§ software

Adabas Transaction Manager

Adabas Transaction Manager Programmers Guide

Version 8.2.2

April 2020

ADABAS & NATURAL

This document applies to Adabas Transaction Manager Version 8.2.2 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ATM-PGGUIDE-822-20211207

Table of Contents

PTOACE ..t v
1 About this Documentationcccccoiiiiiiiiiiiiiiiiii 1
Document CONVENIONSccoiiiiiiiiiiiiiiiiiiiiiiiccic e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protection ..o 3
2 Programming transactions in Natural and 3GLcccociiiiiiiiiiiii 5
Programming Adabas transactions in Naturalcccccccoeoiiiiiiiiiiiiniiinie 6
Programming 3GL Adabas transactionscccccceeiiiiiiiiiiiiiiiiniii 6
3 Well-formed distributed transaction enforcementcccoceeeeeeiieniiniienieniieneeeneens 7
4 Automatic distributed transaction integrityccccocceiiiiiiiiiiiiiini 9
5 Detection of ill-formed distributed transactionscccccociiiiiiiiiiiiiiiii 11
6 ContinUOUS OPETatioNcocviiiiiiiiiiiiiiiiiiii e 13
7 Adabas ADARUN DTP= 8ettingsccccouviiiiiiiiiiiiiiciciccecciecece e 15
8 Distributed transaction time limitccccooiiiii 17
9 ET data and ET identity processingccccecvivviiiiiiiiiiiiiiiiiiiiiiiiiiiicciccec e 19
Using ET identities (ETID)c.cooooiiiiiiiiiiiiiiiii 20
ET Data .ooooiiiiiiii 20
Continuous operation mode and ET Datacccoooiviiiiiiiiiiii 21
External transaction coordinators and ET Datacccccoevvviviiiiiiiiiiniiiiiininen. 21
Multi-system dynamic transaction routingccccoeeeevviviiiiiiiniiiiciccee, 22
10 Other considerationscccccuiiiiiiiiiiiiiiiiiiii e 23
Extended Hold Processingccceevuiiiiiiiiiiiiiiiiiiiiiiiiiiccicccciccccccee 24
Shared HOld Statuscocciiiiiiiiiiiiiiiiicc e 24
Close COMMANGSoooviiiiiiiiiiiiiiiiei e e 25
Open Commandscccovviiiiiiiiiiiiecec s 25
11 Pending Response Codescooiiiiiiiiiiiiiiiiiiiiieeecceee e 27
12 Open distributed transaction processingcccoceiviiiiiiiiiiiiiiiiiiiiiiiiiiceccs 29
Using CICS RMI ..o e 30
Using RRMS ... 31
13 THIGGOTS oo 33

Preface

This section provides information that will help programmers in an Adabas Transaction Manager
environment.

| Note: Throughout this section the processing described is equivalent for ET versus BT unless
specifically stated to be different.

The following topics are provided:

Programming transactions in Natural and 3GL
Well-formed distributed transaction enforcement
Automatic distributed transaction integrity
Detection of ill-formed distributed transactions
Continuous operation

Adabas ADARUN DTP= settings

Distributed transaction time limit

ET data and ET identity processing

Other considerations

Pending response codes

Open distributed transaction processing

Triggers

vi

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON ..o e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Adabas Transaction Manager Programmers Guide

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

About this Documentation

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

" Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation” as an area of interest.
" Access articles, code samples, demos, and tutorials.

= Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

® Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Adabas Transaction Manager Programmers Guide 3

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

2 Programming transactions in Natural and 3GL

= Programming Adabas transactions in Naturalcooiiiiiiiiii e
= Programming 3GL Adabas tranSaCtioNScuviiiiiiiiiies it

Programming transactions in Natural and 3GL

Programming Adabas transactions in Natural

Here’s a simple Adabas transaction:

1.|Modify data in Adabas database A
2.|Issue END TRANSACTION

This is indeed extremely simple. However, there is only one database that is modified so let’s see
what happens when multiple databases are involved:

1.|Modify data in Adabas database A
2.|Modify data in Adabas database B
3.|Issue END TRANSACTION

Programming 3GL Adabas transactions

Here’s how the previous logic looks when it is implemented in 3GL:

.|Modify data in Adabas database A
.|Modify data in Adabas database B
.|Issue ET command to Adabas database A

B O o] —~

.|Issue ET command to Adabas database B

The difference between programming transactions in Natural versus 3GL is that Natural makes
it very simple (as it is supposed to do). In Natural you code a single END TRANSACTION statement
no matter how many databases are modified. In 3GL programming you code specific ET commands
for each of the modified databases.

This difference isn’t difficult to understand, and appears to make sense. However, it highlights
an extremely important area in transaction programming that we call well-formed distributed
transactions.

6 Adabas Transaction Manager Programmers Guide

3 Well-formed distributed transaction enforcement

A transaction is considered to be distributed when it modifies more than one database (RM) in the
same transaction. This means the Adabas command interface has to be used carefully to ensure
compliance with correct distributed transaction behavior. In other words, a well-formed distributed
transaction is one where the modifications to all the databases are all applied (committed) together
- and it is the programmer’s responsibility to make sure this happens.

Natural ensures that distributed transactions are well-formed because it automatically generates
a series of ET commands for all modified databases when it encounters an END TRANSACTION
statement. There is no programmer control over this, nor should there be. Natural keeps a list of
all modified databases internally so when an END TRANSACTION is encountered it simply iterates
through the list issuing ET commands. Therefore, Natural truly enforces the use of well-formed
distributed transactions

None of what Natural does guarantees integrity of distributed transactions, but it does ensure
that where they are used they are well-formed. To guarantee integrity you need to adopt Adabas
Transaction Manager, see Automatic distributed transaction integrity.

Of course, 3GL programming is not as easy as Natural. The following 3GL logic is illegal in terms
of distributed transaction programming because it applies a modification to one Adabas database
but undoes the modifications to the other - this is poor (ill-formed) distributed transaction pro-
gramming:

.|Modify data in Adabas database A
.|Modify data in Adabas database B

.|Issue ET command to Adabas database A

NEIESIES

.|Issue BT command to Adabas database B

4 Automatic distributed transaction integrity

Whether Natural generates multiple ET commands or if they are programmed in 3GL, the fact is
that a series of ET commands for multiple databases does not provide guaranteed distributed
transaction integrity because if there is a system crash, for example, between one ET and the next
an inconsistency occurs.

Adabas Transaction Manager guarantees the integrity of distributed transactions by reacting to
the first ET of the series to make sure the full distributed transaction is applied across all the
modified databases. As follows:

1.|Modify data in Adabas database A
2.|Modify data in Adabas database B
3.|Issue ET command to Adabas database A

® ATM transparently performs two-phase commit for all modified databases

4.|Issue ET command to Adabas database B

® This ET now appears redundant —but it is not, see Detection of ill-formed distributed transactions.

10

5 Detection of ill-formed distributed transactions

Adabas Transaction Manager applies distributed transaction integrity as soon as the first ET of a
series is encountered. This suggests the subsequent ET commands of the series are not needed but
that is incorrect. Well-formed distributed transaction programming is still necessary and enforced.
Here’s why:

1.|Modify data in Adabas database A
2.|Modify data in Adabas database B
3.|Issue ET command to Adabas database A

® ATM transparently performs two-phase commit for all modified databases

4.|Issue BT command to Adabas database B

® The application is trying to execute an illegal operation!

In the example above, the application is breaking the rules of distributed transaction processing
by adopting unsafe behavior. The rules of DTP stipulate the modifications for all databases in a
distributed transaction are all applied or all undone; it is not legal to have a mixture of some applied
and some undone.

