
Adabas

Triggers and Stored Procedures

Version 8.5.4

April 2020

This document applies to Adabas Version 8.5.4 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ADAMF-TRIGGERS-854-20231108

Table of Contents

Triggers and Stored Procedures ... v
1 Conventions ... 1
2 About this Documentation .. 3

Document Conventions ... 4
Online Information and Support ... 4
Data Protection ... 5

I Introduction ... 7
3 Introduction ... 9

Procedures .. 10
Components ... 13
Processing Summary .. 18

II Installation and Configuration ... 23
4 Installation and Configuration .. 25

Software Requirements .. 26
Overview .. 26
Install Trigger Maintenance ... 26
Install the Adabas Trigger Driver .. 28
Install the Natural Trigger Driver .. 30
NATPARM Considerations .. 33
Printer Considerations ... 36
Work File Considerations ... 38
Natural Security Considerations .. 38

III Processing and Performance ... 43
5 Processing and Performance ... 45

Initialization ... 46
Checking for Procedures .. 49
Processing the Procedures ... 50
Processing the Results .. 51
Shutdown ... 53
Abnormal Termination ... 54
Command Logging .. 56

IV Programming and Performance .. 57
6 Programming and Performance .. 59

Writing Procedures .. 60
Natural Syntax Limitations .. 63
Using the Format and Record Buffers .. 66

V Calling Stored Procedures .. 73
7 Calling Stored Procedures ... 75

Stored Procedure Link Routine (STPLNKnn) .. 76
Setting Up the PC Command ... 76
Examples .. 83

VI Trigger Maintenance .. 97
8 Trigger Maintenance .. 99

iii

Overview .. 101
File-Field Tables .. 104
Trigger Definitions ... 115
Procedure Reports .. 125
Administrator Functions .. 128

VII TRGMAIN: An API To Maintain Triggers ... 141
9 TRGMAIN: An API To Maintain Triggers ... 143

Functions (Format A5) .. 144
Calling Parameters (Format A209) ... 144
Sample User Program .. 146
Response Codes .. 150

VIII TRGUNLD and TRGLOAD Utilities .. 153
10 TRGUNLD and TRGLOAD Utilities ... 155

Starting a Utility ... 156
Utility Parameters ... 158
End of Processing Reports .. 161
Utility Response Codes .. 165

A Examples ... 167
SAMPINT1 ... 169
SAMPPRC1 ... 172
SAMPP001 .. 173
STPLCB ... 177
STPLCBE .. 178
STPLRBE ... 180
STPUTPRM ... 181
STPUTRAK ... 182
STPAPARM .. 185
STPAPRM1 ... 186
STPXPARM ... 186
SAMP0001 .. 187
SAMP0002 .. 192
SAMP0003 .. 195
SAMP0004 .. 198
SAMP0005 .. 200
SAMPREF1 ... 203
SAMPREF2 ... 205

Index ... 207

Triggers and Stored Proceduresiv

Triggers and Stored Procedures

Triggers and Stored Procedures

Organization

This documentation provides all the information necessary to install and use the Adabas facility
for implementing and maintaining triggers and stored procedures.

The documentation is organized in the following parts:

Introduces procedures and the distinctions that are relevant for
programming and processing them. It tells you how procedures are
processed.

Introduction

Provides installation and configuration information.Installation and Configuration

Explains the run-time processing of procedures in detail, providing
performance information throughout the processing sequence.

Processing and Performance

Discusses issues related to writing procedures, including performance
issues.

Programming and Performance

Tells you how to use the PC command in conjunction with the stored
procedure link routine STPLNKnn to invoke a stored procedure.

Calling Stored Procedures

Tells you how to use the online Trigger Maintenance facility that is
accessible from the main menu of Adabas Online System (AOS). Includes
both user and administrator information.

Trigger Maintenance

Presents the TRGMAIN API for maintaining triggers from a user
program.

TRGMAIN

Presents the TRGUNLD and TRGLOAD utilities for unloading trigger
definitions to a work file and subsequently loading them into the trigger
file.

TRGUNLD and TRGLOAD
Utilities

Provides sample, annotated program listings.Programming Examples

Messages and Codes

For information about interpreting messages and codes related to triggers and stored procedures
and about resolving problems that they identify, see theAdabasMessages and Codesdocumentation.
SYSTRG message explanations are available using the Natural SYSERR utility.

v

vi

1 Conventions

Data set names starting with DD are referred to throughout the Adabas documentation with a
slash separating the DD from the remainder of the data set name to accommodate z/VSE data set
names that do not contain the DD prefix. The slash is not part of the data set name.

Notation vrs, vr, or v: When used in this documentation, the notation vrs or vr stands for the
relevant version of a product. For further information on product versions, see version in the
Glossary.

1

2

2 About this Documentation

■ Document Conventions .. 4
■ Online Information and Support ... 4
■ Data Protection ... 5

3

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Triggers and Stored Procedures4

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

5Triggers and Stored Procedures

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

6

I Introduction

7

8

3 Introduction

■ Procedures .. 10
■ Components ... 13
■ Processing Summary ... 18

9

The Adabas Triggers and Stored Procedures Facility is used to define, process, and monitor triggers
and stored procedures.

This chapter introduces both types of procedures and their characteristics. It introduces the com-
ponents of the facility and describes how they function together to provide online services and
background processing.

Procedures

A procedure is a Natural subprogram that is written and tested using standard Natural facilities.
The primary difference between triggers and stored procedures is the way they execute:

■ A trigger executes ("fires") automatically when a specified event occurs-usually a data access or
update to the associated table. The event occurs when selection criteria are satisfied. Selection
criteria include file number and possibly command type or the name of a field located in the
format buffer, or both.

■ A stored procedure executes when the database management system (that is, Adabas) receives a
special user call.

The same parameters are passed to the subprogram whether it is a trigger or a stored procedure.

Stored Procedures

A stored procedure is invoked from a user application, which issues a special call to the procedure
and may pass it one or more parameters. The procedure is executed by Adabas.

Because the procedure is stored in the Natural system file (an Adabas file) loaded on the database
(server), it reduces the amount of data traffic to and from the server.

A sample stored procedure subprogram is provided; the call structure that is predefined in the
stored procedure front-end may be modified.

The following figure illustrates stored procedure usage. STPLNK is the stored procedure link
routine used to invoke a stored procedure request; STPRBE is the record buffer extraction routine,
which is called by the procedure and used to retrieve the parameters passed by the calling routine.

Triggers and Stored Procedures10

Introduction

Stored Procedure Usage

For more information about STPLNK, see the section Stored Procedure LinkRoutine (STPLNKnn).
For programming information about STPRBE, see the section Record Buffer Extraction Routine
(STPRBE).

Triggers

A trigger has two parts: the triggering event and the triggered procedure.

The triggering event is defined by a set of selection criteria such as an Adabas file number and
optionally a command or a field name (or both). When the criteria are met, the event occurs and
the triggered procedure is executed in response. For example, a trigger might be fired by an update
command to the SALARY field in the EMPLOYEES file.

Note: A trigger cannot be fired by another trigger.

Triggers can be defined to execute before or after the initiating Adabas command is executed by
the Adabas nucleus. The behavior of a trigger depends to some extent on whether the trigger and
the Adabas command are synchronized and, if so, whether the trigger participates in the transaction
logic of the command.

11Triggers and Stored Procedures

Introduction

Triggers have three major characteristics:

■ pre-command or post-command execution.

A trigger can execute before or after the initiating Adabas command.
■ asynchronous or synchronous execution.

A trigger can execute independently of Adabas command processing or require suspension of
Adabas command processing (that is, command processing must wait for the results of the
triggered procedure).

■ participation or non-participation.

A synchronous trigger may participate or not participate in the user's transaction (that is, ET)
logic.

Pre-command or Post-command
A pre-command (or "pre-") trigger is executed before the initiating Adabas command is processed
by the Adabas nucleus. Before an Adabas command is executed, a check is made to verify
whether a trigger should be fired.

For example, if a trigger is defined to fire every time an N1 command is issued against a specified
file, the N1 is the initiating Adabas command. Before the N1 is executed, a check determines
that a pre-command trigger is to be fired. The N1 is processed after the triggered procedure is
successfully executed.

A post-command (or "post-") trigger executes after the initiating Adabas command is processed
by the Adabas nucleus. The triggered procedure executes only if the return code for the com-
mand from the Adabas nucleus is zero. If the return code is nonzero, no checking for triggers
is done, and processing continues in the normal way. For a successfully executed command,
the command is checked for any triggers before processing of the command completes.

For example, if a trigger is defined to fire every time an L3 command is issued against a specified
file, the L3 is the initiating Adabas command. After a zero return code is received, a check de-
termines that a post-command trigger is to be fired. The triggered procedure is executed after
the command is successfully executed and before the user is notified.

Asynchronous or Synchronous
An asynchronous trigger executes independently of the initiating Adabas command. Adabas
command processing for the user continues uninterrupted while the triggered procedure ex-
ecutes as a separate process. The triggered procedure may execute after the user has already
received the response from the initiating command.

When a command is issued that fulfills trigger criteria, the trigger is fired and processing of
the Adabas command resumes. The Adabas command and the triggered procedure do not
affect each other directly.

Triggers and Stored Procedures12

Introduction

Asynchronous triggers are used when there is no interdependency between the procedure
and the actual Adabas command.

A synchronous trigger requires a suspension of Adabas command processing for the user. The
initiating Adabas command is suspended until the triggered procedure completes execution.
It is possible that the results of the procedure will affect the Adabas command.

For a post-command trigger, the Adabas command executes before the triggered procedure
and then is suspended; the results of the command are not returned to the user until the
triggered procedure completes execution.

Participating or Non-participating
Synchronous triggers may participate or not in the logic of the initiating Adabas command.

A participating trigger results in the execution of a procedure that is assigned the same user
(communication) ID as the Adabas command that caused the participating trigger to be fired;
thus, it can participate fully in the logic of the transaction.
■ An ET (end transaction) or BT (backout transaction) issued by the initiating command's

process affects any transactions in flight from the trigger.
■ An ET or BT issued by the triggered procedure affects any transactions in flight for the initi-

ating command.

A non-participating trigger has a user (communication) ID that is different from that of the
Adabas user queue element (UQE) that identifies the initiating command; thus, it does not
participate in the initiating command's transaction logic.
■ An ET or BT issued by the initiating command's process does not affect the triggered pro-

cedure.
■ An ET or BT issued by the triggered procedure does not affect the initiating command's

process.

Components

Adabas uses three major components to implement and process triggers and stored procedures:

■ the Adabas trigger driver is part of the Adabas nucleus and has overall control of triggers and
stored procedures. It detects procedure requests and initializes the Natural trigger driver to
execute them.

■ the Natural trigger driver runs as a batch Natural nucleus that actually executes both triggers
and stored procedures. Operating in conjunction with the Adabas trigger driver, it handles the
interprocess communications between the Adabas nucleus and the Natural subsystem that ex-
ecutes the procedure.

13Triggers and Stored Procedures

Introduction

■ Trigger Maintenance is a Natural application accessible from Adabas Online System (AOS). A
system of menus allows you to create and maintain trigger definitions, define the triggers profile,
and monitor and to some extent control trigger activity within the nucleus.

Adabas Trigger Driver

The Adabas trigger driver is executed as a part of the Adabas nucleus and generally controls the
whole run-time processing of a trigger. It determines whether a trigger is to be fired, initiates the
Natural trigger driver, and interacts with it to ensure the correct and timely processing of the
procedures. For more detailed information about how procedures are processed, see section Pro-
cessing and Performance.

Initialization

When the Adabas nucleus starts, it determines whether the ADARUN parameter SPT=YES has
been specified; if so, the nucleus passes control to the Adabas trigger driver to allow it to initialize.
During initialization, the Adabas trigger driver

■ acquires storage for buffers;
■ verifies that a valid trigger file is loaded;
■ verifies the triggers profile on the trigger file and extracts the session parameters to be used in

processing triggers and stored procedures for the session;
■ verifies that the trigger file contains at least one trigger definition (a requirement for Adabas

trigger driver initialization); and
■ reads the trigger definitions and adds entries to the trigger table, which occupies a buffer in

memory. In a nucleus cluster environment, the trigger table is obtained from an active nucleus.
During procedure processing, the trigger table can then be checked for the existence of a trigger,
instead of the more expensive alternative of reading the trigger file.

Starting Natural Subsystems

After the Adabas trigger driver is initialized, it starts the Natural subsystems that are responsible
for the actual execution of the procedures.

The Natural subsystems execute user-written procedures. The maximum subsystems parameter
in the Adabas triggers profile determines the number of Natural subsystems (1-10) to be started.

Each Natural subsystem is typically a minimally modified batch Natural nucleus that runs as a
subtask in the Adabas address space. This affects the region size specified on the MPM startup
JCL/JCS. The effect may be minimized by using a split Natural nucleus.

When a Natural subsystem is started, the Adabas trigger driver keeps track of any change in
subsystem status or activity. The user can monitor these activities by using the Subsystem Activity
function of the Triggers Maintenance facility.

Triggers and Stored Procedures14

Introduction

When a Natural subsystem becomes active:

■ the Natural trigger driver acquires control; and
■ the Adabas trigger driver is informed that the subsystem is ready to start processing any pro-

cedures that may result from a stored procedure request or the firing of a trigger.

Checking for Triggers

For each command that the nucleus receives, the Adabas trigger driver determines whether a
trigger needs to be fired.

For pre-command triggers, the Adabas trigger driver checks for triggers before the command is
selected for processing by the Adabas thread. Once a command has been processed successfully
by Adabas and the response code is zero, the Adabas trigger driver determines whether there are
any post-command triggers to be fired. Only two triggers (one pre- and one post-command trigger)
can be fired for any one command, regardless of the results.

If a command results in a trigger being fired, or if the Adabas trigger driver determines that the
command is a stored procedure request, an entry is created in the

■ pre-trigger queue if the command has not been executed; or the
■ post-trigger queue if the command has been executed successfully.

The entry contains information obtained from both the command and the corresponding entry in
the trigger table.

If a Natural subsystem is waiting for work, it is given the trigger request immediately. Otherwise,
the trigger request remains in the pre- or post-trigger queue until the next subsystem is available.
When a subsystem accepts a trigger request, processing continues under the control of the Natural
trigger driver (see Components).

Processing Procedure Results

When the procedure completes execution, the Natural trigger driver places the results in the
"trigger request entry" and the status is updated appropriately. When the Adabas trigger driver
detects this, it takes responsibility for completing the trigger processing.

For both pre- and post-command triggers, the return code from the procedure determines how
the results are processed. For more information, see the section Processing the Results.

15Triggers and Stored Procedures

Introduction

Shutdown

The Adabas trigger driver keeps track of all Natural subsystems that fail. If all subsystems fail, it
determines that no further processing of procedures is possible and terminates according to the
error action value in the Adabas triggers profile. The error action Ignore or Reject in a nucleus
cluster environment is passed to all other nuclei in the cluster.

The Adabas trigger driver also terminates if the Adabas nucleus receives the ADAEND or HALT oper-
ator command and instructs the Adabas trigger driver to shut down as well.

Natural Trigger Driver

The Natural trigger driver is initialized during the startup of the Natural subsystems. It is respons-
ible for executing all triggered and stored procedures, and includes the following components:

(BS2000 only) retrieves the address of the database command queue.SPAENA

is invoked when a Natural subsystem is started. STP initializes the global data area STPGDA
and establishes any necessary settings for the Natural session. Its primary function is to handle
recovery from any errors and ensure that a restart is done.

STP

performs any back-end processing for the NATURAL Trigger Driver. Back-end processing
requires this routine to determine if an error has occurred during subtask processing. If so,

STPEND

then an error message should be placed in the message error of the subtask table in the main
task.

functions as the main routine for the Natural trigger driver, and is responsible for invoking
the procedure. STPPDRIV calls STPNAT.

STPPDRIV

is responsible for any communication with the Adabas trigger driver and for servicing the
trigger requests for the subsystem. It notifies the Adabas trigger driver that it is ready for
work.

STPNAT

performs field data conversion for UES databases.STPUES

Setting Up the Parameter List

When a trigger request is accepted by a Natural subsystem, STPPDRIV sets up the parameter list
to be passed to the procedure, depending on which parameter list was specified by the trigger
that was fired.

Triggers and Stored Procedures16

Introduction

Invoking the Tracking Routine STPUTRAK

If the log trigger activity setting in the Adabas triggers profile is active, the routine STPUTRAK is
invoked.

STPUTRAK is a user-defined routine that tracks every request to invoke a procedure, both before
and after the procedure is invoked. You can use this routine to write trace messages or audit trigger
processing for each subsystem. A default STPUTRAK routine is supplied.

Parameters that are similar to those of the procedure and contain information about the trigger
are passed to the STPUTRAK routine, in addition to a 250-byte area that can be used as a work
area. STPUTRAK uses the work area to retain information for the entire session; the work area is
never changed by the Natural trigger driver. STPUTRAK contains an option that allows you to
pass this work area to the procedure.

Processing the Procedure

After STPUTRAK has been processed and control has returned to STPPDRIV, the triggered pro-
cedure is invoked with a CALLNAT.

When the procedure completes processing, STPPDRIV again checks whether the "log trigger
activity" option in the Adabas triggers profile is set to active before informing STPNAT of the
results. If log activity is active, STPUTRAK is invoked so that the results of the procedure can be
audited.

Recovering from Errors

The procedure does not terminate normally if it incurs an error such as NAT0954, NAT3009, or
NAT1305. Instead, the Natural trigger driver performs error recovery.

Regardless of the log trigger activity setting, information about the error is conveyed to STPUTRAK.
This information can be used by the database administrator (DBA) for debugging or problem
analysis. Therefore, STPUTRAK should always be available for execution by the Natural trigger
driver. Software AG recommends activating the trace to obtain this information.

Updating the Trigger Request Entry

After the results of a procedure are delivered to STPNAT, the trigger request is updated and its
status is changed to "completed". When the Adabas trigger driver detects the updated entry, it
takes responsibility for completing the trigger processing.

STPNAT waits for another trigger request to be made, and the entire cycle starts again.

17Triggers and Stored Procedures

Introduction

Trigger Maintenance

Trigger Maintenance, which requires the full version of Adabas Online System, is an interactive
facility for creating trigger definitions and monitoring system processing. For detailed information,
see the section Trigger Maintenance in this documentation.

A trigger definition comprises the name and attributes of the procedure to be executed, and
the selection criteria that compose the triggering event (Adabas command type, file name or
number, and field name).

Trigger maintenance also provides functions for monitoring and controlling the execution of any
trigger processing by the nucleus. You can examine the activities of both the Adabas and Natural
trigger drivers and

■ determine the state of the triggers environment in the nucleus; that is, determine which triggers
are active and which are not, buffer sizes, and the status of the Natural subsystems;

■ modify the settings of various parameters such as activity timeout, log trigger activity, and error
action during an active session;

■ examine the pre- and post-trigger queues, which contain the procedures waiting to be executed
for the pre- and post-command triggers that have been fired;

■ examine the activity of the Adabas triggers and stored procedures facility to determine what is
executing, whether problems exist, the number of Natural subsystems that are currently active,
and so on;

■ refresh the trigger table in the Adabas nucleus with new, deleted, or updated trigger definitions;
and

■ individually activate or deactivate a trigger. If a problem is found with a particular trigger, it
can be temporarily or permanently deactivated while the problem is resolved.

Processing Summary

Stored Procedure Processing

The steps involved in stored procedure processing are illustrated in the following figure and de-
scribed in Processing Steps.

Triggers and Stored Procedures18

Introduction

Stored Procedure Processing

Processing Steps

1 The user application sets up the required parameters and issues a CALL to the stored procedure
link routine STPLNKnn.

2 STPLNKnn interprets the user's request and issues the call to the DBMS in the form of a
standard Adabas API (direct call).

3 The Adabas trigger driver receives the stored procedure request and passes it on to the Nat-
ural trigger driver.

4 The specified Natural subprogram (the stored procedure) is invoked.

5 The caller's parameters are made available to the subprogram by the record buffer extraction
routine, as required. The parameters can be modified if the option settings permit it.

19Triggers and Stored Procedures

Introduction

6 On completion, the Natural subprogram returns control to the Natural trigger driver.

7 The Natural trigger driver returns the results of the stored procedure request to the Adabas
trigger driver.

8 The user is notified and any modified parameters are returned.

Trigger Processing

The steps involved in trigger processing are illustrated by the following figure and described in
Processing Steps.

Triggers and Stored Procedures20

Introduction

Trigger Processing

Processing Steps

1 The Adabas trigger driver receives all Adabas commands and inspects them for trigger events.

2 If a command meets trigger criteria, the Adabas trigger driver places the trigger request and
interprocess information in the trigger table.

3 When the Natural trigger driver control routine STPPDRIV is ready to process another trigger
request, it calls STPNAT.

4 STPNAT gets the next trigger request from the trigger table and passes it to STPPDRIV.

21Triggers and Stored Procedures

Introduction

5 STPPDRIV determines the trigger request type and issues a CALLNAT to the Natural subpro-
gram named in the trigger definition, passing the relevant parameters.

6 STPNAT updates the trigger entry in the trigger table to indicate when the trigger is completed.

Triggers and Stored Procedures22

Introduction

II Installation and Configuration

23

24

4 Installation and Configuration

■ Software Requirements .. 26
■ Overview ... 26
■ Install Trigger Maintenance ... 26
■ Install the Adabas Trigger Driver ... 28
■ Install the Natural Trigger Driver ... 30
■ NATPARM Considerations .. 33
■ Printer Considerations .. 36
■ Work File Considerations .. 38
■ Natural Security Considerations ... 38

25

This chapter tells you how to install the Adabas triggers and stored procedures facility. It includes
information about setting NATPARMs, assigning printers and work files, accommodating a Nat-
ural Security environment, and setting up the stored procedure link routine.

Software Requirements

The Adabas triggers and stored procedures facility delivered with Adabas is available with any
supported version of Natural.

The facility requires Adabas Online System (AOS).

Natural Optimizer Compiler is not required, but can significantly improve performance when
using triggers and stored procedures.

Overview

The Adabas triggers and stored procedures facility is installed in three parts:

■ Install Trigger Maintenance, the online user interface.
■ Install the Adabas trigger driver, the Adabas nucleus component.
■ Install the Natural trigger driver, the Natural nucleus component.

Install Trigger Maintenance

1. Install AOS

Install the Adabas Online System (AOS) add-on product. Use the instructions provided in the
Adabas Online System documentation.

2. Load the trigger file

Use the ADALOD utility to load the trigger file to the Adabas database.

Specify the keyword TRIGGER in the ADALOD parameters to indicate that the trigger file is to
be loaded. (Do this the same way you would specify the CHECKPOINT or SECURITY parameter when
loading the checkpoint or security file, respectively.)

Omit the ADACMP step, which is not required because the FDT definitions are already known
to the nucleus.

Triggers and Stored Procedures26

Installation and Configuration

The trigger file is currently not permitted to have Adabas security; that is, no Adabas password
and cipher or security-by-value.

3. Modify the NATPARMs and relink

Update the NATPARMs to use triggers and stored procedures in the online Natural nucleus and
relink them to the Natural nucleus. Use either:

■ a logical file definition with the NTLFILE macro specification in the NATPARM; or
■ the LFILE parameter as a dynamic parameter at session initialization.

The logical file number for the trigger file is 154.

Note: If you do not use either the NTLFILE macro or the LFILE parameter, you will be re-
quired to enter the database ID and file number every time you start the Adabas triggers
and stored procedures facility.

4. Start the facility and create the profile

Start the Adabas triggers and stored procedures facility from a Natural session and create the
profile.

1. Log on to Adabas Online System and select the option "Trigger Maintenance". Press ENTER.

2. From the main menu, select "A" for Administrator Functions and press ENTER. If required, enter
the database ID and file number, and press ENTER twice.

Note: The database ID and file number are required only if you did not use either the
NTLFILE macro or the LFILE parameter in step 3 above; or the value specified in the
definition is incorrect.

3. From the Administrator Functions Menu, select "M" for Modify Profile Information and press
ENTER.

The Modify Profile Information screen contains a number of default values that can be overwrit-
ten now or later. However, the profile must be correctly installed before running the Adabas
triggers and stored procedures facility. For more information, see section Display/ Modify
Profile Information.

Note: Trigger Maintenance is not fully operational until the required file-field tables
and trigger definitions are added. For more information, see sectionTriggerMaintenance.

27Triggers and Stored Procedures

Installation and Configuration

Install the Adabas Trigger Driver

The modules ADATSP and STPEND are located in the Adabas load library. TRGMPMJ is the JCL
used to start the Adabas nucleus.

1. Set the ADARUN SPT parameter

Set ADARUN SPT=YES to activate the Adabas triggers and stored procedures facility in the nucleus,
or SPT=NO to deactivate it.

Notes:

1. SPT=YES requires PROG=ADANUC and MODE=MULTI. SPT is a global parameter and must be set the
same on all nuclei in a cluster.

2. Do not specify OPENRQ=YES. It causes problems with Natural subsystems; i.e., they receive re-
sponse code 148 (ADARSP148) and are not able to initialize.

2. Set up each Natural subsystem

Specify labels and job control assignments for each subsystem.

These depend on the "maximum subsystems" value and on the CMPRINT assignments in the
Adabas triggers profile, as well as the printer and work files used by the procedures.

3. Set up all Natural work files and print files

Specify additional labels for all specified Natural work files and print files.

Example for Steps 2 and 3

The following example is provided to illustrate steps 2 and 3 above. In this example:

■ the dynamic CMPRINT assignment (an option to be specified in the Adabas triggers profile) is
set to TSPRT, and

■ the maximum number of subsystems defined in this example is 5.

The following labels must be specified for the JCL:

Triggers and Stored Procedures28

Installation and Configuration

//TSPRT01 DD SYSOUT=X
//TSPRT02 DD SYSOUT=X
//TSPRT03 DD SYSOUT=X
//TSPRT04 DD SYSOUT=X
//TSPRT05 DD SYSOUT=X

If each of the five subsystems defined in the profile can WRITE, PRINT, or DISPLAY to a print
file, the following definitions must be provided in the MPM JCL

//CMPRT01 DD SYSOUT=X
//CMPRT02 DD SYSOUT=X
//CMPRT03 DD SYSOUT=X
//CMPRT04 DD SYSOUT=X
//CMPRT05 DD SYSOUT=X

See the section Printer Considerations for information about CMPRTnn labels and assigning lo-
gical printers.

If each of the five subsystems defined in the profile can WRITE WORK or READ WORK to a work
file, the following definitions must be provided in the MPM JCL

//CMWKF01 DD DISP=SHR,DSN=WORK.CMWKF01
//CMWKF02 DD DISP=SHR,DSN=WORK.CMWKF02
//CMWKF03 DD DISP=SHR,DSN=WORK.CMWKF03
//CMWKF04 DD DISP=SHR,DSN=WORK.CMWKF04
//CMWKF05 DD DISP=SHR,DSN=WORK.CMWKF05

Notes:

1. File name assignments are not required if the procedures do not need work file support or ad-
ditional printer file definitions.

2. The MPM JCL should include any other assignments that are normally used in your batch
Natural JCL to execute a particular Natural subprogram or program.

4. Specify the local libraries

Specify the correct local libraries in the MPM JCL STEPLIB. Include

■ the Adabas load library containing the modules STPEND and ADATSP.
■ the user load library containing the user exits.
■ the Natural load library containing the specially linked batch Natural nucleus.

29Triggers and Stored Procedures

Installation and Configuration

Install the Natural Trigger Driver

The Adabas triggers and stored procedures facility uses Natural subsystems to execute user-
written procedures. These subsystems are run as subtasks in the Adabas address space; a maximum
of ten subsystems can be active at any given time. A Natural subsystem is fundamentally a batch
Natural nucleus.

To optimize resource usage during Adabas execution, it is important to configure the Natural
trigger driver (the Natural nucleus component) in a way that minimizes the resources used by the
Natural subsystems.

■ Adabas Example Jobs
■ Batch Natural Driver NATOS
■ Prepare the Batch Natural Nucleus
■ 1. Assemble the batch Natural driver
■ 2. Assemble the NATPARM module
■ 3. Prepare the Natural license key
■ 4. Link the batch Natural driver
■ 5. Check the REGION / SIZE parameter setting
■ 6. Make the Natural nucleus accessible to the Adabas nucleus
■ 7. Check the ADALNK link options

Adabas Example Jobs

As part of your Adabas install, you loaded the data set ADAvrs.JOBS from tape. As a result, the
following examples are installed:

DescriptionName

NATOS assembly (z/OS only)ASMNTOS

NATPARM assemblyASMPARM

Natural nucleus link for Natural version 8.2LNKBATC8

Natural nucleus linkLNKBATCH

Non-shared Natural nucleus link for a split nucleus for Natural version 8.2LNKNATN8

Non-shared Natural nucleus link for a split nucleusLNKNATNS

Shared Natural nucleus link for a split nucleus for Natural version 8.2LNKNATS8

Shared Natural nucleus link for a split nucleusLNKNATSH

Startup MPM JCLTRGMPMJ

NATPARM with changes required for the Adabas triggers and stored procedures facilityTRGPARM

NATPARM with changes required for the Adabas triggers and stored procedures facility
for Natural version 8.2

TRGPARM8

Triggers and Stored Procedures30

Installation and Configuration

Note: If the examples are modified, they should be kept in a different library; otherwise,
they will be overwritten when you install subsequent versions.

Batch Natural Driver NATOS

As part of your Natural install, you loaded the data set NATvrs.SRCE. The source library member
NATOS contains the batch Natural driver that must be used to create the batch Natural nucleus
for the Adabas triggers and stored procedures facility.

Prepare the Batch Natural Nucleus

Software AG recommends that you split Natural into two functional parts: an environment-inde-
pendent nucleus and an environment-dependent nucleus. See the Natural Installation for more in-
formation.

■ The environment-independent nucleus, also called "shared nucleus," resides in the shared area of
the operating system in the link pack area (LPA) or the extended link pack area (ELPA).

By executing from these special areas of the operating system, the independent nucleus can be
commonly accessed (shared) by multiple address spaces (or partitions or regions) within the
same operating system.

The advantages of the shared nucleus are virtual storage relief; less paging activity since there
is only one copy of the nucleus in the system; and less maintenance since ZAPs are applied only
once.

■ The environment-dependent nucleus significantly reduced in size by the removal of the environ-
ment-independent parts, is loaded into the batch address space and is designated specifically
for use by triggers and stored procedures.

The batch Natural nucleus used for the Adabas triggers and stored procedures facility must include
the NATPARM module with the entry points for STPDRV and STPRBE.

It must be linked with the STPNAT module. The link should not use the options RENT or REUSE;
otherwise, results are unpredictable. In addition, ensure that the ADALNK routine used by stored
procedures and triggers (ADARUN SPT=YES) is linked with NOREUSE and NORENT, or results
will be unpredictable.

The link modules must be placed in a library that is concatenated to the MPM JCL STEPLIB.

31Triggers and Stored Procedures

Installation and Configuration

1. Assemble the batch Natural driver

Important: For Natural version 8, this job is not needed.

Use the example job ASMNTOS from the ADAvrs.JOBS data set to assemble the batch Natural
driver.

2. Assemble the NATPARM module

See the section NATPARM Considerations for more information.

Member STPNAT is supplied in the Adabas load library and has three entry points: STPDRV,
STPRBE, and ADABAS.

STPNAT replaces ADAUSER. It has the same Adabas entry point and performs all the normal
functionality of ADAUSER. In addition, STPNAT contains logic specifically for triggers and stored
procedures.

Note: With Natural 8.2.6 and below, it is necessary to specify CSTATIC entries for STPDRV
and STPRBE.

CSTATIC=(STPDRV,STPRBE)

3. Prepare the Natural license key

If your installation uses Natural version 8.2 or higher, the license key for Natural must be prepared
and assembled and linked.

For more information, refer to your Natural documentation.

4. Link the batch Natural driver

When linking the batch Natural driver that was assembled in step 1, include the NATPARM as-
sembled in step 2 and STPNAT to create the batch Natural nucleus for the Adabas triggers and
stored procedures facility.

Ensure that the Natural nucleus link deck contains an INCLUDE STPNAT statement and does not
contain the usual INCLUDE ADAUSER statement. The AOSASM module is not required.

Triggers and Stored Procedures32

Installation and Configuration

5. Check the REGION / SIZE parameter setting

Ensure that the REGION / SIZE parameter in the Adabas startup JCL is not set to impose a size lim-
itation.

Such a size limitation, such as 8 megabytes, may have been specified when the operating system
environment was set up.

6. Make the Natural nucleus accessible to the Adabas nucleus

Ensure that the Natural module created in step 3 is accessible to the Adabas nucleus during Adabas
initialization by

■ placing it in the Adabas load library in the MPM JCL steplib or joblib; or
■ concatenating the Natural load library (where the module is located) to the Adabas MPM JCL

steplib or joblib.

The Adabas load library (data set ADABAS.ADAvrs.LOAD) also contains the module STPEND,
which must be in one of the libraries of the MPM JCL steplib.

Example:

//STEPLIB DD DISP=SHR, DSN=ADABAS.ADAvrs.LOAD
DD DISP=SHR, DSN=NATURAL.NATvrs.LOAD

7. Check the ADALNK link options

Ensure that the ADALNK routine used by stored procedures and triggers (ADARUN SPT=YES)
is linked with NOREUSE and NORENT, or results will be unpredictable.

NATPARM Considerations

The NATPARM definitions specified in the Natural parameter module for a Natural nucleus are
used to tailor the environment for the Natural session.

To successfully execute the Natural nucleus component, you must specify the correct values for
certain NATPARM parameters. For more information, see the Natural documentation.

33Triggers and Stored Procedures

Installation and Configuration

Special Requirements

ADAMODE
Must be set to zero.

Buffer Pool
Use the local buffer pool or the global buffer pool depending on the needs and configuration
of the local environment:
■ If the local buffer pool is used, a procedure that is invoked by the user can remain in the

local buffer pool for the duration of the Natural session; as a result, a new copy may be ig-
nored.

■ If the global buffer pool is used, the procedure can be deleted from the buffer pool if the
DBA wants it to be activated at the earliest possible time.

Buffer Sizes
Because the Natural trigger driver is a run-time system only (not a development system),
various buffers can be kept to a minimum size, depending on how your programs are written.
For example, ESIZE can be set to the maximum GDA size that any Natural program may use.
The size of the GDA used by the Adabas triggers and stored procedures facility is 12K.

CDYNAM
The parameter regulates dynamic loading of non-Natural programs. Set with no consideration
for triggers and stored procedures because the procedures will be linked to the Natural nucleus.
The default value is 5.

CSTATIC
The CSTATIC parameter regulates programs that are statically linked to Natural. There is no
default value. The parameter must specify the routines used by the Adabas triggers and stored
procedures facility:

trigger driver entry (see Note below)STPDRV

performs backend processing for the trigger driverSTPEND

Adabas triggers user interfaceSTPNAT

the record buffer extraction routine (see Note below)STPRBE

Note: With Natural 8.2.7 and above, it is not necessary to specify CSTATIC entries for
STPDRV and STPRBE.

DU(mp)
The default DU=OFF prevents the generation of a memory dump for an abend. This setting en-
sures that the Natural ESTAE will be active for the duration of the session. When the Natural
ESTAE is active, all program abends are trapped and the Natural session is restarted instead
of terminated. This is an important performance consideration.

Triggers and Stored Procedures34

Installation and Configuration

DYNPARM
The default DYNPARM=ON processes dynamic parameters that are supplied during Natural
startup. This default must be used because each batch Natural subsystem is started with at
least one parameter (STACK=). See sectionNATPARMDynamicOverrides for more information.

ETA
ETA is the error transaction program. It must not be specified. The Adabas triggers and stored
procedures facility sets up the error transaction program for the Natural session according to
its own requirements.

Note: The Adabas triggers and stored procedures facility alone uses 1500 bytes; therefore,
if the ETA program uses 4K in the GDA, the ESIZE is approximately 6K.

ETID
If ETID is used; that is, if ETID=' ' (blank) is not specified, each task (maximum of ten tasks)
must be given a unique ETID (Adabas user ID). If Natural Security is used, and if a NATPARM
value is not specified for ETID, the RESTART option in the library profile and the ETID option
in the user profile can be set to "N" to prevent error messages NAT3048 and NAT3009.

Limit Parameters
Because the batch Natural subsystems are long-running transactions, the LE, LT, MADIO, MAXCL,
and MT parameters should not be set with limits. Setting these parameters with limits can result
in an error during the execution of a procedure; in that case, the command that fired the trigger
receives response code 155 (ADARSP155) or 156 (ADARSP156).

Note: A timeout parameter in the Adabas triggers profile automatically resolves the
problem of long-running procedures. Alternatively, the DBA can cancel a subsystem
that is busy executing a procedure.

NTLFILE
The NTLFILE parameter should be coded to point to the Adabas trigger file. The logical file
number for the trigger file is 154. Another alternative to the NTLFILE parameter would be a
dynamic override using the Natural NTLFILE parameter

PROFILE
The PROFILE parameter must not be specified. This parameter causes Adabas calls to be issued
before all of the Natural control blocks are initialized. This will cause unpredictable results
during the initialization of stored procedures and triggers.

PROGRAM
The PROGRAM parameter must not be specified. It is used when starting the batch Natural sub-
system and is set to STPEND. This module is located in the Adabas triggers and stored proced-
ures load library and should be added to the MPM JCL steplib so that it can be loaded as re-
quired.

STACK
The STACK parameter must not be specified. It is used in starting the batch Natural subsystems
and is specified by the Adabas triggers and stored procedures facility.

35Triggers and Stored Procedures

Installation and Configuration

NATPARM Dynamic Overrides

NATPARM values specified in the Natural nucleus can be defined dynamically by using the
Adabas triggers profile, or a Natural Security user profile if Natural Security is installed.

NATPARM parameter values are obtained from the Adabas triggers profile and used when the Nat-
ural subsystems are initialized. NATPARM values specified in the profile override the values specified
in the Natural nucleus.

Before modifying the NATPARM definitions, read the section Special Requirements. Because each
Natural subsystem can accept trigger requests pertaining to a variety of applications and/or files,
it is essential that the Natural environment be set appropriately.

The STACK parameter must be passed; it ensures that the Natural subsystem will give control to
the Natural trigger driver after it is initialized. The value of the STACK parameter is fixed as follows
and cannot be changed by the user:

STACK=(LOGON:SYSSPT;STP)

where

is the library where the stored procedure application was INPLed during the installation
procedure. It is also the library where the executable procedures should be located.

SYSSPT

is the Natural trigger driver startup routine.STP

All other NATPARM values should be set by the user as required.

The Natural session normally continues to run as long as the Adabas nucleus is active. This means
that each Natural subsystem is a long-running task; limit parameters for the Natural session must
be set accordingly. Session settings cannot be modified while a Natural subsystem is running.
However, certain session parameters can be modified using procedures in the same manner as
normal Natural programming options.

Printer Considerations

For batch Natural subsystems, the printer is always determined by the setting of the CMPRINT
label and the number of the subsystem. When running under a single address space, it becomes
necessary to have different assignments for CMPRINT in order to prevent contention; multiple
Natural subsystems are running and any or all of these may want to print.

Even if the different subsystems are doing opens and closes of the assigned printer, there is no
guarantee that these will not conflict. Any conflicts result in an error from the operating system.

For example, if you use the WRITE (nn), PRINT (nn), or DISPLAY (nn) option, the "nn" is a per-
manent (unlike CMPRINT) assignment specifically for all subsystems.

Triggers and Stored Procedures36

Installation and Configuration

If a procedure that is running in subsystem 01 executes a WRITE (01), and another procedure that
is running in subsystem 02 executes a WRITE (01), an error is received from the operating system
and ultimately from Natural: this should be prevented.

Dynamic CMPRINT Assignment

When the Natural subsystems are started, the Adabas trigger driver determines a dynamic printer
assignment based on the "CMPRINT assignment" definition in the Adabas triggers profile.

The CMPRINT assignment in the triggers profile is a 1 to 6-byte field that must be consistent with
the file assignments in the MPM JCL. This printer assignment is used as a prefix to the subsystem
task number when the subsystem is started.

For example, if you specify printer TSPRT, subsystems 01 and 02 will expect labels TSPRT01 and
TSPRT02 to be defined in the MPM startup JCL.

The Adabas triggers and stored procedures facility is a subtask or subsystem that runs in the
background. There are multiple Natural subsystems, and it is not possible to force a procedure to
be executed from any specific subsystem: a dynamic assignment for CMPRINT is made available
when any WRITE, PRINT, or DISPLAY statements are used for printing information.

