Adabas SQL Gateway Embedded SQL




Table of Contents

Chapter 1 - Adabas SQL Gateway Embedded SQL.........cc.uuuiiiiiiiiiiiiiiiie et e e 1
Introduction to Adabas SQL Gateway Embedded SQL..........ccooiiiiiiiiiiieee e e e 1
LTS 11 g To ) £= 14 (=T PP TPPTROP 2
LYo [a N [ 1S3 7= = T I SRR 4

(@ U] Tod G0 =T AU T [ SRR 4
b2 ISR 1) =1 = Lo o RO RRR 5
Installing Adabas SQL Gateway Embedded SQL - Z/OS .......cooo it a e e sreee e 5
Required and Optional Fields and FileS - Z/OS..... .o e e e e 8
Y=o [ TTC=To BT To I@] o] 1 o] g F= B =1 (o SRR 8
Required and OPLIONAl FIIES .........ooo ittt e et e e e e e e s baee e e e e e e e e aanes 9
System codepage files (for advanced USErs ONIY)........cuuueiiiiiiiiiiiiii e 9
UNiX and LiNUX INSEAITALION. ........oiei it e e e e s st r e e e e e s s ateeteeeeeaeeesasbeeeeeeeeeaaannns 11
Installing Adabas SQL Gateway Embedded SQL - LiNUX + UNIX .....uuviiieoiiiiiiiiiieice e esivneeeeees 11
Chapter 2 - Threading SQL APPIICALIONS .....civiei it e e e s s e e e e e e s s nnnaeeeeeesennnes 14
Threading SQL APPIICALIONS .......uiiiiiieiiiit ettt e e e e e s e bbbttt e e e e e s s s bnbaeeeaaaeessanbeseeeaaasaaannes 14
S I 0] 1 (= 15
SQL Threading Models in Adabas SQL Gateway Embedded SQL Clients..........ccccoevvieeiiiiiiiiiieeiee s 16
S 1o | LT N T (Y= Uo 12T SRR 16
2018 o I I g1 =T=To 1o Vo EO O PP P PP PRSP 16

[ ES TR T =T o ] o [ TP UR T UROTUPPRRPTN 16
Implementing the Threading MOEIS..........cc.uiiiiiiie e e e e e e e e e e eeeeaees 17
Chapter 3 - Client/Server CONFIQUIALION ..........ou ittt e e e e e e e e e e e e s s s rnbreeeaaeeeeaaanes 26
(O [1=T | L0 a1 iTe [0 = 1o o 1P ERPR 26
Description of Client CONfIQUIALION ..........ooiiiiiiiiiit et s bbb e e e 26
YT A= g0 g ile U T = 11T o TS PPPRRR 27
Description of Server CoONfIQUIALION ...........ciii i e e e e e s s e e e e e s s e eeeeeesannreneees 27
CDD / IDBEC SEIVET .ceeiiitiiteeitete e e ettt e e sttt e e e sttt e e e e ettt e e e sstaeaeeastaeae e s taeeeeastbeee e e s beeeeesbeeeeeasteeeansbeeeeansreeeeansres 28
Client / Server COMMUNICALION..........uii ittt ettt e st e e st b e e e s sabe e e e e sbeeeeessbbeeesbbeeeesnnneeeas 29
Description of Client / Server COMMUNICALION ..........ooiiiiiiiiiiiiie ettt eeees 29
[ [0S A o A SRR 30
Chapter 4 - Programming Guide - General CONCEPLS ......ccouiiiiieiiiiiee ittt 31
SQL Programming - GENEral CONCEPLS ....eviiieeiiiiiiiieieeie e e ii ettt ee e e e e e s sstataeeeeeaessssssrareseeaaessssssnreeeeaaeaannnns 31
SO I = = 1.1 ] 31
The SQL Starting DeIIMILEr ........oiiiieiiiii ettt e e e e e e s abb b e e e e e e e e e s e anbeeeaeeeaaanne 31
The SQL StatemMENt BOOY .....ceiieeiiiiiiiiiiii e e e s e e e s s s st e e e e e s e st e e e e e e e s ssssaaaeereeeeesannsssnenaeessnnnnns 31
The SQL Communications Area (SQLCA). ..o ittt et e st e e s sibeeee e 32
Declaring the SQLCA ... e e e e s e e e e e e e e e s et e et e e e eeaeessaaabnteeeeeaeesannratereeeaeeaan 32
USING the SQLCA. ...ttt et e e e ettt e e o b bt e e e e b b et e e e b b e e e e et be e e e e anbe e e e e nnbneeeenes 32
DECLARE CURSOR ....uiiiiiiiiiiie ettt ettt ettt e s sttt e e ssb e e e st e e e s st e e e s ansbeeeeenstaeaeeantaeaeeanbeeeennnees 32



Table of Contents

BEGIN DECLARE SECTION ... cciiittitiiiitttt ettt sttt sttt e sttt e s sbae e e s sbbe e e s ansbeeessasbeeesanbeeeesnnbbeeennnees 32
END DECLARE SECTION ....oiiiiiiiiiiie ittt s ettt e st e e s st e e e sata e e e s antaeaesansbeaesssbeeesensaeennnees 32
WHENEVER ....coiiitiiiie ittt ettt ettt e e ettt e e sttt e e s a bt e e e n b bt e e s annbe e e e ennbee e e eneeeeansbeeeeansees 32

N PSSP 32
PrOQIAIM STTUCTUIE ...ttt sttt ettt 5555555555555 5 555k s 55t s s s st s e be e bnbnbnn 34
SO I Ote]aalaaF=Talo = TaTo I CTr= 0] o T U 35
= 1 E51= 1o 1o o I To | o UUOPPURRTRN 36
Transactions Containing Different Types of StatemeNtS ..........ccoviiiiiiiiiie e 36

S 7 L1 oY PSSR 37
1] (o o [N T o] o RSP 37
=TT o101 =] o 0 | = SR 38
NON-CUrSOr-Dased STAIEIMENTS ... ...ttt e e e e e e s e e e e e e e e e e s s abbbbeeeeeeeaaanes 38
CUISOr-DAsSEd STALEMENTS ....cc ittt e e sttt e e e s bbe e e e s stbeeeessnbeeeesnbbeeeennns 38
DY g T T 01 To ] @ P PPPTUPURPPT 41
INtroduction t0 DYNAMIC SQL ......uuiiiiiiii it e e e e e s e s e e e e e e s s et e e e e e e e e sesanteaereeeeesasnnanneeaaeans 41
StAtIC SQL StALEMENTS. .. .uiiiiiii e ettt e e e e e e s r e e e e et sateteeereeaeesaasssteeeeeaeesaanssnbeeeeaeeeesannnnes 41
DYNamMIC SQL StaAtEMENTS. .. .uuiiiiiei ittt e e e e s e i e e e e e s e s st e e e ee e s s e sasbaaeeeeeeesastntaeeeeeeeessansnsreeeeesaassnns 41

LCT=T =T | = o] =SSP PSRRI 42
DyNamiC SQL PriNCIPIES ...ttt oottt e e e e e e ettt e e e e e e e s ababe e e e e aeaeaanbnbeeeaaeeaaannes 42
Dynamic versus Static SQL - CONSIAEIAtIONS........cviiiiiiiiiiiiiiii e s s e e e e e e s s e e e e e s snrrreeeeeeeeeennes 42

[T 1 7= o PR RERR 43

N o] B T= (= o A =1 (=T .4 1= g1 £ PSSR 44
USING EXECUTE IMMEDIATE ... ..tiiie ittt ettt s e st et e e s st e e e et e e e s nata e e e s snsteeesensbeeennnees 44
Using PREPARE and EXECUTE ......cccoiiiiii ittt ettt ritea e sitee e e s sstaea e e sntae e e s sntaeaessnsaeeeeenees 44

IS 0 0= SRR 45

Y= [T B S] = 10T 0 1 1= 1 T TP UOPTUPURRTTN 46
Fixed Derived Column LISt MEtNOU. ..........oviiiiiiii it 46
PREPARE ... oottt ettt oot e e e e e e e e e e h— e e e et ——a e e t—— e e e e — et e e et baeearreaeaanbeeeeanres 46
L0 TSP PPTPRR 47

= 11 o I PSPPSR 48

L0 10 1] RSP TPRR 48

S 0 0= 2R 48
Varying Derived Column LiSt MEthOd ... 49
PREPARE ... .ottt ittt ettt ettt sttt e e ettt e e e R bt e e bt e e e R b be e e e R be e e e e R beeeenbae e e e annreeeeannres 49

D] O N PSSP 49

D] ] @4 1= SRS 50
L0 USRS UTPPP PRI 50
o 1O o PSSP 51

L0 10 1] U RPUTPPPRTPRR 51
SUIMIMIAIY .ttt e e e e oottt e e e e o4 e e ettt e e e e oo a e e b e ettt e e e e e e aa s b b e ee e e e e e e e e annne et e e e e e e nnrnneees 51
USING HOSE Variable MAIKEIS ........coii ittt e e e e s e e e e e e s s e st e e e e e e e s e sanbe e e e e e e s snnrnrnees 52
=] 1 o 1o SRR 52



Adabas SQL Gateway Embedded SQL

DIffErENt MEINOUS. .....ciiiiiiie ettt e st e e s e ab b e e s sbbe e e s enbeeeeens 52
Constant Number of Host Variable Markers...........oocuuuieiiiieo it 52
NON-SELECT SEAEMENTS. .. .uutiuiiiiiiiiiiiiiiiiii s s s a e e s e e e e e e n e e e e e e e e e e e eanananns 52
SELECT STAtEMENTS ... .ottt ettt ettt ettt et et et et et e e e e e e aaaaaaaes 53
Varying Number of HOSt Variable Markers ...........ooo it e e 53
NON-SELECT SEAtEMENTS. ....eetiiiiiiiiiiiiieeie ettt e e s s e et e e e s s e bbb r e e e e e e saasnbr e et e eeeessaannrrneeeesaaannes 53
SELECT STAEMENTS ... ..ottt ettt e e e e e e e e e e e 54
S0 10 1= T YU SUPPPPTPPS 54

QL DeSCriptor Area (SQLDA) .....oi ittt ettt et e et b et e e e ettt e e et e e e e et e e e aa b e e e annres 55
(1=t oL - I g1 0] 12 F= Lo ] o [ R UPPPPRR 55
OUTPUT SQLDA .ttt e ettt e e e sttt e e e s be et e e aabbe e e e aabb e e e e sttt eeeaabbeeeesabbeeesanbeeeenns 55

F S ST L PRSP 55

THE SQLDA SEIUCKUIE ...evvviteeeeteeeeeeeeeteteteseeereserererererererererererererereaerererereteresetersressrsrsssrsssssssssssssrsssrsrereres 56
Declaring @n SQLDAL. ...ttt e et e e e e e e et et e e e e e e hbabe e e e e e e e e aanbareeeaaaaaean 58
FaY[oToz= 111 a o J= LIRS ]I A SR RERR 58
Determining the Type of SQL STAEMENT .........oiiiiiiiiie it 59

[ [O1S AV T F= L] (IS o 1= Tod o= 11 o] o ISR 60
S [ o | LTV = T T= o] =SS 60
INDICATOR VAIADIES ... ..ttt e e e ettt e e e e e e s e snbe e e e e e e e e aanes 60
HOSE Variable MAIKEIS ......cooiiiiiii ettt ettt e e st e e s e e e e nbbe e e e eneees 61
HOSE STIUCTUIES ...t e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eaaaaaeananananananns 61
Chapter 5 - Programming GUIAE - C .......uuiiiiiiiee it e e st e e e e e e s sttt e e e e e e e s s stnba e e e e eaeessasaaneeaeeesaannes 63
SQL Programming CONCEPLS = C...uueeeeeeiiiiiee ettt ettt ettt e e st b e e s aabe e e e sabb e e e e sbb et e e sbbee e annneeeas 63
SOQL StatEMENIS IN C oo —————— 63
The SQL Terminating DelIMILET ... ...veeiiiie e e e e e e e e e e e e e s s nn e e eeeeennnne 63
Comments within an SQL StatemMeNt............ooooiiiiiiiiee e 63
HOSE VAITADIES ...ttt s et e e ettt e e e b bt e e e sttt e e s e nbbe e e enbbe e e s anbbeeeeansbeeeeannees 64
HOSt Variable DECIAIAtION .......ceiiieiiiiiiiieie et e s e e e e e s st e e e e e e e s s s na e eeeaeeeasanseeeeaeeeeeannes 64
=T A D= L= T I o 1R EERR 64

)Y 1= SRR 64
Ambiguous References and Multiple DecClarationsS............oocuuuieiiiiiiiiiieie e 70
D= = W Y o LT @0 1177 67T SRR 70
Embedding SQL StatemeENtS iN € ........uiiiiiiiiiiiiiiiee ittt et e e e e e s r bbb b e e e e e e e e e sannbbeeeeeeaaaanes 71
GENETAI RUIES IN C ..ottt et e e e et e e e sttt e e e s s bt e e e aatb e e e e anbbe e e e anbbeeeeanbeeesansbeeeeansbeeeeansees 71
SQL Statement DEIIMILEIS .....coiiiieiie e e e e e e s r e e e e e e ss et eraaeeesessnbeeeeeeeesansrnneees 71
SQL Statement PIACEMENT ..........uiiiiiiiie e e e s e e e e s e s st ae e e e e e e s e sanbaaeeeeeesnnrnrenes 71
(070] 1011 01T o | £ PO PP PP PPTPPP R PTPPI 71
(=l o] gl F=TaTo |10 o I o I ORI 72
SQL Communication Area (SQLECA) ... ..uuiieiiieee et ieiee et e e e e e s e s e e e e e e s e s s teereeeeeessaastaaaeereeessssnsnnrneeeesaaanes 73
SQL DeScriptor Area (SQLDA) ......uieieiiiiiee ettt ettt et e e st e e et e e e e b e e e n e e e e e 74
SQL DeSCrPtor Area (SQLDA) . ..coi ittt e et e e e e e e r e e e e e e s e st e e e e eaeessassattaaeeeaeeesaannreeeeeeaaaanns 76
Encoding and using the SQLLEN field.............eoiiiiiiiii e 76



Table of Contents

LAV Te (o RSP PRTN 78
Invocation and Precompiler Options - (WINAOWS = C) .....oiiiiiiiiiiiiiiie ittt 78
L 11 1R 78
FIlename CONVENTIONS ...t e e e e et st e e e e e e e s snsbeteeeeeeeseansbsaeeeeaeeseannseeneeeesssnnes 82

[ o] = L =2 S TP P T PPOTPUPPPTPTN 82

LU o T PP PTPPPRPPTPR 83
Invocation and Precompiler OPptioNS (UNIX = C)..ueeeiiiiiiiiiiiiiiie ettt e e e e e e e snnbeeeeeeeas 83
1110 1R 83
FIlename CONVENTIONS .........uuiiiiiiiee et e e e et r e e e e e s st ee e e e e e e s nsaeteeeeeeessannntnnneeeaeeseanneeeeeeeeeasnnns 87

] o =V 1= SRS 87

2 [ 1 T PSPPI 88
Invocation and Precompiler OPptioNS (Z/OS = C) .eoeveeiiiiiiiiieeieee ettt a e e e e e e e 88
L 111 1P 88

(] o] = L =2 S TP PPRTPTN 92
Chapter 6 - Programming GUIAE - COBOL ........coiiiiiiiiiiie e e e et ee e e e e e e sitrre e e e e e e s s ssateae e e e e e e s e ssantanneeeaessenanes 94
SQL Programming CoNCEPLS - COBOL.......iiiiiiiiiiiiiiie ettt ettt ettt ettt sbe e e s sbae e e e sneeeas 94

S @ IS =1 (=11 41T 1 T PP PTPPRT 94
The SQL Starting DelIMILEr .......cciii e s e e e s e s s e e e e e e s ssnsanre e e e e eeeesaansneeeeeeesannnes 94
The SQL StatemMeENt BOOY .....ccoiii ittt e e e e ettt e e e e e e s e aabsbeeeeaaaeesaasbbbeeaeeeaaaanes 94
HOSE Variables IN COBOL .....uuiiiiiiiiie ittt ettt e e e sttt e e e et e e e s nb e e e s anb e e e s anbbeeesanbbeeesannres 95
HOSt Variable DECIAIALION .......ceiiieiieiiiiiiii et e e e e e e e s st e e e e e e s s snnnbaeeeeeeeessasneeeeaeeseeannes 95
HOSE Variabhle SIIUCIUIES .....cueeiii ittt ettt e e e et e e e st e e e s st be e e e s ntbeeeensbeeeeennees 95
SINGIE HOSE VAIADIES.....cciieiiie ettt e e bbb e e s aaneee s 96
D= 1= R Y L @0] 11775 £ (o] o TP PRP T URPTTN 98
Embedding SQL Statements in COBOL ........cocuiiiiiiiie e e e e e s e e e e e e s e s nnrnreeeeeeeeeaanes 100
GeNEral RUIES IN COBOL ... ... ittt e oottt e e e e e e e bbb et e e e e e e e e e e aaabbeeeeaaeeeaabbbeeeaaaeeaaannes 100
SQL Statement DEIIMILETS ......cciiiiiiii e e e e s e e e e e e e e s s st e e e e eeeesessntaeseeeeeesnnsrnrnees 100
SQL Statement PIACEIMENT ..........eiiiiiiiee ettt e e e s s s st ae e e e e e s s e snnbeaeeeeeeeansreeeees 100

[l ol o F=TaTo | TTaTo I 1o T @K@ ] 2 L PSRRI 101
SQL Communication Area (SQLECA) ... ..uuiiiiie ettt e et e s s e e e e e s s s s e e e e e e e s sasrateeraeeesesannanreereessaannes 103
SQL DeSCriptor Area (SQLDA) ......uiiiie it cite e ettt e ettt e e e st e e e s st e e e sta e e e e atbeeeeaatbeeeeearbaeaeeabaeeearbaeaeaans 104
LYo [o L TSP TPPPRUPPRR 105
Invocation and Precompiler Options - (WINdOWS - COBOL)........uuuiiiiiiiiiiiiiieeee e 105
L] )11 1 1SS 105
FIlename CONVENTIONS ... ettt e e e e s e s et e e e e e s e sans bt eeeeeeaeeesanbsbeeeeaeeeesssteneeeeeens 109

] o] =V 1= PSR 110

LU o ) RSP PRPI 111
Invocation and Precompiler Options (UNiX - COBOL) .....uiiiiiiiiiiiiiiiieie ettt e e e ebeaee e s 111
L 111 1SS 111
FIlename CONVENTIONS ... ettt e e e e e e e sttt e e e e e s s sttt beeeeaaeeesantnbaeeeaeeeeasstaneeeeees 115

] o] =V 1= SRR 116

72 (O 1 S PSSP 117



Adabas SQL Gateway Embedded SQL

Invocation and Precompiler Options (Z/OS- COBOL).....uiiiiiiiiiiiiiieee e e st e e e e e e s nnanreneeeee s 117
L0011 0] o 1= J PP PP PP PRI 117
] o] =V 1= PSR PR 122
Chapter 7 - SQL STATEMENTS......eii ittt e bt e e st bt e e s st b et e e s abbe e e e s sabeeeessbeeeesasbeeeeans 124
Y= 1[0 F= T o ST S r= 1 (=] 1= | €U 124
ALLOCATE SQLCONTEXT ..eiiiiitiiteeiiteteesttteeesritteae s sitte e e sste e e e ssbe e e e sabb e e e s anbbe e e s sasbeeeeansbeeeesanbaeeeeanreeesannees 125
U Tod 1o ] o AP TPUEPPT TP 125
10 1Y o Tox L1 o] o Lo PSRRI 125
)Y 1162 O PP TP RPPR PP 125
DTS o] (o] o TSR 125
T 011 = LT o E SRR 125
F NN S IS 01T ol ) o= TSR P PO 125
Adabas SQL Gateway Embedded SQL SPECIICS: .....ciiiiurieiiiiie e 125
BEGIN DECLARE SECTION ....iiittiii ettt e ittt e e e sttt e e s staea e s staeaesatteeaeassteeasasstaeesasstaeeesastaeeessnsaneessnsesessnsees 127
¥ 1o 1T o TSRS 127
101V To = o) o SRR 127
RS 11 €= ¥ PSPPSR PP UPPTTSPPPPIIN 127
D 7= o] (o] o PP 127
[T 011 =Y i o] =TT PR 127
ANSI SPECIICS ..vtrieiiie e ittt ettt e e s e et e e e s e et e ee e e s s s aa b e e e e eaeeesassssteaeeeaeeeantareeeeeeeseanns 127
(O I 1] PSSP PRRSPPPRR 128
¥ [ Tox 1T o TSRS 128
1Yo To = o) o PR 128
)Y 1= O PP PP UPTR PR PP 128
D 1= 0] (o] o SRR 128
[T 011 7= i o =PSRRI 128
ANSIT SPECIFICS . teiit ettt e sttt e e ettt e e e sttt e e e n e e e e e n b be e e e et e e e e be e e e e nreeeeenres 128
Adabas SQL Gateway Embedded SQL SPECIfICS .....ouviiiiiiiiiieii e 128
1010 1Y 1 i PRSPPI 129
¥ Tox 1T o PSR PR 129
101V 7o Tor= Ui o] o PO PO P TSP 129
)Y 11> 3 PSP 129
DTS g o] 1o o PR 129
ANSI SPECIICS ..vtiiiiiie e ittt e e e e e e e e s e st e et e ee e e s e s ta b taereeaeesaassanbeeeeeaeeessbnnneeeeeeseanns 129
Adabas SQL Gateway Embedded SQL SPECIfICS .....ouuiiiiiiiiiie i 129
1010 ] N N O PP PRROPPPRR 130
U1 Tox 1T o PSRRI 130
Ta1 Y7o Tor= i o] o PO TP P TP 130
)Y 11> 3 SRR 130
DT T ol 1] o] (o] o U PSP PP PR 130
[T 011 7= 110 £ PSR PR 131
ANSIT SPECIFICS ..ttt e e et e et e e e bt e e b e nnes 131

Vi



Table of Contents

Adabas SQL Gateway Embedded SQL SPECIICS .......cccuuiiiiiiiee i er e e e 131
DEALLOCATE PREPARE ......oi ittt ettt ettt ettt e e e et a e e e e e e e et e e e e et e e e e e sbe e e e s nntaeeestbeeeeannees 132
U1 Tox 1T o TSR 132
1Yo Y=o ) o PSSP 132
SYNEAX ..ottt ettt ettt ettt ettt ettt ettt et aetaaaaaaaaaaaaaaaaaaaaaas 132
DTS o] (o] o PR 132
[T 011 7=V i o] E= PP PT TP 132
ANSI SPECIICS ..vtviiiiie e ittt e e e e e e e e s e st e et e ee e e s e saaa b raereeaeessassnsteaeeeaeesssrareneeeeeseaans 132
Adabas SQL Gateway Embedded SQL SPECIfICS .....ccuuuiiiiiiiiie it 132
DEALLOCATE SQLCONTEXT ...ititieiitiiee e ittt e s stitee s s sttt e e s stbeeeeassteeaesssteeaeasntaeeesantteeesasbeeesansaeeessasseessnsees 133
U1 Tox 1T o TP PRR PR 133
101V 7o Tor= i o] o PO PRSPPI 133
)Y 1= 3 SRR 133
DTS o] 1] o PP P TP 133
[T 011 7= 110 £ SRR 133
ANSIT SPECITICS ..ttt e et e e et e e e bt e e s bt e e e nnaes 133
Adabas SQL Gateway Embedded SQL SPECIfICS .......cccuiriiiiieei e 133
DECLARE CURSOR... ..ttt ettt ettt e ettt e sttt e e e ettt e e e ettt e e e e bb e e e s ettt e e e anbbe e e e ebbee e e ebbeeeeennbeeeesnns 135
[T Tod 1o ] o TP PT TR 135
1 01Y o ox= 11 o] o PSSR 135
53 1162 O PP PP PO RPPR PP 135
[T 0] (o] o TSRS 136
ANSIT SPECITICS ...ttt ettt e st e e et e e e bt e e e b e e e b e e e naes 137
Adabas SQL Gateway Embedded SQL SPECIfICS ....cccuiiiiiiiiiiiiiiie e 137
DESCRIBE .....cei ettt ettt e bttt e e sttt e e ettt e e e ekt e e e R bt e e e e eRbe e e e e R b b e e e e et e e e e bbe e e e e nbe e e e enres 139
[T Tod 1o ] o TP PT TP 139
10 1Y o Tox L1 o] o TSRS 139
)Y 1162 O PP PP PP RPPR PP 139
[ 15101 1N V1 = 3 USSP 141
¥ Tox 1T o TP SRR 141
101V 7o Tor= i o] o PSPPSR 141
)Y 1= 3 SRR 141
DS Tox g o] (o] o PSPPSR 141
T 011 7= 110 £ PSRRI 142
ANSIT SPECIFICS ..ttt e e et e e e bt e e b e e b e e b e e nres 142
Adabas SQL Gateway Embedded SQL SPECIfICS .....ccuuiiiiiiiiiie it 142
END DECLARE SECTION. .. .ettiiiitiite ittt ettt ettt ettt ettt e e e st e e e sttt e e e sabbe e e e s abbeeeesssbaeeesanbeeeesanbaeeesane 143
[T Tod 1o ] o TP PT TR 143
1 01Y o Tox= 11 o] o PSSR PR 143
53 1162 O PP PP PO RPPR PP 143
DTS 0] (o] o TSP 143
T 1 7= o SRR 143

Vii



Adabas SQL Gateway Embedded SQL

F e N ] IR = o] oSSR 143
Adabas SQL Gateway Embedded SQL SPECIfICS .....ouuiiiiiiiiiie i 143
) 1O U I USSP 144
U 11 o SRR 144
101V 7o Tor= Ui o] o PO TR PR 144
)Y 11> 3 PR 144
DTS g o] 1o o PP PP 144
[T 011 7= 110 £ PSRRI 144
ANSIT SPECIFICS ..ttt e et e e b et e e e b e e s bbb e aaes 144
Adabas SQL Gateway Embedded SQL SPECIfICS .......cccuuiiiiiiiei e e 144
EXECUTE IMMEDIATE ...ttt ettt ettt ettt e e ettt e e s sttt e e s e bt e e e e nbe e e e s e nbe e e s nbbeeeeennnes 146
T Tod 1o ] o TP PR 146
1 01Y o Tox= 11 o] o PSR T PR 146
)Y 1= PP PP PP PP PP PPPPPPPPN 146
DTS 0] (o] o TSR 146
T 1 7= 1o SRR 146
ANSIT SPECIFICS .teiii ettt e sttt e e ettt e e e e st e e e e n e e e e e st be e e e et e e e e abe e e e e nreeeeenres 147
Adabas SQL Gateway Embedded SQL SPECIiCS ........ccuvviiiiieeei i er e e e 147
GET DIAGNOSTICS ..ttt ettt et e e st e e e st e e e s tbe e e e st teee e e st teeeeeasbaeeeessbaaeeesntaeaeeansbeeensseeeesansaeeenns 148
¥ Tox 1T o PSRRI 148
1170 Y=o ) o PSPPSR 148
R 11 €= ¥ PSP P TSP PRSPPI 148
D =TT ol 1] o] (o] o U O PP PP P PP PPPRPN 148
ANST SPECITICS ..teeeeeeeee ittt ettt ettt et oo e ook b ettt e e e e s e e ab b bt e e e e e e e e e e aanbbeeeeeaeeeaanbnreeeeaeeaeannn 149
Adabas SQL Gateway Embedded SQL SPECIfICS .......cccuvriiiiiieei i e e e 149
o 1O USSP 150
¥ Tox 1T o TSP 150
T 1Yo Yo =i o) o SRR 150
RS 11 €= ¥ PSP UUPPP PRSPPI 150
DTS o] (o] o PR 150
[T 011 7= i o] =TT PT TP 151
ANSI SPECIFICS ..vtrieiiie e ittt e et e e e e s e st e ee e et s s as b e eeeeaeesasassteeaeeeaeeeanenrneeeeeeaeanns 151
Adabas SQL Gateway Embedded SQL SPECIfICS ....coiiiiiiiiiiiiiiiiee e 151
HOSt Variable SPECITICALION .........cooi i e e e s e s e e e e e e s e snae e e e e e e e e snnrnreees 153
SINGIE VAITADIES ...ttt e et e e st e e s b et e e s bbb e e e annee s 153
INDICATOR VANADIES ....cooeiiiiiie ettt ettt et e e et e e e et e e e staeeeesnnees 153
HOSE Variable MAIKEIS ...ttt st s et e e snb e e e s annees 154
HOSE STIUCKUIES ... e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaeaaaa e e aans 154
1 I | PRSP 156
T 1T o PR 156
R 11 €= ¥ PSPPSR SSPPPN 156
DT Yol 1] o] (o] o P PSR TP PR 156

viii



Table of Contents

[T 011 7= 110 £ PSRRI 156
ANSIT SPECIFICS .ttt et e e st e e et e e e b e e e s e b e e e b e nres 156
Adabas SQL Gateway Embedded SQL SPECIfICS .......cccuiriiiiieei e 156
O P EN .ttt e e et e e e et — e e e e et —— e e e et ——ee e et t——e e e et te—ee e et tteee e e taeeee e taeeaanbaeeeeatreeeearreeeaans 158
T Tod 1o ] o TP RP TR 158
1 01Y o Tox= 11 o] o PSP 158
SYNEAX ..ottt e ettt ettt et et a e et et et aeaaaaaaaaaaaaaaaaaaaaas 158
D7 0] (o] o TSRS 158
T g1 7= o SRR 158
F ST S 1=l T PSP 159
Adabas SQL Gateway Embedded SQL SPECIfiCS .......cccuvriiiiiieeii i r e e e 159
L ] RSP 160
¥ Tox 1T o PSR PR 160
101V 7o Tor= Vi o] o PO PO P TR 160
RS 11 €= ¥ PSPPSR PP SUPPPIIN 160
D =TT ol 1] o] (o] o U O PP PPTPPPR 160
[T 011 7= 110 £ TS SRPR 161
F N S IR 1= o] oSSR 161
Adabas SQL Gateway Embedded SQL SPECIfICS ....ccciiiiiiiiiiiiiiiie et 161
ROLLBAGCK ..ttt ettt ekttt e e e skttt e e e ek bt e e e s e be e e e e ambe e e e e ambbe e e s aabbe e e e anbbe e e e e s bee s anbbeeesanbbeeeeannres 162
U] 1 o PP 162
10 1Y o To% 11 o] PSR 162
53 1162 O PP PP EPPR PP 162
DTS g o] 1o o PP P T TTTPPRP 162
[T 011 7= 110 £ PSR 162
F NN S IS 01T o o= PRSPPI 162
Adabas SQL Gateway Embedded SQL SPECIfICS .......ccccuviiiiieiei e 162
SELECT (SINGLE ROW)...ccciittiii ettt ettt ete e ettt e e e sttt e e e satae e e e aatae e e e stbaaeeatbaeaeaasaaaeesasteeessnseeeenans 163
¥ Tox 1T o TSR 163
1 01Y o Tox= 11 o] o TSP 163
)Y 1= PO PP PP PP PP PPPPPPPPPP 163
D 1= o] (o] o PP 164
[T 011 7= Vi o] L= TP 164
F e N IS IR 0= o117 R SSRPRS 164
Adabas SQL Gateway Embedded SQL SPECIfICS .....ouuiiiiiiiiiie i 164
ST PR PRPPPRRR 165
U1 Tox 1T o PSRRI 165
Ta1 Y7o Tor= i o] o PO TP P TP 165
)Y 11> 3 SRR 165
DT T ol 1] o] (o] o U PSP PP PR 165
SET AUTOCOMMIT ..ttt ettt e sttt e ettt e e e skt et e e e asbee e e e aabaeeeeanbbeeeeaabbeeeeaasbeeeesanbeeaeasbeeeesasbneeenns 166
U T 1T o PR 166



Adabas SQL Gateway Embedded SQL

1 01Y o Tox= 11 o] o PSR PR 166

)Y 1162 O TP PP RPPR PP 166
DTS o] (o] o TSRS 166
ANSIT SPECIFICS ..ttt et e et e et e e b e e b e n e 166
Adabas SQL Gateway Embedded SQL SPECIICS .......ccuueiiiiiiaiiiiiiiiiee et 166
SET CONNECTION ...ttt ittt ittt ettt ettt e e sttt e e e sttt e e e sa bt ee e sabae e e e ettt e e e aabbeeeesabbeeeessmbeeeestbeeeesasbeeeennn 167
[T Tod 1o ] o TP PT TR 167

10 1Y o Tox L1 o] PSSR PR 167

53 1162 O PP PP RPPR PP 167
31T 0] (o] o TSP 167
ANSI SPECITICS ..vtvieiiee e ittt e e e e e e e e e s e st e e e eeeesa s s et e eeeaeeesaaasnsteeeeeaeeeanrnrnneeeeeaaanns 167
Adabas SQL Gateway Embedded SQL SPECIfICS ....ccoiiiiiiiiiiiiiiie e 167
U] [ L @ = 10 = PRSP 168
LT Tod 1o ] A PP RUP TP 168

10 1Y o Tox L1 o] Lo PR PR 168

)Y 1162 O PP PP EPPR PP 168
DTS o] o] o SRR 168

[T 011 7= LT E RSP 169

F NN S IS 01T ol o= TSR P R TOTPPPRR 169
Adabas SQL Gateway Embedded SQL SPECIICS: .....ciiiiuiieiiiie e 169
WHENEVNVER ... .ottt ettt et e e e ettt e e ettt e e s st e e e e s et e e e s st e e e e ansbe e e e ansbeeaeenntaeeansbeeesensraeeeennres 170
¥ 1o 1T o TSRS 170

)Y 1162 O PP PP RPPRPPPP 170
DTS g o] (o] o PP P UTTTPPRR 170

[T 011 7= 110 £ PSR 171
ANST SPECITICS .teeeeeeeeeieeit ettt ettt et e oo ook b ettt e e e e s e e aa b bt e e e e e e e e e e aan bbb eeeeaeeeaanbnreeeeaaeaeannn 171
Adabas SQL Gateway Embedded SQL SPECIfICS .......ccccuuiiiiiiiei e 171
ChAPLEr 8 = ULIHTIES....cei ittt e st e e e sttt e e e st b e e e e sabb et e bt e e e e s aabeeeessabeeeeens 172
F 01 = | N I U] PRSP OPPRR 172
4 = | PP 172
SEAMING ACEINT et e oottt e e e e e e s bbbttt e e e e e e e e b b bbe e e e e e e e e annbnbeeaeeeannrnrnes 172

L 111 1SS 172

S T=T V=] ol g1 aT=T ot o] o IR RTTTRT 174

(o Tor: LRST=T AV =T gl @0 g =T ox (o] o OO PR 174

YT o) (ST =T VLT o] o 1= Tox 1o o SRR 174
YT LT o] SIS V=T AT o) o Lo o AP 174
DT o A @ ] ISy = (=11 4] ] £ 176
AdAItIONAl STAIEMENTS ...ttt e e e e e e s et e et e e e e e s e s babeeeeeaaeeeaaannreeeaaaeaaannns 177

F @ = | I o] 4T o 1 = T L PSR 178
BALCN PrOCESSING ....eeeiiiitiiie ittt ettt ettt e e e a bt e e e st bt e e e e st et e e e et b e e e e enbbe e e annbe e e e annres 179
Mainframe considerations - ACEINT ULIIITY ......c..vviiiiieioi e 181
Chapter 9 - EITON MESSAGES .. ..eeieiiuteieeeitieee ittt e ettt e e ettt e e s ekttt e e s aab et e e e aabe e e e e sabb e e e e abbeeeesabbeeeesabeeeesanbeeeenns 183



Table of Contents

L0 QLY =TT =T =TSSP 183
X O 2 SRR 189
ACAP] General INFOMMALION. ......ciueiiie ittt e e e st e e e s be e e s nsbe e e e esnbbeeesanbbeesansbeeesansees 189
ACEAP] ArgumENT FUNCHIONS ......eeiiieiiiiei ettt e ettt e e e st e e e s bb e e e e s abbeeeenabeeeeees 190
1@ I O I = = 1 X L PSP PRPPRPR 190
7 X100 ] 1] o 11 o IR PRROTPPRR 191
Y Y10 0] g1 =) ST TP 192
Y A\ €1 o] (= PP PRRPPPRR 193
1@ ] I PSPPSR 194
1@ Y o PP UUPPRPTPPRR 195
[D]=ToToTo [TaTo I aTo Il =1 a ot o [Ta T BT T I I N PR 196
1@ I YN B - = R Y o 1= TP SSPURPPPR 199
ACEAP] SQL FUNCHIONS. .. 1utttttittitieteiereteterererererererererar r.—.—.———————————————————————————.—......——..annannnnnnnnnnnnnnnnnnnnnnnn 201
ADOUL ACEAP] SQL FUNCHONS.....ciiiiiiiiie ittt e sttt sttt e st e e e st e e e s sstbe e e s sstaeeeastaeeeaansaeeeansbeeesennees 201
SAGQACOM ..ottt et e et ettt e e et L e e e e e aR b e e e e e b ate e e e bt e e e e e b et e e e e b beeeeabaeeeearbeeeeeabeeeeeans 202
Y Y €10 O I 0 1 TSP PRRPPPR 203
Y Y €10 0 ] PR PRPPPPRR 204
SAGQDEAL ..ttt e et e et et e e e o bt e e e e b b et e e e b bt e e e e bbe e e e e ateeeeabeeeeeabaeeeean 205
SAGQDECH. ...ttt e — e et e e e e e e e e et bt e e e et beea e e treeeeaateeeeabreeeeataeeeeans 206
SAGQDECL ..ttt b e b e e oL et e e b bt e e e e b b et e e e b be e e e e ahaeeeeabeeeeeabreeeean 207
SAGQDESC ...t — e e e — e e e e —e e e et ——te e et baee e e et tatae e i eeeeantaeeeeaarraeaeans 208
Y X €10 ] 1] PP PRPPPPRR 209
SAGQEXEC ... eeiii ettt ettt e e et e e et —— e e et ——a e e e ———e e e i ——teee i t—tee e i traaeeanreeeeaatreeeeaarraeaeans 210
SAGQEXIM ...ttt ettt e e et e e e et e e e et et e e et it e e e e ot —— e e e e Et—te e et betee e e baeee e e taeeeataeeeeatreeeeaanreeaeans 211
ST X €10 i O PSP OUPRPOPPRPN 212
SAGQGERR ..ottt e e et ——— e e e e ———a e e e t—tee e e b aee e e e breeeeateeeeantbeeeeaanreeaeans 213
Y X €10 1 = L PSPPSR 214
SAGQOPEN. ..ottt ettt ettt ettt ettt 215
SAGQPREP ... et e e L e e e e et b et e e ettt eeeeata e e e e ateeeeantbeeeeeanreeaeaas 216
StALIC SOLD A .., 216
DYNamMIC SQLDA ...ttt e bt e e ekt e e e et e e et e e e e b e e e e e b e e e b e e e anene 216

YN 1@ 1] i 1Y PRSP OTPRPPOPPPRN 218
Y AN €10 1 i PSPPSR OTPRR 219
Sy N 1@ 1] i 1 TP SPROUPRRROTPPRN 220
Y Y €10 S i 1 LSRR 221
ACEAPT ULty FUNCLIONS ....ciiiiie ittt e e e ettt e e e e e s e s bbbt e e e e e e e e e s aanbbbeeaaeeesannnnees 222

Y Y10 T =0 @ PRSPPI 222
S Y €1 ] N SRR 223
ACEAPI Compilation and LINKAge EXamMPIES......cceeeiiiiiiiiieieie e e s sttt e e e e e e st e e e e e s s ssnntan e e e e e e e s s nnnnnraeeeas 224
L0 O3 OSSR 224
MiCrofOCUS COBOL / NET EXPIESS. .. uuuuteiitiieeiiiiiiiiiitete e e e s ettt et e e e s s sttt e e e e s e s sabbbee e e e e e e e e snnnnnneeee s 224
(001 o 0L @] =1 PSR 224

Xi



Adabas SQL Gateway Embedded SQL

VISUBIAGE PLI .ottt ettt e et e e e e e s e ettt e e e e e s e s aa b e e e e eeeesaansnsteneeeaeeeansbnnnneaeeesnannns 224
(O TSP OPR SRR 225
(0] 1= o I 01 @ =1 TR 225
IBIM € ottt ettt e et — e e e et ——— e e e et ——— e e e e t—— e e e it ——ae e e treae e e tteaeeataeeaanreeeeeanraeeeanres 225
21 @ ] = ] USRS 226
=Y USSR 226
BICETo LT (o= 1RV o] o Lo i AP TR PRP PP 228
=T LT To= 1 IR TUT o] o T o A SR 228
Trademarks and COPYIIGNTS........eii ettt ettt e e b e e b e e e s aneee s 229
[T T2 | NN = RS 229
100 = G U 231

Xii



Chapter 1 - Adabas SQL Gateway Embedded SQL
Introduction to Adabas SQL Gateway Embedded SQL

Adabas SQL Gateway Embedded SQL is a precompiler that enables any application written in C/C++ or
COBOL and hosted on Windows, MVS (Started Task), Linux x86/390, Sun/Solaris, HPUX, or AIX to
access any data source that CONNX supports. The precompiler takes embedded SQL commands and
expands them into native language protocol statements that the CONNX Remote Call Interface (RCI) can
understand from within the application source code. Once it is compiled and linked with the RCI, the
application can communicate with the CONNX JDBC Server running on any Windows platform.

The CONNX JDBC Server will be available on most UNIX platforms in upcoming versions of CONNX.



Adabas SQL Gateway Embedded SQL

Getting Started

Before starting, verify that the following items appear in your ../../Precompiler install directory:

Folder Subfolder Name File Name Description
Name
GUI instrci.exe Installation GUI for Unix and
Mainframe systems
Mainframe | FTP/MVS/Started | ace3gl.obj Object file necessary for
Task linking MVS objects that
access the Precompiler run-
time.
acedsa Object file necessary for
completion of the
Precompiler binary on MVS.
aceint Pre-linked ACEINT utility for
MVS.
acepcc Pre-linked C/C++
Precompiler for MVS.
acepccob Pre-linked COBOL
Precompiler for MVS
ftp.dat FTP script for MVS install
rciclnt Prelinked precompiler run-
time.
JCL/MVS/Started | aceint JCL procedure to run the
Task ACEINT utility.
cmempcob JCL to compiler, link, and
run the C example.
Inace JCL to compile, link, and
run the COBOL example.
pcacecc JCL to link the
Precompilers.
pcacecob JCL procedure to run the
COBOL Precompiler.
rnacecc Sample JCL to run the
ACEINT utility.
rnacecob JCL to precompile the
COBOL sample source.
rnaceint JCL to precompile the C
sample source.
Unix aix.5_32_rci.tar.z AIX 32-bit precompiler and
examples.
aix.5_64 rci.tar.z AIX 64-bit precompiler and
examples.
ftp.dat FTP script for UNIX
platforms.




Chapter 1 - Adabas SQL Gateway Embedded SQL

hpux11l_ 32 rci.tar.z

HPUX 32-bit precompiler
and examples.

Inx86_32_rci.tar.z

Linux 32-bit precompiler
and examples.

Inx390_32_rci.tar.z

Linux 32-bit precompiler
and examples.

sunos_32_rci.tar.z

Sun/Solaris 32-bit
precompiler and examples.

sunos_64_rci.tar.z

Sun/Solaris 64-bit
precompiler and examples.

Windows

_employees.c

Simple single-threaded
example in C.

