
Adabas

Concepts and Facilities

Version 8.5.3

April 2020

This document applies to Adabas Version 8.5.3 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ADAMF-CONCEPTS-853-20230316

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Adabas Is 5
Operational Highlights .. 6
Operating Environments ... 7
Supported Data Models ... 7
Operating Structure ... 8
Running Adabas ... 12

3 Adabas Design ... 15
Adabas Entities ... 16
Database Components ... 17
Database Files ... 26
Record and Field Definitions ... 30
Parallel Participant Table (PPT) .. 52
Spanned Records .. 54

4 Using Adabas .. 59
Accessing a Database from Programs .. 60
Maintaining Database Integrity ... 68

5 Adabas Utilities ... 77
Initial Design and Load Operations ... 78
Backup / Restore / Recovery Routines ... 81
Database Modification Routines .. 84
Audit / Control / Tuning/Reporting Procedures .. 92

6 Licensing Adabas .. 99
7 Adabas Security ... 101

Security System User IDs ... 102
Data Encryption ... 105
Multiclient Files .. 105
Adabas Security and ADASCR .. 106
Adabas SAF Security .. 107
Related Security Options .. 111

8 Optional Product Extensions ... 113
Adabas Bridges ... 114
Adabas Caching Facility ... 118
Adabas Cluster Services ... 119
Adabas Delta Save Facility ... 122
Adabas Fastpath ... 123
Adabas Native SQL .. 124
Adabas Online System ... 124
Adabas Parallel Services ... 126

iii

Adabas Review ... 127
Adabas SQL Gateway ... 130
Adabas SQL Server ... 130
Adabas Statistics Facility .. 132
Adabas Text Retrieval ... 134
Adabas Transaction Manager ... 135
Adabas Vista ... 136
Data Archiving for Adabas .. 137
Event Replicator for Adabas .. 138
Entire Net-Work Multisystem Processing Tool .. 141
Entire Transaction Propagator ... 143
Natural Application Development Environment .. 144
Predict Data Dictionary System ... 145

Index ... 147

Concepts and Facilitiesiv

Concepts and Facilities

Preface

This documentation provides a technical introduction to the principles and functions of Adabas,
Software AG's adaptable data base management system. It provides an overview of Adabas for
those who require a basic understanding of Adabas operating environments, design, use, and
optional extensions.

Presents a system overview and discusses the supported operating
environments.

Adabas is....

Describes the structures used by Adabas and their functions and interactions.Adabas Design

Describes accessing the database and maintaining its integrity.Using Adabas

Briefly describes the Adabas utilities.Adabas Utilities

Describes the Adabas licensing concept.Licensing Adabas

Describes the security features available with Adabas.Adabas Security

Briefly describes the optional product extensions available from Software
AG to add functionality to the Adabas core product.

Optional Product Extensions

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Concepts and Facilities2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Concepts and Facilities

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Adabas Is . . .

■ Operational Highlights .. 6
■ Operating Environments ... 7
■ Supported Data Models .. 7
■ Operating Structure ... 8
■ Running Adabas ... 12

5

Adabas, the adaptable data base, is a high-performance, multithreaded, database management
system for mainframe platforms where database performance is a critical factor. It is interoperable,
scalable, and portable across multiple, heterogeneous platforms including mainframe, midrange,
and PC.

Operational Highlights

High Availability

Adabas is designed for operation 7 days a week and 24 hours a day. Space is managed dynamically
(read Adabas Space Management, elsewhere in this guide), files can be loaded and unloaded,
backed up and restored, and system performance can be analyzed without interrupting the active
database.

Storage Space Optimization

Adabas stores data in compressed form to reduce space requirements. Since modern databases
are measured in gigabytes (1000 megabytes) or even terabytes (1000 gigabytes), the savings in
disk space can be considerable. Reduced space requirements also mean that the input/output (I/O)
system is more efficient.

Performance

Performance is the key factor of Adabas, which includes a number of features to enhance it. For
instance, a number of set-up parameters are available for fine-tuning the database operating en-
vironment, and many of these can be modified while the database is active.

