTING

�
numeric int

literal
LOAD =HASH FACTOR

HASH LOAD FACTOR Defines the size of the hash table in the catalog buffer. The
higher the hash load factor, the faster BM’s access to the objects
in the buffer.
Default: 20 %
20 % equals 4 KB if the buffer size is smaller than 64 KB
and 8 KB if the buffer size is larger than 64KB.

GLOBAL BM NUMBER OF USER LOCKS SETTING

numeric int.
literalNUMBER =OF USER LOCK

NUMBER OF USER LOCKS Defines the default number of locks per user if no parameter
was specified via BM_R_LOGON(). Default value is 256,
minimum is 1 and maximum is 32767.

Appendix A
A

221

GLOBAL CATALOG Setting
Function

To set where the catalog can be found.

Syntax

(

DBID

FNR

CATALOG

=

=

numeric int literal

numeric int literal

)

,

Description

Defines in which ADABAS database and in which ADABAS file the catalog can be found. The
catalog contains details about which tables and meta programs are available for the execution
of SQL statements.

Default values are DBID = 1 and FNR = 13.
Minimum value is 1, maximum value is 255.

Limitations

For precompiler and runtime files and only necessary in LINKED-IN mode. In client/server
mode, this setting is ignored.

The ADABAS database specified by DBID and the file specified by FNR must contain a valid
catalog.

If more than one DBID/FNR is specified, only the last specified value is recognized.

Examples

GLOBAL
BEGIN
 CATALOG (DBID = 1, FNR = 13)
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

222

GLOBAL ERROR Settings
Function

To set where the error messages can be found and to specify the desired language.

Syntax

numeric int literal

numeric int literal(DBID

FNR

=

=

)

,

ERROR

Description

Defines in which ADABAS database and which ADABAS file the SQL error messages can be
found.

Limitations

DBID and FNR are only necessary in client/server mode.

The ADABAS database specified by DBID and the file specified by the file number must
contain the valid error messages.

If more than one DBID/FNR is specified, only the last specified value is recognized.

Examples

GLOBAL
BEGIN

ERROR (DBID = 13, FNR = 3)
END

Appendix A
A

223

GLOBAL PREDICT Settings
Function

To set PREDICT-specific values which are valid across all parts of the system (from
precompilation time to runtime).

Syntax

()

,

PREDICT SETTINGSPREDICT

DBID

FNR

=

=

numeric int literal

numeric int literal

REFERENCECROSS =

ON

OFF

CROSS REFERENCE LIBRARY = string literal

FORCE

PREDICT SETTINGS

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

224

Description

DBID Defines in which ADABAS database the PREDICT Cross
Reference Library can be found.
Minimum value: 1
Maximum value: 255
Default value: 1

FNR Defines in which ADABAS file the PREDICT Cross Reference
Library can be found.
Minimum value: 1
Maximum value: 255
Default value: 113

CROSS REFERENCE Defines whether the active cross reference feature is to be used
= OFF/ON If set to ON, cross reference data for the host program will be

stored in the appropriate PREDICT entries at the end of a
precompilation process.

CROSS REFERENCE Defines the cross reference library name. If a name is entered,
LIBRARY this name has to be documented in PREDICT as well. If no

name is entered, a default name will be taken.

Limitations

Note:
Interaction with PREDICT is not possible with all ADABAS SQL Server 1.4 versions.

DBID and FNR are only necessary in client/server mode.

The maximum length of a PREDICT Cross Reference Library name is 8 characters.

Examples

GLOBAL
BEGIN

PREDICT (CROSS REFERENCE = ON)
END

Appendix A
A

225

GLOBAL DEFAULT SCHEMA IDENTIFIER Setting
Function

Sets the default schema identifier.

Syntax

DEFAULT =SCHEMA IDENTIFIER string literal

Description

A table identified by a table identifier only is called an unqualified table specification. The
default schema identifier is used to uniquely identify each unqualified table specification
occurring in an SQL statement within a compilation unit. This is effective at precompile time
for static embedded SQL statements and at runtime for statements processed dynamically via
PREPARE or EXECUTE IMMEDIATE statements. The default schema identifier setting has
to appear in the precompiler or runtime parameter files, respectively.