_multithread.c

Multithread example in C.

aceint.exe

ACEINT utility.

acepcc.exe

Precompiler for C/C++.

acepccob.exe

Precompiler for COBOL

build_test.bat

Batch file that precompiles,
builds and runs the
example.

compile.bat

Batch file that compiles the
example.

employees.dd|

DDL table cluster
descriptions for the
Employees table.

employees.fdt

FDT table description for
the Employees table.

pre_compile.bat

Batch file that precompiles
the example.

rciclnt.lib LIB file for the Remote Call
Interface.
readme.txt Description of how to get

started with Adabas SQL
Gateway Embedded SQL in
text file format.

SQLGatewayEmbeddedSQL.chm

This Windows help file.

The following files are installed in your SYSTEMS32 directory:

RCICLNT.dII

The Remote Call Interface.




Adabas SQL Gateway Embedded SQL

Windows Installation

Quick-Start Guide

This section describes how to precompile, build, and execute the Employees.exe example; contains a
description of the preliminary requirements; and explains how to run the example; for the Windows
platform.

These are the minimum preliminary requirements:
o Install the latest version of the Adabas SQL Gateway.

¢ Create an Adabas database with a sample EMPLOYEES table that is identical in content to the
default sample Adabas EMPLOYEES table. The table may be created within ADADBA using the
Employees.fdt provided in the PRECOMPILER/WINDOWS install directory.

e Install either Visual Studio 6 or 7 and make sure it is available.

To quick-start the Adabas SQL Gateway Embedded SQL Employees.exe example file on a Windows
machine:

1. Create a new CDD using the DDL import option and the Employees.ddl provided in the
PRECOMPILER/WINDOWS install directory or use an existing CDD containing the EMPLOYEES
Adabas sample table.

2. Verify that the CDD security allows Read/Write Queries.

3. Create a new DSN by click Start, pointing to Programs, pointing to CONNX, and then clicking on
the DSNRegistry tool.
Click the Add button to create a new DSN.

For more information, see "To add a new data source name for the JDBC driver" found in the
Adabas SQL Gateway help file, available online and within the Adabas SQL Gateway product.

4. Edit the _Employees.c source file so that all connection information is correct.
5. Set the following environment variables within the build_test.bat file:
ADADI R = <Root of your Adabas install>
ADAVERS = <version of your Adabas installation, for exanple, V331>
SAG COVWON = <Path to the Software AG commbn DLL repository>
VS PATH = <Path to bin directory of Visual Studio>

4. Inspect the pre_compile.bat and compile.bat files and edit if necessary to ensure that the sample
will build in your environment.
5. Start the CONNX JDBC Server as described in "Starting the JDBC Server" in the Adabas SQL
Gateway help file.
6. Start the Adabas database.
7. Type the following at the command line, to precompile, build, and run the example:

buil d_test

Important: The example writes to and deletes from the database. If all of the tests that do write/delete
succeed, then the database should have returned to its original state.



Chapter 1 - Adabas SQL Gateway Embedded SQL

z/OS Installation

Installing Adabas SQL Gateway Embedded SQL - z/OS

1. Select a computer on which the CONNX Server Installation component is installed. Click the
Start button, and then point to All Programs and then to CONNX Driver and then click Adabas
SQL Gateway Embedded SQL Setup.

If you selected the Adabas SQL Gateway or the Adabas Mainframe Server Components, and the
Adabas SQL Gateway Embedded SQL option in the Select Components or Database Modules
dialog boxes during installation, the Adabas SQL Gateway Embedded SQL Setup dialog box
appears during installation.

CONNX 12 - InstallShield Wizard | x|

Select Features

|- COMME Client Driver
t]-[w] COMM & dministrator
-] COMM Help and Samples
-] COMM JDBC Server
- [w] COMM Enterprise Server

abas SOL G: i Embedded SOL Setup
][] LINI Server Setup
H-wl ADABAS Mainframe Server Setup
-] WSk Mainframe Server Setup
Wl IM5 Mainframe Server Setup
H-W] OpenyS Server Setup
] COMM%Stare Database Server
-] Open Systems Event Replicatar

lrstaliGhield < Back H Mext » ] I Cancel




Adabas SQL Gateway Embedded SQL

Adabas 5QL Gateway Embedded 5QL Setup E2 |

Eiles

Adabas SQL Gateway Embedded SGL Installation
Enter the platform type, transfer method and login credentials.

208 { UNBULinux

Embedded SAL Data Set Legin Information
DSNHL@ [CONNX STASKRCI Server |
SMS[™  VOLSER | un [ | Usemame |
Load Library Parameters Password I
Load Library DSN  [COMMX STASK RCILOAD
Code Page |CP37 |

VOLSER I UNIT I

Samples
Install W VOLSER |

Sample DSN ICONNX.STASK.F{CI.SAMF'

Install Done

2. In Login, enter the server's TCP/IP symbolic host name or dotted numeric address, a privileged
user account name, and a user account password (for example, MVS1, CONNX, and
Password). The password appears as ****+**,

Note: All fields are required.

3. Under Code Page, enter the code page the zOS system is using.

4. See the tables in the following topics for a detailed explanation of the information required under
Required and Optional Fields.

5. Click the Install button. This action starts an FTP session and copies the selected CONNX
components from the client PC to the target host. Copying alert and FTP windows are displayed.

6. Allow several minutes for the file transfer process between the CONNX administrator computer
directory C:\CONNX32\Precompiler and the target host.

7. Click the Close button. The Precompiler Setup dialog box closes.

Once the FTP successfully completes, you are ready to install the selected Adabas SQL Gateway
Embedded components on the host. Log on to TSO on the target system. Under ISPF, navigate
to the data set identified by the DSN HLQ parameter in Required and Optional Fields. . Verify
that the following data sets exist:

Dataset Purpose

CNTL Location of the installation JCL and Utility procedure JCL

OoBJ Location of Adabas SQL Gateway Embedded SQL object files

SAMP Location of utility JCL for running the CNTL procedures and for compiling the C
and COBOL sample files




Chapter 1 - Adabas SQL Gateway Embedded SQL

[Available only if Samples were selected for installation]

9.
10. The SAMP data set contains useful utility JCL:

Member Purpose

11.

CMEMPCC Sample JCL to compile, link and run the C example. This JCL is specific to
SAS/C.

CMEMPCOB | Sample JCL to compile, link and run the COBOL example.

PCCCSMP Sample C source with embedded SQL.

PCCOBSMP | Sample COBOL source with embedded SQL.

RNACECC Sample JCL to run the C/C++ pre-compiler.

RNACECOB | Sample JCL to run the COBOL pre-compiler.

RNACEINT Sample JCL to run ACEINT with dynamic SQL commands.

12. Browse the CNTL data set and verify that the following members exist:

13. Edit the job card for the INST member and submit. The installation is a success if all the return

Member Purpose

INST Installation script

ACEINT JCL Procedure for executing the ACEINT utility
PCACECC JCL Procedure for executing the C/C++ Precompiler
PCACECOB | JCL Procedure for executing the COBOL Precompiler

codes are 4 or less .




Adabas SQL Gateway Embedded SQL

Required and Optional Fields and Files - z/OS

Required and Optional Fields

Field in Install GUI Term Description

Login Server A symbolic or dotted numeric TCP/IP
address, for example: MVS or
123.123.123.123

User ID Your 1-8 character VSE logon ID. All
characters convert from lowercase to
uppercase.

Password Your 1-8 character VSE password. All
characters convert from lowercase to
uppercase.

Code Page Code Page the zOS system is using

Precompiler Data Set

DSN HLQ A one- or multi-part high-level data
set name, which is used to create the
CONNX installation data sets on the
target host. In the current example,
the DSN HLQ is CONNX.STASK.

Unit Optional. The DASD device type
(3380, 3390, etc.) of the above
VOLSER. Omit if the VOLSER field is
blank.

VOLSER The DASD volume serial on which the
CONNX.Adabas sequential and
partitioned data sets are created.
Optional: The DASD volume serial on
which the CONNX.ADABAS
sequential and partitioned data sets
are created.

Load Library Parameters

Load Lib. DSN Location of the Software AG CICS
High Performance Stub Routine. The
default for the Adabas SQL Gateway
Embedded SQL is
CONNX.STASK.LOAD

Unit Optional. The DASD device type
(3380, 3390, etc.) of the above
VOLSER. Omit if the VOLSER field is
blank.

VOLSER The DASD volume serial on which the
new load library is created. Specify a
VOLSER and a UNIT to create the
PDS on a specific volume, or leave
both fields blank to accept the system
defaults. If linking into an existing
PDS, leave the VOLSER and UNIT
text boxes blank.

Samples

Install Select the check box to install the
Precompiler sample files.




Chapter 1 - Adabas SQL Gateway Embedded SQL

VOLSER The DASD volume serial on which the
new CONNX load library is created.
Specify a VOLSER and a UNIT to
create the PDS on a specific volume,
or leave both fields blank to accept
the system defaults. If linking into an
existing PDS, leave the VOLSER and
UNIT text boxes blank.

Samples DNS Location of the Adabas SQL Gateway
Embedded SQL Sample files. The
default location is
CONNX.STASK.SAMP.

Required and Optional Files

System codepag_;e files (for advanced users only)

The Adabas SQL Gateway Embedded SQL library default codepage is CP37.
If the Code Page dropdoown list contains a better codepage, substitute its value for CP37.

The following codepages are available:

File Codepage

CP37 IBM273_EBCDIC_EN_US

CP273 IBM273_EBCDIC_DE

CP277 IBM277_EBCDIC_DK_NO

CP278 IBM278_EBCDIC_FI

CP280 IBM280_EBCDIC_IT

CP284 IBM284_EBCDIC_ES

CP285 IBM285_EBCDIC_GB

CP290 IBM290_EBCDIC_JP_Kana

CP297 IBM297_EBCDIC_FR

CP420 | IBM420_EBCDIC_Arabic_1

CP424 IBM424_EBCDIC_Hebrew

CP500 IBM500_EBCDIC_International

CP871 IBM871_EBCDIC_Icelandic

CP1140 | IBM1140_EBCDIC_EN_US_w_Euro

CP1141 | 1BM1141_EBCDIC_DE_w_Euro

CP1142 | 1BM1142_EBCDIC_DK_NO_w_Euro

CP1143 | 1BM1143_EBCDIC_FI_w_Euro

CP1144 | I1BM1144_EBCDIC_IT_w_Euro




Adabas SQL Gateway Embedded SQL

CP1145

IBM1145_EBCDIC_ES_w_Euro

CP1146

IBM1146_EBCDIC_GB_w_Euro

CP1147

IBM1147_EBCDIC_FR_w_Euro

CP1148

IBM1148_EBCDIC_International_w_Euro

CP1149

IBM1149 EBCDIC_Icelandic_w_Euro

CP1153

IBM1153_EBCDIC_Latin_2_w_Euro

CP1154

IBM1154_EBCDIC_Cyrillic_Multilingual

10




Chapter 1 - Adabas SQL Gateway Embedded SQL

Unix and Linux Installation

Installing Adabas SQL Gateway Embedded SQL - Linux + Unix

1. Select a computer on which the CONNX Server Installation component is installed. Click the
Start button, and then point to All Programs and then to CONNX Driver and then click Adabas
SQL Gateway Embedded SQL Setup.

If you selected the Adabas SQL Gateway or the Adabas Mainframe Server Components, and the
Adabas SQL Gateway Embedded SQL Setup option in the Select Features dialog box during
installation, the Adabas SQL Gateway Embedded SQL Setup dialog box appears during
installation.

CONNX 12 - InstallShield Wizard

Select Features

and d

- B8 COMME Client Driver
t-[v] COMME ddministrator
-] COMMX Help and Samples
-] COMM JDBC Server
- [w] COMMN Erterprise Server
E GL Gateway Embedded SHL Setup

-] LIMI Server Setup

- [wl ADABAS Mainframe Server Setup
-] %Sk Mainframe Server Setup
-l IM5 Mainframe Server Setup
H-] OpenttS Server Setup

-] COMMXStore Database Server
tl-[w] Open Systerns Event Replicatar

[ !'.f.'a'l-f, il < Back I ’ Mest = Cancel

11



Adabas SQL Gateway Embedded SQL

12

Adabas 5QL Gateway Embedded 5QL Setup E2 |

Eiles

Adabas SQL Gateway Embedded SGL Installation [ =
Enter the platform type, transfer method and login credentials.

i

zi03 ¥ UNEILinux

Select platform and transfer method
Platform & FTP Installation

Linuzx (Intel) B4-bit j o Secure FTP (sftp) Installation

o Secure Copy (scp) Installation

o Manual Copy Installation

Login Information

Server

Username I

Password

Path (optional) I

Install Done

If the target system has an FTP, SFTP or SCP server enabled, skip to step 4

If the target system does not have an FTP, SFTP or SCP server enabled, select the Manual Copy
Installation option and click the Begin Client Installation button. This option will create the
necessary install files in the PRECOMPILER\UNIX\TEMPINST subdirectory of the CONNX
installation directory. Move these files via an alternate copy method to the Unix server and then
proceed to step 11 below.

Select an operating system from the Platform list box and the desired transfer method (FTP,
SFTP or SCP).

In the Login area, enter the TCP/IP symbolic host name or dotted numeric address for your
system, a privileged user account name, and a user account password in the login text boxes (for
example, Linux, CONNX, and Password). The password appears as *x+**¥x,

Note: All fields are required.

In Path, enter the directory location in which you want to install the files. The location can either
be a fully qualified path from the root of the file system or a path relative to the default directory of
the same User ID you specified in the Login area. If the directory information is left blank then the
location will be the User ID default home directory .

Click Install . This action starts an FTP session and copies the selected CONNX components
from the client PC to the target host. Copying alert and FTP windows are displayed.

Allow several minutes for the file transfer process between the CONNX administrator computer
directory C:\CONNX32\Precompiler and the target host.



Chapter 1 - Adabas SQL Gateway Embedded SQL

9. Click Done. The Precompiler Setup dialog box closes.

10. Once the FTP successfully completes, you are ready to install the selected Adabas SQL Gateway
Embedded components.

11. Log on to a terminal session on the target system.
12. Change the directory to the location specified in the Path location.

13. Run the following command:

./linstallrci

14. If there are no error messages the installation was successful. The Precompiler Install Location
contains a LibRCI_* directory with the following files:

File Purpose

ACEINT Dynamic SQL utility
ACEPCC C/C++ pre-compiler
ACEPCCOB CCOBOL pre-compiler

BOOK_ORDERS.ddI | Dynamic Definition Language specification for sample files

BOOK_ORDERS.fdt | ADABAS FDT table structure definition file for samples

BOOKS.ddI Dynamic Definition Language specification for sample files

BOOKS.fdt ADABAS FDT table structure definition file for samples

EMPLOYEES.ddI Dynamic Definition Language specification for sample files

EMPLOYEES.fdt ADABAS FDT table structure definition file for samples

librciclnt_32.so RCICLNT run-time library (this must be on the search path for pre-
compiled executables and ACEAPI applications)

Makefile Make file for samples

precompile Pre-compiler helper script for samples

_Employees.c Example C source with embedded SQL statements (single-threaded)

_MultiThread.c Example C source with embedded SQL statements (multi-threaded)

13



Chapter 2 - Threading SQL Applications
Threading SQL Applications

Introduction

SQL client applications access Adabas SQL Gateway Embedded SQL using supplied client support
libraries that are linked with the SQL application. These client support libraries also provide support for
threaded SQL applications. This section explains what this means, and how to write such an application.

An SQL application can have one or more users. In the case of a commercial application that is
accessible across a network (internet or intranet), the normal situation requires that the application
service the needs of many users. So how does an SQL application manage all these users, or keep track
of what they are doing?

Additionally, an SQL application may have multiple threads executing in parallel, in order to perform the
task efficiently and quickly. The number of users trying to access an application at any given time can be
greater than or less than the number of threads available to the application. How does an application
manage its threading resources in order to manage the workload from the user population most
efficiently?

Adabas SQL Gateway Embedded SQL provides client support for threaded SQL applications by
implementing the concept of the SQL Context for managing users in a threaded environment.

14



Chapter 2 - Threading SQL Applications

SQL Context

An SQL Context is the collection of contextual information relating to database connections, cursors and
diagnostics that results from the execution of SQL statements by one (logical) user.

To illustrate this, consider a user of an SQL application. The user may connect to one database in order
to compile a list of books on a particular subject. Then the user may connect to a second database to
check whether a specific book is currently in stock in the warehouse. In making these database queries,
the user has acquired an SQL Context that consists of two database connections plus information on the
SQL cursors that were used to perform the searches. In addition, any diagnostic information such as the
success or failure of the SQL queries will form part of the SQL Context.

So the SQL Context is the result of Embedded SQL statements that have been executed by a user, and
it also forms the basis for the execution of further statements in the future.

SQL Language Support for Embedded SQL Contexts

Embedded SQL provides language support for Embedded SQL Contexts by implementing the following
Embedded SQL statements:

EXEC SQ. ALLOCATE SQL CONTEXT AS : hv;
and

EXEC SQL DEALLOCATE CONTEXT AS : hv;
These statements instruct the Embedded SQL as to which SQL Context is in effect at any given time.

The ALLOCATE SQL CONTEXT statement identifies the SQL Context that is to be used for subsequent
SQL statements. The host variable : hv must contain the address of a SAGCont ext structure (a data
type defined by the client support libraries). Simple textual scoping rules apply in regards to Embedded
SQL Contexts: the closest preceding ALLOCATE SQL CONTEXT statement for any given SQL statement
defines the SQL Context that is to be used in the resulting call to the database.

Note: The ALLOCATE SQL CONTEXT call itself allocates no memory; it merely specifies which SQL
Context is active for subsequent SQL statements. The application must allocate whatever memory is
required for the SAGCont ext structures that it uses. It is also essential that all SAGCont ext structures
be initialized to zero before use.

The DEALLOCATECONTEXT statement signifies that the SQL Context referenced by the host variable : hv
is no longer required, and that the resources associated with it can be released. (Note that an SQL
Context can only be deallocated when all of its database connections have been disconnected.)

The use of these statements is illustrated in SOL Threading models in Adabas SQOL Gateway Embedded

SQOL.

15



Adabas SQL Gateway Embedded SQL

SQL Threading Models in Adabas SQL Gateway Embedded SQL Clients

There are several different threading models in which SQL Contexts can be used. They are known as:
e Single Threading
e Bound Threading
e Free Threading

The Adabas SQL Gateway client support libraries support all three threading models, which are described
below.

How these threading models can be implemented is described in section Implementing the Threading
Models.

Single Threading_]

This is the trivial case in which an application has only one thread and one SQL Context. This model is
limited in its ability to serve multiple users in that each request cannot assume any previous SQL Context.
If such a context is required, then it must be recreated for each request, which is inefficient in terms of
processing resources.

Bound Threading

In this model, an application has multiple threads and an equal number of SQL Contexts, each thread
having one SQL Context which is "bound" to it. Each thread can use only the SQL Context that is bound
to it.

The Bound Threading model is simply the multi-threaded generalization of the Single Threading model
and, therefore, suffers from the same drawback. If the Bound Threading model is used to service multiple
users, then each thread must either be locked for a specific user for the duration of the user's request in
order to protect the SQL Context, or the thread must recreate the SQL Context at the start of each
request.

However, if the application requirements are such that efficiency is not a priority, then the Bound
Threading model can offer a useful compromise between the inefficiency of the Single Threading model
and the extra programming effort required for the Free Threading model.

Free Threading

This is the most flexible threading model, in which the application has multiple threads and multiple SQL
Contexts. However, the SQL Contexts are not bound to a specific thread - any thread can use any SQL
Context. Consequently, the number of SQL Contexts can be greater than the number of threads. It is then
possible to allocate one SQL Context for each logical user of the application, for example, for an internet-
accessible application, one SQL Context for each web browser that is accessing the application.

This allows for efficient applications where the stream of requests from the user population is processed
by multiple worker threads in a Multiple Server/Single Queue (MSSQ) configuration. MSSQ has the
advantage of automatic load balancing between the worker threads, making it more likely that requests
will be processed in the shortest possible time.

In this model, the SQL application is responsible for controlling which thread can access which SQL
Context. As a consequence of this, it is possible (although not desirable) for more than one thread to
simultaneously attempt to use the same SQL Context. In order to protect the integrity of SQL Contexts,
the client support libraries of the Adabas SQL Gateway implement a locking mechanism to ensure that
only one thread can use an SQL Context at any time.

This locking mechanism is largely transparent to the application writer. However, applications should
ideally implement their own locking strategy to control access to the SQL Contexts or at least be able to
cope with the situation that a thread finds an SQL Context to be locked already by another thread.

16



Chapter 2 - Threading SQL Applications

Implementing the Threading Models

The three threading models can be achieved as follows:
o The Single Threading model is in operation when an application has only one thread and
uses no ALLOCATE/ DEALLOCATE SQLCONTEXT statements. A single SQL Context is allocated
transparently by the client support libraries.
. The Bound Threading model is in operation when an application has multiple threads and
uses no ALLOCATE/ DEALLOCATE SQLCONTEXT statements. Multiple SQL Contexts (one per
thread) are allocated transparently by the client support libraries. Each SQL Context is bound to
one thread.
. The Free Threading model is in operation when an application has multiple threads and
uses the ALLOCATE/ DEALLOCATE SQLCONTEXT statements. The SQL application is
responsible for allocating all SQL Contexts, and for managing their use by the threads. Any
thread can use any SQL Context, as permitted by the application.

Note: It also possible to have a single-threaded application that uses multiple SQL Contexts; this is a
variation of the Free Threading Model.

Example 1: Simple Use of ALLOCATE/ DEALLOCATE SQLCONTEXT

In order to aid clarity, the first example is a Single Threaded application that simply connects to a
database and disconnects. The purpose is to demonstrate the basic use of the ALLOCATE SQLCONTEXT
and DEALLOCATE SQLCONTEXT statements. Subsequent examples will demonstrate multi-threaded use
of SQL Contexts.

#i ncl ude <stdi o. h>
voi d mai n(voi d)

{
exec sql begin declare section;
i nt SQLCODE;
exec sql end declare section;
SACCont ext  sqgl Ct x;
/* Declare the SQ context. */
menset (&sql Gt x, 0, sizeof (SAGContext));
exec sql allocate sqglcontext as :&sql Ctx
exec sql connect to 'testDB user 'DBA password 'dba';
printf("connect returned SQLCODE % \n", SQLCODE);
if (SQLCODE '= 0) exit(1);
exec sql disconnect;
printf("di sconnect returned SQLCODE % \n", SQ.CODE);
if (SQLCODE !'= 0) exit(2);
/* Deallocate the SQ context. */
exec sql deallocate sgl context as :&sqgl Ctx
exit(0);
}

In this example, one SQL Context is defined, initialized and identified in an ALLOCATE SQ_CONTEXT
statement. The program connects to a database and immediately disconnects. The SQL Context is then
deallocated.

Things to note about this example:

e Storage for the SQL Context (sql Ct x) is allocated by the user application, in this case by
defining the context as a dynamic variable.

17



Adabas SQL Gateway Embedded SQL

e Itis very important that the SQL Context is set to zero before use. The application will fail if this is
not done.

e The type of the host variable that is supplied in the ALLOCATE SQLCONTEXT statement must
evaluate to ( SAGCont ext *), hence : &sql Ct x.

e All connections must be closed before the DEALLOCATE SQLCONTEXT statement is executed.
Otherwise, an error will be returned to the user.

e In this example, the ALLOCATE SQLCONTEXT and DEALLOCATE SQ.CONTEXT statements are
actually not needed. The application would function identically if they were removed, since the
client support libraries will transparently allocate one SQL Context for the single thread. Their
purpose in this example is simply to illustrate their use.

Example 2: Multiple SQL Contexts, Multiple Threads
The second example illustrates an online book sales application that uses the Free Threading model.

In this simplified example, there are three threads in the application which serve a customer population of
ten. Each customer requests a book search, buys one book and logs off. Each work thread has a main
loop, in which it gets some work from a queue and does the work.

Therefore, any work packet could potentially be processed by any thread. There is no pre-ordained
sequence of which thread processes which work packet - it is simply a matter of which thread becomes
available first.

The ten customers are represented by an array of the structure AppCont ext . The AppCont ext
structure encapsulates all the application data pertaining to one user. Note that this contains the SQL
Context structure, as well as other application status data. The work queue is simulated by a statically
initialized array of the structure Wr kPacket .

The mai n() function starts three threads which all run the wor kThr ead() function and waits for them to
finish. The main loop of wor kThr ead() gets work from the commandQueue array and - depending on
the commandCode in the Wor kPacket - calls | i st Books(), buyBook() or| ogof f User ().

The example uses threading and locking functions that are declared in kbthreads.h. These are not listed
in order to aid clarity.
See further notes after this example.

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <kbt hreads. c>
static int debug_print = 1;

#defi ne TESTAPP_DBNAME "t est DB"

#defi ne TESTAPP_USERNANMVE " DBA"

#defi ne TESTAPP_PASSWORD "dba"

#defi ne NUM_THREADS (3) /* Nunber of threads to start. */

#defi ne NUM_CONTEXTS (10) /* Nunber of contexts in use. */

enum ConmandCodes { LI STBOCOKS, BUYBOOK, LOGOFF, TERM NATE, numcnds };
/* Thread count & mutex. */

nmutex_t thread count _nutex = NULL ;

i nt thread_count = 0 ;

/* Application Context (includes SQ Context). */

typedef struct {

i nt user| D,
i nt appFl ags;
mut ex_t appCont ext _mut ex;
SAGCont ext  sgl Cont ext ;
} AppCont ext ;

18



Chapter 2 - Threading SQL Applications

#defi ne APPFLAG CONNECTED (1 << 0)
#defi ne APPFLAG WORK_DONE (1 << 1)
AppCont ext userTable[] = {

{ 1000, 0, 0, 0}, { 1001, 0, O, O}, { 1002, 0, O, O},
{ 1003, 0, 0, 0}, { 1004, 0, 0, 0}, { 1005, 0, 0, O},
{ 1006, 0, 0, 0}, { 1007, 0, 0, O}, { 1008, 0, O, O },
{ 1009, 0, 0, 0}

/; Command Queue & nutex. */
t ypedef struct {

i nt appCont ext ;

i nt conmandCode;

char user Arg[ 20];

char resul ts[ 10] [ 100];

} Wor kPacket ;
Wor kPacket commandQueue[] = {

{ 1, LISTBOOKS, "conputers" }, { 2, LISTBOOKS, "languages" },
{ 0, LISTBOOKS, "politics" }, { 2, BUYBOC, "0- 002-90009-0" 1},
{ 0, BUYBOK, "0-003-90009-0" }, { 1, BUYBOC, "0-001-90009-0" 1},
{ 0, LOGOFF }, { 1, LOGCFF 1},
{ 2, LOGOFF }, { 3, LISTBOCKS, "travel" },
{ 3, BUYBOCK, "0- 004-90009-0" }, { 3, LOGOFF },
{ 4, LISTBOOKS, "sport" }, { 4, BUYBOC, " 0- 005-90009-0" 1},
{ 5, LISTBOOKS, "cinema" }, { 5, BUYBOC, " 0- 006- 90009- 0" 1},
{ 6, LISTBOCKS, "health" }, { 6, BUYBOC, " 0-007-90009-0" 1},
{ 6, LOGOFF }, { 9, LISTBOXKS, "hunour" },
{ 7, LISTBOCKS, "poetry" }, { 8, LISTBOOKS, "history" },
{ 8, BUYBOX, "0-010-90009-0" }, { 7, BUYBOCK, " 0- 009- 90009- 0" 1},
{ 9, BUYBOX, "0-008-90009-0" }, { 7, LOGCOFF },
{ 5 LOGOFF }, { 4, LOCGCFF 1},
{ 9, LOGOFF }, { 8, LOCCFF 1},
{ 0, TERM NATE }

1

nut ex_t commandQueue_nut ex = NULL;

i nt cql ndex = 0;

i nt cqLength = 31;

exec sql begin declare section;

char testDb[20];
char testUser[20];
char testPass[20];

exec sql end decl are section;
int sqgl Error(SQL_I NTEGER sql codeOri g,

char * stnt,
AppCont ext * pAppCont ext,
i nt appCt xNo)

exec sql begin declare section;

i nt SQLCODE;

i nt i;

i nt errCnt = 0;

char errTxt[128];

exec sql end declare section;
SAGCont ext * pSql & x = &pAppCont ext - >sql Cont ext ;
if (sqlcodeOig < 0)

[* Error */
printf("C%: %: returns SQLCODE=% \n", appCtxNo, stnt,

sql codeOri Q) ;

19



Adabas SQL Gateway Embedded SQL

exec sql allocate sqlcontext as :pSql Ctx;
exec sql get diagnostics :errCnt = nunber;
for (i = 1; i <= errCnt; i++)
{

nmenset (errTxt, 0, 128);

exec sql get diagnostics exception :i :errTxt = MESSAGE TEXT;

printf("C%: %: SQCODE=%, %\n",
appCt xNo, stnt, sqlcodeOrig, errTxt);
}

/* Tidy-up work/connections. */
i f (pAppCont ext - >appFl ags & APPFLAG WORK DONE)

pAppCont ext - >appFl ags &= ~APPFLAG WORK DONE;
exec sql rollback work;
sqgl Error (SQLCODE, "rol |l back work", pAppContext, appCtxNo);

i f (pAppCont ext - >appFl ags & APPFLAG_CONNECTED)
pAppCont ext - >appFl ags &= ~APPFLAG CONNECTED,

exec sql disconnect;
sqgl Error (SQLCODE, "di sconnect”, pAppContext, appCtxNo);

return(-1);
}
el se
{

return(0);

int |istBooks(WrkPacket * pWirk, int threadNo, int workPacket No)

exec sql begin declare section;

i nt SQ.CCDE = 0;

char user Choice[20] = { 0 };
char thel SBN[20] ={ 0 };
char theTitle[60] = { O };

i nt thePrice = 0;

exec sql end declare section;

i nt r owCount ;

AppCont ext * pAppCt x = &user Tabl e[ pWor k- >appCont ext ] ;
SAGCont ext * pSql Gt x = &pAppCt x- >sgl Cont ext ;

/* Set up the SQL context host variable. */

exec sql allocate sqlcontext as :pSql Ctx;

if (!(pAppCtx->appFl ags & APPFLAG CONNECTED))

exec sql connect to :testDb user :testUser password :testPass;
if (sql Error(SQ.CODE, "connect", pAppCtx, pWrk->appContext))
{

return(-1);
}
el se
{
pAppCt x- >appFl ags | = APPFLAG CONNECTED;
}

}
strcpy(user Choi ce, pWrk->userArg);

exec sql declare listCur cursor for

20



Chapter 2 - Threading SQL Applications

sel ect isbn, title, price from books where category = :user Choi ce;

exec sql open listCur;
if (sql Error(SQLCODE, "open", pAppCtx, pWrk->appContext))

return(-1);

}
for (SQLCODE = 0, rowCount = 0; SQ.CODE == 0; rowCount ++)
{

exec sql fetch [istCur into :thelSBN, :theTitle, :thePrice;
i f (SQLCODE == 100)
{

br eak;

}
else if (sqlError(SQCODE, "fetch", pAppCtx, pWrk->appContext))
{

return(-1);
}
el se
sprintf(pWwrk->results[rowCount],
"Us,%,%\n", thel SBN, theTitle, thePrice);
}

}
exec sql close listCur;
if (sql Error(SQ.CODE, "close", pAppCtx, pWrk->appContext))
{

return(-1);
}
i f (debug_print)
{

printf(" listBooks(): T% C% W% - success\n",

t hreadNo, pWbr k- >appCont ext, wor kPacket No) ;

return (0);
buyBook( Wor kPacket * pWdrk, int threadNo, int workPacket No)

exec sql begin declare section;

i nt SQLCODE = 0;

i nt t hi sOrdnum = 0;

i nt t hi sUser = 0;

char thel SBN[20] = { 0 };

exec sql end declare section;
AppCont ext * pAppCt x = &user Tabl e[ pWor k- >appCont ext ] ;
SAGCont ext * pSql Gt x = &pAppCt x- >sqgl Cont ext ;
/* Set up the SQL context host variable. */
exec sql allocate sqglcontext as :pSql Ctx;
t hi sOrdnum = wor kPacket No;
t hi sUser = pAppCt x- >user | D;
strcpy(thel SBN, pWrk->userArg);
exec sql insert into orders (ordnum wuserid, isbn)
val ues (:thisOrdnum :thisUser, :thel SBN);
if (sqlError(SQCODE, "insert", pAppCtx, pWrk->appContext))
{

return(-1);

}

exec sql comit work;

21



Adabas SQL Gateway Embedded SQL

if (sqlError(SQCODE, "insert", pAppCtx, pWrk->appContext))
{
return(-1);

}
i f (debug_print)
{
printf (" buyBook(): T% C% WP% - success\n",
t hreadNo, pWor k- >appCont ext, wor kPacket No) ;

return (0);
i nt |ogoffUser(WrkPacket * pWwrk, int threadNo, int workPacket No)

exec sql begin declare section;

i nt SQ.CCODE = 0;

exec sql end declare section;

AppCont ext * pAppCt x = &user Tabl e[ pWor k- >appCont ext ] ;

SAGCont ext * pSql Gt x = &pAppCt x- >sgl Cont ext ;

/* Set up the SQL context host variable. */

exec sql allocate sqlcontext as :pSql Ctx;

exec sql disconnect current;

if (sql Error(SQLCODE, "disconnect”, pAppCtx, pWirk->appContext))

return(-1);
}
el se
{
pAppCt x- >appFl ags &= ~APPFLAG _CONNECTED,;
i f (debug_print)
{
printf("logoffUser(): T% C% W% - success\n",
t hreadNo, pWor k- >appCont ext, wor kPacket No) ;
return (0);
} }
static DWORD W NAPI wor kThr ead(LPVO D t hr eadAr g)
{
i nt threadNo = (int) threadArg;
i nt retval = 0;
Wor kPacket * pVor k;
AppCont ext * PApPpPCt X;
i nt wor kCode;
i nt wor kPacket No;
Sl eep( THREAD_| NI T_SLEEP_TI ME) ;
do
if (!lock_nutex(conmandQueue_mutex, | NFIN TE))
printf("FAI LURE: workThread(% ): |ock_rmutex(cq) FAILS\n",
t hr eadNo) ;

}

wor kPacket No = cql ndex;
if (cqglndex < (cqgLength - 1))

cql ndex++;

22



Chapter 2 - Threading SQL Applications

pWwork = & ommandQueue[ wor kPacket Noj ;
wor kCode = pWor k- >comuandCode;
i f (workCode != TERM NATE)

{
pAppCt x = &user Tabl e[ pWor k- >appCont ext ] ;
if (!lock_nmutex(pAppCtx->appContext _nutex, |NFIN TE))
{
printf("FA LURE: workThread(% ): |lock rmutex(aq %) FAILS\n",
t hreadNo, pWork->appCont ext);
}
}

/* Safe to unlock command queue now. */
i f ('unlock_mutex(commandQueue_nut ex))
{
printf("FA LURE: workThread(% ): unlock_nutex(cq) FAILS\n",
t hr eadNo) ;

}
switch (workCode)

{

case LI STBOCKS:
retval = |istBooks(pWrk, threadNo, workPacket No);
br eak;

case BUYBOXX:
retval = buyBook(pWrk, threadNo, workPacket No);
br eak;

case LOGOFF:
retval = | ogoffUser(pWrk, threadNo, workPacket No);
br eak;

case TERM NATE:
printf(" <TERM NATE>. T% C% WP% - success\n",

t hreadNo, pWrk->appCont ext, workPacket No) ;

}
i f (workCode != TERM NATE)

i f (!unlock _nmutex(pAppCt x->appCont ext _rut ex))

{
printf("FA LURE: workThread(% ): unlock_nutex(aq %)
FAI LS\ n",
t hreadNo, pWork->appCont ext);
} }
} while ((workCode != TERM NATE) && (retval == 0));
/* Reduce thread_count. */
if (!'lock _nmutex(thread count _mutex, |NFINTE))
{
printf("FA LURE: workThread(% ): |ock _rmutex(tc) FAILS\n", threadNo);
}
t hread_count - -;
if ('unlock mutex(thread count_ nutex))
{
printf("FA LURE: workThread(% ): unlock_nutex(tc) FAILS\n",
t hr eadNo) ;
}
exit_thread( EXI T_THREAD COCDE);
return(0);
}
int main(int argc, char ** argv)

23



Adabas SQL Gateway Embedded SQL

{
i nt t hreadNo, ctxCount, old count = O;
bool _t finished = FALSE;
thread_t t hr ead_h[ NUM_THREADS] ;

SAGCont ext * pSql G x = O;
exec sql begin declare section;
i nt SQLCODE;
exec sql end decl are section;
/* Set up the db, user & passwd. */
strcpy(test Db, TESTAPP_DBNAME) ;
strcpy(testUser, TESTAPP_USERNAME) ;
strcpy(testPass, TESTAPP_PASSWORD) ;
/* Create thread-count and conmand queue mutex | ocks. */
if (!create_nmutex(FALSE, &t hread_count_nutex)
|| !'create_ nutex(FALSE, &comrandQueue_nut ex))

printf("Can't create TC/ CQ mutex | ock\n");
exi t (ABORT_THREAD_ CODE) ;

/* Create mutex |ocks for application contexts. */
for (ctxCount = 0; ctxCount < 10; ctxCount ++)

{
if (!create_nutex(FALSE, &user Tabl e[ ctxCount]. appContext_ nutex))
{
printf("Can't create AC nutex |ock\n");
exi t (ABORT_THREAD_CCDE) ;
}
}

/[* Start the worker threads. */
for (threadNo = 0; threadNo < NUM THREADS; t hreadNo++)
{

if (!lock_nutex(thread_count_mutex, |INFINTE))

{
printf("FAILURE: main: |ock_nutex 1 FAILS\n");

t hread_count ++;
create_t hread(workThread, (void *)threadNo, &t hread_h[threadNo]);
if ('unlock mutex(thread count_ nutex))

{

}

}
/* Wait for threads to finish. */
whil e (!finished)

printf("FA LURE: main: unlock mutex 1 FAILS\n");

{ if (!'lock_nmutex(thread_count_mutex, |NFINTE))
{ printf("FA LURE: main: lock nutex 2 FAILS\n");
if (thread_count != old_count)
{ ol d _count = thread _count;
printf("%l threads running\n", thread count);
% ni shed = (thread_count <= 0);

[
if (!unlock_nutex(thread_count_nutex))

~_~~—

24



Chapter 2 - Threading SQL Applications

printf("FA LURE: main: unlock mutex 2 FAILS\n");
}
if (!finished)

Sl eep( TI MEQUT_SLEEP) ;
}

/* Deallocate all SQ contexts. */
exec sql allocate sqglcontext as :pSql Cx;
for (ctxCount = 0; ctxCount < 10; ctxCount ++)

pSql Gt x = &user Tabl e[ ct xCount ] . sgl Cont ext ;
exec sql deallocate sqgl context as :pSqgl Ctx;

}
for (threadNo = 0; threadNo < NUM THREADS; t hreadNo++)
{

Gl oseHandl e(t hread_h[t hreadNo] ) ;

}
printf("Finished.\n");
}
Things to note:
e The initialization of the user Tabl e ensures that the SAGCont ext structure (the
SQL Context) is initialized to zeroes before it is used. It is essential that an SQL
application does this.

e The AppCont ext structure contains a lock mechanism (appCont ext _nut ex)
which is used to serialize access on a customer's SQL Context. This avoids errors
being returned by the client support libraries, which will detect whether an SQL
Context is already in use. Applications are responsible for managing access to
SQL Contexts. They must either ensure that only one thread can access an SQL
Context at a time (as this example does), or be prepared to handle errors from the
SQL interface.

e SQL diagnostic information is held in the SQL Context. Therefore, the error
reporting function sql Err or () also specifies which SQL Context it is using.

e Note that all the SQL Contexts are deallocated by the main thread after all the
work threads have finished. It would also have been possible to deallocate the
active context after the disconnect statement in the | ogof f User () function. The
application can deallocate an SQL Context whenever it has finished with it,
providing it contains no active SQL connections.

25



Chapter 3 - Client/Server Configuration

Client Configuration

Description of Client Configuration

Adabas SQL Gateway Embedded SQL precompiler requires access to the RCI run-time library
(RCICLNT.dIl). ACEPCC is a console based application and is therefore invoked from the command line.
Outside of the directory where ACEPCC is installed (See: Chapter 1 - Installation Instructions:
Precompiler) the ACEPCC executable must be on the system search path or the full path to the
executable must be specified on the command line. ACEPCC does not require a development
environment to function, however, a development environment for ANSI C or C++ must be available in
order to compile and execute the Precompiler output.

26



Chapter 3 - Client/Server Configuration

Server Configuration

Description of Server Configuration

The server for the RCI is defined as the Windows machine running an instance of the CONNX RCI/JDBC
Server. In order for the Precompiler or the RCI run-time to function, an instance of the RCI/JDBC server
service must be running and available. For details on the installation and configuration of the RCI/JDBC
server, please refer to the CONNX documentation, available online, on the CONNX CD-ROM, and within
the CONNX Adabas SQL Gateway product.

27



Adabas SQL Gateway Embedded SQL

CDD / JDBC Server

To access data from the RCI, the schema definition for the tables referred to in the user's embedded SQL
must be defined in a CONNX Data Dictionary (CDD).

For more information on how to import into and configure a CDD please refer to the CONNX
documentation, available online, on the CONNX CD-ROM, and within the CONNX application.

Once the CDD has been defined, the CDD must be made available to the RCI/JDBC server by invoking
the CONNX DSNRegistry tool to create a logical name, known as a Data Source Name (DSN) that points
to the CDD. The CDD DSN should be registered on the same machine on which the CONNX RCI/JDBC
Server is installed. The CONNX RCI/JDBC Server checks the Windows registry on that machine to locate
the DSNs.

Note: A DSN for use with the RCI is not the same as an ODBC DSN. If you intend to use both ODBC and
the RCI to access databases, you must create a DSN for both access methods. A DSN registered for the
RCIl is also compatible with CONNX JDBC.

28



Chapter 3 - Client/Server Configuration

Client / Server Communication

Description of Client / Server Communication

The CONNX RCI/JDBC Server component is a Microsoft Windows server component that communicates
with the RCI run-time. It is a Windows executable that opens a socket and listens for new connections.
When it accepts a new connection, it creates a new thread that is dedicated towards communicating to
that client. Installing the CONNX RCI/JDBC Server component on every machine is an optional task since
only one server is required for communication with all CONNX RCI/JDBC client machines.

29



Adabas SQL Gateway Embedded SQL

Host / Port

At any time during the execution of the precompiler or the RCI run-time, if a Host / Port combination is
required, the information requested is the HOST address of the RCI/JDBC server and the PORT that the
server is listening on. The default PORT for the RCI/JDBC server is 7500. For more information on how to
configure the RCI/JDBC server, please refer to the CONNX documentation, available online, on the
CONNX CD-ROM, and within the CONNX application.

30



Chapter 4 - Programming Guide - General Concepts

SQL Programming - General Concepts

SQL Statements

SQL statements are not part of the host language but are embedded in an application written in the host
language. The compilation of such a program consists of two phases; the precompilation of the SQL
statements contained in the application program followed by the compilation of the actual program itself.

The SQL statements must be invisible to the host language compiler during the compilation phase. In
fact, the embedded SQL statements are commented out by the precompiler and are replaced by
statements generated into the application program in a form that corresponds to the requirements of the
host language.

The precompiler must be able to identify all embedded SQL statements. Therefore, all SQL statements
are delimited by special SQL delimiters. It is not possible to have more than one SQL statement between
one set of delimiters.

The SQL Starting Delimiter

The starting delimiter consists of a sequence of two words:
EXEC SQL

These words must be separated by one or more whitespace characters. They may be separated by one
or more lines or blanks, and may be in either upper case or lower case depending on what the host
language permits.