Fault Tolerance

Adabas recovers automatically after an abnormal database or system termination. Each time an
Adabas database is started, an automatic check is initiated to determine whether the database
previously terminated cleanly or an active transaction was interrupted. If a transaction was inter-
rupted, Adabas automatically resets all changes of the uncompleted transaction so that the database
is consistent.

Concepts and Facilities6

Adabas Is . . .

Operating Environments

Adabas supports a variety of operating environments and can be used in distributed environments.
To see a complete list of the operating platforms supported by Adabas, read Supported Platforms,
in the Adabas Release Notes. For general information regarding Software AG product compatibility
with other platforms and their requirements for Software AG products, visit Software AG's
Hardware Supported web page; for specific information regarding Software AG product compat-
ibility with IBM platforms and any IBM requirements for Software AG products, visit Software
AG's Product Compatibility for IBM Platforms web page.

As the telecommunication interface, mainframe Adabas supports TP monitors such as Software
AG's Com-plete as well as other popular monitors such as TSO, CICS, IMS/DC, TIAM, and UTM.

Software AG's multisystem processing tool Entire Net-Work provides the benefits of distributed
processing by allowing you to communicate across a network with Adabas and other service tasks.
Support for network access methods is implemented in the form of line drivers. Mainframe Entire
Net-Work provides drivers for VTAM, IUCV, DCAM, CTCA and FCTC (channel-to-channel ad-
apters), TCP/IP, and XCF.

Supported Data Models

Adabas is a relational-like database in that:

■ it stores information in tables in which rows represent individual data records and columns
represent fields; and

■ separate Adabas files can be linked logically by a common field.

Adabas differs from true relational databases in that it:

■ stores many data relationships physically, resulting in fewer demands on CPU resources than
true relational databases, which create all relationships logically at runtime.

■ supports repeating groups of fields.

Adabas separates data relationships, management, and retrieval from the actual physical data and
stores the physical data independently. It provides flexible access techniques and performs both
simple and complex searches quickly and efficiently. The independence of the data from the pro-
gram minimizes the need to reprogram when the database structure changes.

Logical data relationships can be created as needed. Adabas can accommodate any representational
and access requirements dictated by the user environment. Each individual corporate user can
decide how to view data in the system, and can alter data relationships dynamically -without al-
tering the database or existing programs.

7Concepts and Facilities

Adabas Is . . .

http://www.softwareag.com/corporate/products/bis/platforms/default.asp
http://www.softwareag.com/Corporate/products/bis/platforms/ibm_availability.asp

In contrast to systems that require a single model for all data, Adabas allows you to choose any
structure your application requires. You can access the same data using your choice of data-
model perspective:

■ relational including nested relational (tables within tables)
■ entity relationship, with proven ability to support structural objects
■ hierarchical; network
■ geographical
■ text

These data models can be combined within a single business solution; multiple solutions can view
Adabas data using different data models.

As new requirements develop, Adabas evolves in both scope and complexity without redesign of
the database or reprogramming of application systems. For example, field and access keys may
be added to an Adabas file at any time without reloading or reorganizing the file.

Operating Structure

The following figure shows the operating structure of the Adabas system.

■ Nucleus, I/O Buffer, and Threads
■ Data Storage, Associator, and Work

Concepts and Facilities8

Adabas Is . . .

■ Utilities, User Programs, and TP Monitors

Nucleus, I/O Buffer, and Threads

The Adabas nucleus and input/output (I/O) buffer are loaded into main memory at startup. The
nucleus is a set of programs that drives Adabas, coordinates all work, and translates user program
statements into Adabas commands. All programs access Adabas files through the nucleus. All
database activities such as data access and update are managed by the Adabas nucleus. In most
cases, a single nucleus is used to manage a single physical database.

Note: For information about running multiple nuclei against a single physical database
under a single operating system image, read Adabas Parallel Services, elsewhere in this
guide or under multiple z/OS images, read Adabas Cluster Services, also in this guide.

