
Adabas Bridge for DL/1

Conversion

Version 2.3.2

November 2016

This document applies to Adabas Bridge for DL/1 Version 2.3.2.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2016 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ADL-CONVERSION-232-20161117

Table of Contents

Conversion ... v
1 Introduction ... 1

Other Documentation You May Need ... 3
Documentation Related to non-SAG Products .. 4

2 Planning the Conversion Process .. 5
Stocktaking ... 6
Resource Allocation ... 6

3 Conversion of the Data Structure - General Considerations .. 9
Changes to DL/I Data Structures Prior to the Conversion 10
Validating Segment Layouts and Data Types .. 10
Optimization with Respect to Adabas Compression ... 11
Adabas File Layout .. 11

4 ADL Conversion Utilities for DBDs and PSBs .. 15
Conversion - Overview .. 16
Conversion - PSBs and all DBDs except Index DBDs .. 23
Conversion - Physical DBDs .. 24
Conversion - Index DBDs ... 24
Conversion - Logical DBDs .. 25
Conversion - Logically Related Physical DBDs ... 25
Conversion - HD Databases ... 26
Control Statements for the CBC Utility .. 27
CBC Utility Output .. 30
z/OS Requirements ... 31
z/VSE Requirements ... 32

5 Conversion of the Data - General Considerations .. 35
Conversion of the Physical Hierarchical Structures .. 37
Additional Effort Related to Logical Relationships ... 37
Validating Data Types .. 38

6 ADL Data Conversion Utilities ... 39
Overview .. 40
Data Unload with the ADL Unload Utility .. 41
Data Validation ... 45
Limited Data Unload .. 46
Unloading a HDAM Database ... 49
Control Statements for the ADL Unload Utility .. 50
Data Unload With the ADL Customized Utility .. 51
Converting Data - Load .. 56
Establishing Logical Relationships .. 61
z/OS JCL Requirements .. 82
z/VSE JCS Requirements .. 87

7 Migration of a GSAM Data Base ... 93
Introduction .. 94
Restrictions ... 94

iii

Conversion of a GSAM Data Base .. 95
Features of a Converted GSAM Data Base .. 95

Index ... 97

Conversioniv

Conversion

Conversion

This documentation provides an overview of the Conversion procedure for the Adabas Bridge for
DL/I.

The following topics are covered:

Introduction

Planning the Conversion Process

Conversion of the Data Structure - General Considerations

ADL Conversion Utilities for DBDs and PSBs

Conversion of the Data - General Considerations

ADL Data Conversion Utilities

Migration of A GSAMData Base

v

vi

1 Introduction

■ Other Documentation You May Need .. 3
■ Documentation Related to non-SAG Products ... 4

1

This manual describes the conversion process “DL/I database to one or more Adabas files” as
supported by the Adabas Bridge for DL/I (ADL) conversion utilities. The ADL conversion utilities
provide a powerful tool for an automated migration from DL/I to Adabas. The stages comprised
by the conversion utilities are:

■ analyses and conversion of DL/I database definitions (DBDs) and program specification blocks
(PSBs) into entries in the ADL directory for later use by the ADL Interfaces;

■ conversion of DL/I database definitions (DBDs) into Adabas file descriptions;
■ conversion of the actual data from its DL/I format into one or more Adabas files;

Please note that throughout the entire ADLdocumentation the term “ADLfile” is used to designate
anAdabas file originating from the conversion of a DL/I database. This is to point out the particular
properties of such a file.

Besides the conversion utilities, the further functional units of ADL are the CALLDLI Interface
and the Consistency Interface. The CALLDLI Interface allows DL/I applications to access ADL
files in the sameway as original DL/I databases. The Consistency Interface provides access toADL
files from Natural programs or with Adabas direct calls. This interface preserves the hierarchical
structure of the data, which is of importance for ongoing DL/I applications. The installation and
operation of the interfaces is covered by the ADL Interfaces documentation.

The currentmanual primarily addresses the systemprogrammer in charge of the database conver-
sion process. However, certain decisions to be taken in preparation of or during the conversion
process will need coordination with the Adabas database administrator and Natural/Adabas ap-
plication programmers.

A familiarity with the operating system in use is presumed in this manual. Also, a certain degree
of familiarity with both database systems is required. This manual makes frequent use of terms,
synonyms, abbreviations and facts related to these systems. For clarity, a glossary is provided
with the ADL Messages and Codes documentation.

The current manual applies to both z/OS and z/VSE type operating systems. References valid for
only one operating system are clearly marked as such. The term “DL/I” is used as a generic term
for IMS/VS and DL/I DOS/VS.

Conversion2

Introduction

Figure 1: Functional units of ADL and their interrelation

Figure 1 shows the individual functional units of ADL and their interrelation with DL/I, SQL and
Natural applications.

This chapter covers the following topics:

Other Documentation You May Need

The following publications may be useful when installing and operating the ADL Interface:

■ Adabas Utilities Manual
■ Adabas Operations Manual
■ Adabas Messages and Codes
■ Adabas Reference Data and Adabas DBA Reference Data documentation.

3Conversion

Introduction

For a complete list of manuals, prices and ordering information, refer to the Software AG Docu-
mentation Overview or contact your support representative.

Documentation Related to non-SAG Products

The documentationmentioned belowmight be of interest and helpful during the ADL conversion
process.

For z/OS users:

■ IMS/VS Application Programming
■ IMS/VS Application Programming for CICS/VS Users
■ IMS/VS Utilities Reference Manual
■ CICS TS Installation Guide
■ CICS TS Operations and Utilities Guide
■ CICS Resource Definition Guide

For z/VSE users:

■ DL/I DOS/VS Guide for New Users
■ DL/I DOS/VS Application Programming: CALL and RQDLI Interface
■ DL/I DOS/VS Application Programming: High Level Programming Interface
■ DL/I DOS/VS Utilities and Guide for the System Programmer
■ DL/I DOS/VS Resource Definition and Utilities
■ CICS TS Installation Guide
■ CICS TS Operations and Utilities Guide
■ CICS Resource Definition Guide

Conversion4

Introduction

http://documentation.softwareag.com/
http://documentation.softwareag.com/

2 Planning the Conversion Process

■ Stocktaking .. 6
■ Resource Allocation ... 6

5

A successful conversion fromDL/I toAdabas presupposes a clear knowledge of the existing system
(which DL/I databases exist, which applications access these databases in batch or online mode
etc.) and well defined goals. This section outlines some aspects of the conversion process which
might be worth considering prior to the conversion.

This chapter covers the following topics:

Stocktaking

The first task in the conversion process is obviously a stocktaking of the existing DL/I databases,
PSBs and applications in your environment. The result of this stocktaking process should be a list
ofDL/IDBDs, PSBs and application programs and should also showwhich applications usewhich
PSBs and, in turn, which DBDs are referenced by the individual PSBs.

You should be aware that the ADL conversion utilities require the DL/I DBDs and PSBs to be
available in source form. The above mentioned list thus might also contain the information where
the corresponding DBD or PSB source code can be found.

During the conversion process, you might wish to convert DL/I databases in groups according to
their interrelation with applications. On a first level, this could simply be based on whether two
DBDs are referenced in one and the same PSB. Also, an online application might schedule several
PSBs, which in turn might reference several DBDs. These DBDs could then be considered to be
interrelated via this application.

Despite the fact the ADL CALLDLI Interface allows applications to run in mixedmode (accessing
original DL/I databases and ADL files concurrently), it might turn out that the conversion process
can be simplified and the testing phase shortened if databases related to one and the same applic-
ation are converted at the same time.

Note that any two physical DBDs which are interrelated by a DL/I logical relationship must be
converted together.

Resource Allocation

When large databases are to be converted, it is important to consider the space that will be required
for these databases after the conversion. You should be aware that, during the conversion process,
the space owned by the database is needed twice, namely in the DL/I system as well as in the
Adabas system.

It is recommended that the Adabas database administrator is consulted prior to the conversion
process, to determine the space needed for ADL files.

Conversion6

Planning the Conversion Process

Similarly, the time required for the unload and load batch jobs during the conversion of a DL/I
database is comparable to the time needed, for example, for a reorganization of the DL/I database.

7Conversion

Planning the Conversion Process

8

3 Conversion of the Data Structure - General Considerations

■ Changes to DL/I Data Structures Prior to the Conversion ... 10
■ Validating Segment Layouts and Data Types .. 10
■ Optimization with Respect to Adabas Compression .. 11
■ Adabas File Layout .. 11

9

The operation of the Adabas Bridge for DL/I normally does not need any change of the original
DL/I definitions. It is sufficient to convert these original DL/I definitions with the ADL Control
Block Conversion (CBC) utilities as described in the section ADL Conversion Utilities for DBDs and
PSBs in this documentation. The resulting Adabas file layout can be used without any further
modification by DL/I or Natural applications through the ADL CALLDLI or ADL Consistency
Interface respectively.

Nevertheless, itmay be advantageous to depart from this “straightforward”method by introducing
some modifications before, during and after the conversion. The sectionManaging ADL Files in
the ADL Interfaces documentation describes the steps necessary to perform this modification.

The following section offers you details of the default Adabas file layout, as well as some hints on
modifying the DL/I structures or the Adabas file layout.

This chapter covers the following topics:

Changes to DL/I Data Structures Prior to the Conversion

Before starting the conversion process, you should check whether any modifications to the DL/I
definitions are desired. When the conversion is completed, some further change of the DL/I
structures requires a time-consuming unload and reload of the data.

Validating Segment Layouts and Data Types

For DL/I applications, the view of a segment is often not the same as defined in the original DL/I
DBD. This is possible, because DL/I correspondswith the application program on a segment level,
that means, it offers and accepts a whole segment, regardless of the field definitions. Therefore, a
DL/I field can contain non-numeric data, even if it is defined as numeric. Since Adabas operates
on a field level, problems can occur while loading such incorrect data.

On the other hand, DL/I fields can exist which are defined as alphanumeric but which contain
only numeric data. The CBCutility converts such fields to alphanumeric Adabas fields andAdabas
will not validate them for numeric contents. The same effect occurs for parts of a segment which
correspond to no DL/I field definition, but which are subsequently used for numeric data.

Therefore, you are recommended to compare the segment layout of the DL/I definitions with the
redefinitions (like copy-codes, copy-books) in the application programs. Remove all inconsistencies
and include field definitions from the copy- codes into the DL/I DBD definition. You can add all
field definitions or combine subsequent alphanumeric fields to form one large field. This is advant-
ageous for the Adabas compression and for the developing of Natural applications as described
later.

Conversion10

Conversion of the Data Structure - General Considerations

Note that additional field definitions in the DL/I DBD will not influence your DL/I applications,
if the overall segment length is unchanged and you do not define a field as numeric which is
suppliedwith non-numeric values. This is becauseADL correspondswith the application program
on a segment level like DL/I. But the data is stored with Adabas, and thus you will receive a non-
zero response code if an inconsistency in the data type is detected.

Optimization with Respect to Adabas Compression

Once the data is converted, it will be compressed by Adabas as described in the Adabas Utilities
documentation. Because ADL defines all fields with the “NU” option for the Adabas compression
utility ADACMP, the “null value suppression” will also be active.

If the converted data structures do not reflect the structures which are used by the application,
theAdabas compressionmaynot operate in an optimalway.Assume for example, there is a segment
in a DL/I DBD with no field definitions specified. The application program may redefine this
segment by splitting it up into five different parts. If the last part is filledwith data, no compression
can take place, even if the other four parts are empty.

Another failure of theAdabas compression can be an incorrectly definedfield type. If a field contains
numeric data but is defined as alphanumeric, it will not be compressed.

Thus, in order to optimize theAdabas compression, the converted data structures and types should
reflect the usage in the application programs. This may be achieved by modifying the DL/I defin-
itions prior to the conversion or by changing the Adabas file layout after the conversion.

Adabas File Layout

The ADL Control Block Conversion offers you an automated way to convert DL/I data structures
into an Adabas file layout. The following sections outline the default layout and how you can
modify it:

■ Default Layout Generated by the ADL Conversion Utilities
■ Changing the Default Layout

11Conversion

Conversion of the Data Structure - General Considerations

■ Considerations for Natural / Adabas applications

Default Layout Generated by the ADL Conversion Utilities

The ADL Control Block Conversion (CBC) converts every element of a DL/I physical DBD into an
element of an Adabas file. Additionally some fields are generated to reflect the hierarchical
structure. The information about the other DL/I definitions, like PSBs, logical or secondary index
DBDs, are kept in theADLdirectory file. These structures do not have any influence on theAdabas
file layout. The only exceptions are user data fields in index DBDs.

In the following, the translation of the different elements is described in detail:

■ A physical DBD corresponds to an Adabas file (an “ADL file”). You may split up the segments
of the DBD into different files as described in the next section.

■ For every DL/I segment, the CBC utility generates one Adabas group. The overall length of all
Adabas fields of this group is the same as the length of the DL/I segment. The name and the
overall length of the group must not be changed after the CBC utility runs. There are special
rules for logical child segments, which are explained later in this section.

■ Every DL/I field is converted to an Adabas field. Redefined or overlapping fields are split up
into the smallest units. The CBC utility generates one Adabas field for every unit. The only ex-
ception is the root sequence field, which is never split up. For those parts of the DL/I segments
which correspond to no DL/I field, so-called Adabas “filler fields” are generated.

An Adabas field has the same type and length as the corresponding DL/I field. Filler fields are
always defined as alphanumeric. If an Adabas field would be longer than 253 bytes, it is split up.
This arbitrary splitting up may result in problems for developing Natural applications. See the
section Considerations for Natural/Adabas Applications later in this documentation on how to avoid
these problems.

■ For every secondary index, one Adabas field is generated as part of the Adabas file, which
contains the source segment data. This field is one of the ADL internal fields and must not be
altered by Natural applications.

■ If an index DBD contains user data fields, then the corresponding Adabas fields are generated
additionally to the secondary index field.

■ With every ADL file, the ADL physical pointer fields Z0 - Z8 are generated as needed. These
internal fields are used by theADLCALLDLI Interface in order to locate the hierarchical position
of a DL/I segment. The contents of these fields must never be altered by Natural applications.
The maintenance of all ADL internal fields for Natural applications is performed by the ADL
Consistency Interface, as described in the ADL Interfaces documentation.

■ For every child segment type, the ADLCBC utility generates the logical pointer fields (so-called
“partial concatenated key fields”, short “PCK fields”) of all parent segments. This concerns the
physical as well as the logical hierarchical structure, regardless of which file contains the
definition of the corresponding segment group. These fields reflect the hierarchy to Natural

Conversion12

Conversion of the Data Structure - General Considerations

applications. For DL/I applications they are maintained by the ADL CALLDLI Interface auto-
matically.

■ The following fields are allocated as Adabas descriptors in an ADL file:
■ the root sequence field,
■ the physical pointer fields Z0 and Z1,
■ the secondary index fields.
■ Logical relationships between two DL/I DBDs require the definition of logical child segments
on both sides. The datamay be stored on both sides or only on one side. A logical child segment
is called “real” if the data is stored on its side; otherwise it is called “virtual”.