In ANSI mode, the two keywords must be in upper case and must be separated by blanks (not lines).
The SQL Statement Body

Once the starting delimiter has been specified, the statement itself must be provided. It must be
separated from the starting delimiter by at least one whitespace character and may be specified on the
same line or on a following line to the starting delimiter. The statement may be specified in either upper
case or lower case and may be split over several lines. Each keyword or token must be separated by at
least one whitespace character and may not be split over two or more lines. Keywords may be written in
upper case or lower case depending on the host language. In ANSI mode, keywords must be written in
upper case only.

31



Adabas SQL Gateway Embedded SQL

The SQL Communications Area (SQLCA)

Any application program needs to be able to check the success or failure of any particular SQL statement
once it has been executed. At least one special host variable structure needs to be declared in the
program, so that there is always one in scope for each SQL statement. For this purpose, a host variable
structure, called SQL communication area (SQLCA) is used. Adabas SQL Gateway Embedded SQL
updates certain fields of the structure depending on the nature of the particular SQL statement and the
outcome of its execution. The application program can verify the successful execution of an SQL
statement by inspecting the contents of the sqlcode element of the SQLCA.

Declaring the SQLCA

As stated above, the SQLCA is a special type of host variable structure. In order to ensure that the
structure has the correct format, the application program should use the definition of the SQLCA provided
by the Adabas SQL Gateway Embedded SQL. To facilitate this, the following SQL statement should be
embedded in the application program:

| NCLUDE SQLCA;

Executing this statement has the effect of generating an appropriate SQLCA definition and declaration at
the point where it is specified. Thus, the SQLCA obeys the rules of scoping set by the host language
relative to the position of the INCLUDE SQLCA statement.

Application programs can explicitly declare an SQLCA without using the INCLUDE statement. It is then
the responsibility of the programmer to ensure that the structure is correctly defined and declared. Failure
to do so may lead to unpredictable results.

Using the SQLCA

Once the SQL statement execution has completed, the application program should check the SQLCODE
field of the SQLCA. The program logic should then be in a position to deal with any eventuality. This may
be done for every SQL statement. However, by using the precompiler directive WHENEVER, such coding
can be generated automatically.

Currently, not all fields in the SQLCA are used.
Note: The following static statements do not result in any update of the SQLCA:

DECLARE CURSOR
BEGIN DECLARE SECTION
END DECLARE SECTION

WHENEVER

INCLUDE

L

Field Description

sglcaid An eight-byte character string containing the constant SQLCA. This field serves mainly
as an eye-catcher for easy memory dump interpretation.

sqglcabc A four-byte integer variable containing the length in bytes of the SQLCA. It normally
contains the value 136.

sglcode A four-byte integer variable containing the status of the executed SQL command. The

standard defines three categories of results.

zero The command has been successfully executed. (There may have been warning
messages)

negative An error has occurred. The negative number indicates the nature of the error.

32



Chapter 4 - Programming Guide - General Concepts

Adabas SQL Gateway Embedded SQL allows the installation to define its own error
values. Thus, compatibility with different SQL DBMSs can be achieved. (The
ANSI/ISO standard does not specify which negative values should be used with a
particular error status).

When a negative code is returned, the SQLERROR condition of the
WHENEVER statement is activated.

positive The command executed successfully, but an exceptional condition occurred.

+100 This value is returned to indicate that the command was successfully executed
but processed no rows. It is used in conjunction with the following commands:

DELETE FETCH INSERT
SELECT UPDATE

sglerrm

A variable containing two fields holding the actual values to replace the variables
contained in error messages.

sglerrml A two-byte integer field. This field is currently not used.

sglerrmc A character string of variable length which may not exceed 70 characters. This
field is currently not used.

The string contains one or more actual values for the variables of the associated error
messages. As many error messages contain no text variables, this field is not always
filled.

Each value in the string is terminated by one byte containing the hex value FF.

sglerrp

An eight-byte character variable. This field is currently not used.

sqlerrdl - 6

A group of six integer fields, each four bytes in length.

sqlerrd1l Currently not used.
sqglerrd2 Currently not used.
sqlerrd3 Specifies how many rows were processed by the SQL statement.
sqlerrd4 Currently not used.
sqlerrd5 Currently not used.
sqlerrd6 Currently not used.

sglwarn0 - 7

A group of eight character variables, each one byte in length. The default content is
blank. This field is currently not used.

sglwarn0 Currently not used.
sqglwarnl Currently not used.
sglwarn2 Currently not used.
sqglwarn3 Currently not used.
sqglwarn4 Currently not used.
sqglwarn5 Currently not used.
sqglwarn6 Currently not used.
sglwarn7 Currently not used.

sglext

An eight-byte character string. This field is currently not used.

33




Adabas SQL Gateway Embedded SQL

Program Structure

To develop correct SQL application programs, it is important to understand the difference between the
physical order of the SQL statements in a program and the order of their execution.

The Adabas SQL Gateway Embedded SQL scans the source application program for SQL statements
and effectively skips any host language statements or commands. The Adabas SQL Gateway Embedded
SQL has no understanding of the underlying logic of the application or the context of any particular SQL
statement. All it can actually understand is an isolated collection of SQL statements.

Under the following circumstances, the physical order of the statements is relevant and does not have
anything to do with the actual order in which the statements will be executed.

When running in ANSI compatibility mode, any statements which reference a cursor must physically
follow the associated DECLARE CURSOR statement. In Adabas SQL Gateway Embedded SQL mode,
this restriction does not exist and so the physical order of such statements is irrelevant.

In Adabas SQL Gateway Embedded SQL mode, although the DECLARE and OPEN statements must be
in the same source file, other associated statements need not be. For more details, refer to the section on
Static SQL.

The physical ordering of other statements can now follow freely as long as any host variables accessed
within an SQL statement have been declared physically prior to usage and an SQLCA is in scope for
each statement.

Positioning the SQL Statement

Almost all SQL statements may be positioned anywhere within an application program where a host
language statement is permitted. This is, because in general, SQL statements are replaced with
appropriate generated host language statements by the precompiler. The rules governing the positioning
of host language statements also apply to the embedding of SQL statements. The positioning of the SQL
statement must also conform to the context of the logic of the application program. As long as each SQL
statement is individually delimited, where the host language permits, more than one SQL statement may
be positioned on a single line.

The following statements are exceptions to the above rules:

BEGIN DECLARE These statements can only be positioned where host language
SECTION declarations are allowed.

END DECLARE

SECTION

INCLUDE

WHENEVER These statements can be placed anywhere depending on the
DECLARE CURSOR desired control flow.

(static)

34



Chapter 4 - Programming Guide - General Concepts

SQL Commands and Grammar

A complete description of CONNX-supported SQL Grammar can be found in the CONNX User Reference
Guide.

35



Adabas SQL Gateway Embedded SQL

Transaction Logic

Database modifications are performed using the transaction concept. A transaction consists of the
following statements:

1. INSERT, DELETE or UPDATE statements. Such statements define the changes which are to be
applied to the database.

2. A COMMIT statement which causes the changes to be applied to the database. Successful
execution of a COMMIT statement causes the transaction to be closed.

A ROLLBACK statement can be used to back out any changes made to the database by the current
(open) transaction.

Any rows in the database which are modified are placed in hold status until the transaction is completed.
This prevents any conflicting modification by other users who must wait until the row is released at the
completion of the transaction.

Transactions Containing Different Types of Statements

The execution of DDL and DCL statements may be mixed in the same transaction, but may not be mixed
with the execution of DML statements.

The mixing of DML and DDL/DCL statement execution within one transaction will be detected, the
violating statement execution will be rejected, and an error message will be issued. The current
transaction status will not be affected. For example, in a transaction with only DDL/DCL statements, a
DML statement will be considered a violating statement and vice versa.

Transaction neutral statements (PREPARE, EXECUTE, EXECUTE IMMEDIATE and DESCRIBE) may be
mixed with all other statements in one transaction. They may be contained in a DDL transaction, a DCL
transaction, a mixed DDL and DCL transaction and also in a DML transaction.

36



Chapter 4 - Programming Guide - General Concepts

Static SQL
Introduction

Static SQL refers to a particular type of application where SQL statements are fixed or static. This is as
opposed to dynamic SQL where the actual statement to be executed against a database is created at run
time. Thus static SQL statements are embedded SQL statements that do not vary during the execution of
the application program.

Strictly speaking, embedded statements like the PREPARE statement are also static. They are
embedded in an application program but they enable the use of dynamic SQL statements. Such
statements are described in the section Dynamic SQL later in this documentation.

The following types of statements can be used:

e DDL Statements
Data Definition Language statements define database structures. An example of a DDL
statement is the CREATE TABLE statement.

e DML Statements
Data Manipulation Language statements perform operations on the data in the database. An
example of a DML statement is the SELECT statement.

e DCL Statements
Data Control Language statements control access to data. An example of a DCL statement
is the GRANT statement.

37



Adabas SQL Gateway Embedded SQL

Manipulating Data

The DML (Data Manipulation Language) component of SQL provides the following functionality:
e populates the data structures with actual data,

e enables the retrieval of data from the data structures,
e updates the data by either changing or removing values.

Two distinct concepts are provided for data manipulation, non-cursor and cursor operations.

Non-cursor-based Statements

Statements which are not based on a cursor are not associated with other statements in any way.

Data is generally retrieved by using the SELECT statement. An INTO clause and an appropriate host
variable list must be provided in order to receive the returned data. This mechanism, therefore, does not
facilitate the retrieval of more than one row. An embedded static SELECT statement may only generate
one row, otherwise an exception condition will occur during run time. It is the programmer's responsibility
to ensure that the SELECT statement really does only return a single row. It is not possible for this to be
checked in any way during the compilation of the statement.

Note: In Interactive SQL or Dynamic SQL there is no such restriction on the number of rows which can be
retrieved by a SELECT statement.

The host variable list should match the derived columns list in every aspect. There is a one-to- one
correspondence between a derived column and a host variable. The basic type of the host variable must
match that of the corresponding derived column. The relative number of items should be the same but
need not be. If there are insufficient host variables then data will be lost. If there are too many then the
contents of the extra host variables will be undefined after the statement has completed. In either case a
compiler warning is issued. Should an error occur during the execution of the query, the values in the host
variables are undefined.

Inserting Single Rows

Data is inserted into a table using the INSERT statement. The data is inserted on a row by row
basis. The source of the data can either be literals or host variables (that is non-SQL derived
data) or from a subquery (that is SQL-derived data). When specified using non-SQL data, only
one row may be inserted for one execution of the statement. If a subquery is used then as many
rows as the subquery provides are inserted for one execution of the statement. The subquery
may not access the target table. There is no corresponding cursor-based INSERT statement.

Updating Rows

Data can be updated by using the UPDATE statement. The data is updated on a row by row
basis as identified by the search expression. Therefore, more than one row can be updated at a
time.

Deleting Rows

Rows of data can be removed from the table by using the DELETE statement. The data is
deleted on a row by row basis as identified by the search condition and, therefore, many rows can
be deleted at once. If no search condition is specified, then all rows are identified and the table is
cleared of all its data.

Level 1 or level 2 tables cannot be the target of DELETE statements. Data from such tables can
only be removed by deleting the associated level O row. In such a case the referencing level 1
and level 2 rows are deleted automatically with the level O row. This is analogous to a DELETE
CASCADE in referential integrity terminology.

Cursor-based Statements

As described in the previous section, non-cursor-based statements are not suitable for accessing and
updating more than one row in a table. This requires the use of cursors as described below.

38



Chapter 4 - Programming Guide - General Concepts

Declaring and Opening a Cursor

A cursor is declared in a DECLARE CURSOR statement along with the underlying query
expression. which defines a resultant table. The cursor is used as a pointer to a particular row of
this table. At runtime, a static DECLARE CURSOR statement has no effect, it is only a
declaration for the SQL compiler.

When the cursor is opened by an OPEN CURSOR statement, the runtime system establishes the
resultant table with the cursor pointing to the first row.

Other SQL compilers require that a DECLARE CURSOR statement is followed by the OPEN
CURSOR statement. This is because the information contained in the DECLARE CURSOR
statement has to be attached to the OPEN statement. Adabas SQL Gateway does not have this
restriction. As the static DECLARE CURSOR statement has no effect at runtime, the logical order
is not relevant.

Once the cursor has been opened, it can be used by other statements.

Retrieving Data Using a Cursor

Data is retrieved from the resultant table using the FETCH statement. This statement specifies
the cursor to be used and a target buffer list which is similar to that of the single row SELECT
statement. The target buffer list must match the projection list of the query expression. Each time
the FETCH is executed, it moves the cursor to one row and copies the values of the derived
columns into the corresponding host variables of the target buffer list. For a newly opened cursor,
the first row of the resultant table will be retrieved and the values will be made available to the
application program in the host variables. The cursor now points to the first row. Each execution
of the FETCH statement results in successive rows of the resultant table being retrieved.

Once all the rows have been fetched, the cursor is said to be exhausted and points past the last
row. After the last row has been fetched, the next and any subsequent FETCH statement will
result in a return code of +100 being issued by the runtime system. This needs to be checked by
the application program either explicitly or by specifying a WHENEVER statement with the NOT
FOUND option. Once a cursor is exhausted, it should be closed.

The current row, as determined by the cursor's position in the resultant table, can be updated by
using a positioned UPDATE statement. The use of such a statement does not affect the position
of the cursor. Only one row, the current one, can be updated by using this statement. However,
by embedding the statement in the same loop as the FETCH statement, each row of the resultant
table can be updated successively. For this reason, Adabas SQL Gateway permits the use of a
FETCH statement without having to specify a target buffer.

Similarly, the current row can be removed from the underlying base table by executing a
positioned DELETE statement against the cursor. After execution of the DELETE statement, the
row no longer exists, but a FETCH statement must still be executed in order to position the cursor
to the next row.

Both the positioned UPDATE and DELETE statements are only valid if it is determined during
compilation that the cursor can be updated as specified in SQL Statements.

Closing a Cursor

A cursor can be closed at any time. Normally, it is closed once all rows have been fetched and
the cursor is positioned past the last row. Closing the cursor means that the resultant table is
discarded along with any internal resources required for the cursor's processing. A cursor is also
closed implicitly if a COMMIT or ROLLBACK statement is executed without the KEEPING ALL
option.

Programming Logic for Cursor Usage

In general, the FETCH, the positioned UPDATE or DELETE, and the CLOSE statements should
appear in the same compilation unit as the associated DECLARE CURSOR statement. This is
because all the necessary checks to see if the statement is valid can be performed at compile

39



Adabas SQL Gateway Embedded SQL

40

time. Adabas SQL Gateway, however, does permit such statements to be located in another
compilation unit. This is intended to aid the modular design of the application. However, it should
be noted that the necessary compile time checks are performed at runtime and may result in a
loss of performance.

An application program may contain many DECLARE CURSOR statements but each cursor
identifier must be unique. For each DECLARE CURSOR statement there must be at least one
OPEN CURSOR statement, and it must be in the same compilation unit. As long as it is not
compiled under ANSI compatibility mode, the OPEN CURSOR statement need not follow the
DECLARE CURSOR statement. There may also be many instances of the FETCH, positioned
UPDATE or DELETE and the CLOSE CURSOR statements. As long as a cursor is closed, either
explicitly or implicitly, it may be opened as many times as required.

Closing the cursor does not commit any changes made to the underlying base table. However,
these changes are visible to the user, once the cursor is re-opened during the current transaction.



Chapter 4 - Programming Guide - General Concepts

Dynamic SQL
Introduction to Dynamic SQL

The principle difference between static and dynamic SQL statements is the point in time when the SQL
statements are constructed and compiled.

Static SQL Statements

A static SQL statement is embedded in a host language program and must be precompiled. The
type of statement, the tables, views, columns referenced, and search conditions cannot be
changed at runtime. Although host variables can be used to provide search values at runtime, the
general content of the statement, for example, the derived column list, the search conditions,
cannot be changed at runtime.

Dynamic SQL Statements

A dynamic SQL statement is constructed at runtime. The statement, including the tables, views
and columns referenced, and the search conditions, is compiled at runtime.

Dynamic SQL usage requires the use of the following statements;
PREPARE, EXECUTE, EXECUTE IMMEDIATE and DESCRIBE.

There are also some SQL statements which are normally used as static SQL statements, but
have an extended functionality for dynamic SQL:

DECLARE CURSOR, OPEN and FETCH.

Note: The above statements are embedded in the application program like any other static SQL
statement. However, they enable the use of dynamic SQL statements which are not embedded in
the application program.

There are various methods of using dynamic SQL statements, mainly depending on the type of
SQL statement (SELECT or NON-SELECT statements) and the degree of flexibility required.

41



Adabas SQL Gateway Embedded SQL

General Aspects

Dynamic SQL Principles

The processing of a dynamic SQL statement consists of the following steps:

. A string containing the SQL statement is created. The application program has complete
control over the contents of the string and therefore, the SQL statement is dynamic in nature.
. After the SQL statement has been constructed, it must be passed to Adabas SQL

Gateway Embedded SQL for compilation. This is done either using a PREPARE statement or an
EXECUTE IMMEDIATE statement. The compiled form of the dynamic SQL statement is called
the prepared statement.

. If the statement was processed using an EXECUTE IMMEDIATE statement, it is not only
compiled but also executed at the same time. The prepared form of the statement is not retained.

. If the statement was processed using a PREPARE statement, the prepared statement
can be executed using an EXECUTE statement, or by using cursor processing, as many times as
required.

o It may be that additional information about the prepared statement is required before it
can be executed, for example, for statements with an unknown derived column list. This
information can be retrieved from Adabas SQL Gateway Embedded SQL through an SQL
descriptor area (SQLDA) using a DESCRIBE statement. An SQLDA can also be used to resolve
host variable markers. Such information must be obtained prior to execution.

After the dynamic SQL statement has been prepared, it may be executed more than once, by using the
same statement identifier. A prepared statement remains available until the completion of the current
session. A prepared statement can be deallocated using a DEALLOCATE PREPARE statement.

Dynamic versus Static SQL - Considerations

The choice between static and dynamic SQL is a choice of flexibility versus complexity and performance.
It is easier to code static SQL statements than to construct SQL statements dynamically. In most cases, it
will be possible to use static SQL, but there are some applications where the use of dynamic SQL is
unavoidable. If the number of static SQL statements that would be required for a certain application
exceeds a manageable amount, dynamic SQL may be the solution.

In principle, the question to be answered is:
e Isit possible to define all necessary SQL statements in my application and will this be a
manageable and feasible amount of coding?

If the answer is no, then dynamic SQL needs to be considered.

Once dynamic SQL has been identified as a viable possibility, the particular variation or degree of
complexity of dynamic SQL must be decided upon. The following questions to be answered are:
e Must the program contain dynamically constructed SELECT statements or not?

e If SELECT statements are dynamically constructed, does the derived column list vary
dynamically?

e Are host variable markers to be used, and if so, does the number and type of host variable
markers vary dynamically per prepared statement?

Another point of consideration, when deciding whether to use dynamic SQL, is the issue of performance.
Compiling SQL statements at runtime has an influence on the overall performance of the execution of that
SQL statement. The compilation of an SQL statement also includes the access of information stored in
the catalog, like table and column descriptions. These descriptions are buffered, but the possibility exists
that additional database requests need to be issued.

The consequence of the fact that a dynamic SQL statement is compiled at runtime is also that the
statement is compiled with more current information concerning the existence of indices and other
optimization information.

42



Chapter 4 - Programming Guide - General Concepts

Using dynamic SQL, also means that syntactical and semantical errors are only detected during runtime.
This means that the PREPARE and EXECUTE IMMEDIATE statements may return an SQLCODE
indicating a syntactical or semantical error.

Limitations

The following SQL statements cannot be used as dynamic SQL statements, that is, they cannot be
prepared or executed:

BEGIN DECLARE
CLOSE

DEALLOCATE PREPARE
DECLARE

DESCRIBE
DISCONNECT

END DECLARE
EXECUTE

EXECUTE IMMEDIATE
FETCH

INCLUDE

OPEN

PREPARE
WHENEVER

Dynamic SQL may require the use of addresses and pointers within the application program. It may also
require dynamically obtained memory.

43



Adabas SQL Gateway Embedded SQL

Non-Select Statements

The simplest form of dynamic SQL programs do not contain SELECT statements. In such a case, there is
no resultant table and no data has to be passed back to the application program.

There are two ways to execute a NON-SELECT SQL statement dynamically; using the EXECUTE
IMMEDIATE statement, or using PREPARE and EXECUTE statements.

Using EXECUTE IMMEDIATE

The EXECUTE IMMEDIATE statement has a single parameter which must be a character string which
contains the dynamic SQL statement. The string has to be constructed properly by the application
program. The dynamic SQL statement is then compiled and executed immediately. The compiled form of
the SQL statement (the prepared statement) is discarded after execution.

Example:

EXEC SQL
EXECUTE IMMEDIATE :dyn_sql_statement;

where dyn_sql_statement is a character string containing the dynamic SQL statement.

All SQL statements which can be prepared can be used in an EXECUTE IMMEDIATE statement except
for the SELECT statement.

Notes: If the string representing the dynamic SQL statement cannot be compiled, the SQLCODE will
indicate this error after execution of the EXECUTE IMMEDIATE statement.

It is not possible to use host variable markers in the dynamic SQL statement when using the EXECUTE
IMMEDIATE statement.

Using PREPARE and EXECUTE

The compilation and execution of the dynamic SQL statement can be split into the statements PREPARE
and EXECUTE. The dynamic SQL statement is contained in a string which is constructed by the
application program. The PREPARE statement initiates the compilation of the dynamic SQL statement,
and the EXECUTE statement executes it.

The result of a PREPARE statement is a statement ready for execution. This prepared statement is
identified by an SQL statement identifier which is either set by the user as a fixed identifier or is generated
by Adabas SQL Gateway Embedded SQL when a host variable has been specified. The prepared
statement is kept for later execution. If it is intended that the statement identifier is to be generated by
Adabas SQL Gateway Embedded SQL, it is necessary to initialize the variable with blanks or an empty
string prior to execution. Otherwise, Adabas SQL Gateway Embedded SQL will use the actual (non-
blank) value of the variable. The same statement identifier must then be specified with the EXECUTE
statement.

Example:

EXEC SQL

PREPARE statement_id FROM :dyn_sqgl_statement;
EXEC SQL

EXECUTE STATEMENT_ID;

where dyn_sql_statement is a character string containing the dynamic SQL statement.

All SQL statements except those mentioned earlier under Limitations can be prepared by the PREPARE
statement. Only NON-SELECT statements can be executed by the EXECUTE statement.

It is possible for the dynamic SQL statement to contain host variable markers. For more information, see
Using Host Variable Markers later in this section.

44



Chapter 4 - Programming Guide - General Concepts

Note: If the string representing the dynamic SQL statement cannot be compiled, the SQLCODE will
indicate this error upon return from the PREPARE statement.

Summary

A program which issues dynamic NON-SELECT statements must include the following steps:

1. Construct the dynamic SQL statement.
The dynamic SQL statement must be constructed as a character string. The process of creating
this string is application-dependent. It may be that the user enters the SQL statement or part
thereof directly from a terminal, or that the application program dynamically builds the statement
based on other sources of information.

2. PREPARE and EXECUTE the dynamic SQL statement.
Either EXECUTE IMMEDIATE or PREPARE and EXECUTE can be used to execute the dynamic
SQL statement. Variable input values, as specified by a host variable marker "?" may have to be
provided by specifying an USING clause and specifying an SQLDA in an EXECUTE statement.

3. Check the result.
All errors are returned to the application program using SQLCODE in the SQLCA. These errors
must be handled like any other error situation.

45



Adabas SQL Gateway Embedded SQL

Select Statements

SELECT statements can only be executed dynamically by using a separate PREPARE statement and the
dynamic cursor logic. The statements DECLARE CURSOR, OPEN, FETCH and CLOSE must be used.
There are two ways to execute a SELECT statement dynamically. The method to be used depends on
the characteristics of the SELECT statements to be processed:
. If the derived column list of the SELECT statement has a constant format, that is, the
number of elements in the resultant table and their data types remain constant, the fixed derived
column list method can be used.
. If the derived column list varies, the varying derived column list method must be used. In
the latter case, an SQL descriptor area (SQLDA) is required.

Note: It is not possible to execute dynamically a single-row SELECT.
Fixed Derived Column List Method

Dynamic SELECT statements with a fixed derived column list produce resultant tables which have a fixed
layout, that is, the number of columns is the same and the data type of each column is fixed and known at
the time the application program is precompiled.

The fixed derived column list method assumes that the dynamically created SELECT statements have a
fixed derived column list, so that a normal FETCH statement can be used to retrieve the rows of the
resultant table. This FETCH statement requires that the columns of the resultant table are each assigned
to specific hardcoded host variables. As these host variables have to be known at precompilation time,
the layout of the derived column list must be determined at the same time. All other clauses of the
SELECT statement, the FROM clause, the WHERE clause, etc., can vary dynamically every time the
statement is prepared. This means that the fixed derived column list method can be used in those cases
where the result and format of the query is known, but the search criteria can vary to such a degree that
the rest of the query needs to be constructed dynamically at runtime.

The fixed derived column list method consists of a number of steps:
PREPARE

The entire SELECT statement must be constructed in a host variable which is passed to Adabas
SQL Gateway Embedded SQL as a parameter of a PREPARE statement. The application needs
to ensure that the resulting format of the query cannot vary dynamically.

Example:

EXEC SQL
PREPARE statement_id FROM :dyn_sqgl_statement;

where dyn_sql_statement is a character string containing the dynamic SQL statement.

As an Adabas SQL Gateway Embedded SQL extension, a host variable may be used to identify a
statement. If so, Adabas SQL Gateway Embedded SQL returns a unique value in this variable
which must have been initialized with blanks upon return from the PREPARE statement. This
value is then used for all subsequent references to the prepared statement.

Example:

EXEC SQL
PREPARE :statement_id FROM :dyn_sqgl_statement;
DECLARE

The prepared statement must then be associated with a cursor. This can either be achieved
explicitly by means of a dynamic DECLARE CURSOR statement or implicitly by an OPEN
statement. The dynamic DECLARE CURSOR statement is similar to the static DECLARE, but
instead of specifying the SELECT statement, it specifies the statement identifier as defined in the
PREPARE statement, thus associating the prepared SELECT statement with the cursor. Such a

46



Chapter 4 - Programming Guide - General Concepts

DECLARE statement may also be executed prior to the associated PREPARE statement or may
be omitted altogether, if the associated OPEN statement specifies the SQL statement identifier
instead.

Example:

EXEC SQL
DECLARE ABC CURSOR FOR statement _id;

Note: Alternatively, an Adabas SQL Gateway Embedded SQL extension allows a host variable to
be used to identify the cursor. This host variable must be initialized with a suitable value by the
application program before use.

Example:

EXEC SQL
DECLARE :cursor_name CURSOR FOR STATEMENT_ID;

Note: If in the original PREPARE statement, a host variable was used to express the statement
identifier, then a host variable containing the same assigned value must be used here in order to
identify the statement. If used at all, the DECLARE statement must be executed after the
PREPARE statement.

Example:

EXEC SQL
DECLARE ABC CURSOR FOR :statement _id;

It can be seen that the dynamic DECLARE CURSOR statement differs from its normal static
counterpart in that during runtime the statement is of significance, that is, the prepared statement
is associated to the particular cursor. The order of execution is important in a dynamic SQL
application. Once the PREPARE and then the DECLARE CURSOR statements have been
successfully executed, other cursor associated statements can be executed in the normal way,
except that the cursor may need to be expressed as a host variable. The normal OPEN, FETCH,
CLOSE logic is still applicable.

OPEN

The cursor associated with the dynamic SELECT statement is opened by means of an OPEN
statement. Note that the cursor name may be expressed as a host variable.

Example:

EXEC SQL
OPEN ABC:;

If the SELECT statement contains host variable markers, the parameters can be submitted by the
USING clause or the USING DESCRIPTOR clause. For more information, see Using Host
Variable Markers later in this section.

Example:

EXEC SQL

OPEN ABC USING :hvi, :hv2;
or using an SQL descriptor area:
EXEC SQL

47



Adabas SQL Gateway Embedded SQL

OPEN ABC USING DESCRIPTOR :input_sql_da;

In addition, an SQL statement identifier can be specified in case the DECLARE CURSOR
statement has been omitted.

Example:

EXEC SQL
OPEN ABC CURSOR FOR :statement _id;

FETCH

As the format of the derived column list of the dynamic SELECT statement is constant, the
FETCH statement can be identical to the static case. For each one of the columns in the resultant
table, a host variable needs to be specified which is of a compatible data type.

Notes:

1. Although the format of the derived column list does not vary dynamically, it is still not visible to the
Adabas SQL Gateway Embedded SQL. Therefore, the compiler cannot actually check the validity
of the FETCH statement and in particular its target buffer list. Naturally, at run time, such checks
are performed.

2. An attempt to fetch a derived column of type binary, using a dynamically prepared SELECT
statement and a FETCH statement which is identical to the static counterpart, will always result in
an error condition. This is because, upon precompiling the FETCH statement, the fact that a
character host variable is going to be used for the retrieval of a derived column of type binary is
not foreseeable. If a derived column of type binary is to be retrieved using a dynamically prepared
select statement, even if has a fixed derived column list, then a FETCH statement which uses a
descriptor area must be used.

Example:

EXEC SQL
FETCH ABC INTO :hv1, :hv3;

CLOSE

The closing of the cursor is identical to the static case. By executing the CLOSE statement, all
resources reserved by the cursor are released.

Example:

EXEC SQL
CLOSE ABC;
Likewise, once closed, the cursor may simply be re-opened again.

Summary

A program which issues dynamic fixed derived column list SELECT statements must include the following
steps:

1. Construct the dynamic SELECT statement. The statement is constructed as a character string in
a similar fashion to NON-SELECT dynamic statements. However, the derived column list must
remain fixed and its format must have been determined at compile time.

2. PREPARE the dynamic SQL statement.

3. Optionally, DECLARE a cursor for the prepared statement using a dynamic DECLARE CURSOR
statement.

4. OPEN the cursor in a similar way to a normal static cursor.

5. Variable input values, as specified by a host variable marker "?" may have to be provided by
using an USING clause appended to the OPEN statement and specifying an SQLDA.

6. FETCH from the cursor as required until all rows have been processed.

48



Chapter 4 - Programming Guide - General Concepts

7. CLOSE the cursor.
Varying Derived Column List Method

Dynamic SELECT statements with a varying derived column list are SELECT statements which produce
resultant tables which have differing formats, that is, the format of the resultant table is specified
dynamically and may vary from instance to instance.

This method is more complicated than the one of using a fixed derived column list but is only required if
indeed the format of the possible resultant tables can vary. Otherwise the fixed derived column list
method may be used. In order to be able to use the varying list method, the application program must be
able to acquire dynamic storage and be able to manipulate pointers or addresses. This obviously limits
the use of this method to those host languages which provide these facilities, or specially written
subroutines are needed.

The application program needs to get information about the layout of the resultant table for a varying
derived column list statement as target buffers must be dynamically provided. Adabas SQL Gateway
Embedded SQL provides special functions to aid the application program in this task. This information is
passed to the program using an SQL descriptor area or an SQLDA.

PREPARE

The SELECT statement must be constructed in a host variable which is passed on to Adabas
SQL Gateway Embedded SQL as a parameter to a PREPARE statement.

Example:

EXEC SQL
PREPARE statement_id FROM :dyn_sqgl_statement;

Alternatively, an Adabas SQL Gateway Embedded SQL extension allows a host variable to be
used to identify the statement. If so, Adabas SQL Gateway Embedded SQL returns a unique
value in this variable which must have been initialized with blanks upon return from the
PREPARE statement. This value is then to be used for all subsequent references to the prepared
statement.

Example:

EXEC SQL
PREPARE :statement_id FROM :dyn_sqgl_statement;

DECLARE

The prepared statement must then be associated with a cursor. This can either be achieved
explicitly by means of a dynamic DECLARE CURSOR statement or implicitly by an OPEN
statement. The dynamic DECLARE CURSOR statement is similar to the static DECLARE, but
instead of specifying the SELECT statement, it specifies the statement identifier as defined in the
PREPARE statement, thus associating the prepared SELECT statement with the cursor. Such a
DECLARE statement may also be executed prior to the associated PREPARE statement or may
be omitted altogether, if the associated OPEN statement specifies the SQL statement identifier
instead.

Example:

EXEC SQL
DECLARE ABC CURSOR FOR statement_id;

49



Adabas SQL Gateway Embedded SQL

Alternatively, an Adabas SQL Gateway Embedded SQL extension allows a host variable to be
used to identify the cursor. This host variable must be initialized with a suitable value by the

application program before use.
Example:

EXEC SQL
DECLARE :cursor_name CURSOR FOR statement_id,;

Note: If in the original PREPARE statement, a host variable was used to express the statement
identifier, then a host variable containing the same assigned value must be used here in order to

identify the statement. If used at all, the DECLARE statement must be executed after the
PREPARE statement.

Example:

EXEC SQL
DECLARE ABC CURSOR FOR :statement_id;

DESCRIBE

A description of the resulting format of the query may now be retrieved from Adabas SQL
Gateway Embedded SQL. This is done using an SQLDA and a DESCRIBE statement. The

functionality of the DESCRIBE statement can also be achieved by using an INTO clause in the
PREPARE statement.

Example:

EXEC SQL
DESCRIBE STATEMENT _ID INTO :output_sqlda;

After successful execution of the DESCRIBE statement, the SQLDA contains detailed information
concerning the resulting format of the SELECT statement.

The total number of columns and the particular type of each column will be supplied. The
application program must act on this information by supplying dynamically an appropriate target
buffer for each of the columns. The address of each target buffer must be written into the SQLDA.
In addition, an associated indicator value may have to be assigned.

OPEN

The cursor associated with the dynamic SELECT statement is opened by means of an OPEN
statement. The cursor name may be expressed as a host variable.
Example:

EXEC SQL
OPEN ABC,;

If the SELECT statement contained host variable markers, the parameters can be submitted by
the USING clause or the USING DESCRIPTOR clause. For more information, see Using Host
Variable Markers later in this section.

Example:

EXEC SQL
OPEN ABC USING :hvl, :hv2;

or using an SQL input descriptor area:

50



Chapter 4 - Programming Guide - General Concepts

EXEC SQL
OPEN ABC USING DESCRIPTOR :input_sqlda;

In addition, an SQL statement identifier can be specified in case the DECLARE CURSOR
statement has been omitted.

Example:

EXEC SQL
OPEN ABC CURSOR FOR :statement_id
USING DESCRIPTOR :input_sqlda;

FETCH

The FETCH statement must be executed in conjunction with the SQLDA that has been
constructed for this particular dynamic SELECT statement. The resulting values are copied into
the locations specified in the corresponding column description in the SQLDA. Note that Adabas
SQL Gateway Embedded SQL can only assume that such locations are of sufficient size to
accommodate the returned data. It is the responsibility of the application program to provide such
locations. Using a DESCRIBE statement greatly simplifies this task.

Example:

EXEC SQL
FETCH ABC USING DESCRIPTOR :output_sqlda;

CLOSE

The CLOSE statement causes all resources reserved by the cursor to be released.

Example:

EXEC SQL
CLOSE ABC:;

Once closed, the cursor may be re-opened again within the current transaction.

Summary

A program which issues dynamic varying derived column list SELECT statements must include the
following steps:

1. Construct the dynamic SELECT statement. The statement is constructed as a character string in
a similar fashion to NON-SELECT dynamic statements.

2. PREPARE the dynamic SQL statement.

3. Allocate and build an appropriate SQLDA. This may be done using a DESCRIBE statement.
Assign appropriate target buffers.

4. Optionally, DECLARE a cursor for the prepared statement using a dynamic DECLARE CURSOR
statement.

5. OPEN the cursor in a similar way to a normal static cursor.

6. Variable input values, as specified by a host variable marker "?" may have to be provided by
supplying a USING clause appended to the OPEN statement specifying an SQLDA.

7. FETCH from the cursor as required until all rows have been processed. The output SQLDA must
be specified in order to receive retrieved data.

8. CLOSE the cursor.

51



Adabas SQL Gateway Embedded SQL

Using Host Variable Markers

A dynamic SQL statement cannot contain host variables directly. It is, however, possible to provide a
dynamic SQL statement after it has been prepared with value parameters at execution time. The dynamic
statement must then contain a host variable marker for every host variable. A host variable marker is
represented by a question mark (?).

Example:

EXEC SQL

PREPARE statement_id FROM "DELETE FROM CRUISE WHERE CRUISE_ID = ?";
EXEC SQL

EXECUTE STATEMENT_ID USING :cruise_id:

The dynamic DELETE statement contains one host variable marker, so the USING clause in the
EXECUTE statement contains one host variable. The host variable cruise_id is used to provide a
parameter for the prepared DELETE statement. It is as if the following static SQL statements were
executed:

EXEC SQL
DELETE FROM CRUISE WHERE CRUISE_ID = :cruise_id;

The host program can re-execute repeatedly the prepared statement by supplying a fresh value in the
host variable with each iteration.

Restrictions

In principle, a host variable marker may appear everywhere in a statement where a host variable may
appear. Because of the nature of dynamic SQL, however, there are certain restrictions. The following
rules apply:

. a host variable marker is not allowed to appear in a derived column list

o only one operand of a diadic arithmetic operator or comparison operator may be a host
variable marker, for example, ? =? or ? * ? is not allowed.

o the first two operands of a BETWEEN or IN operator cannot be host variable markers, for

example, ? IN (?,...) is not allowed. However, 5+ ? IN (?,...) is allowed.

The reason for these restrictions is that at the time the dynamic SQL statement is compiled, the data type
of each one of the host variable markers needs to be determined. In the cases described above this
cannot be done.

Different Methods

As with SELECT statements, there are different methods to deal with host variable markers. One method
can be applied in situations where the number of host variable markers is constant and their type is
known and also constant. Another method must be applied if the number of host variable markers varies.
Both methods are described in the following sections.

Constant Number of Host Variable Markers

When the number and data types of the host variable markers are constant and known at compilation
time in a dynamic SQL statement, a matching set of host variables can be defined to be used to provide
values prior to the execution of the prepared dynamic statement. These host variables can be specified in
the USING clause of either an EXECUTE or an OPEN statement.

NON-SELECT Statements

For NON-SELECT statements, the host variables used to resolve the host variable markers must
be specified in the USING clause on the EXECUTE statement. The host variables in the USING

52



Chapter 4 - Programming Guide - General Concepts

clause must be specified in the same order as the host variable markers were specified in the
dynamic SQL statement.

Example:

EXEC SQL

PREPARE statement_id FROM "INSERT INTO CRUISE VALUES (?,?,?,?,?)";
EXEC SQL

EXECUTE statement_id USING :hv1,:hv2,:hv3,:hv4,:hv5;

SELECT Statements

For SELECT statements, the host variables used to resolve the host variable markers must be
specified in the USING clause appended to the OPEN statement. The host variables in the
USING clause must be specified in the same order as the host variable markers were specified in
the dynamic SQL statement.

Example:

EXEC SQL

PREPARE statement_id FROM "SELECT CRUISE_ID FROM CRUISE WHERE CRUISE_ID =
"

EXEC SQL

DECLARE ABC CURSOR FOR statement _id;

EXEC SQL

OPEN ABC USING :hvi;

Varying Number of Host Variable Markers

When the number and data types of the host variable markers varies with each dynamically prepared
statement and/or their data type cannot be pre-determined, it is not possible to define a matching set of
host variables to provide values prior to the execution of the prepared statement.

In that case, the application program needs to get information about the host variable markers in a
prepared statement dynamically. The application program can either do this itself by analyzing the
dynamic SQL statement, or Adabas SQL Gateway Embedded SQL can provide this information in an
SQL descriptor area using a PREPARE or DESCRIBE statement.

Upon return from an appropriate PREPARE or DESCRIBE statement, Adabas SQL Gateway Embedded
SQL will have filled the SQLDA with information about each one of the host variable markers. This
information can then be used by the application program to allocate and assign host variables for each
one of the host variable markers. Note that it is possible at this stage to change the data type description
of a host variable in the SQLDA. Be aware that this may lead to runtime errors if the data type of a host
variable is changed to one that is incompatible with the one established by Adabas SQL Gateway
Embedded SQL.

Note: Such an input SQLDA is a separate instance of an output SQLDA but has the same structure.
NON-SELECT Statements

For NON-SELECT statements, the input SQLDA must be supplied with the EXECUTE statement. The
host variables described in the SQLDA must be specified in the same order as the host variable markers
were specified in the dynamic SQL statement.

Example:

EXEC SQL
PREPARE statement_id FROM "INSERT INTO CRUISE VALUES (?,?,?,?,?)";
EXEC SQL

53



Adabas SQL Gateway Embedded SQL

DESCRIBE statement_id INTO INPUT :input_sqlda;
EXEC SQL
EXECUTE statement_id USING DESCRIPTOR :input_sqlda;

SELECT Statements

For SELECT statements, the input SQLDA must be supplied with the OPEN statement. The host
variables in the input SQLDA must be specified in the same order as the host variable markers were
specified in the dynamic SQL statement.

Example:

EXEC SQL
PREPARE statement_id
FROM "SELECT CRUISE_ID FROM CRUISE WHERE CRUISE_ID = ?";
EXEC SQL
DESCRIBE statement_id INTO INPUT :input_sqlda;
EXEC SQL
DECLARE ABC CURSOR FOR statement_id;
EXEC SQL
OPEN ABC USING DESCRIPTOR :input_sqlda;

Summary

A program which issues dynamic statements which contain host variable markers must perform the
following steps:

1. Construct the dynamic SQL statement. The dynamic SQL statement must be constructed as a
character string, which will contain host variable markers (?).

2. Prepare the dynamic SQL statement. The dynamic SELECT statement always has to be
prepared using a PREPARE statement.

3. Establish information about the host variable markers. If the host variable markers are constant in
number and data type, host variables may be applied statically. Otherwise an INTO input clause
in the PREPARE or DESCRIBE statement must be used in order to obtain the information about
the host variable markers. Variables must then be allocated dynamically.

1. Either assign values to any static host variables

Or load the input SQLDA. If the host variables are assigned dynamically, the SQLDA has to be
supplied with information about them. The host variables themselves must have appropriate
values assigned to them

4, Execute the dynamic SQL statement. A USING clause containing either references to the static
host variables or the input SQLDA is appended to either the EXECUTE statement or the OPEN statement
as required.

54



Chapter 4 - Programming Guide - General Concepts

QL Descriptor Area (SQLDA)

General Information

An SQL descriptor area is used as a communication area between an application program and Adabas
SQL Gateway Embedded SQL for dynamic SQL. It is used for communicating information between
Adabas SQL Gateway Embedded SQL and the application program in both directions.

The information for a dynamic SQL statement that can be retrieved from Adabas SQL Gateway
Embedded SQL by an application program using an SQLDA originates from either of two sources:

OUTPUT SQLDA

The derived column list of a dynamic SELECT statement. The application program can retrieve
information about the layout of the resulting format of a SELECT statement. The information comprises a
list of elements where each element describes the corresponding derived column. An SQLDA describing
this type of information is called an output SQLDA. The information is assigned to the output SQLDA by
either an extended PREPARE statement (example 1a) or a separate DESCRIBE statement (example 1b).
The keyword OUTPUT is the default and therefore optional.

Example la:

EXEC SQL
PREPARE statement_id INTO :output_sqlda FROM dyn_sql_statement;

Example 1b:

EXEC SQL

PREPARE statement_id FROM :dyn_sqgl_statement;
EXEC SQL

DESCRIBE statement_id INTO OUTPUT :output_sqlda;

INPUT SQLDA

The host variable markers in a dynamic SQL statement.

The application program can retrieve information about all host variable markers used in a dynamic SQL
statement. The information comprises a list of elements where each element describes the corresponding
host variable marker. An SQLDA describing this type of information is called an input SQLDA. The
information is assigned to the input SQLDA by either an extended PREPARE statement (example 2a) or
a separate DESCRIBE statement (example 2b). The keyword INPUT is mandatory.