If a default schema identifier has not been set explicitly, the unqualified table name will be
implicitly qualified by the user identifier set by a CONNECT statement. In the precompiler
environment, this user identifier is derived from the operating system user name.

The string containing the default schema identifier is not case-sensitive and must be defined
according to the rules of SQL identifiers.

Limitations

The length is limited to 32 characters.

Example

GLOBAL
BEGIN

DEFAULT SCHEMA IDENTIFIER = “ESQ”
END

GLOBAL
BEGIN

DEFAULT SCHEMA IDENTIFIER = “robert”
END

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

226

GLOBAL FILE Settings
Function

Sets the input/output record length.

Syntax

FILE

,

FILE INPUT SETTINGS

FILE OUTPUT SETTINGS

=RECORD LENGTHINPUT numeric int literal

 FILE INPUT SETTINGS

INPUT RECORD LENGTH Maximum record length (integer).

The input record length is used by PPL and the precompiler. The default value is 72 characters.

Example

Sets the record length to 132 characters.

FILE INPUT RECORD LENGTH = 132

Appendix A
A

227

OUTPUT =RECORD LENGTH numeric int literal

FILE OUTPUT SETTINGS

OUTPUT RECORD LENGTH Maximum record length (integer).

The output record length is used by the precompiler. Default values: 256 characters for
non-mainframe environments and 80 characters for mainframe environments.

Note:
On mainframe platforms, the record length of the output file can be specified beforehand and
is not overwritten by the specification of the GLOBAL FILE parameter setting. This means that
truncation occurs if the predefined output record length is shorter than the input record length.

Example

Sets the record length to 72 characters.

FILE OUTPUT RECORD LENGTH = 72

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

228

SERVER Settings

Function

The SERVER settings define the server-specific environment and are needed when running in
client/server mode only. They are used during start-up of a server.

The types of settings for the SERVER section are:

− SERVER NAME SETTINGS

− SERVER THREAD SETTINGS

− SERVER TYPE SETTINGS

− SERVER MAXIMUM SETTINGS

− SERVER BROKER ID SETTING

Syntax

SERVER

SERVER
 NAME SETTINGS

SERVER
THREADS SETTINGS

SERVER
MAXIMUM SETTINGS

(

BEGIN

)

END

SERVER
TYPE SETTINGS

SERVER BROKER ID
SETTING

Appendix A
A

229

SERVER NAME Setting

string literal=NAME

Specifies the the name of the server, which must not be longer than 8 characters. Note that this
parameter is not used on IBM platforms.

SERVER THREADS Setting

num. int. literal=THREADS

Specifies the number of threads per server. More threads mean more resources required.

Default value: 5, minimum value: 0.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

230

SERVER TYPE Setting

TYPE =

BROKER

 CSCI

Specifies the type of client-server communications mechanism. The default communication
mechanism is CSCI. Must be set to BROKER if the SERVER BROKER ID Setting is to be
specified.

SERVER MAXIMUM Settings

MAX SERVER MAX REQUEST LEN SETTING

SERVER MAX REPLY LEN SETTING

SERVER MAX MULTIUSER PROC SETTING

SERVER MAX SESSION THREAD SETTING

MAXIMUM

Sets the maximum values for the server.

Appendix A
A

231

SERVER MAXIMUM REQUEST LENGTH Setting

numeric int. literalREQUEST =LENGTH

Specifies the maximum request length for the client-server communications. The default value
is 8000 bytes, maximum length is 64000 bytes. Recommended minimum value for UNIX only:
32000 bytes.

SERVER MAXIMUM REPLY LENGTH Setting

numeric int. literalREPLY =LENGTH

Specifies the reply length for the client/server communications. The default value is 8000 bytes,
maximum length is 64000 bytes.

SERVER MAXIMUM SESSION THREAD Setting

numeric int. literalSESSIONS =PER THREAD

Specifies the maximum number of sessions per thread; each user process is one session. Zero
means infinite (�). For Version 1.4 the maximum number of sessions per thread must be 1.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
A

232

SERVER MAXIMUM MULTIUSER PROCESSES Setting

numeric int. literalMULTIUSER =PROCESSES

Specifies the number of additional processes which may use the server e.g., precompiler. The
default value is 64.