The ADL CBC utility will include the elements which correspond to a logical child segment
only in one Adabas file, regardless how it was defined in DL/I. ADL will choose the side for
which the corresponding logical child segment fulfils one of the following criteria (in order of
precedence):
■ The logical child segment has dependent segment types (so-called “variable intersection
data”).

■ The logical child segment is real, while the paired one is virtual.
■ Both logical child segments are real, and the one in question is to be converted first.

If a logical child segment contains no intersection data (in other words, no data apart from the
DL/I concatenated key), no Adabas group for this segment will be generated at all. In fact, all in-
formation about this segment is kept in the ADL PCK fields.

Changing the Default Layout

The layout of anADLfile is primarily defined by theDL/IDBDdefinition. Thus, everymodification
of the DBD will alter the Adabas file layout.

During the CBC utility run, you can specify the "FNR" parameter with the GENSEG function. Then
the segments will be distributed on different Adabas files. You may also specify the "ADANAME"
parameter, in order to define the name of the Adabas group, which correspond to a DL/I segment
type.

Once the DL/I data structures have been converted to Adabas, some changes are still possible:

■ You may define additional fields “inside” or “outside” of segments (i.e. the corresponding
groups), provided that the overall length of these groups remains unchanged.

■ You may define descriptors, superdescriptors, etc.
■ Youmay alter the Adabas DBID and file numbers of the ADL files by copying the file and recon-
vert the DBD definitions.

13Conversion

Conversion of the Data Structure - General Considerations

For more information concerning the Adabas layout of an ADL file, see the sectionManaging ADL
Files in the ADL Interfaces documentation.

Considerations for Natural / Adabas applications

Once the DL/I data structures are converted to Adabas, DDMs can be generated with SYSDDM
orwith Predict which are used byNatural applications. Because the incorporate functions of these
tools use theAdabas layout, you should consider theDL/I structures before the conversion because
this defines how the Adabas fields looks like.

As described earlier, a field which would be longer than 253 bytes is split up. This might cause
problems for Natural applications, if for example this splitting is in themiddle of a numeric value.
Thus, you are recommended to force a splitting manually at a better place. This can be performed
either by including additional DL/I field definitions into the DBD or by a reorganization of the
Adabas fields inside the affected group.

Another reason for avoiding such longAdabas fields is the inflexibility of these fields. As described
in the sectionManaging ADL Files in the ADL Interfaces documentation, it is easy to increase the
size of a field as long as it does not exceed the maximum size of 253 bytes.

You can distribute the segments of a DL/I DBD into different Adabas files. This can be helpful if
Natural programshave to identify segment data and segmentswith no sequence fields are involved.
Splitting up the data into different files might also affect the Adabas performance, as described in
the section Performance Considerations in the ADL Interfaces documentation.

If you are using Adabas FASTPATH and some of the segments in a DBD contain constant data,
like tables, etc., you should also consider choosing another file number for these segments. Then
Adabas FASTPATH can work in a more efficient way.

In order to access dependent segments with Natural applications, you may include descriptors
and superdescriptors in the Adabas file. You can do that by adding an entry to the ADACMP
cardswhich are produced by the ADLCBC utility. Once the data has been converted into the ADL
file, you can use the Adabas ADAINV utility in order to generate descriptors, superdescriptors
etc. Such a superdescriptor might consist of the PCKs of all parent segments and the sequence
field of the segment to be accessed. If this segment does not have a sequence field, the super-
descriptor would also return data of other segment types under the same parent. In order to avoid
this, you can choose another file number during the CBC utility run for the affected segment.

Conversion14

Conversion of the Data Structure - General Considerations

4 ADL Conversion Utilities for DBDs and PSBs

■ Conversion - Overview ... 16
■ Conversion - PSBs and all DBDs except Index DBDs ... 23
■ Conversion - Physical DBDs .. 24
■ Conversion - Index DBDs .. 24
■ Conversion - Logical DBDs .. 25
■ Conversion - Logically Related Physical DBDs .. 25
■ Conversion - HD Databases .. 26
■ Control Statements for the CBC Utility ... 27
■ CBC Utility Output ... 30
■ z/OS Requirements ... 31
■ z/VSE Requirements .. 32

15

For the Adabas Bridge for DL/I to be able to process a DL/I call, it must be aware of the original
DL/I structures and the rules according towhich theywere defined, and how the data is structured
under Adabas. This information is in ADL control blocks stored in the ADL directory file. The
control blocks are created during the DBD/PSB conversion process, which uses the original DL/I
DBD and PSB sources as input. These are assembled and then processed further by the CBCutility.

For an application program to run againstADL, both the PSBused and theDBDswhich it references
must be run through the DBD/PSB conversion process. This section describes the procedure for
generating the necessary ADL control blocks from the DBD/PSB macro source.

This chapter covers the following topics:

Conversion - Overview

To convert a DL/I DBD or PSB into an ADL DBD or PSB, you must perform the following steps:

All PSBs and DBDs except Primary Index DBDs

DescriptionStep

Assemble and link edit the original DL/I DBD or PSB source.Step 1

Step 1

Assemble and link edit the original source of theDL/IDBDor PSBusing theADLmacros provided
in the Source Library on the installation tape. You may use the sample JCL contained in the
members ADLDPC1 (z/OS) or ADLDPC1.J (z/VSE) for this. For the special link-edit requirements of
an HD database, see the corresponding topic later in this section.

In addition to the DL/I keywords you can add the “PRINT” keyword to the DBD macro or to the
first PCB macro of a PSB.

generates the full assembler listing,PRINT=GEN

is the default and generates the short output.PRINT=NOGEN

Conversion16

ADL Conversion Utilities for DBDs and PSBs

All PSBs and Physical and Logical DBDs

DescriptionStep

Run the CBC utility once for each DBD/PSB.Step 2

Step 2

Run the CBC utility once for each DBD and PSB processed in Step 1. For z/OS, you may use the
sample JCL contained in the members ADLDPC23 for physical DBDs (contains Step 3 as well) or
ADLDPC2 for PSBs and logical DBDs. z/VSE users should consultmembers ADLDPC23.J or ADLDPC2.J
respectively.

Sample JCL/JCS requirements for the CBC utility can be found at the end of this section.

The following input must be provided for each DBD or PSB:

■ The load module produced in Step 1;
■ One or more control statements, as described later in this section.

The following output is produced:

■ An ADL DBD or PSB entry in the ADL directory file;
■ The ADACMP statements for the Adabas file(s) to be used to store the converted data (for physical
DBDs only);

■ The Adabas User Exit 6 extensions to be used during initial loading of the Adabas file(s) (for
physical DBDs only);

■ A report describing the original DL/I structure, the new Adabas structure, and the relationship
between the two (for DBDs only).

17Conversion

ADL Conversion Utilities for DBDs and PSBs

DBD/PSB Conversion Steps 1 - 2

Conversion18

ADL Conversion Utilities for DBDs and PSBs

19Conversion

ADL Conversion Utilities for DBDs and PSBs

Physical DBDs Only

DescriptionStep

Create input decks.Step 3

Assemble and link-edit the Adabas User Exit 6 extension.Step 4

Step 3

The output deck created by theCBCutility contains severalmembers (ADACMPcontrol statements
and theUser Exit 6 extensions for eachAdabas file). If the CBCutility has generated output control
statements (see the description of the UTI parameter inADLParameterModule in theADL Installation
documentation), you can use one of the IBM utilities IEBUPDTE (z/OS) or LIBR (z/VSE) to create
the members. The control statement output data sets generated by the CBC utility are named ac-
cording to the following conventions:

xfffff

The individual identifiers are as follows:

ExplanationIdentifier

W for ADACMP control statements I for the Adabas User Exit 6 Extensionx

The five-digit number of the Adabas file used to store the root segment data.fffff

Step 4

Assemble the Adabas User Exit 6 Extension (i.e. the output from Step 3) and link edit this with
the fixed part, DAZUEX06. Youmay use the sample JCL in the Source Librarymember ADLDPC4
(z/OS) or ADLDPC4.J (z/VSE) as an example.

Conversion20

ADL Conversion Utilities for DBDs and PSBs

DBD/PSB Conversion Steps 3 - 4

21Conversion

ADL Conversion Utilities for DBDs and PSBs

Conversion22

ADL Conversion Utilities for DBDs and PSBs

The control blocks to be converted are of different types, such as PSBs, physical DBDs and logical
DBDs. Not all the steps in the DBD/PSB conversion process need to be performed for all control
block types. The table below provides an overview of which steps are required for which control
blocks and is followed by more detailed explanations.

Step 4Step 3Step 2Step 1Type of PSB/DBD

YESYES *YES *YESPhysical DBD

NONONONOPrimary Index DBD

NONONOYESSecondary Index DBD

NONOYESYESLogical DBD

NONOYESYESPSB

* Note that the sample JCL(JCS) in member ADLDPC23 (ADLDPC23.J) enables both steps to be
run in a single job.

It is recommended to convert all PSB and logical DBD control blocks once, whether the physical
DBDs referenced by them are already converted or not. ADL will automatically detect when a
physical DBD is not yet converted and will direct the corresponding database call to DL/I.

This prevents you from monitoring which PSB in detail references which DBD. The only thing
you have to do when you convert a further database is to convert the corresponding DBD control
block. In a CICS environment, you will have to repeat some of the steps described in the topic
Generating the Runtime Control Tables in the ADL Interfaces documentation.

Conversion - PSBs and all DBDs except Index DBDs

Assemble and link edit all DBDs, except for primary index DBDs, and all PSBs using the ADL
macros provided in the ADL Source Library on the installation tape. You may use the sample
JCL(JCS) contained in the members ADLDPC1 (ADLDPC1.J) for this. Primary index DBDs and
PSBs which do not contain DB-PCBs are not used by ADL and may, therefore, be omitted from
the DBD/PSB conversion process. After this, run all DBDs and PSBs except secondary index DBDs
through the CBC utility.

If you do not intend to convert all DL/I databases at once, you need to convert only those DBDs
describing the databases being converted. Likewise, you need to convert only those PSBs which
reference converted data.

PSBs that reference both converted and non-converted databases are used in the mixed mode en-
vironment.

23Conversion

ADL Conversion Utilities for DBDs and PSBs

Conversion - Physical DBDs

If a physical DBD is to be run through the CBC utility more than once, you must delete it from
the ADL directory file first. This must be done to ensure that the latest version of the DBD is taken
(i.e. the version in the Load Library and not the one stored in the ADL directory file).

You may delete control blocks for a physical DBD stored in the ADL directory file using the
DELDBD function described later in this section, or with the ADL Online Services.

For physical DBDs, Steps 3 and 4 must also be performed in order to complete the conversion
process.

Conversion - Index DBDs

All index DBDs, except for the primary index DBD for HIDAM or HISAM databases, need to be run
through the assembly and link edit process described in Step 1. No further steps need to be per-
formed.

The index DBD control blocks are automatically processed and stored in the ADL directory file
when the physical DBD for which the secondary index has been defined is run through the CBC
utility. This means that you must run all secondary index DBDs through the assembly and link
edit process described in Step 1 before you can successfully run aDBD containing secondary indices
through theCBCutility. Each secondary index definitionwill result in the generation of anAdabas
descriptor as part of the Adabas file description for the file containing the source segment data.

If an index DBD contains user data fields, Adabas fields will automatically be generated as part
of the Adabas file description of the file containing the source segment data.

Once stored in the ADL directory file, the control blocks for an index DBD may be deleted like
any other DBD. If you delete a physical DBDwith theADLOnline Services, you should also delete
all related index DBDs in order to avoid problems which could arise during regeneration.

Where a physical DBD containing secondary indices is to be run through the CBC utility more
than once, the ADL control blocks for the secondary index DBDs will be deleted and re-created
automatically.

Conversion24

ADL Conversion Utilities for DBDs and PSBs

Conversion - Logical DBDs

You must run all logical DBDs through the assembly and link edit process as described in Step 1
and then through the CBC utility as described in Step 2. The only parameter required for the CBC
utility is the name of the logical DBD to be converted. All other parameters will be ignored.

No ADACMP statements or Adabas User Exit 6 extensions are generated for logical DBDs. This is
because logical DBDs are based on database(s) which are described by physical DBDs, and these
have to be run through the complete conversion process separately. All ADACMP statements and
Adabas User Exit 6 extensions needed are generated then.

Once stored in the ADL directory file, the control blocks for a logical DBD may be deleted in the
same way as any other DBD.

Conversion - Logically Related Physical DBDs

Logically related physical DBDs reference each other using definitions of logical child and logical
parent segment types. When processing a physical DBD, the CBC utility needs access to all other
physical DBDs which are logically related to the DBD being processed. The CBC utility first tries
to locate a relatedDBD in the ADLdirectory file. If this fails, the CBC utility tries to load the related
DBD as a load module from the Load Library. If this also fails, the CBC utility reports an error.

This means that before you can successfully run a DBD containing logical relationships through
the CBC utility, you have to run all other related physical DBDs through the assembly and link
edit process described in Step 1 at the beginning of this section.

Running a physical DBD containing logical relationships through the CBC utility stores both the
physical DBD being processed and all other logically related physical DBDs in the ADL directory
file. However, this does not complete processing of these ADL control blocks; you still have to
run each one of them separately through the CBC utility. You can see whether processing has been
completed for all DBDs referenced by the DBD being run through the CBC utility by consulting
the list provided at the end of the CBC utility report.

If a physical DBD is logical related to other DBDs, you must specify the LOGID parameter at the
GENDBD function for a unique identification of the DBD’s data.

If a physical DBD is to be run through the CBC utility more than once, you must first delete it and
all other logically related physical DBDs from the ADL directory file. Then re-convert them all
again (without further intermediate deletion). This ensures that the latest version of the DBDs is
used (that is, the version in the Load Library and not that stored in the ADL directory file).

25Conversion

ADL Conversion Utilities for DBDs and PSBs

Conversion - HD Databases

For HDdatabases an alternate sequence is defined by the ACCESSmacro,which replaces the secondary
index DBDs. When such a DBD source is assembled, the result is one module containing the
physical DBD aswell as the secondary index DBDs. Since ADL expects the secondary index DBDs
on separate members, this module must be split up, as described below. The remaining steps 2 -
4 of the conversion can be performed in the common way, as described earlier in this section.

z/OS Requirements

Add the following entries to the link-edit for the physical DBD:

ENTRY dbdname
REPLACE secname-1
.
. for each secondary index
.
REPLACE secname-n
INCLUDE OBJMOD
NAME dbdname(R)

for each secondary index add the following entry:

ENTRY secname-x
REPLACE dbdname
REPLACE secname-1
.
. all secondary indices, but not secname-x
.
REPLACE secname-n
INCLUDE OBJMOD
NAME secname-x(R)

z/VSE Requirements

Assemble theDBDwith option “DECK” to create anOBJmodule and then add the following entries
to the link-edit for a physical DBD:

Conversion26

ADL Conversion Utilities for DBDs and PSBs

PHASE dbdname,*,NOAUTO
INCLUDE dbdname,(dbdname)

and for each secondary index add the following entry:

PHASE secname-x,*,NOAUTO
INCLUDE dbdname,(secname-x)

Control Statements for the CBC Utility

Asmentioned earlier, youmust provide a control statement for eachDBD and PSB processed using
the CBC utility. Each control statement must have the following format:

function p1,p2... comments

The individual parameters are as follows:

ExplanationParameter

A function keyword. It must start in the first column of a statement.function

Parameters for the function given. They must follow the function and be separated from it by
at least one blank. No blanks should be left between parameters.

p1,p2...