In this situation Adabas Transaction Manager throws an error when the BT in point 4 above is
encountered (response 240 sub-code 496). Here’s another example, just a little more complicated:

1.|Modify data in Adabas database A
2.|Modify data in Adabas database B
3.|Issue ET command to Adabas database A

= ATM transparently performs two-phase commit for all modified databases

11

Detection of ill-formed distributed transactions

4.|Modify data in any database (A or B or another)

® The application is trying to execute an illegal operation!

In this example, the application issues only one ET command, it does not issue an ET command to
the second database. Then it goes on to do other work — in this case to start doing modifications
in a new transaction. This logic is breaking the rules of distributed transaction processing with
unsafe behavior too. In this situation Adabas Transaction Manager throws an error when the
modification in point 4 above is encountered (response 240 sub-code 496). Some people find it
difficult to understand why this example breaks the rules so consider what might happen without
Adabas Transaction Manager being used:

1.|Modify data in Adabas database A
2.|Modify data in Adabas database B
3.|Issue ET command to Adabas database A

= Adabas database B backs out the changes made so far due to resources shortages or some other reason.

4.|Modify more data in Adabas database B

5.|Issue ET command to Adabas database B

This is really not a good situation when Adabas Transaction Manager is not present. Here is what
has happened...

1.|The modification to Adabas A is applied.

2.|The first modification to Adabas B is undone.

3.|The second modification to Adabas B is applied...

= Only half of the modifications to Adabas B are applied.

The only way to be sure distributed transactions are executed correctly in your business systems
is to make sure there is no room for doubt by

1. adopting Adabas Transaction Manager

and

2. allowing it to enforce well-formed distributed transaction processing behavior, as it does by
default.

12 Adabas Transaction Manager Programmers Guide

6 Continuous operation

From time to time one or more components of Adabas Transaction Manager may suffer transient
outage. The client runtime control Continuous operation mode defines the level of tolerance to be
adopted in these circumstances. The default behavior is to avoid disruption and allowing as much
uninterrupted continuous operation as possible. However some companies may choose to disallow
(reject with an error) distributed transactions during outage by altering the tolerance level for
continuous operation for some or all clients.

The default mode (FORCE) allows Adabas Transaction Manager to temporarily generate series
of ET commands instead of performing full DTP coordination until the outage ends. When the
outage is over then full DTP coordination resumes automatically (on the next new transaction for
each client session).

13

14

7 Adabas ADARUN DTP= settings

When adopting Adabas Transaction Manager it is recommended to run Adabas with DTP=RM.
This setting enables the RM role of Adabas so that it can be coordinated by Adabas Transaction
Manager to provide full DTP support. These databases are referred to as Adabas RMs.

DTP=NO can be used to disable the RM role of Adabas. This is not recommended. When this setting
is used the database cannot participate in DTP coordination so all transactions for this database
are processed using serial ET, with no guarantee of DTP integrity.

15

16

8 Distributed transaction time limit

In the same way that Adabas provides a time limit for its local database transactions, Adabas
Transaction Manager supports a time limit for distributed transactions. When the time limit expires
for a distributed transaction Adabas Transaction Manager attempts to complete it by applying or
undoing it, depending on its status. If the transaction is undone, the application receives response
code 9 with a suitable sub-code as applicable.

It is recommended that the distributed transaction time limit is lower than all of the individual
Adabas transaction time limits, thereby enabling Adabas Transaction Manager to dictate when
timeouts occur or not, which is what it is intended to do.

17

18

9 ET data and ET identity processing

m Using ET identiies (ETID)evieiiiiiiiei e
L = N - PSPPSR
= Continuous operation mode and ET Dataoviiiiiiiiiiiii s
= External transaction coordinators and ET Datacooiiiiiiiiiiiiiiee e
= Multi-system dynamic transaction FOULINGueueueereririeiiisieieieieieiee e eeaenees

19

ET data and ET identity processing

Using ET identities (ETID)

It is possible for an application to use an ETID for some database sessions, and concurrently to
use other database sessions with no ETID. It is also possible for a client to use different ETIDs
concurrently in different database sessions; however, Software AG strongly recommends that the
same ETID is used for all databases that are used.