Example 2a:

EXEC SQL
PREPARE statement_id INTO INPUT :input_sglda FROM dyn_sql_statement;

Example 2b:

EXEC SQL
PREPARE statement_id FROM :dyn_sqgl_statement;
EXEC SQL
DESCRIBE statement_id INTO INPUT :input_sqlda;

Both input and output SQLDASs can be specified in the same PREPARE and DESCRIBE statements if
desired. However, one SQLDA cannot be used for both an input and an output SQLDA simultaneously.

55



Adabas SQL Gateway Embedded SQL

Once Adabas SQL Gateway Embedded SQL has filled an SQLDA with this information, the application
program must provide a host variable reference for each element. This must be done prior to the
execution of the prepared statement.

Corresponding to the two types of SQLDAs, two types of host variable references must be supplied.

o Target host variables for receiving resultant data

The elements of an output SQLDA associated with a prepared SELECT statement each describe the
expected format of the data to be received. The application program must assign to each element a
suitable host variable which is capable of receiving the expected data. Adabas SQL Gateway Embedded
SQL can now determine where to copy the resulting data by means of the pointer reference in each
element. Such an output SQLDA is only used in conjunction with a FETCH statement.

Example 1:
EXEC SQL
FETCH ABC USING DESCRIPTOR :output_sqlda;
o Host variables as host variable marker replacements

The elements of an input SQLDA each describe the expected format of any additional parameters
required by the prepared statement as represented by host variable markers. The application program
must assign a suitable host variable to each element of the input SQLDA and each host variable must be
loaded with the desired value before execution of the prepared statement. Such an input SQLDA is used
in conjunction with either an OPEN statement (example 2a) or an EXECUTE statement (example 2b).

Example 2a:
EXEC SQL
OPEN ABC USING DESCRIPTOR :input_sqglda;

Example 2 b:

EXEC SQL
EXECUTE statement_id USING DESCRIPTOR :input_sqlda;

The SQLDA Structure

Exactly the same structure is used for input and output SQLDA. It consists of two distinct parts:
. A header containing general information about the prepared statement,

. A consecutive list of elements corresponding to fields in the derived column list or the
host variable markers.

The structure consists of the four fields of the SQLDA header immediately followed by as many
occurrences of the sqlvar structure as stated in the sqin field.

Field Description

sqgldaid An eight-byte character string containing the
constant SQLDA which serves as an eye catcher
for easier memory dump interpretation.

sqldabc A four-byte integer field of type SAG_INTEGER
containing the total length of the SQLDA in bytes,
that is, the length of the header plus the length of
the variable descriptor elements multiplied by the
number of available elements (sqgin).

56



Chapter 4 - Programming Guide - General Concepts

sqln A two-byte integer field containing the total
number of variable descriptor elements allocated
in the SQLDA.

sqld A two-byte integer field containing the total

number of variable descriptor elements returned
during the execution of a DESCRIBE statement.

sqlvar An array containing sqln variable descriptor
elements.
sqltype A four-byte integer
field of type
SAGTYPE
containing the data
type of the

required/specified
host variable and
whether or not there
is an INDICATOR
variable present.

sgllen A four-byte integer
field of type
SAG_INTEGER
containing the
length of the
required/specified
host variable. The
interpretation of this
field depends on the
data type.

reserved A four-byte integer
field of type
SAG_INTEGER
required for internal
purposes.

internal A two-byte integer
field required for
internal purposes.

sglindlen A two-byte integer
field containing the
length of the host
variable acting as
an indicator value, if
one is required

sglindtype A four-byte integer
field containing the
data type of the
host variable acting
as an indicator
value, if one is
required

sqlind A structure of type
SAGPointer

57



Adabas SQL Gateway Embedded SQL

containing the
pointer to the host
variable acting as
an indicator value, if
one is required.

sgldata A structure of type
SAGPointer
containing the
pointer to the host
variable which is to
receive or which
contains the data.

sglname A structure of type
SAGCOLUMN
containing the
derived column
name of the
resulting column,
the length of the
column name and
the column type.

The sqglname field is only relevant for an output SQLDA and only in the particular case of the
corresponding derived column having a derived column label.

The sqltype field is set by Adabas SQL Gateway Embedded SQL to reflect the particular type of the
required field.

The sqgllen field is also set by Adabas SQL Gateway Embedded SQL depending on the value assigned to
the sqltype field. This field specifies the required size of the host variable.

The sqltype field also specifies whether or not a indicator variable is required or is supplied. This is shown
by the type value being negated.

Declaring an SQLDA

The SQLDA is a special type of host variable structure. To ensure that the structure has the correct
format, the application program should use the definition of the SQLDA provided by Adabas SQL
Gateway Embedded SQL. To facilitate this, an SQL statement like the following one should be embedded
in the application.

EXEC SQL
INCLUDE SQLDA AS sqlda_pitr;

This statement has the effect of generating a declaration of a variable sqglda_ptr at the point where it is
specified. This variable can then be used as a pointer to a descriptor area.

AIIocating_; an SQLDA

When using an SQLDA to retrieve descriptive information from Adabas SQL Gateway Embedded SQL
either for input or output purposes, the application program normally does not know the number of
variable descriptions required. The application program, however, has to allocate an SQLDA of a certain
dimension before the PREPARE or DESCRIBE statements can be issued. In general, there are two
technigues which can be used:

58



Chapter 4 - Programming Guide - General Concepts

o The application program allocates an SQLDA of maximum size required for the maximum
possible number of derived column list elements or host variable markers. This might cause a
significant waste of storage if the maximum has to be set very high.

o The application program allocates an SQLDA of minimum size. The dimension of the
SQLDA is determined by the sqgln element in the SQLDA header. If the number of derived column
list elements or host variable markers exceeds this number, Adabas SQL Gateway Embedded
SQL will refrain from attempting to provide information on the remaining elements or markers.
Adabas SQL Gateway Embedded SQL, however, does return the correct number of elements in
the sqgld element of the SQLDA. The application program can then use this number to allocate a
new SQLDA of sufficient size and re-issue the PREPARE or DESCRIBE statement. The
application program must explicitly have an SQLDA declaration such that the resulting structure is
in scope for all SQL statements which access it. Such a declaration does not need to be in a
BEGIN DECLARE SECTION.

Determining the Type of SQL statement

Although the SQLDA does not return explicitly the SQL statement type, enough information is returned in
the SQLDA for the application program to determine whether or not the dynamic statement is a SELECT
statement. If the field sqgln is 0, the statement did not contain a derived column list and must therefore be
a NON-SELECT statement.

59



Adabas SQL Gateway Embedded SQL

Host Variable Specification

Host variables serve as a data exchange medium between Adabas SQL Gateway Embedded SQL and
the application program written in a host language. When used in an SQL statement, a host variable
specification has one of the following purposes:

o to identify a variable in the host language program which is to receive a value(s) from
Adabas SQL Gateway Embedded SQL.
. to identify a variable in the host language program which is to pass a value(s) to Adabas

SQL Gateway Embedded SQL.
A host variable is a single variable or structure declared in the host program.

A host variable identifier is used to identify a single host variable or structure from within an SQL
statement.

A host variable specification consists of a host variable identifier and an associated optional INDICATOR
variable and defines either a single variable, a structure, or an element in a structure.

This section contains the following topics:

o Single Variables
. INDICATOR Variables
. Host Variable Markers
. Host Structures

Single Variables

The identified single host variable may actually be a single element within a host variable structure. Such
a reference is not permitted in ANSI compatibility mode.

A single host variable is identified by a host variable identifier which has the following syntax:

- -,
D—O— host_varable_identifier_1 . host_variable_identifier_2 —L.

host variable identifier | Identifies a single variable which is assigned any value but the NULL
1 value.
host variable identifier | Identifies an INDICATOR variable, see INDICATOR Variables below.
2

Example:

Select the price of the cruise with a cruise ID of 5064 into a host variable.

SELECT cruise_price
INTO :host_variablel
FROM cruise
WHERE cruise_id=5064;

INDICATOR Variables

An INDICATOR variable can serve as one of two purposes:
. Signifies the presence of a NULL value in a host variable assignment. If the NULL value
is to be assigned to a target host variable specification then an accompanying INDICATOR

60



Chapter 4 - Programming Guide - General Concepts

variable must be present and is assigned a negative value to signify the NULL value. If the NULL
value is to be assigned and the INDICATOR variable is missing, then a runtime error will occur.

The INDICATOR variable must be of a numeric data type with the exception of double precision, real and
floating point data types. It must be of the appropriate data type for the host language.

Example:

Select the cancellation date of Contract 2025 into a host variable. (The column 'date_cancellation’
could contain NULL values)
SELECT date_cancellation
INTO :host_variablel INDICATOR :host_variable2
FROM contract

WHERE contract_id=2025 ;
¢ Signifies that truncation has occurred in a host variable assignment. If truncation
occurred during the assignment of a character string to a host variable, then the
INDICATOR variable will show the total number of characters in the originating
source prior to truncation.

SUMMARY:

Indicator Value Meaning Host Variable Name

<0 indicates NULL value undefined

=0 indicates non-NULL value | actual value

>0 number of characters actual value in originating source

Host Variable Markers

A dynamic SQL statement can not contain host variables directly. It is, however, possible to provide a
dynamic SQL statement after it has been prepared with value parameters at execution time. The dynamic
statement must then contain a host variable marker for every host variable specification. A host variable
marker is represented by a question mark (?) in the statement's source text. For details, see the section

on Dynamic SQL.

Host Structures

A host structure is a C structure or a COBOL group that is referenced in an SQL statement. The exact
rules to which a host structure must conform are described in the host language sections of the
Programming Guide.

-

-
-—G host_variable_identifier_1 . host_variable_identifier_2 —Lo

host variable Identifies a host structure. It can only be specified in the INTO
identifier 1 clause of a single row SELECT or FETCH statement. A
reference to a host structure is equivalent to a reference to each
element in that structure.

Each element of the host structure identified by host variable
identifier 1 is a host variable which is assigned a value, if that
value is not the NULL value.

host variable An INDICATOR structure. An INDICATOR structure is a host

61



Adabas SQL Gateway Embedded SQL

identifier 2 structure consisting of elements each identifying an
INDICATOR variable.

Each element of the INDICATOR structure identified by host
variable identifier 2 identifies an INDICATOR variable, see also
INDICATOR Variables in this section.

The i th element in the host structure indicated by host variable identifier 2 is the INDICATOR
variable for the i th element in the host structure indicated by host variable identifier 1.

Note: Pointer expressions will be supported in the next release version.

Assume the number of elements in the host structure identified by host variable identifier 1 is m
and the number of elements in the host structure identified by host variable identifier 2 is n:
o If m > n, then the last m-n elements in the host structure identified by host variable
identifier 1 do not have an INDICATOR variable.

e If m < n, then the last n-m elements in the host structure identified by host variable
identifier 2 are ignored.

Examples:

If two host structures have been declared, one for actual returned values and one for indicator values,
and the variables 'structl' and ‘indicatorl’ identify these structures respectively, then the following syntax
shows how values from a derived column list are entered into host variables (assuming that the host
structures match the derived columns).

SELECT cruise_identifier,start_date,cruise_price
INTO :structl INDICATOR :indicatorl
FROM cruise;

The following example inserts a resulting value from a query into a particular 'Element’ of a defined
structure. 'structl' is a structure identifier that contains an element identified by 'price_element' and
'indicatorl’ is a structure identifier that contains the element identified by 'price_ind'.

SELECT cruise_price
INTO :structl.price_element INDICATOR :indicatorl.price_ind
FROM cruise;

62



Chapter 5 - Programming Guide - C

SQL Programming Concepts - C
SQL Statements in C

The SQL Terminating Delimiter

The end of a SQL statement is determined explicitly by a terminating delimiter. For C, this is a semicolon

()-

Host Language Terminating Delimiter

C semicolon (;)

Comments within an SQL Statement

Two types of comments are supported, host language comments and SQL comments:
e Host language comments obey the rules determined by the host language.

Host language comments may be positioned anywhere within an SQL statement where a
whitespace character can appear. For examples of host language comments, refer to the host
language dependent sections later in this documentation.

Note: Host language comments are not permitted between the following keywords:

EXEC SQL

BEG N DECLARE SECTI ON

END DECLARE SECTI ON

e SQL comments are character string preceded by two minus characters (- -).
SQL comments may be positioned anywhere within the SQL statement body where a whitespace

character can appear. All characters following this starting delimiter until the end of the line are
interpreted as part of the comment.

If a host languages does not permit nested comments, modify the host language comment delimiters
within a statement so the actual SQL statement is commented out; this will prevent nested comments.

63



Adabas SQL Gateway Embedded SQL

Host Variables

C host variables used in SQL statements must be declared within the SQL BEGIN DECLARE SECTION
and END DECLARE SECTION statements. Adabas SQL Gateway Embedded SQL allows the use of
single host variables and host variable structures.

Host Variable Declaration

C structures are named sets of C single host variables and must conform to the ANSI Standard (X3.159-
1989) for C. The use of C structures within SQL statements is an Adabas SQL Gateway Embedded SQL
extension and not part of the ANSI SQL Standard. It is not possible to use a union of host variables. The
use of the enum type is also not possible.

Binary Data Type

There is no intrinsic binary data type in the C host language. In order to retrieve and supply binary data
using host variables, the intrinsic C data type of character must be mapped to the Adabas SQL Gateway
Embedded SQL data type of binary. A pseudo type has been introduced using an Adabas SQL Gateway
Embedded SQL macro. Therefore, host variables which are to be used for binary data type
transportation, must be declared as SAGBINARY. The Adabas SQL Gateway Embedded SQL will then
associate such variables with the type binary. Such variables can, therefore, only be used as binary host
variables. The type declaration, is indeed a C macro, provided by the Adabas SQL Gateway Embedded
SQL. A SAGBINARY variable is declared as follows :

EXEC SQL BEGIN DECLARE SECTION ;
SAGBINARY (hv_name, x) ;
EXEC SQL END DECLARE SECTION ;

where hv_name is the name of the host variable and x is the length in bits of the variable.
The macro is resolved as follows :

charhv_name[y];

where y is the required length in bytes.

Binary host variables are not subject to byte swapping, nor are they subject to any ASCIl/ EBCDIC
conversion. No string terminator is to be provided for binary host variables. Therefore, the direct binary
contents of a host variable will be received by Adabas SQL Gateway Embedded SQL, with each element
of the character array representing a full 8 bytes.

The pre-compiler must run prior to the C macro processor. No corresponding functionality is supported for
the C language when using dynamic SQL and the SQLDA.

Syntax

declaration

declaration-specifiers \1 |'/ 0

ll\-— init-declarator-list _,/J

64



Chapter 5 - Programming Guide - C

init-declarator-fist

T (-

init-declarator

——  declarator

[P—

declaration specifiers

storage-class- | declaration-
L ]

65



Adabas SQL Gateway Embedded SQL

1\

iisa8AR: i

|

|

66



Chapter 5 - Programming Guide - C

init-declarator

struct-declaration-list

(-

struct-declaration
specifier- - struct- T
gualifier-list declarator-list A
specifier-gualifier-list
I i g 7
S i '_/I qua#ﬂnr-lisl '_/I
struct-declarator-list

i

L

67



Adabas SQL Gateway Embedded SQL

struct-declarator
declarator
declarator L — i
S - expression
declarator

parameter-list
' parameter-
declaration
' AT ' parameter-
parameter-list (o) declaration

68



Chapter 5 - Programming Guide - C

parameter-declaration
) )
— declaration declarator
specifiers
direct-abstract-
declarator
direct-abstract-declarator

" declarator v),
declarator Y expression -
(L F'“’I ar "I'! "I B 1)
E

parameter-type-list

L DU

initializer
assignment-
- J
{—— initializer-list L -f (1)
initializer-list
i )

69



Adabas SQL Gateway Embedded SQL

Within embedded SQL statements the C naming qualification rules for structure and array elements are
as defined in the ANSI standard (X3.159-1989) for C. There may be any number of SQL BEGIN
DECLARE SECTIONS.

Ambiguous References and Multiple Declarations

A declaration that appears more than once with the same identifier is called a multiple declaration. If a
host variable refers to such a multiple declaration, and the different declarations are of different types, an
error occurs. Otherwise the host variable is accepted.

Data Type Conversion

The following table shows the conversion of C data types to SQL data types:

C Data Types SQL Data Types

char (array) CHARACTER
long (signed or unsigned) | INTEGER
int (signed or unsigned) INTEGER

float REAL

double DOUBLE PRECISION
short (signed or unsigned) | SMALLINT

long long BIGINT

For more details on SQL data types and their usage in SQL statements refer to the section on Common
Elements in this online help file.

The following table shows the conversion of SQL data types to C data types:

SQL Data Types C Data Types

CHAR (more than one character) | char (array)

BINARY SAGBINARY (char array)
INTEGER long

SMALLINT short

REAL float

DOUBLE PRECISION double

FLOAT float

DECIMAL float, double or long
NUMERIC float, double or long
BIGINT long long

70



Chapter 5 - Programming Guide - C

Embedding SQL Statements in C

General Rules in C

SQL Statement Delimiters

SQL statements are delimited by the prefix EXEC SQL and a semicolon (;) which acts as the terminator.
The prefix may be written in upper or lower case letters.

SQL Statement Placement

SQL statements may be specified wherever a C statement may be specified within a C function block, as
the Adabas SQL Gateway Embedded SQL compiler replaces them with generated C statements.
Included C source code must not contain any SQL statements nor any host variable declaration for use in
SQL statements. Similar restriction apply to C macro bodies.

The INCLUDE SQLCA statement may be positioned anywhere a C variable declaration could be
positioned. As this statement results in a declaration of an SQLCA structure, it must be positioned to be in
scope for any statement using this SQLCA declaration. The C scoping rules apply.

The SQL WHENEVER statement may be coded anywhere in the C program.

Comments

SQL statements may contain C comments wherever a blank is permitted, C++ comments, or SQL
comments which extend to the end of the current source line. Comments are not allowed in strings and
may not be nested.

C Example:
EXEC SQL WHENEVER SQLERROR
I* CONTINUE */

GOTO HANDLE-ERROR,;

C++ Example:
EXEC SQL WHENEVER SQLERROR
/I CONTINUE */

SQL Example:

EXEC SQL WHENEVER SQLERROR
-- CONTINUE
GOTO HANDLE-ERROR,;

71



Adabas SQL Gateway Embedded SQL

Error Handling in C

Textual error messages associated with each error number may be retrieved using the SQL statement
GET DIAGNOSTICS and GET DIAGNOSTICS EXCEPTION. These can be declared in a function which
is called in the event of a non-zero SQLCODE being returned.

The C program must declare a character variable to receive the error text, an integer variable containing
the length of the error text, an integer variable containing the total number of error conditions available
and an integer variable containing the current error condition. These 4 items must be declared in a
DECLARE SECTION which is in scope whenever the above SQL statements are called.

A programming example using GET DIAGNOSTICS / GET DIAGNOSTICS EXCEPTION looks like this:

voi d doERROR()

{
EXEC SQL BEG N DECLARE SECTI ON;
char errBuf[ 513 ]; /* Error Text Buffer */
int errLen = 513; /* Length of Error Text Buffer */
int conditionCount; /* Count of error conditions */
int errNunber; /* Current error condition */
EXEC SQ. END DECLARE SECTI ON;

/* Qotain the count of error conditions to be returned in
condi ti onCount */

EXEC SQL
CGET DI AGNGCSTI CS : condi ti onCount = NUMBER;
/* Cbtain each error condition text conditionCount tines */
/* The error condition text will be returned in errBuf */
for( errNunber = 1;
err Nunber <= conditi onCount;
err Nunmber ++)

{
EXEC SQL
GET DI AGNOSTI CS EXCEPTI ON : er r Nurmber
;errBuf = MESSAGE TEXT,
.errLen = MESSAGE LENGTH;
printf( "ERR MSG %s\n\n", errBuf );
}

}
where:
conditionCount is the count of error conditions available, returned by GET DIAGNOSTICS
errNumber is the current error condition.
errBuf is the target buffer, null-terminated on return from GET DIAGNOSTICS EXCEPTION
errLen is the length of the target buffer errBuf.

72



Chapter 5 - Programming Guide - C

SQL Communication Area (SQLCA)

The SQLCA provides the programmer with comprehensive information about the success or failure of
each SQL command.

The following is the declaration of the SQLCA structure in C:

struct sqlca

{

unsigned char sqlcaid [8]; /* eye catcher 'sglca’ */
SAG_INTEGER sqlcabc; [* size of SQLCA in bytes */
SAG_INTEGER sqlcode; [* SQL return code */
short sglerrml;  /* length of error message */
unsigned char sglerrmc [70]; /* error message */
unsigned char sqlerrp [8]; /* internal error info *
SAG_INTEGER sqlerrd [6]; /* internal error info */
unsigned char sqglwarn [8]; /* warning flags */
unsigned char sqlext [8]; /* reserved */

73



Adabas SQL Gateway Embedded SQL

SQL Descriptor Area (SQLDA)

The SQLDA provides the programmer with comprehensive information about each resulting column of a
dynamic SELECT statement.

The following is the declaration of the SQLDA structure in C:

struct sqlda
{
unsigned char sqgldaid [8]; /* eye catcher: 'SQLDA'  */
SAG_INTEGER sqgldabc; [* size of sglda in bytes  */
short sqln; [* #sqlvar elements allocated*/
short sqld; [* #sqlvar elements returned */
struct sqlvar
{SAGTYPE sqltype; [* datatype of variable  */
SAG_INTEGER sqllen; /* length of variable */
SAG_INTEGER reserved; /* reserved */
short internal;  /* reserved *
short sglindlen;  /* length of indicator */
SAG_INTEGER sqglindtype; /* datatype of indicator  */
SAGPointer sqlind; [* pointer to indicator ~ */

SAGPointer sqldata; [* pointer to data */
SAGCOLUMN sqglname; /* name of the column or HV */
} sqlvar [1];

#(,jefine SQLDASIZE(n) (sizeof(struct sglda)+(n-1)*sizeof(struct sqlvar))

SQL Data Type C Definitions for Data Types Returned

or Set in sqltype and sqlindtype

UNKNOWN SQL_TYP_UNKNOWN 0
CHAR SQL_TYP_CHAR 1
NUMERIC SQL_TYP_NUMERIC 2
DECIMAL SQL_TYP_DECIMAL 3
INTEGER SQL_TYP_INTEGER 4
SMALLINT SQL_TYP_SMALLINT 5
FLOAT SQL_TYP_FLOAT 6
LARGEINT SQL_TYP_LARGEINT 9
VARCHAR SQL_TYP_VARCHAR 12
NUMERIC SIGNED LEADING SQL_TYP_NUMERIC_LD 20
NUMERIC SIGNED TRAILING SQL_TYP_NUMERIC_TR 21
NUMERIC SIGNED LEADING SEPARATE | SQL_TYP_NUMERIC_SLD 22
NUMERIC SIGNED LEADING TRAILING | SQL_TYP_NUMERIC_STR 23
NULLABLE_CHAR SQL_TYP_NCHAR -1
NULLABLE NUMERIC SQL_TYP_NNUMERIC -2
NULLABLE DECIMAL SQL_TYP_NDECIMAL -3
NULLABLE INTEGER SQL_TYP_NINTEGER -4
NULLABLE SMALLINT SQL_TYP_NSMALLINT 5

74




Chapter 5 - Programming Guide - C

NULLABLE FLOAT SQL_TYP_NFLOAT -6

NULLABLE LARGEINT SQL_TYP_NLARGEINT -9

NULLABLE VARCHAR SQL_TYP_NVARCHAR -12
NULLABLE NUMERIC SIGNED LEADING | SQL_TYP_NNUMERIC_LD -20
NULLABLE NUMERIC SIGNED TRAILING | SQL_TYP_NNUMERIC_TR -21
NULLABLE NUMERIC SIGN LEADING SQL_TYP_NNUMERIC_SLD -22
NULLABLE NUMERIC SIGN TRAILING SQL_TYP_NNUMERIC_STR -23
BINARY SQL_TYP_BINARY -51
NULLABLE BINARY SQL_TYP_NBINARY -52
NATURAL DATE SQL_TYP_NATDATE -53
NULLABLE NATURAL DATE SQL_TYP_NNATDATE -54
NATURAL TIME SQL_TYP_NATTIME -55
NULLABLE NATURAL TIME SQL_TYP_NNATTIME -56
SQLDA SQL_TYP_SQLDA -57
NATURAL TIMESTAMP SQL_TYP_NATTIMESTAMP -58
NULLABLE NATURAL TIMESTAMP SQL_TYP_NNATTIMESTAMP -59

75



Adabas SQL Gateway Embedded SQL

SQL Descriptor Area (SQLDA)
Encoding and using the SQLLEN field

SQLDA - Content of SQLLEN

The sqllen field of the sqlvar contains different values based on the
sqltype of the column.
For all datatypes except DECIMAL and NUMERIC the value contained in
sqgllen is the actual length of the column.
The sqgllen for DECIMAL and NUMERIC types, contains the length, precision
(identical to length) and scale. This can be decoded into length,
precision and scale variables by using the macro SQLDAGET_PREC_SCALE_LEN.
The sqllen can be encoded with length, precision and scale by using the
macro SQLDAPUT_PREC_SCALE_LEN.
The following SQLTYPES require decoding or encoding of the sqllen :
SQL_TYP_DECIMAL
SQL_TYP_NUMERIC
SQL_TYP_NUMERIC_LD
SQL_TYP_NUMERIC_TR
SQL_TYP_NUMERIC_SLD
SQL_TYP_NUMERIC_STR
SQL_TYP_NUMERIC_BINARY
SQL_TYP_NUMERIC_BIN_BE
SQL_TYP_NDECIMAL
SQL_TYP_NNUMERIC
SQL_TYP_NNUMERIC_LD
SQL_TYP_NNUMERIC TR
SQL_TYP_NNUMERIC_SLD
SQL_TYP_NNUMERIC_STR
SQL_TYP_NNUMERIC_BINARY
SQL_TYP_NNUMERIC_BIN_BE
The sqllen field in the sglvar should remain encoded and not be modified
therefore, if the length of the column is required, when allocating
storage for example, the decoded values sqlprec or sqgllength should be
used and not the sqllen itself.
SAMPLE USAGE:
/*
Show how to decode sqllen for DECIMAL and NUMERIC type columns
The SQLDAGET_PREC_SCALE_LEN and SQLDAPUT_PREC_SCALE_LEN macros are
generated automatically by the Precompiler.
*/

76



Chapter 5 - Programming Guide - C

int sqlprec; /* Precision */
int sqlscale; /* Scale */
int sqllength; /* Length */
if ( Sglda->sqlvar[n].sqltype == SQL_TYP_NDECIMAL
[| SOQL_TYP_NNUMERIC
[| SOQOL_TYP_NNUMERIC_LD
[| SQL_TYP_NNUMERIC_TR
[| SQL_TYP_NNUMERIC_SLD
[| SQL_TYP_NNUMERIC_STR
[| SQL_TYP_NNUMERIC_BINARY
[| SQL_TYP_NNUMERIC_BIN_BE)

{
SQLDAGET_PREC_SCALE_LEN(Sqglda->sqglvar[n].sqllen,
sqlprec,
sqlscale,
sqgllength);
}

/*
Allocate storage using sgllength
*/
Sglda->sqlvar[n].sqldata.host_address = calloc(1, sqllength);

77



Adabas SQL Gateway Embedded SQL

Windows

Invocation and Precompiler Options - (Windows - C)

The general format of the call to the C precompiler is:

acepcc [<preconpiler options>] <source file>

The C source file can have any extension. If no extension is supplied the default extension 'pcc' will be
used. If the source file cannot be located, an error will be returned.

Options

Every option begins with a minus sign (-). The names of the options are not case-sensitive.
The following C precompiler options are available:

Option and Option Description Default

Name

-a catalog name If a table name exists
multiple times in the CDD
and is not fully qualified with
CATALOG.SCHEMA.TABLE,
an 'ambiguous table
reference' error will occur.

The default catalog name
can be supplied with "-a
<catalog_name>'".

The catalog name must exist

in the CDD.
-b suppress trailing | Suppress character string no
blanks trailing blanks.

Character string Host-
Variables used for input or
output are padded with
trailing blanks as required.

Trailing blanks can be
suppressed with '-b'.

This is especially useful for
applications written in C/C++.
where it is normal practice
for character strings to be
NULL terminated without
trailing blanks padding.

-c compatibility The Precompiler executes in ace
mode extended ACE mode.

ANSI mode can be enabled

with '-c ANSI'.

This option affects messages
only. In ANSI mode, SQL
syntax which does not
adhere to ANSI standards

78



Chapter 5 - Programming Guide - C

will be flagged as a warning.
Code generation is not

affected.
Values : ACE / ANSI

-e error listing file Error, Warning and Statistics | <basename>.plc
messages are written to (Windows and Open
STDOUT. These messages Systems)
can be routed to an output DD=SYSTERM (2/OS)
file with '-e <error listing
file>',

The <error listing file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension 'pcl' will be used.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-e //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to // DD SYSOUT=

-f code output file The <code output file> name <basename>.c
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension ‘cbl' will be used.

-k keep the The <code output file> is no
generated output deleted after compilation
file in case of errors.

compilation errors The <code output file> can

be kept with "-k'.

-l generate line Line information in the form : no

information /* line nn "<source file

name>" */

is generated into the <code
output file> with *-I'.

This can be useful when you
want to know the line number
of the associated SQL
Statement in the original
C/C++ source file.

-m migration check | The Precompiler executesin | no
of SQL statements code generation mode.
only When migrating or checking
existing C/C++ or COBOL

79



Adabas SQL Gateway Embedded SQL

programs, it can be useful to
have a listing of the SQL
statements only. These are
output to STDOUT. No
output file is generated.

The migration check can be
enabled with '-m'.

-n Adabas SQL
Gateway server
name

This option is REQUIRED

Server <server_name> to
which the session is to
connect.

<server_name> need not be
enclosed in quotes.

no default

-0 output code
mode

Output code mode is either
32 or 64-Bit

The C/C++ Precompiler
generates 32-Bit code when
invoked on 32-Bit systems (-
0 32) and 64-Bit code when
invoked on 64-Bit systems (-
0 64).

Generation of code suitable
for a different environment
can be enabled with -0 32' or
-0 64".

Values :32/64

32 (when invoked on
32-Bit systems)

64 (when invoked on
64-Bit systems)

-q no SQL
validation

The Precompiler performs
SQL syntax validation at
precompile time.

SQL validation can be
disabled with '-g'.

no

-r length of output
line

The Precompiler generates
code output files with a line
length of 72.

The output line length can be
increased to the length
defined in <output line
length>.

The output line length cannot
be defined shorter than the
default length for the
appropriate Host Language.
If this is attempted, the
output line length will be
reset to the appropriate Host
Language default and a
warning message issued.

Values :>=72

72

-s schema name

The SCHEMA name used by
the Precompiler is derived

user_name

80




from <user_name> as
supplied with the '-u' option.

The default schema name
can be overridden with '-s
<schema_name>'".

The schema name must
exist in the CDD.

Chapter 5 - Programming Guide - C

-u user name [,
password]

This option is REQUIRED

User <user_name> and
Password <password> to be
connected to the Server
defined with '-n'.

The <password> parameter
is optional, however, this
must be supplied if the user
being connected requires a
password.

no default

-w working
directory

Input and output files are
searched for or stored in the
current directory. This can be
overridden with "-w <working
directory>".

If no filename is given for a
file to be generated, the
basename of the precompiler
source file will be taken, with
the appropriate extension.

current directory

-Z suppress
warnings

Warning messages are
generated by the
Precompiler.

Warning messages can be
suppressed with '-z'.

This option affects
WARNING messages only.
ERROR messages cannot
be suppressed.

no

-@ file containing
command line
options and
parameters

Command line options and
parameters saved in a file
can be optionally input to the
Precompiler with '-@
<command line options and
parameters file>'.

The options and parameters
in the <command line options
and parameters file> can be
combined with other
command line options when
invoking the Precompiler.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using

no default

81



Adabas SQL Gateway Embedded SQL

the format :
-@ //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to// DD *

Note :
The minimum required options are server name (-n) and user name (-u). All other options are optional.

Filename Conventions

e The C precompiler source file name must consist of at least a basename and
optionally an extension. If no extension is supplied the default extension 'pcc' will
be used. If the source file cannot be located, an error will be returned.

e The C precompiler generated output file name must consist of at least a
basename and optionally an extension. If no extension is supplied the default
extension ‘c' will be used.

¢ The (optional) C precompiler listing file name must consist of at least a basename
and optionally an extension. If no extension is supplied the default extension 'pcl’
will be used.

¢ If no directory is given, then the file will be searched or stored in the current
directory. If a working directory is set (W option), then all generated files will be
stored there. This setting can be overridden by a directory indication within a
certain filename. If no filename is given for a file to be generated, then the
basename of the precompiler source file will be taken, with the appropriate
extension.

Examples:
acepcc - nDD=MYDSN - uMYUSER pr ecapp. pcc

All generated files will be stored in the current directory. The code output file (C source) is assigned the
name precapp.c.

acepcc - nDD=MYDSN, GATEWAY=REMOTEHOST, PORT=7500 - uMYUSER pr ecapp. pcc

All generated files will be stored in the current directory. The code output file (C source) is assigned the
name precapp.c.

A remote connection will be made to the CONNX JDBC Server, listening on PORT 7500.
acepcc -nDD=MYDSN - uMYUSER -wC:\ TEMP -f D: \ CSRC\ MYSRC. CPP pr ecapp. pcc

This precompiler call stores all generated files in c:\temp except the generated C source. This will be
stored in d:\csrc with the name mysrc.cpp. The name of the source file of the precompiler is precapp.pcc.

Libraries

To build an executable program (or a dynamic link library), only the rciclnt.lib must be linked to the objects
which are the result of preceding executions of a C compiler.

Example:

cl precapp.c c:\connx32\preconpiler\rciclnt.lib

82



uUnix

Invocation and Precompiler Options (Unix - C)

Chapter 5 - Programming Guide - C

The general format of the call to the C precompiler is:

ACEPCC [ <preconpil er options>] <source file>

The C source file can have any extension. If no extension is supplied the default extension 'pcc' is used. If
the source file cannot be located, an error is returned.

Options

Every option begins with a minus sign (-). The names of the options are not case-sensitive.

The following C precompiler options are available:

Option and Option

Name

Description

Default

-a catalog name

If a table name exists
multiple times in the CDD
and is not fully qualified with
CATALOG.SCHEMA.TABLE,
an ‘ambiguous table
reference' error will occur.

The default catalog name
can be supplied with '-a
<catalog_name>'".

The catalog name must exist
in the CDD.

-b suppress trailing
blanks

Suppress character string
trailing blanks.

Character string Host-
Variables used for input or
output are padded with
trailing blanks as required.

Trailing blanks can be
suppressed with '-b'.

This is especially useful for
applications written in C/C++.
where it is normal practice
for character strings to be
NULL terminated without
trailing blanks padding.

no

-Cc compatibility
mode

The Precompiler executes in
extended ACE mode.

ANSI mode can be enabled
with '-c ANSI'.

This option affects messages
only. In ANSI mode, SQL
syntax which does not
adhere to ANSI standards
will be flagged as a warning.

ace

83



Adabas SQL Gateway Embedded SQL

Code generation is not
affected.

Values : ACE / ANSI

-e error listing file

Error, Warning and Statistics
messages are written to
STDOUT. These messages
can be routed to an output
file with '-e <error listing
file>',

The <error listing file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension 'pcl' will be used.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-e //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to // DD SYSOUT=

<basename>.plc

(Windows and Open

Systems)
DD=SYSTERM

(z/0S)

-f code output file

The <code output file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension 'cbl' will be used.

<basename>.c

-k keep the The <code output file> is no
generated output deleted after compilation
file in case of errors.
compilation errors The <code output file> can
be kept with "-k'.
_-I generate line Line information in the form : no
information * line nn "<source file
name>" */
is generated into the <code
output file> with *-I'.
This can be useful when you
want to know the line number
of the associated SQL
Statement in the original
C/C++ source file.
-m migration check | The Precompiler executesin | no

of SQL statements
only

code generation mode.
When migrating or checking
existing C/C++ or COBOL
programs, it can be useful to

84




have a listing of the SQL
statements only. These are
output to STDOUT. No
output file is generated.

The migration check can be
enabled with '-m'.

Chapter 5 - Programming Guide - C

-n Adabas SQL
Gateway server
name

This option is REQUIRED

Server <server_name> to
which the session is to
connect.

<server_name> need not be
enclosed in quotes.

no default

-0 output code
mode

Output code mode is either
32 or 64-Bit

The C/C++ Precompiler
generates 32-Bit code when
invoked on 32-Bit systems (-
0 32) and 64-Bit code when
invoked on 64-Bit systems (-
0 64).

Generation of code suitable
for a different environment
can be enabled with -0 32' or
-0 64".

Values :32/64

32 (when invoked on 32-
Bit systems)

64 (when invoked on 64-
Bit systems)

-qg no SQL
validation

The Precompiler performs
SQL syntax validation at
precompile time.

SQL validation can be
disabled with '-q'.

no

-r length of output
line

The Precompiler generates
code output files with a line
length of 72.

The output line length can be
increased to the length
defined in <output line
length>.

The output line length cannot
be defined shorter than the
default length for the
appropriate Host Language.
If this is attempted, the
output line length will be
reset to the appropriate Host
Language default and a
warning message issued.

Values :>=72

72

-s schema name

The SCHEMA name used by
the Precompiler is derived
from <user_name> as

user_name

85



Adabas SQL Gateway Embedded SQL

supplied with the '-u’ option.

The default schema name
can be overridden with '-s
<schema_name>'.

The schema name must
exist in the CDD.

-u user name |,
password]

This option is REQUIRED

User <user_name> and
Password <password> to be
connected to the Server
defined with '-n'.

The <password> parameter
is optional, however, this
must be supplied if the user
being connected requires a
password.

no default

-w working
directory

Input and output files are
searched for or stored in the
current directory. This can be
overridden with '-w <working
directory>'.

If no filename is given for a
file to be generated, the
basename of the precompiler
source file will be taken, with
the appropriate extension.

current directory

-Z suppress
warnings

Warning messages are
generated by the
Precompiler.

Warning messages can be
suppressed with '-z'.

This option affects
WARNING messages only.
ERROR messages cannot
be suppressed.

no

-@ file containing
command line
options and
parameters

Command line options and
parameters saved in a file
can be optionally input to the
Precompiler with -@
<command line options and
parameters file>'.

The options and parameters
in the <command line options
and parameters file> can be
combined with other
command line options when
invoking the Precompiler.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

no default

86




Chapter 5 - Programming Guide - C

-@ //[ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to// DD *

Filename Conventions

° The C precompiler source file name must consist of at least a basename and optionally
an extension. If no extension is supplied the default extension 'pcc' is used. If the source file
cannot be located, an error is returned.

. The C precompiler generated output file name must consist of at least a basename and
optionally an extension. If no extension is supplied the default extension 'c' is used.

. The (optional) C precompiler listing file name must consist of at least a basename and
optionally an extension. If no extension is supplied, the default extension 'pcl' is used.

. If no directory is given, then the file is searched or stored in the current directory. If a
working directory is set (w option), then all generated files is stored there. This setting can be
overridden by a directory indication within a certain filename. If no filename is given for a file to be
generated, then the basename of the precompiler source file is taken, with the appropriate
extension.

Examples:
ACEPCC - nDD=MYDSN - uMYUSER pr ecapp. pcc

All generated files are stored in the current directory. The code output file (C source) is assigned the
name precapp.c.

ACEPCC - nDD=MYDSN, GATEWAY=REMOTEHOST, PORT=7500 - uMYUSER pr ecapp. pcc

All generated files are stored in the current directory. The code output file (C source) is assigned the
name precapp.c.

A remote connection is made to the CONNX JDBC Server, listening on PORT 7500.
ACEPCC - nDD=MYDSN - uMYUSER -w TEMP -f/ CSRC/ MYSRC. CPP pr ecapp. pcc

This precompiler call stores all generated files in /TEMP except the generated C source. This is stored in
/CSRC with the name mysrc.cpp. The name of the source file of the precompiler is precapp.pcc.

Libraries

To build an executable program (or a dynamic link library), only the shared library librciclnt_32.so must be
linked to the objects which are the result of previous executions of a C compiler.

Example:
Id precapp.o -librciclnt_32.so

87



Adabas SQL Gateway Embedded SQL

z/0S
Invocation and Precompiler Options (z/OS - C)

The general format of the call to the C precompiler is:

EXEC ACEPCC [, PARME' <preconpi |l er options>']

The C source file is input from DD=PCIN. If the source file cannot be located, an error is returned.

The C precompiler generated file is output to DD=PCOUT. Additionally, 3 temporary work files should be
assigned : DD=PCWRK1, DD=PCWRK2 and DD=PCWRK3.

Options

Every option begins with a minus sign (-). The names of the options are not case-sensitive.
The following C precompiler options are available:

Option and Option Description Default

Name

-a catalog name If a table name exists
multiple times in the CDD
and is not fully qualified with
CATALOG.SCHEMA.TABLE,
an 'ambiguous table
reference' error will occur.

The default catalog name
can be supplied with *-a
<catalog_name>'".

The catalog name must exist

in the CDD.
-b suppress trailing | Suppress character string no
blanks trailing blanks.

Character string Host-
Variables used for input or
output are padded with
trailing blanks as required.

Trailing blanks can be
suppressed with '-b'.

This is especially useful for
applications written in C/C++.
where it is normal practice
for character strings to be
NULL terminated without
trailing blanks padding.

-c compatibility The Precompiler executes in ace
mode extended ACE mode.

ANSI mode can be enabled

with '-c ANSI".

This option affects messages
only. In ANSI mode, SQL
syntax which does not

88



adhere to ANSI standards
will be flagged as a warning.

Code generation is not
affected.

Values : ACE / ANSI

Chapter 5 - Programming Guide - C

-e error listing file

Error, Warning and Statistics
messages are written to
STDOUT. These messages
can be routed to an output
file with '-e <error listing
file>',

The <error listing file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension 'pcl' will be used.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-e //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to // DD SYSOUT=

<basename>.plc
(Windows and Open
Systems)

DD=SYSTERM (z/OS)

-f code output file

The <code output file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension 'cbl' will be used.

<basename>.c

-k keep the The <code output file> is no
generated output deleted after compilation
file in case of errors.
compilation errors The <code output file> can
be kept with "-k'.
_—I generqte line Line information in the form : no
information /* line nn "<source file
name>" */
is generated into the <code
output file> with *-I'.
This can be useful when you
want to know the line number
of the associated SQL
Statement in the original
C/C++ source file.
-m migration check | The Precompiler executesin | no

of SQL statements
only

code generation mode.
When migrating or checking

89



Adabas SQL Gateway Embedded SQL

existing C/C++ or COBOL
programs, it can be useful to
have a listing of the SQL
statements only. These are
output to STDOUT. No
output file is generated.

The migration check can be
enabled with '-m’'.

-n Adabas SQL
Gateway server
name

This option is REQUIRED

Server <server_name> to
which the session is to
connect.

<server_name> need not be
enclosed in quotes.

no default

-0 output code
mode

Output code mode is either
32 or 64-Bit

The C/C++ Precompiler
generates 32-Bit code when
invoked on 32-Bit systems (-
0 32) and 64-Bit code when
invoked on 64-Bit systems (-
0 64).

Generation of code suitable
for a different environment
can be enabled with -0 32' or
-0 64'.

Values :32/64

32 (when invoked on 32-
Bit systems)

64 (when invoked on 64-
Bit systems)

-qg no SQL
validation

The Precompiler performs
SQL syntax validation at
precompile time.

SQL validation can be
disabled with '-q'.

no

-r length of output
line

The Precompiler generates
code output files with a line
length of 72.