The Adabas I/O buffer area, which can be resized for each Adabas session, contains the most fre-
quently used data and data relationships; it helps to minimize physical input/output (I/O) activity
and thus saves computer time. It contains blocks read from the database and blocks to be written
to the database:

■ For blocks read from the database, a buffer algorithm ensures that the most frequently accessed
blocks stay in memory. When a block from the database is needed, the buffer content is checked
to determine if the block is already in memory, thus avoiding unnecessary reads.

■ Multiple updates are accumulated in a block before being written (flushed) to the database.

Adabas provides multithreaded processing to maximize throughput. If I/O activity suspends
command processing in an active thread, Adabas automatically switches to another thread. The
user may set the number of 8-kilobyte threads to be used for an Adabas session up to a maximum
of 250.

9Concepts and Facilities

Adabas Is . . .

Data Storage, Associator, and Work

The Data Storage, Associator, and Work components are physical disk areas:

■ Data Storage contains raw data, generally in compressed form.
■ The Associator contains information about data relationships.
■ The Work area contains the data protection area and temporary storage for intermediate results

during complex search operations or distributed transaction processing.

ReadAdabas Design, elsewhere in this guide for more information about these database compon-
ents.

Utilities, User Programs, and TP Monitors

Utilities

Database services such as loading or deleting files are handled by an integrated set of online and
batch-mode utility programs. Most utilities can be run in parallel with normal database activity
to preclude interruption of daily production.

Adabas utilities provide initial design and load operations, backup/restore/recovery routines,
database modification routines, and audit/control/tuning procedures. Read Adabas Utilities,
elsewhere in this guide, for a brief explanation of each utility.

User Programs

The nucleus is called using a batch or online user program written in:

■ Natural, Software AG's fourth-generation application development environment, or some other
fourth-generation language

■ Assembler, or a third-generation programming language such as FORTRAN, COBOL, or PL/I
(the REXX/VSE interpreter language is also supported) that uses the powerful and flexible
Adabas direct call interface. Each Adabas call is accompanied by a parameter list identifying
buffers defined in the user program that are used to transfer information to and from Adabas.

Note: Read Adabas Native SQL, elsewhere in this guide, for information about Adabas
Native SQL, a precompiler for Ada, COBOL, FORTRAN, and PL/I programs. Read Adabas
SQL Gateway, elsewhere in this guide, for information about Adabas SQL Gateway, an
SQL interface to Adabas.

Data from VSAM, DL/I, IMS/DB, SESAM, or TOTAL database structures can be transferred to and
stored in Adabas using Adabas bridge products. The original, unmodified programs continue
operating with their original data access commands while the bridge products intercept the data
access commands and translate them to Adabas direct calls. Read Adabas Bridges, elsewhere in
this guide, for more information about Adabas bridges.

Concepts and Facilities10

Adabas Is . . .

Special User Programs: Triggers and Stored Procedures

The Adabas triggers and stored procedures facility, an integral part of Adabas, can be used with
Natural (read Natural Application Development Environment, elsewhere in this guide) to write
and manage triggers and stored procedures in the Adabas server environment. Triggers are system-
atically used programs that are started automatically based on an event; they can be used to ensure
referential integrity, for instance. Stored procedures are programs used by a number of different
clients that are executed by Adabas as a result of a special user call. Storing these programs in an
Adabas file on the server reduces the amount of data traffic to and from the server. Read Using
Triggers and Stored Procedures, elsewhere in this guide, for more information about Adabas
triggers and stored procedures.

TP Monitors, Adalinks, and the Adabas API

Since most systems do not allow a standard call to Adabas, Software AG provides an application
program interface (API) to translate calls issued by an application program into a form that can
be handled by Adabas. The Adabas API is available across all supported mainframe platforms for
both batch and online operations.

Online operations are controlled by teleprocessing (TP) monitors, which serve as telecommunication
interfaces to Adabas. Supported TP monitors are listed in Operating Environments, elsewhere in
this guide. Software AG provides versions of the Adabas API that are specific to particular TP
monitors.Adalink is a generic term that refers to the portion of the API that is specific to a particular
TP monitor.

Batch applications are supported in both single-user and multiuser mode (readModes ofOperation,
elsewhere in this guide, for a discussion of these modes). The Adabas batch API uses a standard
calling convention that is supported by all major programming languages through their CALL
mechanisms. Most mainframe operating systems allow batch application modules to be linked
either with the batch API or with ADAUSER.