ET Data

ET data is a special type of application data. Changes to ET data take effect if and only if a transaction
completes successfully (is applied) with an ET command (or CL).

Adabas Transaction Manager supports the use of ET data with distributed transactions. If no new
ET data is used when the transaction is applied the existing ET data remains unchanged, similar
to how standard Adabas handles ET data.

When an application issues an ET command with ET data when no valid ETID has been provided,
Adabas Transaction Manager, like Adabas will not store the ET data persistently. Instead, it will
proceed as follows:

= If the target database of the ET command is being managed using the two-phase protocol, the
ET data will be ignored, but Adabas Transaction Manager will not draw attention to this fact by
means of a non-zero response code;

" Otherwise, the ET data will be passed to the database which the application specified on the ET
command, and to no other database.

When ET data is stored by an ET or CL command for a session using a valid ETID, its location is
determined by the setting of the client runtime control ET data storage location.

Note: Itisimportant that the same mechanism and store location is used from one execution

to the next otherwise ET data will be lost. For example, if the application is configured to

store ET data in a database one day, and then changed to use the TM recovery file the next,
then it is likely that ET data will be lost during this changeover — unless special action has
taken place to make sure the ET data has been moved from the old store to the new store.

Software AG strongly recommends applications should use the same ETID in all databases for
one client. When this recommendation is followed, there can be no confusion about which ETID
should be used when ET data is to be stored or read.

For information about:

" controlling the storage of ET data, see the ET data storage location client runtime control and
ET data storage location TM control.

20 Adabas Transaction Manager Programmers Guide

ET data and ET identity processing

" establishing the current ET data of your applications in the TM recovery file before they execute,
see ET Data Management.

Continuous operation mode and ET Data

When a client session is temporarily running in continuous operation mode, ET data requests are

directed to the database specified in the Adabas control block even though the client is configured

to use the TM recovery file. This could result in

" incorrect ET data being read.

" ET data being written to a database from which Adabas Transaction Manager is not able to retrieve
it.

" incorrect results when Adabas Transaction Manager attempts to recover a transaction on behalf

of the user

For these reasons, it is strongly recommended that the client control Continuous operation mode is
set to NO when ET data is configured to be maintained in the TM recovery file.

External transaction coordinators and ET Data

When running with the CICS Syncpoint Manager or Recoverable Resource Management Services
(RRMS), it is not possible to synchronize the storage of ET data when an unsolicited syncpoint
occurs, because CICS and RRMS syncpoints have no knowledge of ET data.

If an application stores ET data and runs in a CICS/RMI or RRMS environment, you can ensure
that the storing of its ET data is synchronized with the two-phase commit process by conforming
to the following rules:

" Any syncpoint for which ET data is to be stored must be triggered by an ET or CL command.

® The ET or CL command that triggers the syncpoint must also supply the ET data; that is, if the
application issues a series of ET commands to different databases, the first ET must supply the
ET data.

In an IMS TM system whose transactions are coordinated by RRMS, it is not possible to store ET
data synchronously with an RRMS syncpoint. IMS allows an RRMS commit syncpoint to take
place only at the successful completion of message processing, and this syncpoint cannot be
triggered by an ET or CL command.

Adabas Transaction Manager Programmers Guide 21

ET data and ET identity processing

Multi-system dynamic transaction routing

Do not use the TM option for defining the storage location of ET data for clients operating in a
multi system dynamic transaction routing environment.

Refer to the TM control ET data storage location and Client Runtime Control ET data storage loc-
ation for more information on defining the storage location of ET data.