The PDA that is passed to the procedure contains a unique subsystem identifier, which allows
you to print to CMPRT01 through CMPRT31 using a DECIDE statement.

Example:

DECIDE ON FIRST VALUE OF RQ-TASK /*check subsystem number
VALUE '01' WRITE (1) NOTITLE NOHDR text
VALUE '02' WRITE (2) NOTITLE NOHDR text
VALUE '03' WRITE (3) NOTITLE NOHDR text
VALUE '04' WRITE (4) NOTITLE NOHDR text
VALUE '05' WRITE (5) NOTITLE NOHDR text
NONE WRITE NOTITLE NOHDR text
END-DECIDE

In the last case (NONE), the output will go to the printer specified by the dynamic assignment for
the CMPRINT label.

If a procedure running in subsystem 01 does any printing, the output can go to the dynamic as-
signment of CMPRINT or, as the DECIDE statement shows, the output can go to printer 01 (CM-
PRT01), as specified by the MPM JCL.

If more than one printer is required, ranges of print files can be defined. For example, if five Nat-
ural subsystems are defined, the range of print files could be CMPRT01 through CMPRT05 or
CMPRT06 through CMPRT10, and so on.

37Triggers and Stored Procedures

Installation and Configuration

Work File Considerations

The label for a work file is in the following format:

CMWKFnn

where "nn" is the work file number.

Work file usage is an issue that may require some consideration; however, if there are no reads
or writes to any work files, there is no need to put them in the JCL.

If work files are required, a method must be developed to ensure that contention does not occur.
The same considerations that apply to printers also apply to work files.

For example, the read/write operations of a procedure could be directed to a particular work file,
depending on the task number, i.e., the number of the Natural subsystem in which the procedure
is run. In this case, task 01 would read/write to CMWKF01; task 02 would read/write to CMWKF02;
and so on.

Since you can identify the subsystem where your procedure is executing, you can use a work file
that is permanently assigned to that subsystem.

This can be accomplished using the DECIDE statement, as described in the sectionPrinter Consid-
erations. Other solutions can be found, of course, depending on how the procedure is being used.

Natural Security Considerations

This section describes the security for running the Natural subsystems when using stored proced-
ures. The information is relevant when using Adabas triggers and stored procedures in a Natural
Security environment.

■ Logging On
■ Library Settings
■ Security Limits

Triggers and Stored Procedures38

Installation and Configuration

■ Parameter Settings

Logging On

When logging on to Natural, you may use either AUTO=ON or AUTO=OFF.

■ If you use AUTO=OFF, you must supply a user ID and password and specify "Y" for the
"NATSEC LOGON Required" value in the Adabas triggers profile. Otherwise, problems occur.

The password and user ID you provide can be variable or fixed. The value ** must be used with
the variable name. It will be replaced by the Natural subsystem number to make the value
unique. For example, if USER** and PSWD** are specified, the user IDs and passwords (assuming
three tasks) are generated as follows:

PasswordUserIDTask

PSWD01USER0101

PSWD02USER0202

PSWD03USER0303

The user ID must be defined to Natural Security, with consideration given to the ETID and the
batch user ID. If the same user ID is used, response code 9 (ADARSP009) or 48 (ADARSP048)
may be received, thus invalidating the Natural session. It is important to remember that the
Natural subsystems are all running concurrently and must be kept separate from each other.

■ If you use AUTO=ON, the job name or the assigned batch user ID is used for the actual logon
ID. More than one user will be signed on, depending on the maximum number of tasks. This
should be taken into account in order to prevent response code 9 (ADARSP009) or 48
(ADARSP048) being issued by the Natural subsystems.

Library Settings

Define the library SYSTRG. Set startup to " " (blank) when logging on from SYSAOS, or to "menu"
when logging on directly from the logon screen.

Define the library SYSSPT. The Natural subsystem logs on to this library.

Do not include any startup, error, or restart settings in the definition for either library. These settings
are established automatically when the Adabas triggers and stored procedures facility initializes.

The libraries can be protected; however, the user(s) as defined using the Adabas triggers profile
must have sufficient authority to log on and perform all the required processing. For example, it
would not be useful to disallow a module for the subsystem user IDs and then have an error occur
when the Natural trigger driver invokes that routine.

39Triggers and Stored Procedures

Installation and Configuration

Security Limits

Natural Security allows you to override certain NATPARM settings, including

■ non-activity logoff limit
■ transaction duration
■ CPU time (MT=)
■ maximum Adabas calls (MADIO=)

The Natural subsystems are one long transaction that will execute multiple "subtransactions". If
security limits are set for one or more of these, the limits apply to all programs for that session.

Parameter Settings

The following describes Natural Security parameter settings that affect the Adabas triggers and
stored procedures subtasks:

Error Program
Do not specify an error program. Errors are handled internally by the Adabas triggers and
stored procedures facility.

ETID
Any procedure that stores transaction data may subsequently be invoked from a different
subsystem. In order to work, the routine GET TRANSACTION DATA must know which
subsystem invoked the procedure. If this is a problem, the user may build in another form of
data recovery. The ETID option should be used with caution to prevent response code 9
(ADARSP009) or 48 (ADARSP048).

Library Protection
Library protection is not required, but Adabas Online System users must be able to log on to
SYSTRG and the batch Natural trigger driver must be able to log on to SYSSPT.

MADIO
Set to 0 (zero) to prevent any limits being exceeded since the Natural subsystems may run for
an indefinite period of time.

MAXCL
Set to 0 (zero) to prevent any limits being exceeded since the Natural subsystems may run for
an indefinite period of time.

Non-Activity Logoff Limit
Set to 0 (zero) to prevent any limit being exceeded since the Natural subsystems may run for
an indefinite period of time.

Password Change Option
The Natural Security user profile includes an option that can be used to request that users
change their passwords every "n" number of days. If this option is used, the NATSEC password
in the Adabas triggers profile must also be modified.

Triggers and Stored Procedures40

Installation and Configuration

Restart Program
Do not specify. Restarts are handled internally by the Adabas triggers and stored procedures
facility.

Steplibs
No limitations. The Adabas triggers and stored procedures facility logs on to SYSSPT. Therefore,
all procedures must be in the steplibs as required.

Startup Transaction
Do not specify. Startup is automatic during the logon by Adabas Online System or the Natural
trigger driver.

41Triggers and Stored Procedures

Installation and Configuration

42

III Processing and Performance

43

44

5 Processing and Performance

■ Initialization .. 46
■ Checking for Procedures .. 49
■ Processing the Procedures ... 50
■ Processing the Results ... 51
■ Shutdown .. 53
■ Abnormal Termination .. 54
■ Command Logging .. 56

45

The Adabas trigger driver is executed as a part of the Adabas nucleus. It generally controls the
whole run-time processing of a trigger. It determines whether a trigger is to be fired, initiates the
Natural trigger driver, and interacts with it to ensure the correct and timely processing of the
procedures.

Initialization

When the Adabas nucleus starts, it determines whether the ADARUN parameter SPT=YES has
been specified; if so, it passes control to the Adabas trigger driver to allow it to initialize. During
initialization, the Adabas trigger driver performs the activities described in the following para-
graphs.

Verifying the Adabas Triggers Profile

The Adabas trigger driver verifies the Adabas triggers profile on the trigger file and extracts the
session parameters to be used in processing triggers and stored procedures for the session. If no
profile exists on the trigger file, the initialization of the Adabas triggers and stored procedures
facility in the nucleus is terminated with an appropriate error message.

■ The Adabas trigger driver checks the "triggers status" and "stored proc. status" parameter settings
in the profile.

ActionStored ProcedureTriggers

The Adabas triggers and stored procedures facility is not allowed to start.
To the Adabas trigger driver, the "inactive" setting has the same meaning as
the ADARUN parameter setting SPT=NO.

InactiveInactive

Triggers processing is started but any request to run a stored procedure is
rejected with a response code 22 (ADARSP022).

InactiveActive

Stored procedures processing is started but any request to run a trigger is
rejected with a response code 22 (ADARSP022).

ActiveInactive

■ The Adabas trigger driver obtains information about the Natural subsystems from the profile:
■ The subsystem name, which must correspond to the name of the linked Natural nucleus that

will process the procedures; that is, the name given to the Natural nucleus during Part III of the
installation procedure.

■ The number of subsystems that must be started in order to handle the work load generated by
the triggers that will be fired.

Triggers and Stored Procedures46

Processing and Performance

Verifying the Presence of at Least One Trigger

The Adabas trigger driver verifies that the trigger file contains at least one trigger definition. If
not, the Adabas triggers and stored procedures facility is not initialized and an appropriate error
message is given, even if triggers status is set to "inactive".

Acquiring Storage

The total storage requirement for the Adabas triggers and stored procedures facility depends on

■ the size of the work areas required;
■ the buffer sizes required for the trigger table, pre- and post-trigger queues; and
■ the space needed for the Natural subsystems.

The amount of space needed for the Natural subsystems is determined by the size of the Natural
nucleus and the various buffers that the Natural environment needs; for example, ESIZE, DATSIZE,
and FSIZE.

If the size of the overall region/address space for the Adabas nucleus is too small, the Natural
subsystems will not be able to run. The error message will normally indicate "insufficient storage"
or an abend of the subsystems (response code 40000109 or 40000008 may be returned). If this occurs,
increase the size of the region/address space or decrease the number of Natural subsystems used
to execute the procedures.

Software AG recommends splitting the Natural nucleus to minimize nucleus storage requirements.

Creating the Trigger Table

At least one trigger must be defined on the trigger file; otherwise, processing cannot continue.

After the Adabas trigger driver determines the validity of the trigger file, trigger definitions are
read and entries are added to the trigger table. In a nucleus cluster environment, the trigger table
is not reread for each nucleus, but is obtained from a nucleus that is already active.

In order to maintain the integrity of the system, the trigger table is not updated with new, modified,
or deleted triggers unless a REFRESH command is issued from the Trigger Maintenance facility (see
the section Updating the Trigger Table).

The trigger table enhances performance. Instead of checking the trigger file itself for the existence
of a trigger every time a command is processed, the Adabas trigger driver simply checks the trigger
table, i.e., the buffer in memory. The sequence of the table enables the trigger driver to rapidly
determine whether a trigger should be fired.

When reading the trigger file to determine entries for the trigger table, the Adabas trigger driver

■ ignores any entries for the trigger, checkpoint, or security files;

47Triggers and Stored Procedures

Processing and Performance

■ loads deactivated triggers, but ignores them until they have been activated from the Modify
Trigger function in the Trigger Maintenance facility. See the section Single Trigger Definition.

■ determines the maximum file number for the database (the highest file number used plus 10),
and ignores any trigger for a file number greater than the maximum.

Ignoring out-of-range file numbers may cause a problem when the REFRESH command is used.
One solution is to load a dummy file with a file number greater than the real maximum file number.
You can then add new files that have a file number greater than the real maximum but less than
the dummy file number. By having a fixed-size buffer established at nucleus initialization, storage
requirements for this buffer are minimized. With a two-byte file number, the total maximum size
could be very large.

Starting Natural Subsystems

After the Adabas trigger driver is initialized, it starts the Natural subsystems that are responsible
for the actual execution of the procedures. The "maximum subsystems" parameter in the Adabas
triggers profile determines the number of subsystems (1-10) to be started.

Each subsystem is typically a minimally modified batch Natural nucleus that runs in the Adabas
address space. This affects the region size specified on the MPM startup JCL/JCS.

When a subsystem is started, the Adabas trigger driver keeps track of any change in subsystem
status or activity; hence, each subsystem can uniquely identify itself to either the Adabas trigger
driver or any procedure that the subsystem invokes. The user can monitor these activities by using
the Subsystem Activity function, which is part of the Trigger Maintenance facility.

When a Natural subsystem becomes active:

■ the Natural trigger driver gets control; and
■ the Adabas trigger driver is informed that the subsystem is ready to start processing any pro-

cedures that may result from a stored procedure request or the firing of a trigger.

The subsystem queue contains an entry for each Natural subsystem that is waiting for work. When
the Adabas trigger driver needs a subsystem, it examines the subsystem queue to find one that is
available.

Triggers and Stored Procedures48

Processing and Performance

Checking for Procedures

Once the Adabas nucleus is initialized, user processing continues normally. For each command
that the nucleus receives, the Adabas trigger driver determines whether a trigger needs to be fired.
(Entries in the trigger table that are marked "inactive" are ignored.)

For pre-command triggers, the Adabas trigger driver checks for triggers before the command is
selected for processing by the Adabas thread. This involves the READ, FIND, STORE, DELETE, and
UPDATE commands. For these commands, the Adabas trigger driver determines whether there are
any triggers to be fired; if not, command processing continues normally. Commands like end
transaction (ET), close (CL), release command ID (RC) are not checked but are given directly to the
nucleus for normal processing. The trigger check is, of course, not done for stored procedure re-
quests.

Once a command has been processed successfully by Adabas and the response code is zero, the
Adabas trigger driver determines whether there are any post-command triggers to be fired. If not,
the user is informed in the usual manner. If pre- or post-command trigger checking does result in
a trigger being fired, the Adabas trigger driver can proceed with the trigger processing.

Scanning the Trigger Table

Once it has been determined that a command is eligible for the firing of a trigger, the trigger table
is scanned. For performance reasons, the order in which triggers are scanned is determined by the
sequence or priority assigned to the triggers by the user (see the section Multiple Trigger Defini-
tions).

If two triggers exist for the same command class and have the same priority, they are scanned in
the order in which they are read from the trigger file (that is, the ISN sequence of the records on
the file). It is therefore important to specify the priority for each trigger correctly.

Triggers are scanned in the following general sequence:

CommandFieldSequence

specific commandspecific field1

specific commandany field2

any commandspecific field3

any commandany field4

49Triggers and Stored Procedures

Processing and Performance

Creating Pre- and Post-Command Trigger Queue Entries

If a command results in a trigger being fired, or if the Adabas trigger driver determines that the
command is a stored procedure request, an entry is created in the

■ pre-command trigger queue if the command has not been executed; or the
■ post-command trigger queue if the command has been executed successfully.

The entry contains information obtained from both the command that caused the trigger to be
fired and the corresponding entry in the trigger table (for example, details about the procedure
to be executed). The entry also allows the Adabas trigger driver to keep track of the status of
triggers that are fired.

If a Natural subsystem is waiting for work, it is given the trigger request immediately. Otherwise,
the trigger request remains in the pre- or post-command trigger queue until the next subsystem
is available.

Processing the Procedures

When a trigger request is placed in the pre- or post-trigger queue and a subsystem accepts it,
processing continues under the control of the Natural trigger driver.

Only two triggers (one pre- and one post-command trigger) can be fired for any one command,
regardless of the results.

When a command results in a trigger being fired, the system checks whether the trigger is asyn-
chronous or synchronous.

Asynchronous Triggers

If the trigger is asynchronous, the command does not wait for the triggered procedure to complete.
The command is released and processing continues normally depending on whether the trigger
is pre- or post-command:

The command is made available for processing in the Adabas thread. The triggered
procedure may be processed after the command has executed or simultaneously with
command execution.

pre-command

The triggered procedure and the command are processed independently. The user is
informed when the trigger is fired, regardless of the results of the procedure.

post-command

Triggers and Stored Procedures50

Processing and Performance

Synchronous Triggers

If the trigger is synchronous (participating or non-participating), the command is held until the
Natural trigger driver notifies the Adabas trigger driver that the execution of the procedure is
complete.

If the return code is zero, the command is released to continue processing.

If the return code is non-zero, with user receives a response code 155 (ADARSP155) or 156
(ADARSP156) and the following information:

■ the Additions 3 field contains the name of the procedure that was executed as a result of the
trigger being fired.

■ the first two bytes of the Additions 4 field contain the actual return code from the procedure.
■ the second two bytes of the Additions 4 field contain a subcode that indicates the type of trigger

that was fired:
■ subcode 15 indicates a pre-command trigger.
■ subcode 16 indicates a post-command trigger.

Processing the Results

After the procedure executes, the results are placed in the trigger request entry and the status is
updated appropriately. When the Adabas trigger driver detects this, it "finalizes" the trigger pro-
cessing of the command.

For both pre- and post-command triggers, the return code from the procedure determines how
the results are processed as described in the following sections.

Pre-Command Triggers

ActionReturn Code

the command is "released" so that it can be executed.zero

the command is not executed and the user receives response code 155 (ADARSP155) in the
response code field of the Adabas control block.

non-zero

Once the command has been executed by the Adabas thread, it may be selected again for any post-
command trigger processing.

51Triggers and Stored Procedures

Processing and Performance

Special Processing for Synchronous Pre-Command Triggers

For synchronous triggers, a return code of "1" indicates that the procedure completed processing
successfully. The response code field in the Adabas control block is set to zero to indicate the
successful result. However, the command is not "released" for execution by the nucleus; instead,
the results of the procedure are immediately returned to the user.

This special processing accommodates procedures that have read/write access to the record buffer
and require the command to be processed in a way that is similar to a stored procedure. See the
section Using the Format and Record Buffers.

It is possible for a procedure of a pre-command trigger to modify the contents of the record buffer
before the command is executed; this can be useful with update and store commands.

Post-Command Triggers

ActionReturn Code

the command is considered to be successful and the user is informed with response code 0
(zero) in the Adabas control block.

zero

response code 156 (ADARSP156) is returned in the Adabas control block. Although the
procedure returned a non-zero code, the actual command may have been successful; the

non-zero

results of the command execution must be interpreted by the application that issued the
command.

Note: When a post-command trigger is fired and the return code from the procedure is
non-zero, the data in the record buffer is not returned, even if the command was executed
successfully.

Special Processing for Synchronous Post-Command Triggers

Whether it is successful or not, a post-command trigger that is synchronous and has read/write
access to the record buffer may have modified the record buffer.

In the case of participating triggers, the results of the trigger may have changed the result of the
command. For example, if a successfully executed UPDATE command fires a post-command trigger
and the procedure for the trigger does not complete successfully, it may or may not perform a BT
command. When the user is informed, response code 156 (ADARSP156) is given. The application
that issued the original command must determine whether the UPDATE command is still in effect,
and perform the appropriate action (ET or BT).

Triggers and Stored Procedures52

Processing and Performance

Shutdown

Shutdown may occur in the following situations:

■ The Adabas trigger driver keeps track of the subsystems that fail. If all subsystems fail, it determ-
ines that no further processing of procedures is possible and terminates. Shut-down processing
depends on the "error action" value (see the table Error Action).

■ The nucleus receives the ADAEND or HALT operator command and instructs the Adabas trigger
driver to shut down as well:

the Adabas trigger driver terminates immediately.HALT

the Adabas trigger driver terminates when all subtask activities are at ET status. If a subtask
is busy and is involved in ET logic, it is allowed to finish if it is issuing commands to the current
nucleus; otherwise, a message is displayed at the console (see message ADAN9M) and the
subtask is terminated with the transaction incomplete.

ADAEND

Shut-down Processing Steps

Shut-down processing steps are as follows:

1 The pre- and post-trigger queues are checked for any waiting triggers. Response code 148
(ADARSP148) is issued to all users who are waiting for a synchronous trigger to complete
execution.

2 The user is informed in the normal manner for any completed post-command triggers.

3 Response code 148 (ADARSP148) is issued for completed pre-command triggers because they
will not be processed by the Adabas thread. If these commands are part of an ET transaction,
the user should issue a BT and ET command as appropriate.

4 Response code 157 (ADARSP157 - command is rejected) is issued for any post-command
trigger that is detected after the shutdown begins. The command was executed before shut-
down began, but the triggered procedure will not be executed.

5 Any subsystem that remains active after five seconds is forced to terminate, and a message
is displayed at the console. A subsystem is considered "active" if it contains a procedure that
continues to run; the Natural programs are in the buffer pool and the program may be issuing
database calls to another database or no database at all. In this situation, a "halt" issued to the
current database may be ineffective.

6 All subsystems shut down.

7 The total numbers of triggers and stored procedures are written to the console, and the triggers
status field in the Adabas triggers profile is set to "inactive". The nucleus continues shut-down
processing in the normal way.

53Triggers and Stored Procedures

Processing and Performance

Error Action

If the shutdown is requested by the Adabas trigger driver itself, shut-down processing depends
on the value assigned to the error action field in the Adabas triggers profile:

Shut-down ProcessingAction

The nucleus must also be terminated. The ADAEND request originates from the Adabas trigger
driver itself. Any user application still processing in the subsystem is terminated.

Halt

The Adabas triggers and stored procedures facility terminates in the Adabas nucleus, but nucleus
processing continues in the normal manner (as if the ADARUN parameter SPT=NOwere specified).

Ignore

No triggers will be fired to perform any extended command processing, and certain integrity
problems may result.

Any command that would normally result in a trigger being fired receives response code 157
(ADARSP157). The Adabas triggers and stored procedures facility remains active; however, all
subsystems are shut down and procedure processing is discontinued.

Reject

In a nucleus cluster environment, when one nucleus is set to Ignore or Reject status, all nuclei in
the cluster are also set to this status.

Abnormal Termination

See the section Shutdown for information about situations that shut down

■ the Adabas nucleus, the Adabas trigger driver, and all subsystems;
■ the Adabas trigger driver and all subsystems, but not the Adabas nucleus;
■ all subsystems, but not the Adabas triggers and stored procedures facility or the Adabas nucleus.

Natural ESTAE / STXIT Processing

If DU=OFF (the default; no memory dump is generated for an abend) is specified in the NATPARMs,
the Natural ESTAE / STXIT is active for the duration of the session.

If a program abend occurs within the Natural subsystem when the Natural ESTAE / STXIT is active,
the abend is trapped: the Natural ESTAE / STXIT exit acquires control, cleans up, notifies the
Adabas trigger driver, and restarts the Natural trigger driver.

Thus, the Natural session is restarted instead of terminated. This is an important performance
consideration.

If DU=ON is used, the ESTAE / STXIT is not activated and the subsystem will terminate abnormally.
Performance is slowed if the Adabas trigger driver must restart because it will terminate and restart
the subsystem as appropriate.

Triggers and Stored Procedures54

Processing and Performance

Natural Subsystem Abends

An executing procedure may exceed the time-out limit, or be canceled by the DBA before it com-
pletes processing. (Time-out refers to elapsed time as opposed to CPU time usage.)

These two "abnormal" terminations of a procedure are similar, with the following exceptions:

■ A cancellation is done manually from the Trigger Maintenance facility.
■ A time-out occurs automatically based on the activity timeout setting in the Adabas triggers

profile.

An executing procedure may need to be terminated at any stage, i.e., waiting, looping, or simply
executing longer than is expected. The only sure way to intercept processing is to terminate the
subsystem itself. (You can observe this termination by monitoring the subsystem from the Trigger
Maintenance facility; see the section Subsystem Activity.)

If the trigger is synchronous, the user must be informed that the subsystem has been terminated.
Depending on the trigger type (pre- or post-command), response code 155 (ADARSP155) or 156
(ADARSP156) is set, with subcode 9 to indicate the timeout. The user is always informed, whether
the subsystem timed out or was deliberately terminated, and additional information is provided
in messages that are written to the console.

When an abnormal termination occurs, ascertain the reason and correct the problem. If this happens
continuously, deactivate the trigger until the problem has been solved. Use the trigger activity
logging option on the profile to determine the reason more easily.

Natural Subsystem Restart

If Natural is unable to recover and a subsystem terminates, the Adabas trigger driver is notified
of the error and a message is written to the console.

After a Natural subsystem is terminated, it is restarted automatically.

■ If the restart is successful, the subsystem is reinitialized in the usual way. If there is not currently
work to be done, the subsystem is placed in a queue to wait until the Adabas trigger driver in-
forms it that a new trigger was fired and the procedure needs to be processed.

■ If the restart is unsuccessful, it is attempted two more times. The subsystem is permanently
deactivated if it fails to start after three consecutive restart attempts, and a message is displayed
at the console to inform the user. The subsystem cannot be reactivated until the nucleus is shut
down and restarted.

The restart routine responsible for restarting the Natural trigger driver is STP.

Users who are waiting for a synchronous trigger to finish processing are notified that the trigger
did not complete successfully. Response code 155 (ADARSP155) or 156 (ADARSP156) is returned,
with additional information in the Additions 4 field.

55Triggers and Stored Procedures

Processing and Performance

Command Logging

Because a triggered procedure may reject a command, it is possible when running Adabas triggers
and stored procedures that a command issued by the user is never run in an Adabas thread or
even seen by the nucleus supervisor.

It is therefore necessary for the Adabas triggers and stored procedures facility to log

■ a PC command (that is, a stored procedure request) when it is received;
■ a command when it is selected for a pre-command or post-command trigger;
■ a pre- or post-triggered command when it receives a non-zero response.

When processing a command log record, the log record types are

■ X'0005' for pre-command triggers; and
■ X'0006' for post-command triggers.

For the Adabas control block in the log record, the Additions 3 field contains the name of the
procedure being invoked and the Additions 4 field contains the following information about the
procedure:

Contains...Byte

the response code from the procedure.1-2

"P" for pre-trigger; "R" for procedure call; or "S" for post-trigger.3

"A" for asynchronous; "N" for non-participating; or "P" for participating.4

"R" for read; "F" for find; "U" for update; "S" for store/add; "D" for delete; or "P" for procedure call.5

flag settings: "1" for no parameters; "2" for response code only; "4" for control information; "8" for
special stored procedure parameters; "10" for record buffer access; or "80" for record buffer update.

6

the name of the field associated with the trigger.7-8

Note: No log is created for an asynchronous trigger that returns a non-zero response. The
CQE address (4th parameter) for an asynchronous trigger is set to zero if the command
completes before the trigger is processed.

Triggers and Stored Procedures56

Processing and Performance

IV Programming and Performance

57

58

6 Programming and Performance

■ Writing Procedures .. 60
■ Natural Syntax Limitations ... 63
■ Using the Format and Record Buffers .. 66

59

In this chapter, guidelines are suggested and options are provided for writing efficient procedures.
Special requirements for using Natural are included as well as information about using the format
and record buffers, and the record buffer extraction routine STPRBE.

Writing Procedures

It is important to consider performance when writing procedures. No more than ten subsystems
are available to process all commands for all users. Procedures that require excessive processing
time prevent the subsystem from servicing other requests.

If all subsystems incur a heavy load, it can cause excessive queuing of trigger and stored procedure
requests. Commands for synchronous triggers and stored procedures are forced to wait, and users
may experience poor response times.

Stored Procedures

Stored procedures may be created in library SYSSPT, or in another library that is a steplib to
SYSSPT.

The stored procedure is a normal Natural subprogram, with the following characteristics:

■ it must use the parameter definition in the supplied PDA.
■ it should never go to level 1 in the Natural calling structure.
■ it must not override the current setting of *ERROR-TA if errors are to be handled by the Natural

trigger driver directly.

Triggers

The function performed by a triggered procedure is based on a specific file. It may also use a
specific command and/or field. The function should be very specific in order to reduce the number
of operations that the procedure must perform. A maximum of one pre-command trigger and one
post-command trigger can be fired for any given command.

Asynchronous Triggers

Asynchronous triggers are useful for determining whether an actual event occurred.

■ If file number is the only criterion, the procedure can be used to report and/or audit any activity
for the file as a whole.

Information about the command, i.e., the Adabas control block, is available; the contents of the
record buffer are not available because the command does not wait for the procedure to execute

Triggers and Stored Procedures60

Programming and Performance

completely before continuing. However, the record may be read using the ISN in the control
block.

■ If 'command' is added as a criterion, this reduces the number of times a trigger is fired.

An advantage of asynchronous triggers is that the command that results in the trigger being
fired does not have to wait for the procedure to complete; however, asynchronous triggers
should generally be used only if the procedure logic is independent of the application.

Synchronous Triggers

Synchronous triggers normally have a dependency associated with the application, i.e., there is a
need to have some action take place either before or after the command is processed. The command
cannot continue until the procedure has completed.

When a synchronous procedure receives control, it can perform processing that is similar to that
of an asynchronous procedure. If 'field name' is specified as a criterion, the procedure can retrieve
that value (read the ISN of the record or call STPRBE) and perform any required processing.

Implementing Support for Multi-Triggers

For each command, only one pre- and one post-trigger may be fired. If you require triggers for
multiple fields, you must implement logic to support "multi-triggers" (a single trigger containing
multiple, related triggers).

Software AG recommends that you use a procedure rather than the Trigger Maintenance facility
to define multi-triggers for a specific file and command. Such a procedure

■ takes control when the trigger is fired and then invokes other procedures to simulate triggers
being fired.

■ can define the exact sequence in which the procedures are processed.
■ can define the action to be taken if a procedure returns a non-zero response code; for example,

check for additional triggers or return the response code to the user.
■ can introduce additional criteria; that is, criteria other than file number, command, and field

name. For example, a procedure could be invoked only when a combination of two fields exists
in the format buffer.

61Triggers and Stored Procedures

Programming and Performance

Example of a multi-trigger:

File 11
Command UPDATE
Field '** any field **'
Procedure PROC001

Trigger Criteria:

Format Buffer='AA,BB,AB,CA,DF,MT,DT.'Command A1:

The subprogram handles multi-triggers in the following sequence: AB, GA, DT, AA, LT,
CA. When PROC001 gets control, it checks for each field in the sequence. If a field is not

Procedure:

found, the procedure for that field is ignored and processing continues with the next
field. In this example, fields GA and LT are not found (are not in the format buffer).
Processing can continue regardless of any nonzero response code returned by any of the
procedures.

Single Triggers vs Multi-Trigger

If the list of triggers is very long, it may be more efficient to use multiple single triggers instead
of one multi-trigger.

■ A trigger should exist for each file-plus-command combination as required.
■ If the fields can be grouped, the trigger field for each trigger can be one of the fields in a group;

that is, the field that is always referenced by all accesses and/or updates.

This approach makes sense when a file has record typing or the applications read and update the
data for a file in groups.

Example:

An application such as Employees has two separate functions (based on the Employees sample
file supplied with the Adabas installation):

■ Updating personnel details such as address and name. If telephone number is always included
in the data, the trigger can be fired for an UPDATE to the EMPLOYEES file for the field TELE-
PHONE.

■ Updating job details such as department, vacation status, and position. The trigger can be fired
for an UPDATE to the EMPLOYEES file for the field JOB-TITLE or the field POSITION.

Triggers and Stored Procedures62

Programming and Performance

Natural Syntax Limitations

When coding procedures, you may use the normal Natural syntax. However, the limitations dis-
cussed in the following paragraphs should be considered.

Error Handling

STPPDRIV contains an ON ERROR clause so that any errors that result from the procedures are
trapped in STPPDRIV.

■ STPPDRIV passes control to the STP routine.
■ The STP routine handles the restart processing.

As part of restart processing, STP informs the Adabas trigger driver that the trigger request in
progress has been terminated and that the result should be returned to the user.

The following rules apply:

■ The ON ERROR clause may be used, provided control is returned to the calling routine, i.e.,
STPPDRIV.

■ For performance reasons, statements such as STOP or TERMINATE should not be used. If a
TERMINATE NN 'message' statement is issued by the procedure, it causes the subsystem to
terminate with a return code of NN and a message written to the console. The Adabas trigger
driver must then restart the system.

If these rules are not followed, the Natural trigger driver may lose control, requiring that the user
cancel the batch Natural subsystem from the Adabas trigger driver. When the Adabas trigger
driver becomes involved in error handling, additional resources are required.

Printer Support

Although reports and messages can be printed from a Natural subsystem, the subsystem should
not be expected to function as a batch processor. Printer files may be assigned to the various sub-
systems, but should be used with caution. Natural subsystems have no control over which proced-
ures they execute for any application.

Reports are normally available in their complete form. While the nucleus is active, the latest mes-
sages or report output may not be available because the spool system has not flushed its buffers.

63Triggers and Stored Procedures

Programming and Performance

Work File Support

Work files are supported; however, it is not known which work files will be assigned to a subsystem
at the time of execution. Therefore, procedures should be written to read and write to a specific
work file based on the subsystem where the procedure must run.

ET Logic

End transaction (ET) logic works in the usual way; however, be aware of the effects of participating
triggers:

■ An END TRANSACTION (ET) or BACKOUT TRANSACTION (BT) statement issued from a
procedure affects the "hold" status of any records of the user who issued the command that fired
the trigger.

■ The ET or BT statement should be issued in a way that allows the applications to be synchronized.
For instance, if the procedure incurs an error, it should be able to issue a BT to back out any
previously updated data; that is, data modified within the procedure as well as data modified
by the application to which the trigger command belongs.

When an asynchronous or non-participating trigger completes execution, a BT should be issued
to ensure that the subsystem is at ET status for the next trigger to be fired.

Natural Levels

Natural program levels are changed whenever a FETCH RETURN, CALLNAT, or PERFORM
statement processes an external subroutine. In order for the Natural trigger driver to stay in control
of the Natural session, it is important to maintain program levels; therefore, FETCH and STOP
statements (assuming STACK TOP COMMAND) must not be used. Hence, STPPDRIV, which in-
vokes the actual procedure/subprogram, must be at level 1.

Statements Appropriate for Batch Mode

Procedures are executed in batch mode. Thus, statements such as INPUT should be used appro-
priately with the STACK DATA statement. The STACK command is not appropriate.

CALLNAT Parameters

The Natural trigger driver invokes a subprogram with a CALLNAT statement. Depending on the
definition in the Trigger entry, the subprogram should expect one of the following options to be
used:

1. No parameters are passed.

This is typically used for asynchronous triggers that perform a very specific function. That is,
the trigger event criteria is the only information that the procedure needs in order to perform

Triggers and Stored Procedures64

Programming and Performance

the task. A response code is not passed because it is irrelevant; the command may already have
completed, so a non-zero response code from the procedure cannot be returned to anyone.

2. The response code field only is passed.

The response code field is a modifiable, four-byte binary (B4) field. The Natural trigger driver
checks all four bytes to determine whether the call was successful. However, only the last two
bytes contain the actual response code. The first two bytes may be used as a subcode for reporting
reasons.

The Natural trigger driver returns the response code for a synchronous trigger but ignores the
response code for an asynchronous trigger. Because the asynchronous trigger may execute after
the initiating command has finished executing, the response code is irrelevant.

The response code value is placed in the first two bytes of the Additions 4 field of the command
before it is returned to the user; it is not placed in the response code field of the Adabas control
block. It is usually response code 155 (ADARSP155 - indication of pre-command triggers) or
156 (ADARSP156 - indication of post-command triggers).

3. The response code field and the control information are passed.

The response code field is passed in the same manner as described above.

Control information about a trigger may be vital to the successful execution of a procedure. It
is provided in the STPAPARM or STPXPARM parameter data areas (PDAs), and includes
■ the command code of the Adabas command that initiated the trigger
■ the DBID of the database against which the command was issued
■ the file number
■ the length of the command's record buffer
■ a setting that indicates whether the trigger can modify the initiating command's record buffer
■ settings that indicate whether the trigger is asynchronous, non-participating, or participating
■ the task ID of the batch Natural subsystem that is executing the trigger
■ a copy of the command's Adabas control block (ACB) or extended Adabas control block

(ACBX). With asynchronous triggers, this is only the first 48 bytes, i.e., everything up to the
Additions 2 field.

4. The response code field, the control information, and a global user area are passed.

The global user area is passed, in addition to the response code field and control information
described above.

The global user area is kept for the entire active Natural subsystem session. Because the global
user area is never modified by the Natural trigger driver, it can be used to pass information
between procedure calls. It can also be used as a working storage area.

65Triggers and Stored Procedures

Programming and Performance

Using the Format and Record Buffers

Record Buffer

■ The record buffer is valid with stored procedures only if parameters are being passed.

The record buffer is available for passing parameters from the caller to the stored procedure
and/or from the stored procedure to the caller. The layout or DSECT of the record buffer must
be coordinated between the caller and the actual stored procedure itself.

■ The record buffer is valid with triggered procedures only if the trigger is participating or non-
participating (synchronous) and only through the record buffer extraction routine (STPRBE).
The record buffer can be passed either before or after the trigger command is processed.

The record buffer to be used for access or update commands is specified by the caller using the
Additions 4 field in the Adabas control block.

Parameters

When setting up the record buffer, the definition of the parameters is significant. Multiple para-
meters with differing lengths could be passed as

■ a separate field with the length value before each parameter;
■ a list of fields at the start or end of the parameters; or
■ the first two bytes of each parameter, that is, inclusive length bytes.

The options for passing parameters are varied and flexible; you should choose the one that is most
effective or consistent with your environment:

1. No parameters are passed.

2. Fixed Definition

The parameters are placed in a contiguous piece of storage with a fixed length and fixed
definition. Each parameter remains constant in the structure and also has a fixed length. The
procedure that is invoked must therefore be able to interpret the structure or DSECT defined
for the parameters. See example STPLNK01 .

3. Fixed List of Parameters

There is more than one parameter, but the number, sequence, format and length of each para-
meter is constant when STPLNK is invoked. STPLNK need only place these parameters in
contiguous storage; that is, the record buffer, before issuing the request. See example STPLNK02.

4. Variable List of Parameters

Triggers and Stored Procedures66

Programming and Performance

In the more flexible variation of passing parameters, the procedure that is invoked must under-
stand the format of the parameters being passed in the record buffer. The format buffer can be
very useful in providing this information; hence, the procedure events field DD. The record
buffer extraction routine, STPRBE, must scan the format buffer for the field and step through
the record buffer at the same time to position to the correct value (start and end position). See
example STPLNK03.

In either case, read or write access to the record buffer must be allowed using the RBOPT parameter
option.

Format Buffer

The format buffer can optionally be used to convey the definition of parameters being passed in
the record buffer.

■ The syntax must be consistent with that of a format buffer for a normal command, or be set to
"." if it is not used.

■ The field names should normally be meaningful so that the procedure can get the values of each
parameter from the record buffer extraction routine (STPRBE).

■ Length must be used if the procedure does not provide a length specification. Alternatively, if
the field names correspond to the actual file number specified in the ACB, then the STPRBE
routine is able to determine the length of the field or parameter.

■ If required, STPRBE can be used to extract the actual format buffer contents.
■ When calling stored procedures across platforms, the field type of each parameter must be

specified as
■ A for alphanumeric;
■ B for binary;
■ U for unpacked; and so on.

Record Buffer Extraction Routine (STPRBE)

STPRBE is the record buffer extraction routine. It may be used in Adabas procedures to request
record buffer information. It can be called

■ from a stored procedure if parameters are being passed; or
■ from a command that results in a synchronous trigger being fired. STPRBE provides the only

access to the record buffer for synchronous triggers.

For all functions, the record buffer extraction routine is called as follows:

CALL 'STPRBE' FUNCTION REQUEST-PARM REC-BUFFER

FUNCTION, REQUEST-PARM, and REC-BUFFER are described below.

67Triggers and Stored Procedures

Programming and Performance

REQUEST-PARM (A154)
REQUEST-PARM consists of the following fields:

DescriptionLengthField Name

Error message text for any error receivedA72ERR-MESSAGE

Response code (subcode + actual error) from this routineI4RESPONSE-CODE

Version of this structureA4VERSION NUMBER

Long name of the field to be extractedA32FIELD NAME

Format of the field to be extractedA1FIELD FORMAT

Special optionsA3FIELD OPTIONS

Length of field extractedI4FIELD LENGTH

Adabas short name of fieldA2FIELD SHORT

UnusedA2Unused

Occur number for PE/MU fieldI4FIELD OCCUR

Occurrence number of MU within the PE FieldI4GROUP OCCUR

Offset into record buffer for extractionI4FIELD OFFSET

UnusedA18Unused

FUNCTION (A4)
The following table describes the functions that should be specified.

DescriptionField

Get the contents of the format buffer.GF

Get index value (obtain an index occurrence of an MU or PE).GI

Get multi value (obtain an MU field within a PE).GM

Get record buffer range (obtain the record buffer information according to the start position and
length specified by the call).

GR

Get value (obtain a flat field value from the record buffer).GV

Get UBX information. This is different from the "NR" function; i.e., it allows the user to obtain
any information passed using the UB extension in accordance with the definition of user exit B
in ADALNK.

GX

Get Natural information (obtain the Natural user information from the user buffer according to
the offset and length passed). This is valid only if the user buffer extension is being used through
user exit B in ADALNK.

NR

Update index value (change an index occurrence of an MU or PE).UI

Update multi value (change an MU field within a PE).UM

Update record buffer range (change the record buffer information according to the start position
and length specified by the call).