Software AG strongly recommends linking batch application programs with the Adabas version-
independent module ADAUSER. The ADAUSER module can optionally be linked with the Adabas
API. ADAUSER provides upward compatibility with Adabas releases and a degree of isolation
from future changes to the API or to mechanisms that handle interregion communication between
the user and the nucleus (read Modes of Operation, elsewhere in this guide).

A client running under IBM's OpenEdition can access Adabas. An OpenEdition application con-
taining calls to Adabas can be linked with either the batch API or ADAUSER.

11Concepts and Facilities

Adabas Is . . .

Running Adabas

■ Session Types
■ Storage Areas
■ Modes of Operation
■ ADARUN Startup Parameters
■ Session Control

Session Types

Three types of sessions can be identified for Adabas:

■ The Adabas session starts when the nucleus is invoked and ends when the nucleus is terminated.
An Adabas nucleus is invoked using job control specific to a particular operating system that
contains Adabas startup, or ADARUN, parameters.

■ A user session is either a batch mode program or a person using a terminal. A user session can
occur only during an Adabas session; that is, when the Adabas nucleus is active. It is a sequence
of Adabas calls optionally starting with an open user session (OP) command and ending with
a close user session (CL) command.

■ A utility session is executed in batch, or online using the Adabas Online System. Some utilities
require the Adabas nucleus to be active; others do not. ADARUN startup parameters are also
used for executing utilities.

Storage Areas

The Adabas nucleus and each user program or Adabas utility is executed in a separate storage
area defined by the operating system. The name of the storage area depends on the operating
system:

taskBS2000

address space, data space, hiperspace, 64-bit virtual spacez/OS

partition, address space, data spaceVSE

For consistency and simplification, Adabas documentation refer to all BS2000, z/OS, and z/VSE
areas (task, address space, partition, etc.) as regions.

Concepts and Facilities12

Adabas Is . . .

Modes of Operation

Adabas supports two modes of operation: single-user and multiuser.

Single-user mode is in effect when a user program (or Adabas utility) is executed in the same
partition/region as the Adabas nucleus.

Multiuser mode is in effect when the Adabas nucleus is located in a separate partition/region. It
is the most efficient and therefore the recommended mode of operation.

When using Adabas in multiuser mode, interregion communication is handled by Adabas in a
manner that takes optimum advantage of the communications facilities offered by the various
operating systems.

13Concepts and Facilities

Adabas Is . . .

For single-user mode, the appropriate Adabas nucleus JCL must be included with the job control
for the utility or user program.

ADARUN Startup Parameters

The ADARUN control statement defines and starts the Adabas operating environment. The
ADARUN control statement also starts Adabas utilities. ADARUN

■ loads the ADAIOR module, which performs all database I/O and other operating-system-de-
pendent functions;

■ interprets the ADARUN parameter statements; then loads and modifies the appropriate Adabas
nucleus or utility modules according to the ADARUN parameter settings; and

■ transfers control to Adabas.

The ADARUN statement, normally a series of entries each specifying one or more ADARUN
parameter settings, is specified in the DDCARD (z/OS or BS2000) or CARD (VSE) data set.

Session Control

Adabas provides several ways to monitor and control Adabas, user, and utility sessions:

■ Adabas operator commands can be entered from the operator console during an Adabas session
or during utility operation.

■ The ADADBS OPERCOM utility function can issue operator commands to the Adabas nucleus.
Adabas then issues a message to the operator confirming the command execution.

■ For those using Adabas Online System (demo or full version), you may be able to execute
functions corresponding to operator commands while an Adabas session is active using menu
options or direct commands.

Operator commands can be used to terminate an Adabas or user session; display nucleus or utility
information; log commands; and change Adabas operating parameters or conditions.

Adabas direct call commands can also be used to open and close a user session. Read Direct Call
Interface, elsewhere in this guide, for more information about direct call commands.

Concepts and Facilities14

Adabas Is . . .