Comment statements. Comments can be made on statements by leaving at least one blank
after the last parameter, or by inserting an asterisk (“*”) in the first column of a statement.

comments

The various function keywords are as follows:

ParametersFunction

NAME=DBD-name, LOGID=logical-Id,DBID=dbid, FNR=file-number, TYPE=conversion-type,
CONSI=YES/NO

GENDBD

NAME=segment-name,LOGID=logical-Id, FNR=file-number,ADANAME=Adabas-short-name,
BACKW=YES/NO

GENSEG

NAME=DBD-nameDELDBD

NAME=PSB-nameGENPSB

NAME=PSB-nameDELPSB

These functions are described in more detail in the following topics:

■ GENDBD Function
■ GENSEG Function
■ DELDBD Function

27Conversion

ADL Conversion Utilities for DBDs and PSBs

■ GENPSB Function
■ DELPSB Function

GENDBD Function

The GENDBD function initiates the processing of the DBD to be converted. Its parameters are as
follows:

DescriptionParameter

The name of the ADL DBD to be converted. It can be between 1 and 8 alphanumeric characters
long; the first character must be a letter. The name specified must be the same as the original
DL/I name of the DBD.

NAME

(for physical DBDs only) The default logical ID of the DBD. If the DBD is involved in logical
relationships, the LOGID given must be different from the LOGIDs of the other DBDs.
Possible values: 1 - 255
Default: 1

LOGID

(for physical DBDs only) The Adabas database ID for the database which will be used to store
the converted data. If it is omitted, the DBID of the ADL directory will be used. If the DBID is

DBID

the same as the DBID of the ADL directory, it is recommended to omit the DBID parameter. This
eases the creation of mirror databases.
Possible values: 1 - 65535
Default: none

(for physical DBDs only) The default Adabas file number for the file which will be used to store
the converted data for all segment types not affected by a GENSEG function.
Possible values: 1 - 65534
Default: none

FNR

(for physical DBDs only) This parameter is used to indicatewhether the database being processed
is to be converted to Adabas or not.
Possible values:
ADA the database will be converted
DLI the database will reside under DL/I
Default: ADA

TYPE

(for physical DBDs only) This parameter specifies whether the converted DBDmay be accessed
by Natural/Adabas applications via the ADL Consistency Interface or not. The assignment can

CONSI

be modified later using the ADL Online Services. The CONSI parameter must be set to YES if
the DBD is accessed by bothDL/I andNatural/Adabas applications. Formore information, refer
to the section Consistency DBD Maintenance in the section ADL Online Services in the ADL
Interfaces documentation .
Possible values:
YES = DBD used by ADL Consistency Interface
NO = DBD not used by ADL Consistency Interface.
Default: YES

Note: If the DBD was originally converted with ADL version 2.2 or before, the LOGID
should specify the same value as the ADL 2.2 FNR parameter.

Conversion28

ADL Conversion Utilities for DBDs and PSBs

The SEQ (processing sequence) parameter of ADL 2.2 has become obsolete. The new layout
of the ADL internal pointer field has the same performance advantages as the previous
“SEQ=SEG” setting.
To avoid conflicts with the logical files settings (LFILE) of Natural, it is recommended not
to use DBID=255.

GENSEG Function

The GENSEG function is used to control DBD conversion for a DL/I segment. It may be specified
for each segment of a physical DBD but not for virtual logical child segments. If no GENSEG function
is specified for a particular segment, then the default parameter values are used.

The function parameters are explained below.

DescriptionParameter

The name of the segment in the DBD currently being processed. This may be between 1 and
8 alphanumeric characters long. The first character must be a letter.

NAME

The logical ID of the segment. The number given will be used as default for all dependent
segment types. If the DBD is involved in logical relationships, the LOGID given must be
different from the LOGIDs of the other DBDs.

Possible values: 1 - 255

LOGID

Default: LOGID of parent segment or LOGID of GENDBD function for the root segement

The Adabas file number for the file which will be used to store the converted data of this
segment type. The number givenwill be used as the default for all dependent segment types.

Possible values: 1 - 65534

FNR

Default: none

The Adabas short name to be used as the name of the Adabas field group which will store
the segment data. If the ADANAME parameter is not specified, thenADL generates theAdabas
group names automatically.

ADANAME

Used to specify whether the Adabas descriptor used for internal reading backwards is to be
maintained for the segment being generated. This is done in order to optimize retrieval of
the last segment occurrence in a twin chain.
Possible values:
YES = indicates that the descriptor will be maintained;
NO = indicates that it will not.
The descriptor is maintained automatically where the physical insert rule is either HERE or
LAST.

BACKW

Note: If theDBDwas originally convertedwithADLversion 2.2 or before, the LOGID should
specify the same value as the original FNRparameter. Otherwise it is not required to specify
LOGIDs for segments even if the DBD data is saved on multiple Adabas files.

29Conversion

ADL Conversion Utilities for DBDs and PSBs

DELDBD Function

The DELDBD function deletes an existing DBD from the ADL directory file.

The function parameter is as follows:

DescriptionParameter

The DL/I name of the DBD to be deleted. This may be 1 to 8 alphanumeric characters long. The
first character must be a letter.

NAME

GENPSB Function

The GENPSB function initiates processing of the PSB specified.

The function parameter is as follows:

DescriptionParameter

The DL/I name of the PSB to be converted. This may be 1 to 8 alphanumeric characters long.
The first character must be a letter.

NAME

DELPSB Function

The DELPSB function deletes an existing PSB from the ADL directory file.

The function parameter is as follows:

DescriptionParameter

The DL/I name of the PSB to be deleted. This may be 1 to 8 alphanumeric characters long. The
first character must be a letter.

NAME

CBC Utility Output

The CBC utility produces up to four different types of output:

1. ADL control blocks on the ADL directory file.

The CBC utility stores and updates the ADL DBDs and PSBs on the ADL directory file.

2. Output deck containing ADACMP statements and the Adabas User Exit 6.

This output is only producedwhen the CBCutility is processing a physical DBD. TheADACMP
statements for all files used to store the data and the Adabas User Exit 6 extension for loading
the data into the Adabas file(s) are produced as one output deck. Each set of records in the deck

Conversion30

ADL Conversion Utilities for DBDs and PSBs

is separated from the others by control statements. These can be interpreted by an IBM utility
(LIBR for z/VSE and IEBUPDTE for z/OS) to create separate members in a library.

Note that the generation of output control statements by the CBC utility can be suppressed by
specifying the parameter UTI=(,N). See the chapter The ADL Parameter Module in the ADL
Installation Manual for further details.

3. Control print output.

A print file giving the input control statements for the CBC utility and the action taken. It has
the following format:

nnnnn FUN input statement ACT message

where nnnnn is the number of the input statement.

The input statements are followed by information on the run, including the number of report
pages produced and the number of input statements.

4. Report (physical and logical DBDs only).

In the case of physical DBDs, the report contains a complete overview of the DL/I and Adabas
structures involved. A list of all DBDs referenced by theDBD just processed, i.e. secondary index
DBDs and other physical DBDs related via logical relationships, is given at the end of the report.
The list also indicates whether processing of the DBDs referenced has been completed or not.

z/OS Requirements

The following table lists the data sets used by the CBC utility DAZCCGEN.

DescriptionMediumDDname

Control input for the ADL batch monitor, DAZIFP.ReaderDAZIN1

Messages and codes.PrinterDAZOUT1

Report.PrinterDAZOUT2

ADACMP statements and Adabas User Exit 6 extension.DiskDAZOUT4

Example:

The following is an example of a job to run the CBC utility:

31Conversion

ADL Conversion Utilities for DBDs and PSBs

// EXEC PGM=DAZIFP,PARM='UTC,DAZCCGEN'
//STEPLIB DD DSN=ADLxxx.LOAD,DISP=SHR
// DD DSN=ADABAS.Vnnn.LOAD,DISP=SHR
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZIN1 DD *
DELDBD NAME=COURSEDB
GENDBD NAME=COURSEDB,DBID=009,FNR=034
//DAZOUT1 DD SYSOUT=X
//DAZOUT2 DD SYSOUT=X
//DAZOUT4 DD DSN=&&DECK,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(80,(100,100),RLSE),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//*
// EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=X
//SYSUT2 DD DSN=ADLxxx.SOURCE,DISP=SHR

//SYSIN DD DSN=&&DECK,DISP=(OLD,DELETE)

z/VSE Requirements

The following table lists the files used by the CBC utility, DAZCCGEN.

DescriptionMediumLogical UnitDTF

Control input for the ADL batch monitor, DAZIFP.ReaderSYSIPTDAZIN1

Report, messages and codes.PrinterSYSLSTDAZOUT1

Report. *PrinterSYS011DAZOUT2

Report. **DiskSYS013DAZOT3D

Report. **DiskSYS014DAZIN3D

ADACMP statements and Adabas User Exit 6 extension.DiskSYSxxxDAZOUT4

* Only required when more than one logical printer is available. In this case, SYS011may be used
to assign a second printer to which the report will be routed directly.

**Only requiredwhen only one logical printer is available. In this case, the reportwhich is normally
directed to DAZOUT2 as the second print file will be written to disk. At the end of the job it will be
read from disk and routed to DAZOUT1.

The control input for the batch monitor (DAZIFP), for ADARUN, and for the CBC utility itself are all
read from SYSIPT. The control statements for this must be specified in the following order:

Conversion32

ADL Conversion Utilities for DBDs and PSBs

UTC,DAZCCGEN,,... input for DAZIFP
/*
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
DELDBD NAME=dbd input for the CBC utility
GENDBD ...
.
/*

Example:

The following is an example of a job to execute the CBC utility:

// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL DAZOUT4,'punchfile',0,SD
// EXTENT SYS010,volser,......
// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,'printfile',0,SD
// EXTENT SYS013,volser,......
// DLBL DAZIN3D,'printfile',0,SD
// EXTENT SYS014,volser,......
// EXEC DAZIFP
UTC,DAZCCGEN
/*
ADARUN PROGRAM=USER,..........
/*
DELDBD NAME=COURSEDB
GENDBD NAME=COURSEDB,DBID=9,FNR=34
/*
// DLBL IJSYSIN,'punchfile'
// EXTENT SYSIPT,volser
ASSGN SYSIPT,DISK,VOL=volser,SHR
// EXEC LIBR,PARM='ACCESS S=SAGLIB.ADL...'
/&
CLOSE SYSIPT,FEC

33Conversion

ADL Conversion Utilities for DBDs and PSBs

34

5 Conversion of the Data - General Considerations

■ Conversion of the Physical Hierarchical Structures ... 37
■ Additional Effort Related to Logical Relationships ... 37
■ Validating Data Types ... 38

35

Once the DL/I hierarchical data structures are converted into an Adabas file layout, the data may
be moved to Adabas. The steps which are necessary to convert the data depend on the DBDs and
user applications involved. The following table lists the necessary steps according to the different
prerequisites:

This chapter covers the following topics:

Conversion36

Conversion of the Data - General Considerations

Conversion of the Physical Hierarchical Structures

The data conversion of a hierarchical structurewith no logical relationship involved is quite simple.
The data has to be unloaded with the ADL unload utilities and then loaded into an Adabas file,
using standard Adabas utilities.

Two different operations are required in order to unload the data from the DL/I database. The
first is to read the data and the second is to prepare it for the loading into Adabas.

ADL offers two differentmethods for performing these steps: an automated and amanual proced-
ure. For the automated procedure, both steps are combined in the utility DAZUNDLI, while the
manual procedure splits them up into two utilities, namely DAZUNLOD and DAZREFOR.

It is recommended to use the automated procedure as far as possible. There is no need to customize,
assemble or link-edit the program, and no overhead caused bywriting and reading the intermediate
unload file as with the manual procedure.

Nevertheless, it can be advantageous to choose the manual procedure in some cases. One reason
could be that the limited data editing capability of the automated procedure is not sufficient for
your applications. Another reason could be that theDL/I system and theADLnucleus (or Adabas)
are not available at the same time. In this case you cannot use the automated procedure, because
DAZUNDLI accesses both DL/I and ADL. On the DL/I side you have to use DAZUNLOD, which runs
as a normal DL/I application program. Then move the intermediate unload file to the ADL /
Adabas side and run it against DAZREFOR, which is a normal mode ADL application program.

Regardless of which method was used for unloading the data, it will be initially loaded into an
Adabas file by using the Adabas utilities ADACMP and ADALOD (LOAD function). If no logical relation-
ship is involved, then the data conversion process is finished with the ADALOD run.

Additional Effort Related to Logical Relationships

If the database is involved in logical relationships, up to two further steps are required in addition
to the unloading and the initial loading of the data. The first is the mass update for paired logical
child segments and the second is the establishing of logical relationships.

The mass update is only required if the database is involved in bi-directional logical relationships
and if the simplified or standard procedure is used to establish logical relationships. You may use
the standard Adabas utilities ADACMP and ADALOD (UPDATE function) in order to perform the mass
update.

To establish logical relationships, ADL offers four different procedures: Standard, Simplified,
Special and Turbo. All of these procedures use the ADL utility DAZELORE. The differences between
them are described in detail in the next section.

37Conversion

Conversion of the Data - General Considerations

The Standard procedure can be used in any case, but it is the most time consuming procedure. On
the other end, the Turbo procedure has the highest performance but also the most restrictions.

Thus you should use the Turbo procedurewhenever possible, orwhen the Turbo procedure cannot
be used, the Special procedure, then the Simplified. Only in cases which cannot be satisfied by
any of these three procedures, use the Standard procedure.

Validating Data Types

As described in the section Conversion of the Data Structures - General Considerations in this docu-
mentation, a DL/I field can contain non-numeric data, even if it is defined as numeric. ADL will
convert the DL/I field definition to a numeric Adabas field. During the loading of the data, Adabas
will reject the non- numeric values, and thus the load fails.

The standardized ADL unload utility DAZUNDLI offers you a limited editing capability for such
incorrect data. If you specify the MODE=CHECKNUM or the SEGM/FIELD parameters, all numeric fields
or the specified numeric fieldswill be checked for valid contents. If ADL detects an incorrect value,
a null value (zoned decimal or packed zero depending on the field type) is substituted.

If this limited data editing is not sufficient for you, the customized ADL unload utility DAZUNLOD
may be used after modifying it as desired.

Nevertheless, to avoid all such failures during the load, you should consider adapting the DL/I
field definitions prior to the conversion, as described in the section mentioned above.