The output line length can be
increased to the length
defined in <output line
length>.

The output line length cannot
be defined shorter than the
default length for the
appropriate Host Language.
If this is attempted, the
output line length will be
reset to the appropriate Host
Language default and a
warning message issued.

Values :>=72

72

-s schema name

The SCHEMA name used by

user_name

90




Chapter 5 - Programming Guide - C

the Precompiler is derived
from <user_name> as
supplied with the '-u’ option.

The default schema name
can be overridden with '-s
<schema_name>'.

The schema name must
exist in the CDD.

-u user name [, This option is REQUIRED no default

password] User <user_name> and

Password <password> to be
connected to the Server
defined with '-n".

The <password> parameter
is optional, however, this

must be supplied if the user
being connected requires a

password.
-W working Input and output files are current directory
directory searched for or stored in the

current directory. This can be
overridden with '-w <working
directory>".

If no filename is given for a
file to be generated, the
basename of the precompiler
source file will be taken, with
the appropriate extension.

-Z suppress Warning messages are no
warnings generated by the
Precompiler.

Warning messages can be
suppressed with '-z'".

This option affects
WARNING messages only.
ERROR messages cannot
be suppressed.

-@ file containing Command line options and no default
command line parameters saved in a file

options and can be optionally input to the

parameters Precompiler with '-@

<command line options and
parameters file>'.

The options and parameters
in the <command line options
and parameters file> can be
combined with other
command line options when
invoking the Precompiler.

On z/0OS platforms, a
DDNAME must be used

91



Adabas SQL Gateway Embedded SQL

instead of a filename, using
the format :

-@ //[ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to// DD *

Note :
The minimum required options are server name (-n) and user name (-u). All other options are optional

JCL Examples:

/I MY$ACE  JOB CLASS=G MSGCLASS=X

[ *JOBPARM LI NES=9999

I1*

/1* Preconpile a C program usi ng ACEPCC
I1*

[1* Error Listing output to DD=PCERRCR using the -e option
I1*

/1 SET ACELCOD=CONNX. LOAD

/1 SET USRLOD=WORK. LOAD

/1 SET USROBJ=WORK. OBJ

I1*

/I ACEPCC  EXEC PGVEACEPCC,

/1 PARME' - e/ / DDN: PCERROR - nDD=MYDSN, GATEWAY=1. 2. 3. 4 - UMYUSER ,
/1 REG ON=0M

/1 STEPLIB DD DI SP=SHR, DSN=&ACELCD

/1PCIN DD DI SP=SHR, DSN=WORK. | N( PRECAPP) <-- Input

/[ PCOUT DD DI SP=SHR, DSN=WORK. OQUT( PRECAPP) <-- CQutput
/ | POARK1 DD  DSN=&&PCWRK1,

/1 DCB=( RECFM=FB, LRECL=80, BLKSI ZE=8000)
/1 SPACE=( 4096, (500, 500) , , , ROUND)

/1 UNI T=VI O

//POWRK2 DD  DSN=&&PCVRK2,

/1 DCB=( RECFM=FB, LRECL=80, BLKSI ZE=8000)
/1 SPACE=( 4096, (500, 500) , , , ROUND) ,

/1 UNI T=VI O

//POWRK3 DD  DSN=&&PCWRK3,

/1 DCB=( RECFM=FB, LRECL=80, BLKSI ZE=8000)
/1 SPACE=( 4096, (500, 500) , , , ROUND)

/1 UNI T=VI O

/1 SYSI N DD DuMwy

// SYSTERM DD  SYSQUT=*

// SYSUDUWP DD  SYSQUT=*

//PCERROR DD DI SP=SHR, DSN=WORK. ERROR( PRECAPP) <-- FError Listing
/1

Libraries

92



Chapter 5 - Programming Guide - C

To build an executable program, the object file ACE3GL must be linked to the objects which are the result

of preceding executions of a C compiler and prelinker.

JCL Example:
/1 MYSACE

JOB CLASS=G, MSGCLASS=X

[ *JOBPARM LI NES=9999

[1*

/1* Linkedit a preconpiled C programw th ACE3G

[1*

/1 SET USRLOD=WORK. LCAD
[/ SET USROBJ=WORK. OBJ

[1*
/| LKED
/1 SYSLI B
/1 SYSLI N
/1 SYSLMOD
/1 SYSPRI NT
/1
/| SYSTERM
/1 SYSUT1
11
/1
11
/1 SYSUT2
/1
/1
11
/ 1 USROBJ
/1 SYSI N
I NCLUDE
| NCLUDE
ENTRY
NANME
I

EXEC PGWEI EW, PARME' AMODE=31, LI ST, MAP'
DD DI SP=SHR, DSN=&USRLCD

DD  DDNAME=SYSI N

DD Dl SP=SHR, DSN=&USRL OD( PRECAPP) ,

DD  SYSOQUT=*,

DCB=( RECFM-FBA, LRECL=133, BLKSI ZE=1330)

DD  SYSOUT=*

DD  DSN=&&SYSUTL,
DCB=BLKS| ZE=1024,
SPACE=(1024, (200, 50)),
UNI T=VI O

DD  DSN=&&SYSUT2,
DCB=BLKS| ZE=1024,
SPACE=( 1024, ( 200, 50)),
UNI T=VI O

DD DI SP=SHR, DSN=&USROBJ
DD *

SYSLI B( PRECAPP)
USROBJ ( ACE3GL)

MAI N

PRECAPP( R)

93



Chapter 6 - Programming Guide - COBOL

SQL Programming Concepts - COBOL
SQL Statements

SQL statements are not part of the host language but are embedded in an application written in the host
language. The compilation of such a program consists of two phases; the precompilation of the SQL
statements contained in the application program followed by the compilation of the actual program itself.

The SQL statements must be invisible to the host language compiler during the compilation phase. In
fact, the embedded SQL statements are commented out by the precompiler and are replaced by
statements generated into the application program in a form that corresponds to the requirements of the
host language.

The precompiler must be able to identify all embedded SQL statements. Therefore, all SQL statements
are delimited by special SQL delimiters. It is not possible to have more than one SQL statement between
one set of delimiters.

The SQL Starting Delimiter

The starting delimiter consists of a sequence of two words:
EXEC SQL

These words must be separated by one or more whitespace characters. They may be separated by one
or more lines or blanks, and may be in either upper case or lower case depending on what the host
language permits.

In ANSI mode, the two keywords must be in upper case and must be separated by blanks (not lines).
The SQL Statement Body

Once the starting delimiter has been specified, the statement itself must be provided. It must be
separated from the starting delimiter by at least one whitespace character and may be specified on the
same line or on a following line to the starting delimiter. The statement may be specified in either upper
case or lower case and may be split over several lines. Each keyword or token must be separated by at
least one whitespace character and may not be split over two or more lines. Keywords may be written in
upper case or lower case depending on the host language. In ANSI mode, keywords must be written in
upper case only.

94



Chapter 6 - Programming Guide - COBOL

Host Variables in COBOL

COBOL host variables used in SQL statements must be declared within the SQL BEGIN DECLARE
SECTION and END DECLARE SECTION statements as well as in the COBOL DATA DIVISION. There
may be any number of SQL BEGIN DECLARE SECTIONSs. The host variable definition must be a valid
COBOL data declaration, as described below. Adabas SQL Gateway Embedded SQL allows the use of
single host variables and host variable structures.

Host Variable Declaration

COBOL host structures are a named set of COBOL single host variables and must conform to the ANSI
Standard for COBOL.

Host Variable Structures

The use of COBOL host structures within SQL statements is an Adabas SQL Gateway Embedded SQL
extension and not part of the SQL ANSI Standard.

data definition

e data definition ~
\ _ hostvariable ./ (. J
integer constant identifier S f
\_ data declaration o)
integer constant level number as described in the ANSI standard for COBOL
host variable specifies the identifier of the COBOL single variable or structure. Any valid COBOL
identifier identifier may be used.
data definition recursive definition for nested structure level specification.
data declaration see the syntax diagram below.

Example of a structure definition:

01 LEVELL.
02 LEVEL2.
05 ELEMENT1 PIC 9.
05 ELEMENT2 PIC 9.

Within embedded SQL statements the COBOL naming qualification rules for structure elements do not
apply. Instead they must be specified top down to read "LEVEL1. LEVEL2.ELEMENT1" as shown in the
example above.

In COBOL statements, however, the structure elements must still be specified (bottom up) according to
the ANSI COBOL rules: e.g. "ELEMENT1 IN LEVEL2 IN LEVEL1".

When referencing a structure element which is not uniquely identified within the compilation unit it must
be sufficiently qualified with enough containing structure identifiers to unambiguously identify the variable
concerned. If for example the identifier ELEMENT1 has been used in more than one structure definition
then it must be qualified to give either LEVEL2.ELEMENT1 or even if necessary
LEVEL1.LEVEL2.ELEMENTL.

95



Adabas SQL Gateway Embedded SQL

For more information about the general usage of host variables within SQL, see the topics under
Common Elements in this help file.

Single Host Variables

The declaration must conform to the following COBOL

data declaration

e foselps

'S character type ™

s N () fmessrtee N
_L< >#’
I\— @ —~’J N numeric type —"I

. decimal type -—"J

- A
—/ VALUE clause ——s

syntax.

VALUE clause specifies any valid COBOL VALUE clause.

character type

— RO OSON
S \

.
X

f ®\ f‘l

The number of significant characters must not exceed 253.

96



Chapter 6 - Programming Guide - COBOL

The number of digits must not exceed 9.

97



Adabas SQL Gateway Embedded SQL

The number of digits must not exceed 27.

decimal type

r“\r®®®“\ r’ﬂr’@@@ﬂ
(=—® (D=~ —

"~ _/

F &~ /@nupumnamn.@\
< G
- - \<PﬁCKED-DEDIMHL>j

The number of digits must not exceed 27.

float type

/GGHPUTA'I'IGHHL-'D\
@D e @D

<
\ )\
- /

Data Type Conversion

The following table shows the conversion of COBOL data types to SQL data types and vice versa:

COBOL Data Types SQL Data Types

character CHARACTER
char (array) BINARY
integer (5-9 digits) INTEGER
integer (1-4 digits) SMALLINT
numeric NUMERIC
decimal DECIMAL

98



float (comp-1)

REAL

float (comp-2)

DOUBLE-PRECISION

Chapter 6 - Programming Guide - COBOL

For more details on SQL data types and their usage in SQL statements refer to Common Elements in
the Adabas SQL Gateway Embedded SQL Reference. The number of digits for an integer type must not

exceed 9.

99



Adabas SQL Gateway Embedded SQL

Embedding SQL Statements in COBOL
General Rules in COBOL

SQL Statement Delimiters

SQL statements are delimited by the prefix EXEC SQL and the terminator END-EXEC. The prefix may be
written in upper or lower case letters. In Adabas SQL Gateway Embedded SQL mode, upper or lower
case is permitted and the prefix may be split over numerous lines, separated by any whitespace
character. In ANSI mode, upper case is required and only whitespaces may separate the prefix keywords.

The terminator END-EXEC may be followed by an optional period (.). It has to be coded on the same line
to be recognized.

SQL Statement Placement

All SQL statements with the exception of the BEGIN/END DECLARE and INCLUDE statements may be
specified wherever a COBOL statement may be specified within the Procedure Division of the embedded
SQL COBOL program. Included COBOL source code must not contain any SQL statements or any host
variable declaration to be used in SQL statements.

The SQL INCLUDE , BEGIN/END DECLARE statements must be specified in the WORKING STORAGE
SECTION of the COBOL program.

Comments

SQL statements may contain COBOL comments marked with an asterisk in column 7 or SQL comments
preceded by two minus characters.

COBOL Example :
000015 EXEC SQL WHENEVER SQLERROR

000016* CONTINUE
000017 GOTO HANDLE-ERROR
000018 END-EXEC.

SQL Example :
000015 EXEC SQL WHENEVER SQLERROR
000016 -- CONTINUE
000017 GOTO HANDLE-ERROR

000018 END-EXEC.

100



Chapter 6 - Programming Guide - COBOL

Error Handling in COBOL

Textual error messages associated with each error number may be retrieved using the SQL

statements GET DIAGNOSTICS and GET DIAGNOSTICS EXCEPTION. These can be declared in a
subroutine which is called in the event of a non-zero SQLCODE being returned.

The COBOL program must declare a character variable to receive the error text, an integer variable
containing the length of the error text, an integer variable containing the total number of error conditions
available and an integer variable containing the current error condition. These 4

items must be declared in a DECLARE SECTION which is in scope whenever the above SQL
statements are called.
A programming example using GET DIAGNOSTICS / GET DIAGNOSTICS EXCEPTION looks

like this:
000015 WORKING-STORAGE SECTION.
000016 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
000017* Error Text Buffer

000018 01 ERRBUF PIC X(512).
000019* Length of Error Text Buffer
000020 01 ERRLEN PIC 9(9) COMP SYNC VALUE 512.

000021* Count of error conditions

000022 01 CONDITIONCOUNT PIC 9(9) COMP SYNC VALUE 0.
000023* Current error condition

000024 01 ERRNUMBER PIC 9(9) COMP SYNC VALUE 0.
000025 EXEC SQL END DECLARE SECTION END-EXEC.
000030 EXEC SQL INCLUDE SQLCA END-EXEC.

000045 PROCEDURE DIVISION.

000041 IF SQLCODENOT =0

000042* Obtain the count of error conditions to be returned in
000043* CONDITIONCOUNT

000044 EXEC SQL

000045 GET DIAGNOSTICS :CONDITIONCOUNT = NUMBER
000046 END-EXEC

000050 IF CONDITIONCOUNT >0

000051* Obtain each error condition text CONDITIONCOUNT times
000052* The error condition text will be returned in ERRBUF
000053 PERFORM DOERROR

000054 VARYING ERRNUMBER FROM 1 BY 1

000055 UNTIL ERRNUMBER > CONDITIONCOUNT
000056 END-IF

000057 END-IF

000058*

000070* Subroutine DOERROR

000071*

000072 DOEXCEPTION.

000073 EXEC SQL

000074 GET DIAGNOSTICS EXCEPTION :ERRNUMBER
000075 :ERRBUF = MESSAGE_TEXT,

000076 :ERRLEN = MESSAGE_LENGTH
000077 END-EXEC

000078 DISPLAY "ERR MSG: " G-ERRBUF

000079

where:

CONDITIONCOUNT is the count of error conditions available, returned by GET DIAGNOSTICS
ERRNUMBER is the current error condition.

ERRBUF is the target buffer, space filled on return from GET DIAGNOSTICS EXCEPTION

101



Adabas SQL Gateway Embedded SQL

ERRLEN is the length of the target buffer ERRBUF

102



Chapter 6 - Programming Guide - COBOL

SQL Communication Area (SQLCA)

The SQLCA provides the programmer with comprehensive information about the success or failure of
each SQL command.

The following is the declaration of the SQLCA structure in COBOL.:

01 SQLCA.
02 SQLCAID PICX(8)  VALUE "sglca ".
02 SQLCABC  PIC S9(9) COMP VALUE +136.
02 SQLCODE  PIC S9(9) COMP VALUE +0.
02 SQLERRM.

49 SQLERRML PIC S9(4) COMP.
49 SQLERRMC PIC X(70).
02 SQLERRP  PIC X(8).
02 SQLERRD OCCURS 6 TIMES
PIC S9(9) COMP.
02 SQLWARN.
03 SQLWARNO PIC X.
03 SQLWARN1 PIC X.
03 SQLWARN2 PIC X.
03 SQLWARNS3 PIC X.
03 SQLWARN4 PIC X.
03 SQLWARNS PIC X.
03 SQLWARNS PIC X.
03 SQLWARN7 PIC X.
02 SQLEXT  PIC X(8).

103



Adabas SQL Gateway Embedded SQL

SQL Descriptor Area (SQLDA)

The SQLDA provides the programmer with comprehensive information about each resulting column of a
dynamic SELECT statement.

The following is the declaration of the SQLDA structure in COBOL.:

01 SQLDA.
02 SQLDAI D Pl C X(8) VALUE " SQLDA" .
02 SQLDABC PIC S9(9) COW  SYNC VALUE 0.

02 SQLN PIC S9(4) COW  SYNC VALUE 0.
02 SQLD PIC S9(4) COW  SYNC VALUE 0.
02 SQLVAR.
03 SQLTYPE PIC S9(9) COW  SYNC VALUE 0.
03 SQLLEN PIC S9(9) COW  SYNC VALUE 0.
03 RESERVED PIC S9(9) COWP  SYNC VALUE 0.
03 | NTERNAL PIC S9(4) COWP  SYNC VALUE 0.
03 SQLI NDLEN PIC S9(4) COW  SYNC VALUE 0.
03 SQLI NDTYPE Pl C S9(9) COW  SYNC VALUE 0.
03 SQLI ND.
04 PTR Pl C S9(9) SYNC VALUE
04 HAD Pl C S9(9) SYNC VALUE
03 SQLDATA.
04 PTR Pl C S9(9) SYNC VALUE
04 HAD Pl C S9(9) SYNC VALUE
03 SQLNAME.
04 SQLNAMEL Pl C S9(9) SYNC VALUE
04 SQLNAVET Pl C S9(9) SYNC VALUE
04 SQLNAVER Pl C S9(9) SYNC VALUE

To set the address of a host variable in SQLDATA and optionally in SQLIND, the following subroutine

must be called:

CALL "SAGADDR' USI NG <host vari abl e nanme>

Example:

CALL "SAGADDR' USI NG C2 sgl data of sqglvar of outsqglda(1)

104

sql data of sqgl var of outsql da(<i ndex>)



Chapter 6 - Programming Guide - COBOL

Windows

Invocation and Precompiler Options - (Windows - COBOL)

The general format of the call to the COBOL precompiler is:

acepccob [ <preconpiler options>] <source file>

The COBOL source file can have any extension. If no extension is supplied the default extension 'pccob’
is used. If the source file cannot be located, an error is returned.

Options

Every option begins with a minus sign (-). The names of the options are not case-sensitive.
The following COBOL precompiler options are available:

Option and Option Description Default
Name
-a catalog name If a table name exists

multiple times in the CDD
and is not fully qualified with
CATALOG.SCHEMA.TABLE,
an 'ambiguous table
reference' error will occur.

The default catalog name
can be supplied with '-a
<catalog_name>'.

The catalog name must exist

in the CDD.
-b suppress trailing | Suppress character string no
blanks trailing blanks.

Character string Host-
Variables used for input or
output are padded with
trailing blanks as required.

Trailing blanks can be
suppressed with '-b'.

This is especially useful for
applications written in C/C++.
where it is normal practice
for character strings to be
NULL terminated without
trailing blanks padding.

-c compatibility The Precompiler executes in | ace
mode extended ACE mode.

ANSI mode can be enabled

with '-c ANSI'.

This option affects messages
only. In ANSI mode, SQL
syntax which does not
adhere to ANSI standards

105



Adabas SQL Gateway Embedded SQL

will be flagged as a warning.

Code generation is not
affected.

Values : ACE / ANSI

-d string delimiter
(quotes)

The COBOL Precompiler by
default uses QUOTE (") as
string delimiters.
Apostrophe () string
delimiters can be enabled
with '-d APOST'

Values :QUOTE / APOST

quote

-e error listing file

Error, Warning and Statistics
messages are written to
STDOUT. These messages
can be routed to an output
file with '-e <error listing
file>',

The <error listing file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension "pcl’ will be used.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-e //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to // DD SYSOUT=

<basename>.plc
(Windows and Open
Systems)

DD=SYSTERM (z/OS)

-f code output file

The <code output file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension 'cbl’ will be used.

<base of source file>.cbl

-h host language
type

The COBOL Precompiler
generates either independent
(-h IND) or Microfocus (-h
MF) code.

When invoking the COBOL
Precompiler with the '-h MF'
option, an additional
statement is generated for
the first EXEC SQL
CONNECT statement
encountered in each
program source and is a
requirement of the

Default : MF
(Windows/Open
Systems)

IND (Mainframe)

106




Microfocus COBOL runtime
on Windows and Open
Systems platforms.

SET SAGDLLPTR TO
ENTRY "rciclnt"

If you do not intend using
Microfocus Cobol, the "-h
IND' option should be
defined (This is the default
option on non Windows and
Open Systems platforms).

Values : IND / MF

Default : MF
(Windows/Open Systems) or
IND (Mainframe)

Chapter 6 - Programming Guide - COBOL

-| tab character
width

The COBOL Precompiler
expands all tab characters by
one or more spaces as
defined in <tab character
width>.

Values :>=1

-k keep the
generated output
file in case of
compilation errors

The <code output file> is
deleted after compilation
errors.

The <code output file> can
be kept with "-k'.

no

-m migration check
of SQL statements
only

The Precompiler executes in
code generation mode.
When migrating or checking
existing C/C++ or COBOL
programs, it can be useful to
have a listing of the SQL
statements only. These are
output to STDOUT. No
output file is generated.

The migration check can be
enabled with '-m’'.

no

-n Adabas SQL
Gateway server
name

This option is REQUIRED

Server <server_name> to
which the session is to
connect.

<server_name> need not be
enclosed in quotes.

no default

-g no SQL
validation

The Precompiler performs
SQL syntax validation at
precompile time.

SQL validation can be
disabled with '-q'.

no

-r length of output

The Precompiler generates

80

107



Adabas SQL Gateway Embedded SQL

line

code output files with a line
length of 80.

The output line length can be
increased to the length
defined in <output line
length>.

The output line length cannot
be defined shorter than the
default length for the
appropriate Host Language.
If this is attempted, the
output line length will be
reset to the appropriate Host
Language default and a
warning message issued.

Values :>=80

-s schema name

The SCHEMA name used by
the Precompiler is derived
from <user_name> as
supplied with the '-u' option.

The default schema name
can be overridden with '-s
<schema_name>'.

The schema name must
exist in the CDD.

user_name

-t cobol standard

The COBOL Precompiler
processes all COBOL words
and Host Variable definitions
as case insensitive (-t 74).

Case sensitivity can be
enabled with -t 85'.

Values :74/85

74

-u user name [,
password]

This option is REQUIRED

User <user_name> and
Password <password> to be
connected to the Server
defined with '-n'.

The <password> parameter
is optional, however, this
must be supplied if the user
being connected requires a
password.

no default

-w working
directory

Input and output files are
searched for or stored in the
current directory. This can be
overridden with '-w <working
directory>".

If no filename is given for a
file to be generated, the
basename of the precompiler

current directory

108




Chapter 6 - Programming Guide - COBOL

source file will be taken, with
the appropriate extension.

-Z suppress
warnings

Warning messages are no
generated by the
Precompiler.

Warning messages can be
suppressed with '-z'.

This option affects
WARNING messages only.
ERROR messages cannot
be suppressed.

-@ file containing
command line
options and
parameters

Command line options and no default
parameters saved in a file
can be optionally input to the
Precompiler with '-@
<command line options and
parameters file>'.

The options and parameters
in the <command line options
and parameters file> can be
combined with other
command line options when
invoking the Precompiler.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-@ //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to// DD *

Note :

The minimum required options are server name (-n) and user name (-u). All other options are optional.

Filename Conventions

The COBOL precompiler source file name must consist of at least a basename
and optionally an extension. If no extension is supplied the default extension
'pceob’ is used. If the source file cannot be located, an error is returned.

The COBOL precompiler generated output file name must consist of at least a
basename and optionally an extension. If no extension is supplied the default
extension ‘cbl' is used.

The (optional) COBOL precompiler listing file name must consist of at least a
basename and optionally an extension. If no extension is supplied the default
extension 'pcl’ will be used.

If no directory is given, then the file will be searched or stored in the current
directory. If a working directory is set (W option), then all generated files will be
stored there. This setting can be overridden by a directory indication within a
certain filename. If no filename is given for a file to be generated, then the

109



Adabas SQL Gateway Embedded SQL

basename of the precompiler source file will be taken, with the appropriate
extension.

Examples:
acepccob - nDD=MYDSN - uMYUSER pr ebapp. pccob

All generated files will be stored in the current directory. The code output file (COBOL source) is
assigned the name prebapp.cbl.

acepccob - nDD=MYDSN, GATEWAY=REMOTEHOST, PORT=7500 - uMYUSER pr ebapp. pccob

All generated files will be stored in the current directory. The code output file (COBOL source) is
assigned the name prebapp.cbl.

A remote connection will be made to the CONNX JDBC Server, listening on PORT 7500.

acepccob - nDD=MYDSN - uMYUSER - wC. \ TEMP -f D: \ COBSRC\ MYSRC. CBL
pr ebapp. cob

This precompiler call stores all generated files in c:\temp except the generated COBOL source.
This will be stored in d:\cobsrc with the name mysrc.cbl. The name of the source file of the
precompiler is prebapp.cob.

Libraries

To build an executable program (or a dynamic link library), only the rciclnt.lib must be linked to the objects
which are the result of preceding executions of a COBOL compiler.

Example:
cbllink -v -oprebapp. exe prebapp.cbl c:\connx32\preconpiler\rciclnt.lib

110



Chapter 6 - Programming Guide - COBOL

Unix

Invocation and Precompiler Options (Unix - COBOL)

The general format of the call to the COBOL precompiler is:

ACEPCCOB [ <preconpil er options>] <source file>

The COBOL source file can have any extension. If no extension is supplied the default extension 'pccob
will be used. If the source file cannot be located, an error is returned.

Options

Every option begins with a minus sign (-). The names of the options are not case-sensitive.
The following COBOL precompiler options are available:

Option and Option Description Default

Name

-a catalog name If a table name exists
multiple times in the CDD
and is not fully qualified with
CATALOG.SCHEMA.TABLE,
an 'ambiguous table
reference’ error will occur.

The default catalog name
can be supplied with '-a
<catalog_name>'".

The catalog name must exist

in the CDD.
-b suppress trailing | Suppress character string no
blanks trailing blanks.

Character string Host-
Variables used for input or
output are padded with
trailing blanks as required.

Trailing blanks can be
suppressed with '-b'.

This is especially useful for
applications written in C/C++.
where it is normal practice
for character strings to be
NULL terminated without
trailing blanks padding.

-Cc compatibility The Precompiler executes in ace
mode extended ACE mode.

ANSI mode can be enabled

with '-c ANSI".

This option affects messages
only. In ANSI mode, SQL
syntax which does not
adhere to ANSI standards

111



Adabas SQL Gateway Embedded SQL

will be flagged as a warning.

Code generation is not
affected.

Values : ACE / ANSI

-d string delimiter
(quotes)

The COBOL Precompiler by
default uses QUOTE (") as
string delimiters.
Apostrophe () string
delimiters can be enabled
with '-d APOST'

Values :QUOTE / APOST

quote

-e error listing file

Error, Warning and Statistics
messages are written to
STDOUT. These messages
can be routed to an output
file with '-e <error listing
file>',

The <error listing file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension "pcl’ will be used.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-e //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to // DD SYSOUT=

<basename>.plc
(Windows and
Open Systems)

DD=SYSTERM
(z/OS)

-f code output file

The <code output file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension 'cbl’ will be used.

<base of source
file>.cbl

-h host language
type

The COBOL Precompiler
generates either independent
(-h IND) or Microfocus (-h
MF) code.

When invoking the COBOL
Precompiler with the '-h MF'
option, an additional
statement is generated for
the first EXEC SQL
CONNECT statement
encountered in each
program source and is a
requirement of the

Default : MF
(Windows/Open
Systems)

IND
(Mainframe)

112




Microfocus COBOL runtime
on Windows and Open
Systems platforms.

SET SAGDLLPTR TO
ENTRY "rciclnt"

If you do not intend using
Microfocus Cobol, the "-h
IND' option should be
defined (This is the default
option on non Windows and
Open Systems platforms).

Values : IND / MF

Default : MF
(Windows/Open Systems) or
IND (Mainframe)

Chapter 6 - Programming Guide - COBOL

-| tab character
width

The COBOL Precompiler
expands all tab characters by
one or more spaces as
defined in <tab character
width>.

Values :>=1

-k keep the
generated output
file in case of
compilation errors

The <code output file> is
deleted after compilation
errors.

The <code output file> can
be kept with "-k'.

no

-m migration check
of SQL statements
only

The Precompiler executes in
code generation mode.
When migrating or checking
existing C/C++ or COBOL
programs, it can be useful to
have a listing of the SQL
statements only. These are
output to STDOUT. No
output file is generated.

The migration check can be
enabled with '-m’'.

no

-n Adabas SQL
Gateway server
name

This option is REQUIRED

Server <server_name> to
which the session is to
connect.

<server_name> need not be
enclosed in quotes.

no default

-g no SQL
validation

The Precompiler performs
SQL syntax validation at
precompile time.

SQL validation can be
disabled with '-q'.

no

-r length of output

The Precompiler generates

80

113



Adabas SQL Gateway Embedded SQL

line

code output files with a line
length of 80.

The output line length can be
increased to the length
defined in <output line
length>.

The output line length cannot
be defined shorter than the
default length for the
appropriate Host Language.
If this is attempted, the
output line length will be
reset to the appropriate Host
Language default and a
warning message issued.

Values :>=80

-s schema name

The SCHEMA name used by
the Precompiler is derived
from <user_name> as
supplied with the '-u' option.

The default schema name
can be overridden with '-s
<schema_name>'.

The schema name must
exist in the CDD.

user_name

-t cobol standard

The COBOL Precompiler
processes all COBOL words
and Host Variable definitions
as case insensitive (-t 74).

Case sensitivity can be
enabled with -t 85'.

Values :74/85

74

-u user name [,
password]

This option is REQUIRED

User <user_name> and
Password <password> to be
connected to the Server
defined with '-n'.

The <password> parameter
is optional, however, this
must be supplied if the user
being connected requires a
password.

no default

-w working
directory

Input and output files are
searched for or stored in the
current directory. This can be
overridden with '-w <working
directory>".

If no filename is given for a
file to be generated, the
basename of the precompiler

current directory

114




Chapter 6 - Programming Guide - COBOL

source file will be taken, with
the appropriate extension.

-Z suppress Warning messages are no
warnings generated by the
Precompiler.

Warning messages can be
suppressed with '-z'.

This option affects
WARNING messages only.
ERROR messages cannot
be suppressed.

-@ file containing Command line options and no default
command line parameters saved in a file

options and can be optionally input to the

parameters Precompiler with '-@

<command line options and
parameters file>'.

The options and parameters
in the <command line options
and parameters file> can be
combined with other
command line options when
invoking the Precompiler.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-@ //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to// DD *

Note :
The minimum required options are server name (-n) and user name (-u). All other options are optional.

Filename Conventions

. The COBOL precompiler source file name must consist of at least a basename and
optionally an extension. If no extension is supplied the default extension 'pccob’ will be used. If
the source file cannot be located, an error will be returned..

. The COBOL precompiler generated output file name must consist of at least a basename
and optionally an extension. If no extension is supplied the default extension 'cbl' will be used.

. The (optional) COBOL precompiler listing file name must consist of at least a basename
and optionally an extension. If no extension is supplied the default extension 'pcl' will be used.

. If no directory is given, then the file will be searched or stored in the current directory. If a
working directory is set (w option), then all generated files will be stored there. This setting can be
overridden by a directory indication within a certain filename. If no filename is given for a file to be
generated, then the basename of the precompiler source file will be taken, with the appropriate
extension.

Examples:
ACEPCCOB - nDD=MYDSN - uMYUSER pr ebapp. pccob

115



Adabas SQL Gateway Embedded SQL

All generated files will be stored in the current directory. The code output file (COBOL source) is
assigned the name prebapp.cbl.

ACEPCCOB - nDD=MYDSN, GATEWAY=REMOTEHOST, PORT=7500 - uMYUSER pr ebapp. pccob

All generated files will be stored in the current directory. The code output file (COBOL source) is
assigned the name prebapp.cbl.

A remote connection will be made to the CONNX JDBC Server, listening on PORT 7500.

ACEPCCOB - nDD=MYDSN - uMYUSER -w TEMP -f/ COBSRC/ MYSRC. CBL pr ebapp. cob

This precompiler call stores all generated files in /TEMP except the generated COBOL source.
This will be stored in /COBSRC with the name mysrc.cbl. The name of the source file of the
precompiler is prebapp.cob.

Libraries

To build an executable program (or a dynamic link library), only the shared library rciclnt.so must be
linked to the objects which are the result of preceding executions of a COBOL compiler.

Example:

116

I d prebapp.o -lrciclnt



Chapter 6 - Programming Guide - COBOL

z/0S
Invocation and Precompiler Options (z/0S- COBOL)

The general format of the call to the COBOL precompiler is:

EXEC ACEPCCOB [, PARME' <preconpi | er options>']

The COBOL source file is DD=PCIN. If the source file cannot be located, an error is returned.

The COBOL precompiler generated file is output to DD=PCOUT. Additionally, 1 temporary work file
should be assigned : DD=PCWRK1.

Options

Every option begins with a minus sign (-). The names of the options are not case-sensitive.
The following COBOL precompiler options are available:

Option and Option Description Default

Name

-a catalog name If a table name exists
multiple times in the CDD
and is not fully qualified with
CATALOG.SCHEMA.TABLE,
an 'ambiguous table
reference' error will occur.

The default catalog name
can be supplied with '-a
<catalog_name>'".

The catalog name must exist

in the CDD.
-b suppress trailing | Suppress character string no
blanks trailing blanks.

Character string Host-
Variables used for input or
output are padded with
trailing blanks as required.

Trailing blanks can be
suppressed with '-b'.

This is especially useful for
applications written in C/C++.
where it is normal practice
for character strings to be
NULL terminated without
trailing blanks padding.

-c compatibility The Precompiler executes in ace
mode extended ACE mode.

ANSI| mode can be enabled

with '-c ANSI'.

This option affects messages
only. In ANSI mode, SQL
syntax which does not

117



Adabas SQL Gateway Embedded SQL

adhere to ANSI standards
will be flagged as a warning.

Code generation is not
affected.

Values : ACE / ANSI

-d string delimiter
(quotes)

The COBOL Precompiler by
default uses QUOTE (") as
string delimiters.
Apostrophe () string
delimiters can be enabled
with '-d APOST'

Values :QUOTE / APOST

quote

-e error listing file

Error, Warning and Statistics
messages are written to
STDOUT. These messages
can be routed to an output
file with '-e <error listing
file>".

The <error listing file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension "pcl’ will be used.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-e //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to // DD SYSOUT=

<basename>.plc
(Windows and Open
Systems)

DD=SYSTERM (z/OS)

-f code output file

The <code output file> name
must consist of at least a
basename and optionally an
extension. If no extension is
supplied, the default
extension 'cbl’ will be used.

<base of source file>.cbl

-h host language
type

The COBOL Precompiler
generates either independent
(-h IND) or Microfocus (-h
MF) code.

When invoking the COBOL
Precompiler with the '-h MF'
option, an additional
statement is generated for
the first EXEC SQL
CONNECT statement
encountered in each
program source and is a

Default : MF
(Windows/Open
Systems)

IND (Mainframe)

118




requirement of the
Microfocus COBOL runtime
on Windows and Open
Systems platforms.

SET SAGDLLPTR TO
ENTRY "rciclnt"

If you do not intend using
Microfocus Cobol, the "-h
IND' option should be
defined (This is the default
option on non Windows and
Open Systems platforms).

Values : IND / MF

Default : MF
(Windows/Open Systems) or
IND (Mainframe)

Chapter 6 - Programming Guide - COBOL

-l tab character The COBOL Precompiler 1
width expands all tab characters by
one or more spaces as
defined in <tab character
width>.
Values :>=1
-k keep the The <code output file> is no
generated output deleted after compilation
file in case of errors.
compilation errors The <code output file> can
be kept with "-k'.
-m migration check | The Precompiler executesin | no
of SQL statements code generation mode.
only When migrating or checking
existing C/C++ or COBOL
programs, it can be useful to
have a listing of the SQL
statements only. These are
output to STDOUT. No
output file is generated.
The migration check can be
enabled with '-m'.
-n Adabas SQL This option is REQUIRED no default
Gateway server Server <server_name> to
hame which the session is to
connect.
<server_name> need not be
enclosed in quotes.
-q no SQL The Precompiler performs no
validation SQL syntax validation at

precompile time.

SQL validation can be
disabled with '-q'.

119



Adabas SQL Gateway Embedded SQL

-r length of output
line

The Precompiler generates
code output files with a line
length of 80.

The output line length can be
increased to the length
defined in <output line
length>.

The output line length cannot
be defined shorter than the
default length for the
appropriate Host Language.
If this is attempted, the
output line length will be
reset to the appropriate Host
Language default and a
warning message issued.

Values :>=80

80

-s schema name

The SCHEMA name used by
the Precompiler is derived
from <user_name> as
supplied with the '-u’ option.

The default schema name
can be overridden with '-s
<schema_name>'.

The schema name must
exist in the CDD.

user_name

-t cobol standard

The COBOL Precompiler
processes all COBOL words
and Host Variable definitions
as case insensitive (-t 74).

Case sensitivity can be
enabled with -t 85'".

Values :74/85

74

-u user name [,
password]

This option is REQUIRED

User <user_name> and
Password <password> to be
connected to the Server
defined with '-n".

The <password> parameter
is optional, however, this
must be supplied if the user
being connected requires a
password.

no default

-w working
directory

Input and output files are
searched for or stored in the
current directory. This can be
overridden with '-w <working
directory>'".

If no filename is given for a
file to be generated, the

current directory

120




Chapter 6 - Programming Guide - COBOL

basename of the precompiler
source file will be taken, with
the appropriate extension.

-Z suppress Warning messages are no
warnings generated by the
Precompiler.

Warning messages can be
suppressed with '-z'".

This option affects
WARNING messages only.
ERROR messages cannot
be suppressed.

-@ file containing Command line options and no default
command line parameters saved in a file

options and can be optionally input to the

parameters Precompiler with '-@

<command line options and
parameters file>'.

The options and parameters
in the <command line options
and parameters file> can be
combined with other
command line options when
invoking the Precompiler.

On z/0OS platforms, a
DDNAME must be used
instead of a filename, using
the format :

-@ //ddn:ddname

The DDNAME assignment
must be made to a physical
file. It must not be assigned
to// DD *

Note :
The minimum required options are server name (-n) and user name (-u). All other options are optional.

JCL Example:

/1 MYSACE JOB CLASS=G, MSGCLASS=X
[ *JOBPARM LI NES=9999

[]*

/1* Preconpile a COBOL program usi ng ACEPCCOB

/]*

[1* Error Listing output to DD=PCERROR using the -e option
[]*

/1 SET ACELOD=CONNX. LOAD
/1 SET USRLOD=WORK. LOAD
/1 SET USROBJ=WORK. OBJ
[1*

121



Adabas SQL Gateway Embedded SQL

/ | ACEPCCOB EXEC PGVFACEPCCOB

/1 PARME' - e/ /| DDN: PCERROR - nDD=MYDSN, GATEWAY=1. 2. 3. 4 - uMYUSER ,
/1 REG ON=OM

/1 STEPLI B DD DI SP=SHR, DSN=&ACELCD

/1 PCI NCL DD DI SP=SHR, DSN=WORK. | NCL <-- Include Directory
/1 PCI N DD DI SP=SHR, DSN=WORK. | N( PREBAPP) <-- | nput

// PCOUT DD DI SP=SHR, DSN=WORK. OQUT( PREBAPP) <-- Qut put

[/ PONRK1 DD DSN=&&PCWRK1,

/1 DCB=( RECFM-FB, LRECL=80, BLKSI ZE=8000) ,

/1 SPACE=(4096, (500, 500),,, ROUND),

/1 UNIT=VIO

/1 PCWRK2 DD DSN=&&PCWRK2,

/| DCB=( RECFM-FB, LRECL=80, BLKSI ZE=8000) ,

/' SPACE=(4096, (500, 500),,, ROUND),

/1 UNIT=VI O

/| PCWRK3 DD DSN=&&PCWRK3,

/1 DCB=( RECFM=FB, LRECL=80, BLKSI ZE=8000) ,

/' SPACE=(4096, (500, 500),,, ROUND),

/1 UNIT=VIO

/1 SYSIN DD DUMWY

[/ SYSTERM DD SYSQUT=*

[/ SYSUDUMP DD SYSOUT=*

/1 PCERROR DD DI SP=SHR, DSN=WCRK. ERROR( PREBAPP) <-- Error Listing
/1

Libraries

To build an executable program, the object file ACE3GL must be linked to the objects which are the result
of preceding executions of a COBOL compiler.

JCL Example:

/1 MYSACE  JOB CLASS=G, MSGCLASS=X

/ *JOBPARM LI NES=9999

/1*

/1* Linkedit a preconpiled COBOL programwi th ACE3G.
/1*

/1 SET USRLOD=WORK. LOAD

/1 SET USROBJ=WORK. OBJ

[1*

/ | LKED EXEC PGVEl EW., PARME' AMODE=31, LI ST, MAP'
/1SYSLIB DD DI SP=SHR, DSN=&USRLOD

//SYSLIN DD  DDNAME=SYSI N

/1 SYSLMOD DD DI SP=SHR, DSN=&USRL OD( PREBAPP) ,
//SYSPRINT DD  SYSOUT=*,

/1 DCB=( RECFM=FBA, LRECL=133, BLKSI ZE=1330)
// SYSTERM DD  SYSOUT=*

/1 SYSUT1 DD  DSN=&&SYSUTL,

/1 DCB=BLKSI ZE=1024,

/1 SPACE=( 1024, ( 200, 50)),

122



/1

/1 SYSUT2

/1

/1

/1

/ / USROBJ

/1 SYSI N
| NCLUDE
I NCLUDE
ENTRY
NAVE

/1

UNI T=VI O
DD  DSN=&&SYSUT2,
DCB=BLKSI ZE=1024,
SPACE=(1024, ( 200, 50)),

UNI T=VI O

DD DI SP=SHR, DSN=&USROBJ
w *

SYSLI B( PREBAPP)

USROBJ( ACE3GL)

PREBAPP

PREBAPP( R)

Chapter 6 - Programming Guide - COBOL

123



Chapter 7 - SQL Statements

Standard SQL Statements

The SQL Statements supported by the Adabas SQL Gateway Embedded SQL is a superset of
statements supported

by the Adabas SQL Gateway. For documentation on standard SQL Statements, please refer to the
Adabas SQL Gateway User Guide.

The SQL Statements listed in this section only apply to Embedded SQL.

124



Chapter 7 - SQL Statements

ALLOCATE SQLCONTEXT

Function:

The ALLOCATE SQLCONTEXT statement identifies to the SQL precompiler which SQL Context is in
scope for subsequent embedded SQL statements.

Invocation:

Embedded Mode v | Dynamic Mode | Interactive Mode

Syntax:

o ALLOGATE }—{ SaLCONTEXT }—{ As H host_variable_identifier |— e

host_variable_identifier | A valid single host variable identifier. It must
resolve to the address of an SQL Context (a
SAGContext structure).

Description

The ALLOCATE SQLCONTEXT statement is provided to facilitate the writing of multi-threaded SQL client
applications. This is a programmatic mechanism to allow the SQL application to maintain multiple SQL
contexts, each corresponding to a logical SQL user, in a multi-threaded application. The ALLOCATE
SQLCONTEXT statement identifies to the SQL precompiler which SQL Context is active for subsequent
embedded SQL statements. At runtime, the host variable specified in the statement must resolve to the
address of a valid SQL Context.

The address in the host variable can be changed, with the effect that the new address identifies that
another SQL Context is how active. No actual memory is allocated by this statement. Instead, the
address in the host variable must point to an already allocated SAGContext structure. This statement
does not result in a call to the Adabas SQL Gateway Embedded SQL; it is a programmatic directive to the
SQL precompiler only.

Limitations:

An instance of an ALLOCATE SQLCONTEXT statement is in scope from the point in the embedded-SQL
source module at which the statement appears until one of the following:
e another ALLOCATE SQLCONTEXT statement is encountered

e any DEALLOCATE SQLCONTEXT statement is encountered
¢ the end of the source module.