UR

Update value (change a flat field value from the record buffer).UV

Triggers and Stored Procedures68

Programming and Performance

The following table contains the required value for each of the functions:

UVURUMUINRGXGVGRGMGIGFField

/U/U_/U_/U_/U_/U_/U_/U_/U_/U_/UERR-MESSAGE

/U/U_/U_/U_/U_/U_/U_/U_/U_/U_/URESPONSE-CODE

F/AF/AF/AF/AF/AF/AFIELD NAME

f/Uf/Uf/Uf/Uf/Uf/UFIELD FORMAT

GGC/GGFIELD OPTIONS

f/Uf/Uf/UFf/Uf/Uf/UFFIELD LENGTH

f/Uf/Uf/Uf/Uf/Uf/UFIELD SHORT

F/AF/AF/AF/AFIELD OCCUR

F/Af/AF/Af/AGROUP OCCUR

F/AF/AF/AFFIELD OFFSET

MeaningSymbol

Not used_

Remains unchanged after the callA

Filled in before the callF

Optionally filled in before the callf

Field count - valid only with MU or PE fields when the value of the count field is required.C

Group option - extract/update an elementary field within a group fieldG

Updated after the call unless specified; for example, lengthU

REC-BUFFER
REC-BUFFER is a variable length field that contains one of the following:
■ the record buffer that the user passed to Adabas with the original call; that is, the call that

resulted in the triggered procedure being invoked; or
■ the record buffer returned from the user after the actual processing of the triggered procedure.

69Triggers and Stored Procedures

Programming and Performance

Response Codes

MeaningCode

Call was 100% successful.0
(ADARSP000)

Internal error occurred; that is, Get Name mapping failed.1

Long name not found in name mappings; that is, name did not exist in the file-field
table definitions.

2

Reserved.3

Field not found in format buffer; that is, the user requested the value of a field not
present in the format buffer.

4

Field too deep in the record buffer. The length of the record buffer is determined by the
record buffer length (RBL) in the Adabas control block (ACB). If the field exists, it is
beyond the defined limit.

5

Requested occurrence not present in format buffer. Informs the user that a specific
occurrence of an MU or PE was not found in the format buffer.

6

Invalid function type; that is, FUNCTION is not set to a valid value.7

Record buffer access not available; that is, the record buffer option field was set to none,
disallowing any access. Therefore, no record buffer extraction functions are available
to this procedure.

8

Record buffer modification denied; that is, while access to the record buffer is permitted,
write access has been disallowed. Therefore, only GET functions may be requested.

9

Record buffer length (RBL) exceeds the maximum allowable in the ACB; that is, the
length specified extends past the total length of the RBL. Also applies to the option "NI".
Only 232 bytes of the extended buffer may be retrieved.

10

Record buffer length is incorrectly set to 0; that is, the record buffer extraction routine
was expecting the user to specify the length of the RBL for this function call, but it is
set to zero. (example: RAngeReq)

11

Illegal syntax in the format buffer. Syntax that is valid for a command may not be
resolved by the record buffer extraction routine. This normally applies when the "n"

12

syntax is used; for example, AB1-n, ABn. However, if the trigger is a pre-command
trigger, the problem could be that the format buffer itself is invalid.

Invalid parameter is specified; that is, one of the parameters that should have been set
for the function call was not set. For example, field name function call was not set.

13

PE group occurrence was not specified; that is, the function call for accessing/updating
a particular PE or MU occurrence was specified but no occurrence number was passed
in the parameters.

14

Invalid edit mask specified in the format buffer. Only valid edit masks may be specified.15

Reserved.16

User information not available - link B missing; that is, the user is trying to access the
user buffer extraction information but none is available.

17

Group definition record not found for the current file.18

Triggers and Stored Procedures70

Programming and Performance

MeaningCode

Field not found in the group definition record for the current file.19

Syntax error in the format buffer; that is, like the nucleus, the record buffer extraction
routine expects the format buffer to conform to the normal rules of definition; however,

60

the current format buffer is invalid. Check the subcode in the error message (refer to
the Adabas Messages and Codes documentation).

Nonzero Adabas response code was returned, where "xxx" is the actual Adabas response
code. This may occur while the record buffer extraction routine is accessing the trigger
table to obtain more information.

3xxx

The GDA is incorrect or corrupted, or there is none. This indicates an internal error.
Check for any messages from the Natural subsystem that indicate some kind of error,
or contact your Software AG technical service representative. A dump will be needed.

9999

Get Value by Offset
■ Range request to move record buffer by offset.

The user may access or update the record buffer in accordance with a specific offset for a
length equal to or less than the original RBL (record buffer length). That is, RBE (record
buffer extraction) should return the value of the record buffer at a certain position for a
certain length, regardless of any "field" sizes or definitions that the record buffer contains.

■ Request to move user buffer extraction (UBX) information by offset.

The user may access the record buffer in accordance with a specific offset for a length equal
to or less than the original RBL. For the UBX, this is a maximum value of 232.

■ Request to move format buffer information by offset.

Get Field Value
An Adabas field name must be specified for this request:
■ If the short name is specified, the long name should be set to '**'.
■ Length may or may not be specified. If length is not specified, an override value less than

the maximum defined size of the field may be specified instead.

During processing, RBE must step through the record buffer and the format buffer. For each
field found in the format buffer prior to locating the desired field, RBE must step through the
record buffer in order to be positioned correctly for the actual move.

Stepping forward through MU and PE fields requires that the total number of elements involved
in the array be calculated, as follows:
■ the number of PE occurrences times the number of MU occurrences times the actual length

of the field in question.

71Triggers and Stored Procedures

Programming and Performance

Note: In the case of an MU where the user has not specified the occurrence number in
the format buffer, the user receives the first occurrence; i.e., the request is treated like a
request for an "elementary" field.

RBE determines whether the user has an MU or PE field only, or an MU within a PE field. The
following are examples of supported PE fields and/or usage in format buffers (where "m" and
"n" are actual occurrence values).
■ MUn or PEn
■ PEn(MUn)
■ PEn(MUm-n)
■ PEm-n(MUn)
■ PEm-n(MUm-n)
■ PEm-n or MUm-n

To obtain the MU count or PE count from the record buffer, the field name or short name must
be specified; length to be returned may or may not be specified.

Triggers and Stored Procedures72

Programming and Performance

V Calling Stored Procedures

73

74

7 Calling Stored Procedures

■ Stored Procedure Link Routine (STPLNKnn) ... 76
■ Setting Up the PC Command ... 76
■ Examples .. 83

75

Stored procedures allow you to directly invoke a procedure located on the database using the
Adabas direct command PC.

Stored Procedure Link Routine (STPLNKnn)

The PC command is used in conjunction with the stored procedure link routine STPLNKnn to invoke
a stored procedure.

STPLNKnn is provided in the SYSSPT library in source format.

The examples STPLNK01, STPLNK02, and STPLNK03 from the library SYSSPT illustrate the use
of the PC command in calling stored procedures. Each example passes parameters to the routine
in a different way.

You may use these examples or write your own routines. If you use the examples, you may change
the routine code or name to meet standards or requirements at your site. You may choose to include
the routine name as inline code in the main Natural program.

In the three examples, the PC command is invoked by calling the Natural routine CMADA. If you
do not want to code this entry name directly, you can issue a CALLNAT to the Natural subprogram
USR1043N in library SYSEXT instead. The advantage of using the CALLNAT alternative is to in-
sulate your code from changes to the name "CMADA" that may occur across time or across plat-
forms.

Setting Up the PC Command

The Adabas control block (ACB) for the PC command (direct call) must be set up before STPLNKnn
is used to invoke a stored procedure request.

This section covers the following topics:

■ PC Command Function and Use
■ ACB Interface Direct Call Control Block and Buffer Overview
■ ACBX Interface Direct Call Control Block and Buffer Overview

Triggers and Stored Procedures76

Calling Stored Procedures

■ Buffers

PC Command Function and Use

The PC command provides a mechanism for invoking stored procedures.

Parameters are passed using the record buffer; they are subsequently updated by the stored pro-
cedure and returned to the caller.

The format buffer may be used to define the parameters to the procedure. Such information may
be relevant when calling the record buffer extraction routine.

ACB Interface Direct Call Control Block and Buffer Overview

■ Control Block
■ Buffer Areas
■ Control Block Field Descriptions

Control Block

After
Adabas Call

Before
Adabas Call

FormatPositionField

Not usedNot usedNot used1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFalphanumeric9-10File Number

ANot usedbinary11-12Response Code

Not usedNot usedNot used13-24

UFbinary25-26Format Buffer Length

UFbinary27-28Record Buffer Length

Not usedNot usedNot used29-36

UFalphanumeric37-44Additions 1

Abinary / binary45-48Additions 2

AFalphanumeric49-56Additions 3

ANot usedalphanumeric57-64Additions 4

Not usedNot usedNot used65-76

U77-80User Area

77Triggers and Stored Procedures

Calling Stored Procedures

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UFFormat

AFRecord

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Control Block Field Descriptions

Command Code (ACBCMD)
PC

Command ID (ACBCID)
Set this field to the value 'STPx' where "x" is any value.

File Number (ACBFNR)
By default, indicates the trigger file database ID and file number.

For a one-byte database ID, set CB-DBID; for a two-byte database ID, set CB-RSP with CB-
CALL-TYPE set to X'30'.

You may specify the file number of any other user file in conjunction with the format buffer.
File number should be consistent with the format buffer so that the record buffer extraction
(STPRBE) routine may be used to interpret or retrieve field values according to the file-field
definitions.

Specify the binary number of the file to be read in this field. For the physical direct calls, specify
the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in
the first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes documentation.

Triggers and Stored Procedures78

Calling Stored Procedures

Format Buffer Length (ACBFBL)
The format buffer length (in bytes). The actual format buffer area defined in the user program
must be at least as large as the length specified.

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The actual record buffer area defined in the user program
must be at least as large as the length specified.

Additions 1 - Name of the Stored Procedure - (ACBADD1)
The name of the stored procedure.

Additions 2 - Length of Compressed and Decompressed Record - (ACBADD2)
The PC command returns a response from the procedure executed in bytes 1 and 2 of this field.

Additions 3 - Stored Procedure Options- (ACBADD3)
This field indicates the options to be used when the stored procedure request is issued:

A=asynchronous, P=participating, N=non-participatingByte 1 is Type:

N=none, C=control, E=error/response, X=control with ACBXByte 2 is Parm:

N=none, A=access, U=updateByte 3 is RecB:

Additions 4 (ACBADD4)
The PC command returns a response from the procedure executed in bytes 1 and 2 of this field.
Bytes 3 and 4 are set to X'0011 (17) to indicate "stored procedure".

ACBX Interface Direct Call Control Block and Buffer Overview

■ Control Block
■ Buffer Areas
■ Control Block Field Descriptions

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------binary1-2

Fbinary3-4Version Indicator

------binary5-6

UFalphanumeric7-8Command Code

------binary9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

79Triggers and Stored Procedures

Calling Stored Procedures

After Adabas CallBefore Adabas CallFormatPositionField

---------25-56

UFalphanumeric57-64Additions 1

A---binary65-68Additions 2

AFalphanumeric69-76Additions 3

A---alphanumeric77-84Additions 4

---------85-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

---------169-193

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UFFormat

AFRecord

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Control Block Field Descriptions

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
PC

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
Set this field to the value STPx where x is any value.

Triggers and Stored Procedures80

Calling Stored Procedures

Database ID (ACBXDBID)
Specify the database ID for a call.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data, or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
By default, indicates the trigger file number.

You may specify the file number of any other user file in conjunction with the format buffer.
File number should be consistent with the format buffer so that the record buffer extraction
(STPRBE) routine may be used to interpret or retrieve field values according to the file-field
definitions.

Specify the binary number of the file to be read in this field. For the physical direct calls, specify
the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Additions 1 - Name of the Stored Procedure - (ACBXADD1)
The name of the stored procedure.

Additions 2 - Length of Compressed and Decompressed Record - (ACBXADD2)
If the command is processed successfully, the following information is returned in this field:
■ If the record buffer contains at least one valid field value, the leftmost two bytes contain the

length (in binary form) of the compressed record accessed;
■ The rightmost two bytes contain the length (in binary form) of the decompressed fields se-

lected by the format buffer and accessed.

Note: This length information is not returned when the prefetch feature is being used.

Additions 3 - Stored Procedure Options- (ACBXADD3)
This field indicates the options to be used when the stored procedure request is issued:

A=asynchronous, P=participating, N=non-participatingByte 1 is Type:

N=none, C=control, E=error/response, X=control with ACBXByte 2 is Parm:

N=none, A=access, U=updateByte 3 is RecB:

Additions 4 (ACBXADD4)
The PC command returns a response from the procedure executed in bytes 1 and 2 of this field.
Bytes 3 and 4 are set to X'0011 (17) to indicate "stored procedure".

81Triggers and Stored Procedures

Calling Stored Procedures

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Buffers

The following buffers apply to the PC command:

■ Format Buffer
■ Record Buffer

Format Buffer

The user specifies the fields to be read in this buffer. Format buffer syntax and examples are
provided in the Adabas Command Reference documentation.

The format buffer may optionally be used to convey the definition of the parameters being passed
in the record buffer. The syntax must be consistent with that of a format buffer for a normal com-
mand, or be set to "." if it is not to be used.

The field names used in the format buffer should normally be meaningful so that the stored pro-
cedure can acquire the values of each parameter from the record buffer extraction (STPRBE) routine
(see Record Buffer Extraction Routine (STPRBE)). Length must be used if the stored procedure
routine does not provide one. Alternatively, if the field names correspond to the actual file number
specified in the ACB, then the STPRBE routine will be able to determine the length of the
field/parameter.

When issuing stored procedures across platforms, it is essential to also specify the field type of
each parameter; i.e., "A" - alphanumeric, "B" - binary, "U" - unpacked, etc.

See Format Buffer for more information.

Record Buffer

Adabas returns the requested field values in this buffer. All values are returned according to the
standard format and length of the field unless the user specifies a different length and/or format
in the format buffer.

The record buffer is available for passing any parameters from the caller to the stored procedure
and/or from the stored procedure to the caller. The layout or DSECT of the record buffer must be
coordinated between the caller and the actual stored procedure routine itself.

The record buffer is available for participating and non-participating (sync) type requests only by
using the record buffer extraction (STPRBE) routine. See Record Buffer Extraction Routine
(STPRBE).

Triggers and Stored Procedures82

Calling Stored Procedures

Whether the record buffer is used for access or update is specified by the caller using the Additions
4 field.

See Using the Format and Record Buffers for more information

Examples

This section contains the example programs and data areas listed in the following table. Source
code is provided during the installation procedure and is located in the library SYSSPT.

DescriptionName

This stored procedure link routine passes parameters as fixed length and fixed number.STPLNK01

In this stored procedure link routine, a maximum of five parameters may be passed to the
procedure; the length of each parameter is contained in the first two bytes of the parameter.

STPLNK02

Like STPLNK03, a maximum of five parameters may be passed to the procedure; however,
the length of each parameter is contained in a preceding, separate parameter.

STPLNK03

STPLNK01

0010 **
0020 * Application: Adabas Stored Procedures
0030 * Subprogram : STORPROC/STPLNK01
0040 * Author : Adabas Development
0050 *
0060 * Function : Sample Routine 01 to invoke a stored procedure
0070 * This example expects fixed parameter definitions
0080 * Remarks : This routine will set up the buffers and issue the call
0090 * to invoke a stored procedure routine directly.
0100 * Once processing is completed, control is returned to
0110 * the caller.
0120 * Parameter RESP must be set to zero if processing is
0130 * successful.
0140 *
0150 * Parameters : The following fields in the ACB must be set up to invoke
0160 * the stored procedure request.
0170 *
0180 * Command Code: 'PC'
0190 * Command ID : 'STPx' - where x is any value
0200 * Database ID : Database of the respective trigger file
0210 * Set CB-DBID for a one byte DBID
0220 * Set CB-RSP for a two byte DBID with
0230 * CB-CALL-TYPE set to H'30'
0240 * File Number : Set to the trigger file number of the
0250 * target database (normal one-byte versus
0260 * two-byte FNRs is applicable) by default

83Triggers and Stored Procedures

Calling Stored Procedures

0270 * or any other file used in conjunction with
0280 * the format buffer.
0290 * FB Length : Length of the format buffer
0300 * RB Length : Length of the record buffer
0310 * Additions 1 : Name of the stored procedure
0320 * Additions 3 :
0330 * Byte 1 : Type ("A"sync, "P"art, "N"on-Partic)
0340 * Byte 2 : Parm ("N"one, "C"ntl, "E"rror/Resp)
0350 * Byte 3 : RecB ("N"one, "A"ccess, "U"pdate)
0360 *
0370 *
0380 * Format Buff: The format buffer is an optional buffer that may be used
0390 * to convey the definition of the parameters being passed
0400 * in the record buffer. The syntax must be consistent with
0410 * that of a format buffer for a normal command, or be set
0420 * to "." if it not to be used.
0430 *
0440 * The field names used in the format buffer should
0450 * normally be meaningful so that the stored procedure can
0460 * get the values of each parameter from the record buffer
0470 * extraction (STPRBE) routine. Length must be used if the
0480 * stored procedure routine does not provide one.
0490 * Alternatively, if the field names correspond to the
0500 * actual file number specified in the ACB, then the STPRBE
0510 * routine will be able to determine the length of the
0520 * field/parameter.
0530 *
0540 * When issuing stored procedures across platforms, it is
0550 * essential to also specify the field type of each
0560 * parameter; i.e., "A" - alphanumeric, "B" - binary, "U"
0570 * - unpacked etc.
0580 *
0590 *
0600 * Record Buff: The record buffer is available for passing any
0610 * parameters from the caller to the stored procedure
0620 * and(or) from the stored procedure to the caller.
0630 * The layout/DSECT of the record buffer must be
0640 * coordinated between the caller and the actual stored
0650 * procedure routine itself.
0660 *
0670 * The record buffer is available for participating
0680 * and non-participating (sync) type requests via the
0690 * the record buffer extraction (STPRBE) routine, only.
0700 *
0710 * Determination of the record buffer being for access or
0720 * update is specified by the caller via the additions 3
0730 * field (see above).
0740 *
0750 **
0760 DEFINE DATA PARAMETER
0770 01 REQ-TYPE (A1) /* Optional request ID type
0780 01 P-PROC (A8) /* Procedure name

Triggers and Stored Procedures84

Calling Stored Procedures

0790 01 P-PARM1 (A100) /* Single parameter
0800 01 P-MSG (A72) /* Message corresponding to the RESP
0810 01 RESP (N4) /* Response code of proc. request
0820 LOCAL USING STPLCB
0830 LOCAL
0840 01 FB (A16) INIT<'AA,100,A.'>
0850 01 ET-CNT (P3)
0860 END-DEFINE
0870 FORMAT PS=0
0880 *
0890 RESET CB /* Clear the ACB
0900 MOVE 'STP' TO CB-CID /* Command ID
0910 MOVE 'PC' TO CB-CMD /* Command code
0920 MOVE 222 TO CB-DBID /* Database ID
0930 MOVE 12 TO CB-FNR /* Default to TRG file number
0940 MOVE 9 TO CB-FBL /* FB length
0950 MOVE 100 TO CB-RBL /* RB length
0960 IF P-PROC = ' ' /* Did we get a procedure name?
0970 DO
0980 MOVE 1 TO RESP
0990 MOVE 'Invalid Procedure Name specified' TO P-MSG
1000 ESCAPE ROUTINE
1010 DOEND
1020 MOVE P-PROC TO CB-ADD1 /* Stored procedure name
1030 MOVE 'NCA ' TO CB-ADD3 /* Options: N - Sync (non-partic)
1040 * /* C - Control parms
1050 * /* A - RecBuff for access
1060 *
1070 CALL 'CMADA' USING CB FB P-PARM1 /* Invoke the stored procedure
1080 *
1090 MOVE CB-RSP TO RESP
1100 MOVE 'Check Response code returned for this request' TO P-MSG
1110 * PRINT (CD=YE) 'Resp ..' (YEI) CB-RSP(EM=HH) 'Add2' CB-ADD2(EM=H(8))
1120 * 'Add4' CB-ADD4(EM=H(8))
1130 *
1140 END

STPLNK02

0010 **
0020 * Application: Adabas Stored Procedures
0030 * Subprogram : STORPROC/STPLNK02
0040 * Author : Adabas Development
0050 *
0060 * Function : Sample routine 02 to invoke a stored procedure
0070 * This example expects up to 5 different variable-length
0080 * parameters. The length of each parameter is specified
0090 * as the first two bytes of each parameter. Length is
0100 * inclusive of the two-byte length itself.
0110 * Remarks : This routine will set up the buffers and issue the call

85Triggers and Stored Procedures

Calling Stored Procedures

0120 * to invoke a stored procedure routine directly.
0130 * Once processing is completed, control is returned to
0140 * the caller.
0150 * Parameter RESP must be set to zero if processing is
0160 * successful.
0170 *
0180 * Parameters : The following fields in the ACB must be set up to invoke
0190 * the stored procedure request.
0200 *
0210 * Command Code: 'PC'
0220 * Command ID : 'STPx' - where x is any value
0230 * Database ID : Database of the respective trigger file
0240 * Set CB-DBID for a one-byte DBID
0250 * Set CB-RSP for a two-byte DBID with
0260 * CB-CALL-TYPE set to H'30'
0270 * File Number : Set to the trigger file number of the
0280 * target database (normal one-byte versus
0290 * two-byte FNRs is applicable) by default
0300 * or any other file used in conjunction with
0310 * the format buffer.
0320 * FB Length : Length of the format buffer
0330 * RB Length : Length of the record buffer
0340 * Additions 1 : Name of the stored procedure
0350 * Additions 3 :
0360 * Byte 1 : Type ("A"sync, "P"art, "N"on-Partic)
0370 * Byte 2 : Parm ("N"one, "C"ntl, "E"rror/Resp)
0380 * Byte 3 : RecB ("N"one, "A"ccess, "U"pdate)
0390 *
0400 *
0410 * Format Buff: The format buffer is an optional buffer that may be used
0420 * to convey the definition of the parameters being passed
0430 * in the record buffer. The syntax must be consistent with
0440 * that of a format buffer for a normal command, or be set
0450 * to "." if it not to be used.
0460 *
0470 * The field names used in the format buffer should
0480 * normally be meaningful so that the stored procedure can
0490 * get the values of each parameter via the record buffer
0500 * extraction (STPRBE) routine. Length must be used if the
0510 * stored procedure routine does not provide one.
0520 * Alternatively, if the field names correspond to the
0530 * actual file number specified in the ACB, then the STPRBE
0540 * routine will be able to determine the length of the
0550 * field/parameter.
0560 *
0570 * When issuing stored procedures across platforms, it is
0580 * essential to also specify the field type of each
0590 * parameter; i.e., "A" - alphanumeric, "B" - binary, "U"
0600 * - unpacked etc.
0610 *
0620 *
0630 * Record Buff: The record buffer is available for passing any

Triggers and Stored Procedures86

Calling Stored Procedures

0640 * parameters from the caller to the stored procedure
0650 * and(or) from the stored procedure to the caller.
0660 * The layout/DSECT of the record buffer must be
0670 * coordinated between the caller and the actual stored
0680 * procedure routine itself.
0690 *
0700 * The record buffer is available for participating
0710 * and non-participating (sync) type requests via the
0720 * the record buffer extraction (STPRBE) routine, only.
0730 *
0740 * Determination of the record buffer being for access or
0750 * update is specified by the caller via the additions 3
0760 * field (see above).
0770 *
0780 **
0790 DEFINE DATA PARAMETER
0800 01 REQ-TYPE (A1)
0810 01 P-PROC (A8) /* Procedure name
0820 01 P-OPTIONS (A8)
0830 01 REDEFINE P-OPTIONS
0840 02 P-TYPE (A1) /* Async versus sync procedure
0850 02 P-PARMS (A1) /* Parm type for procedure
0860 02 P-RECB (A1) /* Rec buffer access
0870 01 P-PARM1(A1/1:V) /* Variable-length parameter
0880 * first 2 bytes set to incl. length
0890 01 P-PARM2(A1/1:V) /* Variable-length parameter 2
0900 01 P-PARM3(A1/1:V) /* Variable-length parameter 3
0910 01 P-PARM4(A1/1:V) /* Variable-length parameter 4
0920 01 P-PARM5(A1/1:V) /* Variable-length parameter 5
0930 01 P-MSG (A72) /* Message corresponding to the RESP
0940 01 RESP (N4) /* Response code of proc request
0950 LOCAL USING STPLCB
0960 LOCAL
0970 01 SUB (I2)
0980 01 SUB1 (I2)
0990 01 SUB2 (I2)
1000 01 SUB3 (I2)
1010 01 SUB4 (I2)
1020 01 FB (A48)
1030 01 REDEFINE FB
1040 02 FB-FIELD (8)
1050 03 FB-FLD (A3)
1060 03 FB-LEN (N3)
1070 01 RB (A1/1000) /* Max length for all parms
1080 01 W-ADD3 (A8)
1090 01 REDEFINE W-ADD3
1100 02 W-TYPE (A1)
1110 02 W-PARMS (A1)
1120 02 W-RECB (A1)
1130 01 #LENGTH (B2)
1140 01 REDEFINE #LENGTH
1150 02 #LENG (A1/2)

87Triggers and Stored Procedures

Calling Stored Procedures

1160 01 W-LENG (P5/5)
1170 END-DEFINE
1180 FORMAT PS=0
1190 *
1200 * In this example, we will say that each parameter has an individual
1210 * maximum length of 200; however, the limit may be established as a
1220 * total of all parameters. Since our max. record buffer is 1000 then the
1230 * maximum of all parameters cannot exceed 1000. This may be changed as
1240 * required by the user.
1250 *
1260 FOR SUB1 1 5 /* Get all the parameter lengths
1270 DECIDE ON FIRST VALUE OF SUB1
1280 VALUE 1 MOVE P-PARM1(1:2) TO #LENG(1:2) /* Get Parm1 length
1290 IF #LENGTH < 3 /* Min length with inclusive length
1300 DO
1310 MOVE 16 TO RESP
1320 MOVE 'Invalid Length for Parameter 1. Must be 3-200'
1330 TO P-MSG
1340 ESCAPE ROUTINE
1350 DOEND
1360 VALUE 2 MOVE P-PARM2(1:2) TO #LENG(1:2) /* Get Parm2 length
1370 VALUE 3 MOVE P-PARM3(1:2) TO #LENG(1:2) /* Get Parm3 length
1380 VALUE 4 MOVE P-PARM5(1:2) TO #LENG(1:2) /* Get Parm4 length
1390 VALUE 5 MOVE P-PARM1(1:2) TO #LENG(1:2) /* Get Parm5 length
1400 ANY IF #LENGTH = H'4040' /* Is length Blanks?
1410 RESET #LENGTH /* yes, then treat as dummy parm
1420 MOVE #LENGTH TO W-LENG(SUB1)
1430 IF W-LENG(SUB1) > 202 /* For our example, we limit the length
1440 DO
1450 MOVE 4 TO RESP
1460 MOVE SUB1 TO FB-LEN(SUB1)
1470 COMPRESS 'Invalid Length for Parameter' FB-LEN(SUB1)
1480 '. Max is 200.' INTO P-MSG
1490 ESCAPE ROUTINE /* Terminate processing with error
1500 DOEND
1510 SUBTRACT 2 FROM W-LENG(SUB1) /* ACTUAL parm length
1520 NONE IGNORE
1530 END-DECIDE
1540 CLOSE LOOP (1260)
1550 *
1560 IF P-PROC = ' ' /* Did we get a procedure name?
1570 DO
1580 MOVE 1 TO RESP
1590 MOVE 'Invalid Procedure Name specified' TO P-MSG
1600 ESCAPE ROUTINE
1610 DOEND
1620 IF NOT (P-TYPE = 'A' OR= 'N' OR= 'P' OR= ' ')
1630 DO /* Async, participating, non-partic.
1640 MOVE 2 TO RESP
1650 MOVE 'Proc Type must be A, N, P or " "' TO P-MSG
1660 ESCAPE ROUTINE
1670 DOEND

Triggers and Stored Procedures88

Calling Stored Procedures

1680 IF NOT (P-PARMS = 'C' OR= 'E' OR= 'N' OR= ' ')
1690 DO /* Cntrl, Error/Resp, None
1700 MOVE 3 TO RESP
1710 MOVE 'Parameter Type must be C, E, N or " "' TO P-MSG
1720 ESCAPE ROUTINE
1730 DOEND
1740 IF NOT (P-RECB = 'A' OR= 'N' OR= 'U' OR= ' ')
1750 DO /* Access, None, Update
1760 MOVE 3 TO RESP
1770 MOVE 'Parameter access must be Access, None or Update' TO P-MSG
1780 ESCAPE ROUTINE
1790 DOEND
1800 *
1810 * Next we merge all the passed parameters into a single contiguous
1820 * buffer which will be used as the record buffer for the call. The
1830 * format buffer will also be set up to indicate the 'structure' of the
1840 * record buffer for use by the invoked procedure.
1850 *
1860 MOVE 1 TO SUB
1870 *
1880 FOR SUB3 1 5 /* Step through all parameters
1890 IF W-LENG(SUB3) < 3 /* Check min. length of a parameter
1900 DO
1910 MOVE '.' TO FB-FLD(SUB3)
1920 ESCAPE BOTTOM /* None, so assume we have all parms
1930 DOEND
1940 MOVE W-LENG(SUB3) TO SUB1
1950 ADD SUB1 TO SUB2
1960 DECIDE ON FIRST VALUE OF SUB1 /* Move parms into the RB
1970 VALUE 1 MOVE 'P1,' TO FB-FLD(1)
1980 MOVE P-PARM1 (3:SUB1) TO RB(SUB:SUB2)
1990 VALUE 2 MOVE 'P2,' TO FB-FLD(2)
2000 MOVE P-PARM2 (3:SUB1) TO RB(SUB:SUB2)
2010 VALUE 3 MOVE 'P3,' TO FB-FLD(3)
2020 MOVE P-PARM3 (3:SUB1) TO RB(SUB:SUB2)
2030 VALUE 4 MOVE 'P4,' TO FB-FLD(4)
2040 MOVE P-PARM4 (3:SUB1) TO RB(SUB:SUB2)
2050 VALUE 5 MOVE 'P5,' TO FB-FLD(5)
2060 MOVE P-PARM5 (3:SUB1) TO RB(SUB:SUB2)
2070 ANY ADD SUB1 TO SUB
2080 MOVE SUB1 TO FB-LEN(SUB3)
2090 NONE IGNORE
2100 END-DECIDE
2110 *
2120 CLOSE LOOP (1880)
2130 *
2140 * Now we start setting up the CB and do some additional validation.
2150 * When moving in the procedure options, we allow for defaults.
2160 *
2170 RESET CB /* Clear the ACB
2180 MOVE 'STP' TO CB-CID /* Command ID
2190 MOVE 'PC' TO CB-CMD /* Command code

89Triggers and Stored Procedures

Calling Stored Procedures

2200 MOVE 77 TO CB-DBID /* Database ID
2210 MOVE 22 TO CB-FNR /* File number
2220 MOVE 48 TO CB-FBL /* FB length
2230 MOVE 1000 TO CB-RBL /* RB length
2240 MOVE P-PROC TO CB-ADD1 /* Stored procedure name
2250 *
2260 MOVE 'A' TO W-TYPE /* Set the default options
2270 MOVE 'C' TO W-PARMS
2280 MOVE 'N' TO W-RECB
2290 IF NOT (P-TYPE = ' ') /* Should we default to Async?
2300 MOVE P-TYPE TO W-TYPE
2310 IF NOT (P-PARMS = ' ') /* Should we default to Contrl?
2320 MOVE P-PARMS TO W-PARMS
2330 IF NOT (P-RECB = ' ') /* Should we default to None?
2340 MOVE P-RECB TO W-RECB
2350 MOVE W-ADD3 TO CB-ADD3 /* Options for request
2360 *
2370 CALL 'CMADA' USING CB FB RB(1) /* Invoke the stored procedure
2380 *
2390 IF CB-RSP NE 0
2400 DO
2410 PRINT (CD=YE) 'Resp ..' (YEI) CB-RSP(EM=HH) 'Add2' CB-ADD2(EM=H(4))
2420 'Add3' CB-ADD3(EM=H(8)) 'Add4' CB-ADD4(EM=H(8))
2430 ESCAPE ROUTINE
2440 DOEND
2450 *
2460 * Now we need to restore the parameters back into the user's area,
2470 * in case the data was modified. This can happen only if the record
2480 * buffer was modifiable; i.e., P-RECB was set to 'U'.
2490 *
2500 IF CB-RSP = 0 /* Was everything okay
2510 AND P-RECB = 'U' /* Update: Parms may have been updated
2520 DO
2530 MOVE 1 TO SUB
2540 RESET SUB2
2550 FOR SUB1 1 5
2560 ADD W-LENG(SUB1) TO SUB2
2570 MOVE W-LENG(SUB1) TO SUB3
2580 DECIDE ON FIRST VALUE OF SUB1 /* Restore parm from RB
2590 VALUE 1 ASSIGN P-PARM1 (3:SUB3) = RB(SUB:SUB2)
2600 VALUE 2 ASSIGN P-PARM2 (3:SUB3) = RB(SUB:SUB2)
2610 VALUE 3 ASSIGN P-PARM3 (3:SUB3) = RB(SUB:SUB2)
2620 VALUE 4 ASSIGN P-PARM4 (3:SUB3) = RB(SUB:SUB2)
2630 VALUE 5 ASSIGN P-PARM5 (3:SUB3) = RB(SUB:SUB2)
2640 ANY ADD W-LENG(SUB1) TO SUB /* Get next position
2650 NONE IGNORE
2660 END-DECIDE
2670 CLOSE LOOP(2550)
2680 DOEND
2690 *
2700 END

Triggers and Stored Procedures90

Calling Stored Procedures

STPLNK03

0010 **
0020 * Application: Adabas Stored Procedures
0030 * Subprogram : STORPROC/STPLNK03
0040 * Author : Adabas Development
0050 *
0060 * Function : Sample routine 03 to invoke a stored procedure
0070 * This example expects up to five different variable-length
0080 * parameters. Parameter lengths are passed as extra
0090 * parameters.
0100 * Remarks : This routine will set up the buffers and issue the call
0110 * to invoke a stored procedure routine directly.
0120 * Once processing is completed, control is returned to
0130 * the caller.
0140 * Parameter RESP must be set to zero if processing is
0150 * successful.
0160 *
0170 * Parameters : The following fields in the ACB must be set up to invoke
0180 * the stored procedure request.
0190 *
0200 * Command Code: 'PC'
0210 * Command ID : 'STPx' - where x is any value
0220 * Database ID : Database of the respective trigger file
0230 * Set CB-DBID for a one-byte DBID
0240 * Set CB-RSP for a two-byte DBID with
0250 * CB-CALL-TYPE set to H'30'
0260 * File Number : Set to the trigger file number of the
0270 * target database (normal one-byte versus
0280 * two-byte FNRs is applicable) by default
0290 * or any other file used in conjunction with
0300 * the format buffer.
0310 * FB Length : Length of the format buffer
0320 * RB Length : Length of the record buffer
0330 * Additions 1 : Name of the stored procedure
0340 * Additions 3 :
0350 * Byte 1 : Type ("A"sync, "P"art, "N"on-Partic)
0360 * Byte 2 : Parm ("N"one, "C"ntl, "E"rror/Resp)
0370 * Byte 3 : RecB ("N"one, "A"ccess, "U"pdate)
0380 *
0390 *
0400 * Format Buff: The format buffer is an optional buffer that may be used
0410 * to convey the definition of the parameters being passed
0420 * in the record buffer. The syntax must be consistent with
0430 * that of a format buffer for a normal command, or be set
0440 * to "." if it not to be used.
0450 *
0460 * The field names used in the format buffer should
0470 * normally be meaningful so that the stored procedure can
0480 * obtain the values of each parameter via the record buffer

91Triggers and Stored Procedures

Calling Stored Procedures

0490 * extraction (STPRBE) routine. Length must be used if the
0500 * stored procedure routine does not provide one.
0510 * Alternatively, if the field names correspond to the
0520 * actual file number specified in the ACB, then the STPRBE
0530 * routine will be able to determine the length of the
0540 * field/parameter.
0550 *
0560 * When issuing stored procedures across platforms, it is
0570 * essential to also specify the field type of each
0580 * parameter; i.e., "A" - alphanumeric, "B" - binary, "U"
0590 * - unpacked etc.
0600 *
0610 *
0620 * Record Buff: The record buffer is available for passing any
0630 * parameters from the caller to the stored procedure
0640 * and(or) from the stored procedure to the caller.
0650 * The layout/DSECT of the record buffer must be
0660 * coordinated between the caller and the actual stored
0670 * procedure routine itself.
0680 *
0690 * The record buffer will be available for participating
0700 * and non-participating (sync) type requests via the
0710 * the record buffer extraction (STPRBE) routine, only.
0720 *
0730 * Determination of the record buffer being for access or
0740 * update is specified by the caller via the additions 3
0750 * field (see above).
0760 *
0770 **
0780 DEFINE DATA PARAMETER
0790 01 REQ-TYPE (A1)
0800 01 P-PROC (A8) /* Procedure name
0810 01 P-OPTIONS (A8)
0820 01 REDEFINE P-OPTIONS
0830 02 P-TYPE (A1) /* Async versus sync procedure
0840 02 P-PARMS (A1) /* Parm type for procedure
0850 02 P-RECB (A1) /* Rec buffer access
0860 01 P-LEN1 (P3) /* Length of Parm1
0870 01 P-PARM1(A1/1:V) /* Variable-length parameter 1
0880 01 P-LEN2 (P3) /* Length of Parm2
0890 01 P-PARM2(A1/1:V) /* Variable-length parameter 2
0900 01 P-LEN3 (P3) /* Length of Parm3
0910 01 P-PARM3(A1/1:V) /* Variable-length parameter 3
0920 01 P-LEN4 (P3) /* Length of Parm4
0930 01 P-PARM4(A1/1:V) /* Variable-length parameter 4
0940 01 P-LEN5 (P3) /* Length of Parm5
0950 01 P-PARM5(A1/1:V) /* Variable-length parameter 5
0960 01 P-MSG (A72) /* Message corresponding to the RESP
0970 01 RESP (N4) /* Response code of proc request
0980 LOCAL USING STPLCB
0990 LOCAL
1000 01 SUB (I2)

Triggers and Stored Procedures92

Calling Stored Procedures

1010 01 SUB1 (I2)
1020 01 SUB2 (I2)
1030 01 SUB3 (I2)
1040 01 FB (A64)
1050 01 REDEFINE FB
1060 02 FB-FIELD (8)
1070 03 FB-FLD (A3)
1080 03 FB-LEN (N3)
1090 03 FB-COMM(A1)
1100 01 RB (A1/1000) /* Max length for all parms
1110 01 W-ADD3 (A8)
1120 01 REDEFINE W-ADD3
1130 02 W-TYPE (A1)
1140 02 W-PARMS (A1)
1150 02 W-RECB (A1)
1160 01 #LENGTH (B2)
1170 01 REDEFINE #LENGTH
1180 02 #LENG (A1/2)
1190 01 W-LENG (P3/5)
1200 END-DEFINE
1210 FORMAT PS=0
1220 *
1230 MOVE P-LEN1 TO W-LENG(1)
1240 MOVE P-LEN2 TO W-LENG(2)
1250 MOVE P-LEN3 TO W-LENG(3)
1260 MOVE P-LEN4 TO W-LENG(4)
1270 MOVE P-LEN5 TO W-LENG(5)
1280 *
1290 * In this example, we will say that each parameter has an individual
1300 * maximum length of 200; however, the limit may be established as a
1310 * total of all parameters. Since our max. record buffer is 1000, the
1320 * maximum of all parameters cannot exceed 1000. This may be changed as
1330 * required by the user.
1340 *
1350 FOR SUB1 1 5 /* Validate all parameter lengths
1360 IF W-LENG(SUB1) > 16448 /* Does length contain X'4040'
1370 RESET W-LENG(SUB1) /* yes, then must be dummy parm
1380 IF W-LENG(SUB1) > 200 /* For our example we limit the length
1390 DO
1400 MOVE 15 TO RESP
1410 MOVE SUB1 TO FB-LEN(SUB1)
1420 COMPRESS 'Invalid Length for Parameter' FB-LEN(SUB1)
1430 '. Max is 200.' INTO P-MSG
1440 ESCAPE ROUTINE /* Terminate processing with error
1450 DOEND
1460 CLOSE LOOP
1470 *
1480 * Now we validate the parameters, as required. Of course, these may
1490 * be changed as per the user's requirement and may vary from one stored
1500 * procedure link routine to another.
1510 *
1520 IF P-PROC = ' ' /* Did we get a procedure name?