SERVER BROKER ID Settings

=BROKER

ID

IDENTIFIER

string literal

BROKER ID Defines the name under which the communication between the
ADABAS SQL Server and SOFTWARE AG’s middleware
communication protocol BROKER will take place. This
setting will only take effect when the SERVER TYPE Setting
is defined as BROKER.

B

233

APPENDIX B — SOFTWARE PROCESS AND
ARCHITECTURE

Scope and Contents of this Appendix

This appendix is valid for OpenVMS platforms only and contains a graphical overview of the
ADABAS SQL Server Software components and their interaction and a very brief description
of their functions.

Remote Client Nodes

Remote clients use the logical name ESQLNK to communicate with the server. ESQLNK uses
ENTIRE CSCI/BROKER to transport the client/server requests. Furthermore, ENTIRE
CSCI/BROKER uses ENTIRE NET-WORK as its protocol. During execution of the first
request, ESQLNK reads the Client Parameter File. The content of this file is passed to the server
which overwrites the default client parameters on the server side.

Client Environment

In addition, local clients communicate with the server using the logical name ESQLNK. For
local clients, ADABAS SQL Server offers the additional possibility of running in the so-called
linked-in mode. In such a case, ESQLNK does not communicate with the server but rather uses
the environment variable ESQTHS to execute the SQL requests in the application process
context. The program ESQINT can be used to execute interactive SQL statements, also from
remote nodes.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
B

234

Precompiler Environment

ADABAS SQL Server offers a precompiler for the application language C. This precompiler
scans C-application program sources containing embedded EXEC SQL statements and
generates a source which can be directly compiled with the application language compiler. The
generated sources contain host language calls to the ADABAS SQL Server, replacing the SQL
statements in the original sources. The precompiler reads the Precompiler Parameter File to get
information about the parameters to be used.

Server Environment

The server consists of one supervisor process ESQINI, which creates the required shared
memory areas and then starts the thread processes ESQSRV. The thread processes dynamically
load the environment variable ESQTHS, which executes the SQL requests. Each server thread
process waits for incoming client requests passed by ENTIRE CSCI. The server ESQSRV
receives a request and passes it to ESQTHS for execution. ESQTHS itself calls ADABAS using
ADALNK.

Database Environment

The ADABAS SQL Server catalog and the user data are stored in an ADABAS database. Via
ADALNK, it is also possible to access ADABAS servers which are not located on the current
node. For this, ENTIRE NET-WORK is required.

As already described above under section Server Environment, the process ESQINI is the
supervisor of the server. This process is started by the command ESQSTART. First of all,
ESQINI reads the Server Parameter File to establish the server parameters and the default client
parameters. The shared memories for the Server Control Block and the Catalog Buffer are then
created. The server parameters and the default client parameters are both stored in the Server
Control Block.

Then the thread processes with the program ESQSRV are started. The number of thread
processes to be started can be specified in the Server Parameter File. The default is 5. The
program ESQSRV attaches to the created shared memory areas. Each ESQSRV itself loads
ESQTHS.EXE where the SQL request execution will be performed. After startup, all server
thread processes wait for incoming requests passed by ENTIRE CSCI. For this purpose, the
shared library SPI.EXE of ENTIRE CSCI is loaded.

Appendix B
B

235

If a client passes an SQL request to the server, then it is picked up by one thread process via
ENTIRE CSCI. The program ESQSRV gives the request to the shared image ESQTHS.EXE via
a call which executes it. Using the shared image ADALNK.EXE, database calls are performed.

General platform-dependent functionality is implemented in ESQVOLIB.EXE. This shared
image is used by all programs of the ADABAS SQL Server. The shared image is part of the
ADABAS SQL installation and stands for SOFTWARE AG’s Virtual Operating System.

The following pages show an overview of the SOFTWARE AG components.