ANSI Specifics:
The ALLOCATE SQLCONTEXT statement is not part of the Standard.

Adabas SQL Gateway Embedded SQL Specifics:
See also the related Adabas SQL Gateway Embedded SQL statement: DEALLOCATE SQLCONTEXT.

Example

An SQL context can be identified as follows:

125



Adabas SQL Gateway Embedded SQL

exec sql begin declare section;
SAGContext sqlCtx;
exec sql end declare section;
exec sql allocate sqglcontext as :&sqlCtx

126



Chapter 7 - SQL Statements

BEGIN DECLARE SECTION

Function

This statement is the starting delimiter for a host variable declaration block.

Invocation

Embedded Mode v | Dynamic Mode | Interactive Mode

Syntax

o—giEEGIN )—{i DEGLAHE)—< SECTION )—.

Description

SQL application programs need to retrieve and provide values to and from Adabas SQL Gateway
Embedded SQL during runtime. This is achieved by using host variables which are specified in
embedded SQL statements. During compilation, the nature of the host variables has to be known. To
identify the relevant host variables they must be declared in a special section. This section is delimited by
the BEGIN DECLARE SECTION and END DECLARE SECTION statements. These statements are
always paired and can not be nested. The host variable declarations must be specified between the two
statements and more than one of these sections are permitted. The statement does not result in an
update of the SQLCA.

Limitations

The positioning of the statement must conform to the rules governing the positioning of host variable
declarations with the host applications. At least one host variable should be declared in such a block.

ANSI Specifics

Any host variable referenced within an embedded SQL statement must have been declared with a host
variable declaration section. Structures are not permitted in this context.

Example
The following example shows the start of the host variable declaration section.
BEGIN DECLARE SECTION

char a
END DECLARE SECTION;

127



Adabas SQL Gateway Embedded SQL

CLOSE

Function

The CLOSE statement closes a cursor.

Invocation

Embedded Mode v | Dynamic Mode | Interactive Mode

Syntax
» (CLCISE } - cursor_identifier ( -
“—host_variable_specification |
cursor_identifier A valid cursor identifier which identifies the cursor to be closed.

host_variable_specification | A valid single host variable specification. It must have been
defined in the application program according to the host
language rules.

Description

The CLOSE statement closes a cursor. It releases resources allocated by an OPEN cursor statement.
The value of the host variable must be a valid cursor identifier. A host variable can be used as cursor
identifier only if the cursor is a dynamically declared cursor.

Limitations

The cursor to be closed must have been opened.
ANSI Specifics

All cursors opened within a transaction are automatically closed by a COMMIT or ROLLBACK statement.
The associated DECLARE CURSOR statement must precede the CLOSE statement in the host program.

Adabas SQL Gateway Embedded SQL Specifics

The CLOSE statement does not have to be preceded by the associated DECLARE CURSOR statement.
It may appear anywhere in the host program, even in another compilation unit.

Example

The following example closes cursorl.

CLOSE cursorl;

128



Chapter 7 - SQL Statements

COMMIT

Function

The COMMIT statement terminates a transaction and makes permanent all changes that were made to
the database during the terminated transaction.

Invocation

Embedded Mode v* | Dynamic Mode v” | Interactive Mode v*

Syntax

-\.

' \ I/' )
COMMIT WORK KEE F‘ING)—( ALL )l_<

Description

The COMMIT statement terminates the current transaction and starts a new transaction. All changes to
the database that have been made during the terminated transaction are made permanent. All cursors
that have been opened during the current transaction are closed.

The KEEPING ALL is currently ignored by the Adabas SQL Gateway.

ANSI Specifics

The keyword WORK is mandatory. The keywords KEEPING ALL are not part of the Standard.
Adabas SQL Gateway Embedded SQL Specifics

The keyword KEEPING ALL is an Adabas SQL Gateway Embedded SQL extension.

Example

The following example commits all changes made to the database in the current transaction.

COMMIT WORK;

129



Adabas SQL Gateway Embedded SQL

CONNECT

Function

The CONNECT statement explicitly establishes an SQL session between a user application and Adabas
SQL Gateway Embedded SQL.

Invocation

Embedded Mode v' | Dynamic Mode | Interactive Mode v’

Syntax

CONMECT

CONMECT parameters

host_or_string

CONNECT parameters =

&—— host_or_string J{ AS )— user_name

USER )  user_name J(PASSWORD} password
LZ(CHARAGTEH)—(EET)— character_set l—.

All specifiers can either be character string constants or single host variable identifiers. The host variables
must have been defined in the application program according to the host language rules and their values
must be character strings.

The maximum lengths of these specifiers are as follows:

e Server (255 characters)

e Connection (32 characters)
e User (32 characters)

e Password (32 characters)

Description

The CONNECT statement explicitly establishes an SQL session between the user application and
Adabas SQL Gateway Embedded SQL.

130



Chapter 7 - SQL Statements

The user specified must exist (see CREATE USER statement). If user is not specified, the connection will
be refused. If a password is not specified, blanks will be generated as default password.

If a server is not specified, the default server is used.

Limitations

None.
ANSI Specifics

None
Adabas SQL Gateway Embedded SQL Specifics

none

Examples:
CONNECT TO MYASG user XXX password YYY

131



Adabas SQL Gateway Embedded SQL

DEALLOCATE PREPARE

Function

The DEALLOCATE PREPARE statement deallocates a prepared statement by releasing all associated
resources. After the successful execution of a DEALLOCATE PREPARE statement the relevant prepared
statement no longer exists and can, therefore, not be addressed anymore.

Invocation

Embedded Mode v* | Dynamic Mode | Interactive Mode

Syntax

o——{ DEALLOCATE } PREPARE — statement_identifier ——e

host_variable identifier —

-

statement_identifier A valid identifier used to identify the statement to be deallocated.

host_variable_identifier | A valid single host variable identifier. It must contain the statement identifier.

Description

The effect of a DEALLOCATE PREPARE statement is that the identified statement will be deleted.

The effect of a DEALLOCATE PREPARE statement is also achieved implicitly when an already existing
prepared statement is specified in a PREPARE statement. An implicit DEALLOCATE PREPARE
statement also occurs in either of the following situations:

e a COMMIT or ROLLBACK is executed

e a DISCONNECT is issued to end a session.

Limitations

All cursors must be closed before executing a DEALLOCATE PREPARE statement.
ANSI Specifics

None.
Adabas SQL Gateway Embedded SQL Specifics

This statement may be mixed with any other DML, DDL and/or DCL statements in the same transaction.

Example

The following example deletes the prepared statement identified by statement_identifier.

DEALLOCATE PREPARE statement_identifier;

132



Chapter 7 - SQL Statements

DEALLOCATE SQLCONTEXT
Function

The DEALLOCATE SQLCONTEXT statement instructs the run-time client support libraries to delete all
memory resources relating to an SQL Context.

Invocation

Embedded Mode v' | Dynamic Mode | Interactive Mode

Syntax

D—CUEALLUCATE}(SQLCONTE}(T)—C AS )— host_variable_identifier |— e

host_variable_identifier | A valid single host variable identifier must
resolve to the address of an SQL Context
(an SAGContext structure).

Description

The effect of a DEALLOCATE PREPARE statement is that the all resources associated with the specified
SQL Context will be deleted.

This statement results in a call, at runtime, to the client support libraries provided by the Adabas SQL
Gateway Embedded SQL. No call is made to the Adabas SQL Gateway Embedded SQL itself. The
SAGContext structure itself is not deallocated - only the associated resources that have been created by
the client support libraries in the course of activities related to that SQL Context.

An error will be returned if:
e the SQL Context contains open connections

e the host variable does not resolve to a valid address of a SQL Context
e the SQL Context is currently already in use.

Limitations

All SQL connections must be closed before executing a DEALLOCATE SQLCONTEXT statement.
ANSI Specifics

The DEALLOCATE SQLCONTEXT statement is not part of the Standard.

Adabas SQL Gateway Embedded SQL Specifics

See also the related Adabas SQL Gateway Embedded SQL statement: ALLOCATE SQLCONTEXT.

Example
A SQL context can be deallocated as follows:
exec sql begin declare section;
SAGContext sqlCtx;

exec sql end declare section;
exec sgl allocate sglcontext as :&sqlCtx

133



Adabas SQL Gateway Embedded SQL

< other statements >

exec sql deallocate sqlcontext as :&sqlCtx

134



DECLARE CURSOR

Chapter 7 - SQL Statements

Function

The DECLARE CURSOR statement associates a query expression and hence a resultant table with a
cursor identifier. The statement only defines the contents of the resultant table; it does not establish it.

Invocation

Embedded Mode v/

Dynamic Mode | Interactive Mode

Syntax

i DECLARE }

f M\
-] cursor_identifier - SCROLL L CURSOR

host_wvariable_identifier 1

-

%
_J (GR)

query_expression |- : < ORDER BY clause >\_ -

~—  slatement_identifier ——

—|{ host variable identifier_2

—L< FOR UPDATE clause >l—<

cursor_identifier

A valid identifier of no more than 32 characters, and which has not

previously been used as a cursor identifier within the same compilation unit.

host_variable_identifier_1 | A valid single host variable which is used to contain a unique dynamic

cursor identifier.

guery_expression

The specification of the resultant table associated with this cursor.

statement_identifier

A valid SQL identifier identifying a SELECT statement which has previously

135



Adabas SQL Gateway Embedded SQL

been prepared.

host_variable_identifier_2 | A valid single host variable. The value of the host variable must be the value
returned by the PREPARE statement and thus identify the prepared
statement.

ORDER BY clause The specification of a user-defined ordering of the resultant table. Otherwise
the resultant table is not ordered.

FOR UPDATE clause The explicit indication that this cursor is to be used in conjunction with either
an UPDATE and/or DELETE WHERE CURRENT OF cursor-id statement.

Description

A cursor can be declared either as static using a static DECLARE CURSOR statement or as dynamic
using a dynamic DECLARE CURSOR statement.
The static DECLARE CURSOR statement

A static DECLARE CURSOR statement associates a query expression and the definition of a resultant
table with an SQL identifier, namely the cursor identifier . The DECLARE CURSOR statement is only a
definition. The OPEN statement associated with this cursor establishes the resultant table at execution
time.

Although the characteristics of the derived column list are completely defined, the actual number of rows
returned is unknown until execution time. In other words the format of each row associated with the
cursor is known but the number of rows established upon opening the cursor is not. This is in direct
contrast to the SINGLE ROW SELECT where by definition only one row may be returned. The host
program is, therefore, not in a position to receive all the data established upon opening and must
sequentially execute associated FETCH statements in order to retrieve one row at a time. This is the
classic DECLARE-OPEN-FETCH cycle. The cursor identifier can be thought of as a pointer into the
resultant table identifying the row currently under consideration. In general, executing an associated
FETCH statement advances the pointer by one row.

In addition to the OPEN and FETCH statements, other associated statements are positioned UPDATE,
positioned DELETE, and CLOSE.

The query expression defines the resultant table associated with the cursor. In theory, the expression can
be unlimited in complexity. Certain query expressions are considered to be "updatable,” i.e., the
positioned DELETE or UPDATE statements are valid for this cursor.

Updatable Cursors

For a cursor to be updatable the following rules must be observed:
e The specification of a UNION operator in a query expression is not allowed.
Therefore, the expression must consist of only one query specification.

e Derived columns in the derived column list must be based on base tables not
views. No operators, functions or literals are allowed in the derived column list.

¢ No column may be specified more than once in the derived column list of the
guery specification.

e The specification of DISTINCT in the derived column list is not allowed.

e A grouped or joined query specification is not allowed.

o If a subquery is specified, it may not reference the same table as that one
referenced in the outer query, i.e the table which would be the subject of any
amendment statement.

e If the query specification is derived from a view that view must be updatable.
e An ORDER BY clause is not specified.
e AFOR FETCH ONLY clause is not specified.

136



Chapter 7 - SQL Statements

If the above conditions for a read-only cursor have been met, positioned UPDATE or DELETE statements
will result in compilation errors.
Non-Updatable Cursors

A static cursor can be explicitly declared as being non-updatable by use of the FOR FETCH ONLY
clause. In such a case, the use of positioned UPDATE or DELETE statements associated with the cursor
is not allowed. Furthermore rows will not be locked once they are established regardless of the default
locking specification.

Alternatively, a static cursor can be declared as FOR UPDATE, as long as it is updatable of course. In
such a case, rows will be locked regardless of the default locking specification. In general, this clause
need not be specified. However, if the associated UPDATE or DELETE statement is actually in a
separate compilation unit, as is possible with Adabas SQL Gateway Embedded SQL, then this clause is
required in order to avoid a runtime error.

If neither a FOR FETCH ONLY clause nor a FOR UPDATE clause is specified and there are no
associated UPDATE or DELETE statements within the same compilation unit, then the resulting rows will
or will not be locked according to the system default locking specification.

Similar behavior can be ensured for a dynamic cursor by appending the clause to the dynamic SELECT
statement. A column specification list is optional and indeed has no effect.
The Dynamic DECLARE CURSOR Statement

A dynamic DECLARE CURSOR statement associates a dynamically created and prepared SELECT
statement with a cursor identifier. The prepared SELECT statement can be identified either by a hard-
coded SQL identifier or by a host variable containing the unique statement identification provided by the
relevant PREPARE statement.

The dynamic DECLARE CURSOR statement thus associates this previously prepared SELECT
statement with a cursor identifier . The cursor can be identified in the normal way or by a host variable,
which Adabas SQL Gateway Embedded SQL fills with a unique cursor identifier.

Limitations

The syntax elements host variable identifier 1, host variable identifier 2 and statement identifier are not
valid within a static DECLARE CURSOR statement.

Within a dynamic DECLARE CURSOR statement such host variables must be of data type character-
string.

Any ORDER BY clause, FOR UPDATE clause is part of the prepared SELECT and the use of these
clauses is not valid within a dynamic cursor statement, but only in a static DECLARE CURSOR
statement.

ANSI Specifics

The use of the FOR UPDATE and FOR FETCH ONLY clauses.

The DECLARE CURSOR statement must precede any other associated statement in the source. All
associated statements must be contained within one compilation unit.

Adabas SQL Gateway Embedded SQL Specifics

The physical order of the associated statements within a compilation unit is irrelevant. The OPEN
statement must be present in the same compilation unit as the DECLARE statement although its relative
position is irrelevant. Associated UPDATE, DELETE, FETCH and CLOSE statements need not be in the
same compilation unit. However, such a program design is more error prone as full compilation checks
cannot be performed.

The physical position of any associated PREPARE statement relative to the dynamic DECLARE
CURSOR statement is irrelevant.

137



Adabas SQL Gateway Embedded SQL

The function of a dynamic DECLARE CURSOR statement can also be accomplished by an extended
OPEN statement. This saves one request to Adabas SQL Gateway Embedded SQL, since a dynamic
DECLARE CURSOR statement is an executable statement.

Example

The following example declares a cursor to select all the cruise and start dates for every cruise
that leaves BARBADOS.

DECLARE cursorl CURSOR FOR
SELECT cruise_identifier,start_date FROM cruise
WHERE start_harbor = 'BARBADOS";

To declare a cursor to list all the start harbor's in ASCENDING alphabetical order and each
related cruise id, for each cruise that costs less than 1000 the following syntax applies:

DECLARE cursorl CURSOR FOR
SELECT cruise_identifier,start_harbor FROM cruise
WHERE cruise_price < 1000
ORDER BY 2 ASC;

To ensure that the cursor as declared in the first example can only be used for retrieval the
following syntax applies:

DECLARE cursorl CURSOR FOR
SELECT cruise_identifier,start_date FROM cruise
WHERE start_harbor = 'BARBADOS'
FOR FETCH ONLY;

138



Chapter 7 - SQL Statements

DESCRIBE

Function

The DESCRIBE statement makes information about a prepared statement available to the application
program.

Invocation

Embedded Mode v* | Dynamic Mode | Interactive Mode

Syntax

»——{ DESCRIBE statement_id INTO

-
., f
QUTPUT hast_variable_specification —"'—x\
,f
-
rd "
- J INPUT host_vanable_specification L
statement_identifier A valid identifier denoting the prepared

statement of which the information is to
be retrieved.

host_variable_identifier A valid single host variable identifier. It
must have been defined in the
application program according to the host
language rules. The value of the host
variable must be the value returned by
the PREPARE statement and thus
identifying the prepared statement.

OUTPUT hvu The definition of the SQL descriptor area
used to describe the expected output of
the identified statement.

INPUT hvu The definition of the SQL descriptor area
used to describe the expected input of
the identified statement.

host_variable specification A valid single host variable identifier and
must have been defined in the

139



Adabas SQL Gateway Embedded SQL

application program according to the
host- language-dependent rules. The
value of the host variable must be the
address of an SQL descriptor area
(SQLDA).

Description

The DESCRIBE statement places information about the prepared statement identified by statement
identifier or host variable identifier in one or two SQL descriptor areas.

The keyword OUTPUT is relevant only if the prepared statement is a SELECT statement. In this case, the
SQL descriptor area indicated by host variable identifier 2 is filled with information concerning the
elements in the derived column list of the SELECT statement. For each element in the derived column
list, an element in the SQL descriptor area is filled. The elements in the derived column list are processed
from left to right and the descriptive elements in the SQL descriptor area are filled in the that order.

The keyword INPUT is relevant only if the prepared statement contains host variable markers, i.e., "?". In
this case, the SQL descriptor area indicated by host variable identifier 2 is filled with information
concerning the host variable markers used in the prepared statement. For each host variable marker, an
element in the SQL descriptor area is filled. The host variable markers are processed in the order that
they appear in the prepared statements. The descriptive elements in the SQL descriptor area are filled in
that order.

If the prepared statement is a SELECT statement where host variable markers have been used, the
usage of not only the OUTPUT clause but also the INPUT clause is recommended.
Limitations

The statement indicated by statement identifier or host variable identifier 1 must be a successfully
prepared statement.

If not enough elements have been provided in the SQL descriptor area to cater for the total number of
elements that need to be described, all the elements that can be catered for are described, the rest of the
information is ignored. The actual number of elements required is returned in field SQLN in the SQLDA.
ANSI Specifics

None.
Adabas SQL Gateway Embedded SQL Specifics

This statement may be mixed with any other DML, DDL and/or DCL statements in the same transaction.
Example

DESCRIBE statement_identifier INTO
OUTPUT :sqglda_address ;

140



Chapter 7 - SQL Statements

DISCONNECT

Function

The DISCONNECT statement explicitly terminates an SQL session between a user and the Adabas SQL
Gateway Embedded SQL environment.

Invocation

Embedded Mode v' | Dynamic Mode | Interactive Mode v’

Syntax

DISCONMECT ! ALL L
»—(Gmaeer) A r
k DEFAULT

"x—< connection_identifier

connection_identifier Can either be a character-string
constant or single host variable
identifier. The host variable must
have been defined in the application
program according to the host
language rules and its value must be
a character string. The maximum
length is 32 characters.

Description

The DISCONNECT statement terminates an SQL session between an application program and Adabas
SQL Gateway Embedded SQL. The DISCONNECT statement performs an implicit ROLLBACK.

DISCONNECT/DISCONNECT CURRENT Terminate current SQL
session. The previous syntax
of the DISCONNECT
statement is still supported
and is represented as the
DISCONNECT CURRENT
statement.

DISCONNECT ALL Terminates all SQL sessions.
A DISCONNECT ALL
statement is performed

141



Adabas SQL Gateway Embedded SQL

automatically by the exit
handler of Adabas SQL
Gateway Embedded SQL
when terminating an
application.

DISCONNECT DEFAULT Terminates the SQL session
with the default Adabas SQL
Gateway Embedded SQL.

DISCONNECT connection specifier Terminates the SQL session
with the server specified by
the connection identifier.

Limitations

None.

ANSI Specifics

None.

Adabas SQL Gateway Embedded SQL Specifics

The DISCONNECT statement is an Adabas SQL Gateway Embedded SQL extension.

The previous syntax of the DISCONNECT statement is still supported and is equivalent to Version's 1.3
(or higher)DISCONNECT CURRENT.

Example

The following example disconnects from the session identified by the connection specifier
MYSESSION:

DISCONNECT :MYSESSION,;

142



Chapter 7 - SQL Statements

END DECLARE SECTION

Function

This statement is the end delimiter for a host variable declaration section.

Invocation

Embedded Mode v* | Dynamic Mode | Interactive Mode

Syntax

s—— END DECMRE)—(SECTIGN)—-
h

Description

This statement ends a host variable declaration section. Please refer to the BEGIN DECLARE SECTION
statement earlier in this section for more details.

Limitations

Please refer to the BEGIN DECLARE SECTION statement earlier in this section for more details.

ANSI Specifics
Please refer to the BEGIN DECLARE SECTION statement earlier in this section for more details.

Adabas SQL Gateway Embedded SQL Specifics

Please refer to the BEGIN DECLARE SECTION statement earlier in this section for more details.

Example

BEGIN DECLARE SECTION
char a
END DECLARE SECTION;

143



Adabas SQL Gateway Embedded SQL

EXECUTE

Function

The EXECUTE statement executes a prepared statement.

Invocation

Embedded Mode v* | Dynamic Mode | Interactive Mode

Syntax

o BxEouTE ) — [ satomant dorite JJ L.

LY

— hast_variable_identifier +—

statement_identifier A valid identifier denoting the name of the prepared
statement which is to be executed.

host_variable_identifier A valid single host variable identifier. It must have been
defined in the application program according to the
host language rules. The value of the host variable
must be the value returned by the PREPARE
statement and thus identifying the prepared statement.

USING clause Defines an SQL descriptor area used to provide
dynamic input variables if required by the statement to
be executed.

Description

The EXECUTE statement executes the prepared statement identified by a statement identifier or host
variable identifier. If the prepared statement contains host variable markers, then values must be provided
to satisfy these. In this case, a USING clause is required.

Limitations

The statement indicated by statement identifier, host variable identifier must be a successfully prepared
statement.

A previously prepared SELECT statement cannot be submitted to the EXECUTE statement.
ANSI Specifics

None.

Adabas SQL Gateway Embedded SQL Specifics

A host variable identifier can be used to identify the prepared statement.
This statement may be mixed with any other DML, DDL and/or DCL statements in the same transaction.

Example

The following example executes a prepared statement.

144



Chapter 7 - SQL Statements

EXECUTE statement_identifier;
The following example executes a prepared statement that requires 3 values.
EXECUTE statement_identifier USING :hv1, :hv2, :hv3;

The following example executes a prepared statement where the input information is stored in the
SQLDA.

EXECUTE statement_identifier USING DESCRIPTOR
sinput_sqlda;

145



Adabas SQL Gateway Embedded SQL

EXECUTE IMMEDIATE

Function

The EXECUTE IMMEDIATE statement prepares and executes an SQL statement for immediate
execution. After execution, the prepared statement is deleted.

Invocation

Embedded Mode v/

Dynamic Mode | Interactive Mode

Syntax

{EKEGUTE 1M MEDIATE> -1 host_variable identifier T

A

—— character_string_constant

host_variable_identifier A valid single host variable identifier. It must

have been defined in the application
program according to the host language
rules. The data type of the host variable
must be a character string.

character_string_constant | A valid character-string constant.

EXECUTE IMMEDIATE | See Description below.

Description

The EXECUTE IMMEDIATE statement performs the following actions:

Limitations

COMPILATION: The SQL statement in a character-string representation is
compiled into a prepared SQL statement. If an error is encountered by the SQL
compiler which prevents the SQL statement being compiled successfully, an error
is passed back to the application program in the SQLCODE field of the SQLCA. In
this case, no prepared statement is created and the execution phase is not
entered.

EXECUTION: The prepared SQL statement is executed. If an error is
encountered during the execution of the prepared statement, the error is passed
back to the application program in the SQLCODE field of the SQLCA.

DELETION: The prepared SQL statement is deleted. The prepared statement is
deleted after execution. This means, that even if the exact same statement will
have to be executed twice with two separate EXECUTE IMMEDIATE statements
within the same transaction, it will have to be compiled twice.

The character-string must contain one of the following statements:
COMMIT, CREATE, DELETE, DROP, INSERT, ROLLBACK, or UPDATE.
Host variable markers or references are not permitted in the statement.

146



Chapter 7 - SQL Statements

ANSI Specifics

None
Adabas SQL Gateway Embedded SQL Specifics

This statement may be mixed with any other DML, DDL and/or DCL statements in the same transaction.

Example

EXECUTE IMMEDIATE 'DELETE FROM cruise' ;

147



Adabas SQL Gateway Embedded SQL

GET DIAGNOSTICS

Function

The GET DIAGNOSTICS statements are used to get and handle errors and warnings at SQL runtime.
There are three GET DIAGNOSTICS statements:

GET DIAGNOSTICS NUMBER
GET DIAGNOSTICS EXCEPTION MESSAGE_TEXT
GET DIAGNOSTICS ROW_COUNT

Invocation

Embedded Mode v' | Dynamic Mode | Interactive Mode

Syntax

- GI:_I'_[' (DIAGNGSTIGE }—{ host_variable identifier | { = } - -

L GI:_I'} kDIAGNDSTICE } -{ host_variable_identifier J
L hosl_variable_identifier |— @ ( MESSAGE_TEXT } -,

i

|
| host_variable_identifiar AB;G'IESSSAGE_LENGTPD—.
GET DIAGNOSTICS host_variable_identifier a ROW_COUNT

Description

The GET DIAGNOSTICS statements are used in combination with the SQLCODE variable to handle
runtime SQL errors or warnings. The host variable in the GET DIAGNOSTICS NUMBER statement is of
type integer and indicates how many errors or warnings are present for the executed SQL statement. The
GET DIAGNOSTICS EXCEPTION MESSAGE TEXT statement has 3 host variables, a character string
which will contain the error or warning text message, an integer containing the length of the host variable
receiving the error or warning text message and an integer counter containing the message number to
be retrieved.

148



Chapter 7 - SQL Statements

GET DIAGNOSTICS statements should be used if the SQLCODE is not equal 0 and has one of the
following values:

+100 indicating that no data were found.

< 0 indicating that a run-time SQL error occurred, or

> 0 indicating that SQL warnings have occurred.

The GET DIAGNOSTICS NUMBER statement should be used first to determine how many errors or
warnings were received. This number can then be used as the step number in an application loop in
which the GET DIAGNOSTICS MESSAGE TEXT statement is used to get the error or warning message
text.

The GET DIAGNOSTICS ROW_COUNT statement may be used immediately after an INSERT,
UPDATE, DELETE, SELECT INTO or FETCH statement to determine the number of rows affected by the
preceding statement. The host variable to receive the row count should be of type integer.

ANSI Specifics

None.
Adabas SQL Gateway Embedded SQL Specifics

None.
Example

EXEC SQL BEGIN DECLARE SECTION;
int conditionCount;
int errNumber = 0;
int errLen =512;
char errBuf [512];
EXEC SQL END DECLARE SECTION,;
EXEC SQL GET DIAGNOSTICS :conditionCount = NUMBER;
for (errNumber = 1; errNumber <= conditionCount; errNumber++)
{
memset (errBuf, \0', sizeof(errBuf));
EXEC SQL GET DIAGNOSTICS EXCEPTION
:errNumber
:errBuf = MESSAGE_TEXT,
:errLen = MESSAGE_LENGTH,;
printf ("%s\n", errBuf);

EXEC SQL BEGIN DECLARE SECTION;

int rowCount;

EXEC SQL END DECLARE SECTION;

EXEC SQL GET DIAGNOSTICS :rowCount = ROW_COUNT;

149



Adabas SQL Gateway Embedded SQL

FETCH

Function

The FETCH statement positions the cursor on a row within the resultant table and makes the values of
that row available to the application program.

Invocation

Embedded Mode v* | Dynamic Mode | Interactive Mode

Syntax

»——FETCH cursor_identifier f—— \

“— host_variable_identifisr —

s

( INTO host_variable_specification —‘—,L.
‘ |
—@——
— USING clause !

cursor_identifier Identifies the cursor to be used in the FETCH operation.

host_variable_identifier A valid single host variable identifier. It must have been
defined in the application program according to the host
language rules.

The value of the host variable must be a valid cursor
identifier. A host variable can be used as cursor identifier
only if the cursor is a dynamically declared cursor.

host_variable_specification | A valid host variable specification. It must reference a
structure and must have been defined in the application
program according to the host language rules.

USING clause Defines an SQL descriptor area used to receive data from
the associated dynamic cursor.

Description

150



Chapter 7 - SQL Statements

The FETCH statement performs two functions: it moves the cursor in the resultant table from top to
bottom, one row at a time, and makes the relevant values of a row available to the application program
according to the specification of the INTO clause or the USING clause. The mechanism used when the
USING clause has been specified in USING Clause .

The FETCH statement changes the position of the cursor as follows:
e If the cursor is positioned before the first row of the resultant table (as would be
the case if the cursor had just been opened), it is moved to the first row.

e If the cursor is positioned on a row of the resultant table, it is moved to the next
one.

e If the cursor is positioned on the last row of an resultant table, it is moved past the
last row and the SQLCODE field in the SQLCA is set to +100.

e If the row on which the cursor is positioned is deleted, the cursor is, then
positioned in front of the next row in the table.

¢ A host variable specification which references a host variable structure is
equivalent to individual host variable specifications which reference all the
elements of a structure singularly.

e Each host variable corresponds to a resultant column of the resultant table of the

cursor in question, where the first host variable is passed with the first column and
SO0 on.

e Each value of a resultant column is assigned to the corresponding host variable .
The assignment operation follows the normal conversion rules as described in
Expressions in the Adabas SQL Gateway User Guide.

Limitations

e The cursor must have been prepared and opened prior to the execution of the
FETCH statement.

e The data type of a host variable must be compatible with the data type of its
corresponding resultant column. If the data type is not compatible, an error
occurs. The value of the unassignedhost variable is unpredictable.

o If the number of resultant columns is smaller than the number of host variables, as
many host variables as possible are assigned the values of their corresponding
resultant columns. The remaining host variables are left untouched.

o If the number of resultant columns is greater than the number of host variables ,
an error message (warning) is generated.

¢ A USING clause may only be used in association with a dynamic cursor.
ANSI Specifics

An INTO clause is mandatory, the USING clause must not be used. Only single host variable
specifications are permitted.

Adabas SQL Gateway Embedded SQL Specifics

The OPEN statement and the FETCH statement can be in different compilation units (see also DECLARE
CURSOR).

Example
The following example fetches data from a cursor and places the data into three host variables.
FETCH cursor_identifier

INTO :host varl,
:host_var2,

151



Adabas SQL Gateway Embedded SQL

:host_var3;

152



Chapter 7 - SQL Statements

Host Variable Specification

Host variables serve as a data exchange medium between Adabas SQL Gateway Embedded SQL and
the application program written in a host language. When used in an SQL statement, a host variable
specification has one of the following purposes:

o to identify a variable in the host language program which is to receive a value(s) from
Adabas SQL Gateway Embedded SQL.
. to identify a variable in the host language program which is to pass a value(s) to Adabas

SQL Gateway Embedded SQL.
A host variable is a single variable or structure declared in the host program.

A host variable identifier is used to identify a single host variable or structure from within an SQL
statement.

A host variable specification consists of a host variable identifier and an associated optional INDICATOR
variable and defines either a single variable, a structure, or an element in a structure.

This section contains the following topics:

o Single Variables
. INDICATOR Variables
. Host Variable Markers
. Host Structures

Single Variables

The identified single host variable may actually be a single element within a host variable structure. Such
a reference is not permitted in ANSI compatibility mode.

A single host variable is identified by a host variable identifier which has the following syntax:

- -,
D—O— host_varable_identifier_1 . host_variable_identifier_2 —L.

host variable identifier | Identifies a single variable which is assigned any value but the NULL
1 value.
host variable identifier | Identifies an INDICATOR variable, see INDICATOR Variables below.
2

Example:

Select the price of the cruise with a cruise ID of 5064 into a host variable.

SELECT cruise_price
INTO :host_variablel
FROM cruise
WHERE cruise_id=5064;

INDICATOR Variables

An INDICATOR variable can serve as one of two purposes:
. Signifies the presence of a NULL value in a host variable assignment. If the NULL value
is to be assigned to a target host variable specification then an accompanying INDICATOR

153



Adabas SQL Gateway Embedded SQL

variable must be present and is assigned a negative value to signify the NULL value. If the NULL
value is to be assigned and the INDICATOR variable is missing, then a runtime error will occur.

The INDICATOR variable must be of a numeric data type with the exception of double precision, real and
floating point data types. It must be of the appropriate data type for the host language.

Example:

Select the cancellation date of Contract 2025 into a host variable. (The column 'date_cancellation
could contain NULL values)

SELECT date_cancellation
INTO :host_variablel INDICATOR :host_variable2
FROM contract

WHERE contract_id=2025 ;
¢ Signifies that truncation has occurred in a host variable assignment. If truncation
occurred during the assignment of a character string to a host variable, then the
INDICATOR variable will show the total number of characters in the originating
source prior to truncation.

SUMMARY:

Indicator Value Meaning Host Variable Name

<0 indicates NULL value undefined

=0 indicates non-NULL value | actual value

>0 number of characters actual value in originating source

Host Variable Markers

A dynamic SQL statement can not contain host variables directly. It is, however, possible to provide a
dynamic SQL statement after it has been prepared with value parameters at execution time. The dynamic
statement must then contain a host variable marker for every host variable specification. A host variable
marker is represented by a question mark (?) in the statement's source text. For details, see the section

on Dynamic SQL.

Host Structures

A host structure is a C structure or a COBOL group that is referenced in an SQL statement. The exact
rules to which a host structure must conform are described in the host language sections of the
Programming Guide.

-

-
-—G host_variable_identifier_1 . host_variable_identifier_2 —Lo

host variable Identifies a host structure. It can only be specified in the INTO
identifier 1 clause of a single row SELECT or FETCH statement. A
reference to a host structure is equivalent to a reference to each
element in that structure.

Each element of the host structure identified by host variable
identifier 1 is a host variable which is assigned a value, if that
value is not the NULL value.

host variable An INDICATOR structure. An INDICATOR structure is a host

154



Chapter 7 - SQL Statements

identifier 2 structure consisting of elements each identifying an
INDICATOR variable.

Each element of the INDICATOR structure identified by host
variable identifier 2 identifies an INDICATOR variable, see also
INDICATOR Variables in this section.

The i th element in the host structure indicated by host variable identifier 2 is the INDICATOR
variable for the i th element in the host structure indicated by host variable identifier 1.

Note: Pointer expressions will be supported in the next release version.

Assume the number of elements in the host structure identified by host variable identifier 1 is m
and the number of elements in the host structure identified by host variable identifier 2 is n:
o If m > n, then the last m-n elements in the host structure identified by host variable
identifier 1 do not have an INDICATOR variable.

e If m < n, then the last n-m elements in the host structure identified by host variable
identifier 2 are ignored.

Examples:

If two host structures have been declared, one for actual returned values and one for indicator values,
and the variables 'structl' and ‘indicatorl’ identify these structures respectively, then the following syntax
shows how values from a derived column list are entered into host variables (assuming that the host
structures match the derived columns).

SELECT cruise_identifier,start_date,cruise_price
INTO :structl INDICATOR :indicatorl
FROM cruise;

The following example inserts a resulting value from a query into a particular 'Element’ of a defined
structure. 'structl' is a structure identifier that contains an element identified by 'price_element' and
'indicatorl’ is a structure identifier that contains the element identified by 'price_ind'.

SELECT cruise_price
INTO :structl.price_element INDICATOR :indicatorl.price_ind
FROM cruise;

155



Adabas SQL Gateway Embedded SQL

INCLUDE

Function
This statement includes the data description for the SQLCA or SQLDA.
Syntax

r/
l\ L
—{ soLDa }-—-f—( AS } identifier  p——o

AS identifier A host language specific identifier
used to explicitly name the pointer
variable to the SQLDA structure.

Description

The application programs must be able to determine if an SQL statement has been successfully
completed or if it failed. The respective control values are available in the host variable structure called
SQLCA. Although, such a structure may be defined and declared explicitly, it is much easier to let Adabas
SQL Gateway Embedded SQL generate a definition and a declaration into the host program's source
code. Such a generation will occur whenever the SQL statement INCLUDE SQLCA is specified. The
position of this statement must conform to the rules of the declaration of host variables and the resulting
structure will be represented by the identifier SQLCA. The SQLCA is not updated as a result of an
INCLUDE statement.

Note: An explicit identifier can not be specified for an SQLCA structure.

Certain embedded dynamic SQL statements require the use of an SQLDA. Again, such a structure could
be defined explicitly, but it is much easier to let Adabas SQL Gateway Embedded SQL generate a
definition into the host program's source code. Only an SQLDA structure definition is generated along
with a declaration of a pointer to such a structure. The user must actually provide an appropriate
structure. The generated pointer will, by default, be identified by SQLDA unless the AS clause is supplied
in which case the given identifier is used. The use of such an identifier within an appropriate SQL
statement identifies this instance of the SQLDA pointer variable.

Limitations

This statement must be placed outside of a BEGIN DECLARE SECTION. It must also be positioned so
that it obeys the rules regarding the declaration of host variables. In accordance with the host language
rules governing the declaration of variables and their scope, any number of INCLUDE statements may be
specified.

ANSI Specifics

The INCLUDE statement is not part of the Standard.

Adabas SQL Gateway Embedded SQL Specifics

The AS clause is an Adabas SQL Gateway Embedded SQL extension.

Examples

156



Chapter 7 - SQL Statements

INCLUDE SQLCA;
INCLUDE SQLDA AS sql_pointer;

157



Adabas SQL Gateway Embedded SQL

OPEN

Function

An OPEN statement establishes the contents of a cursor.

Invocation

Embedded Mode v* | Dynamic Mode | Interactive Mode

Syntax
m cursor_identifier
*“—host_variable_identifier 1}—
_ y
I.r’
, \J \
CURSOR statement_identifier { A USING clause
! host_variable_identifier 2 }—

cursor_identifier Identifies the cursor to be used.

host_variable_identifier_1 | A valid single host variable identifier. It must have been defined

in the application program according to the host language rules.
The value of the host variable must be a valid cursor identifier. A
host variable can be used as cursor identifier only if the cursor is
a dynamically declared cursor.

statement_identifier A valid identifier denoting the name of the prepared statement.

host_variable_identifier_2 | A valid single host variable identifier. It must have been defined
in the application program according to the host language rules.
The value of the host variable must be the value returned by the
PREPARE statement and thus identifies the prepared statement.

USING clause Defines an SQL descriptor area used to supply data to the
associated dynamic cursor.

Description

The OPEN statement causes the contents of the associated resultant table to be established. The cursor
is initially positioned before to the first row. The cursor can be identified by use of a host variable only if
the cursor is declared dynamically. Likewise, the USING clause can be used to provide input values only
if the cursor is a dynamically declared cursor. Alternatively, values can be provided by the direct use of
host variables.

Limitations

The cursor to be opened must have been declared and must not be open. If the statement does not
contain a CURSOR FOR clause the cursor must have been declared before.

The statement must be in the same compilation unit as the associated DECLARE CURSOR statement.

158



ANSI Specifics

Chapter 7 - SQL Statements

All cursors opened within a transaction are automatically closed by a COMMIT or
ROLLBACK statement.

The USING clause must not be used.

The associated DECLARE CURSOR statement must physically precede the
OPEN statement in the host program.

Adabas SQL Gateway Embedded SQL Specifics

Example

The CLOSE statement is the only statement apart from the DISCONNECT
statement that closes a cursor.

The cursor identifier can be given as a host variable if the cursor has been
dynamically prepared.

The OPEN statement may appear anywhere in relation to the associated cursor
statement in the host language.

DML statements must not be mixed with DDL/DCL statements in the same
transaction.

The following example opens a cursor.

OPEN cursorl ;

The following example opens a dynamic cursor and provides values within host variables.

OPEN cursorl USING :hv1, :hv2, :hv3 ;

159



Adabas SQL Gateway Embedded SQL

PREPARE

Function

The PREPARE statement prepares an SQL statement for later execution.

Invocation

Embedded Mode v/

Dynamic Mode | Interactive Mode

Syntax

P —

. |
PREPARE staterment_id —{ INTO [ QUTPUT host_variable_specification
+—Grerme)[omemancs}— (7o) et st -

vy

-
r \
‘-LQNPU'D—{ host_variable specification ;Q:HCIM)— host_of sting —w

statement_identifier

A single identifier used to identify the statement to be prepared.

host_variable_identifier_ 1 | A single host variable identifier of type character string. It receives

the unique value which is either generated by Adabas SQL
Gateway Embedded SQL or is defined in the application program.
This value identifies the statement to be prepared.

OUTPUT hvu The definition of the SQL descriptor area used to describe the
expected output of the identified statement.
INPUT hvu The definition of the SQL descriptor area used to describe the

expected input of the identified statement.

character_string_constant | Explicitly contains the source statement to be prepared.

host_variable_identifier 2 | A single host variable identifier which contains the character-string

representation of the statement to be prepared.

host_variable specification | A single host variable identifier. It must have been defined in the

application program according to the host language rules. The value
of the host variable must be the address of an SQL descriptor area
(SQLDA).

Description

The PREPARE statement performs the following actions:

160

COMPILATION: An SQL statement in a character-string representation is
compiled into an executable SQL statement which is called the prepared
statement. If an error is encountered by Adabas SQL Gateway Embedded SQL
which prevents the SQL statement to be compiled successfully, an error is passed
back to the application program in the SQLCODE field of the SQLCA. In this case
no prepared statement is created.



Chapter 7 - SQL Statements

o |IDENTIFICATION: The prepared statement is kept for later execution. It is
identified by the statement identifier provided by the application program or is
generated by Adabas SQL Gateway Embedded SQL and passed back into host
variable 1. If it is intended that the statement identifier is to be generated by
Adabas SQL Gateway Embedded SQL it is necessary to initialize the variable with
blanks or an empty string prior to execution. Otherwise, Adabas SQL Gateway
Embedded SQL will use the actual (non-blank) value of the variable. This
identification will be used to refer to the prepared statement in a DESCRIBE,
DECLARE CURSOR or EXECUTE statement.

e DEALLOCATE PREPARE may be used to explicitly delete a prepared statement.

e DESCRIPTION: The nature of the prepared statement can be determined and
conveyed to the user by supplying appropriate SQL descriptor area variables. The
functionality of a DESCRIBE statement can be incorporated into the PREPARE
statement. For a full description of this functionality refer to the relevant passages
of the section DESCRIBE Statement in this section.

Limitations

The character-string must contain one of the following statements:
COMMIT, CREATE, DELETE, DROP, INSERT, ROLLBACK, SELECT, or UPDATE.

The statement string cannot contain host variables, instead it may contain host variable markers . A host
variable marker is represented by a question mark (?). Host variable markers mark those places where
values are to be inserted at the time the prepared statement is executed. For a description of how host
variable markers are replaced by real values, see EXECUTE. In general, a host variable marker can be
used in an SQL statement wherever a host variable can normally appear with the following restriction:

Note: At compilation time, it must be possible to determine the data type resulting from the expression(s)
contained in this statement.

ANSI Specifics

None.
Adabas SQL Gateway Embedded SQL Specifics

This statement may be mixed with any other DML, DDL and/or DCL statements in the same transaction.

Example
The following example prepares the SQL statement with Id 'identifierl' to remove all rows from
the table 'cruise'.

PREPARE identifierl FROM
'delete from cruise’;

The following example prepares an SQL statement to delete a single row from the table cruise,
where the row to be deleted is identified by it's cruise identifier given in a host variable. Note the
use of the host variable marker "?".

PREPARE statement_identifier FROM
'delete from cruise where cruise_identifier = ?';

The following example prepares a dynamic SELECT statement where the format of the derived
columns is not known until runtime, and hence, the SQLDA needs to be used.