93Triggers and Stored Procedures

Calling Stored Procedures

1530 DO
1540 MOVE 1 TO RESP
1550 MOVE 'Invalid Procedure Name specified' TO P-MSG
1560 ESCAPE ROUTINE
1570 DOEND
1580 IF NOT (P-TYPE = 'A' OR= 'N' OR= 'P' OR= ' ')
1590 DO /* Async, Participating, Non-Partic
1600 MOVE 2 TO RESP
1610 MOVE 'Proc Type must be A, N, P or " "' TO P-MSG
1620 ESCAPE ROUTINE
1630 DOEND
1640 IF NOT (P-PARMS = 'C' OR= 'E' OR= 'N' OR= ' ')
1650 DO /* Cntrl, Error/Resp, None
1660 MOVE 3 TO RESP
1670 MOVE 'Parameter Type must be C, E, N or " "' TO P-MSG
1680 ESCAPE ROUTINE
1690 DOEND
1700 IF NOT (P-RECB = 'A' OR= 'N' OR= 'U' OR= ' ')
1710 DO /* Access, None, Update
1720 MOVE 3 TO RESP
1730 MOVE 'Parameter access must be Access, None or Update' TO P-MSG
1740 ESCAPE ROUTINE
1750 DOEND
1760 IF P-LEN1 < 3 /* Min. length with inclusive length
1770 DO /* Anything less indicates no parm
1780 MOVE 4 TO RESP
1790 MOVE 'First Parameter MUST be valid. Length must be
3-200' TO P-MSG
1800 ESCAPE ROUTINE
1810 DOEND
1820 *
1830 * Next we merge all the passed parameters into a single contiguous
1840 * buffer which will be used as the record buffer for the call. The
1850 * format buffer will also be set up to indicate the 'structure' of the
1860 * record buffer for use by the invoked procedure.
1870 *
1880 MOVE 1 TO SUB
1890 RESET SUB2
1900 *
1910 FOR SUB1 1 5 /* Step through all parameters
1920 IF W-LENG(SUB1) < 3 /* Check min. length of a parameter
1930 DO
1940 MOVE '.' TO FB-FLD(SUB1)
1950 ESCAPE BOTTOM /* None, so assume we have all parms
1960 DOEND
1970 ADD W-LENG(SUB1) TO SUB2 /* Get end position
1980 MOVE W-LENG(SUB1) TO SUB3 /* Set index for MOVE statement
1990 DECIDE ON FIRST VALUE OF SUB1 /* Move next parm into the RB
2000 VALUE 1 MOVE P-PARM1 (1:SUB3) TO RB(SUB:SUB2)
2010 MOVE 'P1,' TO FB-FLD(1)
2020 VALUE 2 MOVE P-PARM2 (1:SUB3) TO RB(SUB:SUB2)
2030 MOVE ',' TO FB-COMM(SUB1 - 1)

Triggers and Stored Procedures94

Calling Stored Procedures

2040 MOVE 'P2,' TO FB-FLD(2)
2050 VALUE 3 MOVE P-PARM3 (1:SUB3) TO RB(SUB:SUB2)
2060 MOVE ',' TO FB-COMM(SUB1 - 1)
2070 MOVE 'P3,' TO FB-FLD(3)
2080 VALUE 4 MOVE P-PARM4 (1:SUB3) TO RB(SUB:SUB2)
2090 MOVE ',' TO FB-COMM(SUB1 - 1)
2100 MOVE 'P4,' TO FB-FLD(4)
2110 VALUE 5 MOVE P-PARM5 (1:SUB3) TO RB(SUB:SUB2)
2120 MOVE ',' TO FB-COMM(SUB1 - 1)
2130 MOVE 'P5,' TO FB-FLD(5)
2140 MOVE '.' TO FB-COMM(5)
2150 ANY ADD W-LENG(SUB1) TO SUB /* Get new position
2160 MOVE W-LENG(SUB1) TO FB-LEN(SUB1)
2170 NONE IGNORE
2180 END-DECIDE
2190 *
2200 CLOSE LOOP
2210 *
2220 * Now we set up the CB for the actual stored procedure call.
2230 *
2240 RESET CB /* Clear the ACB
2250 MOVE 'STP' TO CB-CID /* Command ID
2260 MOVE 'PC' TO CB-CMD /* Command Code
2270 MOVE 77 TO CB-DBID /* Database ID
2280 MOVE 22 TO CB-FNR /* File Number
2290 MOVE 64 TO CB-FBL /* FB Length
2300 MOVE 1000 TO CB-RBL /* RB length
2310 MOVE P-PROC TO CB-ADD1 /* Stored procedure name
2320 *
2330 * If any options were not passed, we use a pre-specified default.
2340 *
2350 MOVE 'A' TO W-TYPE /* Set the default options
2360 MOVE 'C' TO W-PARMS
2370 MOVE 'N' TO W-RECB
2380 IF NOT (P-TYPE = ' ') /* Should we default to Async?
2390 MOVE P-TYPE TO W-TYPE
2400 IF NOT (P-PARMS = ' ') /* Should we default to Contrl?
2410 MOVE P-PARMS TO W-PARMS
2420 IF NOT (P-RECB = ' ') /* Should we default to None?
2430 MOVE P-RECB TO W-RECB
2440 MOVE W-ADD3 TO CB-ADD3 /* Options for request 2450 *
2460 CALL 'CMADA' USING CB FB RB(1) /* Invoke the stored procedure
2470 *
2480 IF CB-RSP NE 0
2490 DO
2500 PRINT (CD=YE) 'Resp ..' (YEI) CB-RSP(EM=HH) 'Add2' CB-ADD2(EM=H(4))
2510 'Add3' CB-ADD3(EM=H(8)) 'Add4' CB-ADD4(EM=H(8))
2520 ESCAPE ROUTINE
2530 DOEND
2540 *
2550 * Now we need to restore the parameters back into the user's area,
2560 * in case the data was modified. This can happen only if the record

95Triggers and Stored Procedures

Calling Stored Procedures

2570 * buffer was modifiable; i.e., P-RECB was set to 'U'.
2580 *
2590 IF CB-RSP = 0 /* Was everything okay
2600 AND P-RECB = 'U' /* Update: Parms may have been updated
2610 DO
2620 MOVE 1 TO SUB
2630 RESET SUB2
2640 FOR SUB1 1 5
2650 ADD W-LENG(SUB1) TO SUB2
2660 MOVE W-LENG(SUB1) TO SUB3
2670 DECIDE ON FIRST VALUE OF SUB1 /* Restore parm from RB
2680 VALUE 1 ASSIGN P-PARM1 (1:SUB3) = RB(SUB:SUB2)
2690 VALUE 2 ASSIGN P-PARM2 (1:SUB3) = RB(SUB:SUB2)
2700 VALUE 3 ASSIGN P-PARM3 (1:SUB3) = RB(SUB:SUB2)
2710 VALUE 4 ASSIGN P-PARM4 (1:SUB3) = RB(SUB:SUB2)
2720 VALUE 5 ASSIGN P-PARM5 (1:SUB3) = RB(SUB:SUB2)
2730 ANY ADD W-LENG(SUB1) TO SUB /* Get next position
2740 NONE IGNORE
2750 END-DECIDE
2760 CLOSE LOOP(2640)
2770 DOEND
2780 *
2790 END

Triggers and Stored Procedures96

Calling Stored Procedures

VI Trigger Maintenance

97

98

8 Trigger Maintenance

■ Overview ... 101
■ File-Field Tables .. 104
■ Trigger Definitions .. 115
■ Procedure Reports ... 125
■ Administrator Functions .. 128

99

Note: The Trigger Maintenance subsystem is available only when the Adabas Online System
(AOS) add-on product is installed. It is not available with the AOS demo version.

The Trigger Maintenance facility is a Natural application that allows you to

■ add, delete, modify, and list trigger definitions;
■ generate, modify, display, and delete file-field tables;
■ display and modify profile information for the definition of the run-time triggers system;
■ monitor trigger operations and permanently or temporarily activate or deactivate triggers.

To start Trigger Maintenance

■ Select "Trigger Maintenance" from the Adabas Online System (AOS) main menu or enter MENU
at the Natural NEXT prompt in library SYSTRG.

The Trigger Maintenance main menu appears:

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Main Menu - DBnr 105

Code Function
---- ---------------------------------

A Administrator Functions
F File-Field Table Definitions
R Procedure Reports
T Create/Modify Trigger Definitions
? Help
. Exit

---- ---------------------------------

Code ...

Command ==>
Enter--PF1--PF2--PF3--PF4---PF5---PF6---PF7--PF8--PF9--PF10--PF11--PF12

Help Exit Field Trigr Admin Procs FTRG FDIC Canc

The main menu functions are described briefly in the following table:

Triggers and Stored Procedures100

Trigger Maintenance

DescriptionFunctionCode

Display or modify the profile information, i.e., the run-time
parameter settings of the triggers and stored procedures. Obtain
Natural subsystem information. Monitor subsystem activity and
trigger activity.

Administrator FunctionsA

Display, generate, modify, delete, or select a file-field table. View
the origin of the file-field table.

File-Field Table DefinitionsF

Display a list of procedures for the defined triggers, sorted by file
or by name.

Procedure ReportsR

Add, display, modify, delete, or select a trigger definition.Create/Modify Trigger
Definitions

T

Display help information about the Trigger Maintenance facility.Help?

Exit to the Natural NEXT screen. Enter TRIGGERS to return to the
main menu.

Exit.

Note: The database ID and file number are required by the Trigger Maintenance facility. If
these values were not specified by default using the NATPARM LFILE parameters or the
NTLFILE macro, they must be entered before the main menu functions can be used. You
can enter these values by pressing PF10 on the main menu; otherwise, the system automat-
ically prompts you for the information.

Overview

The Trigger Maintenance facility comprises a set of menus and submenus that lead to data screens
and pop-up windows. Each menu contains a list of functions and function codes, a group of input
fields, a command line, a set of PF keys, and a message area. Adabas Online System (AOS) must
be installed in the same environment.

Wildcard Notation

Wildcard notation is allowed wherever possible. For example, most menus require that you specify
a file name. If you do not know the file name, you can enter a wildcard character instead. A range
of values will appear in a pop-up window, allowing you to select an item or entry from the range.

The term "wildcard" refers to the use of a special character as follows:

101Triggers and Stored Procedures

Trigger Maintenance

Select any name . .ExampleChar.

beginning with "PERS"PERS**

with a value greater than "PERS"PERS>>

with a value less than "PERS"PERS<<

Input Fields

Each menu in the Trigger Maintenance facility includes the following input fields:

EntryField

Code Enter the code for the function. For example, codes on the main menu are

administrator functionsA

file-field table definitionsF

procedure reportsR

create/modify trigger definitionsT

Depending on the function, a submenu, a pop-up, or a data screen appears.

Enter the file name, or enter a wildcard to display a selection list of file names and numbers
(for example, the entry "a*" returns a list of all files with names that begin with the letter
"a").

File Name

Enter the file number. When generating a file-field table from an FDT, you may enter "99999"
instead of the actual file number to get a list of valid files.

File Number

Other input fields vary. For example:

■ The File-Field Table Definitions Menu includes a Generation Type input field. Generation Type
identifies the source from which the file-field table is to be generated (Natural DDM, Adabas
FDT, or Predict Adabas file definition).

■ The Trigger Definitions Menu includes the Field Name and Command Type input fields. File
Name, Command Type, and Field Name comprise the selection criteria that you specify when
you create the trigger definition.

Messages

The message area at the top or bottom of the screen is used to display one-line error or action
messages. Each message includes a message number and a brief explanation. For more information,
see the Adabas Messages and Codes documentation.

Triggers and Stored Procedures102

Trigger Maintenance

Commands

The following table describes the commands that can be entered at the command line. Not all
commands apply to all screens.

Commands are not case-sensitive and can be entered in upper-, lower-, or upper- and lower-case.
Commands are converted to upper-case before being processed.

The underlined portion of the command indicates the minimum abbreviation allowed.

Display...Command

the Current Trigger Activity screen, which contains information
about currently executing triggers.

ACTIVITY or DISPLAY ACTIVITY

the Display Profile Information screen, which contains the Trigger
Maintenance facility profile.

DISPLAY PROFILE

the Subsystem Activity screen, which contains information about
currently executing Natural subsystems.

DISPLAY TASKS or DISPLAY
SYSTEMS

the Main Menu.MENU

the previous screen.EXIT, QUIT, or . (period)

the File-Field Table Definitions Menu.FIELD

the Trigger Definitions Menu.TRIGGER

the Administrator Menu.ADMIN

the Profile Information Menu.PROFILE

the database and file assignments for the current trigger file. You can
enter a different database and file, which must be a valid trigger file.

SET FILE

the database and file assignments for the current Predict file. You
can enter a different Predict system file.

SET FDIC

the next screen.FORWARD or +

from the top (beginning); for example, the start of a file-field table
list.

TOP, or --

the previous screen.BACK, or -

PF Keys

The following table describes the standard PF keys.

103Triggers and Stored Procedures

Trigger Maintenance

Menu or ScreenDescriptionLabelKey

All screensDisplay information about the current function.HelpPF1

All screensReturn to the Main Menu.MenuPF2

All screensReturn to the previous screen. In most cases, if the
update option has not been selected, this results
in any updates being ignored.

ExitPF3

Main, Profile Information, Procedure
Reporting, and Trigger Definitions
menus

Display the File-Field Table Definitions Menu.FieldPF4

Main, File-Field Table Definitions,
Profile Information, and Procedure

Display the Trigger Definitions Menu.TrigrPF5

Reporting menus; Define Trigger Info,
Add Function pop-up

Main, File-Field Table Definitions, and
Trigger Definitions menus

Display the Administrator Menu.AdminPF6

Main MenuDisplay the Procedure Reporting Menu.ProcsPF7

Main Menu and File-Field Table
Definitions Menu

Display the File Assignments for Triggers pop-up,
where you can enter a database and file different
from the one currently used.

FTRGPF10

Main Menu and File-Field Table
Definitions Menu

Change the setting of the Predict file (for triggers
only) from one value to another.

FDICPF11

All screensCancel the current process and return to the
previous screen. If the update option has not been
selected, this results in any updates being ignored.

CancPF12

File-Field Tables

Triggers require access to a file-field table that maps long file names to file numbers and field
names to Adabas two-character field identifiers.

The file-field table should contain an entry for

■ all fields used in trigger definitions;
■ all fields that will be referenced by an access or update command in a triggered procedure;
■ all fields that must be queried by the record buffer extraction routine (STPRBE).

File-field tables can be generated from an Adabas FDT, a Natural DDM, or a Predict Adabas file,
with the following restrictions:

■ Superdescriptors, subdescriptors, hyperdescriptors, and phonetic descriptors are supported for
histograms (L9) only.

Triggers and Stored Procedures104

Trigger Maintenance

After the file-field table entries are defined, the external field names and the internal field names
and numbers can be correlated, and a trigger can be defined for any of the fields in the file-field
table. If, for example, you refer to the EMPLOYEES file and the SALARY field, Adabas will be able
to identify this as file 1 and field AS.

Record Buffer Extraction

When the record buffer extraction routine (STPRBE) extracts the value of a field in the record
buffer, it must extract the value from the correct position and length. In order to position to the
correct place, STPRBE must step past each superfluous field and must therefore know the length
of each field.

■ If the field length is not explicitly specified in the format buffer, it must be obtained from the
file-field table definitions.

■ If the length of a field is always found in the format buffer, as in Natural, then there is no need
to include the field in the file-field table.

If the field length is not in the format buffer and a definition does not exist on the trigger file, an
error will occur. The procedure will be unable to continue processing and will terminate.

Group-Field Table

When the group name is specified in the format buffer, STPRBE uses the group-field table to locate
the elementary fields belonging to the group. Each entry in the group-field table contains specific
information about an elementary field and its offset within a group. Offsets are maintained for up
to seven group levels. Up to 50 elementary fields may have entries in the group-field table for a
specific file.

Entries for the group-field table can be generated from either the Generate File-Field Table function
or the Modify File-Field Table function.

File-Field Table Definitions Menu

File-field tables are generated and maintained using the File-Field Table Definitions function of
the Trigger Maintenance facility. Any combination of fields can be added or subsequently deleted
from the file-field table.

To access the File-Field Table Definitions function

■ Enter F on the Main Menu.

The screen that appears is similar to the example shown below:

105Triggers and Stored Procedures

Trigger Maintenance

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - File-Field Table Definitions Menu - DBnr 105

Code Function
---- ------------------------------------

D Display File-Field Table
G Generate File-Field Table
M Modify File-Field Table
P Delete File-Field Table
R Rename File-Field Table
S Select File-Field Table
V View the Origin for File-Field Table
? Help
. Exit

---- ------------------------------------

Code _
File Name ___________________
File Number .. _____
Gen. Type __

Command ==>
Enter-PF1--PF2--PF3--PF4--PF5---PF6---PF7---PF8--PF9--PF10--PF11--PF12

Help Menu Exit Trigr Admin Procs FTRG FDIC Canc

The following table briefly describes each of the functions on the File-Field Table Definitions
Menu:

DescriptionFunction

Display the table for a specified file.Display File-Field Table

Generate a new table by adding or deleting fields. Requires a
generation type code.

Generate File-Field Table

Modify the table by deleting one or more individual fields. A
field cannot be deleted if it is used in a trigger definition.

Modify File-Field Table

Delete an entire table. A table cannot be deleted if it contains one
or more fields that are used in a trigger definition.

Delete File-Field Table

Rename a table. All fields and triggers for the specified table are
renamed.

Rename File-Field Table

Select a table from a selection list.Select a File-Field Table

Display the FDT, DDM, or Predict file from which the table was
generated. Allows you to add selected fields to the table.

View the Origin for File-Field Table

Triggers and Stored Procedures106

Trigger Maintenance

Display a File-Field Table

To display a file-field table

■ Enter D on the File-Field Table Definitions Menu.

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Display File-Field Table - DBnr 105

File Name ... AUTOMOBILES Fnr ... 4

Field Name Long Field Name Status Message
---------- -------------------------------- ------ ------------------

AC BODY-TYPE Triggr
CA COLOR Triggr
AA MAKE Active
FB MILEAGE Triggr
AB MODEL Active
BD WEIGHT Active
DA YEAR Active

Enter 'F'(Fwd), 'T'(Top), 'B'(Bck), '.'(Exit)
Command==>
Enter-PF1---PF2---PF3---PF4--PF5---PF6--PF7--PF8--PF9---PF10---PF11--PF12

Help Menu Exit Next -- - + Grp GFld Canc

■ Press ENTER to scroll through the information on this screen.
■ Press PF9 or continue scrolling to display the group table. If a group table has been generated

for the file, the table is displayed at the end of the file-field table.
■ Press PF10 to display the group-field table.

Display a Group Table

To display the group table

■ Press PF9 (Grp) or scroll to the end on the Display File-Field Table screen:

107Triggers and Stored Procedures

Trigger Maintenance

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Display Group Table - DBnr 105

File Name ... AUTOMOBILES Fnr ... 4

Name Level Type Length Name Level Type Length Name Level Type Length
---- ----- ---- ------ ---- ----- ---- ------ ---- ----- ---- ------
AB 1 G 60
A1 1 G 53
A2 1 G 21
AQ 1 P 13
A3 1 G 4
AW 1 P 12

Enter 'F'(Fwd), 'T'(Top), 'B'(Bck), '.'(Exit)
Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Menu Exit -- - + GFld FFT Canc

■ Press ENTER to scroll through the information on this screen.
■ Press PF10 or continue scrolling to display the group-field table. The group-field table is

displayed at the end of the group table.
■ Press PF11 to return to the Display File-Field Table screen.

Each group field on the file is listed. A "G" in the Type column represents a simple group
field; a "P" represents a periodic (PE) group. Group-field table entries can only be created for
fields that are part of a group or a PE group.

The Length column displays

■ for a simple group, the total length of all fields included in the group
■ for a PE group, the total length for each occurrence.

Display a Group-Field Table

To display the group-field table

■ Press PF10 (GFld) on the Display File-Field Table screen;

Or:

scroll to the end on the Display Group Table screen

Triggers and Stored Procedures108

Trigger Maintenance

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYY-MM-DD
User USR01 - Display Group-Field Table - DBnr 105

File Name ... AUTOMOBILES Fnr ... 4

Field Group Offsets Message
---------------- ------------------------------------ --------------------
2,AS,5,P AQ(3)
2,AT,5,P AQ(8)
2,AU,2,U A3(0)
2,AV,2,U A3(2)
2,AX,6,U AW(0)
2,AY,6,U AW(6)

Enter 'F'(Fwd), 'T' (Top), 'B' (Bck), or '.'(Exit)

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

■ Press ENTER to scroll through the information on this screen.
■ Press PF9 to display the group table.
■ Press PF11 to return to the Display File-Field Table screen.

Fields are shown in ADACMP FNDEF format: level, name, length, format [options]. See the
Adabas Utilities documentation for more information.

The Group Offsets column names the group in which the field participates and the offset of
the field within that group. If a field is a member of more than one group, the additional
groups (and the field's offset within) are also listed.

For example, field AS belongs to group AQ and is located at offset 3. Field AT also belongs
to group AQ but is located at offset 8.

Modify a File-Field Table

To modify a file-field table

■ Enter M on the File-Field Table Definitions Menu.

109Triggers and Stored Procedures

Trigger Maintenance

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Modify File-Field Table - DBnr 105

File Name ... AUTOMOBILES Fnr ...4

Sel Field Name Long Field Name Status Message
---- ---------- -------------------------------- ------ --------------
__ AC BODY-TYPE Triggr
__ CA COLOR Triggr
__ AA MAKE Active
__ FB MILEAGE Triggr
__ AB MODEL Active
__ BD WEIGHT Active
__ DA YEAR Active

Mark fields with 'A' Add, 'D' Delete, 'G' Generate, 'I' Info, or '.' Exit

Command==>
Enter-PF1---PF2---PF3---PF4--PF5---PF6--PF7--PF8--PF9---PF10---PF11--PF12

Help Menu Exit Next -- - + Grp GFld Canc

■ Press ENTER to scroll through the information on this screen.
■ Press PF9 or scroll to the end to display the group table. The group table cannot be modified.
■ Press PF10 to modify the group-field table.

On the Modify File-Field Table screen, fields with a "Status" of

■ "Triggr" are used in a trigger definition.
■ "Active" are included in the file-field table but are not used in any trigger definition.

Modifying Fields

From the Modify File-Field Table screen, you can generate group-field table entries, display field
attributes, or delete fields from the file-field table.

To generate group-field table entries

■ Mark each field for which an entry is to be generated by typing a G in the Sel column next to
the field name. Then press ENTER.

Group-field table entries can only be created for fields that are part of a group or a PE group.

Triggers and Stored Procedures110

Trigger Maintenance

To display the attributes for an individual field

■ Mark the field by typing an I in the Sel column next to the field name. Then press ENTER.

The resulting window displays the field name, format, length, type (SP for superdescriptor;
SB for subdescriptor), and an indicator if a group-field entry has been generated for the field.

To delete one or more fields

■ Mark each field to be deleted by typing a D in the Sel column next to the field name. Then
press ENTER.

The following rules apply:

■ You can cancel a field deletion by typing an A in the Sel column next to the field name before
pressing ENTER.

■ Only "Active" fields can be deleted.
■ "Triggr" fields cannot be deleted unless the trigger definition is deleted first.

Modifying the Group-Field Table

To modify the group-field table

■ Press PF10 (GFld) on the Modify File-Field Table screen;

Or:

scroll to the end on the Display Group Table screen

111Triggers and Stored Procedures

Trigger Maintenance

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYY-MM-DD
User USR01 - Modify Group-Field Table - DBnr 105

File Name ... AUTOMOBILES Fnr ... 4

Sel Field Group Offsets Message
--- ---------------- ------------------------------------ ---------------
_ 2,AS,5,P AQ(3)
_ 2,AT,5,P AQ(8)
_ 2,AU,2,U A3(0)
_ 2,AV,2,U A3(2)
_ 2,AX,6,U AW(0)
_ 2,AY,6,U AW(6)

Mark Fields with 'D'(Delete) or '.'(Exit)

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Menu Exit -- - + Grp FFT Canc

■ Press ENTER to scroll through the information on this screen.
■ Press PF9 to display the group table. The group table cannot be modified.
■ Press PF11 to return to the Modify File-Field Table screen.

Fields are shown in ADACMP FNDEF format: level, name, length, format [options]. See the
Adabas Utilities documentation for more information.

The Group Offsets column names the group in which the field participates and the offset of
the field within that group. If a field is a member of more than one group, the additional
groups (and the field's offset within) are also listed.

For example, field AS belongs to group AQ and is located at offset 3. Field AT also belongs
to group AQ but is located at offset 8.

To delete one or more entries

■ Mark each entry to be deleted by typing a D in the Sel column next to the field name. Then
press ENTER

Triggers and Stored Procedures112

Trigger Maintenance

Delete a File-Field Table

Use the delete function on the File-Field Table Definitions Menu only if the entire file-field table
is to be deleted. Deleting the file-field table also deletes any associated group-field table for that
file.

To delete an entire file-field table

■ Enter P for Delete File-Field Table on the File-Field Table Definitions Menu.

If a TRG0109 error occurs, it indicates that the table cannot be deleted until all triggers are
removed. Display the file-field table and determine whether any of the fields in the table are
marked "Triggr" (used in a trigger definition). If not, then the trigger definitions should be
checked. It is likely that a trigger with the "all fields" option (i.e., field name **) has been
defined for this file.

Generate a File-Field Table

To generate a file-field table

■ Enter G on the File-Field Table Definitions Menu as well as the file name and a generation
type code as shown in the following table:

SourceCode

Adabas FDTF

Natural DDMD

Predict fileP

■ FDT generations always originate from the DBID of the database for the current setting of
the Trigger File.

■ DDM and Predict generations always originate from the database and file number of the
Predict file. This may be taken from the current setting of FDIC; or it may be overwritten
using PF10 or by issuing the command SET FDIC from the command line of the Trigger
Maintenance facility.

Note: Wildcard notation cannot be used for the FDT file name. However, for the gen-
erate function only, "99999" can be entered for file number to display a list of all files
loaded to the database.

The screen that appears contains the source (FDT, DDM, or Predict file) from which the file-
field table will be generated. You can select fields to be added to or deleted from the file-field
table. See the sample FDT.

113Triggers and Stored Procedures

Trigger Maintenance

When the file-field table is generated, a check is done to see if the field name (long) changed
for a field (determined by the Adabas short name). If so, the status field contains the value
"Alias" and the name of the new field is placed in the message field, preceded by a colon (:
). Type an A in the Sel column next to the field name to update the entry with the new name.

In the case of FDT generations, the field name is always generated as the Adabas short name
followed by "-FIELD". When the Trigger Maintenance facility finds a name that was not gen-
erated, it is used as the long field name with the "xx-FIELD" name in the message. Again, type
an "A" in the Sel column to confirm the change. The sample FDT includes the status for each
field. Fields marked "Active" are already contained in the file-field table.

If the generation type is "F" (Adabas FDT), field names are generated as "xx-FIELD", where
"xx" is the Adabas field name. Subsequently, if a DDM or Predict Adabas file has the same
file number and file name as that given for the FDT definition, these fields may be updated
with the user-defined names of the DDM or Adabas file.

Note: Fields in the Field Definition column are shown in ADACMP FNDEF format
where type "U" stands for unpacked numeric and field lengths are in bytes, not digits.

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Generate/Modify File-Field Table - DBnr 105

FDT File Name .. AUTOMOBILES FDT Fnr ... 4

Sel Field Definition Long Field Name Status Message
--- ----------------- --------------- ------ --------------
_ 01,AA,020,A,DE,NU MAKE Active
_ 01,AB,020,A,DE,NU MODEL Active
_ 01,AC,015,A,DE,NU BODY-TYPE Active
_ 01,BA,002,U,DE,NU BA-FIELD
_ 01,BB,003,U,DE,NU BB-FIELD
_ 01,BC,005,U,NU BC-FIELD
_ 01,BD,005,U,NU WEIGHT Active
_ 01,CA,010,A,DE,NU COLOR Active
_ 01,DA,002,U,DE,NU YEAR Active
_ 01,DB,016,A,NU DB-FIELD
_ 01,FA,006,U,DE,NU FA-FIELD
_ 01,FB,006,U,DE,NU MILEAGE Active

Mark Fields with 'A' Add, 'D' Delete, 'G'Generate, 'I' Info, or '.' Exit

Command==>
Enter-PF1---PF2---PF3---PF4--PF5---PF6--PF7--PF8--PF9--PF10--PF11--PF12

Help Menu Exit Next -- - + Canc

Triggers and Stored Procedures114

Trigger Maintenance

To add one or more fields

■ Mark each field to be added by typing an A in the Sel column next to the field name. Then
press ENTER.

If you want to add all fields to the file-field table, enter ALL at the command line.

To delete one or more fields

■ Mark each field to be deleted by typing a D in the Sel column next to the field name. Then
press ENTER.

To generate group-field table entries

■ Mark each field for which an entry is to be generated by typing a G in the Sel column next to
the field name. Then press ENTER.

Group-field table entries can only be created for fields that are part of a group or a PE group.

To display the attributes for an individual field

■ Mark the field by typing an I in the Sel column next to the field name. Then press ENTER.

The resulting window displays the field name, format, length, type (SP for superdescriptor;
SB for subdescriptor), and an indicator if a group-field entry has been generated for the field.

Trigger Definitions

Note: For information about TRGMAIN, an API for maintaining triggers from a user pro-
gram, see TRGMAIN: An API To Maintain Triggers.

Conceptually, a trigger has two parts: the triggering event and the triggered procedure. The trig-
gering event is defined by a set of selection criteria. When the criteria are fulfilled, the triggered
procedure is executed in response.

The selection criteria, i.e., file name, command type, and field name, are stored in the target database
as part of the trigger definition. The file-field table maps them to the corresponding physical
Adabas file number and two-character field ID. The file name and the field name are meaningful
names of up to 32 characters.

Note: Database commands from the procedure that is executed as a result of a trigger are
not limited to the database against which the initiating Adabas command is executed.

115Triggers and Stored Procedures

Trigger Maintenance

The following sections describe the selection criteria in more detail.

■ File Name
■ Command Type
■ Field Name
■ Trigger Definitions Menu

File Name

File name specifies the file against which the initiating Adabas command operates. A trigger is
defined for one and only one Adabas file. If you want a trigger to apply to more than one file,
define multiple triggers (one for each file) that are identical except for the file name.

Command Type

Command type specifies the command class of the initiating Adabas command. Triggers are
defined to execute based on the presence of the specified command type.

One or all of the following Adabas command classes can be specified for a single trigger definition:

Command CodeCommand Class

S1, S2, S4FIND

L1, L2, L3, L4, L5, L6, L9READ

A1, A4UPDATE

N1, N2INSERT

E1, E4DELETE

If you want a trigger to apply to all command classes, leave the command type field blank. It de-
faults to "All" (all commands).

If you want a trigger to apply to more than one but not all command classes, define multiple
triggers (one for each class) that are identical except for the command class.

Field Name

A trigger can be associated with a command that operates on a single field in the file or all fields
in the file. It is possible, for example, to define a trigger that fires every time an UPDATE command
is executed against the SALARY field in the EMPLOYEES File.

It is not always appropriate to specify a field. For example:

■ It does not make sense to associate a specific field with a DELETE command, because the DELETE
command does not require a format buffer.

Triggers and Stored Procedures116

Trigger Maintenance

■ In the case of a pre-command trigger read command, the field will contain no data. Therefore,
there is no need to specify a field unless you want to validate either the fields to be read or the
user ID of the user issuing the request.

If you want a trigger to apply to more than one but not all fields, define multiple triggers (one for
each field) that are identical except for the field name.

A trigger will be fired for only one field, i.e., the field that is specified in the format buffer, depend-
ing on the event selection criteria. However, if triggers need to be fired for multiple fields, it is
possible to define the trigger file for a specific command and field, then have the procedure itself
check for the existence of other fields. See the section Implementing Support for Multi-Triggers.

The procedure can verify whether additional procedures should be invoked and, if so, for what
fields. This mechanism also allows the "main" procedure to handle errors and decide whether
another procedure should be invoked even if the previously executed procedure resulted in an
error. The user therefore has the flexibility to control situations where a precise set of rules is
needed to determine whether a procedure should or should not be fired.

Trigger Definitions Menu

The Trigger Definitions Menu (shown below) contains the functions that allow you to create and
maintain trigger definitions.

To access the Trigger Definitions Menu

■ Enter T for Create/Modify Trigger Definitions on the main menu.

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Trigger Definitions Menu - DBnr 105

Code Function
---- --------------------------
A Add Trigger Definition
D Display Trigger Definition
M Modify Trigger Definition
P Delete Trigger Definition
S Select Trigger Definition
? Help
. Exit

---- -------------------------
Code _ Active/Deactive Opt... _
File Name ... _________________
Cmd Type _
Field Name .. _________________

Command ==>
Enter PF1---PF2---PF3---PF4---PF5---PF6---PF7--PF8--PF9--PF10--PF11--PF12--

Help Menu Exit Field Admin Procs FTRG FDIC Canc

117Triggers and Stored Procedures

Trigger Maintenance

The functions on the Trigger Definitions Menu allow you to add, display, modify, or delete
trigger definitions. You can display a screen that contains multiple trigger definitions for the
same file, or a pop-up window that contains a single trigger definition for a specific field
within the file.

To access all trigger definitions for a particular file

■ Enter the function code (A for add, D for display, M for modify, or P for purge/delete) and
the file name. Enter a wild card value for command type and field name.

A screen containing all trigger definitions for the file appears. Depending on the function
code entered to access the screen (A, D, M, or P), you can add, display, modify, or delete one
or more trigger definitions. See the section Multiple Trigger Definitions.

To access a specific trigger definition

■ Enter the function code (A, D, M, or P), the file name, and the field name.

A pop-up window containing the trigger definition appears. Depending on the function (A,
D, M, or P), you can add, display, modify, or delete the trigger definition. See the section
Single Trigger Definition.

You can also use the Trigger Definitions Menu to select one or more triggers.

To select a trigger or triggers

1 Enter function code S and a file name or a wildcard value for file name, e.g., >G.

The screen that appears is similar to the following example:

Note: If a specific file name is selected, the screen contains the long field names and
not the file names.

Triggers and Stored Procedures118

Trigger Maintenance

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - List Trigger Definitions - DBnr 105

Sel File Name / Long Field Name Commnd Type ProcName Para RecB
--- --------------------------- ------- ---- -------- ------ ----
_ MISCELLANEOUS Delete Pre Non-P SYMP0003 Cont None

** Any Field **
_ VEHICLES-FILE Delete Pre Non-P SYMP0003 Cont None

** Any Field **
_ VEHICLES-FILE Read Pre Async ANYONE Contrl None

** Any Field **
_ VEHICLES-FILE Read Pre Async MAKE0001 Cont None

MAKE
_ VEHICLES-FILE Read Pre Async MODEL001 Cont None

MODEL
_ VEHICLES-FILE Read Pre Async COLOR001 Contrl None

COLOR
_ VEHICLES-FILE Read Pre Async CLASS001 Contrl None

CLASS
_ GDMUSIC (All) Pre Async PROC008 Contrl None

** Any Field **

Command ==>
Enter PF1---PF2---PF3---PF4---PF5---PF6---PF7--PF8---PF9---PF10--PF11--PF12

Menu Exit -- - + Canc

2 In the Sel field next to the file name, enter D for display, M for modify, S for select, or P for
purge.

If you enter D, P, or M, a pop-up window containing the trigger definition appears. See the
section Single Trigger Definition.

If you enter S, the trigger is selected and the Trigger Definitions Menu appears.

This section also covers the following topics:

■ Multiple Trigger Definitions
■ Single Trigger Definition

Multiple Trigger Definitions

To add, display, modify, or delete one or more trigger definitions

1 On the Trigger Definitions Menu, enter the code (A, D, M, or P) and the file name. The com-
mand type is optional; if you leave it blank, it defaults to "All" (all commands).

Depending on the code entered, one of the following screens appears:

■ Add Trigger Definitions

119Triggers and Stored Procedures

Trigger Maintenance

■ Display Trigger Definitions
■ Modify Trigger Definitions
■ Delete Trigger Definitions

These screens contain the trigger definitions for the specified file. For example, the Modify
Trigger Definitions screen is similar to the following:

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Modify Trigger Definitions - DBnr 105

Pre-Post .. Pre
File ... VEHICLES-FILE (3) Command ... Read

Prty Long Field Name Fld Type ProcName Params RecBuff Msg
---- -------------------------------- --- ----- -------- ------ -------
010 COLOR___________________________ AF Async COLOR001 Contrl None___
020 CLASS___________________________ AH Async CLASS001 Contrl None___
030 MAKE____________________________ AD Async MAKE0001 Contrl None___
040 MODEL___________________________ AE Async MODEL001 Contrl None___
050 ** Any Field **_________________ ** Async SAMP0002 Contrl None___
___ ________________________________ __ _____ ________ ______ _______
___ ________________________________ __ _____ ________ ______ _______
___ ________________________________ __ _____ ________ ______ _______
___ ________________________________ __ _____ ________ ______ _______
___ ________________________________ __ _____ ________ ______ _______
___ ________________________________ __ _____ ________ ______ _______
Modify Entries, or enter '.'(Exit), or '?'(Help) to see options ... _

Command ==>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12

Help Menu Exit Updat - + Reseq Post Canc

2 After entering the appropriate information, press PF5 to update the trigger table.

A message informs you that the update has been confirmed. An error message appears if you
enter information that is invalid or incomplete.

Entry Fields

The following paragraphs describe the entry fields in the Trigger Definitions screens.

Note: You are not required to enter both the long field name and the Fld (short field name).
If either is entered, the other is derived from the file-field table entry.

Prty (priority)
The Adabas trigger driver scans the format buffer for a match with the selection criteria defined
for each trigger. When multiple field names are specified for the same file and command, the

Triggers and Stored Procedures120

Trigger Maintenance

priority assigned to each field determines the order in which it is processed. When a match is
found, the trigger is fired. The Prty field allows you to set or modify the sequence.

The highest priority is 1. Priorities are represented, however, in steps of ten from 10-900. Other
values are entered to change the sequence or "priority" of the fields. Values entered between
the steps of ten are resequenced (using the RESEQ command; see the section Commands) to the
next higher 10s values; for example, entering priorities of 11 and 12 for fields resequences them
to represented values 20 and 30, respectively.

To change a field's priority, specify a value between 1 and 9
■ higher than the represented value of the field you want it to follow; or
■ lower than the represented value of the field you want it to precede.

Example:

To change the priority of MAKE on the List Trigger Definitions screen from the represented
value 30 to 10 with the other fields changing priority accordingly, assign MAKE a value between
1 and 9.

When the RESEQ command is used, the priorities of all fields are changed to 10-900 with MAKE
as 10, COLOR as 20, CLASS as 30, etc.

Long Field Name
The Adabas long field name for the field. Enter a wildcard to display a selection list of field
names. If the long field name is not known, it can be derived from the Fld (short field name).

Fld (short field name)
The Adabas short field name, that is, the unique name used by the DBMS to identify a partic-
ular field for a particular file. It must correspond to the long field name for the field. If the
short field name is not known, it can be derived from the long field name.

Type
Type is asynchronous, participating, or non-participating. The default value is asynchronous.

ProcName
The name of the Natural subprogram that should be invoked when the selection criteria for
the trigger are met. The value must be a valid Natural subprogram name of 1-8 characters.
There is no default value.

Important: The name of the user job that calls the trigger must be different from the
trigger's ProcName.

Params
When the trigger procedure is invoked, the parameters passed may be:

121Triggers and Stored Procedures

Trigger Maintenance

Using the ACB interface, control parameters are used to pass information about the trigger
request as well as the trigger command and a modifiable response code field. Contrl is the
default value.

Contrl

Using either the ACB or ACBX interface, control parameters are used to pass information
about the trigger request as well as the trigger command and a modifiable response code field.

Contrx

A modifiable response code field is used to prevent the execution of a command in the case
of a pre-command trigger. Response code is used with synchronous triggers only; it has no
value or meaning with asynchronous triggers, which may already have completed.

Resp

No parameters are passed.None

RecBuff
Value may be access (read only), update (read and write), or none.

Msg
An error message text may be displayed in this field when an error occurs. An explanation of
the error is displayed at the bottom of the screen.

Commands
The following table describes the commands that can be entered at the command line in the
Trigger Definitions screens:

Note: Commands can be entered in upper-, lower-, or mixed-case.

DescriptionCommand

Display the Modify Trigger Definitions screen, where you can modify the priority
assigned to a trigger.