ADABAS SQL Server Installation and Operations Manual for OpenVMS
B

236

Precompiler
Parameter

File
ESQPC

read

Precompiler Environment

Client
Parameter

File
read

Server
Routing

File
ESQLNK

ESQINT
Interactive
Facilities

read

call call

Client Environment

ADALNK
local

communication

ADABAS
Server

call

generate

Database Environment ENTIRE CSCI / BROKER

(local Client/Server)

call (local LINKED-IN)

Database
Catalog

Data

remote communication

Server

Client
Application

Program

Source
Program

File

read

read write

Appendix B
B

237

�

Client
Parameter

File
read

Server
Routing

File
read

call

Remote Client Nodes

ENTIRE
NET-WORK

ENTIRE CSCI / BROKER

Server
Parameter

File

read

Server Environment

start

call

ENTIRE
NET-WORK

ENTIRE CSCI / BROKER (local Client/Server)

call (local LINKED-IN)

call

ESQLNK

ESQINI ESQSRV

Client
Application

Program

remote server communication
�

ESQTHS

remote communication

238

239

INDEX

Symbols
$ADADIR/db, 20
$ESQDBID/adanuc.bsh, 20
/float=D Data Format, C-compiler Alpha AXP,

39

A
ADABAS ACCESS Commands, Logging, 167
ADABAS Command Logging, 176
ADABAS Command Logging (PPL),

parameters, 212
ADABAS Environment File, 20
ADABAS FDT, GTD, 100
ADABAS HOLD (PPL), global parameters, 212
ADABAS LOGGING, PPL parameters, 212
ADABAS Nucleus Parameters, 20
ADABAS Utility Logging, 160
ADAREP Utility, 24
ANSI (PPL), specify character set, 189
ANSI Mode (PPL), Compiler setting, 202
ANSI_FORMAT Qualifier, Cobol compiler, 39
AUTOGEN, 6

B
BASIC

connect to local server, 73
connect to remote server, 73
how to invoke, 73
user ID, password, 75

BASIC Directory Retrieval, 82
BASIC Interactive SQL, global commands, 76

Block Factor (PPL)
global ADABAS MULTIFETCH setting, 212
global MULTIFETCH setting, 218

Brief SQL Command Logging, 138
Broker ID Setting (PPL), Server, 232
BS2000 (PPL), specify character set, 189
Buffer Manager (PPL), 219

C
C Language Setting (PPL), Precompiler, 188
Character Set (PPL), 189
Character Set Parameter, (PPL), 188
Client User Exit, 55
Client/Server Characteristics Logging, 137
Client/Server Communication Logging, 144
Cluster Environment, installing in, 16
COBOL II (PPL), 190
COBOL Language Setting (PPL), 190
Command Line Operation, GTD, 97
Command Overview, 33
Commands

global maintenance, 76
input, 78
output, 79

Comments, GTD Utility, 117
Compilation Unit ID Parameter, (PPL), 192
Compiler Expected Update Parameter, cursor,

200
Compiler Maximum Setting, 197
Compiler Mode Setting, 201
Compiling, 39
Converting SYSTRANS files, into GTD Utility

format, 105
Create Sample Tables SAGTOURS, 26
Cross-reference library, (PPL), 224

ADABAS SQL Server Installation and Operations Manual for OpenVMS

240

Cursors (PPL)
max. declared, 198
number of, opened, 205
updatable/read-only, 200

D
D_FLOAT Data Format, C-compiler/VAX, 39
DB2 Mode (PPL), Compiler setting, 202
DBGEN, 20
DBID/FNR (PPL)

cross-reference library, 224
error message file, 222
SQL Directory, 221

Debugging, 43
Default Schema ID (PPL), 225
Default Schema Identifier, value assignment, 52
Default Server, how to set, 44
Demonstration System, 26
Descriptor Search, Explain Logging, 169
Directives, Input File Syntax, GTD Utility, 117
Directory, ADABAS, 18
Directory Structure, 17
Disallow Dynamic Statements (PPL), in

embedded mode, 203
Display Server Log File, 47
Display Shared Memory, 48
Displaying Error Texts, 48
DML/DDL Allowed, compiler mode (PPL), 202
Drop Sample Tables SAGTOURS, 28
Dynamic Meta Programs (PPL), max. no. of,