PREPARE statement_identifier INTO OUTPUT :sqlda
FROM :dyn_select_identifier ;

161



Adabas SQL Gateway Embedded SQL

ROLLBACK

Function

The ROLLBACK statement terminates a transaction and removes all changes to the database that were
made during the current transaction.

Invocation

Embedded Mode v* | Dynamic Mode v” | Interactive Mode v*

Syntax

ROLLBACK \

Description

The ROLLBACK statement terminates the current transaction and starts a new transaction. All changes
to the database that have been made during the transaction are not applied and the database is as it
existed at the time the transaction was started. All cursors that have been opened during the current
transaction are closed.

The KEEPING ALL is currently ignored by the Adabas SQL Gateway.

Limitations

None.
ANSI Specifics

The keyword WORK is mandatory. The keywords KEEPING ALL are not supported.
Adabas SQL Gateway Embedded SQL Specifics

The keyword WORK is optional.
Example

ROLLBACK WORK ;

162



Chapter 7 - SQL Statements

SELECT (SINGLE ROW)

Function

The single row SELECT statement obtains a single row of data from the database according to the
specified conditions.

Invocation

Embedded Mode v' | Dynamic Mode | Interactive Mode

Syntax

b
I
SELECT - derived column p——
!

-
4 ———hosl_variable_specification —"\.
L _,-"ll
™)
\. : \
— lable_specification correlation_identifiar 3

- J

A

WHER@— search_condition Lc

Elements which are also part of the query specification are described in detail in Query Specification in
the Adabas SQL Gateway User Guide.

derived_column The corresponding columns in the final resultant table derived by
the query. Derived columns are separated by commas and all of

163



Adabas SQL Gateway Embedded SQL

them together are referred to as the derived column list.

* An abbreviated form of listing all derived columns of all tables in
the table name list. In ANSI compatibility mode, it is not permitted
to qualify the asterisk by using the correlation identifier or the table
specification.

host_variable_specification | A single host variable. Only relevant for (INTO clause) single row
SELECT. The host variables are intended to receive the returned
data as specified by the SELECT statement's derived column list.

table_specification A table specification as described in Table Specification in the
Adabas SQL Gateway User Guide.
correlation_identifier Alternative name for a particular table for use within the query and

subqueries which are in scope.

WHERE clause Search condition which candidate rows must fulfill in order to
become part of the resultant table.

Description

The single row SELECT statement is used to obtain a single row of data from the database.

The single row SELECT statement can only be embedded and can only return one or no rows. A negative
error code is returned in the sglcode field of the SQLCA, if the resultant table actually contains more than
one row. This is because the specified host variables in the INTO clause can only receive one row of
data. A host variable specification which references a host variable structure is equivalent to individual
host variable specifications which reference all the elements of a structure singularly.

The single row SELECT statement is the only invocation of a SELECT statement where an INTO clause
is allowed and required. The only other way to specify an INTO clause is as a part of the FETCH
statement. For details, refer to the FETCH Statement.

Limitations

A maximum of one row may be returned. The use of a valid INTO clause is required.
ANSI Specifics

None.
Adabas SQL Gateway Embedded SQL Specifics

DML statements must not be mixed with DDL/DCL statements in the same transaction.

Example

The following example determines how many persons the yacht 6230 can accommodate.
SELECT bunks
INTO :bunks

FROM yacht
WHERE yacht_identifier = 6230;

164



Chapter 7 - SQL Statements

SET

Function

The SET statement is used to set the following client-specific parameters.
e Switch AUTOCOMMIT on/off

e Set a default catalog for an Adabas SQL Gateway Embedded SQL session
e Set a default schema for an Adabas SQL Gateway Embedded SQL session

Invocation

Embedded Mode v~ | Dynamic Mode v | Interactive Mode v

Syntax

!
-CSET)— ldentifier L (2 ," - constant —e

Description

The SET statement can be used to set a client-specific parameter. The parameter to be set is provided as
identifer and the value as constant.

The parameters which may be set are described in the table below.

Parameter Usage ‘ Further Information
Autocommit | Set AUTOCOMMIT on/off. | See SET AUTOCOMMIT.

Catalog Set a default catalog. See SET CATALOG in the SQL Gateway User Guide.

Schema Set a default schema. See SET SCHEMA in the SQL Gateway User Guide.

165



Adabas SQL Gateway Embedded SQL

SET AUTOCOMMIT

Function

The SET COMMIT statement is used to switch on/off AUTOCOMMIT.

Invocation

Embedded Mode v’ | Dynamic Mode | Interactive Mode v

Syntax
. SET AUTOCOMMIT ~—{ ON }——u
. r
OFF
Description

With Adabas SQL Gateway, a database transaction, which can consist of one more SQL statements for
data manipulation, remains open until an SQL statement for schema definition and manipulation or a
COMMIT statement is issued. If a ROLLBACK statement is executed or if the SQL connection is
terminated and the transaction is not explicitly terminated, which implies an implicit ROLLBACK
statement, all changes to the database which were performed during the transaction will not be applied to
the database.
e The SET AUTOCOMMIT ON statement can be used to cause Adabas SQL
Gateway to issue an internal COMMIT after every SQL statement, thereby
effectively closing the transaction after each SQL statement.

e The statement SET AUTOCOMMIT OFF can be used to switch off
AUTOCOMMIT. The default behavior is as if an implicit SET AUTOCOMMIT OFF
has been issued.

e The default setting is off.
ANSI Specifics

The SET AUTOCOMMIT statement is not part of the ANSI standard.
Adabas SQL Gateway Embedded SQL Specifics

None.
Example

set autocommit on ;

166



Chapter 7 - SQL Statements

SET CONNECTION

Function

The SET CONNECTION statement is used to specify which database connection to use for subsequent
SQL statements.

Invocation

Embedded Mode v* | Dynamic Mode | Interactive Mode v~

Syntax

-—(\SETJ—(CGNNEETIDN)— connection_name |—e

Description

SET CONNECTION connection_name
connection_name

The value for connection_name must match the connection name of an
existing database connection specified in a previous CONNECT TO statement.

The connection_name can be either a literal or a host variable.

ANSI Specifics
The SET CONNECTION statement is not part of the ANSI standard.
Adabas SQL Gateway Embedded SQL Specifics

None.

Example

EXEC SQL CONNECT TO EMPLOYEES AS S1 USER U1,

EXEC SQL CONNECT TO VEHICLES AS S2 USER U1,

EXEC SQL SET CONNECTION 'S1';

EXEC SQL SELECT PERSONNEL_ID FROM EMPLOYEES INTO :PERSONNEL_ID;
EXEC SQL SET CONNECTION 'S2';

EXEC SQL SELECT MAKE FROM VEHICLES INTO :MAKE;

EXEC SQL DISCONNECT 'S1";

EXEC SQL DISCONNECT 'S2',

167



Adabas SQL Gateway Embedded SQL

USING Clause

Function:

The USING clause is used to provide references to host variables for use in either a dynamic FETCH,
OPEN or EXECUTE statement.

Invocation:

The USING clause is part of dynamic EXECUTE, FETCH or OPEN statements.

Syntax:

USING ‘ host_variable_specification —
"‘*—(DESCRIPTDR }—{ host variable specification |—

host_variable specification | A valid host variable specification and must have been defined
in an application program. The host variable specification may
reference a structure.

host_variable_identifier A valid single host variable identifier and which must be the
address of an SQL descriptor area (SQLDA).

Description:

The USING clause defines a set of host variables for use either as value sources in a dynamic OPEN or
EXECUTE statement or as target receptors in a dynamic FETCH statement.

A host variable specification, which references a host variable structure is equivalent to individual host
variable specifications which reference all the elements of the structure singularly.

For a dynamic OPEN or EXECUTE statement, if the associated prepared statement contained host
variable markers, i.e., “?' then these markers must be satisfied by use of a USING clause. Prior to use the
referenced host variables must have been assigned appropriate values. Each referenced host variable
provides a value for its corresponding host variable marker. The user must make sure that the host
variables are supplied with the correct values and formats in the correct order.

For a dynamic FETCH statement, the host variables provided are intended to receive the results of the
statement.

Host variables within the USING clause can be provided in two ways:
o by explicitly specifying a list of host variables. The number, type and order of the
required host variables must be known at compilation time of the host program.

e by providing an SQL descriptor area. This facility enables a more dynamic
approach to be adopted. The DESCRIBE statement provides the necessary
information in the SQLDA for each host variable marker or derived column. The
user must then provide a pointer in each field description which references an
appropriate host variable. The number, type and order of the host variables can
be completely unknown at compilation time of the host program. An SQL

168



Chapter 7 - SQL Statements

descriptor area is identified by means of a host variable which contains the
address of the SQLDA.

A host variable specification which references a host variable structure is equivalent to individual host
variable specifications which reference all the elements of a structure singularly.

Limitations:

None.
ANSI Specifics:

The USING clause is not part of the Standard.
Adabas SQL Gateway Embedded SQL Specifics:
This is an Adabas SQL Gateway Embedded SQL extension.

Example:

The following example provides values for an an EXECUTE statement which requires the input of
three values, for example, 'SELECT * FROM contract WHERE price IN ( ?, ?, ? ). The USING
clause provides these values.

USING :hvl, :hv2, :hv3;

169



Adabas SQL Gateway Embedded SQL

WHENEVER

Function

This statement specifies the action to be performed when an SQL statement results in an exception
condition.

Syntax

»+—{ WHEMNEVER TiSQLEF{F{DF{} — { CONTINUE
—{ MOT FOUND

—{ SQLWARNING

label

"‘"—(GALL)— procedure

label Host language label.

procedure | Host language procedure, routine or function identifier.

Description

The variables in the SQLCA are updated during program execution and should be verified by the
application program. This may be done in two different ways:
e by explicitly testing the contents of the appropriate variable in the SQLCA, usually
the SQLCODE field.
e by specifying the SQL statement WHENEVER.
Note: If no testing takes place, the default action for errors is to continue with the application program.

An application program may contain any number of WHENEVER statements. The WHENEVER
statement may appear anywhere after the declaration of an SQLCA. WHENEVER statements are pre-
processed strictly in the order of their physical appearance in the source code, regardless of the
execution order or conditional execution that the application program might imply. They will also only refer
to the SQLCA which is currently in scope.

e Should two or more WHENEVER statements contradict each other, then the
statement which was physically specified last is relevant for a particular SQL
statement.

e The SQLCA is not updated as a result of a WHENEVER statement.

The condition is determined to be true according to the value of the variable SQLCODE and may be one
of the following:
e NOT FOUND if the value is +100, indicating that no rows were found.

e SQLERROR if the value is negative, indicating an error.
¢ SQLWARNING if the value is positive other than +100, indicating a warning.
The action taken, should the condition be true, may be one of the following:

170



Limitations

Chapter 7 - SQL Statements

CONTINUE ignores the exception condition and continues with the next
executable statement.

GOTO label continues the application program's logic with the statement identified
by the label. The label must conform to the rules of the host language. The label
may be prefixed with or without a *:' . GOTO may also be specified as GO TO.

CALL procedure continues the application program's logic with the procedure
identified by procedure. The procedure name must conform to the rules of host
language. The procedure may not specify any host language parameters.

Generally, a single WHENEVER statement will be valid for all SQL statements in
the program. If an error occurs, control can be passed to an error handling
routine. If SQL statements are to be executed from within this error handling
routine, they too are subject to the conditions of the relevant WHENEVER
statement. This means, if an error occurs during execution of the called error
handling routine, an attempt will be made to call this same routine again, because
the initial WHENEVER statement is still valid. This situation can be avoided by
having a second WHENEVER statement in the error handling routine which
specifies the option CONTINUE. It is recommended to test the SQLCA explicitly
within the error routine.

For the ANSI 74 standard (Embedded SQL setting COBOL Il = off) every SQL statement is treated as if
the optional period was coded. That means the generated code will always be terminated with a period. It
is not possible to code more than one SQL statement in an IF statement.

ANSI Specifics

The SQLWARNING condition and the CALL option are not part of the Standard.
Adabas SQL Gateway Embedded SQL Specifics

This is an Adabas SQL Gateway Embedded SQL extension.

Example

The following example continues normal execution of a program if, an SQL query returns no

rows.

WHENEVER NOT FOUND CONTINUE;

The following example continues program execution at another point (where that point is
specified by a label) whenever an SQL statement produces a warning.

WHENEVER SQLWARNING GOTO label _name;

The following example diverts a program flow to a procedure whenever an SQL statement
produces an error.

WHENEVER SQLERROR CALL procedure_name;

171



Chapter 8 - Utilities
ACEINT Utility
ACEINT

The ACEINT utility is used to interactively submit or process SQL statements. ACEINT utilizes the
CONNX JDBC interface, therefore, users cannot directly access or reference a CDD for a connection.
CDDs to be used by ACEINT must first be mapped to a Data Source Name via the CONNX Data Source
Name Registry. Instructions on how to use the CONNX Data Source Name Registry can be found in the
Adabas SQL Gateway help files.

Starting ACEINT

ACEINT can be started using the following command syntax:
ACEI NT {<option> <option> ...}

IBM z/OS customers should refer to the section Mainframe Considerations for information concerning the
execution of ACEINT on the mainframe.

Options

Every option begins with a minus (-). The names of the options are not case-sensitive.
The following command line options are available:

Option Description

-a Statements starting with an asterisk (*) are
treated as comments.

-e Terminates processing on SQL error.

-f <input_file> File <input_file> used as input to ACEINT.

-n<server_name> Server <server_name> to which the session

is to connect. (Used together with option -u.)

Note: The server_name string need not be
enclosed in quotes.

-p <password> Password <password> for user defined with
-n and -u. (Used together with options -n
and -u.)

-t Displays elapsed time required to process
each SQL statement.

-u <user_name> User <user_name> to be connected to
server defined with -n. (Used together with
option -n.)

Note 1:

All of the options described above are optional. If the -n, -u (and if required -p) options are supplied when
starting ACEINT, a connection to the requested server will be made immediately. In such an instance, it is
not necessary to enter a CONNECT SQL statement at the ACEINT prompt.

Note 2:
ACEINT executes by default in interactive mode.

At the ACEINT prompt, the user can enter SQL statements as well as ACEINT specific statements and
commands.

172



Chapter 8 - Utilities

For batch mode processing, see the section Batch Processing later in this Chapter.

173



Adabas SQL Gateway Embedded SQL

Server Connection

ACEINT can be connected to a local or a remote CONNX JDBC server.

Server Name or Description

Parameter

DD= The name of the DSN to be used for the connection.
This parameter MUST be supplied.

If the DSN is the first or only value in the server_name parameter, the
prefix 'DD="' can be ignored.

GATEWAY= The name of the computer on which the CONNX JDBC Server is running.
If not supplied, the default value of LOCALHOST will be used.
PORT= The port number of the CONNX JDBC Server.

If not supplied, the default value of 7500 will be used.

Local Server Connection

With a local server connection, ACEINT and the CONNX JDBC Server are located on the same
computer.

In this case, the GATEWAY connection parameter must be set to LOCALHOST or the actual name of the
computer on which ACEINT is being executed.

Example:
ACEIl NT - nDD=<MYDSN>, GATEWAY=LOCALHOST, PCRT=7500 - u<MYUSER>

Remote Server Connection

With a remote server connection, ACEINT and the CONNX JDBC Server are located on different
computers.

In this case, the GATEWAY connection parameter must be set to the name of the computer on which the
CONNX JDBC Server is running.

Example:
ACElI NT - nDD=<MYDSN>, GATEWAY=<REMOTEHOST>, PORT=7500 - u<MYUSER>

Multiple Server Support

ACEINT can support multiple CONNX JDBC Servers. By providing a list of CONNX JDBC Servers in the
GATEWAY connection parameter, ACEINT will attempt to connect to the first active JDBC Server until the
list is exhausted.

Syntax:
HOST: PORT<! HOST: PORT<! HOST: PORT>[ | DI STRI BUTE]

HOST - The name of the computer on which the CONNX JDBC Server is running.

PORT - The port number of the CONNX JDBC Server running on 'HOST".
Each JDBC Server in the list should be separated by an exclamation mark character (!).

174



Chapter 8 - Utilities

Example:

ACEI NT - nDD=<MYDSN>, GATEWAY=<HOST1: PORT1! HOST2: PORT2! HOST3: PORT3> -
u<MyUSER>

The DISTRIBUTE option can be added to the list of JDBC Servers. By using this option, ACEINT will
randomly choose a JDBC Server from the list to which to connect. This is used for load balancing
purposes.

Example:

ACEI' NT -

NnDD=<MYDSN>, GATEWAY=<HOST1: PORT1! HOST2: PORT2! HOST3: PORT3! DI STRI BUTE> -
u<MYUSER>

Note:
If you are using multiple server support, the PORT= parameter is not required and should not be used.

175



Adabas SQL Gateway Embedded SQL

Direct SQL Statements

SQL statements are described in detail in the SQL Reference section of this help file. Each statement
must be terminated by a semicolon. A statement can extend beyond one line if the Return/Enter key is
pressed before entering the semicolon.

ACEINT parses the statement for syntactical errors and then sends the statement via the CONNX JDBC
Server to the Adabas SQL Gateway for execution.

The CONNECT statement requires a minimum of 2 parameters, server_name and user_name. The third
parameter '‘password' is optional. However, this must be supplied if the user being connected requires a
password.

The server_name parameter requires, at the very minimum, a value for the DSN to be used for the
connection. If no other values are supplied, the default values for GATEWAY (LOCALHOST) and PORT
(7500) are used.

If the DSN is the first or only value in the server parameter, the prefix 'DD="' can be ignored.

Examples:

CONNECT TO ' DD=MYDSN, PORT=7777' USER MYUSER;
CONNECT TO MYDSN USER MYUSER PASSWORD ' password' ;

Note :
If more than one parameter is supplied for the Server Name, the whole Server Name string must be
enclosed in single quotes.

Note:
The 'server_name' parameter on the CONNECT statement may be split over multiple lines. This may be
especially useful when executing in a Mainframe environment due to line length restrictions.
The maximum length of the 'server_name' parameter is 255 bytes.
Each portion of the 'server_name' parameter must be enclosed in
quotes (). If the parameter is to be continued on the next line,
this should be indicated by a plus (+) character.
Example:
CONNECT TO
'DD=MYDSN;,"' +
'GATEWAY=MYGATEWAY,' +
'PORT=7777"
USER MYUSER,;

176



Additional Statements

Chapter 8 - Utilities

In addition to the standard SQL statements, the following statements can be used.

Additional Statement Description

SET AUTOCOMMIT on/off;
(default=0OFF)

Commit/do not automatically commit transactions.

SET CATALOG catalog;

Set (change) the catalog to catalog.

SET HEADER on/off;
(default=0OFF)

Display/suppress column header if there are no matching rows.

SET HEXDUMP on/off;
(default=0OFF)

Display data in HEXADECIMAL and CHARACTER format.

SET LENGTH/COLSIZE
nnn; (default=128)

Set the maximum display length of nnn characters for columns.

SET LINE/PAGESIZE nnn;

Displays report in segments of nnn lines. To continue, the user must
press <Enter>.

SET MARK on/off;
(default=0OFF)

Displays a NULL value with/without an exclamation mark (!).

SET SCHEMA schema;

Set (change) the schema to schema.

SET TERMINATE on/off;
(default=0OFF)

Terminate/Continue processing on SQL error.

SET WIDTH/ROWSIZE nnn;

Displays a report with a width of nnn characters.

SHOW TABLE table;

Displays the column definitions of the specified table.

The table is a concatenation of catalog, schema, and table name
delimited by "...".

Catalog and schema are optional.
Valid combinations are :
catalog.schema.table
catalog..table
schema.table
table

177



Adabas SQL Gateway Embedded SQL

ACEINT Commands

The following commands are also available:

ACEINT Command
<[file]

Description
Read input from file.
If [file] is not supplied, aceint.sql in the current working directory is used.

>[file] Write last SQL statement to file.
If [file] is not supplied, aceint.sqgl in the current working directory is used.
>>[file] Append last SQL statement to file.
If [file] is not supplied, aceint.sql in the current working directory is used.
# Comment line.
-- SQL comment line.
E[D[IT]] Call editor program specified in the ACEEDITOR user environment variable.
H[ELP] Display help text.
S[E[RVER]] Display Server Information.
Q[UIT] Quit program after an implicit rollback and disconnects all sessions.

178




Chapter 8 - Utilities

Batch Processing

In addition to interactive processing, ACEINT supports batch processing by reading an input file as input
and (optionally) writing output to an output file. The following syntax is used to activate batch processing:

Syntax:
ACEINT < input file {>output file}

Example:
ACEI NT < enpl oyees. sql > enpl oyees. | og

Example of employees.sql file:

-- Connect to EMPLOYEES

connect to EMPLOYEES user PJ;

-- Sel ect sone colums from EMPLOYEES where NAME = ' SM TH

sel ect PERSONNEL | D, FI RST_NAME, NAME from EMPLOYEES
where NAME = 'SM TH ;

-- Disconnect current session from EMPLOYEES

di sconnect;

-- Quit ACEINT

quit;

Example of employees.log:

ACEI NT - Version 9.00 (Build 07/06/2005)
(c) Copyright Software AG All rights reserved.

Tue Jun 07 09:12:10 2005

Adabas SQL Gateway RCl: 1.0.12

-- Connect to EMPLOYEES

connect to EMPLOYEES user PJ;

User PJ connected to EMPLOYEES.

-- Sel ect sone colums from EMPLOYEES where NAME = ' SM TH

sel ect PERSONNEL | D, FI RST_NAME, NAME from EMPLOYEES
where NAME = ' SM TH ;

PERSONNEL_I D FI RST_NAME NAVE

40000311 GERHARD SM TH
20009300 SEYMOUR SM TH
20014100 MATI LDA SM TH
20015400 ANN SM TH
20018800 TONI SM TH
20023600 MARTI N SM TH
20025200 THOVAS SM TH
20029800 SUNNY SM TH
20000400 MARK SM TH
20001000 LCU SE SM TH
20001900 MAXWEL L SM TH

179



Adabas SQL Gateway Embedded SQL

20002300 ELSA SM TH
20003200 CHARLY SM TH
20003900 LEE SM TH
30000001 FRANK SM TH
30000311 GERALD SM TH
30034001 FRANCI S SM TH
30038013 W NSTON SM TH
20000000 JUNE SM TH

19 rows sel ect ed.

-- Disconnect current session from EMPLOYEES

di sconnect;

Di sconnect ed.

-- Quit ACEINT

quit;

Warni ng: Unconmitted nodifications |ost with di sconnect.

180



Chapter 8 - Utilities

Mainframe considerations - ACEINT utility

On the Mainframe, ACEINT executes in BATCH Processing mode only and must be initiated using JCL,
examples of which can be found below. Interactive mode is not supported on the mainframe.

SQL statements are input from DD=STDIN. This can be assigned to a PDS Member, a Sequential
Dataset, or inline using // DD *.

The output from ACEINT is written to DD=SYSTERM.

Example for executing ACEINT using STDIN input only :

/1 PJSACE  JOB CLASS=G MSGCLASS=X
[ *JOBPARM LI NES=99999

/]*

/1* Exanpl e ACEINT session using STDI N only
/]*

/1 SET ACELOD=CONNX. LOAD

/1*

[/ ACEI NT  EXEC PGQVEACEI NT,

/1 REG ON=OM

/]*

//STEPLIB DD DI SP=SHR, DSN=&ACELCD

/1*

// SYSTERM DD  SYSQUT=*
/1 SYSUDUMP DD  SYSQUT=*
/1 STDIN Db ¢
-- Connect to EMPLOYEES
connect to ' DD=EMPLOYEES, GATEWAY=10. 20. 138. 17" user PJ;
-- Sel ect sone colums from EMPLOYEES where NAME = ' SM TH
sel ect PERSONNEL | D, FI RST_NAME, NAME from EMPLOYEES
where NAME = ' SM TH ;
-- Di sconnect current session from EMPLOYEES
di sconnect;
-- Quit ACEINT
quit;
/1
In the above example, all SQL statements are input from DD=STDIN.

A CONNECT SQL statement must be supplied as ACEINT is being started without any connection
options (-n, -u, [-p])

Exanpl e for executing ACElI NT usi ng PARM and STDI N i nput
[T PISACE JOB CLASS=G MSGCLASS=X

[ *JOBPARM LI NES=99999

[1*

/1* Exanpl e ACElINT session using PARM and STDI N

[1*

/1 SET ACELOD=CONNX. LOAD

[1*

/1 ACEI NT EXEC PGVFACEI NT,

181



Adabas SQL Gateway Embedded SQL

/1 REG ON=OM

1 PARME' - nDD=EMPLOYEES, GATEWAY=10. 20. 138. 17 -uPJ’
[1*

[/ STEPLIB DD DI SP=SHR, DSN=&ACELCD

/1>

/1 SYSQUT DD  sysour=*
// SYSPRINT DD  SYSQUT=*
/1 SYSTERM DD  SYSQUT=*
// SYSUDUMP DD  SYSQUT=*
// STDI N DD *
-- Sel ect sone colums from EMPLOYEES where NAME = ' SM TH
sel ect PERSONNEL I D, FI RST_NAME, NAME from EMPLOYEES
where NAME = 'SM TH ;
-- Disconnect current session from EMPLOYEES
di sconnect;
-- Quit ACEINT
quit;
/1
In the above example, the -n, -u, [-p] options have been supplied using // EXEC PARM=. A connection to

the requested Server is made immediately. Once a connection has been established, input switches to
DD=STDIN, which is then processed statement by statement.

A CONNECT SQL statement is not required as ACEINT is being started with connection options.

182



Chapter 9 - Error Messages

Error Messages

TEXT

CODE
0 Success.
1-99 Adabas nucleus response code. Please consult the Adabas

documentation for more information.

100 End of recordset

101-255 Adabas nucleus response code. Please consult the Adabas

documentation for more information.

554 Additional error information, such as "additions 2" or subcode.

1001 Value of option %s must be an integer greater than zero.

1002 Unknown option: %s

1003 Error in command line syntax: %s

1004 Password missing.

1005 Unknown value for COBOL standard: %s

1006 Unknown value for compatibility. %s

1007 Not a suitable precompiler source.

1008 Missing source file.

1009 Missing value for %s

1010 Output line length corrected to minimum supported %s bytes\n.

1011 Unknown value for host language: %s

1051 Cannot open include file: %s

1052 Cannot open input file: %s

1053 Cannot open output file:%s

1054 Internal function type error: %s

1055 The line is truncated to %s characters.

1101 Comment not closed.

1102 Macro name not defined: %s

1103 lllegal use of array declarator.

1104 Redeclaration of a name with different type: %s

1105 Redeclaration of a name with smaller size: %s

1106 Invalid declaration.

1107 Variable or typedef name expected.

1108 lllegal use of parentheses in declarator.

1109 No type definition for typedef name: %s

183



Adabas SQL Gateway Embedded SQL

1110 Initializer syntax error.

1111 SQLCODE and SQLCA both declared in the same program unit.
1112 Parameter not declared: %s

1113 Parameters %s and indicators %s are of different struct type.
1114 Invalid preprocessor command.

1115 Invalid combination of specifiers.

1116 Statement not terminated.

1117 Statement syntax error.

1118 Quoted string not closed.

1119 Newline in string constant.

1151 Token longer than output line length.

1201 Invalid cursor name.

1251 Invalid level number: %s

1252 Invalid picture (Size of precision/scale = 0)
1253 Invalid picture (Digits count > 18)

1254 Invalid picture (Dimension)

1255 Invalid picture (Blank without when/zero)
1256 Invalid picture (Binary > 18 digits or Scale > 0)
1257 Invalid picture (Occurs)

1258 Invalid picture (Packed Decimal)

1259 Invalid picture (Display)

1260 Invalid picture (Comp Type)

1261 Invalid picture (Comp-1 Type)

1262 Invalid picture (Comp-2 Type)

1263 Invalid picture (Comp-5 Type)

1264 Invalid picture (Sign without Leading/Trailing)
1265 Invalid picture (Sign Type)

1266 Invalid picture (Usage)

1267 Invalid picture (Picture symbol)

1268 Invalid picture (Db Character symbol)

1269 Invalid picture (Character definition)

1270 Invalid picture (Number definition)

1271 Invalid picture (Clause keyword)

1301 Cannot get dynamic memory.

184




Chapter 9 - Error Messages

1302 Internal string error.

3001 Invalid input: %s

3002 Unsupported command.

3003 Internal application error: %s

3004 Not yet implemented: %s

3005 Unable to allocate dynamic memory.

3006 Incorrect number of arguments: %s

3007 Null argument passed: %s

3008 Index out of bounds: (%d)

3009 An OS specific function call failed. Please contact technical support.
3010 An internal buffer size has been exceeded.
3011 No element exists for the given key: %s
3012 Path specification exceeds system limit.
3013 Path not found: %s

3497 No exception exists for the given condition: %d
3498 Info: %s

3499 LOGIC ERROR: %s

3501 Unable to initialize TCP/IP.

3502 Unable to create a socket: (%d)

3503 Unable to find host: %s

3504 Connection is already active.

3505 Unable to connect: (%d)

3506 No active connection.

3507 Unable to send to socket: (%d)

3508 Send failure, not all bytes written.

3509 Unable to read from socket: (%d)

3510 Read failure, incorrect packet size.

3511 Packet processing error: pack.

3512 Packet processing error: unpack.

3513 Invalid port specification: (%d)

3514 10 Buffer lacks sufficient capacity to accept data.
4001 Session already defined: (%s)

4002 Not connected. Session not found: (%s)
4003 Unable to connect to SQL driver: %s

185



Adabas SQL Gateway Embedded SQL

4004 Unsupported SQL statement type: (%d)

4005 Invalid SQL content argument.

4006 Invalid recordset descriptor.

4007 Unsupported SQL data type: (%d)

4008 SQL Driver already connected.

4009 Invalid attempt to deallocate a context before the connection has been
closed.

4010 SQL cursor already defined: (%s)

4011 SQL cursor not defined: (%s)

4012 No DSN specified in CONNECT statement.

4013 Invalid connect parameters. DSN probably not registered.

4014 SQL statement not defined: (%s)

4015 Unsupported connection command id: (%d)

4016 Invalid statement handle: (%d)

4017 SERVER ERROR: ODBC: (%s) NATIVE: (%d): %s

4018 Null value returned from server and no indicator present.

4019 Value returned from server truncated and no indicator present.

4020 Invalid type conversion truncated integral type.

4021 Unsupported type conversion.

4022 No HOST ADDRESS specified in CONNECT statement.

4023 Unsupported SQL command.

4024 Invalid handle length (minimum is 32): (%s)

4025 Invalid static cursor name. Value must be embedded in the statement.

4026 Session (%s) already owned: (%s)

4027 Invalid session id. (%s)

4028 Context (%s) is not associated with a session.

4029 Invalid handle, is NULL: (%s)

4030 %s identifier contains illegal characters: (%s)

4031 Null host var passed for fetch column: (%d)

4032 A CONNECT statement must be successfully executed first. SQL
execution not possible yet.

4033 Statement handle already associated: (%s)

4034 Incorrect number of parameter arguments: Received: (%d), Expected:
(%d)

4035 Data supplied as parameter would have been truncated.

186




Chapter 9 - Error Messages

4036 Indicator variable type must be a non-nullable type of exact numeric or
integer.

4037 Invalid Numeric/Decimal specification.

4038 Single select returned more than one row.

4039 NULL value assigned to a non-nullable type.

4040 Catalog identifier length exceeds maximum.

4041 Schema identifier length exceeds maximum.

4042 Context is already active: (%s)

4043 Unsupported connect command: (%d)

4044 Indicator value exceeds maximum/minimum.

4045 Invalid SQL command for Execute Immediate.

4501 Parser error: Unrecognized pattern: (%d) for command: (%d).

4502 Parser error: NULL token passed.

4503 Invalid operation. Parse in progress.

4504 SQL statement length exceeds maximum: (%d)

4505 SQL statement is empty.

4506 Invalid command statement.

4507 lllegal to pass the %s as a host variable in this context.

4508 lllegal token, host variable expected: %s

4509 Open called for an undeclared cursor: %s

4510 Invalid token: %s

4511 Invalid token (%s) expected: %s

4512 Unbalanced quotes in statement string.

4513 Unexpected end of buffer.

4514 Unbalanced parenthesis in statement string.

4515 Invalid SQL statement.

4516 Invalid SQL statement for %s command.

4517 Expected token not found: %s

4518 Indicator variable is of an invalid type.

4519 SQL statement string not allowed here.

4520 Identifier contains illegal characters: %s

4521 Identifier (%s) has an invalid length. Maximum: %d

4522 List in statement missing separator.

4523 Identifier contains illegal characters or is not properly quoted: %s

187



Adabas SQL Gateway Embedded SQL

4524

Unable to set catalog (%s) during parse: [%s]

4525

Unable to set schema (%s) during parse: [%S]

188




ACEAPI

ACAPI General Information

This section describes ACEAPI, the Adabas SQL Gateway Application Programming Interface.

This interface provides Dynamic SQL access to supported Database Systems from any High Level
programming language.

The installation directory contains sample programs, header files, copybooks, scripts and JCL for C,
COBOL and PL/I which demonstrate the usage of each ACEAPI function against a standard Software AG
‘employees' table. The program logic flow in each program is identical.

189



Adabas SQL Gateway Embedded SQL

ACEAPI Argument Functions
SQL CTR BLOCK

typedef struct
{

int sglcode;

struct SQLDA * input_sqlda_ptr;
struct SQLDA * output_sqglda_ptr;

int nr_tuples_modified;
void * context_ptr;

int echo_warning;

char error_text [512 + 1];

}
SQL_CTR_BLOCK;

The SQL_CTR_BLOCK is used to pass a common set of parameters to the API functions.

SQL_CTR_BLOCK Variable

Description

sqlcode

4 byte integer field containing the sqlcode returned by the function
call.

input_sqlda_ptr

4 byte pointer to a structure of type SQLDA. This should be declared
as NULL if an input sqlda is not required by the function being called.

output_sqglda_ptr

4 byte pointer to a structure of type SQLDA. This should be declared
as NULL if an output sqglda is not required by the function being called.

nr_tuples_modified

4 byte integer field containing the count of rows affected by an insert,
update or delete operation.

context_ptr

4 byte pointer to a structure of type SAGContext.

Used by a multi-threaded application to specify the context for the
function call. The structure must be zero filled prior to the first function
call in a specific context. In a normal single threaded environment,
context_ptr may be declared as NULL.

echo_warning

4 byte integer field containing 0 or 1.

If NO (0) all warnings (sglcode > 0 except for 100) will be changed to
sglcode = 0.

If YES (1) all warnings will be returned with their original sqglcode.

error_text

512 byte character field containing the error text returned by the
requested function for errors (sglcode < 0) and warnings (sglcode > 0)
including sglcode = 100.

If echo_warning is set to NO, error_text will not be returned.

190




ACEAPI

SAGColumn
typedef struct
{
int sqlnamel;
int sqlnamet;
int sqlnamer;
unsigned char sqlnamed [128];
}
SAGColumn;

SAGColumn is a structure used to describe a column declared in an SQLVAR.

SAGColumn Variable Description

sqlnamel 4 byte integer field containing the length of the column name declared in
structure member sqlnamed.

sglnamet 4 byte integer field containing the type of the column name declared in
structure member sginamed.

sqglnamer 4 byte integer field. Reserved for internal use.

sqglnamed 128 byte character field containing the data name of the column within the
Catalog.

191



Adabas SQL Gateway Embedded SQL

SAGContext

typedef struct
{
SAGPointer multithreaded_context_pointer;
int async_id [2];
SAGPainter itc_ptr;
int reserved [10];

}
SAGContext;

SAGContext is used to support multithreaded applications. It is the application's responsibility to hold the
context in a manner which allows the API to be called from different threads during a session. The
structure must be initialized to NULLS prior to being used for the first time. Subsequent modifications of
SAGContext by the application may have undesirable side-effects and should be avoided.

192



SAGPointer

ACEAPI

typedef union

{
void * ptr;
void * host_address;
int address_space [2];

}
SAGPointer;

SAGPointer is used as a pointer to column host variables and indicators declared in an application

program.

SAGPointer Variable

Description

ptr
(redefined as host_address)

8 byte pointer to a host variable or indicator declared in an application
program.

Example usage :
CIC++:
char PERSONNEL_ID [8 + 1];

API_OUTPUT_SQLDA->sqlvar [0].sqldata.ptr = (void
*PERSONNEL_ID;

COBOL :
01 PERSONNEL-ID PIC X(8) VALUE SPACES.

SET PTR OF SQLDATA OF SQLVAR OF API-OUTPUT-SQLDA(1) TO
ADDRESS OF PERSONNEL-ID

PL/I:
DCL 1 PERSONNEL_ID CHAR (8) INIT (') VARYINGZ;

AP|_OUTPUT_SQLDA PTR ->
API_OUTPUT_SQLDA.SQLVAR(1).SQLDATA.PTR =
ADDR(PERSONNEL_ID);

193



Adabas SQL Gateway Embedded SQL

SQLDA
typedef struct sqlda;
{
unsigned char sqldaid [8];
int sgldabc;
short sqln;
short sqld;
struct sqlvar sqlvar [1];
}
SQLDA;

The SQLDA is a structure that defines a multi-column file.

SQLDA variables and fields

An SQLDA consists of four variables (sqldaid, sgldabc, sgin and sqld), followed by an arbitrary number of
SQLVARSs.

SQLDA Variable Description

sgldaid 8 byte character field containing an eye catcher for use in storage dumps.

An SQLDA dynamically allocated by a call to SAGQPREP will contain the 7 byte
reserved value 'SQLDADA' which must NOT be modified by the application. The
8th byte of the field may be modified by the application if required.

A static SQLDA previously allocated by the application can contain any value
except for 'SQLDADA*"

sqldabc 4 byte integer field containing the length of the SQLDA. Not required.

sqln 2 byte integer field containing the total number of occurrences of SQLVAR.

sqld 2 byte integer field containing the number of columns described by occurrences
of SQLVAR.

194



ACEAPI

SQLVAR

typedef struct sqlvar

{
int sqltype;
int sqgllen;
int reserved,;
short internal;
short sglindlen;
int sglindtype;
SAGPointer sqglind;
SAGPointer sgldata;
SAGColumn sginame;

}
SQLVAR;

SQLVAR is a structure declared within an SQLDA (input or output) describing each column of a result
row.

Each occurrence of SQLVAR describes one column of the result row being transferred to the client
application.

An SQLVAR occurrence consists of nine fields:

SQLVAR Variable Description

sqltype 4 byte integer field containing the data-type of the variable being used for data
transfer for the column, and whether NULL values are supported.

sqgllen 4 byte integer field containing the length (or precision and scale for DECIMAL
and NUMERIC types) of the variable being used for data transfer for the column.

Please see following section 'Decoding and Encoding SQLLEN' for more
information regarding the usage of this field.

reserved 4 byte integer field. Reserved for internal use.

internal 2 byte integer field. Reserved for internal use.

sqglindlen 2 byte integer field containing the length of the variable being used as the
column indicator.

sglindtype 4 byte integer field containing the data-type of the variable being used as the
column indicator.

sqlind 8 byte pointer structure of type SAGPointer containing the address of an
indicator.

sgldata 8 byte pointer structure of type SAGPointer containing the address of the of the

variable being used for data transfer.

sglname 140 byte aggregate structure of type SAGColumn containing the length, type
and name of the column within the Catalog.

195



Adabas SQL Gateway Embedded SQL

Decoding and Encoding SQLLEN

The sqgllen field of the sqlvar contains different values based on the sqltype of the column. For all data
types except DECIMAL and NUMERIC the value contained in sqllen is the actual length of the column.

The sqgllen for DECIMAL and NUMERIC types contains the precision, scale and length (identical to
precision) in the following format :

Byte O - Precision / Length
Byte 1 - Scale
Byte 2 - Scale
Byte 3 - Precision / Length

This format ensures that an application program can be moved between big-endian and little-endian
platforms without change and ensures that the appropriate byte order is maintained.

There are two methods available to decode and encode SQLLEN.
1. (Preferred method) Use the ACEAPI Utility Functions 'SAGQDECO' and 'SAGQENCO'. These

functions can be called from applications written in any supported programming language. Please

see the section 'ACEAPI Utility Functions' for more information regarding the usage of these two
functions.

2. Cand C++ users can use macros which are defined in the ACEAPI header file (aceapic.h).

The sqgllen can be decoded into precision, scale and length variables by using the macro
DECODE_PRECISION_SCALE_LENGTH.

The sqgllen can be encoded with precision, scale and length by using the macro
ENCODE_PRECISION_SCALE_LENGTH.

When encoding sqgllen, it is essential that ALL four bytes are correctly filled if the above macros are not
being used, for example when the application is written in a language other than "C".

The following SQLTYPES require decoding or encoding of the sqllen :
SQL_TYP_DECIMAL
SQL_TYP_NUMERIC
SQL_TYP_NUMERIC_LD
SQL_TYP_NUMERIC_TR
SQL_TYP_NUMERIC_SLD
SQL_TYP_NUMERIC_STR
SQL_TYP_NUMERIC_BINARY
SQL_TYP_NUMERIC_BIN_BE
SQL_TYP_NDECIMAL
SQL_TYP_NNUMERIC
SQL_TYP_NNUMERIC_LD
SQL_TYP_NNUMERIC_TR
SQL_TYP_NNUMERIC_SLD
SQL_TYP_NNUMERIC_STR
SQL_TYP_NNUMERIC_BINARY

196



ACEAPI

SQL_TYP_NNUMERIC_BIN_BE

The sqllen field in the sglvar should remain encoded and not be modified. If the length of the column is
required, when allocating storage for example, the decoded values sqlprec or sgllength should be used
and not the sqllen itself.

/*
Example to decode and encode 'sqgllen' for DECIMAL and NUMERIC type columns. The

DECODE_PRECISION_SCALE_LENGTH and ENCODE_PRECISION_SCALE_LENGTH macros are
defined in the ACEAPI header file (aceapic.h).

*/

int sqlprec; /* Precision */
int sglscale; /* Scale */
int sgllength; /* Length */

if (sglda->sglvar[column].sqltype == SQL_TYP_DECIMAL
|| SQL_TYP_NUMERIC
|| SQL_TYP_NUMERIC_LD
|| SQL_TYP_NUMERIC_TR
[| SQL_TYP_NUMERIC_SLD
[| SQL_TYP_NUMERIC_STR
[| SQL_TYP_NUMERIC_BINARY
[| SQL_TYP_NUMERIC_BIN_BE
|| SQL_TYP_NDECIMAL
[| SQL_TYP_NNUMERIC
[| SQL_TYP_NNUMERIC_LD
[| SQL_TYP_NNUMERIC_TR
[| SQL_TYP_NNUMERIC_SLD
|| SQL_TYP_NNUMERIC_STR
[| SQL_TYP_NNUMERIC_BINARY
|| SQL_TYP_NNUMERIC_BIN_BE)

{
DECODE_PRECISION_SCALE_LENGTH(sqglda->sqlvar[column].sgllen,
sqlprec,
sqlscale,
sqllength);

/*

Allocate storage using the sqllength returned by the macro DECODE_PRECISION_SCALE_LENGTH.
*/

sglda->sqglvar[column].sqgldata.host_address = calloc(1, sgllength);

ENCODE_PRECISION_SCALE_LENGTH(sglda->sqglvar[column].sqllen,
sqlprec,

197



Adabas SQL Gateway Embedded SQL

sqlscale,
sqllength);

198



ACEAPI

SQLDA Data Types

The following table contains the SQLDA data types. The data types are returned by the Adabas SQL
Gateway Server for each column described by function 'SAGQDESC'. The relevant data type can be

used to declare the type of host variable and indicator referenced by each column in the input or output

SQLDA->SQLVAR.