PRTY

Update the trigger file with the values entered.UPDATE

Display the previous screen.BACK, -

Display the next screen.FWD, +

Resequence the list of trigger definitions, in order by priority.RESEQ

Display the post-command triggers for this file and command.POST

Display the pre-command triggers for this file and command.PRE

Activate pre-command triggers or post-command triggers.ACTIVATE

Deactivate pre-command triggers or post-command triggers.DEACTIVATE

Delete selected trigger definitions from the trigger file.DELETE

Modify the trigger definitions.MODIFY

Triggers and Stored Procedures122

Trigger Maintenance

Single Trigger Definition

To add, display, modify, or delete a single trigger definition

■ Enter the code (A, D, M, or P), the file name, and the field name on the Trigger Definitions
Menu.

The command type is optional; if you leave it blank, it defaults to "All" (all commands).

Depending on the code entered, an add, display, modify, or delete function pop-up window
appears. These windows contain trigger information and procedure information about the
specified trigger definition (see the example Modify Function Screen):

■ Trigger information includes the file name and number, command type (read, update, etc.),
the long field name and the Adabas field name. Also displayed is the current status of the
trigger, as shown in the following table:

DescriptionStatus

The trigger is currently active on the trigger file and for the currently active nucleus.Active

A permanent deactivation of the trigger was requested; the trigger will remain in
this state until activated.

Inactive

The trigger is active for the running nucleus only. A temporary "activate" was
requested; the trigger remains in this state until a "deactivate" is issued.

Temp Active

The trigger is inactive for the running nucleus only. A temporary "deactivate" was
requested; the trigger remains in this state until an "activate" is issued.

Temp Inactive

The file number specified in the trigger definition is greater than the maximum file
number for the database (highest file number used plus 10). SeeCreating the Trigger
Table.

File Not Used

A trigger has been added to the file since the last time the nucleus was activated.
The trigger will become active the next time a REFRESH command is issued or the
nucleus is restarted.

Not Loaded

The Trigger Maintenance facility is not active in the nucleus; therefore, no checking
for the status of a trigger can be done.

Not Checked

The Adabas nucleus is not accepting any requests for trigger status.Inaccessible

■ Procedure information includes the procedure name, pre-command or post-command
status, the trigger type (asynchronous, participating or non-participating), the CALLNAT
parameters type (cntrl, resp, or none) and the record buffer option (access, update, or none).

To add a trigger definition

1 Enter the name of the procedure.

2 Modify options as required.

123Triggers and Stored Procedures

Trigger Maintenance

3 Press PF5 to confirm the addition.

To modify a trigger definition

1 The Modify Function pop-up is similar to the following:

Modify Details and press 'PF5' to Confirm Update.

HH:MM:SS *** Define Trigger Info *** YYYY-MM-DD
- Modify Function -

Trigger Information ** Active **
File Number 4
File Name AUTOMOBILES
Command Type Read
Long Field Name ... BODY-TYPE
Adabas Field AC
Field Prty/Seq 010

Procedure Information
Name (Subpgm)...... _________
Pre Cmd Select N (Post)
Trigger Type N (Non-Participating)
CALLNAT Params C (Cntl Info + Resp)
RecBuffer Access .. A (May be Accessed)

Command ==>
Enter-PF1--PF2--PF3--PF4--PF5--PF6--PF7--PF8--

Help Menu Exit Prty Updat Act Deact

2 Modify the Field Prty/Seq (priority or sequence) and/or any of the fields under Procedure
Information.

3 If you want to activate or deactivate the trigger, enter ACTIVATE or DEACTIVATE at the command
line. Then choose whether the trigger's status should be changed temporarily or permanently:

means...Command

activate the trigger in the nucleus but retain its inactive status in the trigger
file.

temporarilyActivate

activate the trigger in the nucleus and remove its inactive status from the
trigger file.

permanently

ignore the trigger for any checking of event criteria for any command
issued to the database; that is, no trigger can be fired for this definition.

temporarilyDeactivate

store the trigger on the trigger file with the status "deactive"; do not activate
when the nucleus is started. The trigger may, however, be started at a later
time. An active Adabas session is deactivated immediately.

permanently

4 Press PF5 to confirm the update.

Triggers and Stored Procedures124

Trigger Maintenance

To delete a trigger definition

■ Press PF5 to confirm the deletion.

To display all fields for the file in sequence by priority

■ Press PF4 or enter PRTY at the command line.

Note: If the trigger specifies the command type "Delete", the screen that appears allows
the user to define a pre- and/or post-trigger definition at the same time.

Procedure Reports

The Procedure Reporting Menu shown below allows you to obtain an alphabetic list of triggered
procedures sorted by file or by procedure name. You can limit the report to a specific file or include
all files. Procedure reports can be used, for example, to locate duplicate procedures or identify
each instance where a particular procedure is used.

To access the Procedure Reporting Menu

■ Enter R for Procedure Reports on the Main Menu.

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Procedure Reporting Menu - DBnr 105

Code Function
---- --------------------------
F Display Procedures by File
N Display Procedures by Name
? Help
. Exit

---- -------------------------

Code N
File Number .. _____
Procedure PROC0001

Command ==>
Enter PF1---PF2--PF3--PF4---PF5---PF6---PF7---PF8--PF9--PF10--PF11--PF12

Help Menu Exit Field Trigr Admin Canc

125Triggers and Stored Procedures

Trigger Maintenance

To list the procedures for a particular file only

■ Enter code F for Display Procedures by File and the file number.

To list procedures beginning with a particular name

■ Enter code N for Display Procedures by Name, and the procedure name.

In either case, the screen displayed contains the type of information shown in the following example.

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - List Procedure Names - DBnr 105

File Name ... AUTOMOBILES Fnr ... 4

Sel ProcName Command Field Name When Type ParmTy
--- -------- ------- ---------------------------- ---- ----- ------
_ PROC0001 Read BODY-TYPE Post NonP Cntrl
_ PROC0001 Update ** Any Field ** Pre Async Cntrl

PRO001 (All) MILEAGE Pre Async Cntrl
_ SUBPGM Read COLOR Pre Async Cntrl

Select 'D' to Display, or enter 'F'(Fwd), 'T'(Top), 'B'(Bck), '.'(Exit)
Command ==>

Enter-PF1---PF2---PF3---PF4---PF5---PF6--PF7--PF8---PF9--PF10--PF11--PF12
Help Menu Exit -- - + Canc

The procedure report contains the database number, the file number, the file name, and the follow-
ing information for each procedure:

DescriptionField

The name of the triggered procedure.ProcName

The Adabas command that initiates the trigger.Command

The trigger field name.Field Name

When the procedure executes:When

■ "pre-command": The procedure executes before the initiating Adabas command.
■ "post-command": The procedure executes after the initiating Adabas command.

The type of trigger:Type

■ "non-participating": The triggered procedure does not participate in the initiating Adabas
command's transaction logic.

Triggers and Stored Procedures126

Trigger Maintenance

DescriptionField

■ "participating": The triggered procedure may participate in the initiating Adabas command's
transaction logic.

■ "asynchronous": The Adabas command and the triggered procedure execute separately
and do not affect each other. The triggered procedure's transaction logic does not participate
in the Adabas command transaction logic.

The type of parameters passed when the procedure is invoked:ParmTy

■ "control": ACB-style control parameters are used to pass information about the trigger
request as well as the trigger command and a modifiable response code field. This is the
default value.

■ "controlx": ACB- or ACBX-style control parameters are used to pass information about the
trigger request as well as the trigger command and a modifiable response code field.

■ "response": A modifiable response code field is used to prevent the execution of a command
in the case of a pre-command trigger. Response code is used with synchronous triggers
only; it has no value or meaning with asynchronous triggers, which may already have
completed.

■ "none": No parameters are passed.

To obtain more information about a specific procedure

■ Enter D in the Sel column next to the procedure name.

A pop-up window displays information about the trigger definition as well as the procedure,
and is similar to the following example:

127Triggers and Stored Procedures

Trigger Maintenance

Trigger Information currently displayed

HH:MM:SS *** Define Trigger Info *** YYYY-MM-DD
- Display Function -

Trigger Information
File Number 4
File Name AUTOMOBILES
Command Type Read
Long Field Name ... BODY-TYPE
Adabas Field AC
Field Prty/Seq ____

Procedure Information
Name (Subpgm)...... PROC0001
Pre Cmd Select N (Post)
Trigger Type N (Non-Participating)
CALLNAT Params C (Cntl Info + Resp)
RecBuffer Access .. A (May be Accessed)

Command ==>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8-

Help Menu Exit Prty

■ Trigger information includes the trigger event criteria, i.e., file name and number, command
type, long field name and the Adabas field name.

■ Procedure information includes the Natural subprogram name, whether the procedure is
pre-command or post-command, the trigger type (asynchronous, participating or non-
participating), the CALLNAT parameters category (cntrl, resp, none) and the RecBuffer access
status (A=access, N=no access, U=access/update).

Administrator Functions

The Administrator Functions allow you to monitor trigger activity, display and modify the profile,
and maintain job status settings and buffer sizes.

To access the Administrator Functions Menu

■ Enter A for Administrator on the Main Menu.

Triggers and Stored Procedures128

Trigger Maintenance

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Administrator Functions Menu - DBnr 105

Code Function
---- ---------------------------

A Active Session Settings
D Display Profile Information
M Modify Profile Information
S Subsystem Activity
T Trigger Activity
? Help
. Exit

---- ---------------------------

Code ... D

Command ==>
Enter PF1---PF2---PF3---PF4---PF5---PF6--PF7--PF8---PF9---PF10--PF11--PF12--

Help Menu Exit Field Trigr Procs FTRG Canc

Active Session Settings

Active session settings includes job status settings and buffer sizes.

To modify the active session settings

1 On the Administrator Functions Menu, enter A for Active Session Settings.

2 Modify the field values and press PF5 to update the settings.

In a nucleus cluster environment, any changes to the active session settings are populated to all
active nuclei in the cluster.

The Active Session Settings screen is similar to the example shown below:

129Triggers and Stored Procedures

Trigger Maintenance

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Active Session Settings - DBnr 105

Job NameSAGDT077 Trigger File Number12

SVC Number217 Max File to be accepted...60
Nucleus Active__
Triggers Active__ Session Buffer Sizes in Bytes
Stored Proc. Active__ Trigger Table Buffer....8192
Error Action Halt Pre Trigger Queue.......15244
Trigger Logging .. Active__ Post Trigger Queue......2960
Activity Timeout.. 600 Waiting Subsys Queue....80
Subsystems Acquired Storage........31232
Maximum5 Used Storage............31232
Active5
Inactive 0
Waiting5
In Progress0

Change Parameters as required or press 'PF3' to Exit

Command ==>
Enter PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12-

Help Menu Exit Sact Updat Canc

Note: Press PF4 to display the Subsystem Activity screen.

The following table describes the Active Session Settings fields:

DescriptionField

The job name for the Adabas nucleus.Job Name

The SVC number being used by the database.SVC Number

Indicates when Adabas Triggers and Stored Procedures is active for the current
database.

Nucleus

If "active" (the default), triggers can be executed for this database; if "inactive",
they cannot. This field can be modified. You may enter "refresh" to update the
trigger table (see the section Updating the Trigger Table).

Triggers

If "active" (the default), stored procedures can be executed for this database; if
"inactive", they cannot. This field can be modified.

Stored Procedures

The action ("reject", "halt", or "ignore") to be taken by Trigger Maintenance when
a processing error occurs. This field can be modified.

Error Action

The logging function is "active" or "inactive".Trigger Logging

The number of seconds before a task is canceled. The default value is 60; the
maximum value is 9999. This field can be modified. If set to zero, it will default
to the Adabas TT parameter value.

Activity Timeout

Triggers and Stored Procedures130

Trigger Maintenance

DescriptionField

Subsystems The number of assigned Natural subsystems. The value can be
01-10.

Maximum

The number of Natural subsystems initiated. The value may be
less than the maximum allowed if an error from which the system
cannot recover occurs and the subsystem becomes inactive.

Active

The number of Natural subsystems currently terminated or shut
down due to the occurrence of errors from which the system could
not recover.

Inactive

The number of subsystems currently waiting for work.Waiting

The number of subsystems currently processing triggers.In Progress

The file number of the trigger file for the database.Trigger File Number

The maximum file number that Adabas Triggers and Stored Procedures will
accept. This is set as the highest file loaded plus 10 when the database comes up

Max File to be
accepted

and/or is initialized. If a higher file number is subsequently added to the database,
any triggers found for the file are ignored. To activate triggers beyond the Max
File value, the database must be shut down and restarted.

Session Buffer Sizes
in Bytes

The size of the trigger table buffer. This field can be
modified using the Modify Profile function.

Trigger Table Buffer

The size of the queue for all pre-command triggers
being processed at any given time.

Pre-Trigger Queue

The size of the queue for all post-command triggers
being processed at any given time.

Post-Trigger Queue

The size of the queue for tasks waiting to process
triggers; currently fixed at 80 bytes.

Waiting Subsys Queue

The total amount of storage to be acquired for use by
Adabas Triggers and Stored Procedures.

Acquired Storage

The actual amount of storage used by Adabas Triggers
and Stored Procedures during processing.

Used Storage

Updating the Trigger Table

By using the REFRESH command, you can add new triggers to the trigger table without shutting
down the database. In nucleus cluster environments, the REFRESH command updates the trigger
table on all cluster nuclei.

If the number of additional triggers to be loaded is far greater than the number loaded initially,
manually allocate enough additional space to handle the increased number of triggers. If the
trigger table buffer is not large enough, an inconsistency may occur that terminates Adabas Triggers
and Stored Procedures based on the value of the error action field in the Adabas triggers profile.

The need to update the trigger table can be avoided by preloading the required triggers before
the applications that use them are implemented.

131Triggers and Stored Procedures

Trigger Maintenance

To update the trigger table,

■ Enter REFRESH at the command line, or enter "refresh" in the triggers field.

Buffer Size Calculations

Buffers are required for the trigger table, the pre-trigger queue, and the post-trigger queue:

Trigger Table

The trigger table buffer size is calculated using the following formula.

((((HIFNRLD+10)*4)+HIFNRLD+10+TOTTRG)*24)+4096

where:

is the highest file number loadedHIFNRLD

is the total number of triggers defined on the trigger tableTOTTRG

After the Adabas trigger driver has calculated the total buffer size, the result is rounded down to
a multiple of 256.

Pre-Trigger Queue and Post-Trigger Queue

Depending on how many commands per second are passed to the database, how long the actual
procedures run, and whether the triggers are synchronous or asynchronous, queuing may or may
not occur. Each buffer is set up to independently queue the pre- and post-triggers. If the queues
become full, subsequent commands that would result in triggers being fired receive a response
code 154 (ADARSP154). After the queuing has eased, the DBA should consider increasing the
queue size.

In setting up the buffer sizes, consideration must also be given to the ratio of pre-triggers to post-
triggers. For instance, if no pre-triggers are used, the pre-trigger queue is not required; all buffer
space should be allocated to the post-trigger queue.

■ The pre-trigger queue is required only if pre-command triggers are defined on the trigger file.
Its buffer size is calculated as follows:

(NC / 2) * 352 = TOTAL SIZE

where "NC" is the value of the ADARUN parameter NC.

This calculation is valid if all triggers are synchronous. If asynchronous triggers are used, com-
mands may be issued continuously before the procedure resulting from the previous command
has completed. This results in queuing, which requires a larger buffer size.

Triggers and Stored Procedures132

Trigger Maintenance

Whether the amount the buffer should be increased depends on the number of commands being
issued and the speed at which they are issued (i.e., the amount of time between the response
from one command and the issue of the next command), and the amount of time required for
each trigger's procedure to complete. For example, a batch job issuing thousands of commands
that fire asynchronous triggers would require a very large buffer.

■ The post-trigger queue is required only if post-command triggers are defined on the trigger file.
Buffer size is calculated exactly the same as the pre-trigger queue buffer size, and the same size
considerations apply.

Display/ Modify Profile Information

The profile contains system information required by Adabas Triggers and Stored Procedures and
is generated from the database ID and file number that you specify. After the profile is generated,
you can display it and modify the values it contains.

To access the profile,

■ Enter D for Display Profile Information on the Administrator Functions Menu.

The Display Profile Information screen appears, and is similar to the following example:

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Display Profile Information - DBnr 105

Triggers Status Active__ Total Triggers ..34
Stored Proc. Status Active__

Natural Subsystem Parameters
Batch Natural Name NATAPT
Maximum Subsystems 6_
Activity Timeout 600/80
NATPARM Parameters DU=OFF,INTENS=1,ETID=' ' __________

Fixed NATPARM Parm STACK=(LOGON:SYSSPT;STP),PROGRAM=STPEND
CMPRINT Assignment TSPRT

Required .. N UserID ... USER**__ Password .. PSWD**__

Adabas Session Parameters
Error Action Halt__ Trigger Table Size __10K
Log Trigger Activity ... Active__ Pre Trigger Queue Size ... __35K

Post Trigger Queue Size .. __50K

Command ==>
Enter PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12-

Help Menu Exit Mod Canc

133Triggers and Stored Procedures

Trigger Maintenance

Adabas Triggers and Stored Procedures assigns default values to the fields in the profile and uses
these values at initialization time. This information is valid only at initialization time, i.e., when
the Adabas nucleus is started. If the profile is modified, the new values take effect the next time
the nucleus is bounced.

To modify the profile

1 On the Display Profile Information screen, press PF5. On the Administrator Functions Menu,
enter M for Modify Profile Information.

The Modify Profile Information screen appears.

2 Enter the new values and press PF5 or enter UPDATE at the command line.

A message informs you that the profile has been updated successfully.

Profile Fields

The following table describes the fields in the profile:

DescriptionField

The database ID of the trigger file to which this profile applies. The value is entered
using NTLFILE, LFILE, or PF10 (FTRG).

DBnr

Trigger Status This field can be modified.

(the default) triggers can be executed for this database.active

triggers cannot be executed for this database.inactive

Stored Proc. Status This field can be modified.

(the default) stored procedures can be executed for this database.active

stored procedures cannot be executed for this database.inactive

The total number of triggers defined for this database ID. May be used, by default,
to calculate the size of the trigger table buffer. Value is derived from the trigger

Total Triggers

definitions added to the trigger file. As a safety mechanism, this number is verified
as correct when the NUMBER command is issued.

The Natural nucleus that will be started by the Adabas trigger driver to run the 1-10
Natural subsystems that are responsible for the actual execution of the procedures.

Batch Natural Name

The name is assigned to the Natural nucleus component during the installation
procedure.

This field can be modified.Maximum
Subsystems The number of Natural subsystems that should be activated for a given Adabas session.

The value may be 01-10.

This field can be modified. The number of seconds before a task is canceled. The
default is 60; the maximum value is 9999. If set to zero, it defaults to the Adabas TT
parameter value.

Activity Timeout

Triggers and Stored Procedures134

Trigger Maintenance

DescriptionField

Dynamic parameter overrides for the NATPARM module linked to the Natural nucleus
(the NATPARM module specifies the options to be in effect for the Natural session).
See the section NATPARM Considerations.

NATPARM
Parameters

This value is generated by Adabas Triggers and Stored Procedures.

STACK=(LOGON:SYSSPT;STP)

Fixed NATPARM

where SYSSPT is the library where the procedures are executed and STP is used to
invoke the Natural driver.

This field can be modified. Dynamic assignment for the CMPRINT label. The default
value is TSPRT. Printing from any procedure within a specific subsystem must be

CMPRINT
Assignment

directed to this label unless the specific printer number notation is used in Natural
syntax; for example, PRINT(01), DISPLAY(02), or WRITE(03).

This field applies only if the Natural subsystems are running under Natural Security.
It indicates whether logon to Natural Security is required (Y) or not (N). Pertains to
AUTO=OFF, AUTO=ON, respectively.

NATSEC LOGON
Required

This field can be modified. This field applies only if the Natural subsystems are
running under Natural Security. This is the Natural Security user ID.
The default value is USER**. The ** is replaced by the dynamic task number or
subsystem number (value 01-10). Although the default uses ** as a suffix, it may occur

UserID

anywhere in the user ID provided that at least one nonblank character is specified as
well.

This field can be modified. This field applies only if the Natural subsystems are
running under Natural Security. This is the Natural Security password.
The default value is PSWD**. The ** is replaced by the dynamic task number or
subsystem number. Although the default uses ** as a suffix, it may occur anywhere
in the password provided that at least one nonblank character is specified as well.

Password

Error Action This field can be modified. This is the action to be taken by Adabas Triggers and
Stored Procedures after a processing error from which the system cannot recover.

(the default) terminates the Adabas nucleus as if ADAEND were
issued for both cluster and noncluster nuclei.

Halt

keeps Adabas Triggers and Stored Procedures active, but any
command for which a trigger is fired receives a response code

Reject

157 (ADARSP157); In a cluster environment, if one nucleus
switches to "reject", all other nuclei also switch. However, if there
is a problem during a refresh and the error action is "reject", the
nucleus shuts down: it cannot reject commands if it has a
damaged or incomplete trigger table.

shuts down Adabas Triggers and Stored Procedures, but keep
the nucleus active as if Adabas Triggers and Stored Procedures

Ignore

had never been activated. In a cluster environment, if one nucleus
switches to "ignore", all other nuclei also switch. If there is a
problem during a refresh and the error action is "ignore", then
all nuclei switch to "ignore".

135Triggers and Stored Procedures

Trigger Maintenance

DescriptionField

Note: The "ignore" option may cause application integrity
problems.

Log Trigger Activity This field can be modified.

trigger activity is recorded in the log.active

(the default) trigger activity is not recorded in
the log.

inactive

Whenever a trigger or a stored procedure is invoked, information about the procedure
can be printed to the print spool, as defined by the user. This information may be
useful for auditing or debugging purposes.

This field can be modified. This is the size (in bytes) of the trigger table buffer. If
additional triggers are loaded to the trigger table, you may need to increase the buffer

Trigger Table Size

size (see the sectionUpdating the Trigger Table). The default value is calculated based
on the number of triggers defined in the trigger file. (See the section Buffer Size
Calculations.)

This field can be modified. This is the size (in bytes) of the pre-trigger queue buffer,
that contains pre-command triggers prior to selection for processing. The default
value is calculated (see the section Buffer Size Calculations.)

Pre-Trigger Queue
Size

This field can be modified. This is the size (in bytes) of the post-trigger queue buffer
that contains post-command triggers prior to selection for processing. The default
value is calculated (see the section Buffer Size Calculations.)

Post-Trigger Queue
Size

Subsystem Activity

Subsystem activity provides information about currently executing Natural subsystems.

To access subsystem activity information

■ Enter S for Subsystem Activity on the Administrator Functions Menu.

The Subsystem Activity screen is similar to the example shown below:

Triggers and Stored Procedures136

Trigger Maintenance

HH:MM:SS - Subsystem Activity - YYYY-MM-DD

Nmbr Started Status Type Start / TimeOut of Trigger Trig Count
---- ------- ------ ----- ---------------------------- ----------
01 09:25:57 Busy Sync 09:41:37 09:46:37 350
02 09:25:57 Busy Async 09:41:39 09:46:39 280
03 09:25:57 Wait 212
04 09:25:57 Wait 156
05 09:25:57 Wait 51

Subsystems . . 5 of 5
Command ==>

The following table describes the information in the Subsystem Activity screen:

DescriptionField

The number of the Natural subsystem.Nmbr

The time that the subsystem was initialized. If different from the Started time for the
other subsystems listed, it indicates that a timeout, cancellation, or termination occurred.
This should be cross-checked.

Started

The current status of the subsystem: busy, active, wait (waiting for work), shutdown,
canceled, or abended (if an error occurred).

Status

The type of trigger: sync (synchronous) or async (asynchronous).Type

The time when the procedure started executing.Start

The time when a procedure will be canceled if it executes beyond the maximum time
limit. If an error occurs prior to the timeout, the error is displayed.

Timeout

The number of triggers that have been executed by the subsystem since initialization.Trig Count

The DBA may cancel any active or waiting subsystem by first entering the CANCEL
command and then entering a C in the cursor position under "Status" for the subsystem
that should be canceled.

Command

To cancel an active or waiting subsystem

1 Enter CANCEL at the command line.

2 Enter C (for cancel) in the Status field of the subsystem that is to be canceled.

3 Press PF3 to exit.

137Triggers and Stored Procedures

Trigger Maintenance

Trigger Activity

Trigger activity provides information about currently executing triggers.

To access trigger activity information

■ Enter "T" for Trigger Activity on the Administrator Functions Menu.

The Current Trigger Activity screen is similar to the example shown below:

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Current Trigger Activity - DBnr 105

Nmbr Status Cmd Fnr Field ProcName Type RecBu UserID (hex)
---- ------ --- --- ----- -------- ---------- ----- -------------
01 Active PROC0002 Pre Non-P None ABD6EA375DE96A01

Waiting L3 11 ** SYMP0002 Pre Async None
Waiting L3 11 ** SYMP0002 Pre Async None
Waiting L3 11 ** SYMP0002 Pre Async None
Waiting L3 11 ** SYMP0002 Pre Async None
Waiting L3 11 ** SYMP0002 Pre Async None
Waiting L3 11 ** SYMP0002 Pre Async None
Waiting L3 11 ** SYMP0002 Pre Async None
Waiting S4 11 ** SYMP0002 Pre Async None
Waiting N1 11 LE SYMP0001 Pre Non-P Upd

Command ==>
Enter PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12-

Menu Exit Sact Refr -- - + > Canc

The following table describes the information in the Current Trigger Activity screen:

DescriptionField

The number of the Natural subsystem executing the trigger. Valid values are 01-10.Nmbr

The current status of the subsystem: active or waiting.Status

The Adabas command that initiated the trigger.Cmd

The file number against which the command is invoked. If the value of this field is the same
as the trigger file, then this is a stored procedure.

Fnr

The name of the field that resulted in the trigger being fired.Field

The name of the triggered procedure.ProcName

The type of trigger: pre (pre-command) or post (post-command), non-P (non-participating),
part (participating), or async (asynchronous).

Type

The RecBuff setting for the trigger: access (read only), update (read and write), or none.RecBu

The (hexadecimal) ID of the user who issued the actual Adabas command.UserID

Triggers and Stored Procedures138

Trigger Maintenance

To display additional information

■ Press PF10.

The screen scrolls to the right, as shown below:

HH:MM:SS ***** TRIGGER MAINTENANCE ***** YYYY-MM-DD
User USR01 - Current Trigger Activity - DBnr 105

Nmbr Status Cmd Fnr Field ProcName CID CID (hex) ISN in ACB Timeout
---- ------ --- --- ----- -------- --- --------- ---------- ---------
01 Active ** PROC0002 00000000 11:30:41

Waiting L3 11 ** SYMP0002 ??? 00200101
Waiting L3 11 ** SYMP0002 ??? 00200101 1
Waiting L3 11 ** SYMP0002 ??? 00200101 16
Waiting L3 11 ** SYMP0002 ??? 00200101 15
Waiting L3 11 ** SYMP0002 ??? 00200101 14
Waiting L3 11 ** SYMP0002 ??? 00200101 20
Waiting L3 11 ** SYMP0002 ??? 00200101 23
Waiting L3 11 ** SYMP0002 ??? 00200101 2
Waiting S4 11 ** SYMP0002 ???? 02100101
Waiting N1 11 LE SYMP0001 00000000

Command ==>
Enter PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12-

Menu Exit Sact Refr -- - + < Canc

DescriptionField

The number of the Natural subsystem executing the trigger. Valid values are 01-10.Nmbr

The current status of the subsystem: active or waiting.Status

The Adabas command that initiated the trigger.Cmd

The file number against which the command is invoked. If the value of this field is the
same as the trigger file, then this is a stored procedure.

Fnr

The name of the field that resulted in the trigger being fired.Field

The name of the triggered procedure.ProcName

The command ID in the Adabas control block (ACB).CID

The command ID repeated in hexadecimal format.CID (hex)

The ISN from the Adabas control block (ACB).ISN in ACB

The time when a procedure will be canceled if it executes beyond the maximum time
limit.

Timeout

139Triggers and Stored Procedures

Trigger Maintenance

140

VII TRGMAIN: An API To Maintain Triggers

141

142

9 TRGMAIN: An API To Maintain Triggers

■ Functions (Format A5) .. 144
■ Calling Parameters (Format A209) .. 144
■ Sample User Program .. 146
■ Response Codes ... 150

143

The Adabas triggers and stored procedures facility provides a callable routine TRGMAIN to
maintain trigger definitions from user-written programs. TRGMAIN functions include

■ add new triggers
■ modify existing triggers
■ purge existing triggers
■ display a specific trigger definition
■ activate triggers
■ deactivate triggers

To call the trigger maintenance routine

■ Enter the following:

CALL 'TRGMAIN' function calling-parameters

where the functions and calling parameters are as described in the following sections.

Functions (Format A5)

The FUNC parameter specifies what action is to be performed on the trigger definition. Valid values
are

AddADD

ModifyMOD

PurgeDEL

DisplayDISP

ActivateACT

DeactivateDEACT

Calling Parameters (Format A209)

The parameters that compose CALLING-PARMS provides the information needed to complete
the actions. These parameters are consistent with the information requested by the online Trigger
Maintenance facility and include the following fields (default values are underlined):

Triggers and Stored Procedures144

TRGMAIN: An API To Maintain Triggers

DescriptionLengthField Name

Trigger file DBnrN5TRG-DBNR

File name defined in the FFTA32FILE-NAME

A1CMD-TYPE Command type that causes trigger to fire:

deleteD

findF

insertI

readR

updateU

all commands*

Field name defined in the FFTA32FIELD-NAME

Name of the Natural trigger programA8TRIGGER-PROG

Trigger priorityN3PRIORITY

A1PRE-CMD-SELECT Trigger timing relative to the command execution:

post-command triggerN

pre-command triggerY

A1PART-NON-FLAG Participation flag. Valid values are

asynchronous (default)A

nonparticipatingN

participatingP

A1CALLNAT-FLAG CALLNAT parameters. Valid values are

control parameters with ACB and
response code (default)

C

response code onlyE

no parameters passedN

control parameters with ACBX and
response code

X

A1RECBUFF-OPTION Record buffer access. Valid values are

access onlyA

no access to record buffer (default)N

updates allowedU

A4ACT-TYPE Type of activation/deactivation to be processed:

permanentPERM

temporaryTEMP

Reserved for future useA39TRG-RSV

Response code returned from the APIN4RESP

145Triggers and Stored Procedures

TRGMAIN: An API To Maintain Triggers

DescriptionLengthField Name

Text description of the response codeA68RETURN-MSG

GCB versionN3VERSION

Database versionN3PRODVERN

Nucleus IDP5NUCID

Sample User Program

0010 **
0020 * Application .. ADABAS Triggers Subsystem
0030 * Program UMAINT
0040 * Function Sample call program to call API TRGMAIN that
0050 * maintains trigger definitions.
0060 * (Add,Delete,Modify,Display,Activate,Deactivate).
0070 *
0080 * Parameters ... The following parameters are passed when calling
0090 * the API:
0100 * FUNCTION (A5) Action to perform on Trigger Definition
0110 * Valid values are ADD - Add
0120 * MOD - Modify
0130 * DEL - Delete
0140 * DISP - Display
0150 * ACT - Activate
0160 * DEACT - De-activate
0170 * TRG-DBNR (N5) Trigger File DBnr
0180 * FILE-NAME (A32) File Name defined in the FFT
0190 * CMD-TYPE (A1) Command type that causes trigger to fire
0200 * Valid values are R - Read
0210 * F - Find
0220 * I - Insert
0230 * U - Update
0240 * D - Delete
0250 * * - All commands
0260 * FIELD-NAME (A32) Field Name defined in the FFT
0270 * TRIGGER-PROG (A8) Name of the NATURAL Trigger Program
0280 * PRIORITY (N3) Trigger Priority
0290 * PRE-POST-FLAG (A1) Pre-trigger or Post-trigger
0300 * Valid values are Y - Pre trigger
0310 * N - Post trigger
0320 * PART-NON-FLAG (A1) Participation flag
0330 * Valid values are A - Asyncronous
0340 * N - Non-Participating
0350 * P - Participating
0360 * CALLNAT-FLAG (A1) CALLNAT Parameters
0370 * Valid values are N - No parmeters passed
0380 * E - Response code only
0390 * C - Control Parms and

Triggers and Stored Procedures146

TRGMAIN: An API To Maintain Triggers

0400 * Response code
0410 * RECBUFF-OPTION (A1) Record Buffer Access
0420 * Valid values are A - Access only
0430 * U - Updates allowed
0440 * N - No access to RB
0450 * ACT-TYPE (A4) Type of Activation/De-activation
0460 * Valid values are: TEMP - Temporary
0470 * PERM - Permanent
0480 * VERSION (N3) Version of the GCB
0490 * Valid values are: 201 for v81
0500 * 202 for v82
0510 * PRODVERN (N3) Version of the Adabas
0520 * Valid values are: 812, 813, 814 for v81x
0530 * 822, 823, 824, 825, 826 for v82x
0540 * NUCID (P5) NUCID
0550 * RESP (N4) Response Code returned from the API
0560 * RETURN-MSG (A68) Text description of the response code
0570 **
0580 DEFINE DATA
0590 LOCAL USING TRGPMAIN
0600 LOCAL
0610 01 MAP-MSG (A68)
0620 01 HOLD-FUNCTION (A5)
0630 01 HOLD-PRE-POST-FLAG (A1)
0640 01 PAGE-TITLE (A50)
0650 01 #ATTR (C)
0660 END-DEFINE
0670 RESET CALLING-PARMS MAP-MSG
0680 MOVE 233 TO TRG-DBNR
0690 VERSION := 202
0700 PRODVERN := 822
0710 NUCID := 0
0720 SET KEY PF3
0730 **
0740 ** Request function and required fields
0750 **
0760 REPEAT
0770 INPUT (AD=TMIL'_' CD=NE)
0780 MAP-MSG (IP=OFF AD=O)
0790 / 9T 'API Maintenance of Trigger Definitions' (YEI)
0800 // 'Function..........' FUNCTION 30T '(Add, Del, Mod, Disp, or ".")'
0810 // 'File Name.........' FILE-NAME
0820 / 'Field Name........' FIELD-NAME
0830 / 'Command Type......' CMD-TYPE 30T '(R, F, I, U, D, or *)'
0840 / 'Pre-Command.......' PRE-POST-FLAG 30T '(Y, N, or blank)'
0850 RESET MAP-MSG
0860 **
0870 ** Escape out of here
0880 **
0890 IF FUNCTION = MASK('.') OR *PF-KEY = 'PF3'
0900 ESCAPE BOTTOM
0910 ** Set up Page Titles

147Triggers and Stored Procedures

TRGMAIN: An API To Maintain Triggers

0920 DECIDE ON FIRST VALUE OF FUNCTION
0930 VALUE 'DISP' MOVE 'Display' TO PAGE-TITLE
0940 VALUE 'ADD' MOVE 'Add' TO PAGE-TITLE
0950 VALUE 'MOD' MOVE 'Modify' TO PAGE-TITLE
0960 VALUE 'DEL' MOVE 'Delete' TO PAGE-TITLE
0970 VALUE 'X' ESCAPE BOTTOM
0980 NONE REINPUT 'Invalid Function Code'
0990 END-DECIDE
1000 COMPRESS PAGE-TITLE 'Trigger Definition' INTO PAGE-TITLE
1010 IF FILE-NAME = ' '
1020 REINPUT 'File Name can not be BLANK' MARK *FILE-NAME
1030 **
1040 ** Handle Request to Display a Trigger
1050 **
1060 IF FUNCTION = 'DISP'
1070 DO
1080 PERFORM GET-TRIGGER
1090 INPUT (AD=O CD=NE)
1100 MAP-MSG (IP=OFF AD=O)
1110 / 9T 'API Maintenance of Trigger Definitions' (YEI)
1120 // 10T PAGE-TITLE (IP=OFF)
1130 // 'File name.........' FILE-NAME
1140 / 'Field Name........' FIELD-NAME
1150 / 'Command Type......' CMD-TYPE
1160 // 'Trigger Program...' TRIGGER-PROGRAM
1170 / 'Priority..........' PRIORITY
1180 / 'Pre-Command.......' PRE-POST-FLAG
1190 / 'Trigger Type......' PART-NON-FLAG
1200 / 'CALLNAT Params....' CALLNAT-FLAG
1210 / 'RecBuffer Access..' RECBUFF-OPTION
1220 RESET FUNCTION
1230 MOVE RETURN-MSG TO MAP-MSG
1240 DOEND
1250 **
1260 ** Handle Request to Alter Trigger Definitions
1270 **
1280 IF FUNCTION = 'ADD' OR= 'MOD' OR= 'DEL'
1290 DO
1300 IF (FUNCTION = 'MOD' OR= 'DEL')
1310 PERFORM GET-TRIGGER
1320 IF FUNCTION = 'DEL'
1330 DO
1340 MOVE 'Press ENTER to Delete or PF-3 to Cancel' TO MAP-MSG
1350 MOVE (AD=P) TO #ATTR
1360 DOEND
1370 ELSE DO
1380 MOVE 'Press ENTER to confirm data or PF-3 to Cancel' TO MAP-MSG
1390 MOVE (AD=D CD=NE) TO #ATTR
1400 DOEND
1410 REPEAT
1420 INPUT (AD=TMIL'_' CD=NE)
1430 MAP-MSG (IP=OFF AD=O)

Triggers and Stored Procedures148

TRGMAIN: An API To Maintain Triggers

1440 / 9T 'API Maintenance of Trigger Definitions' (YEI)
1450 // 10T PAGE-TITLE (AD=O IP=OFF)
1460 // 'File Name.........' FILE-NAME (AD=O)
1470 / 'Field Name........' FIELD-NAME (CV=#ATTR)
1480 / 'Command Type......' CMD-TYPE (CV=#ATTR)
1490 // 'Trigger Program...' TRIGGER-PROGRAM (CV=#ATTR)
1500 / 'Priority..........' PRIORITY (CV=#ATTR)
1510 / 'Pre-Command.......' PRE-POST-FLAG (CV=#ATTR)
1520 / 'Trigger Type......' PART-NON-FLAG (CV=#ATTR)
1530 / 'CALLNAT Params....' CALLNAT-FLAG (CV=#ATTR)
1540 / 'RecBuffer Access..' RECBUFF-OPTION (CV=#ATTR)
1550 RESET MAP-MSG
1560 IF *PF-KEY = 'PF3'
1570 DO
1580 MOVE 'Function cancelled per user request' TO MAP-MSG
1590 ESCAPE BOTTOM
1600 DOEND
1610 **
1620 ** Perform the update of data (add, del, or mod)
1630 ** and handle the response
1640 **
1650 CALLNAT 'TRGMAIN' FUNCTION CALLING-PARMS
1660 DECIDE ON FIRST VALUE OF RESP
1670 VALUE 0 MOVE RETURN-MSG TO MAP-MSG
1680 EXAMINE MAP-MSG FOR 'confirmed' REPLACE 'successful'
1690 ESCAPE BOTTOM
1700 VALUE 20 REINPUT WITH TEXT RETURN-MSG MARK *FIELD-NAME
1710 VALUE 23 REINPUT WITH TEXT RETURN-MSG MARK *FIELD-NAME
1720 VALUE 25 REINPUT WITH TEXT RETURN-MSG MARK *CMD-TYPE
1730 * VALUE 37 REINPUT WITH TEXT RETURN-MSG MARK *PRIORITY
1740 * VALUE 38 REINPUT WITH TEXT RETURN-MSG MARK *PRIORITY
1750 VALUE 39 REINPUT WITH TEXT RETURN-MSG MARK *TRIGGER-PROGRAM
1760 VALUE 40 REINPUT WITH TEXT RETURN-MSG MARK *PRE-POST-FLAG
1770 VALUE 41 REINPUT WITH TEXT RETURN-MSG MARK *PART-NON-FLAG
1780 VALUE 42 REINPUT WITH TEXT RETURN-MSG MARK *CALLNAT-FLAG
1790 VALUE 43 REINPUT WITH TEXT RETURN-MSG MARK *RECBUFF-OPTION
1800 NONE MOVE RETURN-MSG TO MAP-MSG
1810 END-DECIDE
1820 LOOP
1830 RESET FUNCTION
1840 DOEND
1850 ** Loop back up to display the starting screen
1860 LOOP
1870 *******************************
1880 ** Subroutine to retrieve the *
1890 ** trigger information *
1900 *******************************
1910 DEFINE SUBROUTINE GET-TRIGGER
1920 MOVE FUNCTION TO HOLD-FUNCTION /* Go get the existing
1930 MOVE 'DISP' TO FUNCTION /* Trigger Information
1940 MOVE PRE-POST-FLAG TO HOLD-PRE-POST-FLAG
1950 CALLNAT 'TRGMAIN' FUNCTION CALLING-PARMS

149Triggers and Stored Procedures

TRGMAIN: An API To Maintain Triggers

1960 MOVE HOLD-FUNCTION TO FUNCTION
1970 IF RESP NE 0
1980 REINPUT WITH TEXT RETURN-MSG
1990 IF RESP = 0
2000 DO
2010 IF PRE-POST-FLAG NE HOLD-PRE-POST-FLAG
2020 AND HOLD-PRE-POST-FLAG NE ' '
2030 DO
2040 MOVE HOLD-PRE-POST-FLAG TO PRE-POST-FLAG
2050 MOVE 'Trigger does not exist' TO MAP-MSG
2060 IF HOLD-PRE-POST-FLAG = 'Y'
2070 COMPRESS 'Pre-' MAP-MSG INTO MAP-MSG
2080 ELSE COMPRESS 'Post-' MAP-MSG INTO MAP-MSG
2090 MOVE HOLD-FUNCTION TO FUNCTION
2100 ESCAPE TOP
2110 DOEND
2120 IF CMD-TYPE = ' '
2130 MOVE '*' TO CMD-TYPE
2140 DOEND
2150 RETURN
2160 *** End of Subroutine ***
2170 END
2180 ** ↩

Response Codes

MeaningCode

Function completed successfully.000

Invalid file-field entry specified. The triggers facility requires access to a file-field table that maps
long file names to file numbers and field names to Adabas two-character field identifiers. See section
File-Field Tables for more information.