205
Dynamic SQL Command Logging, 143

E
Elapsed Time Logging, 155
Errors (PPL), logged in a compilation unit, 198
ESQ Mode (PPL), Compiler setting, 202
ESQ.LOG, 18
ESQ$MAIN:LOGIN.COM, 33
ESQ$VERSIOn, 36
ESQ_ROUTING.DAT, 18
ESQCATx.FDU (x=1, 2 or 3), 20
esqcc, 39
ESQCON, NATURAL DDM SYSTRANS file,

105
esqdebug, 43
esqerr, 48
ESQERR.FDU, 20
ESQINI, 234
esqkill, 47
ESQLG, environment variable, 134
esqlink, 40
ESQLNK Call, user processing, 53
ESQLNK Call Logging, 163
esqlog, 47
esqmak, 36, 43
esqmem, 48
esqopr, 49
esqopr: abort, 47
esqopr: shutdown, 46
esqpc, 36
esqpc.par, 24, 51
esqremove, 48
esqrun, 41, 43
esqrun.par, 24, 51
esqset, 36, 41, 44
esqshow, 44
ESQSRV, 234
ESQSRV.LOG, 19
esqsrv.par, 24, 51
esqstart, 45
esqstop, 46
ESQTHS, 234
ESQUEX, define, 65

Index

241

ESQUSER, environment variable, 75
Exceptions Handling, 67
Exclusive Update User Setting, 212
Executing an Application, 41
Exit Handling, 67
Explain Logging, SQL Statement Execution,

165
EXU/Exclusive Update User (PPL), global

setting, 217

F
FDT for GTD Examples, 123
File List, 29
FNR/DBID (PPL)

cross-reference library, 224
error message file, 222
SQL Directory, 221

Free File Search Range (PPL), global setting,
217

Free File Search Range Setting, 212

G
Generate Table Description Utility, 95
Generated File, Migration Utility, 89, 90
Global ADABAS MULTIFETCH Setting, global

parameter, 212
Global Buffer Manager Setting, 219
Global Default Schema Identifier, parameter

setting, 225
Global Directory Setting, 221
Global Error Setting, 222
Global File Setting, 226
Global MULTIFETCH Setting, global

parameter, 218
Global PREDICT setting, 223
Global Sections, installation, 5

Global Symbols, value substitution, 52
Global/Local Servers, generation, 21
Grouping and Ordering, Explain Logging, 172
GTD Utility, how to invoke, 97

H
Hash Load Factor (PPL), buffer manager setting,

220
Help Function, BASIC, 79
HELP.COM, 7
Host Language (PPL), Precompiler setting, 194
Host Variables (PPL), max. no. of in

compilation unit, 198

I
IBM (PPL), specify character set, 189
Information Sources, GTD, 100
Initial Installation, Example, 8
Input File Operation, GTD, 99
Input Function, BASIC, 76
Input Record Length (PPL), file settings, 226
Installation Kit, Structure, 7
Installation Prerequisites, SAGBASE, 4
Installation Verification, 26

J
JTQUOTA, 11
JTQUOTA Parameter, 6

K
KIT.DAT, 7
KITINSTAL.COM, 7

ADABAS SQL Server Installation and Operations Manual for OpenVMS

242

L
LIB$ESTABLISH(), 67
Library (PPL), compilation unit id, 193
Linking, 40
List of all installed files, 29
Local/Global Servers, generation, 21
Lock When Reading (PPL), 208
Log File, server, 47
Logical Names, list of, 15
LOGIN.COM, 18

before executing any commands, 33

M
Maximum Settings (PPL)

Compiler, 197
Runtime, 205
Server, 230

Migration
automatic (non-security), 89
changing from non-sec to sec, 22
new concepts, 86
semi-automatic (security), 89
special considerations, 87

Migration Utility
how to invoke, 88
how to operate, 84

Mode Parameter (PPL), 201
Multi-user Processes (PPL), 232
Multiuser Processing (PPL), 232

N
NATURAL DDM SYSTRANS file, GTD, 103
Nested Comments (PPL), host language

environment, 195
NUMBER OF USER LOCKS (PPL), Buffer

manager setting, 220

O
Object Code (PPL), generation, 202
Operator Utility, operate servers, 49
Output Function, BASIC, 78
Output Record Length (PPL), file settings, 227