Conversion38

Conversion of the Data - General Considerations

6 ADL Data Conversion Utilities

■ Overview ... 40
■ Data Unload with the ADL Unload Utility .. 41
■ Data Validation ... 45
■ Limited Data Unload .. 46
■ Unloading a HDAM Database .. 49
■ Control Statements for the ADL Unload Utility ... 50
■ Data Unload With the ADL Customized Utility ... 51
■ Converting Data - Load .. 56
■ Establishing Logical Relationships .. 61
■ z/OS JCL Requirements ... 82
■ z/VSE JCS Requirements ... 87

39

This chapter covers the following topics:

Overview

There are twoways in which the data stored in a DL/I database can be converted to Adabas file(s):
an automated procedure and amanual one. Both procedures create a sequential file (the unloaded
database), which is input to the standard Adabas Compression utility, ADACMP. After the data
compression by ADACMP, the Adabas utility ADALOD (Initial File Loading and Mass Update Utility)
will populate the Adabas file(s) using the functions "LOAD" and "UPDATE".

The difference between the two procedures lies in the fact that the automated procedure uses a
standardized Unload utility, DAZUNDLI. This utility unloads the original DL/I database in one step.
In contrast, the manual procedure creates the unloaded database in two steps, using a customized
Unload utility, DAZUNLOD, in the first step, and a standardized Reformat utility, DAZREFOR, in the
second.

In the automated procedure, the Unload utility DAZUNDLI accesses DL/I to read the segments in
the database, while at the same time using the ADL to create the unloaded database. The utility
thus runs in mixed mode, and the PSB and DBD used need to be generated according to mixed
mode conventions (i.e. as both DL/I and ADL PSBs and DBDs). Limited data editing is possible
during unloading of the DL/I database: all or specific numeric fields may be checked for valid
numeric contents. You can limit the amount of unloaded data by specifying various parameters.

The manual procedure uses a customized Unload utility, DAZUNDLI, to unload the original DL/I
database, and a standardizedReformat utility, DAZREFOR, to create the unloaded database. DAZUNLOD
is a normal DL/I application program which reads the DL/I database from the beginning to the
end and creates an intermediate unload file. DAZREFOR is a normalmodeADL application program
which reads the intermediate unload file and creates the input file for ADACMP. The PSB and DBD
used for both DAZUNLOD and DAZREFORmay be the same.

As you have to customize DAZUNLOD in order to unload a DL/I database, you are also able to edit
the data read before you create the intermediate unload file. You may, for example, want to do
this in situations where numeric data has not been stored in numeric fields.

The differences between the automated and themanual procedure are summarized on the following
pages.

All PSBs created for the ADL utilities mentioned in this section (for example, the unload and
connection PSBs) must be installed with the option LANG=ASSEM or LANG=COBOL in the PSBGEN
statement.

Conversion40

ADL Data Conversion Utilities

Manual ProcedureAutomated Procedure

The ADACMP input file is created in two steps.The ADACMP input file is created in one step.

The Unload utility runs as a normal DL/I application. The
Reformat utility runs as a normal ADL application

The Unload utility runs in mixed mode

The Unload utility has to be customized. Data editing is
therefore possible.

Limited data editing possible during the unload
procedure.

Data Unload with the ADL Unload Utility

This section describes how to unload all the data of a database. Refer to the next section for details
on how to unload data selectively.

To use the automatedmethod of conversion to unload the data stored in a DL/I database, perform
the following steps:

■ Step 1: Convert the Physical DBD
■ Step 2: Create an ADL Unload PSB
■ Step 3: Create a DL/I Unload PSB
■ Step 4: Unload the Data

Step 1: Convert the Physical DBD

Run the original DL/I DBD through the CBC utility (see the section ADL Conversion Utility for
DBDs and PSBs in this documentation).

Step 2: Create an ADL Unload PSB

The PSB created must contain two PCBs, both of which must be based on the original DBD and
must reference all of its segments. The first PCB is used to unload the data, while with the help of
the second, the data is prepared for the reloading. Run this PSB through the CBC utility. Note that
if the DBD is involved in logical relationships and contains logical child segments, these must also
be referenced by the PCBs (this also applies to virtual logical child segments).

41Conversion

ADL Data Conversion Utilities

Data Base Conversion Overview

Conversion42

ADL Data Conversion Utilities

43Conversion

ADL Data Conversion Utilities

Step 3: Create a DL/I Unload PSB

Run the PSB through the DL/I PSBGEN. The PSB created in the previous step can be used as the
DL/I unload PSB. Note that, in contrast to the previous step, it is not absolutely necessary for this
PSB to contain two identical PCBs, as one suffices.

Step 4: Unload the Data

Unload the data from the DL/I database by running the ADL Unload utility, DAZUNDLI. DAZUNDLI
is executed as a mixed mode program (see the section Batch Installation and Operation in the ADL
Interfaces documentation). The mixed mode control statement must have the following layout:

UNL,DAZUNDLI,psbname

where psbname is the name of the unload PSB.

The unloaded data is subsequently stored in a sequential file. You can use the sample JCL in the
source library member ADLDBC4 (z/OS) or ADLDBC4.J (z/VSE) as an example. The JCL/JCS require-
ments for DAZUNDLI are given at the end of this section.

Conversion44

ADL Data Conversion Utilities

Database Conversion Unload (Automated Procedure)

Data Validation

During unloading of the DL/I database contents, it is possible to let ADL automatically correct
either all numeric fields or specific numeric fields. Packed (TYPE=P) and zoned decimal (TYPE=Z)
fields are checked byADL for valid packed or zoned decimal value contents. If they do not contain
a valid packed or zoned decimal value, a null value (i.e. a packed zero for packed fields and a
zoned decimal zero for zoned decimal fields) is substituted. This procedure can be activated for
all numeric fields within a DBD or for specific ones only, using extra control cards for DAZUNDLI.
The syntax of these control cards is as follows:

45Conversion

ADL Data Conversion Utilities

MODE=CHECKNUM
SEGM=segname,FIELD=fldname
SEGM=

where segname is the name of segment within the unloaded DBD, and fldname is the name of a
numeric field within this segment.

Specifying only the control card MODE=CHECKNUM activates checking of all numeric fields within the
DBD. Specifying one or more SEGM/FIELD control cards limits the checking to only those fields
specified. Omitting the control cards altogether, or specifying MODE=STANDARD, deactivates checking
of any numeric fields.

Limited Data Unload

The automated procedure described in the previous section may also be used to unload only a
part of the database. This can be achieved bymodifying the unload PSB or by specifying additional
control statements for the DAZUNDLI utility. Note that if a logical child segment occurrence is un-
loaded, the corresponding logical parent segment occurrences have to be unloaded as well.

This section covers the following topics:

■ Restrict the Unload Segment Types
■ Specify an Alternate Unload Sequence
■ Limit the Unloaded Records
■ Limit the Unloaded Root Segment Occurrences
■ Unload a Specific Range of Values
■ Unloading Specific Values

Restrict the Unload Segment Types

If the first PCB in the unload PSB does not contain all of the segments of the original DBD, only
the referenced ones will be unloaded. The second PCB has to reference at least the segments of
the first PCB. Note that a logical relationship between two DBDs requires a specification of the
logical child segment either on both sides or on none.

Conversion46

ADL Data Conversion Utilities

Specify an Alternate Unload Sequence

In order to unload the database in an alternate sequence, the first PCB in the unload PSBmay refer
to a secondary index as the processing sequence. In this case the "START" and "END" parameters
of DAZUNDLI correspond to the values of the secondary index source fields.

The secondary index must have the root segment as target. It is recommended to use only those
secondary indices which have a one-to-one relation to the root segment, otherwise the repetition
of the data will lead to problems during the reload.

Limit the Unloaded Records

Thenumber of unloaded recordsmaybe limited by specifying the "NUMREC"parameter for DAZUNDLI.
The syntax of this control card is as follows:

NUMREC=number_of_records

where number_of_records is the maximum number of unloaded records. This number can be up to
8 digits long.

Every occurrence of every segment counts as one record. Thus if the “number_of_records” is
reached, it may be that not all dependent segments of the last unloaded root segment have been
unloaded.

Example:

Unload at most 1000 records from the database:

NUMREC=1000

Limit the Unloaded Root Segment Occurrences

The number of unloaded root segment occurrences may be limited by specifying the "NUMROOT"
parameter for DAZUNDLI. The syntax of this control card is as follows:

NUMROOT=number_of_roots

where number_of_roots is the maximum number of unloaded root segment occurrences. This
number can be up to 8 digits long.

If the NUMREC parameter is not specified, the root segments will be unloaded together with all their
dependent segments.

Example:

Unload at most 50 root segment occurrences together with their dependents:

47Conversion

ADL Data Conversion Utilities

NUMROOT=50

Unload a Specific Range of Values

The range of unloaded root segment occurrences may be limited to specific values by defining the
"START" or "END" parameter for DAZUNDLI. The syntax of these control cards is as follows:

START=string
END=string

where string is either the start or end value and must be of the following format:

'char_string'
X'hex_string'

where

may contain any characterchar_string

must consist of pairs of the characters 0-9, A-F, where each pair will be interpreted as a
hexadecimal character.

hex_string

A stringmay be continued by ending the current line with a comma (“,”). The following line must
contain only a string without any keyword being specified. This continued stringmay start in any
column,may itself be continued andmay have either format. Thus, it is possible to build up a start
and end value from both character and hexadecimal strings.

The database will be unloaded from the start to the end value, inclusively. The end value might
not be reached if the NUMREC or NUMROOT parameter is specified.

The values refer to the root sequence field or, if an alternate sequence is chosen, to the secondary
index field. If the string is longer than the referenced field, it is truncated at the right. If it is
shorter, it is padded at the right with low values (hexadecimal X'00') or high values (X'FF') for
the start or end value respectively.

Packed values may be specified in hexadecimal format. It is recommended to use the correct field
length, as this avoids an undesired truncation or padding of the packed values.

The following example shows how to unload data for the root sequence field range from "EDV"
to "MATH" inclusively:

Conversion48

ADL Data Conversion Utilities

START='EDV'
END='MATH'

The following example shows how to unload all data with a root sequence field value of "XYZ"
followed by a hexadecimal “01”:

START='XYZ',
X'01'

END='XYZ',
X'01'

Unloading Specific Values

Specific root segment occurrences may be unloaded by specifying the ROOTKEYS parameter. The
syntax of this control card is as follows:

ROOTKEYS
key values

or

ROOTKEYS=SEQ

In the first case, the ROOTKEYSmust be the last parameter for DAZUNDLI. It is followed by one or
more root sequence field values. If ROOTKEYS=SEQ is specified, the root sequence field values are
read in from DAZIN3. In this case, it is not required that the ROOTKEYS parameter is the last parameter.
The corresponding root occurrences are unloaded togetherwith all dependents.When the ROOTKEYS
parameter is specified, the START and END parameter must not be used.

The following example shows how to unload the data for the root sequence fields with the values
'EDV' and 'GERMAN'.

ROOTKEYS
EDV
GERMAN

Unloading a HDAM Database

In a HDAM database, the sequence of the root occurrences is defined by the randomizing module.
This mostly does not correspond to the root key sequence. When such a database is unloaded
(without additional parameters), the reloaded Adabas data is randomly distributed over the data
blocks. This results in a poor performance for sequential reads, since for each new accessed root
segment occurrence, a physical I/O is required.

49Conversion

ADL Data Conversion Utilities

Thus it is recommended to unload the data in root key sequence. To do this, use any application
whichwrites all the root sequence field values (and only these) to a sequential file. Sort these values
by using any sort utility. These sorted values can now be used as key values for the ROOTKEYS
parameter of the DAZUNDLI utility as described above. This forces DL/I to unload the database in
the given sequence and the loaded Adabas data is no longer randomly distributed over the data
blocks.

If the data has been initially loaded in the randomized sequence, i.e., without the ROOTKEYS para-
meter, it can be sequenced by unloading and reloading it from theADLfiles. This time the ROOTKEYS
parameter is not required, because ADL uses the root sequence field always as sort key.

Control Statements for the ADL Unload Utility

The following keywords are available for DAZUNDLI. For a detailed description refer the previous
sections. The keywords are read from the control input for DAZUNDLI (see the sections z/OS JCL
Requirementsor z/VSE JCS Requirements later in this documentation).

DefaultPossible valuesExplanationKeyword

None. If no other
condition is met,

Any character string or an “X”
followed by pairs of the

Indicates the end value of the unload. The
value refers to the root sequence field, or

END

the database ischaracters 0-9, A-F, which willif an alternate processing sequence is
unloaded untilbe interpreted as hexadecimalspecified, the corresponding secondary
the end of thecharacters. Both types of stringindex field. The value may be continued

by putting a comma after it. database is
reached.

have to be enclosed by
quotation marks.

None.Any numeric field name.The name of a numeric field to be checked
for valid values. This keyword must be
preceded by the SEGM keyword.

FIELD

STANDARD - do not check
numeric fields.
CHECKNUM - check all
numeric fields.

Indicates, whether numeric fields are to be
checked for valid values. The MODE
keyword can be overridden by the SEGM
keyword.

MODE

No limit.1 - 99999999Themaximal number of unloaded records.NUMREC

No limit.1 - 99999999The maximal number of unloaded root
segment occurrences.

NUMROOT

If ROOTKEYS is
not specified at

None - the key values are
supplied after the ROOTKEYS
parameter.
SEQ - the key values are in
DAZIN3.

Unload specific root key values together
with their dependents.

ROOTKEYS

all, all root key
values are
unloaded.

None.Any segment name.The name of a segment with a numeric
field to be checked for valid values. This

SEGM

keyword must be followed by the FIELD

Conversion50

ADL Data Conversion Utilities

DefaultPossible valuesExplanationKeyword

keyword. Once the SEGM keyword is
specified, only the corresponding fields
will be checked, regardless of the MODE
keyword.

None.Any character string or an “X”
followed by pairs of the

Indicates the start value of the unload. The
value refers to the root sequence field, or

START

characters 0-9, A-F, which willif an alternate processing sequence is
be interpreted as hexadecimalspecified, the corresponding secondary
characters. Both types of stringindex field. The value may be continued

by putting a comma after it. have to be enclosed by
quotation marks.

Data Unload With the ADL Customized Utility

To use the manual conversion method to unload the data stored in a DL/I database, perform the
following steps:

■ Step 1: Convert the Physical DBD
■ Step 2: Create a DL/I Unload PSB
■ Step 3: Create an ADL Reformat PSB
■ Step 4: Unload Data
■ ADL Request Handler (DAZBRQH)
■ Step 5: Reformat the Data

Step 1: Convert the Physical DBD

Run the original DL/I DBD through the CBCutility (see the topicADLConversionUtilities for DBDs
and PSBs in this section).

Step 2: Create a DL/I Unload PSB

The PSB created must contain one PCB: this must be based on the original DL/I DBD and must
reference all segments of the DBD. Run the PSB through the DL/I PSBGEN. Note that if the DBD is
involved in logical relationships and contains logical child segments, thesemust also be referenced
by the PCB (this also applies to virtual logical child segments).