22 Adabas Transaction Manager Programmers Guide

10 Other considerations

B Extended HOIA PrOCESSINGcoiuiiiiiiiiiiie ettt 24
B Shared HOIA STALUSeeieeeiiee e et e et e e e e e e 24
B ClOSE COMMENGSttt e oot e e e e e e e e ettt e e e e e e e e ettt et e e e e e e e s et bnataaeeeeeaaas 25
B OPEN COMMANGS ...ttt ettt e oottt et e e e e ekttt et e e e e e ettt e e e e e e e e ettt eeeeae e e nnees 25

23

Other considerations

Extended Hold Processing

The P and M command options of ET and BT commands allow a program to keep some records in
hold status even after a transaction is applied or undone. Adabas Transaction Manager supports
these options when the Extended Hold client runtime control is set. Extended hold processing pro-
ceeds as follows:

" At the point where the distributed transaction is applied or undone, the P/M option on the first
ET/BT is honored (if used). In addition, all records in the other databases remain in hold until
the ET for each database in turn is encountered.

" Aseach ET (or BT) in series is encountered the P/M options are honored for each database in turn.

® The consequence of this unavoidable processing is that some or all records are held longer than
they need to be, and additional commands are issued in order to resolve the hold processing to
obey the wishes of the application.

If the extended hold option is not active (the default setting), any ET or BT command will cause all
the user’s held ISNs to be released in databases where changes have been made, except possibly
in the database that is the target of the command; for this database, any P or M option present in
the command will be honored. This is by far the most efficient mode of execution.

Note: Extended hold processing is only relevant when transaction control is exerted by ET

or BT command.

Shared Hold Status

The H option of command option 3 for an ET or BT ACBX call allows a program to keep a record
in shared hold status indefinitely (until the next ET or BT command). Adabas Transaction Manager
supports this option as follows:

" At the point where the distributed transaction is applied or undone, the H option on the first
ET/BT is honored.

" Aseach ET (or BT) in series is encountered, if a shared hold status conflict is detected (for example,
a "H" option is subsequently specified for a database that was involved in the earlier distributed
transaction) then a response 240 sub-code 588 will be returned to the calling program. This has
no effect on the transaction outcome, which was determined earlier, but is an indication to the
program that it should review its use of this option.

Note: Adabas does not currently support the shared hold status "H" option for the internal

Yx commands used by Adabas Transaction Manager.

24 Adabas Transaction Manager Programmers Guide

Other considerations

Close Commands

Since a close command implies end-of-transaction, every CL command triggers the same processing
as for an ET command, except that:

" the user is also closed in the target database;

= if the target database is at ET status, the current distributed transaction is not affected.

Open Commands

An 0P command sent to a database in which the client has no uncommitted changes or held records
will simply be passed to its target without affecting the client’s distributed transaction status. This
logic allows “open on demand” processing without interference in distributed transaction pro-
cessing.

An 0P command sent to a database that is actively involved in the current distributed transaction
causes the distributed transaction to be wholly undone.

If the 0P command specifies that ET data is to be read, the above processing occurs. If processing
is successful, the user’s ET data is returned to the calling program. This applies even if the target
database has the parameter setting DTP=NO. The ET data is read either from the ATM transaction
manager’s recovery file or, if the transaction manager is running with the parameter setting
TMETDATA=TARGETS, from the database indicated by the 0P command.

Adabas Transaction Manager Programmers Guide 25

26

11 Pending Response Codes

Sometimes a transaction is terminated in such a way that the owner should receive a non-zero
response code, but in circumstances in which it is not possible to return a response code; for ex-
ample, the transaction manager backs the transaction out because its distributed transaction time
limit has been exceeded. When this happens, the manager stores details of the pending response
code in a list, and returns it to the client at the first possible opportunity. Pending response codes
can be listed and displayed using Adabas Transaction Manager’s online administration tool.

As with standard usage of Adabas, the time for which a pending response code is preserved de-
pends on whether ETIDs are used.

If the transaction which caused the pending response code involved no RM database sessions with
ETIDs, the pending response code is discarded as soon as any of the following conditions has been
satisfied:

® The response code has been returned to the client.