013

No trigger definition found with this criteria.016

Field name must be blank for delete command class.020

Field name not found for this file. The field name specified does not exist in the file-field table for
this file. See section File-Field Tables for more information.

023

Invalid command type. See list above for valid values.025

No field found for this file and command type.027

No trigger found for this file, command, and field criteria.029

Priority must be between 1 and 900.037

Priority cannot be set if Adabas field name is **.038

Natural subprogram name is invalid.039

Specify "Y" for pre-trigger and "N" for post-trigger.040

Trigger type may be "A", "N", or "P" only.041

Triggers and Stored Procedures150

TRGMAIN: An API To Maintain Triggers

MeaningCode

CALLNAT type may be "C", "E", or "N" only.042

Record buffer usage may be "A", "N", or "U" only.043

Invalid parameter combination. No record buffer available with asyncronous triggers.044

Invalid parameter combination. No record buffer available for pre-triggers for read or find commands.045

Invalid parameter combination. No record buffer available for delete commands.046

A trigger already exists for this parameter combination.047

Invalid request. Trigger is already in the specified state.048

Change in trigger state not possible now.052

File name must not be blank.103

Invalid function code.111

TYPE must be temp or perm. The type of activation or deactivation of a trigger must be either
temporary (lasting for this nucleus session only) or permanent.

112

Function resulted in an Adabas response code 22 (ADARSP022) where xxx represents the subcode.1xxx

Non-zero Adabas response code was returned, where xxx is the actual Adabas response code.3xxx

Function not successful. Verify parameters and existing trigger definitions. Contact your Software
AG technical support representative with questions.

9999

151Triggers and Stored Procedures

TRGMAIN: An API To Maintain Triggers

152

VIII TRGUNLD and TRGLOAD Utilities

153

154

10 TRGUNLD and TRGLOAD Utilities

■ Starting a Utility ... 156
■ Utility Parameters .. 158
■ End of Processing Reports .. 161
■ Utility Response Codes ... 165

155

The unload and load utilities for the Adabas triggers and stored procedures facility are part of the
online Trigger Maintenance facility and are run in a Natural environment:

... is used toUtility

unload trigger definitions from the Adabas trigger file and related file-field table entries and
write them to a work file.

TRGUNLD

load trigger definitions and related file-field tables from the TRGUNLD work file into the
trigger file.

TRGLOAD

The work file for TRGUNLD is a Natural work file (work file 1) that is defined either

■ in the batch job; or
■ to the Natural environment where the unload utility is running.

The TRGUNLD work file is used as input to the TRGLOAD utility.

A report is prepared at the end of the unload or load summarizing the triggers processed.

Starting a Utility

To invoke a utility:

■ Issue the name of the utility (TRGUNLD or TRGLOAD) as a command, optionally followed
by a parameter list.

Parameters are used to limit the triggers to be processed.

Individual parameter values must be separated by the input delimiter (ID): the default is a
comma ",". The input-mode parameter IM should be set to delimiter mode IM=D.

When executing a utility as a batch job, the batch job must log on to the SYSTRG library before
executing the selected utility and its parameter list.

TRGUNLD

If the TRGULND utility is invoked from the command line in the online system without a para-
meter list, the following window is presented:

Triggers and Stored Procedures156

TRGUNLD and TRGLOAD Utilities

17:51:42 ***** A D A B A S TRIGGER MAINTENANCE ***** YYYY-MM-DD
User

|--|
| 17:51:46 **** A D A B A S TRIGGER MAINTENANCE **** YYYY-MM-DD |
| ----------------- Trigger Unload Utility ------------------- |
| |
| Specify the following information to identify |
| the Triggers to be unloaded to Work File 1: |
| |
| File Name ________________________________ |
| Field ________________________________ |
| Pre-triggers .. ____ |
| Command Type .. __ |
| Active State .. _ |
| Trigger Type .. _ |
| |
Use 'PF3' to cancel or hit Enter' when ready

Command ==> trgunld
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Field Trigr Admin Procs FTRG FDIC Canc

Enter values for the parameters as needed to limit the trigger definitions being unloaded. Any
parameters left blank assume the default values.

If no parameters are specified for TRGUNLD, all triggers on the trigger file are unloaded and the
related file-field table entries as well.

TRGLOAD

If the TRGLOAD utility is invoked from the command line in the online system without a para-
meter list, the following window is presented:

157Triggers and Stored Procedures

TRGUNLD and TRGLOAD Utilities

18:13:43 ***** A D A B A S TRIGGER MAINTENANCE ***** YYYY-MM-DD
User DBAU |---|nr 105

| |
| --------------- Trigger Load Utility ------------- |
| |
| Specify the following information to identify |
| the Triggers to be loaded from Work File 1: |
| |
| File ________________________________ |
| Field ________________________________ |
| Replace ... ___ |
| With FFT .. ___ |
| |
| Use 'PF3' to cancel or hit Enter' when ready |

Command ==> trgload
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Field Trigr Admin Procs FTRG FDIC Canc

If no parameters are specified for TRGLOAD, all triggers and file-field table entries found on the
TRGUNLD work file are loaded into the trigger file.

Utility Parameters

Wildcard Notation

The following "wildcard" or special character notation can be used in values specified for FILE
and FIELD parameters discussed in the following sections for each utility:

Load triggers with file or field names...ExampleCharacter

that start with "PERS"PERS**

that have a value greater than "PERS"PERS>>

that have a value less than "PERS"PERS<<

Triggers and Stored Procedures158

TRGUNLD and TRGLOAD Utilities

TRGUNLD Parameters

The following parameters are available to limit the triggers unloaded from the trigger file into the
work file during TRGUNLD processing (the default value for each parameter is "*" to include all
possibilities):

DescriptionParameter

FILE Name of a file found in the trigger definition. Valid values are

a file name ("wildcard" notation allowed)

all files (the default)*

FIELD Name of a field found in the trigger definition. Valid values are

a field name ("wildcard" notation allowed)

all fields (the default)*

PRE Specifies pre-trigger or post-trigger. Valid values are

pre-triggerY

post-triggerN

both*

CMD Command type that causes trigger to fire. Valid values are

readR

findF

insertI

updateU

deleteD

all command types (the default)*

ACT State of the trigger to be processed. Valid values are

activeA

not active (deactivated)D

both*

TYPE Type of participation of trigger in user's ET logic. Valid values are

asynchronousA

non-participatingN

participatingP

all participation types*

159Triggers and Stored Procedures

TRGUNLD and TRGLOAD Utilities

TRGUNLD Parameter Examples

TRGUNLD FILE=EMPLOYEES

Specifying the FILE parameter limits the triggers unloaded to those defined for the specified file,
in this case the EMPLOYEES file.

TRGUNLD FILE=VEHICLES,PRE=Y,ACT=A,TYPE=N

Combining parameters further limits the triggers unloaded. In this case, only active, non-particip-
ating pre-triggers defined for the VEHICLES file are unloaded. Note that the parameters must be
separated by the input delimiter as specified in the ID parameter in the Natural environment.

TRGLOAD Parameters

The following parameters are available to limit the triggers loaded from the TRGUNLD work file
to the trigger file during TRGLOAD processing:

DescriptionParameter

FILE Name of a file found in the trigger definition. Valid values are

a file name ("wildcard" notation allowed)

all files (the default)*

FIELD Name of a field found in the trigger definition. Valid values are

a field name ("wildcard" notation allowed)

all fields (the default)*

FFT Request that the file-field table entry found on the TRGUNLD input data set be loaded with
the trigger. Valid values are

yes (the default)Y

noN

REPLACE Request that a trigger definition being loaded that already exists on the database replace the
old one. Valid values are

yes: replace the existing definition with the new oneY

no (the default): do not replace the existing definition and
return an error message

N

Triggers and Stored Procedures160

TRGUNLD and TRGLOAD Utilities

TRGLOAD Parameter Examples

TRGLOAD FILE=EMP*

Load into the trigger file all file-field table entries and triggers found on the TRGUNLD input
work file for files starting with "EMP".

TRGLOAD FFT=N,REPLACE=Y

Ignore any file-field table entries read from the work file. If any trigger definition read from the
work file has the same specifications as an existing trigger definition, replace the existing definition
with the definition from the work file.

End of Processing Reports

Unload Report (TRGUNLD)

A report is written out at the end of the unload process stating the number of trigger definitions
and the number of file-field table entries unloaded.

Example

The first page of the report indicates the source file and database for unloading the triggers and
summarizes the selection criteria. Following this is a list of each record being unloaded into the
work file:

18:12:00 ***** TRIGGERS UNLOAD UTILITY ***** YYYY-MM-DD
DBAUSER
Unloading from Trigger File 12 on Database 105
Rec File Details
--- ----- ---
Unloading Pre and Post Triggers for file(s) *
and field name(s) * for all command types

FFT 45 ZB-FIELD (ZB,2,A)
FFT 45 ZF-FIELD (ZF,2,A)
FFT 45 ZZ-FIELD (ZZ,4,P)
TRG 45 CMD=R FLD=ZB PRTY=01 PGM=RBEGIMU PRE=S TYP=P PRM=C RB=U
GRP 4 Group Record
FFT 4 ADDRESS-LINE (AI,20,A)
FFT 4 AREA-CODE (AN,6,A)
FFT 4 BIRTH (AH,6,U)
.
.
.

161Triggers and Stored Procedures

TRGUNLD and TRGLOAD Utilities

The end of the report lists a summary count of records written to the work file. The physical work
file written includes these records plus two additional records used for internal purposes.

18:13:04 ***** TRIGGERS UNLOAD UTILITY ***** YYYY-MM-DD
DBAUSER
Unloading from Trigger File 12 on Database 105
Rec File Details
--- ----- ---
FFT 7 NA-FIELD (NA,40,A)
FFT 7 NT-SUPER (NT,110,A)
FFT 7 TI-FIELD (TI,70,A)
FFT 7 TY-FIELD (TY,10,A)
TRG 7 CMD=R FLD=** PRTY=90 PGM=NACNN200 PRE=S TYP=A PRM=C RB=N

Total records written to Work File 1

File-Field Table Entries: ... 141
Group Control Records: 2
Trigger Definitions: 13

Total Records: 156

*** TRGUNLD completed successfully. ***

The final page of the report summarizes the triggers unloaded by categories. This report is useful
for cross-checking with the TRGLOAD utility.

**** Trigger Unload Statistics ****

Number of Triggers Unloaded by Categories

Pre or Post : Pre: 7
Post: 6

Trigger Type: Asynchronous: 6
Participating: 3

Non-Participating: 4

Command Type: READ: 6
FIND: 0

INSERT: 0
DELETE: 2
UPDATE: 1
ANY: 4

Field Criteria: *ANY*: 4
Specific: 9

Triggers and Stored Procedures162

TRGUNLD and TRGLOAD Utilities

Load Report (TRGLOAD)

A report is written at the end of the unload process, stating the number of trigger definitions and
the number of file-field table entries loaded.

Example

The first page of the report indicates the target database for loading the triggers, the source database
where the work file was created, and a summary of the selection criteria. Following this is a list
of each record being loaded into the work file.

20:05:05 ***** TRIGGERS LOAD UTILITY ***** YYYY-MM-DD
DBAUSER
Rec File Details
--- ----- ---

Loading Trigger Definitions into database 106 file 14
from data set unloaded from database 105 file 12
created on 1999-07-26 20:04 from version 711

FFT 50 AA-FIELD (AA,8,A)
FFT 50 AC-FIELD (AC,20,A)
FFT 50 AD-FIELD (AD,20,A)
FFT 50 AE-FIELD (AE,20,A)
FFT 50 AF-FIELD (AF,1,A)
FFT 50 AG-FIELD (AG,1,A)
FFT 50 AH-FIELD (AH,6,U)
FFT 50 AI-FIELD (AI,20,A)
FFT 50 AJ-FIELD (AJ,20,A)
FFT 50 AK-FIELD (AK,10,A)
.
.
.

The end of the report lists a summary count of records read from the work file and how they were
loaded into the database.

163Triggers and Stored Procedures

TRGUNLD and TRGLOAD Utilities

20:08:43 ***** TRIGGERS LOAD UTILITY ***** YYYY-MM-DD
DBAUSER
Rec File Details
--- ----- ---
TRG 5 CMD=R FLD=AA PGM=CAROL PRE=P TYP=A PRM=C RB=N

Total records loaded from Work File 1

File-Field Table Entries: ... 109
Group Control Records: 1
Trigger Definitions: 65

Total Records Loaded: 175
Records found with errors ... 0
Total Records Read: 178

*** TRGLOAD completed successfully. ***

The final page of the report summarizes the triggers loaded by categories. This report is useful
for cross-checking with the TRGUNLD utility.

******* Trigger Load Statistics *******

Number of Triggers Loaded by Categories

Pre or Post : Pre: 34
Post: 31

Trigger Type: Asynchronous: 23
Participating: 32

Non-Participating: 10

Command Type: READ: 25
FIND: 6

INSERT: 14
DELETE: 2
UPDATE: 3
ANY: 15

Field Criteria: *ANY*: 19
Specific: 46

Triggers and Stored Procedures164

TRGUNLD and TRGLOAD Utilities

Utility Response Codes

MeaningCode

Function completed successfully.000

Invalid file-field table entry specified. Triggers requires access to a file-field table that maps long
file names to file numbers and field names to Adabas two-character field identifiers. See section
File-Field Tables for more information.

013

No trigger definition found with this criteria.016

Field name not found for this file. The field name specified does not exist in the file-field table for
this file. See section File-Field Tables for more information.

023

Invalid command type. See list above for valid values.025

No field found for this file and command type.027

No trigger found for this file, command, and field criteria.029

Natural subprogram name is invalid.039

Trigger type may be "A", "N", or "P" only.041

CALLNAT type may be "C", "E", or "N" only.042

Record buffer usage may be "A", "N", or "U" only.043

Trigger already exists with this criteria.047

File name must not be blank.103

File-field table entry already exists for file.110

Function resulted in an Adabas response code 22 (ADARSP022) where "xxx" represents the subcode.1xxx

Nonzero Adabas response code was returned, where "xxx" is the actual Adabas response code.3xxx

Function not successful. Verify parameters and existing trigger definitions. For more information,
contact your Software AG technical support representative.

9999

165Triggers and Stored Procedures

TRGUNLD and TRGLOAD Utilities

166

A Examples

■ SAMPINT1 ... 169
■ SAMPPRC1 ... 172
■ SAMPP001 .. 173
■ STPLCB .. 177
■ STPLCBE .. 178
■ STPLRBE .. 180
■ STPUTPRM ... 181
■ STPUTRAK .. 182
■ STPAPARM .. 185
■ STPAPRM1 .. 186
■ STPXPARM .. 186
■ SAMP0001 ... 187
■ SAMP0002 ... 192
■ SAMP0003 ... 195
■ SAMP0004 ... 198
■ SAMP0005 ... 200
■ SAMPREF1 .. 203
■ SAMPREF2 .. 205

167

This document contains the example programs and data areas listed in the following table. Source
code is provided during the installation procedure and is located in the library SYSSPT.

See Examples for stored procedure link routines STPLNK01, STPLNK02, and STPLNK03.

DescriptionName

This program issues a command that results in a trigger being fired and performs additional
processing whenever an update or store record is written for a specific file.

SAMPINT1

A stored procedure version of SAMPINT1. Data is passed as a parameter and information
extracted from this parameter is returned.

SAMPPRC1

A stored procedure invoked from SAMPPRC1. It uses information from the input parameter
to extract and create additional information to be returned to the caller.

SAMPP001

An Adabas ACB control block layout used as a local data area (LDA) in example routines
such as STPLNK02 and STPLNK03.

STPLCB

An Adabas ACBX control block layout used as a local data area (LDA)STPLCBE

An example layout of the parameter data area (PDA) that must be used when the record
buffer extraction routine (STPRBE) is called.

STPLRBE

An example of the parameter data area passed to the subprogram STPUTRAK.STPUTPRM

The routine invoked by the Natural trigger driver when a request is received to execute a
procedure. The routine is called only if the log trigger activity option in the Trigger
Maintenance profile is set to `active'. The name of this routine must not be changed.

STPUTRAK

An example layout of the parameter data area (PDA) that is passed from the Natural trigger
driver when a procedure is invoked.

STPAPARM

An example layout of the parameter data area (PDA) that is passed from the Natural trigger
driver when a procedure is being invoked and STPUTRAK has requested that extended

STPAPRM1

information also be passed. The extended area length is 250 bytes. It is maintained as part
of the trigger driver's global data area (GDA) and is kept intact across each invocation of a
procedure by the trigger driver.

The procedure that is invoked as the result of a trigger being fired for the commands
originating from SAMPINT1.

SAMP0001

The procedure invoked for any command issued to the CONTACTS file, which is used as
an example file in the SAMPINT1 program. The procedure audits all commands by writing
a message to CMPRINT and creating a log record on the audit file.

SAMP0002

Like SAMP0002, this procedure audits commands issued to the CONTACTS file; however,
it audits only participating commands.

SAMP0003

The procedure invoked through the execution of the SAMPREF1 routine for any deletes to
the VEHICLES file. The example application is for referential logic type Restrict.

SAMP0004

The procedure invoked through the execution of the SAMPREF2 routine for any updates
to the EMPLOYEES file. This is an example of referential integrity type Cascade.

SAMP0005

This routine issues commands to invoke triggers that will perform some Referential integrity
validation of the VEHICLES file. The associated procedure is SAMP0004, which performs
Restrict checking on the records being deleted.

SAMPREF1

Triggers and Stored Procedures168

Examples

DescriptionName

This routine issues commands to invoke triggers that will perform some Referential integrity
checking for updates to the primary key on the EMPLOYEES file. The associated procedure

SAMPREF2

is SAMP0005, which cascades any updates to the primary key to the foreign keys on the
VEHICLES and MISCELLANEOUS files.

SAMPINT1

0010 **
0020 * Application: Adabas Triggers
0030 * Program: SAMPINT1
0040 * Function: Routine to add names to file (CONTACTS). A trigger
0050 * will be established to perform additional processing
0060 * whenever the name is updated or added.
0070 * Trigger Defn: The definition on the trigger file (one for an update
0080 * and one for the STORE/INSERT) is as follows:
0090 * File Number 11
0100 * File Name CONTACTS
0110 * Command Type Update + Insert
0120 * Long Field Name ... CONTACT-NAME
0130 * Adabas Field LE
0140 * Field Prty/Seq 10_
0150 * Procedure Information
0160 * Name (Subpgm)...... SAMP0001
0170 * Pre Cmd Select Y (Pre)
0180 * Trigger Type P (Participating)
0190 * CALLNAT Params C (Cntl Info + Resp)
0200 * RecBuffer Access .. U (May be Updated)
0210 *
0220 * NOTE: An additional trigger also exists for this file
0230 * whereby any commands to the file will result in a
0240 * trigger being fired. This definition is:
0250 *
0260 * File Number 11
0270 * File Name CONTACTS
0280 * Command Type ** All Command **
0290 * Long Field Name ... ** Any Field **
0300 * Adabas Field **
0310 * Field Prty/Seq ___
0320 * Procedure Information
0330 * Name (Subpgm)...... SAMP0002
0340 * Pre Cmd Select Y (Pre)
0350 * Trigger Type A (Asynchronous)
0360 * CALLNAT Params C (Cntl Info + Resp)
0370 * RecBuffer Access .. N (No RecBuff Access)
0380 *
0390 * Author: Adabas Development

169Triggers and Stored Procedures

Examples

0400 * Date: December 1995
0410 **
0420 DEFINE DATA LOCAL
0430 01 #NAME (A60)
0440 01 RESP (N4)
0450 01 CONTACTS VIEW OF CONTACTS /* file 11 for this example
0460 02 CONTACT-NAME /* field LE,A,60,NU,DE
0470 02 CONTACT-UPPER /* field LO,A,60,NU,DE
0480 02 KEYWORDS (20) /* field LM,A,20,NU,MU
0490 END-DEFINE
0500 *
0510 REPEAT
0520 *
0530 INPUT (AD=WMIL'_' CD=NE)
0540 'Trigger Example for Data Consistancy' (YEI)
0550 // 'Name ...' (TU) #NAME
0560 *
0570 IF #NAME = MASK('.') /* exit?
0580 STOP /* yes
0590 IF #NAME = ' ' /* name must be specified
0600 REINPUT 'Invalid Name specified'
0610 *
0620 FIND CONTACTS WITH CONTACT-NAME = #NAME /* Find the name
0630 IF NO RECORDS FOUND /* does it exist?
0640 DO /* no, so we should add it
0650 *
0660 * Although only the CONTACT-NAME is being added, the other fields to
0670 * be used in the Store are included. In this way, the format buffer
0680 * and record buffer have reference to these files, since this example
0690 * results in a pre-trigger that sets the values in these fields.
0700 * Of course a post-trigger would also have worked; however, it would
0710 * have been necessary for the procedure to do an additional read and
0720 * update of the record. In this example, better performance is
0730 * achieved with a pre-trigger.
0740 *
0750 RESET CONTACT-UPPER KEYWORDS(*)
0760 MOVE #NAME TO CONTACT-NAME /* move value into view
0770 *
0780 STORE CONTACTS /* insert the new record on the file
0790 END TRANSACTION /* and commit the transaction
0800 IF *ISN(0780) = 0 /* we can check that a new ISN exists
0810 DO
0820 WRITE 'Store was unsuccessful' *ISN(0780)
0830 ESCAPE BOTTOM
0840 DOEND
0850 GET CONTACTS *ISN(0780) /* now we refresh the record buffer
0860 INPUT (AD=O CD=TU) /* and show the results of the Store
0870 '*** Results ***' (YEI)
0880 / 'Name' (GRI) CONTACT-NAME
0890 / 'Upper' (GR) CONTACT-UPPER
0900 / 'Keywords ..' (GR) KEYWORDS (1:3)
0910 / ' ' KEYWORDS (4:6)

Triggers and Stored Procedures170

Examples

0920 / ' ' KEYWORDS (7:9)
0930 / ' ' KEYWORDS (10:12)
0940 / ' ' KEYWORDS (13:15)
0950 / ' ' KEYWORDS (16:18)
0960 / ' ' KEYWORDS (19:20)
0970 ESCAPE BOTTOM /* and exit the Add Record logic
0980 DOEND
0990 SET KEY PF3 PF5 /* activate a couple of PF-keys
1000 INPUT (AD=O CD=TU) /* allow the name to be changed
1010 '*** Make required Changes and PRESS PF5 to Update:' (YEI)
1020 / 'Name' (TU) CONTACT-NAME (AD=WMIL'_' CD=NE)
1030 / 'Upper' (TU) CONTACT-UPPER
1040 / 'Keywords ..' (TU) KEYWORDS (1:3)
1050 / ' ' KEYWORDS (4:6)
1060 / ' ' KEYWORDS (7:9)
1070 / ' ' KEYWORDS (10:12)
1080 / ' ' KEYWORDS (13:15)
1090 / ' ' KEYWORDS (16:18)
1100 / ' ' KEYWORDS (19:20)
1110 IF *PF-KEY = 'PF5'
1120 DO
1130 UPDATE(0620) /* do the modification
1140 GET CONTACTS *ISN(0620) /* now we refresh the record buffer
1150 INPUT (AD=O CD=TU) /* and show the results of the update
1160 '*** Results of the Update ***' (YEI)
1170 / 'Name' (GRI) CONTACT-NAME
1180 / 'Upper' (GR) CONTACT-UPPER
1190 / 'Keywords ..' (GR) KEYWORDS (1:3)
1200 / ' ' KEYWORDS (4:6)
1210 / ' ' KEYWORDS (7:9)
1220 / ' ' KEYWORDS (10:12)
1230 / ' ' KEYWORDS (13:15)
1240 / ' ' KEYWORDS (16:18)
1250 / ' ' KEYWORDS (19:20)
1260 MOVE CONTACT-NAME TO #NAME /* and reset the name
1270 ESCAPE BOTTOM /* and exit the Update Record logic
1280 DOEND
1290 ESCAPE BOTTOM /* no update done
1300 CLOSE LOOP(0620)
1310 END TRANSACTION /* my job is to confirm and release
1320 CLOSE LOOP(0510)
1330 *
1340 END

171Triggers and Stored Procedures

Examples

SAMPPRC1

0010 **
0020 * Application: Adabas Stored Procedures
0030 * Program: SAMPPRC1
0040 * Function: Routine to input a name and then invoke a stored
0050 * procedure to populate additional fields based on the
0060 * name passed.
0070 *
0080 * Author: Adabas Development
0090 * Date: December 1995
0100 **
0110 DEFINE DATA LOCAL
0120 01 #NAME (A60)
0130 01 RESP (N4)
0140 01 CONTACTS-INFORMATION /* could be a file
0150 02 CONTACT-NAME (A60)
0160 02 REDEFINE CONTACT-NAME
0170 03 PARM1 (A1/60)
0180 02 CONTACT-UPPER (A60)
0190 02 REDEFINE CONTACT-UPPER
0200 03 PARM2 (A1/60)
0210 02 KEYWORDS (A20/1:20)
0220 02 REDEFINE KEYWORDS
0230 03 PARM3 (A1/400)
0240 01 LINK-ROUTINE-PARMS /* parameters for the link routine
0250 02 P-FUNC (A1)
0260 02 P-PROC (A8) /* SAMP0001
0270 02 P-OPTIONS (A8) /* 'PCU'
0280 02 P-LEN (P3/5) /* lengths for the parameters
0290 02 P-MSG (A72) /* response message
0300 02 P-RESP (N4) /* response code
0310 END-DEFINE
0320 *
0330 MOVE '2' TO P-FUNC /* function....not relevant for this
0340 MOVE 'SAMPP001' TO P-PROC /* procedure name
0350 MOVE 'NCU' TO P-OPTIONS /* non-partic + ctrl parms + upd RB
0360 MOVE 60 TO P-LEN(1) P-LEN(2)
0370 MOVE 200 TO P-LEN(3)
0380 MOVE 100 TO P-LEN(4) P-LEN(5)
0390 RESET P-MSG P-RESP
0400 *
0410 REPEAT
0420 *
0430 * In this example, the routine prompts the end user for an organization
0440 * name and in response, extracts some keywords from the value.
0450 * This is similar to SAMPINT1 (except that no file is being used) and
0460 * is a possible alternative to it.

Triggers and Stored Procedures172

Examples

0470 *
0480 INPUT (AD=WMIL'_' CD=NE)
0490 'Stored Procedure Example for Data Consistency' (YEI)
0500 // 'Name ...' (TU) #NAME
0510 *
0520 IF #NAME = MASK('.') /* exit?
0530 STOP /* yes
0540 IF #NAME = ' ' /* name must be specified
0550 REINPUT 'Invalid Name specified'
0560 *
0570 RESET CONTACT-UPPER KEYWORDS(*)
0580 MOVE #NAME TO CONTACT-NAME /* move value into view
0590 *
0600 CALLNAT 'STPLNK03' P-FUNC P-PROC P-OPTIONS P-LEN(1) PARM1(1:60)
0610 P-LEN(2) PARM2(1:60) P-LEN(3) PARM3(1:200)
0620 P-LEN(4) PARM3(201:300) P-LEN(5) PARM3(301:400)
0630 P-MSG P-RESP
0640 *
0650 INPUT (AD=O CD=TU) /* and show the results of the Store
0660 '*** Results ***' (YEI)
0670 / 'Name' (GRI) CONTACT-NAME
0680 / 'Upper' (GR) CONTACT-UPPER
0690 / 'Keywords ..' (GR) KEYWORDS (1:3)
0700 / ' ' KEYWORDS (4:6)
0710 / ' ' KEYWORDS (7:9)
0720 / ' ' KEYWORDS (10:12)
0730 / ' ' KEYWORDS (13:15)
0740 / ' ' KEYWORDS (16:18)
0750 / ' ' KEYWORDS (19:20)
0760 *
0770 CLOSE LOOP(0410)
0780 *
0790 END
 ↩

SAMPP001

0010 **
0020 * Application: Adabas Stored Procedures
0030 * Subprogram : SAMPP001
0040 * Author : Adabas Development
0050 * Date : August 1995
0060 * Function : Sample routine of processing by a procedure
0070 * Remarks : This routine converts a name into uppercase and extracts
0080 * all the keywords associated with it. Once processing is
0090 * completed, control is returned to the caller.
0100 *
0110 * Parameter RESP must be set to zero if processing is

173Triggers and Stored Procedures

Examples

0120 * successful.
0130 *
0140 * Parameters : Name1 (A60)
0150 * Name2 (A60)
0160 * Keyword(A20/01:10)
0170 * Keyword(A20/11:15)
0180 * Keyword(A20/16:20)
0190 *
0200 * Rec Buffer : The record buffer will be available for update via a
0210 * CALL to the external routine STPRBE.
0220 *
0230 **
0240 DEFINE DATA PARAMETER USING STPAPARM
0250 LOCAL USING STPLRBE /* parms for the Call routine
0260 LOCAL
0270 01 REC-BUFFER(A20/1:26) /* max rec buffer passed to STPRBE
0280 01 REDEFINE REC-BUFFER /* redefine this to get the def.
0290 02 INPUT-NAME (A60)
0300 02 OUTPUT-NAME (A60)
0310 02 KEYWORDS(A20/1:20)
0320 01 FUNC (A4)
0330 01 SUB (I2)
0340 01 SUB1 (I2)
0350 01 SUB2 (I2)
0360 01 W-UPPER (A61)
0370 01 REDEFINE W-UPPER
0380 02 #UPPER (A60)
0390 02 REDEFINE #UPPER
0400 03 CHAR (A1/1:60)
0410 01 #KEYS (A40/1:20)
0420 END-DEFINE
0430 *
0440 * Option below is to audit any procedure activity.
0450 *
0460 * CALLNAT 'SAMP0002' REQ-AREA RESP
0470 *
0480 * Since the record buffer information is available to us, we can
0490 * now call the record buffer extraction routine (STPRBE) to obtain
0500 * the contents of the buffer.
0510 *
0520 * Function 'GR' -- GET RB Value using RB offset + length
0530 * This enables the caller to obtain information based on a
0540 * certain location; hence, RBE-OFFSET specifies the start
0550 * position, and RBE-LENGTH specifies the length.
0560 *
0570 MOVE 1 TO RBE-OFFSET /* start at the beginning
0580 MOVE 520 TO RBE-LENGTH /* for a max length of 520 bytes
0590 MOVE 'GR' TO FUNC
0600 CALL 'STPRBE' 'GR' RBE-AREA REC-BUFFER(1)
0610 IF RBE-RESP NE 0
0620 PRINT *PROGRAM 'received an error from the STPRBE routine. Error:'
0630 RBE-ERROR 'subcode' RBE-SUBCODE 'for func GR'

Triggers and Stored Procedures174

Examples

0640 MOVE RBE-RESP TO RESP
0650 ESCAPE ROUTINE
0660 END-IF
0670 * PERFORM PRINT-REC-BUFFER /* option to print the parms
0680 *
0690 * Change all lowercase to UPPERcase
0700 *
0710 MOVE INPUT-NAME TO #UPPER
0720 *
0730 EXAMINE #UPPER AND TRANSLATE INTO UPPER CASE
0740 *
0750 MOVE #UPPER TO OUTPUT-NAME /* save the uppercase name
0760 *
0770 FOR SUB 1 60 /* loop to remove all special chars.
0780 IF CHAR(SUB) = MASK(S)
0790 MOVE ' ' TO CHAR(SUB)
0800 ESCAPE TOP
0810 END-IF
0820 END-FOR
0830 *
0840 * We are now ready to extract keywords from our name. This sample is
0850 * very basic and may be made as complex as required.
0860 * This routine assumes a max. length of 20 and a max. num. of 20 keywords
0870 *
0880 EXAMINE FULL W-UPPER FOR FULL ' A ' REPLACE ' '
0890 EXAMINE FULL W-UPPER FOR FULL ' AND ' REPLACE ' '
0900 EXAMINE FULL W-UPPER FOR FULL ' AS ' REPLACE ' '
0910 EXAMINE FULL W-UPPER FOR FULL ' AT ' REPLACE ' '
0920 EXAMINE FULL W-UPPER FOR FULL ' ARE ' REPLACE ' '
0930 EXAMINE FULL W-UPPER FOR FULL ' BE ' REPLACE ' '
0940 EXAMINE FULL W-UPPER FOR FULL ' DO ' REPLACE ' '
0950 EXAMINE FULL W-UPPER FOR FULL ' FOR ' REPLACE ' '
0960 EXAMINE FULL W-UPPER FOR FULL ' HERE ' REPLACE ' '
0970 EXAMINE FULL W-UPPER FOR FULL ' IF ' REPLACE ' '
0980 EXAMINE FULL W-UPPER FOR FULL ' IN ' REPLACE ' '
0990 EXAMINE FULL W-UPPER FOR FULL ' IS ' REPLACE ' '
1000 EXAMINE FULL W-UPPER FOR FULL ' IT ' REPLACE ' '
1010 EXAMINE FULL W-UPPER FOR FULL ' OF ' REPLACE ' '
1020 EXAMINE FULL W-UPPER FOR FULL ' ON ' REPLACE ' '
1030 EXAMINE FULL W-UPPER FOR FULL ' OR ' REPLACE ' '
1040 EXAMINE FULL W-UPPER FOR FULL ' TO ' REPLACE ' '
1050 EXAMINE FULL W-UPPER FOR FULL ' THE ' REPLACE ' '
1060 EXAMINE FULL W-UPPER FOR FULL ' TOO ' REPLACE ' '
1070 EXAMINE FULL W-UPPER FOR FULL ' WAS ' REPLACE ' '
1080 EXAMINE FULL W-UPPER FOR FULL ' WITH ' REPLACE ' '
1090 EXAMINE #UPPER FOR FULL ' ' REPLACE ',' /* put delimiters in the string
1100 *
1110 RESET KEYWORDS(*)
1120 STACK TOP DATA #UPPER /* now we will separate each word
1130 INPUT (AD=I IP=ON) #KEYS(01:03) / #KEYS(04:06) / #KEYS(07:09)
1140 / #KEYS(10:12) /* #KEYS(13:15) / #KEYS(16:18)
1150 / #KEYS(19:20)

175Triggers and Stored Procedures

Examples

1160 *
1170 MOVE 1 TO SUB2
1180 MOVE #KEYS(1) TO KEYWORDS(1)
1190 FOR SUB 2 20 /* now we remove all duplicates
1200 FOR SUB1 1 SUB
1210 IF #KEYS(SUB) = KEYWORDS(SUB1)
1220 RESET #KEYS(SUB)
1230 END-IF
1240 END-FOR
1250 IF #KEYS(SUB) NE ' '
1260 ADD 1 TO SUB2
1270 MOVE #KEYS(SUB) TO KEYWORDS(SUB2) /* and finally save the value
1280 END-IF
1290 END-FOR
1300 *
1310 * Function 'UR' -- Update RB value using RB offset + length
1320 * This enables the caller to change information based on a
1330 * certain location; hence, RBE-OFFSET specifies the start
1340 * position and RBE-LENGTH specified the length.
1350 *
1360 * PERFORM PRINT-REC-BUFFER /* print the final results
1370 MOVE 1 TO RBE-OFFSET /* start at the beginning
1380 MOVE 520 TO RBE-LENGTH /* for a max. length of 520 bytes
1390 MOVE 'UR' TO FUNC /* req to update all changes
1400 CALL 'STPRBE' 'UR' RBE-AREA REC-BUFFER(1)
1410 IF RBE-RESP NE 0
1420 PRINT *PROGRAM 'received an error from the STPRBE routine. Error:'
1430 RBE-ERROR 'subcode' RBE-SUBCODE 'for func UR'
1440 MOVE RBE-RESP TO RESP
1450 ESCAPE ROUTINE
1460 END-IF
1470 *
1480 * Return to the caller: everything went okay
1490 *
1500 ESCAPE ROUTINE
1510 *
1520 DEFINE SUBROUTINE PRINT-REC-BUFFER
1530 *--*
1540 *
1550 * For testing purposes, display the information returned from STPRBE
1560 * This routine assumes a maximum of three subsystems running.
1570 *
1580 *--*
1590 DECIDE ON FIRST VALUE OF RQ-TASK
1600 VALUE '01'
1610 WRITE (1) NOTITLE NOHDR (AD=L CD=TU)
1620 '**** RECORD BUFFER EXTRACTION: Function' FUNC '****'
1630 'Stored Procedure RBE' *PROGRAM '****'
1640 / ' Field Info' (TU) RBE-FIELD-NAME RBE-FORMAT RBE-LENGTH
1650 / '' (TU) RBE-ADA-FIELD RBE-FIELD-OCC
1660 / ' Resp + Error ..' (TU) RBE-RESP RBE-ERROR '<<<<<'
1670 / ' Message' (TU) RBE-MSG(AL=60)

Triggers and Stored Procedures176

Examples

1680 / ' Rec Buffer' (TU) / REC-BUFFER(1)(AL=79)
1690 / '* '
1700 VALUE '02'
1710 WRITE (2) NOTITLE NOHDR (AD=L CD=TU)
1720 '**** RECORD BUFFER EXTRACTION: Function' FUNC '****'
1730 'Stored Procedure RBE' *PROGRAM '****'
1740 / ' Field Info' (TU) RBE-FIELD-NAME RBE-FORMAT RBE-LENGTH
1750 / '' (TU) RBE-ADA-FIELD RBE-FIELD-OCC
1760 / ' Resp + Error ..' (TU) RBE-RESP RBE-ERROR '<<<<<'
1770 / ' Message' (TU) RBE-MSG(AL=60)
1780 / ' Rec Buffer' (TU) / REC-BUFFER(1)(AL=79)
1790 / '* '
1800 VALUE '03'
1810 WRITE (3) NOTITLE NOHDR (AD=L CD=TU)
1820 '**** RECORD BUFFER EXTRACTION: Function' FUNC '****'
1830 'Stored Procedure RBE' *PROGRAM '****'
1840 / ' Field Info' (TU) RBE-FIELD-NAME RBE-FORMAT RBE-LENGTH
1850 / '' (TU) RBE-ADA-FIELD RBE-FIELD-OCC
1860 / ' Resp + Error ..' (TU) RBE-RESP RBE-ERROR '<<<<<'
1870 / ' Message' (TU) RBE-MSG(AL=60)
1880 / ' Rec Buffer' (TU) / REC-BUFFER(1)(AL=79)
1890 / '* '
1900 NONE
1910 WRITE NOTITLE NOHDR (AD=L CD=TU)
1920 '**** RECORD BUFFER EXTRACTION: Function' FUNC '****'
1930 'Stored Procedure RBE' *PROGRAM '****'
1940 / ' Field Info' (TU) RBE-FIELD-NAME RBE-FORMAT RBE-LENGTH
1950 / '' (TU) RBE-ADA-FIELD RBE-FIELD-OCC
1960 / ' Resp + Error ..' (TU) RBE-RESP RBE-ERROR '<<<<<'
1970 / ' Message' (TU) RBE-MSG(AL=60)
1980 / ' Rec Buffer' (TU) / REC-BUFFER(1)(AL=79)
1990 / '* '
2000 END-DECIDE
2010 *
2020 END-SUBROUTINE
2030 *
2040 END