51Conversion

ADL Data Conversion Utilities

Step 3: Create an ADL Reformat PSB

Run the PSB created in Step 2 through the CBC utility (see the topic ADL Conversion Utilities for
DBDs and PSBs in this section).

Step 4: Unload Data

Write, assemble and link edit an unload program to unload the data from the DL/I database. An
example of an unload program is provided as the source member DAZUNLOD (z/OS) or DAZUNLOD.A
(z/VSE) in the Source Library on the installation tape.

Write the unload program in Assembler using the standard programming conventions for this
language.

The unload program reads the DL/I database by issuing unqualified GN calls until it reaches the
end. If the standardized reformat program DAZREFOR is to be used in Step 5 (below) to create the
input file for ADACMP, the segment occurrences read have to be written out to the intermediate
unload file as variable length records with the following record layout:

ExplanationBytes

Length of the record, including this field (standard convention for variable length record). (4 bytes)1-4

The DL/I segment name taken from the SENSEG feedback area in the user PCB. (8 bytes)5-12

The DL/I segment data taken from the I/O area. Note that if the segment is of variable length, the
length bytes are part of the segment data andmust be included as the first two bytes in the segment
I/O area.

13-

The unload program is executed as a normal DL/I application program using the DL/I unload
PSB.

Conversion52

ADL Data Conversion Utilities

Data Base Conversion Unload (Manual Procedure)

53Conversion

ADL Data Conversion Utilities

Conversion54

ADL Data Conversion Utilities

ADL Request Handler (DAZBRQH)

When using the sample program on the installation tape, you should bear in mind that it uses the
ADL internal request handler, DAZBRQH. It is therefore independent of the operating system used.

When DAZBRQH is being used, certain conventions need to be followed. These are described in detail
in the example program itself, but are summarized briefly below.

Save and Work Areas

Save and work areas for the request handler must be provided by the caller. The first fullword of
this area must contain the start address of the area itself, i.e. it must be pointing to itself. In the
sample program, this is achieved by using the macro SAVEAREA. For z/VSE users, this macro may
also be used to change the block size of the intermediate unload file dynamically.

Requests

Requests are issued by calling the request handler as a subroutine, with the registers R0 and R1
being used to pass the necessary parameters. In the sample program, this is achieved by using the
REQUESTmacro.

Files

All files are opened by the request handler dynamically, but have to be closed by the caller.

Sample Program/DAZBRQH

Because the sample program uses the internal request handler, it must be linked with DAZBRQH.

Step 5: Reformat the Data

The intermediate unload file created in Step 4 is read and each unloaded segment is put through
ADL. The input file for ADACMP is created. The standardized reformat program in the Load Library,
DAZREFORmay be used if the intermediate unload file has been created according to the layout
conventions in Step 4.

If the standardized reformat program does not meets your requirements, you can write your re-
format program. An example of a reformat program is provided as the source member DAZREFOR
(z/OS) or DAZREFOR.A (z/VSE) in the Source Library.

The reformat program reads the intermediate unload file and issues a load call against ADL for
each unloaded segment occurrence. A load call has the same syntax as a normal DL/I insert call,
but LOAD is specified as the function instead of ISRT.

The parameters for the LOAD call are as follows:

55Conversion

ADL Data Conversion Utilities

ExplanationParameter

(optional) The number of parameters (4) that follow.Parameter 1

The function is LOAD.Parameter 2

The PCB address for the first and only PCB in the reformat PSB.Parameter 3

The I/O area as read from the intermediate unload file.Parameter 4

An unqualified SSA specifying the name of the segment as read from the intermediate unload
file.

Parameter 5

The standardized reformat program DAZREFOR is executed as a normal mode ADL program (see
the section Batch Installation and Operation in the ADL Interfaces documentation). The execution
parameters must have the following layout:

REF,DAZREFOR,psbname

where psbname is the name of the ADL reformat PSB.

Like DAZUNLOD, DAZREFOR uses the ADL internal request handler, DAZBRQH. The same conventions
apply.

Converting Data - Load

The manual and the automated procedures use the same methods of loading Adabas files. You
must perform the following steps:

*Only for databases related via a bidirectional logical relationship and if the standard or simplified
procedure of DAZELORE is used to establish logical relationships.

This section covers the following topics:

■ Step 6: Initial Load of the Adabas File(s)
■ Step 7: Mass Update for Paired Logical Child Segments

Step 6: Initial Load of the Adabas File(s)

EachAdabas file used to store the converted data is loaded individually using the standardAdabas
utilities (ADACMP, ADALOD).

The sequential file produced in the previous steps is taken as input for the ADACMP step, as are the
ADACMP statements generated by the CBC utility in Step 1.

Each Adabas file used must be loaded with the option USERISN. This applies to both the ADACMP
and the ADALOD steps (for ADACMP it is already generated by the CBC utility), as the ISNs are auto-
matically generated by the ADL.

Conversion56

ADL Data Conversion Utilities

Step 6 needs to be run once for each of the Adabas files used to store the DL/I database.

Note that the initial load does not load the data of a paired logical child segment of a bidirectional
logical relationship. This is performed by the next step, if required at all.

You may use the sample JCL (JCS) in the member ADLDBC6 (ADLDBC6.J) as an example of an initial
load job under z/OS (z/VSE).

57Conversion

ADL Data Conversion Utilities

Data Base Conversion Initial Load

Adabas User Exit 6

The ADACMP step uses Adabas User Exit 6. This exit consists of two parts which were linked
together during the DBD conversion procedure (see the section ADL Conversion Utilities for
DBDs and PSBs in this documentation):

1. Fixed Part

The fixed part consists of the DAZUEX06 module, which expands each input record on the
unload file to its full decompressed size before passing it on to ADACMP.

2. User Exit 6 Extension

The User Exit 6 extension is generated by the CBC utility and contains information on the
structure of the DBD being converted, and the default record layouts of the Adabas file(s) used
to store the converted data.

Adabas User Exit 6 needs a control statement to indicate which Adabas file should be loaded. The
syntax of this control statement is as follows:

Conversion58

ADL Data Conversion Utilities

FNR=nnnnn,MODE=LOAD

where nnnnn is the file number of the Adabas file to be loaded.

Information on how to load the file is provided at the end of this section.

Step 7: Mass Update for Paired Logical Child Segments

You only need to perform this step if the database being converted is involved in bidirectional
logical relationships. In this case, the data originating from a bidirectional logical segment is stored
only once, in an Adabas file. The way in which the data was stored under DL/I (virtual or physical
pairing) has no effect on this.

You must not perform this step when the Special or Turbo procedure is used to establish logical
relationships (see the following section: Establishing Logical Relationships).

Within a bidirectional logical relationship, the real logical child segment can be defined as the lo-
gical child segment for which an Adabas file number and Adabas fields are generated. The paired
logical child segment can be defined as the logical child segment with which the real logical child
segment is paired. The reports produced by the CBC utility during conversion of the physical
DBDs showwhich Adabas file contains the logical child segment data, and therefore which of the
two logical child segments is the real logical child segment. Once all Adabas files storing data
originally contained in DL/I databases related via a bidirectional logical relationship have been
loaded, the Adabas Mass Update utility ADALODwith the UPDATE function must be run for all
Adabas files which contain data originating from a bidirectional logical child segment.

The real logical child segment occurrences are unloaded during the unload of the DL/I database
in which they were stored. They are subsequently loaded with an initial load using the Adabas
utilities ADACMP and ADALOD. The paired logical child segment occurrences are unloaded separately
during the unload of the DL/I database in which they were stored and must be added separately
to the Adabas file in which the real logical child segment occurrences have been loaded. This is
done using ADALOD (UPDATE). To produce the input for ADALOD (UPDATE), run theAdabasCompression
utility ADACMPwith the following input:

■ The ADACMP statements for the Adabas file used to store the bidirectional logical child segment
data, i.e. theAdabas file for the real logical child segment. Note that because the output produced
by the ADACMP utility is input to the ADALOD (UPDATE) utility, the USERISN option must not be
specified and has to be removed from the ADACMP statements before you run the ADACMP step.

■ The Adabas User Exit 6 for the Adabas file used to store the bidirectional logical child segment
data, i.e. the Adabas file for the real logical child segment.

■ The unloaded DL/I database containing the paired logical child segment data.
■ A User Exit 6 control statement specifying a mass update run with the format:

59Conversion

ADL Data Conversion Utilities

FNR=nnnnn,MODE=MASS,LC=name

where

is the file number of the Adabas file containing the bidirectional logical child segment data, i.e.
the Adabas file for the real logical child segment, and

nnnnn

is the name of the paired logical child segment.name

You may use the sample JCL (JCS) in the member ADLDBC7 (ADLDBC7.J) as an example of a mass
update under z/OS (z/VSE).

Conversion60

ADL Data Conversion Utilities

Data Base Conversion Mass Update

* Unloaded Database containing the paired logical child segment data.

** ADACMP Cards and User Exit 6 generated for the real logical child segment.

Establishing Logical Relationships

When the first seven unload/load steps have been successfully completed, the data stored in the
DL/I database have been converted to one or more Adabas file(s). Where no logical relationships
exist for a DBD, no other steps are necessary. However, where one or more logical relationships
exist, each logical child segment occurrence has to be “connected” to its logical parent. This is done
in two steps using the DAZELORE (Establish Logical Relationship) utility.

61Conversion

ADL Data Conversion Utilities

DescriptionStep

Create connect PSB.Step 8

Establish logical relationship.Step 9

Four different procedures for Steps 8 and 9 - Standard, Simplified, Special and Turbo - exist (see
below). The procedure you should use in any given case depends on theDBDs anduser applications
involved. All procedures involve creating a connect PSB and executing DAZELORE; the difference
is that the Standard procedure requires both the original DL/I and the converted databases, while
the other procedures only require the latter. The Standard procedure is thusmore time-consuming
but can be used in all cases. In contrast, the Simplified, Special and Turbo procedures can only be
used for converted databases inwhich no logical child segments withoutmatching logical parents
and no variable intersection data segmentswhich are no longer accessible via their physical parents
exist. The Special procedure differs from the Simplified procedure only for bidirectional logical
relationships. It can only be used if every logical child segment occurrence has a paired logical
child segment occurrence present in the database. For the Turbo procedure the pre-requisites of
the Special procedure must be fulfilled. Additionally all parent segments on the logical and
physical path up to and including the root segments must have unique sequence fields.

Steps 8 and 9 have to be performed separately for every logical child: i.e. once for every unidirec-
tional logical relationship and twice for every bidirectional logical relationship for both the
Standard and the Simplified procedures. The Special and Turbo procedure, however, only needs
to be run once per logical relationship, regardless ofwhether or not this relationship is bidirectional.

When large databases are being converted, performance problemsmay arise with these steps. We
therefore recommend that you run the DAZELORE utility in single user mode where possible. In
addition, you should use the Turbo, Special or Simplified methods wherever possible as these
procedures do not require that the original DL/I database be accessed simultaneously. The highest
performance is provided by the Turbo procedure.

Furthermore, the DAZELORE utility may be run using checkpoints, which means that a particular
runmay be split up into several sub-runs if necessary. See the section entitledRestart Considerations
later on in this section for details of how to use checkpoints with the DAZELORE utility and how to
perform restarts.

This section covers the following topics:

■ Standard Procedure
■ Simplified and Special Procedures
■ Turbo Procedure
■ DAZELORE Run Report

Conversion62

ADL Data Conversion Utilities

■ Restart Considerations

Standard Procedure

The Standard procedure is required in all cases inwhich segment occurrenceswhichwere originally
present in theDL/I database have been physically deleted, but are still accessible via a logical path.
This may occur in one of two situations:

■ With segment occurrences which have been physically deleted but which are still accessible via
a logical child segment.

The physical unload performed in the unload procedure does not unload these physically deleted
segment occurrences. Logical child segment occurrences may thus be present in the converted
database(s), even though no matching logical parent segment occurrences exist (even the parents
of these logical parents may be missing). The missing segment occurrences have to be added to
the Adabas files in such a way as to be accessible via logical, not physical, paths.

■ Segment occurrences which are variable intersection data may no longer be accessible via their
physical parents but may still be accessible via a logical child segment.

Again, the physical unload performed in the unload procedure does not unload these segment
occurrences. The missing segment occurrences have to be added to the Adabas files in such a way
that they are only accessible via the logical child.

All missing segments are reinserted during the DAZELORE runs using the Standard procedure.

The two situations listed above are explained in the set of examples following.

63Conversion

ADL Data Conversion Utilities

Physical DBDs and their Logical Relationships

In the example above, the two DBDs, DBD4 and DBD5, are involved in two logical relationships:

■ Aunidirectional logical relationship between the logical child segment D4B and the logical parent
segment D4Iwithin DBD4;

■ A bidirectional logical relationship between DBD4 and DBD5with the logical child segments D4F
and D5B and the logical parent segments D4C and D5A.

Certain segments may be physically deleted but still logically accessible. This depends on the
setting of the delete rules for the segments involved in the logical relationships and on the logic
of the application programs.

Segments D4A, D4C, D4F, D4G, and D4Imay have been physically deleted but may still be accessible
via the logical child segment D4B. The segment occurrences will not have been unloaded with
DBD4, and will need to be inserted during the DAZELORE run for D4B.

Segments D4A and D4Cmay have been physically deleted but may still be accessible via the logical
child segment D5B. The segment occurrences will not have been unloaded with DBD4, and will
need to be inserted during the DAZELORE run for D5B.

Conversion64

ADL Data Conversion Utilities

Segment D5Amay have been physically deleted but may still be accessible via the logical child
segment D4F. The segment occurrences will not have been unloaded with DBD5, and will need to
be inserted during the DAZELORE run for D4F.

In addition, segments D4G, D4H and D4Imay no longer be accessible via their physical parent D4F,
but may still be accessible via D5B. The segment occurrences will not have been unloaded with
DBD4, and will need to be inserted during the DAZELORE run for D5B.

Step 8: Creating a Standard Connect PSB

The Standard connect PSB must contain four PCBs: PCB1, PCB2, PCB3 and PCB4. All these PCBs
must specify processing option “A”. PCB1 and PCB3must also specify processing option “P” for
path calls.

PCB1

PCB1 is based on the converted DBD and references the logical child segment and all its parent
segments only. The PCBmust be based on the physical DBD. For this reason, the sensitive segment
(SENSEG) describing the logical child segment cannot describe the concatenated segment.

PCB2

PCB2 is based on the convertedDBDand references the logical child segment, all its parent segments,
and all the parent segments of the logical parent in the inverted structure. The PCB has to be based
on the logical DBD. The SENSEGdescribing the logical child segmentmust describe the concatenated
segment. Where the logical child segment is a bidirectional logical child and the paired logical
child segment has dependents (i.e. variable intersection data segments), the lattermust be included
as dependents of the logical child as well.