® The client is known to have disappeared.

® All Adabas RMs that took part in the transaction have been restarted.

® The transaction manager terminates.

If the transaction which caused the pending response code involved one or more RM database
sessions with ETIDs, the pending response code is discarded as soon as any of the following con-
ditions has been satisfied:

® The response code has been returned to the client.

® The client session is known to have disappeared.

® All Adabas RMs that took part in the transaction, and for which an ETID was in use, have been

restarted.

| Note: In this case a pending response code will survive a restart of the transaction manager.

27

28

12 Open distributed transaction processing

B USING CICS RMI ...ttt ettt et e et et e et e e st e e e e e enees
B USING RRMS e ettt e et e e et e e e et e e s

29

Open distributed transaction processing

Adabas Transaction Manager allows open transactions so that changes to Adabas databases can

also be coordinated alongside transactions with other vendors (example DB2, etc). You must set

Open distributed transaction support and related settings accordingly (such as Adabas transaction dy-
namics) to use either CICS/RMI or RRMS.

Open transactions also means you must consider the effect of control over transactions being ex-
erted by more than the usual ET and BT commands. The default for Adabas is that transactions
are able to span TP system message-pairs. However, this is restricted when running with other
vendor transactions. Transactions are not able to span message-pairs. Basically, open transaction
programming demands that screen interactions force a transaction boundary where any in-flight
transaction is automatically committed. This can be a severe limitation on Adabas applications
that have not been designed to work with such restrictions.

Many Adabas applications are not able to accommodate these restrictions. A number of settings
exist to help try to alleviate the difficulties in the Open distributed transaction support area. Essentially,
the design of the application is governed by the open transaction model that is used.

Using CICS RMI

= APPC Applications with CICS RMI
= Continuous operation mode with CICS RMI

Adabas Transaction Manager enables inter-operation with IBM’s CICS Resource Manager Interface
(CICS RMI). This enables CICS applications to execute transactions that distribute across Adabas
and any other vendor offerings that also work with CICS RMI (such as DB2, VSAM, etc).

CICS RMI must be configured correctly according to IBM documentation along with appropriate
settings in the area of Open distributed transaction support. Correct configuration will enable auto-
matic resynchronization as well as open transaction coordination interactions.

From a programming viewpoint transactions can be applied (committed) by the usual Adabas
commands (ET/CL) or EXEC CICS SYNCPOINT in the application. You can set client runtime
controls to specify whether you want some or all of these to be allowed. However, if there has
been neither of these when a (pseudo-conversational) screen interaction takes place (or end of
CICS task) then CICS RMI will itself enforce a unilateral commit to take place.

30 Adabas Transaction Manager Programmers Guide

Open distributed transaction processing

APPC Applications with CICS RMI

Some specialized applications are designed to use Advanced Peer-to-Peer Communication (APPC)
in CICS RMI. APPC is a protocol for two programs to work together as peers, usually across dif-
ferent CICS (or compatible) TP systems in the same or different operating systems.

The APPC protocol demands the programmer is fully trained to implement peer programs that
dynamically negotiate the explicit and implicit changing peer roles for control of transactions (this
is governed by the rules of CICS RMI APPC not by Adabas Transaction Manager). For example,
when one peer issues SYNCPOINT ROLLBACK either explicitly or by issuing a BT command the rules
of APPC demand that it cannot then issue an ET (or SYNCPOINT)...this is all related to implied/ex-
plicit role play within the APPC protocol. When these protocol rules are broken CICS RMI will
issue ASP2 abends (etc). These abends are not an indication of problems in Adabas or Adabas
Transaction Manager; they are indication of the APPC programming protocol not being adhered
to — in other words application program bugs. However, as stated the APPC protocol is very
complex so it can be very difficult to solve such application problems.