STPLCB

0010 ***
0020 **
0030 **Local data area 'STPLCB'
0040 **describes Adabas control block
0050 **
0060 ***
0070 DEFINE DATA LOCAL
0080 1 CB (B80)

177Triggers and Stored Procedures

Examples

0090 1 REDEFINE CB
0100 2 CB-DSECT /* ACB definition
0110 3 CB-CALL-TYPE(B1)
0120 3 CB-HOST-ID (B1)
0130 2 CB-CMD (A2) /* command code
0140 2 CB-CID (A4) /* command ID
0150 2 CB-FILE (B2) /* file number
0160 2 REDEFINE CB-FILE
0170 3 CB-DBID (B1) /* one-byte DBNR
0180 3 CB-FNR (B1) /* one-byte FNR
0190 2 CB-RSP (B2) /* response code
0200 2 CB-ISN(B4) /* ISN value
0210 2 CB-ISLL(B4) /* ISN lower limit
0220 2 CB-ISQ(B4) /* ISN quantity
0230 2 CB-FBL(B2) /* format buffer length
0240 2 CB-RBL(B2) /* record buffer length
0250 2 CB-SBL(B2) /* search buffer length
0260 2 CB-VBL(B2) /* value buffer length
0270 2 CB-IBL(B2) /* ISN buffer length
0280 2 CB-CO1(A1) /* command option 1
0290 2 CB-CO2(A1) /* command option 2
0300 2 CB-ADD1(A8) /* additions 1
0310 2 CB-ADD2(A4) /* additions 2
0320 2 CB-ADD3(A8) /* additions 3
0330 2 CB-ADD4(A8) /* additions 4
0340 2 CB-ADD5(A8) /* additions 5, reserved
0350 2 CB-CT(B4) /* command time
0360 2 CB-UA(B4) /* user area
0370 ***
0380 ******* END OF LOCAL DATA AREA **
0390 ***

STPLCBE

0010 * * ******************************** * **** ********************************
0020 * * ↩

0030 * * LOCAL DATA AREA 'STPLCBE' ↩

0040 * * DESCRIBES ADABAS CONTROL BLOCK ↩

0050 * * EXTENDED ↩

0060 * * ↩

0070 * * ******************************** * **** ********************************
0080 1 CB B 192 ↩

0090 R 1 CB ↩

Triggers and Stored Procedures178

Examples

0100 2 CB-DSECT /* ACBE DEFINITION ↩

0110 3 CB-TYPE B 1 ↩

0120 3 CB-HOST A 1 ↩

0130 2 CB-VERSION A 2 /* ACBE VERSION ↩

0140 2 CB-LENGTH B 2 /* ACBE LENGTH ↩

0150 2 CB-CMD A 2 /* COMMAND ↩

0160 2 CB-NUCID B 2 /* NUCID ↩

0170 2 CB-RSP B 2 /* RESPONSE CODE ↩

0180 2 CB-CID B 4 /* COMMAND ID ↩

0190 2 CB-DBID B 4 /* DBID ↩

0200 2 CB-FNR B 4 /* FILE NUMBER ↩

0210 2 CB-RESERVED-1 B 4 /* UNUSED
0220 2 CB-ISN B 4 /* ISN VALUE ↩

0230 2 CB-RESERVED-2 B 4 /* UNUSED
0240 2 CB-ISLL B 4 /* ISN LOWER LIMIT
0250 2 CB-RESERVED-3 B 4 /* UNUSED
0260 2 CB-ISQ B 4 /* ISN QUANTITY
0270 2 CB-CO1 A 1 /* COMMAND OPTION 1
0280 2 CB-CO2 A 1 /* COMMAND OPTION 2
0290 2 CB-CO3 A 1 /* COMMAND OPTION 3
0300 2 CB-CO4 A 1 /* COMMAND OPTION 4
0310 2 CB-CO5 A 1 /* COMMAND OPTION 5
0320 2 CB-CO6 A 1 /* COMMAND OPTION 6
0330 2 CB-CO7 A 1 /* COMMAND OPTION 7
0340 2 CB-CO8 A 1 /* COMMAND OPTION 8
0350 2 CB-ADD1 A 8 /* ADDITIONS 1
0360 2 CB-ADD2 B 4 /* ADDITIONS 2
0370 2 CB-ADD3 A 8 /* ADDITIONS 3
0380 2 CB-ADD4 A 8 /* ADDITIONS 4
0390 2 CB-ADD5 B 8 /* ADDITIONS 5
0400 2 CB-ADD6 A 8 /* ADDITIONS 6
0410 2 CB-RESERVED-4 B 4 /* RESERVED
0420 2 CB-ERROR B 16 /* SUPPLEMENTAL ERROR INFO
0430 R 2 CB-ERROR
0440 3 CB-ERROR-G B 4 /* OFFSET IN BUFFER 64-BIT
0450 3 CB-ERROR-A B 4 /* OFFSET IN BUFFER 32-BIT ↩

0460 3 CB-ERROR-B A 2 /* ERROR CHARACTER FIELD ↩

179Triggers and Stored Procedures

Examples

0470 3 CB-ERROR-C B 2 /* SUBCODE ↩

0480 3 CB-ERROR-D A 1 /* ERROR BUFFER ID ↩

0490 3 CB-ERROR-E B 3 /* BUFFER SEQ. NUMBER ↩

0500 2 CB-SUB B 8 /* SUBCOMPONENT ERROR INFO ↩

0510 R 2 CB-SUB ↩

0520 3 CB-SUB-R B 2 /* SUBCOMPONENT RSP CODE ↩

0530 3 CB-SUB-S B 2 /* SUBCOMPONENT REASON CD ↩

0540 3 CB-SUB-T A 4 /* SUBCOMPONENT ERROR TEXT ↩

0550 2 CB-LCMP B 8 /* COMPRESSED RECORD LNGTH ↩

0560 2 CB-LDEC B 8 /* DECOMPRESSED LENGTH ↩

0570 2 CB-TIME B 8 /* COMAND TIME ↩

0580 2 CB-USER B 16 /* USER FIELD ↩

0590 2 CB-ROUTER B 1 /* ROUTER FLAGS ↩

0600 2 CB-RESERVED-5 B 23 /* RESERVED ↩

0610 * * ******************************** * **** ********************************
0620 * * ***** END OF LOCAL DATA AREA *** * **** ********************************
0630 * * ******************************** * **** ******************************** ↩

STPLRBE

***** DEFINE DATA LOCAL
0010 1 RBE-AREA(A154) /* record buffer extraction area
0020 1 REDEFINE RBE-AREA
0030 2 RBE-MSG(A72) /* error text for errors
0040 2 RBE-RESP(B4) /* error number
0050 2 REDEFINE RBE-RESP
0060 3 RBE-SUBCODE(B2) /* error subcode
0070 3 RBE-ERROR(B2) /* actual error code
0080 2 RBE-VERNO(A4) /* structure version
0090 2 RBE-FIELD-NAME(A32) /* long name of field
0100 2 RBE-FORMAT(A1) /* field format
0110 2 RBE-OPTS(A3) /* special options
0120 2 RBE-LENGTH(B4) /* field/RB length
0130 2 RBE-ADA-FIELD(A2) /* Adabas short name

Triggers and Stored Procedures180

Examples

0140 2 RBE-RESRV2(A2) /* reserved
0150 2 RBE-FIELD-OCC(B4) /* field occurrence for MU or PE
0160 2 RBE-GROUP-OCC(B4) /* PE occurrence for MU within PE
0170 2 RBE-OFFSET(B4) /* offset into RB
0180 2 RBE-UNUSED(A18) /* not used
***** END-DEFINE

STPUTPRM

***** DEFINE DATA PARAMETER
0010 1 CALL-TYPE(A1) /* type of call
0020 ** /* 'B' before invoking
0030 ** /* 'A' after invoking
0040 ** /* 'E' error incurred
0050 1 REQ-AREA(A200) /* request area
0060 1 REDEFINE REQ-AREA
0070 2 RQ-VERNO(A4) /* structure version
0080 2 RQ-TASK(A2) /* subsystem number
0090 2 RQ-PROC(A8) /* procedure name
0100 2 RQ-USER(A32) /* user identification
0110 2 RQ-CMD(A2) /* trigger command
0120 2 RQ-DBID(B2) /* Trigger DBID
0130 2 RQ-FNR(B2) /* trigger target file number
0140 2 RQ-FIELD(A2) /* trigger field (short name)
0150 2 RQ-SYNC(A1) /* sync/async request
0160 2 RQ-PARTIC(A1) /* participating/non-participating request
0170 2 RQ-LENGTH(B2) /* record buffer length
0180 2 RQ-UPD(A1) /* RB update indicator
0190 2 RQ-TTYP(A1) /* trigger type "P"re or Po"S"t
0200 2 RQ-RESP(B4)
0210 2 REDEFINE RQ-RESP
0220 3 RESP-CODE(B2)
0230 3 SUB-CODE(B2)
0240 2 RQ-PDA-TYPE(A1) /* calling type
0250 2 RQ-RESRVED2(A55)
0260 2 RQ-CB(A80) /* trigger control block
0270 1 ERR-INFO(A72) /* error information for CALL-TYPE 'E'
0280 1 REDEFINE ERR-INFO
0290 2 ERR-NR(N4) /* error number
0300 2 ERR-LINE(N4) /* line number of error
0310 2 ERR-STAT(A1) /* error status indicator
0320 2 ERR-PROG(A8) /* error program
0330 2 ERR-LEVEL(N2) /* not used
0340 2 ERR-TYPE(A24) /* error identification
0350 1 REQ-GLOBAL-WS(A250) /* global WS area
0360 1 RESP(B4) /* procedure response
***** END-DEFINE

181Triggers and Stored Procedures

Examples

STPUTRAK

0010 **
0020 * Application: Adabas Stored Procedures
0030 * Program : STPUTRAK
0040 * Function : Routine that is invoked if triggers is running with
0050 * 'Trigger Logging' set to Active.
0060 * Invoked (CALL-TYPE):
0070 * 'I' - when the subsystem is initialized
0080 * 'T' - when the subsystem is being terminated
0090 * 'B' - before a procedure is invoked
0100 * 'A' - after a procedure has completed
0110 * 'E' - whenever an error occurs
0120 * NOTE : If logging is active, then the module (cataloged object)
0130 * must exist; otherwise, a NAT0082 occurs.
0140 * Author : Adabas Development
0150 * Date : June 1994
0160 **
0170 DEFINE DATA PARAMETER USING STPUTPRM
0180 LOCAL
0190 01 EVENT (A14) /* event criteria
0200 01 REDEFINE EVENT
0210 02 E-FNR (N5)
0220 02 E-F1 (A2)
0230 02 E-CMD (A2)
0240 02 E-F2 (A2)
0250 02 E-FIELD (A2)
0260 01 PARM-TYPE (A7)
0270 01 TRIG-TYPE (A10)
0280 01 REDEFINE TRIG-TYPE
0290 02 PRE-POST (A4)
0300 02 FILL (A1)
0310 02 PROC-TYPE (A5)
0320 01 UQE-ID (A28)
0330 01 RB-TYPE (A6)
0340 01 RBLEN (N5)
0350 01 RESP-BIN (B4)
0360 01 REDEFINE RESP-BIN
0370 02 RESP-SUBC (B2)
0380 02 RESP-CDE (B2)
0390 END-DEFINE
0400 *
0410 FORMAT PS=0 LS=133 /* set report attributes
0420 *
0430 IF CALL-TYPE = 'I' /* subsystem initialization
0440 WRITE NOTITLE (CD=TU)
0450 '***** Triggers and Stored Procedures *****' (GRI)
0460 / ' - Natural Subsystem Initialization -' (YEI)

Triggers and Stored Procedures182

Examples

0470 // 'Program + Library Location ...' (TU) *PROGRAM *LIBRARY-ID
0480 / 'Task Initialization Time' (TU) *DATX *TIMX
0490 / 'Task Identification Number ...' (TU) RQ-TASK
0500 / 'Task User Identification' (TU) *INIT-USER *INIT-ID
0510 / '********************** INIT *********************' (GRI)
0520 NEWPAGE /* setup for proper headings
0530 ESCAPE ROUTINE /* return control
0540 END-IF
0550 *
0560 IF CALL-TYPE = 'T' /* subsystem termination
0570 WRITE NOTITLE (CD=TU)
0580 '***** Triggers and Stored Procedures *****' (GRI)
0590 / ' - Natural Subsystem Termination -' (YEI)
0600 // 'Task Termination Time' (TU) *DATX *TIMX
0610 / 'Task Identification Number ...' (TU) RQ-TASK
0620 / 'Task User Identification' (TU) *INIT-USER *INIT-ID
0630 / '********************** EXIT *********************' (GRI)
0640 ESCAPE ROUTINE /* return control
0650 END-IF
0660 *
0670 IF CALL-TYPE = 'A' /* after invoking procedure
0680 MOVE RESP TO RESP-BIN
0690 WRITE RQ-TASK 2X *DATX *TIMX 'complete' 16X RQ-PROC 6X 'Resp:'
0700 RESP-CDE RESP-SUBC
0710 END-IF
0720 *
0730 IF CALL-TYPE = 'B' /* before invoking procedure
0740 MOVE RQ-RESRVED2 TO UQE-ID
0750* MOVE RB-RBL TO RBLEN
0760 MOVE RQ-LENGTH TO RBLEN
0770 IF RQ-TTYP = 'P'
0780 MOVE 'Pre ' TO PRE-POST
0790 ELSE
0800 MOVE 'Post' TO PRE-POST
0810 END-IF
0820 IF RQ-SYNC = 'A'
0830 MOVE 'ASync' TO PROC-TYPE
0840 END-IF
0850 IF RQ-SYNC = 'S'
0860 MOVE 'Sync' TO PROC-TYPE
0870 IF RQ-PARTIC = 'P'
0880 MOVE 'Part' TO PROC-TYPE
0890 END-IF
0900 IF RQ-PARTIC = 'N'
0910 MOVE 'Non-P' TO PROC-TYPE
0920 END-IF
0930 END-IF
0940 DECIDE ON FIRST VALUE OF RQ-PDA-TYPE
0950 VALUE 'C' MOVE 'Control' TO PARM-TYPE
0960 VALUE 'N' MOVE 'No Parm' TO PARM-TYPE
0970 VALUE 'R' MOVE 'Resp' TO PARM-TYPE
0980 NONE MOVE 'Unknown' TO PARM-TYPE

183Triggers and Stored Procedures

Examples

0990 END-DECIDE
1000 DECIDE ON FIRST VALUE OF RQ-UPD
1010 VALUE 'A' MOVE 'Access' TO RB-TYPE
1020 VALUE 'N' MOVE 'No Rec' TO RB-TYPE
1030 VALUE 'U' MOVE 'Update' TO RB-TYPE
1040 NONE MOVE '??????' TO RB-TYPE
1050 END-DECIDE
1060 IF RQ-CMD = 'PC'
1070 MOVE '*Stored Proc.*' TO EVENT
1080 ELSE
1090 MOVE RQ-FNR TO E-FNR
1100 MOVE RQ-CMD TO E-CMD
1110 MOVE RQ-FIELD TO E-FIELD
1120 END-IF
1130 DISPLAY NOTITLE (CD=TU)
1140 'Tsk' RQ-TASK 'Date' *DATX 'Time' *TIMX 'User' RQ-USER(AL=8)
1150 'Fnr Cmd Fld' (TU) EVENT 'Proc' (TU) RQ-PROC
1160 'Type' (TU) TRIG-TYPE 'Parms' (TU) PARM-TYPE
1170 'RecBuf' RB-TYPE
1180 * PRINT 5X 'UserID ...' UQE-ID(EM=H(28)) /* UQE-ID
1190 *
1200 * A special overwrite option allows the user to have the procedure
1210 * called with the additional parameter of the RQ-GLOBAL-WS.
1220 * This is valid only if RQ-PDA-TYPE is set to 'C'.
1230 * The procedure should expect parameters to be passed as specified in
1240 * STPAPRM1 i.e. CALLNAT 'procname' REQ-AREA REQ-GLOBAL-WS RESP
1250 *
1260 * MOVE 'W' TO CALL-TYPE
1270 *
1280 * RQ-GLOBAL-WS is an area that is not changed between each call to
1290 * the procedures. It may be used for keeping statistics or whatever.
1300 *
1310 END-IF
1320 *
1330 IF CALL-TYPE = 'E' /* subsystem error notification
1340 WRITE NOTITLE (CD=TU)
1350 '***** Triggers and Stored Procedures *****' (GRI)
1360 / ' - Natural Subsystem Error Info -' (YEI)
1370 // 'Task Termination Time' (TU) *DATX *TIMX
1380 / 'Task Identification Number ..' (TU) RQ-TASK
1390 '<<< Interrupted with an ERROR <<<<<'
1400 // '* Subsystem Error Number' ERR-NR
1410 41T '* Stored Proc' RQ-PROC
1420 / '* Active Module ...' ERR-PROG
1430 41T '* UserID' RQ-USER
1440 / '* Line Number' ERR-LINE (EM=9999)
1450 41T '* Trigger Cmd' RQ-CMD
1460 / '* Error Level' ERR-LEVEL
1470 41T '* Trigger Fnr' RQ-FNR (AD=L)
1480 / '* Error Status' ERR-STAT
1490 41T '* Trigger Type ...' RQ-TTYP RQ-PARTIC 'opt' RQ-PDA-TYPE RQ-UPD
1500 / '* Error Type' ERR-TYPE (AL=14)

Triggers and Stored Procedures184

Examples

1510* 41T '* Field Name' RQ-TRG-FIELD '+' RB-RBL
1520* / '* UQE Ident.' CA-USER
1530 / '*** Processing for this request ABNORMALLY terminated ***'
1540 // '********************* ERROR *********************' (GRI)
1550 ESCAPE ROUTINE /* return control
1560 END-IF
1570 *
1580 END

STPAPARM

***** DEFINE DATA PARAMETER
0010 1 REQ-AREA(A200) /* request area
0020 1 REDEFINE REQ-AREA
0030 2 RQ-VERNO(A4) /* structure version
0040 2 RQ-TASK(A2) /* subsystem number
0050 2 RQ-PROC(A8) /* procedure name
0060 2 RQ-USER(A32) /* user identification
0070 2 RQ-CMD(A2) /* trigger command
0080 2 RQ-DBID(B2) /* Trigger DBID
0090 2 RQ-FNR(B2) /* trigger target file number
0100 2 RQ-FIELD(A2) /* trigger field (short name)
0110 2 RQ-SYNC(A1) /* sync/async request
0120 2 RQ-PARTIC(A1) /* participating/non-participating request
0130 2 RQ-LENGTH(B2) /* record buffer length
0140 2 RQ-UPD(A1) /* RB update indicator
0150 2 RQ-TTYPE(A1) /* pre- or post-trigger
0160 2 RQ-RESP(B4) /* subcode(B2) + resp code(B2)
0170 2 RQ-PDA-TYPE(A1) /* calling parameters type
0180 2 RQ-USERID(A28) /* user ID from Adabas CQE
0190 2 RQ-RESRVED2(A27)
0200 2 RQ-CB(A80) /* trigger control block
0210 1 RESP(B4) /* procedure response
***** END-DEFINE

185Triggers and Stored Procedures

Examples

STPAPRM1

***** DEFINE DATA PARAMETER STPAPRM1 LIBRARY SYSSPT
0010 1 REQ-AREA(A200) /* Request area
0020 1 REDEFINE REQ-AREA
0030 2 RQ-VERNO(A4) /* structure version
0040 2 RQ-TASK(A2) /* subsystem number
0050 2 RQ-PROC(A8) /* procedure name
0060 2 RQ-USER(A32) /* user identification
0070 2 RQ-CMD(A2) /* trigger command
0080 2 RQ-DBID(B2) /* Trigger DBID
0090 2 RQ-FNR(B2) /* trigger target file number
0100 2 RQ-FIELD(A2) /* trigger field (short name)
0110 2 RQ-SYNC(A1) /* sync/async request
0120 2 RQ-PARTIC(A1) /* participating/non-participating request
0130 2 RQ-LENGTH(B2) /* record buffer length
0140 2 RQ-UPD(A1) /* RB update indicator
0150 2 RQ-RESRVED1(A1) /* not used
0160 2 RQ-RESP(B4)
0170 2 RQ-PDA-TYPE(A1)
0180 2 RQ-RESRVED2(A55)
0190 2 RQ-CB(A80) /* trigger control block
0200 1 REQ-GLOBAL-WS(A250) /* global WS area
0210 1 RESP(B4) /* procedure response
***** END-DEFINE

STPXPARM

0010 1 REQ-AREA A 200 /* Request Area ↩

0020 R 1 REQ-AREA /* Redef. begin : REQ-AREA ↩

0030 2 RQ-VERNO A 4 /* Structure Version ↩

0040 2 RQ-TASK A 2 /* Subsystem Number ↩

0050 2 RQ-PROC A 8 /* Procedure Name ↩

0060 2 RQ-USER A 32 /* User Identification ↩

0070 2 RQ-CMD A 2 /* Trigger Cmd ↩

0080 2 RQ-DBID B 2 /* Trigger DBID ↩

0090 2 RQ-FNR B 2 /* Trigger Target File Nr ↩

Triggers and Stored Procedures186

Examples

0100 2 RQ-FIELD A 2 /* Trigger Field (Short Name) ↩

0110 2 RQ-SYNC A 1 /* Sync/Async Request ↩

0120 2 RQ-PARTIC A 1 /* Part/Non-participating Req ↩

0130 2 RQ-LENGTH B 2 /* Record Buffer Length ↩

0140 2 RQ-UPD A 1 /* RB Update Indicator ↩

0150 2 RQ-TTYPE A 1 /* Pre or Post Trigger ↩

0160 2 RQ-RESP B 4 /* Subcode(B2) + Resp Code(B2) ↩

0170 2 RQ-PDA-TYPE A 1 /* Calling Parameters Type ↩

0180 2 RQ-USERID A 28 /* UserID from ADABAS UQE ↩

0190 2 RQ-RESRVED2 A 27 /* ↩

0200 2 RQ-CB A 80 /* Trigger Control Block ↩

0210 1 RQ-CBX A 192 /* X Verion of CB ↩

0220 1 RESP B 4 /* Procedure Response

SAMP0001

0010 **
0020 * Application: ADASTP
0030 * Subprogram : SAMP0001
0040 * Author : Adabas Development
0050 * Date : August 1995
0060 * Function : Sample routine of processing by a procedure
0070 * Remarks : This routine converts the CONTACT-NAME into uppercase
0080 * and extracts all the keywords associated with it.
0090 * Once processing is completed, control is returned to
0100 * the caller.
0110 * Parameter RESP must be set to zero if processing is
0120 * successful.
0130 *
0140 * Parameters : REQ-AREA (A200)
0150 * RESP (B4)
0160 *
0170 * Trigger Typ: The type of trigger will be PARTICIPATING; i.e.,
0180 * synchronous.
0190 * Rec Buffer : The record buffer will be available for update via a

187Triggers and Stored Procedures

Examples

0200 * call to the external routine STPRBE.
0210 * Trigger Defn: Definition on the trigger file (note that there is a
0220 * trigger for the insert and update) is as follows:
0230 * File Number 11
0240 * File Name CONTACTS
0250 * Command Type Update + Insert
0260 * Long Field Name ... CONTACT-NAME
0270 * Adabas Field LE
0280 * Field Prty/Seq 10_
0290 * Procedure Information
0300 * Name (Subpgm)...... SAMP0001
0310 * Pre Cmd Select Y (Pre)
0320 * Trigger Type P (Participating)
0330 * CALLNAT Params C (Cntl Info + Resp)
0340 * RecBuffer Access .. U (May be updated)
0350 *
0360 **
0370 DEFINE DATA PARAMETER USING STPAPARM
0380 LOCAL USING STPLRBE /* parms for the call routine
0390 LOCAL
0400 01 REC-BUFFER(A20/1:26) /* max, record buffer passed to STPRBE
0410 01 REDEFINE REC-BUFFER /* redefine this to get the definition
0420 02 INPUT-NAME (A60)
0430 02 OUTPUT-NAME (A60)
0440 02 KEYWORDS(A20/1:20)
0450 01 FUNC (A4)
0460 01 SUB (I2)
0470 01 SUB1 (I2)
0480 01 SUB2 (I2)
0490 01 W-UPPER (A61)
0500 01 REDEFINE W-UPPER
0510 02 #UPPER (A60)
0520 02 REDEFINE #UPPER
0530 03 CHAR (A1/1:60)
0540 01 #KEYS (A40/1:20)
0550 END-DEFINE
0560 *
0570 * First, all procedures for this file must go through the audit procedure
0580 * because our example requires a trace of all commands to this file.
0590 *
0600 CALLNAT 'SAMP0003' REQ-AREA RESP
0610 *
0620 * Since the record buffer information is available to us, we can now call
0630 * the record buffer extraction routine (STPRBE) to obtain the contents of
0640 * the buffer.
0650 *
0660 * Function 'GR' -- GET RB value using RB offset + length
0670 * This enables the caller to obtain information based on a
0680 * certain location; hence, RBE-OFFSET specifies the start
0690 * position and RBE-LENGTH specifies the length.
0700 *
0710 MOVE 1 TO RBE-OFFSET /* start at the beginning

Triggers and Stored Procedures188

Examples

0720 MOVE 520 TO RBE-LENGTH /* for a max. length of 520 bytes
0730 MOVE 'GR' TO FUNC
0740 CALL 'STPRBE' 'GR' RBE-AREA REC-BUFFER(1)
0750 IF RBE-RESP NE 0
0760 PRINT *PROGRAM 'received an error from the STPRBE routine. Error:'
0770 RBE-ERROR 'subcode' RBE-SUBCODE 'for func GR'
0780 MOVE RBE-RESP TO RESP
0790 ESCAPE ROUTINE
0800 END-IF
0810 * PERFORM PRINT-REC-BUFFER /* option to print the parameters
0820 *
0830 * Change all lowercase to UPPERcase
0840 *
0850 MOVE INPUT-NAME TO #UPPER
0860 *
0870 EXAMINE #UPPER AND TRANSLATE INTO UPPER CASE
0880 *
0890 MOVE #UPPER TO OUTPUT-NAME /* save the uppercase name
0900 *
0910 FOR SUB 1 60 /* loop to remove all special chars.
0920 IF CHAR(SUB) = MASK(S)
0930 MOVE ' ' TO CHAR(SUB)
0940 ESCAPE TOP
0950 END-IF
0960 END-FOR
0970 *
0980 * We are now ready to extract keywords from our name. This sample is
0990 * very basic and may be made as complex as required.
1000 * This routine assumes a max. length of 20 and a max. num. of 20 keywords
1010 *
1020 EXAMINE FULL W-UPPER FOR FULL ' A ' REPLACE ' '
1030 EXAMINE FULL W-UPPER FOR FULL ' AND ' REPLACE ' '
1040 EXAMINE FULL W-UPPER FOR FULL ' AS ' REPLACE ' '
1050 EXAMINE FULL W-UPPER FOR FULL ' AT ' REPLACE ' '
1060 EXAMINE FULL W-UPPER FOR FULL ' ARE ' REPLACE ' '
1070 EXAMINE FULL W-UPPER FOR FULL ' BE ' REPLACE ' '
1080 EXAMINE FULL W-UPPER FOR FULL ' DO ' REPLACE ' '
1090 EXAMINE FULL W-UPPER FOR FULL ' FOR ' REPLACE ' '
1100 EXAMINE FULL W-UPPER FOR FULL ' HERE ' REPLACE ' '
1110 EXAMINE FULL W-UPPER FOR FULL ' IF ' REPLACE ' '
1120 EXAMINE FULL W-UPPER FOR FULL ' IN ' REPLACE ' '
1130 EXAMINE FULL W-UPPER FOR FULL ' IS ' REPLACE ' '
1140 EXAMINE FULL W-UPPER FOR FULL ' IT ' REPLACE ' '
1150 EXAMINE FULL W-UPPER FOR FULL ' OF ' REPLACE ' '
1160 EXAMINE FULL W-UPPER FOR FULL ' ON ' REPLACE ' '
1170 EXAMINE FULL W-UPPER FOR FULL ' OR ' REPLACE ' '
1180 EXAMINE FULL W-UPPER FOR FULL ' TO ' REPLACE ' '
1190 EXAMINE FULL W-UPPER FOR FULL ' THE ' REPLACE ' '
1200 EXAMINE FULL W-UPPER FOR FULL ' TOO ' REPLACE ' '
1210 EXAMINE FULL W-UPPER FOR FULL ' WAS ' REPLACE ' '
1220 EXAMINE FULL W-UPPER FOR FULL ' WITH ' REPLACE ' '
1230 EXAMINE #UPPER FOR FULL ' ' REPLACE ',' /* put delimiters in the string

189Triggers and Stored Procedures

Examples

1240 *
1250 RESET KEYWORDS(*)
1260 STACK TOP DATA #UPPER /* now we will separate each word
1270 INPUT (AD=I IP=ON) #KEYS(01:03) / #KEYS(04:06) / #KEYS(07:09)
1280 / #KEYS(10:12) /* #KEYS(13:15) / #KEYS(16:18)
1290 / #KEYS(19:20)
1300 *
1310 MOVE 1 TO SUB2
1320 MOVE #KEYS(1) TO KEYWORDS(1)
1330 FOR SUB 2 20 /* now we remove all duplicates
1340 FOR SUB1 1 SUB
1350 IF #KEYS(SUB) = KEYWORDS(SUB1)
1360 RESET #KEYS(SUB)
1370 END-IF
1380 END-FOR
1390 IF #KEYS(SUB) NE ' '
1400 ADD 1 TO SUB2
1410 MOVE #KEYS(SUB) TO KEYWORDS(SUB2) /* and finally save the value
1420 END-IF
1430 END-FOR
1440 *
1450 * Function 'UR' -- Update RB value using RB offset + length
1460 * This enables the caller to change information based on a
1470 * certain location; hence, RBE-OFFSET specifies the start
1480 * position and RBE-LENGTH specified the length.
1490 *
1500 * PERFORM PRINT-REC-BUFFER /* print the final results
1510 MOVE 1 TO RBE-OFFSET /* start at the beginning
1520 MOVE 520 TO RBE-LENGTH /* for a max. length of 520 bytes
1530 MOVE 'UR' TO FUNC /* request to update all changes
1540 CALL 'STPRBE' 'UR' RBE-AREA REC-BUFFER(1)
1550 IF RBE-RESP NE 0
1560 PRINT *PROGRAM 'received an error from the STPRBE routine. Error:'
1570 RBE-ERROR 'subcode' RBE-SUBCODE 'for func UR'
1580 MOVE RBE-RESP TO RESP
1590 ESCAPE ROUTINE
1600 END-IF
1610 *
1620 * Return to the caller: everything went okay
1630 *
1640 ESCAPE ROUTINE
1650 *
1660 DEFINE SUBROUTINE PRINT-REC-BUFFER
1670 *--*
1680 *
1690 * For testing purposes, display the information returned from STPRBE
1700 * This routine assumes a maximum of three subsystems running.
1710 *
1720 *--*
1730 DECIDE ON FIRST VALUE OF RQ-TASK
1740 VALUE '01'
1750 WRITE (1) NOTITLE NOHDR (AD=L CD=TU)

Triggers and Stored Procedures190

Examples

1760 '>>>> RECORD BUFFER EXTRACTION: Function' FUNC '<<<<'
1770 / ' Field Info' (TU) RBE-FIELD-NAME RBE-FORMAT RBE-LENGTH
1780 / '' (TU) RBE-ADA-FIELD RBE-FIELD-OCC
1790 / ' Resp + Error ..' (TU) RBE-RESP RBE-ERROR '<<<<<'
1800 / ' Message' (TU) RBE-MSG(AL=60)
1810 / ' Rec Buffer' (TU) / REC-BUFFER(1)(AL=79)
1820 / '* '
1830 VALUE '02'
1840 WRITE (2) NOTITLE NOHDR (AD=L CD=TU)
1850 '>>>> RECORD BUFFER EXTRACTION: Function' FUNC '<<<<'
1860 / ' Field Info' (TU) RBE-FIELD-NAME RBE-FORMAT RBE-LENGTH
1870 / '' (TU) RBE-ADA-FIELD RBE-FIELD-OCC
1880 / ' Resp + Error ..' (TU) RBE-RESP RBE-ERROR '<<<<<'
1890 / ' Message' (TU) RBE-MSG(AL=60)
1900 / ' Rec Buffer' (TU) / REC-BUFFER(1)(AL=79)
1910 / '* '
1920 VALUE '03'
1930 WRITE (3) NOTITLE NOHDR (AD=L CD=TU)
1940 '>>>> RECORD BUFFER EXTRACTION: Function' FUNC '<<<<'
1950 / ' Field Info' (TU) RBE-FIELD-NAME RBE-FORMAT RBE-LENGTH
1960 / '' (TU) RBE-ADA-FIELD RBE-FIELD-OCC
1970 / ' Resp + Error ..' (TU) RBE-RESP RBE-ERROR '<<<<<'
1980 / ' Message' (TU) RBE-MSG(AL=60)
1990 / ' Rec Buffer' (TU) / REC-BUFFER(1)(AL=79)
2000 / '* '
2010 NONE
2020 WRITE NOTITLE NOHDR (AD=L CD=TU)
2030 '>>>> RECORD BUFFER EXTRACTION: function' FUNC '<<<<'
2040 / ' Field Info' (TU) RBE-FIELD-NAME RBE-FORMAT RBE-LENGTH
2050 / '' (TU) RBE-ADA-FIELD RBE-FIELD-OCC
2060 / ' Resp + Error ..' (TU) RBE-RESP RBE-ERROR'<<<<<'
2070 / ' Message' (TU) RBE-MSG(AL=60)
2080 / ' Rec Buffer' (TU) / REC-BUFFER(1)(AL=79)
2090 / '* '
2100 END-DECIDE
2110 *
2120 END-SUBROUTINE
2130 *
2140 END

191Triggers and Stored Procedures

Examples

SAMP0002

0010 **
0020 * Application: Adabas Triggers
0030 * Subprogram: SAMP0002
0040 * Function: Sample routine of processing by a stored procedure
0050 * The requirement is to audit all commands for a file
0060 * by writing out an audit record to a file/printer.
0070 * For this example, the audit is the Natural system file.
0080 * Trigger Defn: Trigger Information
0090 * File Number 11
0100 * File Name CONTACTS
0110 * Command Type ** All Command **
0120 * Long Field Name ... ** Any Field **
0130 * Adabas Field **
0140 * Field Prty/Seq ___
0150 * Procedure Information
0160 * Name (Subpgm)...... SAMP0002
0170 * Pre Cmd Select Y (Pre)
0180 * Trigger Type A (Asynchronous)
0190 * CALLNAT Params C (Cntl Info + Resp)
0200 * RecBuffer Access .. N (No RecBuff Access)
0210 *
0220 * AUTHOR: Adabas Development
0230 * DATE: December 1995
0240 **
0250 DEFINE DATA PARAMETER USING STPAPARM
0260 LOCAL USING STPLCB /* DSECT of the Adabas control block
0270 LOCAL
0280 01 #SRCID (A18) /* key of the audit record
0290 01 REDEFINE #SRCID
0300 02 SRC-LIB (A8) /* to be placed on a Natural system file
0310 02 SRC-PGM (A8)
0320 02 SRC-SEQ (B2)
0330 01 #DATE (A8)
0340 01 #TIME (A8)
0350 01 LOG-AREA VIEW OF SYSTEM2 /* write information to the FNAT file
0360 02 SRCID
0370 02 SRCTX (1)
0380 01 W-USERID (A28) /* user ID from originating command
0390 01 REDEFINE W-USERID
0400 02 W-F1 (A20)
0410 02 W-USER (A8) /* TP USID of the user ID
0420 01 #TEXT (A72) /* text message to be written
0430 01 REDEFINE #TEXT
0440 02 TX-LNO (B2)
0450 02 TX-F1 (A1)
0460 02 TX-DATE (A8)

Triggers and Stored Procedures192

Examples

0470 02 TX-F2 (A1)
0480 02 TX-TIME (A5)
0490 02 TX-F3 (A1)
0500 02 TX-USER (A8)
0510 02 TX-F4 (A1)
0520 02 TX-CMD (A2)
0530 02 TX-F5 (A1)
0540 02 TX-PRE (A3)
0550 02 TX-F6 (A1)
0560 02 TX-FNR (N3)
0570 02 TX-F7 (A1)
0580 02 TX-RBL (N4)
0590 02 TX-F8 (A1)
0600 02 TX-SYNC (A5)
0610 02 TX-F9 (A1)
0620 02 TX-TASK (A2)
0630 02 TX-F10 (A1)
0640 02 TX-FIELD (A2)
0650 02 TX-F11 (A1)
0660 02 TX-PROC (A8)
0670 02 TX-F12 (A1)
0680 02 TX-USR2 (A8)
0690 END-DEFINE
0700 *
0710 ASSIGN #SRCID = 'AUDIT LOGINFO' /* set the target lib and pgm name
0720 MOVE H'0000' TO SRC-SEQ
0730 *
0740 MOVE RQ-CB TO CB /* move ACB into our CB layout
0750 MOVE H'0010' TO TX-LNO /* line number of Natural source
0760 MOVE *DATE TO TX-DATE
0770 MOVE *TIMX TO TX-TIME
0780 MOVE RQ-USERID TO W-USERID /* user ID of the command
0790 MOVE W-USER TO TX-USER /* may be a batch user
0800 IF NOT TX-USER = MASK(PPPPPPPP) /* printable user ID?
0810 MOVE RQ-USER TO TX-USER /* no, so use the jobname or TPname
0820 END-IF
0830 MOVE RQ-CMD TO TX-CMD /* information from the CB layout
0840 MOVE RQ-FNR TO TX-FNR
0850 MOVE RQ-TASK TO TX-TASK /* subsystem number
0860 IF RQ-LENGTH > 9999 /* exceed max. size in audit message?
0870 MOVE 9999 TO TX-RBL
0880 ELSE
0890 MOVE RQ-LENGTH TO TX-RBL /* the real record buffer length
0900 END-IF
0910 MOVE *PROGRAM TO TX-PROC /* originating procedure. This subpgm
0920 IF RQ-TTYPE = 'P' /* trigger type
0930 MOVE 'Pre' TO TX-PRE
0940 ELSE
0950 MOVE 'Pos' TO TX-PRE
0960 END-IF
0970 IF RQ-SYNC = 'A' /* processing type
0980 MOVE 'ASync' TO TX-SYNC

193Triggers and Stored Procedures

Examples

0990 ELSE
1000 IF RQ-PARTIC = 'P' /* trigger logic type
1010 MOVE 'Part' TO TX-SYNC
1020 ELSE
1030 MOVE 'Non-P' TO TX-SYNC
1040 END-IF
1050 END-IF
1060 *
1070 * Now we do some logic to write the information out to a report
1080 * Here we support up to five subsystems
1090 * Contents are a one-line display to minimize output
1100 *
1110 DECIDE ON FIRST VALUE OF RQ-TASK
1120 VALUE '01'
1130 DISPLAY (1) NOTITLE (AD=L CD=TU)
1140 'Procedure' *PROGRAM
1150 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1160 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1170 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1180 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1190 VALUE '02'
1200 DISPLAY (2) NOTITLE (AD=L CD=TU)
1210 'Procedure' *PROGRAM
1220 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1230 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1240 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1250 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1260 VALUE '03'
1270 DISPLAY (3) NOTITLE (AD=L CD=TU)
1280 'Procedure' *PROGRAM
1290 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1300 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1310 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1320 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1330 VALUE '04'
1340 DISPLAY (4) NOTITLE (AD=L CD=TU)
1350 'Procedure' *PROGRAM
1360 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1370 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1380 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1390 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1400 NONE
1410 DISPLAY (5) NOTITLE (AD=L CD=TU)
1420 'Procedure' *PROGRAM
1430 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1440 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1450 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1460 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1470 END-DECIDE
1480 *
1490 * Finally, we write this information to a 'audit' File. In this case, we
1500 * use the Natural FNAT file for simplicity. Realistically, a separate

Triggers and Stored Procedures194

Examples

1510 * 'audit' file should be used.
1520 *
1530 MOVE #TEXT TO LOG-AREA.SRCTX (1.1)
1540 MOVE H'0001' TO SRC-SEQ
1550 ASSIGN LOG-AREA.SRCID = #SRCID
1560 STORE LOG-AREA
1570 END TRANSACTION /* required for non-participating
1580 * /* and asynchronous triggers
1590 *
1600 END