PCB3

PCB3 is based on the converted DBD and references the logical parent segment and all its parent
segments only. The PCB has to be based on the physical DBD.

PCB4

PCB4 is only needed where the logical child segment is a bidirectional logical child and its paired
logical child segment has dependents. In all other cases it may be omitted. PCB4 is based on the
converted DBD and references the logical child segment and all its parent segments. It must also
reference all variable intersection data segments as dependents of the logical child. The PCBmust
be based on the logical DBD. The SENSEG describing the logical child segment must describe the
concatenated segment.

The Standard connect PSBmust be run through theDL/I PSBGEN and the CBCutility (see the section
ADL Conversion Utilities for DBDs and PSBs in this documentation).

The following figures illustrate this in more detail.

65Conversion

ADL Data Conversion Utilities

Logical DBDs based on DBD4 and DBD5

Conversion66

ADL Data Conversion Utilities

67Conversion

ADL Data Conversion Utilities

* concatenated segments

Standard Connect PSB for Logical Child D4B

Conversion68

ADL Data Conversion Utilities

Standard Connect PSB for Logical Child D4F

69Conversion

ADL Data Conversion Utilities

Standard Connect PSB for Logical Child D5B

Conversion70

ADL Data Conversion Utilities

Establishing a Logical Relationship (Standard Procedure)

Step 9: Establishing Logical Relationship - Standard Procedure

Logical children and parents are connected by running the ADL Establish Logical Relationships
utility, DAZELORE. In the Standard procedure, DAZELORE is executed as a mixed mode program (see
the section Batch Installation and Operation in the ADL Interfaces documentation) using a mixed
mode control statement with the following layout:

ELO,DAZELORE,psbname

where psbname is the name of the Standard connect PSB.

DAZELORE also needs a control statement to indicatewhich logical child segment should be connec-
ted. The syntax of this control statement must be as follows:

71Conversion

ADL Data Conversion Utilities

LC=lognam,MODE=STANDARD

where lognam is the name of the logical child segment in the physical DBD.

The specification of the LC parameter is mandatory and it must be the first parameter specified.

Where a DBD is involved in more than one logical relationship, several DAZELORE jobs need to be
run. The order for this is only important where variable intersection data segments exist and at
least one of them is a logical parent. In this case, the DAZELORE runwhichmay cause variable inter-
section data segments to be inserted, must be run before the DAZELORE runs connecting the logical
child segments to the variable intersection data segments which are logical parent segments.

In the case of the examples given on the previous pages, the order in which the jobs have to be
run is as follows:

1. The DAZELORE run for segment D5B.

This is because segment D4I is both a variable intersection data segment and a logical parent,
and during this run D4I segment occurrences may be inserted.

2. The order of the two remaining DAZELORE runs (for D4B and D4F) is irrelevant.

Because segment occurrences may be inserted during DAZELORE runs, the situation may arise in
which logical child segment occurrences are inserted although the DAZELORE run for the logical
child segment has already been performed. To establish whether this is the case, look at the report
which is printed out at the end of each DAZELORE run and which gives all the segment occurrences
inserted during that run. If a segment occurrence has been inserted, rerun the DAZELORE utility for
that logical child segment.

For example, let us assume that, in the illustrations given previously, the DAZELORE runs for D5B
and D4F have been successfully performed. The DAZELORE run for D4Bmay have triggered the in-
sertion of D4F segment occurrences. If this is the case, the DAZELORE run for D4Fmust be repeated.

Simplified and Special Procedures

The Simplified and Special proceduresmay be used in all cases inwhich the original DL/I database
did NOT contain any segment occurrences which have since been physically deleted but which
are still accessible via a logical path.

The Special procedure only differs from the Simplified procedure for bidirectional logical relation-
ships. It can only be used if all logical child segment occurrences have a matching paired logical
child occurrence and vice versa, i.e. if both logical access paths are always present for any logical
child-logical parent link. This fact has to be ensured by the user, for example by checking whether
the numbers of unloaded records of the paired segments in the DAZUNDLI report are equal. The
special procedure creates the paired logical child segments in accordance with the information
extracted from the real logical child segment. Note that for the special procedure the logical child
segment for which DAZELORE is run has to be the real logical child segment.

Conversion72

ADL Data Conversion Utilities

The advantages of the Special procedure are that the Mass Update step is not required during
loading of the data in Adabas files (see Step 7:Mass Update for Paired Logical Child Segments), and
that only one DAZELORE run is needed to establish the bidirectional logical relationship. This single
DAZELORE run also has certain performance advantages over that used in the Simplified procedure.

If a logical child segment occurrencewhich does not have amatching logical parent is encountered
during the run, the following error message is produced.

ADL0612: Unexpected DP status code for DAZELORE procedure used

The job then terminates. In this case, rerun DAZELORE using the Standard procedure.

Step 8: Creating a Simplified or Special Connect PSB

Simplified and Special connect PSBs contain a single PCB based on the converted DBD and refer-
encing the logical child segment and all its parent segments only. The PCB has to be based on the
physical DBD. For this reason, the SENSEG describing the logical child segment cannot describe
the concatenated segment. This PCB is identical to the PCB1 described in the section Creating a
Standard Connect PSB. It must specify processing option "AP".

Simplified or Special connect PSBs must be run through the CBC utility (see the section ADL
Conversion Utilities for DBDs and PSBs in this documentation).

73Conversion

ADL Data Conversion Utilities

Establishing a Logical Relationship (Simplified and Special Procedures)

Step 9: Establishing a Logical Relationship - Simplified or Special Procedure

This is done by running DAZELORE. In the Simplified and Special procedures, DAZELORE is executed
as a normal mode program (see the section Batch Installation and Operation in the ADL Interfaces
documentation). The control statement parameters must have the following layout:

ELO,DAZELORE,psbname

where psbname is the name of the Simplified or Special connect PSB.

DAZELORE also needs a control statement to indicatewhich logical child segment should be connec-
ted. The syntax of the control statement for the Simplified procedure is as follows:

Conversion74

ADL Data Conversion Utilities

LC=lognam,MODE=SIMPLIFIED

and that for the Special procedure is:

LC=lognam,MODE=SPECIAL

where lognam is the name of the logical child segment in the physical DBD.

Youmay use the sample JCL (JCS) in themember ADLDBC9 (ADLDBC9.J) as an example of a DAZELORE
run under z/OS (z/VSE).

Turbo Procedure

The Turbo procedure is the fastest way to build up the logical relationships. Whenever possible
it is recommended to use the Turbo procedure.

The Turbo procedure can only be used if the following issues are satisfied:

■ The pre-requisites of the Special Procedure are fulfilled. See the previous section for details.
■ It can only be used for bi-directional logical relationships. Uni-directional relationships are
currently not supported.

■ All parent segments on the logical and physical path up to and including the root segments
must have unique sequence fields.

Note that for the Turbo procedure the logical child segment for which DAZELORE is run has to be
the real logical child segment.

Like the Special procedure, the Mass Update step is not required during loading of the data in
Adabas files (see Step 7:Mass Update for Paired Logical Child Segments), and only one DAZELORE run
is needed to establish the bidirectional logical relationship.

If a logical child segment occurrencewhich does not have amatching logical parent is encountered
during the run, the following error message is produced.

ADL0612: Unexpected DP status code for DAZELORE procedure used

The job then terminates. In this case, rerun DAZELORE using the Standard procedure.

The Turbo procedure has the following performance advantages:

■ It does not read the hierarchy to access the logical child segment data. Instead it uses the ADL
internal pointer field to read the child segment data directly.

■ The ADARUN MULTIFETCH feature can be used, when reading the logical child segments. It is re-
commended to use one MULTIFETCH bufferwithmaximumsizewhichwill contain the sequential
reads of the logical child segment data.

75Conversion

ADL Data Conversion Utilities

■ ADL (like DL/I) maintains for each logical child a counter at its physical parent and at its logical
parent. The other procedures update these counters whenever a logical child is processed. The
Turbo procedure updates the physical parent counter only once when all its children are pro-
cessed. The logical parent counters are kept in an online table (“DP counter table”) and updated
at the end of the run. If a counter in the DP counter table is bigger than 127, the corresponding
counter in the database is updated and the counter is reset. Thus for every 128th logical child
the counter of the logical parent is updated (and not for every logical child).

■ The update of a logical parent counter in the sequence of the corresponding logical children (as
done with the other procedures) is a “random” update and therefore very time consuming be-
cause usually every update requires a physical I/O. The Turbo procedure does not only collect
the updates (as described before) but it makes also the final update in ISN sequence.

For a better performance it is recommended to use “RESTART=NO”with the Turbo procedure.

Step 8: Creating a Turbo Connect PSB

The Turbo connect PSB contains a single PCB based on the converted DBD and referencing the
logical child segment and all its parent segments only (i.e. same as the Special connect PSB). The
PCB has to be based on the physical DBD. For this reason, the SENSEG describing the logical child
segment cannot describe the concatenated segment. This PCB is identical to the PCB1 described
in the section Creating a Standard Connect PSB. It must specify processing option "AP".

If RESTART=YES is specified for the DAZELORE run, the KFB (key-feedback area) length in the PCB
must be at least 8 bytes long. If it is shorter, set it to 8 bytes.

The Turbo connect PSBsmust be run through theCBCutility (see the topicADLConversionUtilities
for DBDs and PSBs in this documentation).

Conversion76

ADL Data Conversion Utilities

Step 9: Establishing a Logical Relationship - Turbo Procedure

This is done by running DAZELORE. In the Turbo procedure, DAZELORE is executed as a normalmode
program (see the section Batch Installation and Operation in theADL Interfaces documentation). The
control statement parameters must have the following layout

ELO,DAZELORE,psbname

where psbname is the name of the Turbo connect PSB.

DAZELORE also needs a control statement to indicatewhich logical child segment should be connec-
ted. The syntax of the control statement for the Turbo procedure is as follows:

LC=lognam,MODE=TURBO,MAXDPISN=n

where lognam is the name of the logical child segment in the physical DBD and n is the size of the
DP counter table as described later in details.

Youmay use the sample JCL (JCS) in themember ADLDBC9 (ADLDBC9.J) as an example of a DAZELORE
run under z/OS (z/VSE).

77Conversion

ADL Data Conversion Utilities

DAZELORE Run Report

Each DAZELORE run produces a report. Such reports can be divided into twoparts: a first partwhich
is produced before any of the logical child segments are processed, and a second part which is
produced at the end of a normally terminated run.

The first part of the report has the following layout and contains the following information:

CONNECT LOGICAL CHILD TO ITS LOGICAL PARENT
PROCEDURE........................: procedure
LOGICAL CHILD DBD................: LCDBD
LOGICAL CHILD SEGMENT............: LCseg
LOGICAL PARENT DBD...............: LPDBD
LOGICAL PARENT SEGMENT.......... : LPseg

where

is the procedure (Standard, Simplified or Special) used.procedure

is the name of the DBD of the logical child segment.LCDBD

is the name of the logical child segment.LCseg

is the name of the DBD of the logical parent segment.LPDBD

is the name of the logical parent segment.LPseg

The second part of the report that is produced at the end of a successful run can have a variety of
layouts and contain a variety of information.

If, during the processing of a logical child segment, DAZELORE finds that the destination parent
segment has been physically deleted and subsequently reinserted, the following message is pro-
duced:

PHYSICALLY DELETED SEGMENTS HAVE BEEN REINSERTED

This message is followed by a list of all the segment types and the number of segment occurrences
inserted, as shown below.

SEGMENT QUANTITY
------- --------
.......
.......

........

Alternatively, if no such situation has been encountered, the following message is produced:

Conversion78

ADL Data Conversion Utilities

NO PHYSICALLY DELETED SEGMENTS HAVE BEEN FOUND

Where a bidirectional logical child is being processed and the paired logical child segment has
dependents (variable intersection data), variable intersection data segmentsmay have been inserted
during the run. In this case the following message is produced:

VARIABLE INTERSECTION DATA SEGMENTS HAVE BEEN INSERTED

It is followed by a list of segment types and quantities similar to that mentioned above.

Where no such segments were encountered, the following message is produced:

NO VARIABLE INTERSECTION DATA SEGMENTS HAVE BEEN INSERTED

Where a segment occurrence that is a logical child segment was inserted during the DAZELORE run,
the following eye catcher is printed behind the segment name and quantity, to indicate that
DAZELORE needs to be rerun for this segment type.

LOGICAL CHILD RE-INSERTED, RE-RUN DAZELORE

The following five messages appear at the end of the report:

THIS RUN PROCESSEDNO....... LOGICAL CHILDREN

This message states the total number of logical child segment occurrences processed in the run. It
is followed by the next message:

OF WHICHNO....... LOGICAL CHILDREN WERE ALREADY CONNECTED

which states the total number of logical child segment occurrences found to have been already
processed in previous runs.

The third message states the total number of destination parent segment occurrences found to
have been physically deleted.

.......NO....... DESTINATION PARENT SEGMENTS WERE FOUND TO BE MISSING

Where the logical child segment being processed is a bidirectional logical child, themessage below
is produced. It states the total number of paired logical child segment occurrences found to have
been physically deleted.

79Conversion

ADL Data Conversion Utilities

.......NO....... PAIRED LOGICAL CHILD SEGMENTS WERE FOUND TO BE MISSING

The DAZELORE Turbo procedure reports additionally the highest DP ISN found and howmany DP
ISNs are bigger than MAXDPISN.

The following message is produced last.

LOGICAL RELATIONSHIP SUCCESSFULLY ESTABLISHED

Restart Considerations

The Establish Logical Relationship utility (DAZELORE) may be run with checkpoints in order to
make it restartable by specifying “RESTART=YES” as DAZELORE parameter. The number of logical
child segment occurrences to be processed before a checkpoint is taken are definedwith the INTER
parameter. When checkpoints are being used and a DAZELORE run is terminated abnormally, it
may be restarted from any checkpoint which has been successfully issued. The procedure for
taking checkpoints and restarting runs is the same as that used for all normal batch jobs issuing
restart and symbolic checkpoint calls (see the section Recovery and Restart Procedures in the ADL
Interfaces documentation for more details). For every checkpoint, an Adabas unsynchronized
checkpoint (a C1 call) is taken and a message is written to DAZOUT1 naming the checkpoint ID. An
abnormally terminated DAZELORE runmay be restarted after the Adabas file(s) involved have been
restored to the situation as represented by the checkpoint fromwhich it is to be restarted. DAZELORE
will reposition itself automatically when restarted from a checkpoint.

A restart is not possible in case of running DAZELOREwith MODE=STANDARD in a z/VSE system.

For extremely long DAZELORE runs, it is possible to limit the total number of logical child segment
occurrences to be processed in one particular run and to use the restart capabilities to continue
processing in a subsequent run. For this limitation “RESTART=YES”must be used and both the
INTER and the NUMCP parameters must be specified. As described above, the INTER parameter
specifies the number of logical child segment occurrences to be processed before a checkpoint is
taken whereas the NUMCP parameter specifies the number of checkpoints to be written before the
program ends. The total number of processed logical child segment occurrences is therefore the
product of both parameters: NUMCP * INTER. When the checkpoints specified with the NUMCP para-
meter are written, DAZELORE ends. This termination of DAZELORE does not delete the checkpoint
entries in the ADL directory file. This means that a subsequent DAZELORE run may be restarted
from the last checkpointwithout theAdabas files involved being restored, as noAdabas callswere
issued after the last checkpoint. For the restart use “CPID=cccc” as DAZIFP parameter where cccc
is the last checkpoint Id.