Continuous operation mode with CICS RMI

Continuous operation mode can be used with CICSRMI, and whenitisin play during outage Adabas
transactions are managed with series of ET/BT commands as usual. And also as usual, when the
outage is ended full DTP mode resumes automatically. If continuous operation mode takes effect
in the middle of transaction completion the effects can vary according to the point at which it
happens. This may mean the transaction is undone or is deferred or even a CICS transaction abend
may occur (something CICS RMI often does unilaterally when symptoms occur during transaction
completion). New transaction completions will follow the settings you choose for continuous op-
eration until the outage ends and normal operation resumes.

Using RRMS

= Using RRMS with IMS TM

Adabas Transaction Manager enables inter-operation with IBM’s Recoverable Resource Management
Services (RRMS). This enables any combination of resource managers (typically DBMSs) to parti-
cipate in distributed transactions that are coordinated by Resource Recovery Services (RRS), a
component of RRMS that drives the two-phase commit protocol.

RRMS must be configured correctly according to IBM documentation along with appropriate
settings in the area of Open distributed transaction support. Correct configuration will enable auto-
matic resynchronization as well as open transaction coordination interactions.

From a programming viewpoint transactions can be applied (committed) by the usual Adabas
commands (ET/CL) or by a system call to RRMS. You can set client runtime controls to specify
whether you want some or all of these to be allowed.

Adabas Transaction Manager Programmers Guide 31

Open distributed transaction processing

RRMS support is provided for single-user, single-TCB batch applications, and for applications
running under IMS TM.

Using RRMS with IMS TM

If your applications run under IMS TM, and IMS allows its transactions to be coordinated by
RRMS, Adabas Transaction Manager can ensure that their Adabas changes are committed (or
backed out) in a synchronized manner, under the control of RRMS. An IMS commit syncpoint
causes RRMS to carry out a commit operation for all changed resources that are managed by
RRMS-enabled resource managers. An IMS rollback syncpoint causes all changes to be backed
out.

The completion of an IMS message (normally this means screen I/O) causes a syncpoint to take
place. In the case of successful completion, this is a commit syncpoint. Moreover, a commit syncpoint
implies the completion of processing for the current message. For this reason, an ET or CL command
that is issued during the processing of a message will not cause an RRMS commit syncpoint; any
pending Adabas changes will be committed, but non-Adabas resources will be unaffected. Further,
any held ISNs will be released, or will remain in held status, depending on the presence of P or M
command options, and the setting of the Extended Hold client runtime control.

32 Adabas Transaction Manager Programmers Guide

13 Triggers

Triggers can execute distributed transactions under the control of Adabas Transaction Manager.
Refer to the documentation for the Adabas System Coordinator to find out how to configure the
System Coordinator for a trigger environment.

If your application causes participating triggers to be fired, and you require a distributed transaction
to include changes made by both the application program and the participating trigger, you must
ensure that the very first change command (store, delete or update) of the distributed transaction
is issued by the application program, not by the trigger. This is necessary because the originating
client must be the root of the distributed transaction, not the transient proxy trigger.

33

34

	Adabas Transaction Manager Programmers Guide
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Programming transactions in Natural and 3GL
	Programming Adabas transactions in Natural
	Programming 3GL Adabas transactions

	3 Well-formed distributed transaction enforcement
	4 Automatic distributed transaction integrity
	5 Detection of ill-formed distributed transactions
	6 Continuous operation
	7 Adabas ADARUN DTP= settings
	8 Distributed transaction time limit
	9 ET data and ET identity processing
	Using ET identities (ETID)
	ET Data
	Continuous operation mode and ET Data
	External transaction coordinators and ET Data
	Multi-system dynamic transaction routing

	10 Other considerations
	Extended Hold Processing
	Shared Hold Status
	Close Commands
	Open Commands

	11 Pending Response Codes
	12 Open distributed transaction processing
	Using CICS RMI
	APPC Applications with CICS RMI
	Continuous operation mode with CICS RMI

	Using RRMS
	Using RRMS with IMS TM

	13 Triggers