SQLDA Data Type Value Description

SQL_TYP_CHAR 1 Character string

SQL_TYP_NUMERIC 2 Numeric

SQL _TYP_DECIMAL 3 Packed-Decimal

SQL_TYP_INTEGER 4 Integer (4 byte)

SQL_TYP_SMALLINT 5 Small Integer (2 byte)
SQL_TYP_FLOAT 6 Floating Point

SQL_TYP_LARGEINT 9 Large Integer (8 byte)
SQL_TYP_VARCHAR 12 Variable Length Character
SQL_TYP_NUMERIC_LD 20 Numeric Signed Leading
SQL_TYP_NUMERIC_TR 21 Numeric Signed Trailing
SQL_TYP_NUMERIC_SLD 22 Numeric Signed Leading Separate
SQL_TYP_NUMERIC_STR 23 Numeric Signed Trailing Separate
SQL_TYP_NUMERIC_BINARY |24 Numeric Binary (Little Endian)
SQL_TYP_NUMERIC_BIN_BE |25 Numeric Binary (Big Endian)
SQL_TYP_NCHAR -1 Nullable Character string
SQL_TYP_NNUMERIC -2 Nullable Numeric
SQL_TYP_NDECIMAL -3 Nullable Packed-Decimal
SQL_TYP_NINTEGER -4 Nullable Integer (4 byte)
SQL_TYP_NSMALLINT -5 Nullable Small Integer (2 byte)
SQL_TYP_NFLOAT -6 Nullable Floating-Point
SQL_TYP_NLARGEINT -9 Nullable Large Integer (8 byte)
SQL_TYP_NVARCHAR -12 Nullable Variable Length Character
SQL_TYP_NNUMERIC_LD -20 Nullable Numeric Signed Leading
SQL_TYP_NNUMERIC_TR -21 Nullable Numeric Signed Trailing
SQL_TYP_NNUMERIC_SLD -22 Nullable Numeric Signed Leading Separate
SQL_TYP_NNUMERIC_STR -23 Nullable Numeric Signed Trailing
SQL_TYP_NNUMERIC_BINARY | -24 Nullable Numeric Signed Leading Separate
SQL_TYP_NNUMERIC_BIN_BE |-25 Nullable Numeric Signed Trailing Separate
SQL_TYP_BINARY -51 Nullable Numeric Binary (Little Endian)
SQL_TYP_NBINARY -52 Nullable Numeric Binary (Big Endian)
SQL_TYP_NATDATE -53 Binary

SQL_TYP_NNATDATE -54 Nullable BINARY

199



Adabas SQL Gateway Embedded SQL

SQL_TYP_NATTIME -55 NATURAL DATE
SQL_TYP_NNATTIME -56 Nullable NATURAL TIME
SQL_TYP_SQLDA 57 SQLDA
SQL_TYP_NATTIMESTAMP -58 NATURAL TIMESTAMP
SQL_TYP_NNATTIMESTAMP | -59 Nullable NATURAL TIMESTAMP
SQL_TYP_SQLBIT -60 BIT

SQL_TYP_NSQLBIT -61 Nullable BIT

200




ACEAPI

ACEAPI SQL Functions
About ACEAPI SQL Functions

Each SAGQ* SQL function requires an anchor. This must be declared as a 4 byte integer global variable.
Before calling the first function, anchor must be initialized to zero, i.e. int anchor = 0;.

201



Adabas SQL Gateway Embedded SQL

SAGQACOM

sagqacom (
int anchor,

SQL_CTR_BLOCK * sql_cb_ptr,

int autocommit

);

The SAGQACOM function enables or disables autocommit.

autocommit

AUTOCOMMIT_ON (9)

Autocommit is enabled.

AUTOCOMMIT_OFF (10)

Autocommit is disabled (default).

Autocommit is disabled (default).

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL

Functions.

202




ACEAPI

SAGQCLOS
sagqclos (

int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
char * cursor_ptr

);

The SAGQCLOS function closes a cursor identified by cursor_ptr.

cursor_ptr The cursor opened in SAGQOPEN to be closed.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

203



Adabas SQL Gateway Embedded SQL

SAGQCONN

sagqconn (

int anchor,

SQL_CTR_BLOCK *sqgl_cb_ptr,
int statement_type,

char * server_ptr,

char * session_ptr,

char * user_ptr,

char * password_ptr,

char * charset_ptr

);

The SAGQCONN function establishes a connection with an SQL Server.

statement_type

CONNECT_USER_STMT (1)

The user-defined connection will be identified by
the name given in session_ptr.

OTHER_STMT (99) or NULL

The connection will be made using the server
name supplied in server_ptr (default).

server_ptr Server name Default server if NULL.

session_ptr Session name User-defined connection specifier used to set
different connections. If not specified, the server
name will be used as the connection name.

user_ptr User name Default user if NULL.

password_ptr Password No password if NULL.

charset_ptr

Character set

Default character set if NULL.

NONULLTERMINATE

All input and output strings will be processed
without null termination considerations.

Recommended for all non C/C++ applications.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL

Functions.

204




ACEAPI

SAGQDEAL

sagqdeal (
int anchor,
SQL_CTR_BLOCK * sqgl_cb_ptr,
char * stmt_id_ptr

);

The SAGQDEAL function deallocates a previously prepared statement identified by stmt_id_ptr.

Dynamic SQLDA structures allocated by SAGQPREP will also be freed if sql_cb_ptr->input_sqlda_ptr
and/or sql_cb_ptr->output_sqlda_ptr -> NULL.

stmt_id_ptr The statement id returned by SAGQPREP to be deallocated.
sql_cb_ptr->input_sqlda_ptr Static SQLDA
NULL

Dynamic SQLDA
SQLDA structure, the result of the SAGQPREP function.

sql_cb_ptr->output_sqlda_ptr | Static SQLDA

NULL

Dynamic SQLDA only

SQLDA structure, the result of the SAGQPREP function.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

205



Adabas SQL Gateway Embedded SQL

SAGQDECH

sagqdech (

int anchor,

SQL_CTR_BLOCK *sqgl_cb_ptr,

char * cursor_ptr,

char * stmt_id_ptr

);

The SAGQDECH function declares a cursor with hold option for a previously prepared statement
identified by stmt_id_ptr.

Declaring a cursor is optional (but recommended) and is required only if specific processing on a cursor is
performed.

If used, stmt_id_ptr in the subsequent open call (SAGQOPEN) must be set to NULL (null pointer).
Otherwise, a cursor without hold option will be implicitly declared within the open function.

cursor_ptr The cursor to be declared.

stmt_id_ptr The statement id returned by SAGQPREP to be declared.

Important: There is no current support for Declare Cursor With Hold.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

206



ACEAPI

SAGQDECL

sagqdecl (
int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
char * cursor_ptr,
char * stmt_id_ptr

):

The SAGQDECL function declares a cursor (without hold option) for a previously prepared statement
identified by stmt_id_ptr.

Declaring a cursor is optional (but recommended) and is required only if specific processing on a cursor is
performed.

If used, stmt_id_ptr in the subsequent open call (SAGQOPEN) must be set to NULL (null pointer).
Otherwise, a cursor (without hold option) will be implicitly declared within the open function.

cursor_ptr The cursor to be declared.

stmt_id_ptr The statement id returned by SAGQPREP to be declared.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

207



Adabas SQL Gateway Embedded SQL

SAGQDESC

sagqdesc (
int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
char * stmt_id_ptr

);

The SAGQDESC function describes a previously prepared statement identified by stmt_id_ptr.
The input_sqglda_ptr and/or output_sqlda_ptr in sgl_cb_ptr must have been previously allocated.

stmt_id_ptr The statement id returned by SAGQPREP to be executed.

sql_cb_ptr->input_sqlda_ptr Static SQLDA

SQLDA structure allocated by the application.

Dynamic SQLDA

SQLDA structure, the result of the SAGQPREP function.

sgl_cb_ptr->output_sqlda_ptr | Static SQLDA

SQLDA structure allocated by the application.

Dynamic SQLDA

SQLDA structure, the result of the SAGQPREP function.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

208




ACEAPI

SAGQDISC

sagqdisc (
int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
int disconnect_type,

char * session_ptr

):

The SAGQDISC function terminates one or more connected SQL Server sessions.

session_ptr If non NULL, the identified session is terminated.

disconnect_type |DISC_ALL_STMT (2) All connections are terminated.

DISC_DEFAULT_STMT | The default server connection is terminated.
3)

DISC_CURRENT_STMT | The current connection is terminated.
4)

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

209




Adabas SQL Gateway Embedded SQL

SAGQEXEC

sagqgexec (
int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
char * stmt_id_ptr

);

The SAGQEXEC function executes the previously prepared statement identified by stmt_id_ptr.

stmt_id_ptr The statement id returned by SAGQPREP to be executed.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

210



ACEAPI

SAGQEXIM
sagqgexim (
int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
char * stmt_ptr
)i
The SAGQEXIM function immediately executes the statement identified by stmt_ptr.

stmt_ptr The statement to be executed immediately.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

211



Adabas SQL Gateway Embedded SQL

SAGQFETC

sagqfetc (
int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
char * cursor_ptr);

The SAGQFETC function fetches a row from the cursor identified by cursor_ptr. The results are stored in
the memory indicated by the pointers output_sqlda_ptr->sql_var[x]-> sqgldata.

cursor_ptr The cursor opened in SAGQOPEN.
sql_cb_ptr->output_sqlda_ptr->sql_var[x]-> The result of the SAGQFETC function.
sgldata

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

212




ACEAPI

SAGQGERR

sagqgerr (
int anchor,

SQL_CTR_BLOCK *sqgl_cb_ptr
)i

The SAGQGERR function returns an error text for the last sqglcode returned.

sql_cb_ptr- The error text associated with the last sqlcode returned.
>error_text

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

213



Adabas SQL Gateway Embedded SQL

SAGQGRCI

sagqgrci (
int anchor,

SQL_CTR_BLOCK * sqgl_cb_ptr,
char * rci_version,
int rci_version_nonullterm);

The SAGQGRCI function returns the RCI version string. The sglcode returned by this function is always

0.

rci_version

The RCI version string, declared as a 256 byte character
field :

char rci_version [256 + 1];

rci_version_nonullterm | O

RCI version string will be NULL terminated.
(Recommended for C/C++ applications).

RCI version string will not be NULL terminated.
(Recommended for non C/C++ applications).

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL

Functions.

214




ACEAPI

SAGQOPEN

sagqopen (
int anchor,
SQL_CTR_BLOCK *sql_cb_ptr,
char * cursor_ptr,
char * stmt_id_ptr
)i
The SAGQOPEN function opens the cursor identified by cursor_ptr.

cursor_ptr The previously declared cursor to be opened or the implicitly declared cursor name
returned by SAQGOPEN itself.
stmt_id_ptr If supplied, the cursor is implicitly declared and opened for the previously prepared

statement. The cursor name will be returned in cursor_ptr.

If a cursor was previously declared by calling SAGQDECL, stmt_id_ptr must be set to
NULL (null pointer).

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

215



Adabas SQL Gateway Embedded SQL

SAGQPREP

sagqprep (
int anchor,

SQL_CTR_BLOCK *sqgl_cb_ptr,
int statement_type,

char * stmt_id_ptr,

char * stmt_ptr

);

The SAGQPREP function prepares and describes the statement given in stmt_ptr. The result can be
accessed with the statement id stmt_id_ptr.

Both static and dynamic SQLDA structures are supported.

Static SQLDA

The input and/or output SQLDA structures of the correct size must be allocated by the application, and be
appropriately initialized. The sqldaid field in the SQLDA structure may contain any value except the seven
byte reserved value SQLDADA, which identifies a dynamically allocated SQLDA.

A call to SAGQPREP requires:
sql_cb_ptr->input_sqglda_ptr = API_INPUT_SQLDA ;
sql_cb_ptr->output_sqlda_ptr = API_OUTPUT_SQLDA ;

A static SQLDA cannot be freed or reallocated by ACEAPI; the application must ensure that sufficient
storage has been allocated to contain the results for all input/output values returned by the call to
SAGQPREP. The sqgln value must not exceed the number of SQLVAR occurrences provided in the
SQLDA, otherwise unpredictable results may occur.

The sqld value contains the number of columns in the referenced table or view.

If the sqln value is smaller than the number of columns required for the referenced table or view,
SAGQPREP will return with SQLCODE = -9985 (Unable to allocate/free memory).

Dynamic SQLDA

Dynamic SQLDA structures are allocated by SAGQPREP and not by the application.

The sqldaid field in the SQLDA structure contains the seven byte reserved value SQLDADA. Do not
change this field; it identifies a dynamically allocated SQLDA. The eighth byte of the field may be modified
by the application.

The initial call to SAGQPREP requires :

sql_cb_ptr->input_sqlda_ptr = NULL
sql_cb_ptr->output_sqlda_ptr = NULL

216



ACEAPI

If any of the following pointers are NULL, they will be allocated:
sql_cb_ptr->input_sqlda_ptr
sql_cb_ptr->output_sqlda_ptr

The following pointers are allocated when statement_type = SELECT_STMT:
sql_cb_ptr->output_sqlda_ptr

Once the SQLDA's have been allocated by SAGQPREP, the pointers returned may be used for
subsequent calls to SAGQPREP until permanently deallocated by a call to SAGQDEAL.

Dynamic SQLDA structures are always allocated with the correct number of input/output values required
by the statement. The sqin value indicates the number of SQLVAR occurrences provided in the SQLDA.
The sqld value will contain the number of columns in the referenced table or view.

Use the latest input/output pointers returned by SAGQPREP for the statement because the previous
pointers may have been reallocated and no longer valid.

statement_type SELECT_STMT (5) The statement being prepared is 'SELECT".
OTHER_STMT (99) The statement being prepared is not 'SELECT".
or NULL

sql_cb_ptr->input_sqlda_ptr Static SQLDA

SQLDA structure allocated by the application.
Dynamic SQLDA
SQLDA structure, the result of the SAGQPREP function.

sql_cb_ptr->output_sqlda_ptr Static SQLDA

SQLDA structure allocated by the application.

Dynamic SQLDA

SQLDA structure, the result of the SAGQPREP function.

stmt_id_ptr The statement id for the statement to be prepared.

stmt_ptr The statement to be prepared and described.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

217




Adabas SQL Gateway Embedded SQL

SAGQSETA

sagqgseta (
int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
char * catalog_ptr

);

The SAGQSETA function sets the default catalog to the catalog identified by catalog_ptr.

catalog_ptr | The default catalog name.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

218



ACEAPI

SAGQSETC

sagqgsetc (
int anchor,
SQL_CTR_BLOCK *sql_cb_ptr,
char * session_ptr

);

The SAGQSETC function sets the active connection to the connection identified by session_ptr.

session_ptr | Set or establish the connection to this session.
If NULL the current connection is set to the default server.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

219



Adabas SQL Gateway Embedded SQL

SAGQSETS

sagqsets (
int anchor,
SQL_CTR_BLOCK *sqgl_cb_ptr,
char * schema_ptr

);

The SAGQSETS function sets the default schema to the schema identified by schema_ptr.

schema_ptr | The default schema name.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

220



ACEAPI

SAGQSETT

sagqgsett (
int anchor,
SQL_CTR_BLOCK * sql_cb_ptr,
int timeout_value

);

The SAGQSETT function sets the inactivity timeout value.

timeout_value | The inactivity timeout value in minutes.

For information about anchor (required by each SAGQ* SQL function), see About ACEAPI SQL
Functions.

Set Timeout is currently unsupported.

221



Adabas SQL Gateway Embedded SQL

ACEAPI Utility Functions
SAGQDECO

sagqdeco (

int sqllen,

int sqlprecision,

int sqlscale,

int sgllength

);

The SAGQDECO function decodes the sqllen of decimal and numeric SQL data type columns into three
components: sglprecision, sqglscale and sqllength. The values for sqglprecision and sqllength are
interchangeable.

sqllen Input SQLVAR->SQLLEN to be decoded.
sqlprecision | Output | SQLPRECISION
sqlscale Output | SQLSCALE
sqgllength Output | SQLLENGTH
Examples
C/C++
#i ncl ude <aceapi c. h>
sagqdeco (&API _OUTPUT_SQLDA- >sqgl var[col um]. sql | en,
&API _SQ.PRECI SI ON,
&API _SQLSCALE,
&APl _SQLLENGTH) ;
COBOL
All parameters must be declared as COMP-5.
COPY ACEAPI B.
CALL "SAGQDECO' USI NG
BY REFERENCE SQLLEN OF SQ.VAR OF API - QUTPUT- SQL( col umm)
BY REFERENCE APl _SQLPRECI SI ON
BY REFERENCE APl _SQLSCALE
BY REFERENCE API _SQLLENGTH
PL/I

% NCLUDE aceapip ;

CALL saggdeco(

APl _OUTPUT_SQLDA PTR- >API _OQUTPUT_SQ.DA. SQLVAR( col umm) . SQLLEN,
APl _SQ_PRECI SI ON,

APl _SQLSCALE,

APl _SQ.LENGTH) ;

222




ACEAPI

SAGQENCO

sagqgenco (
int sgllen,
int sqlprecision,
int sqlscale,
int sgllength
);

The SAGQENCO function encodes the sqlprecision, sqlscale and sqgllength into sqllen of decimal and
numeric SQL data type columns.

Any value may be supplied for sgllength, only sqglprecision and sqlscale will be used for the encoding.

sqllen Output | SQLVAR->SQLLEN

sqlprecision | Input SQLPRECISION to be encoded
sqlscale Input SQLSCALE to be encoded

sgllength Input SQLLENGTH to be encoded (not used)

Examples

C/C++
#i ncl ude <aceapic. h>
sagqgenco (&API _OUTPUT_SQLDA- >sqgl var[ col um] . sql | en,
&API _SQLPRECI SI ON,
&API _SQLSCALE,
&API _SQLLENGTH) ;
COBOL
All parameters must be declared as COMP-5.

COPY ACEAPI B.
CALL "SAGQENCO' USI NG
BY REFERENCE SQLLEN OF SQ.VAR OF API - QUTPUT- SQL( col umm)
BY REFERENCE APl _SQLPRECI SI ON
BY REFERENCE APl _SQLSCALE
BY REFERENCE API _SQLLENGTH
PL/I
% NCLUDE aceapip ;
CALL saggenco(
APl _OUTPUT_SQLDA PTR- >API _OQUTPUT_SQ.DA. SQLVAR( col umm) . SQLLEN,
APl _SQ_PRECI S| ON,
APl _SQLSCALE,
APl _SQ.LENGTH) ;

223



Adabas SQL Gateway Embedded SQL

ACEAPI Compilation and Linkage examples

The application has to be compiled and linked to the appropriate stub modules for the environment.

Windows

The required static libraries aceapi.lib and rciclnt.lib are located in the CONNX -> PRECOMPILER ->
WINDOWS directory.

C/C++

cl example.c /link
C: \ CONNX32\ PRECOVPI LER\ W NDOWE\ aceapi . li b
C: \ CONNX32\ PRECOVPI LER\ W NDOMB\rciclnt.lib

Microfocus COBOL / NET Express

cbllink -v -o0.exanpl e. exe exanpl e. cbl

Microfocus COBOL / NET Express does not require the static libraries to be linked, but the DLL's
themselves must be dynamically loaded by the application at execution time, as follows :

* ACEAPI DLL PO NTERS (REQUI RED BY M CROFCOCUS COBCL)
01 API - DLL- PO NTER.

02 DLLPTR1 PROCEDURE- POl NTER.
02 DLLPTR2 PROCEDURE- PO NTER.
SET DLLPTRL

TO ENTRY "aceapi "
SET DLLPTR2

TO ENTRY “rciclnt"
The above code is already declared in the supplied COBOL copybooks, aceapib.cbl and apidll.cbl.

Open COBOL

cobc -fstatic-call -fixed -v -Wall -Wruncate -x exanpl e. cbl
C: \ CONNX32\ PRECOVPI LER\ W NDOWE\ aceapi . | i b
C: \ CONNX32\ PRECOVPI LER\ W NDOWE\ rciclnt.lib

VisuaIAge PL/I

pli exanpl e. pl i
(LANGLVL( SPROG) LI M TS(EXTNAME(8)) MACRO NO NSOURCE NOT("\") OR("!")
SOURCE SNAP)

i 1ink exanpl e. obj

C: \ CONNX32\ PRECOVPI LER\ W NDOWE\ aceapi . i b
C: \ CONNX32\ PRECOVPI LER\ W NDOWE\ rciclnt.lib
/ OUT: exanpl e. exe

224



ACEAPI

Open Systems
At execution time, include the CONNX 'embedded’ directory in the LD_LIBRARY_PATH.

C/C++

gcc -1../DC Wrk -Vall -c -0 exanple.o exanple.c

gcc -o exanple exanple.o
- L/ horre/ connx/ enbedded/ Li bRCl _32 -1 aceapi _32 -lrciclnt_32

Open COBOL

cobc -fstatic-call -fixed -v -Wall -Wruncate -x exanpl e. cbl
- L/ hone/ connx/ enbedded/ Li bRCI _32 -l aceapi 32 -lrciclnt_32

z/OS

On z/OS platforms, link the application to the ACEAPI stub API3GL after successful compilation. At
execution time, include the CONNX RCI load library in the STEPLIB.

IBM C

/I SET USRLOD=CONNX.LOAD
/I SET USROBJ=CONNX.OBJ
/I SET USRSRC=CONNX.SRCE
I*
I*
I[* Compile / Link
I*
I*
/IC EXEC PROC=EDCCL,

I CPARM='DEF(BIGFUNC),longname,margins(1,80)',

1 CPARM2="noseq,noshowinc’,

1 CPARM3=",

1 LPARM=NOMAP,ALIASES=NO,UPCASE=NO',

1 INFILE=EXAMPLE

//[COMPILE.SYSIN DD DISP=SHR,DSN=&USRSRC(EXAMPLE)
/ICOMPILE.SYSLIB DD

1 DD

1 DD DISP=SHR,DSN=&USRSRC

/ILKED.SYSLMOD DD DISP=SHR,DSN=&USRLOD

225



Adabas SQL Gateway Embedded SQL

/ILKED.SYSIN DD *
INCLUDE USROBJ(EXAMPLE)
INCLUDE USROBJ(API3GL)
ENTRY MAIN
NAME EXAMPLE(R)
/ILKED.USROBJ DD DISP=SHR,DSN=&USROBJ

IBM COBOL

/I SET USRLOD=CONNX.LOAD
/I SET USROBJ=CONNX.OBJ
/I SET USRSRC=CONNX.SRCE
I*
I*
I Compile / Link
I*
I*
/IC EXEC PROC=IGYWCL,

/l PARM.COBOL='NOLIST,MAP,XREF(SHORT),RENT,RMODE(ANY),LIB,TEST(SYM)',

/l PARM.LKED='"LIST,MAP,XREF,ALIASES=NO,UPCASE=NO,MSGLEVEL=4,EDIT=YES'
I*

//ICOBOL.SYSIN DD DISP=SHR,DSN=&USRSRC(EXAMPLE)

/ICOBOL.SYSLIB DD DISP=SHR,DSN=&USRSRC

//ICOBOL.SYSLIN DD DISP=SHR,DSN=&USROBJ(EXAMPLE)

/ICOBOL.SYSPRINT DD SYSOUT=*

//[COBOL.SYSTERM DD SYSOUT=*

/ILKED.SYSLIB DD

1 DD DISP=SHR,DSN=&USRLOD
/ILKED.SYSLIN DD DISP=SHR,DSN=&USROBJ(EXAMPLE)
1 DD DDNAME=SYSIN

/ILKED.SYSLMOD DD DISP=SHR,DSN=&USRLOD
/ILKED.SYSIN DD *

MODE AMODE(31),RMODE(ANY)

INCLUDE USROBJ(API3GL)

ENTRY EMPLOYEE

NAME EXAMPLE(R)
/ILKED.USROBJ DD DISP=SHR,DSN=&USROBJ
/ILKED.USRLOD DD DISP=SHR,DSN=&USRLOD

IBM PL/I

226



/I SET USRLOD=CONNX.LOAD
/I SET USROBJ=CONNX.OBJ
/I SET USRSRC=CONNX.SRCE
I*
I*
I Compile / Link
I*
I*
/IC EXEC PROC=IBMZCB,

I LNGPRFX='1BMZ',

I PARM.PLI=('LANGLVL(SPROG),MACRO,NOINSOURCE,SOURCE,',
I 'LIMITS(EXTNAME(8)),NOT("\"),OR("I")",

I PARM.BIND=('LIST,MAP,XREF,ALIASES=NO,UPCASE=NO,’,

1 'MSGLEVEL=4,EDIT=YES")

I*

/IPLI.SYSIN DD DISP=SHR,DSN=&USRSRC(EXAMPLE)

//PLI.SYSLIB DD DISP=SHR,DSN=&USRSRC

/[PLI.SYSLIN DD DISP=SHR,DSN=&USROBJ(EXAMPLE)
/IPLI.SYSPRINT DD SYSOUT=*

/[PLI.SYSTERM DD SYSOUT=*

/IBIND.SYSLIB DD

1 DD DISP=SHR,DSN=&USRLOD
//BIND.SYSLIN DD DISP=SHR,DSN=&USROBJ(EXAMPLE)
1 DD DDNAME=SYSIN

//BIND.SYSLMOD DD DISP=SHR,DSN=&USRLOD
//IBIND.SYSIN DD *

MODE AMODE(31),RMODE(ANY)

INCLUDE USROBJ(API3GL)

ENTRY CEESTART

NAME EXAMPLE(R)
//BIND.USROBJ DD DISP=SHR,DSN=&USROBJ
//BIND.USRLOD DD DISP=SHR,DSN=&USRLOD

ACEAPI

227



Technical Support
Technical Support

Product support and technical assistance for the Adabas SQL Gateway (CONNX for Adabas) and
Adabas SQL Gateway Embedded SQL are available through your local Software AG Regional Support
Center, Software AG's ServLine24, or your Software AG Account Manager.

Access to ServLine24 can be found at the following addresses:
https://empower.softwareag.com/default.asp
http://www.softwareag.com

Support can also be reached via e-mail at support@softwareag.com.

Trial copies and pre-release versions are covered by separate contracts. Please contact your Software
AG Account Manager for more information.

228


https://empower.softwareag.com/default.asp�
http://www.softwareag.com/�
mailto:support@softwareag.com�

Trademarks and Copyrights

Legal Notices

This notice is valid for all products of the Adabas®, Bolero®, EntireX®, Natural® and Tamino® (the
"Product”) product line and associated Software AG products.

IMPORTANT: PLEASE READ BEFORE INSTALLING THE SOFTWARE
You are not allowed to install or use the Product without a corresponding license agreement.

If you have entered into a license agreement with one of Software AG's subsidiaries or distributors (the
"License Agreement") the installation and use of the Product is subject to your acceptance of additional
terms which are provided for you in the section Additional Terms.

If you have not entered into a License Agreement you must execute the license agreement with Software
AG which is provided for you in the section Software AG License Agreement for Trial Versions of
Software AG Software ONLY.

Copyright Notice

Adabas®, Bolero®, EntireX®, Natural® and Tamino® are Products of Software AG, a German
corporation with its principal place of business at Uhlandstrasse 12, 64297 Darmstadt.

Software AG is the sole owner of all industrial property rights and copyright to the Products and
accompanying user documentation or has the respective distribution rights. References made in or on the
Products to the copyright or to other industrial property rights must not be altered, deleted or obliterated in
any manner.

© Copyright 2017-2019 Software AG, Uhlandstrasse 12, 64297 Darmstadt, Germany 2016. All rights
reserved.
Trademark Notice

The name Software AG and/or all Software AG Products are either trademarks or registered trademarks
of Software AG. Other product and company names mentioned herein may be the trademarks of their
respective owners.

229






Index

A END DECLARE SECTION .........cccceeeeeiinnnnn. 143
About ACEAPI SQL Functions....................... 201 Error Handling..........coveueeeeeceeeeeenerennans 72,101
ACAPI General Information...............c.ccceeeee. 189 EITOr MESSAGES. ....cvvvveeeeeeieieieieeeiereneeeenes 183
ACEAPI Compilation ... 224 EXECUTE ..ot 144
ACEINT c.ooiiiiiieiiiiieeeeeeeeeeeeeeeeeeevee e 172 EXECUTE IMMEDIATE ...oooni 146
ACEINT Commands.........cccceeeeeeiiiiiiiiieenaaeenns 178 F
ACEINT Uit ..o 181 FETCH oot 150
Adabas SQL Clients..........ccocoveveeiceeeiieeeen, 16 G
Adabas SQL Gateway Embedded SQL's 1, 5, 11 General ASPECES .........c.cvovveeeeeeeeeeerereereeeenas 42
Installing ................................................... 5,11 General RUIES ... 71, 100
INtrOAUCTION ... 1 GET DIAGNOSTICS oo 148
Additional Statements ... 177 GRAMMAT ..., 35
ALLOCATE SQLCONTEXT ....ciiiviiiviiiiiiieeeees 125 H
B HOS. ottt 30
Batch ProceSSing ........................................... 179 Host Variable Specification ______________________ 60, 153
BEGIN DECLARE SECTIONS ........ccoconne. 127 HoSt Variables............ccccceueveeeeeecrenans 64, 95
C I
C63,71,72 IMPIEMENLING ...t 17
(O ] 5 TR 28 Threading MOAEIS oo, 17
ClieNt ... 29 INCLUDE ..o 156
Client Configuration.............c.oooonnnnnn, 26 INSEAIL. ..o 5,11
CLOSE ... 128 Adabas SQL Gateway Embedded SQL...5, 11
COBOL................ 31,94, 95, 100, 101, 111, 117 INrOAUCHON ..., 1,37, 41
COMMIT e, 129 Adabas SQL Gateway Embedded SQL......... 1
CONNECT ..., 130 Dynam|c SQL _______________________________________________ 41
(0] 31 7= Tox 113 o SRR 228 Invocation........ooomnnni.... 78, 83, 88, 105, 111, 117
Technical SUPPOIt.........ceeviiiiiieiiiiiie e, 228 J
D IDBC SEIVET ....ouiiiiiiiieeieieieieieie e 28
Data.....ccvuiiiiiiiiiii s 38 L
Manipulating ..o 38 Legal NOtICES .......ccueveeeeeeeeeeeeeeeeeeeeee e, 229
DEALLOCATE PREPARE .......cccoviviin 132 Linkage eXamples...........cccovvevvreereeererrenen, 224
DEALLOCATE SQLCONTEXT ....ccovvvvviinnnn. 133 M
DECLARE CURSOR......coiiiiiiiiiine, 135 Mainframe considerations...........c..ccccc.e...... 181
DESCRIBE ..o 139 MaNIPUIALING. ........vvoveeieieeieeee e 38
Direct SQL Statements ...........coocovvvieininns. 176 DALA.....cveoveeceereeeeseesees e 38
DISCONNECT ..ot 141 N
DynamIC SQL ................................................... 41 Non_Select Statements ____________________________________ 44
T oo [0 o i o o 41 0
E OPEN ..ot 158
Encoding SQLLEN" ..o, 196 Optional FieldsS ..........c.rvevieriereiesieeieieeieas. 8

231



Adabas SQL Gateway Embedded SQL

O 5,8
P

POIT . 30
Precompiler Options.... 78, 83, 88, 105, 111, 117
PREPARE .......ooviiiiiie e 160
Program StruCture..........oooccvveeeeeieeeiniieeeen 34
Q

Quick-Start GUIide.........coeeeveieiiieieeee 4
R

ReqUIred......cccoiiieiieee e 8
ROLLBACK ... 162
S

SAGCOIUMN c.oiviieie e 191
SAGCONEXL ... 192
SAGPOINIEN ...t 193
SAGQACOM ....oviiiiiiiie ettt 202
SAGQCLOS ...t 203
SAGQCONN ....ooiiiiiiei e 204
SAGQDEAL ...t 205
SAGQDECH.......ccciiiieicee e, 206
SAGQDECL ....ovviviiiiiie e 207
SAGQDECO ....ooiiiiiiiieiiee e 222
SAGQDESC.......oiiiiiiiee et 208
SAGQDISC ...t 209
SAGQENCO .....ooviiiiiiieicee et 223
SAGQEXEC ......coiiiiiiii ettt 210
SAGQEXIM ...t 211
SAGQFETC ... 212
SAGQGERR ......ooiiiiiiii 213
SAGQGRCI....uvviieiciiiie e 214
SAGQOPEN......cciiiiiiiiieiiiee e 215
SAGQPREP ...ttt 216
SAGQSETA .t 218
SAGQSETC ..t 219
SAGQSETS ..t 220
SAGQSETT .t 221
SELECT ..o 163
Select Statements ... 46
Server Communication..........ccccccvvveeeeeeieniennnnn. 29
Server Configuration ..........ccocueeeeiiieeeeinieeeene 27

Server CoNNECLioN .........coccvveveviiiieee e 174
SET s 165
SET AUTOCOMMIT ..ooviiiiiieiiiiee e 166
SINGLE ROW ..., 163
SQL application...........ceevreeeieiiiiiie e 14
Threading ......cccoevveeeeiice e, 14
SQL Commands ........ceeeveeeeeiiiiiiieieeeeee e s 35
SQL Communications Area............... 32,73,103
@ I O] 11 (=) A 15
SQL Descriptor Area.......cccceeeveeenneee. 55, 74,104
SQL Statements.........cccceeevveeviieviinnnenn. 31, 63,94
SQL Threading Models..........ccccceeviiieiininnenn. 16
SQL_CTR_BLOCK .....coiiiiiiiieeiiiite et 190
SQLCA .. 32, 73,103
SQLDA. ... 55, 74, 104, 194
SQLDA Data TYPES ...uuueiiiieieeieeeeaeaeeneeenanns 199
SQLLEN field ...ovvveiiiiiiee e 76
USING ceieieeeieiiiieee e e e e r e e e e e e s srrrre e e e e e e e eans 76
SQLVAR ..o 195
Standard SQL Statements..........ccccceeeeeerinnns 124
T
Technical SUPPOrt........c.c.eeeviieiiiiiiiiieeeeee e 228
(0] o1 7= To1 1] o 228
Threading..........ceieiiiiii e 14
SQL Applications.........cccccceeeiiiiiiiiiieeee e 14
Threading Models .........ccooceiiiiiiieinieeee, 17
Implementing........ccccovveeeee i 17
Transaction LOGIC........cccvvvvvereeeiiiiiiiieeeee e e 36
U
UNIX ettt 11, 83, 111
USING .ot 76
SQLLEN field....ccceeiiieeeeeeeeee e 76
USING ClaUuSE ....cvvveiieieeeeieiiiiieee e 168
Using Host Variable Markers...........ccccoocveeene 52
w
WHENEVER ......ccvvviiiiiiii e 170
WINdows - COBOL.......cccccevvviiieiiiiieeeiiieeeene 105
Z
ZIOS. .. i 88, 117

232



	Chapter 1 - Adabas SQL Gateway Embedded SQL
	Introduction to Adabas SQL Gateway Embedded SQL
	Getting Started
	Windows Installation

	Quick-Start Guide 
	z/OS Installation

	Installing Adabas SQL Gateway Embedded SQL - z/OS
	Required and Optional Fields and Files - z/OS
	Required and Optional Fields
	Required and Optional Files
	System codepage files (for advanced users only)
	Unix and Linux Installation

	Installing Adabas SQL Gateway Embedded SQL - Linux + Unix
	Chapter 2 - Threading SQL Applications
	Threading SQL Applications
	SQL Context
	SQL Threading Models in Adabas SQL Gateway Embedded SQL Clients
	Single Threading
	Bound Threading
	Free Threading

	Implementing the Threading Models
	Chapter 3 - Client/Server Configuration
	Client Configuration

	Description of Client Configuration
	Server Configuration

	Description of Server Configuration
	CDD / JDBC Server
	Client / Server Communication

	Description of Client / Server Communication
	Host / Port
	Chapter 4 - Programming Guide - General Concepts
	SQL Programming - General Concepts

	SQL Statements
	The SQL Starting Delimiter
	The SQL Statement Body

	The SQL Communications Area (SQLCA)
	Declaring the SQLCA
	Using the SQLCA
	DECLARE CURSOR
	BEGIN DECLARE SECTION
	END DECLARE SECTION
	WHENEVER
	INCLUDE

	Program Structure
	SQL Commands and Grammar
	Transaction Logic
	Transactions Containing Different Types of Statements
	Static SQL

	Introduction
	Manipulating Data
	Non-cursor-based Statements
	Inserting Single Rows
	Updating Rows
	Deleting Rows
	Cursor-based Statements
	Declaring and Opening a Cursor
	Retrieving Data Using a Cursor
	Closing a Cursor
	Programming Logic for Cursor Usage


	Dynamic SQL

	Introduction to Dynamic SQL
	Static SQL Statements
	Dynamic SQL Statements

	General Aspects
	Dynamic SQL Principles
	Dynamic versus Static SQL - Considerations
	Limitations

	Non-Select Statements
	Using EXECUTE IMMEDIATE
	Using PREPARE and EXECUTE
	Summary

	Select Statements
	Fixed Derived Column List Method
	PREPARE
	OPEN
	FETCH
	CLOSE
	Summary
	Varying Derived Column List Method
	PREPARE
	DECLARE
	DESCRIBE
	OPEN
	FETCH
	CLOSE
	Summary

	Using Host Variable Markers
	Restrictions
	Different Methods
	Constant Number of Host Variable Markers
	NON-SELECT Statements
	SELECT Statements
	Varying Number of Host Variable Markers
	NON-SELECT Statements
	SELECT Statements
	Summary

	QL Descriptor Area (SQLDA)
	General Information
	OUTPUT SQLDA
	 
	INPUT SQLDA
	The SQLDA Structure
	Declaring an SQLDA
	 
	Allocating an SQLDA
	Determining the Type of SQL statement

	Host Variable Specification
	Single Variables
	INDICATOR Variables
	Host Variable Markers
	Host Structures

	Chapter 5 - Programming Guide - C
	SQL Programming Concepts - C

	SQL Statements in C
	The SQL Terminating Delimiter
	Comments within an SQL Statement

	Host Variables
	Host Variable Declaration
	Binary Data Type
	Syntax
	Ambiguous References and Multiple Declarations
	Data Type Conversion
	Embedding SQL Statements in C

	General Rules in C
	SQL Statement Delimiters
	SQL Statement Placement
	Comments

	Error Handling in C
	SQL Communication Area (SQLCA)
	SQL Descriptor Area (SQLDA)
	SQL Descriptor Area (SQLDA)

	Encoding and using the SQLLEN field
	Windows

	Invocation and Precompiler Options - (Windows - C)
	Options
	Filename Conventions
	Libraries
	Unix

	Invocation and Precompiler Options (Unix - C)
	Options
	Filename Conventions
	Libraries
	z/OS

	Invocation and Precompiler Options (z/OS - C)
	Options
	Libraries

	Chapter 6 - Programming Guide - COBOL
	SQL Programming Concepts - COBOL

	SQL Statements
	The SQL Starting Delimiter
	The SQL Statement Body

	Host Variables in COBOL
	Host Variable Declaration
	Host Variable Structures
	Single Host Variables
	Data Type Conversion
	Embedding SQL Statements in COBOL

	General Rules in COBOL
	SQL Statement Delimiters
	SQL Statement Placement

	Error Handling in COBOL
	SQL Communication Area (SQLCA)
	SQL Descriptor Area (SQLDA)
	Windows

	Invocation and Precompiler Options - (Windows - COBOL)
	Options
	Filename Conventions
	Libraries
	Unix

	Invocation and Precompiler Options (Unix - COBOL)
	Options
	Filename Conventions
	Libraries
	z/OS

	Invocation and Precompiler Options (z/OS- COBOL)
	Options
	Libraries

	Chapter 7 - SQL Statements
	Standard SQL Statements
	ALLOCATE SQLCONTEXT
	Function:
	Invocation:
	Syntax:
	Description
	 
	Limitations:
	ANSI Specifics:
	Adabas SQL Gateway Embedded SQL Specifics:


	BEGIN DECLARE SECTION
	Function
	Invocation
	Syntax
	 
	Description
	Limitations
	ANSI Specifics


	CLOSE
	Function
	Invocation
	Syntax
	 
	 
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics


	COMMIT
	Function
	Invocation 
	Syntax
	 
	 
	Description
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics


	CONNECT
	Function
	Invocation 
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	DEALLOCATE PREPARE
	Function
	Invocation 
	Syntax
	 
	 
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics


	DEALLOCATE SQLCONTEXT
	Function
	Invocation 
	Syntax
	 
	 
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics


	DECLARE CURSOR
	Function
	Invocation 
	 
	Syntax
	Description
	The static DECLARE CURSOR statement
	Updatable Cursors
	Non-Updatable Cursors
	The Dynamic DECLARE CURSOR Statement
	Limitations
	 

	ANSI Specifics
	 

	Adabas SQL Gateway Embedded SQL Specifics


	DESCRIBE
	Function
	Invocation 
	Syntax
	 
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics


	DISCONNECT
	Function
	Invocation 
	Syntax
	 
	Description
	 

	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics


	END DECLARE SECTION
	Function
	Invocation
	Syntax
	 
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics


	EXECUTE
	Function
	Invocation 
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	EXECUTE IMMEDIATE
	Function
	Invocation
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	GET DIAGNOSTICS
	Function
	Invocation 
	Syntax
	Description
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	FETCH
	Function
	Invocation  
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	Host Variable Specification
	Single Variables
	INDICATOR Variables
	Host Variable Markers
	Host Structures

	INCLUDE
	Function
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	OPEN
	Function
	Invocation  
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	PREPARE
	Function
	Invocation 
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	ROLLBACK
	Function
	Invocation 
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	SELECT (SINGLE ROW)
	Function
	Invocation 
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	SET
	Function
	Invocation
	Syntax
	Description

	SET AUTOCOMMIT
	Function
	Invocation
	Syntax
	Description
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	SET CONNECTION
	Function
	Invocation
	Syntax
	Description
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	USING Clause
	Function:
	Invocation:
	Syntax:
	Description:
	Limitations:
	ANSI Specifics:
	Adabas SQL Gateway Embedded SQL Specifics:

	WHENEVER
	Function
	Syntax
	Description
	Limitations
	ANSI Specifics
	Adabas SQL Gateway Embedded SQL Specifics

	Chapter 8 - Utilities
	ACEINT Utility
	ACEINT
	Starting ACEINT
	Options
	Server Connection
	Local Server Connection
	Remote Server Connection
	Multiple Server Support
	Direct SQL Statements
	Additional Statements 
	ACEINT Commands 
	Batch Processing 
	Mainframe considerations - ACEINT utility


	Chapter 9 - Error Messages 
	Error Messages
	ACEAPI
	ACAPI General Information
	ACEAPI Argument Functions

	SQL_CTR_BLOCK
	SAGColumn
	SAGContext
	SAGPointer
	SQLDA
	SQLVAR
	Decoding and Encoding SQLLEN
	SQLDA Data Types
	ACEAPI SQL Functions

	About ACEAPI SQL Functions
	SAGQACOM
	SAGQCLOS
	SAGQCONN
	SAGQDEAL
	SAGQDECH
	SAGQDECL
	SAGQDESC
	SAGQDISC
	SAGQEXEC
	SAGQEXIM
	SAGQFETC
	SAGQGERR
	SAGQGRCI
	SAGQOPEN
	SAGQPREP
	Static SQLDA
	Dynamic SQLDA

	SAGQSETA
	SAGQSETC
	SAGQSETS
	SAGQSETT
	ACEAPI Utility Functions

	SAGQDECO
	SAGQENCO
	ACEAPI Compilation and Linkage examples
	Windows
	C/C++
	Microfocus COBOL / NET Express
	Open COBOL
	VisualAge PL/I
	Open Systems

	C/C++
	Open COBOL
	z/OS

	IBM C
	IBM COBOL
	IBM PL/I


	Technical Support
	Technical Support
	Trademarks and Copyrights
	Legal Notices
	Copyright Notice
	Trademark Notice

	Index