When all logical child occurrences have been processed, DAZELORE ends normally and deletes all
checkpoints from the ADL directory.

The additional keyword parameters for DAZELOREmay be specified in the parameter statement as
follows:

Conversion80

ADL Data Conversion Utilities

LC=LCname,MODE=mode,keyword

Parameters for DAZELORE

Default:Possible
values:

ExplanationKeyword

YESYESSpecifies whether DAZELORE can be restarted or not.RESTART

NOIf “YES” is specified, DAZELORE can be restarted. The parameters
INTER and NUMCP can be specified. DAZELORE issues XRST and
CHKP calls. The ADL Directory file is used in exclusive mode, i.e.
no other user can work on it simultaneously.

If “NO” is specified, DAZELORE cannot be restarted. In case of an
unexpected failure, the utility must be started from the very
beginning. The ADL Directory file is not used in exclusive mode.

21474836471 -
2147483647

Specifies the number of processed logical child segment occurrences
before a checkpoint is issued. The parameter can only be specified

INTER

for RESTART=YES. ForMODE=TURBO, checkpoints are issued after
all logical child segments belonging to one parent segment have been
processed. Thatmeans that the real number of processed logical child
segment occurrences can be slightly higher than specified with the
INTER parameter.

11 -
2147483647

Specifies the number of checkpoints issued byDAZELORE. As soon
as DAZELORE has reached this number, it is stopped and can be

NUMCP

restarted later. At the restart the last checkpoint Id must be given as
DAZIFPCPIDparameter. The NUMCPparameter can only be specified
for RESTART=YES and if the INTER parameter has been specified.
The total number of processed logical child segment occurrences is:
NUMCP * INTER.

655361 -
16777215

Specifies the length (in bytes) of the table of the destination parent
(DP) counters (the destination parent is the logical parent in the

MAXDPISN

logical relationship). As far as possible the table should be as big as
the maximum ISN of the destination parent data. The counters of
DPs with ISNs higher than MAXDPISN are updated immediately
and lead therefore to a poorer performance. The report ofDAZELORE
outlines the highest DP ISN found and howmanyDP ISNs are bigger
than MAXDPISN. The REGION/PARTITION of the job should be
adjusted accordingly so that the table can be allocated. This parameter
can only be specified for MODE=TURBO.

Example

Where the total number of logical child segment occurrences is 5,312,726, and it has been decided
to process them in 3 runs, with a checkpoint to be taken every 10,000th logical child segment oc-
currence, the following parameter setting is required:

81Conversion

ADL Data Conversion Utilities

Processed LCsNUMCPINTERrun

2,000,00020010,0001

2,000,00020010,0002

1,312,72620010,0003

z/OS JCL Requirements

The following examples illustrate the z/OS JCL requirements for the utility runs described in this
section. They include the requirements for the DAZUNDLI, DAZUNLOD and DAZREFOR utilities, for the
ADACMP step during data loading, and for DAZELORE.

■ DAZUNDLI
■ DAZUNLOD
■ DAZREFOR
■ Loading the Data
■ DAZELORE

DAZUNDLI

The table below lists the data sets used by the Unload utility, DAZUNDLI.

DescriptionMediumDDname

Control input for DAZUNDLI. *ReaderDAZIN1

Control input for batch monitor in mixed mode.ReaderDAZIN2

Root sequence field values. **Tape/DiskDAZIN3

Report, messages and codes.PrinterDAZOUT1

The unloaded database.Tape/DiskDAZOUT3

* Set to dummy if no keyword is specified.

** Only required if the ROOTKEYS=SEQ is set.

Example

//UNDLI EXEC DLIBATCH,PSB=PSB4CON,MBR=DAZIFP (1)
//STEPLIB DD
// DD
// DD DSN=ADLvrs.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//*
//* DATASETS DESCRIBING DL/I DATABASES
//*
//G.file DD ...

Conversion82

ADL Data Conversion Utilities

//*
//* ADARUN CARDS
//*
//G.DDCARD DD *
ADARUN PROGRAM=USER,...
//*
//* ADABAS DL/I BRIDGE DATASETS
//*
//G.DAZIN1 DD *
MODE=CHECKNUM
//G.DAZIN2 DD *
UNL,DAZUNDLI,PSB4CON
//G.DAZOUT1 DD SYSOUT=X
//G.DAZOUT3 DD DSN=ADL.DBD4.UNLOAD,DISP=OLD

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

DAZUNLOD

The following table lists the data sets used by the Unload utility, DAZUNLOD.

DescriptionMediumDDname

Report, messages and codes.PrinterDAZOUT1

The unloaded database.Tape/DiskDAZOUT3

Example

//UNLOD EXEC DLIBATCH,PSB=PSB4CON,MBR=DAZUNLOD (1)
//G.STEPLIB DD
// DD
// DD DSN=ADLvrs.LOAD,DISP=SHR
//*
//* DATASETS DESCRIBING DL/I DATABASES
//*
//G.file DD ...
//*
//* ADABAS DL/I BRIDGE DATASETS
//*
//G.DAZOUT1 DD SYSOUT=X
//G.DAZOUT3 DD DSN=ADL.DBD4.REFOR,DISP=OLD

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

83Conversion

ADL Data Conversion Utilities

DAZREFOR

The following table lists the data sets used by the Reformat utility, DAZREFOR.

DescriptionMediumDDname

The data to be reformatted.Tape/DiskDAZIN3

Report, messages and codes.PrinterDAZOUT1

The unloaded database.Tape/DiskDAZOUT3

Example

//REFOR EXEC PGM=DAZIFP,PARM='REF,DAZREFOR,PSB4CON'
//STEPLIB DD DSN=ADLvrs.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//DAZIN3 DD DSN=ADL.DBD4.REFOR,DISP=OLD
//DAZOUT1 DD SYSOUT=X
//DAZOUT2 DD SYSOUT=X
//DAZOUT3 DD DSN=ADL.DBD4.UNLOAD,DISP=OLD
//DDCARD DD *
ADARUN PROGRAM=USER,...

Loading the Data

The table below lists the data sets used during the first step of the data loading process, which
uses the Adabas Compression utility, ADACMP.

DescriptionMediumDDname

Control input for the Adabas User Exit 6, DAZUEX06.ReaderDAZIN1

Report, messages and codes.PrinterDAZOUT1

Examples

1. ADACMP run for an initial load of DBD4 on DBID=9,FNR=34

//ADACMP EXEC PGM=ADARUN
//STEPLIB DD DSN=ADABAS.LOAD,DISP=SHR
// DD DSN=ADLvrs.LOAD,DISP=SHR
//DDEBAND DD DSN=ADL.DBD4.UNLOAD,DISP=OLD
//DDAUSBA DD DSN=ADL.DBD4.LOAD,DISP=OLD
//DDFEHL DD DSN=&&FEHL,UNIT=SYSDA,SPACE=(CYL,(1,1)),DISP=(,PASS)
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//DDCARD DD *
ADARUN PROGRAM=ADACMP,DB=9,SVC=svc,DE=3390,UEX6=I00034
//DDKARTE DD * (1)
ADACMP USERISN
ADACMP FNDEF='01,Z0,A,DE,MU,UQ,NU' Z1 INVERTED (INSERT ↩

Conversion84

ADL Data Conversion Utilities

LAST)
ADACMP FNDEF='01,Z1,A,DE,MU,UQ,NU' MAIN DESCRIPTOR FIELD ↩
UP22
ADACMP FNDEF='01,Z2,004,B,NU' ROOT ISN (NON ROOT SEGS) ↩

.
.
/*
//DAZIN1 DD *
FNR=034,MODE=LOAD
//DAZOUT1 DD SYSOUT=X
//*
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=X
//SYSUT1 DD DSN=&&FEHL,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=X
//SYSIN DD *
/*

(1) The ADACMP statements generated by the CBC utility as member W00034.

2. ADACMP run for a mass update of the logical child D5B

//ADACMP EXEC PGM=ADARUN
//STEPLIB DD DSN=ADABAS.LOAD,DISP=SHR
// DD DSN=ADLvrs.LOAD,DISP=SHR
//DDEBAND DD DSN=ADL.DBD5.UNLOAD,DISP=OLD
//DDAUSBA DD DSN=ADL.DBD4.MASS,DISP=OLD
//DDFEHL DD DSN=&&FEHL,UNIT=SYSDA,SPACE=(CYL,(1,1)),DISP=(,PASS)
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//DDCARD DD *
ADARUN PROGRAM=ADACMP,DB=9,SVC=svc,DE=3390,UEX6=I00035
//DDKARTE DD * (1)
ADACMP FNDEF='01,Z0,A,DE,MU,UQ,NU' Z1 INVERTED (INSERT ↩
LAST)
ADACMP FNDEF='01,Z1,A,DE,MU,UQ,NU' MAIN DESCRIPTOR FIELD ↩
UP22
ADACMP FNDEF='01,Z2,004,B,NU' ROOT ISN (NON ROOT SEGS) ↩

.
.
/*
//DAZIN1 DD *
FNR=034,LC=D5B,MODE=MASS
//DAZOUT1 DD SYSOUT=X
//*
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=X
//SYSUT1 DD DSN=&&FEHL,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=X

85Conversion

ADL Data Conversion Utilities

//SYSIN DD *
/*

(1) The ADACMP statements generated by the CBC utility as member W00034without the USERISN
option.

DAZELORE

The table below lists the data sets used by the Establish Logical Relationship utility, DAZELORE.

DescriptionMediumDDname

Control input for DAZELORE and for the batch monitor in normal mode.ReaderDAZIN1

Control input for the batch monitor in mixed mode. *ReaderDAZIN2

Report, messages and codes.PrinterDAZOUT1

* Only required if DAZELORE is run in mixed mode, i.e. when MODE=STANDARD is specified for the
conversion of an original DL/I database.

Examples

1. DAZELORE run with MODE=STANDARD

//ELORE EXEC DLIBATCH,PSB=PSB4BI,MBR=DAZIFP (1)
//G.STEPLIB DD
// DD
// DD DSN=ADLvrs.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//*
//* DATASETS DESCRIBING DL/I DATABASES DBD4 AND DBD5
//*
//G.FILE DD ...
//*
//* ADARUN CARDS
//*
//G.DDCARD DD *
ADARUN PROGRAM=USER,...
//*
//* ADABAS DL/I BRIDGE DATASETS
//*
//G.DAZIN1 DD *
LC=D4F,MODE=STANDARD
//G.DAZIN2 DD *
ELO,DAZELORE,PSB4BI
//G.DAZOUT1 DD SYSOUT=X

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

2. DAZELORE run with MODE=TURBO

Conversion86

ADL Data Conversion Utilities

// EXEC PGM=DAZIFP,PARM='ELO,DAZELORE,INSTELO'
//STEPLIB DD DSN=ADLvrs.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//DAZOUT1 DD SYSOUT=X
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZIN1 DD *
LC=COURSEP,MODE=TURBO,RESTART=NO,MAXDPISN=5000000

z/VSE JCS Requirements

The following examples illustrate the JCS requirements for the utility runs described in this section.
They include the requirements for the DAZUNDLI, DAZUNLOD and DAZREFOR utilities, for the ADACMP
step during data loading, and for DAZELORE.

■ DAZUNDLI
■ DAZUNLOD
■ DAZREFOR
■ Loading the Data
■ DAZELORE

DAZUNDLI

The following table lists the files used by the Unload utility, DAZUNDLI, in mixed mode.

DescriptionMediumLogical UnitDTF

Control input for DAZUNDLI. *ReaderSYSIPTDAZIN1

Control input for batch monitor.ReaderSYSIPTDAZIN2

Root seq. field value **/***DiskSYS014DAZIN3D

Root seq. field value **/***TapeSYS014DAZIN3T

Report, messages and codes.PrinterSYSLSTDAZOUT1

The unloaded database. **DiskSYS013DAZOT3D

The unloaded database. **TapeSYS013DAZOT3T

* Only required if any keyword has been specified.

** Only one of either disk or tape is required. The logical unit indicated is the default logical unit.
To change it, specify the SQ parameter either in the ADL parameter module or as a dynamic
parameter, for example: SQ=(5,)

*** Only required if the ROOTKEYS=SEQ keyword has been specified.

87Conversion

ADL Data Conversion Utilities

The control input for the batchmonitor (DAZIFP), for ADARUN, for DAZUNDLI, and for the DL/I initial-
ization program, DLZRRC00, are all read from SYSIPT. The control statements must be specified in
the following order:

DLI,DAZIFP,psbname,... input for DLZRRC00
UNL,DAZUNDLI,psbname,... input for DAZIFP
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
MODE=CHECKNUM input for DAZUNDLI

Examples

1. DAZUNDLI run unloading a database on disk

// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,'ADL.DBD4.UNLOAD,0,SD'
// EXTENT SYS013,volser,1,0,.......
// EXEC DLZRRC00
DLI,DAZIFP,PSB4CON
UNL,DAZUNDLI,PSB4CON
ADARUN PROGRAM=USER,...
/*

2. DAZUNDLI run unloading a database on tape

// ASSGN SYS005,TAPE
// TLBL DAZOT3T,'ADL.DBD4.UNLOAD,0,SD'
// EXEC DLZRRC00
DLI,DAZIFP,PSB4CON
UNL,DAZUNDLI,PSB4CON,SQ=(5,) ↩

ADARUN PROGRAM=USER,...
/*

DAZUNLOD

The table below lists the files used by the Unload utility, DAZUNLOD.

DescriptionMediumLogical UnitDTF

Report, messages and codes.PrinterSYSLSTDAZOUT1

The unloaded database. *DiskSYS014DAZOT3D

The unloaded database. *TapeSYS014DAZOT3T

* Only one of the two is required. The logical unit indicated is the default logical unit. To change
it, specify the SQ parameter either in the ADL parameter module or as a dynamic parameter, for
example: SQ=(5,)

Conversion88

ADL Data Conversion Utilities

Example

// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,'ADL.DBD4.REFOR,0,SD'
// EXTENT SYS013,volser,1,0,.......
// EXEC DLZRRC00
DLI,DAZUNLOD,PSB4CON
/*

DAZREFOR

The following table lists the files used by the Reformat utility, DAZREFOR.