SAMP0003

0010 **
0020 * Application: Adabas Triggers
0030 * Subprogram: SAMP0003
0040 * Function: Sample routine of processing by a stored procedure
0050 * The requirement is to audit all commands for a file
0060 * by writing out an audit record to a file/printer.
0070 * For this example, the audit is the Natural system file.
0080 *
0090 * This routine is called by participating triggers and
0100 * will contain no ET logic; hence, it must have been
0110 * invoked as a result of a update/delete/store command
0120 * Trigger Defn: None because it will be invoked directly from another
0130 * procedure. In this case SAMP0001.
0140 *
0150 * Author: Adabas Development
0160 * Date: December 1995
0170 **
0180 DEFINE DATA PARAMETER USING STPAPARM
0190 LOCAL USING STPLCB /* DSECT of the Adabas control block
0200 LOCAL
0210 01 #SRCID (A18) /* key of the audit record
0220 01 REDEFINE #SRCID
0230 02 SRC-LIB (A8) /* to be placed on a Natural system file
0240 02 SRC-PGM (A8)
0250 02 SRC-SEQ (B2)
0260 01 #DATE (A8)
0270 01 #TIME (A8)
0280 01 LOG-AREA VIEW OF SYSTEM2 /* write information to the FNAT file
0290 02 SRCID
0300 02 SRCTX (1)
0310 01 W-USERID (A28) /* user ID from originating command
0320 01 REDEFINE W-USERID
0330 02 W-F1 (A20)
0340 02 W-USER (A8) /* TP USID of the user ID
0350 01 #TEXT (A72) /* text message to be written

195Triggers and Stored Procedures

Examples

0360 01 REDEFINE #TEXT
0370 02 TX-LNO (B2)
0380 02 TX-F1 (A1)
0390 02 TX-DATE (A8)
0400 02 TX-F2 (A1)
0410 02 TX-TIME (A5)
0420 02 TX-F3 (A1)
0430 02 TX-USER (A8)
0440 02 TX-F4 (A1)
0450 02 TX-CMD (A2)
0460 02 TX-F5 (A1)
0470 02 TX-PRE (A3)
0480 02 TX-F6 (A1)
0490 02 TX-FNR (N3)
0500 02 TX-F7 (A1)
0510 02 TX-RBL (N4)
0520 02 TX-F8 (A1)
0530 02 TX-SYNC (A5)
0540 02 TX-F9 (A1)
0550 02 TX-TASK (A2)
0560 02 TX-F10 (A1)
0570 02 TX-FIELD (A2)
0580 02 TX-F11 (A1)
0590 02 TX-PROC (A8)
0600 02 TX-F12 (A1)
0610 02 TX-USR2 (A8)
0620 END-DEFINE
0630 *
0640 ASSIGN #SRCID = 'AUDIT LOGINFO' /* set the target lib and program name
0650 MOVE H'0000' TO SRC-SEQ
0660 *
0670 MOVE RQ-CB TO CB /* move ACB into the CB layout
0680 MOVE H'0010' TO TX-LNO /* line number of Natural source
0690 MOVE *DATE TO TX-DATE
0700 MOVE *TIMX TO TX-TIME
0710 MOVE RQ-USERID TO W-USERID /* user ID of the command
0720 MOVE W-USER TO TX-USER /* may be a batch user
0730 MOVE RQ-USER TO TX-USR2 /* jobname or TPname
0740 MOVE RQ-CMD TO TX-CMD /* information from the CB layout
0750 MOVE RQ-FNR TO TX-FNR
0760 MOVE RQ-TASK TO TX-TASK /* subsystem number
0770 IF RQ-LENGTH > 9999 /* exceed max. size in audit message?
0780 MOVE 9999 TO TX-RBL
0790 ELSE
0800 MOVE RQ-LENGTH TO TX-RBL /* the real record buffer length
0810 END-IF
0820 MOVE *PROGRAM TO TX-PROC /* originating procedure. This subpgm
0830 IF RQ-TTYPE = 'P' /* trigger type
0840 MOVE 'Pre' TO TX-PRE
0850 ELSE
0860 MOVE 'Pos' TO TX-PRE
0870 END-IF

Triggers and Stored Procedures196

Examples

0880 IF RQ-SYNC = 'A' /* processing type
0890 MOVE 'ASync' TO TX-SYNC
0900 ELSE
0910 IF RQ-PARTIC = 'P' /* trigger logic type
0920 MOVE 'Part' TO TX-SYNC
0930 ELSE
0940 MOVE 'Non-P' TO TX-SYNC
0950 END-IF
0960 END-IF
0970 *
0980 * Now we do some logic to write the information out to a report
0990 * Here we support up to five subsystems
1000 * Contents are a one-line display to minimize output
1010 *
1020 DECIDE ON FIRST VALUE OF RQ-TASK
1030 VALUE '01'
1040 DISPLAY (1) NOTITLE (AD=L CD=TU)
1050 'Procedure' *PROGRAM
1060 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1070 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1080 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1090 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1100 'Usr2' (TU) TX-USR2
1110 VALUE '02'
1120 DISPLAY (2) NOTITLE (AD=L CD=TU)
1130 'Procedure' *PROGRAM
1140 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1150 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1160 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1170 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1180 'Usr2' (TU) TX-USR2
1190 VALUE '03'
1200 DISPLAY (3) NOTITLE (AD=L CD=TU)
1210 'Procedure' *PROGRAM
1220 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1230 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1240 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1250 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1260 'Usr2' (TU) TX-USR2
1270 VALUE '04'
1280 DISPLAY (4) NOTITLE (AD=L CD=TU)
1290 'Procedure' *PROGRAM
1300 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1310 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER
1320 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1330 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1340 'Usr2' (TU) TX-USR2
1350 NONE
1360 DISPLAY (5) NOTITLE (AD=L CD=TU)
1370 'Procedure' *PROGRAM
1380 'Date' (TU) TX-DATE 'Time' (TU) TX-TIME
1390 'Task' (TU) RQ-TASK 'UserID'(TU) TX-USER

197Triggers and Stored Procedures

Examples

1400 'Cmd' (TU) TX-CMD 'Fld' (TU) RQ-FIELD
1410 'PreP' (TU) TX-PRE 'Fnr' (TU) TX-FNR
1420 'Usr2' (TU) TX-USR2
1430 END-DECIDE
1440 *
1450 * Finally we write this info to a 'audit' file. In this case, we use the
1460 * Natural FNAT file for simplicity. Realistically, a separate 'audit' file
1470 * should be used. End Transaction (ET) must not be issued because this
1480 * will be controlled by the application and not the trigger procedure.
1490 *
1500 MOVE #TEXT TO LOG-AREA.SRCTX (1.1)
1510 MOVE H'0001' TO SRC-SEQ
1520 ASSIGN LOG-AREA.SRCID = #SRCID
1530 STORE LOG-AREA
1540 *
1550 END

SAMP0004

0010 **
0020 * Application: Adabas Triggers
0030 * Subprogram: SAMP0004
0040 * Function: Sample routine of processing by a stored procedure
0050 * referential integrity - RESTRICT
0060 * (assume that the primary key is on the EMPLOYEES file and
0070 * the foreign key on the VEHICLES + MISCELLANEOUS files).
0080 * Trigger Defn: Definition on the trigger file is as follows:
0090 * File Number 3
0100 * File Name VEHICLES-FILE
0110 * Command Type Delete
0120 * Long Field Name ... ** Any Field **
0130 * Adabas Field **
0140 * Field Prty/Seq ___
0150 * Procedure Information
0160 * Name (Subpgm)...... SAMP0004
0170 * Pre Cmd Select Y (Pre)
0180 * Trigger Type N (Non-Participating)
0190 * CALLNAT Params C (Cntl Info + Resp)
0200 * RecBuffer Access .. N (No RecBuff Access)
0210 *
0220 * Invoked: Invoked with deletes from VEHICLES/MISCELLANEOUS files
0230 * Sample Routine: SAMPREF1
0240 * Author: Adabas Development
0250 * Date: December 1995
0260 **
0270 DEFINE DATA PARAMETER USING STPAPARM
0280 LOCAL
0290 01 VEHICLES VIEW OF VEHICLES

Triggers and Stored Procedures198

Examples

0300 02 PERSONNEL-ID /* foreign key: field AC
0310 01 MISCELLANEOUS VIEW OF MISCELLANEOUS
0320 02 PERSONNEL-ID /* foreign key: field CA
0330 01 EMPLOYEES VIEW OF EMPLOYEES
0340 02 PERSONNEL-ID /* primary key: field AA
0350 01 #FILE (P5)
0360 01 #ISN (P10)
0370 01 #PERS-NUM (A8)
0380 01 CONTRL-BLK (A80)
0390 01 REDEFINE CONTRL-BLK
0400 02 CB-FIL1 (A12)
0410 02 CB-ISN (B4)
0420 END-DEFINE
0430 *
0440 * First we extract the foreign key information
0450 * i.e., get the ISN of the record in the ACB and read this record
0460 * to extract the required information; i.e., the foreign key info.
0470 * NOTE: With a delete, no data is passed in the record buffer.
0480 *
0490 MOVE RQ-CB TO CONTRL-BLK /* get the ACB of the originating cmd
0500 MOVE RQ-FNR TO #FILE /* find out which file has the delete
0510 MOVE CB-ISN TO #ISN /* ISN of the record to be deleted
0520 *
0530 IF #FILE = 3 /* identify the file: Vehicles
0540 DO
0550 GET VEHICLES #ISN /* get the value of the foreign key
0560 MOVE PERSONNEL-ID(0550) TO #PERS-NUM /* get the key
0570 DOEND
0580 ELSE
0590 IF #FILE = 2 /* or the Miscellaneous file
0600 DO
0610 GET MISCELLANEOUS #ISN /* get the value of the foreign key
0620 MOVE PERSONNEL-ID(0610) TO #PERS-NUM /* get the key
0630 DOEND
0640 ELSE /* a check for the unexpected...
0650 DO /* a trigger may have been defined wrong
0660 MOVE 913 TO RQ-RESP /* either ignore or return an error
0670 ESCAPE ROUTINE /* and exit
0680 DOEND
0690 *
0700 RESET RQ-RESP
0710 *
0720 * Now we check the primary file to see if the value exists. If yes
0730 * then we cannot allow this deletion; hence, we prevent any deletions
0740 * of the foreign key files if a record with the same key exists on the
0750 * primary file.
0760 *
0770 * NOTE: With the setting of RESP, consideration should be given to
0780 * ambiguities. While the command will receive a response 155
0790 * (pre-trigger) or 156 (post-trigger), the additions field will
0800 * contain the error returned from this procedure. The value
0810 * could be in the form of an Adabas response (1-255) or a

199Triggers and Stored Procedures

Examples

0820 * Natural error (e.g., 954 or 935 or 3009); therefore, a
0830 * user-specified error from the procedure should be something
0840 * outside these ranges........for simplicity.
0850 *
0860 FIND EMPLOYEES WITH PERSONNEL-ID = #PERS-NUM
0870 MOVE 901 TO RESP /* it does: delete may not be done
0880 ESCAPE ROUTINE
0890 CLOSE LOOP(0860)
0900 *
0910 END

SAMP0005

0010 **
0020 * Application: ADASTP
0030 * Subprogram: SAMP0005
0040 * Function: Sample routine of processing by a stored procedure
0050 * referential integrity - CASCADE
0060 * (assume that the primary key is on the EMPLOYEES file
0070 * and foreign keys on the VEHICLES + MISCELLANEOUS files).
0080 * Trigger Defn: Definition on the trigger file is as follows:
0090 * File Number 4
0100 * File Name EMPLOYEES
0110 * Command Type Update
0120 * Long Field Name ... PERSONNEL-ID
0130 * Adabas Field AA
0140 * Field Prty/Seq 010
0150 * Procedure Information
0160 * Name (Subpgm)...... SAMP0005
0170 * Pre Cmd Select Y (Pre)
0180 * Trigger Type P (Participating)
0190 * CALLNAT Params C (Cntl Info + Resp)
0200 * RecBuffer Access .. A (May be Accessed)
0210 *
0220 * Invoked: Invoked with updates to the EMPLOYEES PERSONNEL-ID
0230 * Sample routine: SAMPREF2
0240 * Author: Adabas Development
0250 * Date: December 1995
0260 **
0270 DEFINE DATA PARAMETER USING STPAPARM
0280 LOCAL USING STPLRBE /* parameters for call to STPRBE
0290 LOCAL
0300 01 EMPLOYEES VIEW OF EMPLOYEES
0310 02 PERSONNEL-ID /* primary key: field AC
0320 01 MISCELLANEOUS VIEW OF MISCELLANEOUS
0330 02 PERSONNEL-ID /* foreign key: field CA
0340 01 VEHICLES VIEW OF VEHICLES
0350 02 PERSONNEL-ID /* foreign key: field AA

Triggers and Stored Procedures200

Examples

0360 01 FUNC (A4)
0370 01 #ISN (P10)
0380 01 #PERS-NUM (A8)
0390 01 CONTRL-BLK (A80)
0400 01 REDEFINE CONTRL-BLK
0410 02 CB-FIL1 (A12)
0420 02 CB-ISN (B4)
0430 END-DEFINE
0440 *
0450 * First we extract the foreign key information
0460 * There are two ways to pick this up:
0470 *
0480 * 1) Since the value is in the record buffer, we can use STPRBE to
0490 * extract the required information; i.e., the primary key
0500 * information. There are three ways to do this...in this case:
0510 *
0520 * A) identify the field by its long name; i.e., PERSONNEL-ID
0530 * B) identify the field by its short name; i.e., AA
0540 * C) identify the location and length in the record buffer
0550 *
0560 * 2) Get the ISN of the record in the ACB and read this record to
0570 * extract the required information; i.e., the primary key
0580 * information. However, this is the old value and cannot be used
0590 * in this example.
0600 *
0610 *
0620 * OPTION 1A
0630 *
0640 * Function 'GV' -- GET field value using the long field name
0650 * This enables the caller to obtain information about a specific
0660 * field which is determined according to the long field name
0670 * passed in the parameters to STPRBE.
0680 *
0690 RESET #PERS-NUM
0700 MOVE 'GV' TO FUNC
0710 MOVE 'PERSONNEL-ID' TO RBE-FIELD-NAME /* and identify the corresponding
0720 * field for this file
0730 MOVE 8 TO RBE-LENGTH /* default or give override length
0740 * /* length in FB could have been used
0750 CALL 'STPRBE' FUNC RBE-AREA #PERS-NUM
0760 PRINT *PROGRAM 'Option 1A returned ..' #PERS-NUM 'resp' RBE-RESP
0770 IF RBE-RESP NE 0 /* successful ?
0780 DO
0790 PRINT *PROGRAM 'received an error from the STPRBE routine. Error:'
0800 RBE-ERROR 'subcode' RBE-SUBCODE 'for func GV'
0810 MOVE RBE-RESP TO RESP /* indicate this
0820 ESCAPE ROUTINE /* and exit
0830 DOEND
0840 *
0850 * OPTION 1B
0860 *
0870 * Function 'GV' -- GET field value using short field name

201Triggers and Stored Procedures

Examples

0880 * This enables the caller to obtain information about a specific
0890 * field which is determined according to the short field name
0900 * passed in the parameters to STPRBE.
0910 * NOTE: '**' in field name means user-supplied details in short name
0920 *
0930 RESET #PERS-NUM
0940 MOVE 'GV' TO FUNC
0950 MOVE '**' TO RBE-FIELD-NAME /* special notation for this request
0960 MOVE RQ-FIELD TO RBE-ADA-FIELD /* get field name that fired the
0970 * trigger from the parm area...OR.....
0980 IF NOT (RQ-FIELD = 'AA') /* if we know the field....
0990 MOVE 'AA' TO RBE-ADA-FIELD /* identify the specific field name
1000 MOVE 8 TO RBE-LENGTH /* for a maximum length of 8 bytes
1010 CALL 'STPRBE' FUNC RBE-AREA #PERS-NUM
1020 PRINT *PROGRAM 'Option 1B returned ..' #PERS-NUM 'resp' RBE-RESP
1030 IF RBE-RESP NE 0 /* successful
1040 DO
1050 PRINT *PROGRAM 'received an error from the STPRBE routine. Error:'
1060 RBE-ERROR 'subcode' RBE-SUBCODE 'for func GV'
1070 MOVE RBE-RESP TO RESP /* indicate this
1080 ESCAPE ROUTINE /* and exit
1090 DOEND
1100 *
1110 * OPTION 1C
1120 *
1130 * Function 'GR' -- GET RB value using RB offset + length
1140 * This enables the caller to obtain information based on a
1150 * certain location; hence, RBE-OFFSET specifies the start
1160 * position and RBE-LENGTH specifies the length.
1170 *
1180 RESET #PERS-NUM
1190 MOVE 'GR' TO FUNC
1200 MOVE 1 TO RBE-OFFSET /* start at the beginning
1210 MOVE 8 TO RBE-LENGTH /* for a max. length of 50 bytes
1220 CALL 'STPRBE' FUNC RBE-AREA #PERS-NUM
1230 PRINT *PROGRAM 'Option 1C returned ..' #PERS-NUM 'resp' RBE-RESP
1240 IF RBE-RESP NE 0
1250 DO
1260 PRINT *PROGRAM 'received an error from the STPRBE routine. Error:'
1270 RBE-ERROR 'subcode' RBE-SUBCODE 'for func GR'
1280 MOVE RBE-RESP TO RESP
1290 ESCAPE ROUTINE
1300 DOEND
1310 *
1320 * NOTE: Only one of the options need be used to extract the value
1330 *
1340 RESET RQ-RESP
1350 *
1360 * Now, we read the original record, which is not yet changed; hence the
1370 * reason for setting this up as a pre-trigger, to see if the value
1380 * (PERSONNEL-ID in this case) has changed.
1390 *

Triggers and Stored Procedures202

Examples

1400 MOVE RQ-CB TO CONTRL-BLK /* get the original ACB of the A1/4
1410 MOVE CB-ISN TO #ISN /* extract the ISN of the record
1420 GET EMPLOYEES #ISN /* read the, so far, unchanged data
1430 IF PERSONNEL-ID(1420) = #PERS-NUM /* have the numbers changed?
1440 ESCAPE ROUTINE /* no, then exit
1450 *
1460 * Now that we have observed that the primary key has changed, we must
1470 * read all the files with a foreign key and CASCADE the update.
1480 *
1490 FIND VEHICLES WITH PERSONNEL-ID = PERSONNEL-ID(1420) /* Vehicles file
1500 ASSIGN PERSONNEL-ID(1490) = #PERS-NUM
1510 UPDATE (1490)
1520 CLOSE LOOP(1490)
1530 *
1540 FIND MISCELLANEOUS WITH PERSONNEL-ID = PERSONNEL-ID(1420) /* Misc file
1550 ASSIGN PERSONNEL-ID(1540) = #PERS-NUM
1560 UPDATE (1540)
1570 CLOSE LOOP(1540)
1580 *
1590 * Issuing an ET now, is not valid with a participating trigger because
1600 * the originating command (A1/Update) has not yet been executed and
1610 * the originating user expects to do the ET once the update is complete.
1620 * If this ET were done here, the A1/4 (pre-trigger) would receive a
1630 * response 144 because the ISN would be released. If the originating
1640 * user had to do other updates, then a misplaced ET (End Transaction)
1650 * could cause a loss of data integrity across the files.
1660 *
1670 END

SAMPREF1

0010 **
0020 * Application: Adabas Triggers
0030 * Program: SAMPREF1 - Example of referential integrity (restrict)
0040 * Function: SPT routine to delete records from the Vehicles file
0050 * Invoked with a delete trigger as shown below:
0060 *
0070 * Trigger Information
0080 * File Number 3
0090 * File Name VEHICLES-FILE
0100 * Command Type Delete
0110 * Long Field Name ... ** Any Field **
0120 * Adabas Field **
0130 * Field Prty/Seq ___
0140 * Procedure Information
0150 * Name (Subpgm)...... SAMP0004
0160 * Pre Cmd Select Y (Pre)
0170 * Trigger Type N (Non-Participating)

203Triggers and Stored Procedures

Examples

0180 * CALLNAT Params C (Cntl Info + Resp)
0190 * RecBuffer Access .. N (No RecBuff Access)
0200 *
0210 **
0220 DEFINE DATA LOCAL
0230 01 #NUMBER (A8)
0240 01 VEHICLES VIEW OF VEHICLES
0250 02 PERSONNEL-ID
0260 END-DEFINE
0270 *
0280 INPUT (AD=TMIL'_' CD=NE)
0290 'Trigger Example for Referential Integrity - RESTRICT' (YEI)
0300 // 'Enter Personnel Number ..' (TU) #NUMBER
0310 *
0320 IF #NUMBER = MASK('.') /* exit?
0330 STOP /* yes
0340 IF #NUMBER = ' ' /* a number must be specified
0350 REINPUT 'Invalid Number specified'
0360 *
0370 FIND VEHICLES WITH PERSONNEL-ID = #NUMBER /* find the record to be deleted
0380 DELETE(0370) /* issue the Delete request
0390 END TRANSACTION /* finalize the delete
0400 REINPUT 'Record has now been deleted' /* confirm and restart
0410 CLOSE LOOP
0420 IF *NUMBER(0370) = 0 /* validate existence of number
0430 REINPUT 'Invalid Personnel Number specified'
0440 *
0450 * Below, any error handling may be done. With a trigger, a procedure
0460 * could return a non-zero response. This would result in the trigger
0470 * command (the Delete in this case) receiving a response 155. Pre-triggers
0480 * receive a response 155 and post-triggers receive a response 156.
0490 *
0500 ON ERROR /* handle any errors from the trigger
0510 DO
0520 BACKOUT TRANSACTION /* release the held record/ISN
0530 INPUT (AD=O CD=YE) 8X '*** Warning ***' (REI)
0540 // 'Personnel Number' (YE) #NUMBER 'NOT deleted' (YEI)
0550 / 'Response' (YE) *ERROR-NR 'received for this request' (YE)
0560 // 4X 'Press Enter to continue' (REI)
0570 STACK TOP COMMAND *PROGRAM /* return to start of this routine
0580 STOP
0590 DOEND
0600 END

Triggers and Stored Procedures204

Examples

SAMPREF2

0010 **
0020 * Application: Adabas Triggers
0030 * Program: SAMPREF2 - Example of referential integrity (Cascade)
0040 * Function: SPT routine to update records on the Employees file
0050 * Invoked with an update trigger as shown below:
0060 *
0070 * Trigger Information
0080 * File Number 4
0090 * File Name EMPLOYEES
0100 * Command Type Update
0110 * Long Field Name ... PERSONNEL-ID
0120 * Adabas Field AA
0130 * Field Prty/Seq 10_
0140 * Procedure Information
0150 * Name (Subpgm)...... SAMP0005
0160 * Pre Cmd Select Y (Pre)
0170 * Trigger Type P (Participating)
0180 * CALLNAT Params C (Cntl Info + Resp)
0190 * RecBuffer Access .. A (May be Accessed)
0200 *
0210 **
0220 DEFINE DATA LOCAL
0230 01 #NUMBER (A8)
0240 01 EMPLOYEES VIEW OF EMPLOYEES
0250 02 PERSONNEL-ID
0260 02 FIRST-NAME
0270 02 NAME
0280 02 MIDDLE-NAME
0290 END-DEFINE
0300 *
0310 REPEAT
0320 *
0330 INPUT (AD=TMIL'_' CD=NE)
0340 'Trigger Example for Referential Integrity - CASCADE' (YEI)
0350 // 'Enter Personnel Number ..' (TU) #NUMBER
0360 *
0370 IF #NUMBER = MASK('.') /* exit ?
0380 STOP /* yes
0390 *
0400 IF #NUMBER = ' ' /* a number must be specified
0410 REINPUT 'Invalid Number specified'
0420 *
0430 FIND EMPLOYEES WITH PERSONNEL-ID = #NUMBER /* read the record
0440 INPUT (AD=MIL CD=NE) /* show data for doing updates
0450 'Enter Employee Details Below for Update:-' (YEI)
0460 // 'Personnel Number ...' (TU) PERSONNEL-ID

205Triggers and Stored Procedures

Examples

0470 / 'Last Name' (TU) NAME
0480 / 'First Name' (TU) FIRST-NAME
0490 / 'Middle Name' (TU) MIDDLE-NAME
0500 *
0510 * Validation of the changes may now be done as required
0520 *
0530 UPDATE(0430) /* make the database changes
0540 END TRANSACTION /* and finalize them
0550 ESCAPE BOTTOM
0560 CLOSE LOOP
0570 IF *NUMBER(0430) = 0
0580 REINPUT 'Invalid Personnel Number specified'
0590 ELSE
0600 INPUT NO ERASE ////// 4X 'Record has now been updated' (YEI)
0610 *
0620 CLOSE LOOP(0310) /* repeat loop
0630 *
0640 * Below, any error handling may be done. With a trigger, a procedure
0650 * could return a non-zero response. This would result in the trigger
0660 * command (the update in this case) receiving a response 155. Pre-triggers
0670 * receive a response 155 and post-triggers receive a response 156.
0680 *
0690 ON ERROR /* handle any errors from the trigger
0700 DO
0710 BACKOUT TRANSACTION /* release the held record/ISN
0720 INPUT (AD=O CD=YE) 8X '*** Warning ***' (REI)
0730 // 'Personnel Number' (YE) #NUMBER 'NOT Updated' (YEI)
0740 / 'Response' (YE) *ERROR-NR 'received for this request' (YE)
0750 // 4X 'Press Enter to continue' (REI)
0760 STACK TOP COMMAND *PROGRAM /* return to start of this routine
0770 STOP
0780 DOEND
0790 END

Triggers and Stored Procedures206

Examples

Index

A
Adabas Online System

installing, 26
log on, 27
requirement, 26
Trigger Maintenance, 14

Adabas trigger driver
abnormal termination, 54
checking for procedures, 49
checking for triggers, 15
definition, 13
function, 46
initialization, 14
initializing, 46
installing, 26, 28
processing results, 15, 51
shutdown, 16, 53
starting Natural subsystems, 14
tracking Natural subsystems, 48

ADALOD utility
loading the trigger file, 26

ADAMODE parameter
NATPARM module, 34

ADATSP module, 28-29
ADAUSER

replacement for, 32
ASMNTOS

job to assemble NATOS, 30, 32
ASMPARM

job to assemble NATPARM, 30
asynchronous trigger

definition, 12

B
buffer pool parameters

NATPARM module, 34
buffer size parameters

NATPARM module, 34

C
CDYNAM parameter

NATPARM module, 34
CMPRINT assignments

dynamic, 37
Command logging, 56

components
Adabas trigger driver, 13
Natural trigger driver, 13

configuration, 33
CSTATIC parameter

NATPARM module, 34

D
DECIDE statement

printer assignment, 37
work file assignment, 38

DUMP parameter
NATPARM module, 34

DYNPARM parameter
NATPARM module, 35

E
ETA parameter

NATPARM module, 35
ETID parameter

NATPARM module, 35
Example data areas, 167
Example programs, 167

F
File number

controlling the maximum, 48
Format buffer

use for stored procedures, 67

I
installation, 26

Adabas nucleus component, 26
Adabas trigger driver, 26
Natural trigger driver, 26
online user interface, 26
prerequisites, 26
Trigger Maintenance, 26

L
Limit parameters

NATPARM module, 35
LNKBATC8 job, 30
LNKBATCH job, 30

207

LNKNATN8 job, 30
LNKNATNS job, 30
LNKNATS8 job, 30
LNKNATSH job, 30

M
Multi-trigger

definition, 61

N
NAMBS2

batch Natural driver, 31
NATOS

batch Natural driver, 31
NATPARM module, 31-32

ADAMODE parameter, 34
buffer pool parameters, 34
buffer size parameters, 34
CDYNAM parameter, 34
CSTATIC parameter, 34
DUMP parameter, 34
dynamic overrides, 36
DYNPARM parameter, 35
ETA parameter, 35
ETID parameter, 35
limit parameters, 35
macro settings, 33
NTLFILE parameter, 35
PROGRAM parameter, 35
STACK parameter, 35-36

NATPARMs
overriding with Natural Security, 40
update for triggers and stored procedures, 27

Natural
batch driver, 31
creating a batch nucleus, 31
library containing linked batch nucleus, 29
macro settings, 33
split nucleus, 47

using for subsystems, 14
start session, 27
version level requirement, 26

Natural nucleus
batch, 31
create batch, 32
environment-dependent, 31
environment-independent, 31
front-end part, 31
shared, 31
split, 31

Natural Optimizer Compiler
using with triggers and stored procedures, 26

Natural parameter module
macro settings, 33

Natural print files
setting up, 28

Natural Security
defining library SYSSPT, 39
defining library SYSTRG, 39
error program, 40
ETID, 40
for stored procedures, 38

library protection, 40
MADIO, 40
MAXCL, 40
NATPARM values in user profile, 36
nonactivity logoff limit, 40
overriding NATPARM settings, 40
parameter settings, 40
password change option, 40
restart program, 41
startup transaction, 41
steplibs, 41

Natural subsystems
abends, 55
acquiring storage for, 47
definition, 14, 30
determining the number of, 14
determining the printer, 36
ESTAE processing, 54
obtaining NATPARM values, 36
purpose, 14
queue entries for, 48
restarting, 55
security when using stored procedures, 38
set up, 28
setting maximum number, 48
space requirements, 48
split Natural nucleus, 14
starting, 14, 48
STXIT processing, 54
subtransactions, 40
tracking failure, 16
tracking status and activity, 48
waiting for work, 15, 48
work file assignment, 38
work file considerations, 38
work file contention, 38

Natural trigger driver
components, 16
definition, 13
initialization, 16
installing, 26, 30
invoking the tracking routine STPUTRAK, 17
obtaining control, 15
processing procedures, 50
processing the procedure, 17
recovering from errors, 17
setting up the parameter list, 16
updating the trigger request entry, 17

Natural work files
setting up, 28

NATVSE
batch Natural driver, 31

non-participating trigger
definition, 12-13

NTLFILE parameter
NATPARM module, 35

P
participating trigger

definition, 12-13
PC command

ACB field descriptions, 78
ACB layout, 77

Triggers and Stored Procedures208

Index

ACBX field descriptions, 80
ACBX layout, 79
calling stored procedures, 76
setup, 76

post-command trigger
definition, 12

pre-command trigger
definition, 12

Printer
assignment, 36

Procedure
Natural limitations, 63
performance considerations, 60
using format and record buffers, 66
writing, 60

procedure
definition, 10

PROGRAM parameter
NATPARM module, 35

Q
queue

post-trigger, 15
pre-trigger, 15

R
Record buffer

extraction routine, 67
use for stored procedures, 66
use for triggers, 66

record buffer
extraction routine, 10

REFRESH command
trigger table maintenance, 47

REGION parameter
job control, 33

Response code
22, 46

S
SIZE parameter

job control, 33
SPAENA component, 16
SPT

ADARUN parameter, 14, 28, 46
use in cluster environments, 28

STACK parameter
NATPARM module, 35-36

STEPLIB specification, 29
Storage

minimizing buffer requirements, 48
requirement, 47

Stored procedure
calling, 75
characteristics, 60
invoking, 76
PC command, 76
status, 46

stored procedure
definition, 10
link routine STPLNK, 10

processing, 18
vs. trigger, 10

stored procedure request
as a command, 15

STP
Natural trigger driver startup routine, 36

STP component, 16
STPAPARM

parameter data area, 65
STPDRV

NATPARM entry point, 31
STPNAT entry point, 32

STPEND component, 16
STPEND module, 28-29, 33, 35
STPLNK link routines

definition of, 10
invoking stored procedures, 76

STPLNK01 example, 83
STPLNK02 example, 85
STPLNK03 example, 91
STPNAT component, 16
STPNAT module, 31-32
STPPDRIV component, 16
STPRBE

NATPARM entry point, 31
STPNAT entry point, 32

STPRBE routine
definition of, 10
response codes, 70
specifying, 67

STPUES component, 16
STPUTRAK routine

audit trigger processing, 17
definition, 17
work area, 17

Subsystem Activity function
Trigger Maintenance, 14

Subtransactions
Natural subsystems, 40

subtransactions
setting security limits for, 40

synchronous trigger
definition, 12-13

SYSSPT, 40-41
SYSSPT library, 36, 168

defining to Natural Security, 39
SYSTRG, 40
SYSTRG library

defining to Natural Security, 39

T
TRGLOAD

utility to load trigger definitions, 156
TRGMAIN

API to maintain triggers, 144
TRGMPMJ job, 28, 30
TRGPARM job, 30
TRGPARM8 job, 30
TRGUNLD

utility to unload triggers definitions, 156
Trigger

API to maintain, 144
asynchronous type, 60

209Triggers and Stored Procedures

Index

processing, 50
characteristics, 60
define and maintain, 115

multiple, 119
single, 123

post-command type
processing results of, 52

pre-command type
processing results of, 51

priority assigned by user, 49, 119-120
status, 46
synchronous post-command type

processing results of, 52
synchronous pre-command type

processing results of, 52
synchronous type, 61

processing, 51
verifying presence of at least one, 47

trigger
monitoring status of, 18
processing, 20
request entry, 15
vs. stored procedure, 10

Trigger definition
required number, 47

trigger definition, 18
creating online, 18
initialization requirement, 14

trigger execution
asynchronous or synchronous, 12
before or after a command, 12
participate in command logic or not, 12

Trigger file
verifying existence of at least one entry, 47

trigger file
loaded during initialization, 14
loading, 26
logical file definition (NTLFILE), 27
logical file number (LFILE), 27
security issues, 27

Trigger Maintenance, 14
Subsystem Activity function, 14

Trigger Maintenance Facility, 18
installing, 26
required file-field tables, 27
required trigger definitions, 27

Trigger Maintenance facility
administrator functions, 128

active session settings, 129
display/modify profile information, 133
Natural subsystem activity, 136
trigger activity, 138

defining triggers, 115
description of, 100
direct commands, 103
file-field tables, 104
input fields, 102
PF keys, 103
procedure reports, 125

Trigger queues
creating entries, 50

Trigger request, 15
trigger request entry, 15

updating, 17

Trigger table
creating, 47
definition of, 47
in a cluster environment, 47
maintaining, 47
scanning, 49

trigger table
in a cluster environment, 14
location, 14

triggered procedure
definition, 11

triggering event, 18
definition, 11

triggers
checking for, 15
number per command, 15
parts of, 11
run time processing, 14
types, 12
unloading and loading, 156

Triggers profile
CMPRINT assignments, 37
error action value, 16
maximum subsystems parameter, 48
NATSEC LOGON required, 39
NATSEC password, 40
Natural subsystem information, 46
specifying NATPARM values, 36
status parameter, 46
verifying, 46

triggers profile
CMPRINT assignments, 28
create, 27
error action value

in a cluster environment, 16
installing, 27
log trigger activity parameter, 17
maximum subsystems parameter, 14, 28
verified during initialization, 14

U
user exits

specify the library containing, 29

W
Work file

assignment, 38

Triggers and Stored Procedures210

Index

	Triggers and Stored Procedures
	Table of Contents
	Triggers and Stored Procedures
	1 Conventions
	2 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Introduction
	3 Introduction
	Procedures
	Stored Procedures
	Triggers

	Components
	Adabas Trigger Driver
	Initialization
	Starting Natural Subsystems
	Checking for Triggers
	Processing Procedure Results
	Shutdown

	Natural Trigger Driver
	Setting Up the Parameter List
	Invoking the Tracking Routine STPUTRAK
	Processing the Procedure
	Recovering from Errors
	Updating the Trigger Request Entry

	Trigger Maintenance

	Processing Summary
	Stored Procedure Processing
	Trigger Processing

	II Installation and Configuration
	4 Installation and Configuration
	Software Requirements
	Overview
	Install Trigger Maintenance
	1. Install AOS
	2. Load the trigger file
	3. Modify the NATPARMs and relink
	4. Start the facility and create the profile

	Install the Adabas Trigger Driver
	1. Set the ADARUN SPT parameter
	2. Set up each Natural subsystem
	3. Set up all Natural work files and print files
	Example for Steps 2 and 3
	4. Specify the local libraries

	Install the Natural Trigger Driver
	Adabas Example Jobs
	Batch Natural Driver NATOS
	Prepare the Batch Natural Nucleus
	1. Assemble the batch Natural driver
	2. Assemble the NATPARM module
	3. Prepare the Natural license key
	4. Link the batch Natural driver
	5. Check the REGION / SIZE parameter setting
	6. Make the Natural nucleus accessible to the Adabas nucleus
	7. Check the ADALNK link options

	NATPARM Considerations
	Special Requirements
	NATPARM Dynamic Overrides

	Printer Considerations
	Dynamic CMPRINT Assignment

	Work File Considerations
	Natural Security Considerations
	Logging On
	Library Settings
	Security Limits
	Parameter Settings

	III Processing and Performance
	5 Processing and Performance
	Initialization
	Verifying the Adabas Triggers Profile
	Verifying the Presence of at Least One Trigger
	Acquiring Storage
	Creating the Trigger Table
	Starting Natural Subsystems

	Checking for Procedures
	Scanning the Trigger Table
	Creating Pre- and Post-Command Trigger Queue Entries

	Processing the Procedures
	Asynchronous Triggers
	Synchronous Triggers

	Processing the Results
	Pre-Command Triggers
	Special Processing for Synchronous Pre-Command Triggers

	Post-Command Triggers
	Special Processing for Synchronous Post-Command Triggers

	Shutdown
	Shut-down Processing Steps
	Error Action

	Abnormal Termination
	Natural ESTAE / STXIT Processing
	Natural Subsystem Abends
	Natural Subsystem Restart

	Command Logging

	IV Programming and Performance
	6 Programming and Performance
	Writing Procedures
	Stored Procedures
	Triggers
	Asynchronous Triggers
	Synchronous Triggers

	Implementing Support for Multi-Triggers
	Single Triggers vs Multi-Trigger

	Natural Syntax Limitations
	Error Handling
	Printer Support
	Work File Support
	ET Logic
	Natural Levels
	Statements Appropriate for Batch Mode
	CALLNAT Parameters

	Using the Format and Record Buffers
	Record Buffer
	Parameters

	Format Buffer
	Record Buffer Extraction Routine (STPRBE)

	V Calling Stored Procedures
	7 Calling Stored Procedures
	Stored Procedure Link Routine (STPLNKnn)
	Setting Up the PC Command
	PC Command Function and Use
	ACB Interface Direct Call Control Block and Buffer Overview
	Control Block
	Buffer Areas
	Control Block Field Descriptions

	ACBX Interface Direct Call Control Block and Buffer Overview
	Control Block
	Buffer Areas
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer

	Examples
	STPLNK01
	STPLNK02
	STPLNK03

	VI Trigger Maintenance
	8 Trigger Maintenance
	Overview
	Wildcard Notation
	Input Fields
	Messages
	Commands
	PF Keys

	File-Field Tables
	Record Buffer Extraction
	Group-Field Table
	File-Field Table Definitions Menu
	Display a File-Field Table
	Display a Group Table
	Display a Group-Field Table
	Modify a File-Field Table
	Modifying Fields

	Modifying the Group-Field Table
	Delete a File-Field Table
	Generate a File-Field Table

	Trigger Definitions
	File Name
	Command Type
	Field Name
	Trigger Definitions Menu
	Multiple Trigger Definitions
	Single Trigger Definition

	Procedure Reports
	Administrator Functions
	Active Session Settings
	Updating the Trigger Table
	Buffer Size Calculations

	Display/ Modify Profile Information
	Profile Fields

	Subsystem Activity
	Trigger Activity

	VII TRGMAIN: An API To Maintain Triggers
	9 TRGMAIN: An API To Maintain Triggers
	Functions (Format A5)
	Calling Parameters (Format A209)
	Sample User Program
	Response Codes

	VIII TRGUNLD and TRGLOAD Utilities
	10 TRGUNLD and TRGLOAD Utilities
	Starting a Utility
	TRGUNLD
	TRGLOAD

	Utility Parameters
	Wildcard Notation
	TRGUNLD Parameters
	TRGUNLD Parameter Examples
	TRGLOAD Parameters
	TRGLOAD Parameter Examples

	End of Processing Reports
	Unload Report (TRGUNLD)
	Example

	Load Report (TRGLOAD)
	Example

	Utility Response Codes

	A Examples
	SAMPINT1
	SAMPPRC1
	SAMPP001
	STPLCB
	STPLCBE
	STPLRBE
	STPUTPRM
	STPUTRAK
	STPAPARM
	STPAPRM1
	STPXPARM
	SAMP0001
	SAMP0002
	SAMP0003
	SAMP0004
	SAMP0005
	SAMPREF1
	SAMPREF2

	Index