P
Parse Tree Size (PPL), bytes in memory, 198
Password, for interactive SQL, 75
Precompiler C Language Setting, 188
Precompiler COBOL Language Setting, 190
Precompiler Compilation Unit Identifier Setting,

192
Precompiler Host Language Setting, 194
Precompiling, 36
Predicates and Subqueries, Explain Logging,

173
PREDICT setting (PPL), 223
Primary Qualifier, 193
Primary Qualifier (PPL), compilation unit id,

193
Procedures

LOGIN.COM, 18
STARTUP_ADABAS.COM, 16

Process Quotas, 6
Program (PPL), compilation unit id, 193

Q
Queries (PPL), allowed in an SQL statement,

198

Index

243

R
Read-only Cursor (PPL), 200
Removing a Server Environment, 48
Reply Length (PPL), 231
Reply Timeout (PPL), 209
Request Length (PPL), 231
Request length (PPL), 231
Restriction Evaluation, Explain Logging, 171
Rollback on Error (PPL), 207
Runtime Lock When Reading Parameter, 208
Runtime Maximum Parameter, 205
Runtime Rollback on Error Setting, 207
Runtime Server Setting, 209

S
SAGBASE, 4
SAGTOURS, loading tables, 26
SAGVO, 234
Save Sets, 7
Schema Identifier Logging, 152
Secondary Qualifier (PPL), compilation unit id,

193
Security Features, 23
Security Logging, 161
Security Server, generation, 21
Server

with Security Features, 23
without Security Features, 23

Server Broker ID (PPL), 232
Server Log File, display, 47
Server Maximum Setting, 230
Server Name (PPL), 229
Server Name Specification, 44
Server Parameter Files, 24, 51
Server Reply Timeout (PPL), runtime, 209

Server Session Timeout (PPL), runtime, 209
Server Type (PPL), communication, 230
Server User Exit, 56, 58
Session Logging on Server Side, 150
Session Thread (PPL), 231
Session Timeout (PPL), 209
Sessions per Thread (PPL), Server setting, 231
Setting Default Server, 44
signal() function, 69
Sort Buffer Size, 66
Sort Logging, 158
SPI, 234
spi.sl, 234
SQL Directory (PPL), 221
Stack Size (PPL), runtime, 205
Start-up Procedure, 15
Starting a Server, 45
STARTUP_ADABAS.COM, 16
Static SQL Command Logging, 141
Statistics (PPL), Buffer manager setting, 220
Strings = single/double quotes, COBOL (PPL),

190
Syntax Errors (PPL), list only, 202
SYS$DCLEXH()/atexit() Function, 70
SYSGEN Parameters, 5
Systrans DDM File Specification, GTD Utility,

117

T
TAB Width (PPL), host language environment,

195
Tables in Scope (PPL), 198
Terminating a Server, 46
Threads (PPL), Server, 229
Tokeniser Size/Factor (PPL), 198
Trailing Blanks Suppression (PPL), Host

language environment, 195

ADABAS SQL Server Installation and Operations Manual for OpenVMS

244

U
UAF Parameters, 6
Updatable Cursor (PPL), 200
User Exit, definition, 53
User Exit Logging, 153
User Exits

how to create, 65
user exit 1, description, 55
user exit 2, description, 55
user exit 5, description, 56
user exit6, description, 58

V
Variables (PPL), host language environment,

195
VAXC$ESTABLISH(), 68
VERSION.DAT, 18
VMSINSTAL, installing ADABAS SQL Server

with, 5
VMSINSTALL, how to invoke, 11
VO, 234

W
Warnings Suppressed (PPL), compiler mode,

203
WSMAX, 5

Notes

245

ADABAS SQL Server Installation and Operations Manual for OpenVMS

246

Notes

247

ADABAS SQL Server Installation and Operations Manual for OpenVMS

248

	Adabas SQL Server Installation and Operations Manual for OpenVMS
	Table of Contents
	Preface
	Installing the Adabas SQL Server System
	Operating the Adabas SQL Server
	Operating the Adabas SQL Server Utilities
	Logging Facilities
	Appendices
	The Parameter Processing Language
	Software Process and Architecture

	Index