DescriptionMediumLogical UnitDTF

Control input for batch monitor.ReaderSYSIPTDAZIN1

Report, messages and codes.PrinterSYSLSTDAZOUT1

The unloaded database. *DiskSYS014DAZIN3D

The unloaded database. *TapeSYS014DAZIN3T

The unloaded database. *DiskSYS013DAZOT3D

The unloaded database. *TapeSYS013DAZOT3T

* Only one of either tape or disk is required. The logical unit indicated is the default logical unit.
To change it, specify the SQ parameter either in the ADL parameter module or as a dynamic
parameter, for example: SQ=(5,)

The control input for the batch monitor (DAZIFP) and for ADARUN is read from SYSIPT. The control
statements must be specified in the following order:

REF,DAZREFOR,psbname,... input for ↩
DAZIFP
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*

Example

// ASSGN SYS014,DISK,VOL=volser,SHR
// DLBL DAZIN3D,'ADL.DBD4.REFOR,0,SD'
// EXTENT SYS014,volser,1,0,.......
// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,'ADL.DBD4.UNLOAD,0,SD'
// EXTENT SYS013,volser,1,0,.......
// EXEC DAZIFP
REF,DAZREFOR,PSB4CON
ADARUN PROGRAM=USER,...
/*

89Conversion

ADL Data Conversion Utilities

Loading the Data

The table below lists the files used during the first step of the data loading process, which uses
the Adabas Compression utility, ADACMP.

DescriptionMediumLogical UnitDTF

Control input for the Adabas User Exit 6, DAZUEX06.ReaderSYSIPTDAZIN1

Report, messages and codes.PrinterSYSLSTDAZOUT1

The control input for theAdabasUser Exit 6, DAZUEX06, for ADARUN and for theAdabasCompression
utility, ADACMP, are all read from SYSIPT. The control statements must be specified in the following
order:

ADARUN DB=dbid,MO=MULTI,PROGRAM=ADACMP input for ADARUN
/*
ADACMP USERISN,RECFM=VB,LRECL=8196 input for ADACMP
ADACMP FNDEF='01,Z0,.....' ↩

.
.
/*
FNR=fnr,MODE=LOAD input for DAZUEX06
/*

Examples

1. ADACMP run for an initial load of DBD4, DBID=9,FNR=34

// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL EBAND,'ADL.DBD4.UNLOAD,0,SD'
// EXTENT SYS010,volser,1,0,.......
// ASSGN SYS012,DISK,VOL=volser,SHR
// DLBL AUSBA,'ADL.DBD4.LOAD,0,SD'
// EXTENT SYS012,volser,1,0,.......
// ASSGN SYS014,IGN
// EXEC PROC=ADLLIBS
// EXEC ADARUN,SIZE=4K
ADARUN PROGRAM=ADACMP,SVC=svc,DE=3390,UEX6=I00034
/*
ADACMP USERISN,LRECL=8196,RECFM=VB (1)
ADACMP FNDEF='01,Z0,A,DE,MU,UQ,NU' Z1 INVERTED (INSERT ↩
LAST)
ADACMP FNDEF='01,Z1,A,DE,MU,UQ,NU' MAIN DESCRIPTOR FIELD ↩

ADACMP FNDEF='01,Z2,003,B,NU' ROOT ISN (NON ↩
ROOT SEGS)
.
.
/*

Conversion90

ADL Data Conversion Utilities

FNR=034,MODE=LOAD
/*

(1) The ADACMP statements generated by the CBC utility as member W00034.

2. ADACMP run for a mass update of the logical child D5B

// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL EBAND,'ADL.DBD5.UNLOAD,0,SD'
// EXTENT SYS010,volser,1,0,.......
// ASSGN SYS012,DISK,VOL=volser,SHR
// DLBL AUSBA,'ADL.DBD4.MASS,0,SD'
// EXTENT SYS012,volser,1,0,.......
// ASSGN SYS014,IGN
// EXEC PROC=ADLLIBS
// EXEC ADARUN,SIZE=4K
ADARUN PROGRAM=ADACMP,SVC=svc,DE=3390,UEX6=I00034
/*
ADACMP LRECL=8196,RECFM=VB (1)
ADACMP FNDEF='01,Z0,A,DE,MU,UQ,NU' Z1 INVERTED (INSERT LAST)
ADACMP FNDEF='01,Z1,A,DE,MU,UQ,NU' MAIN DESCRIPTOR FIELD
ADACMP FNDEF='01,Z2,003,B,NU ROOT' ISN (NON ROOT SEGS)
.
.
/*
FNR=34,MODE=MASS,LC=D5B
/*

(1) The ADACMP statements generated by the CBC utility as member W00034without the USERISN
option.

DAZELORE

The following table lists the files used by the Establish Logical Relationship utility, DAZELORE.

DescriptionMediumLogical UnitDTF

Control input for DAZELORE and for the batch monitor in normal
mode.

ReaderSYSIPTDAZIN1

Control input for the batch monitor in mixed mode. *ReaderSYSIPTDAZIN2

Report, messages and codes.PrinterSYSLSTDAZOUT1

* Only required if DAZELORE is run in mixed mode, i.e. when MODE=STANDARD is specified for the
conversion of an original DL/I database.

The control input for the batch monitor, DAZIFP, for DAZELORE itself, for ADARUN and for the DL/I
initialization program, DLZRRC00, is read from SYSIPT. The control statements must be specified
in the following order:

91Conversion

ADL Data Conversion Utilities

DLI,DAZIFP,psbname,... input for DLZRRC00 *
ELO,DAZELORE,psbname,... input for batch monitor
/*
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
LC=lcname,MODE=STANDARD input for DAZELORE
/*

* Only required when DAZELORE is run in mixed mode.

Examples

1. DAZELORE run with MODE=STANDARD

// EXEC DLZRRC00
DLI,DAZIFP,PSB4CON
ELO,DAZELORE,PSB4CON
/*
ADARUN PROGRAM=USER,...
/*
LC=D4F,MODE=STANDARD
/*

2. DAZELORE run with MODE=TURBO

// EXEC DAZIFP
ELO,DAZELORE,INSTELO
/*
ADARUN PROGRAM=USER,...
/*
LC=COURSEP,MODE=TURBO,RESTART=NO,MAXDPISN=5000000 ↩

/*

Conversion92

ADL Data Conversion Utilities

7 Migration of a GSAM Data Base

■ Introduction .. 94
■ Restrictions .. 94
■ Conversion of a GSAM Data Base .. 95
■ Features of a Converted GSAM Data Base ... 95

93

This chapter covers the following topics:

Introduction

A GSAM database uses the Generalized Sequential Access Method (GSAM) under DL/I. It is recog-
nized by the 'ACCESS=GSAM' keyword for the DBD statement in the DBD definition. A GSAM DBD
does not specify any segment or field definitions. The corresponding PCB statement in the PSB
definition uses 'TYPE=GSAM'.

For more information regarding the definition of a GSAM DBD refer to the IMS Utilities Reference
Manual of IBM.

Restrictions

GSAM databases are supported by ADL with some restrictions regarding the DBD definition, the
JCL and the OPEN command.

In particular, the following restrictions are valid for a GSAM DBD:

■ The recordsmust have fixed length, i.e. the RECFM keyword of the DATASET statement in the DBD
definition must have a value of 'F' or 'FB'.

■ The record length (RECORD keyword) must be at least 12 bytes.

If these conditions aremet, the GSAM DBD can be converted and the data can be loaded into Adabas,
as described in the next section.

Like for any other converted database, the data set corresponding to a converted GSAM database
cannot longer be referenced in the JCL, because the data is in Adabas. Consequently, the record
format (RECFM) parameter cannot be overwritten in the JCL. With DL/I the disposition (DISP) of
the output dataset defines, whether a new dataset is created or whether the data is added to the
end of the dataset. With ADL the data is always added to the end. If you want to insert data from
the beginning of a data set, which does already contain data, you must refresh the Adabas file
before your program starts. This can be performed by either using the REFRESH function of the
Adabas ADADBS utility or manually with the Adabas Online System.

The DL/I OPEN and CLSE calls are ignored by ADL. Under DL/I you can add an option to the OPEN
call, which specifies the kind of control character in the first byte of each record in the output data
set. With ADL there is always no control character in the first byte of each output record.

With DL/I an application can use the CLSE and OPEN commands to read a GSAM database after it
was loaded, without terminating in between. This works in the same way after the migration, be-
cause ADL does not need these calls for a re-positioning.

Conversion94

Migration of a GSAM Data Base

Conversion of a GSAM Data Base

Run the GSAM DBD through the step 1 (assembly), step 2 (CBCutility) and step 3 (create input decks)
of the ADL control block conversion (CBC). For a more detailed description of the ADL CBC, see
the section ADL Conversion Utilities for DBDs and PSBs in this documentation. Step 4 (assemble
and link-edit Adabas user 6 extension) is not required for a GSAM database.

ADL adds a segment 'GSAMROOT' and a sequence field 'GSAMFLD' to theDBDdefinition. The length
of the segment is the same as specified with the 'RECORD' keyword in the DATASET statement. The
field always has a length of 12 bytes. Additionally, ADL adds a sensitive segment 'GSAMROOT' to
the GSAM PCB.

The ADACMP cards which are generated by step 3 of the ADL conversion utility is used as input for
the ADACMP COMPRESS utility. Note, that the USERISN=YES option must not be used for any Adabas
utility run against a file of a converted GSAM DBD.

There is no need to run the ADL unload utility when unloading the DL/I GSAM database. Instead,
the sequential file can directly be used as input for the Adabas compression utility, by specifying
the GSAMdataset as DDEBAND for ADACMP. Youmust not use theADLuser exit 06 for the compression.

Use the following parameter settings for ADALODwhen loading the data into Adabas:

DATAPFAC=1
DSREUSE=NO
ISNREUSE=NO
USERISN=NO

Features of a Converted GSAM Data Base

The GN, ISRT and GU calls are supported in the sameway as underDL/I. GN and ISRT can be specified
with or without a record search argument (RSA). With ADL the first 4 bytes of the RSA contain the
Adabas ISN of the record and the last 4 bytes contain hexadecimal zeros. After a successful call,
the RSA is also placed into the Key Feedback Area of the corresponding PCB. Further to these
database calls, the system service calls CHKP and XRST are supported.

With the LOAD parameter of ADL, you can specify where the data of an ISRT call against a PCB
with PROCOPT=L or LS is to bewritten. See the sectionADLParameterModule in theADL Installations
documentation formore information about the LOADparameter.When you specify 'LOAD=UTILITY'
the data is written to a variable blocked sequential file. For a GSAM database, this file can be loaded
back into Adabas in the same way as described above. Especially you must set USERISN=NO, and
you must not use the ADL user exit 6.

95Conversion

Migration of a GSAM Data Base

When 'LOAD=DIRECT' is specified as ADL parameter, you can insert and read data simultaneously
in one application by using different PCBs in the PSB. In particular you do not need to issue a CLSE
and an OPEN call, when you want to retrieve data after inserting it. You can also mix the ISRT and
GET calls as you like, and the position is kept for each PCB.

Further to inserting and retrieving data, you can also replace and delete records, by using the REPL
(replace) and DLET (delete) calls. The corresponding PCBmust specify PROCOPT=R or =D, respectively.
The data storage of a deleted record is not released, so that a new inserted record is put to the end
of the database, as expected for GSAM databases.

Note: AnAdabas backout after a delete request acts like a re-insert, i. e. the record is inserted
to the end of the database. After such a delete/backout the data will be therefore in another
sequence than before.

After the data conversion you can manipulate it with Natural. This includes update and delete
requests. Because there is no ADL internal pointer field stored with the data, there is no need to
use the ADL Consistency.

ADL translates a get request against a GSAM DBD to an Adabas L2 (read physical) call. For a high
performance it is recommended to use the Adabas Multifetch feature for a GN sequence against a
converted GSAM database. Refer toUsing the AdabasMultifetch Feature, section Performance Consider-
ations in the ADL Interfaces documentation for more information about the usage of the Adabas
Multifetch feature against migrated data. In particular, you should make sure, that the correct
Adabas command ID is prefetched.

Conversion96

Migration of a GSAM Data Base

Index

B
Bridge for DLI, v

97

98

	Conversion
	Table of Contents
	Conversion
	1 Introduction
	Other Documentation You May Need
	Documentation Related to non-SAG Products

	2 Planning the Conversion Process
	Stocktaking
	Resource Allocation

	3 Conversion of the Data Structure - General Considerations
	Changes to DL/I Data Structures Prior to the Conversion
	Validating Segment Layouts and Data Types
	Optimization with Respect to Adabas Compression
	Adabas File Layout
	Default Layout Generated by the ADL Conversion Utilities
	Changing the Default Layout
	Considerations for Natural / Adabas applications

	4 ADL Conversion Utilities for DBDs and PSBs
	Conversion - Overview
	All PSBs and DBDs except Primary Index DBDs
	All PSBs and Physical and Logical DBDs
	DBD/PSB Conversion Steps 1 - 2
	Physical DBDs Only
	DBD/PSB Conversion Steps 3 - 4

	Conversion - PSBs and all DBDs except Index DBDs
	Conversion - Physical DBDs
	Conversion - Index DBDs
	Conversion - Logical DBDs
	Conversion - Logically Related Physical DBDs
	Conversion - HD Databases
	z/OS Requirements
	z/VSE Requirements

	Control Statements for the CBC Utility
	GENDBD Function
	GENSEG Function
	DELDBD Function
	GENPSB Function
	DELPSB Function

	CBC Utility Output
	z/OS Requirements
	z/VSE Requirements

	5 Conversion of the Data - General Considerations
	Conversion of the Physical Hierarchical Structures
	Additional Effort Related to Logical Relationships
	Validating Data Types

	6 ADL Data Conversion Utilities
	Overview
	Data Unload with the ADL Unload Utility
	Step 1: Convert the Physical DBD
	Step 2: Create an ADL Unload PSB
	Step 3: Create a DL/I Unload PSB
	Step 4: Unload the Data

	Data Validation
	Limited Data Unload
	Restrict the Unload Segment Types
	Specify an Alternate Unload Sequence
	Limit the Unloaded Records
	Limit the Unloaded Root Segment Occurrences
	Unload a Specific Range of Values
	Unloading Specific Values

	Unloading a HDAM Database
	Control Statements for the ADL Unload Utility
	Data Unload With the ADL Customized Utility
	Step 1: Convert the Physical DBD
	Step 2: Create a DL/I Unload PSB
	Step 3: Create an ADL Reformat PSB
	Step 4: Unload Data
	ADL Request Handler (DAZBRQH)
	Step 5: Reformat the Data

	Converting Data - Load
	Step 6: Initial Load of the Adabas File(s)
	Step 7: Mass Update for Paired Logical Child Segments

	Establishing Logical Relationships
	Standard Procedure
	Simplified and Special Procedures
	Turbo Procedure
	DAZELORE Run Report
	Restart Considerations

	z/OS JCL Requirements
	DAZUNDLI
	DAZUNLOD
	DAZREFOR
	Loading the Data
	DAZELORE

	z/VSE JCS Requirements
	DAZUNDLI
	DAZUNLOD
	DAZREFOR
	Loading the Data
	DAZELORE

	7 Migration of a GSAM Data Base
	Introduction
	Restrictions
	Conversion of a GSAM Data Base
	Features of a Converted GSAM Data Base

	Index