3 Adabas Design

■ Adabas Entities ... 16
■ Database Components ... 17
■ Database Files .. 26
■ Record and Field Definitions .. 30
■ Parallel Participant Table (PPT) .. 52
■ Spanned Records .. 54

15

Database systems often involve complex data structures and data handling procedures that can
be designed and used only by persons with extensive knowledge and experience. Adabas has a
remarkably simple structure by comparison, yet it provides significant advantages for operational
efficiency, ease of design, definition, and database evolution.

Adabas Entities

In Adabas, a field is the smallest logical unit of information (e.g., current salary) that may be defined
and referenced by the user. A record is a collection of related fields that make up a complete unit
of information (e.g., all the payroll data for a single employee). A file is a group of related records
that have the same format (with some exceptions; readMultipleRecord Types inOne File, elsewhere
in this guide). A database is a group of related files.

■ Adabas Limits
■ Adabas Space Management

Adabas Limits

The table below shows the maximum number that mainframe Adabas supports for each entity:

MaximumEntity

65,535Databases

2,147,483,646 using 4-byte RABNsBlocks per database

the lower of 5,000 or the Associator block size minus oneFiles per database

4,294,967,294 using 4-byte ISNsRecords per file

3214Fields per record

depends on the operating systemUncompressed record length

Data Storage block size

Spanned records, supported in Adabas version 8 (or later), split a logical record
into multiple physical records, each smaller than one Data Storage (DS) block.
For more information, readSpannedRecord Support, elsewhere in this section.

Compressed record length

Concepts and Facilities16

Adabas Design

Adabas Space Management

The disk storage space allocated to a single Adabas database is segmented into logicalAdabas files.
A certain part of the overall space within the database is allocated to each logical file. When the
space is filled with records from the file, Adabas automatically allocates more space to the file
from the common free space pool. This dynamic space allocation, together with the dynamic re-
covery of released space, allows Adabas databases to run without intervention for long periods
of time.

The distribution of database space across disk drives can be controlled by physically segmenting
it into multiple independent data sets. When all physical database space is filled, more data sets
can be allocated dynamically, or the size of existing data sets can be increased so that new physical
files can be loaded without reorganizing the entire database.

Database Components

To support the separation of data and access structures, the Adabas nucleus uses three database
components:

■ Data Storage for compressed data
■ Associator for data management and retrieval
■ Work, a scratch area for complex search criteria, etc.

This section describes each of these database components:

■ Data Storage
■ Associator
■ Work
■ Other Components

Data Storage

Data Storage is divided into blocks, each identified by a 3- or 4-byte relative Adabas block number,
or RABN, that identifies the block's physical location relative to the beginning of the component.
Data Storage blocks contain one or more physical records and a padding area to absorb the expan-
sion of records in the block.

A logical identifier stored in the first four bytes of each physical record is the only control inform-
ation stored in the data block. This internal sequence number or ISN uniquely identifies each record
and never changes. When a record is added, it is assigned an ISN equal to the highest existing ISN
plus one. When a record is deleted, its ISN is reused only if you instruct Adabas to do so. Reusing
ISNs reduces system overhead during some searches and is recommended for files with records
that are frequently added and deleted.

17Concepts and Facilities

Adabas Design

For each file, between 1-90 percent (default 10%) of each block can be allocated as padding based
on the amount and type of updating expected. This reserved space permits records to expand
without migrating to another block and thus helps to minimize system overhead.

■ Free Space and Space Reusage
■ Compression
■ Dynamically Increasing Data Storage Space

Free Space and Space Reusage

If records become too large for their blocks, they migrate to new locations. When a record migrates
or is deleted, free space is opened in the data block between the last record and the padding area.
The following figure shows free space created when the record with ISN 0401 becomes too large
for the block and migrates to another block:

You can instruct Adabas to reuse free space. Reusing space saves computer time, since Adabas
then reads fewer physical blocks during searches. It is recommended for all files.

Concepts and Facilities18

Adabas Design

Compression

Data compression significantly reduces the amount of storage required. It also permits the trans-
mission of more information per physical transfer, resulting in greater I/O efficiency.

Adabas retains data records in compressed form. Several compression options are supported:

■ default compression;
■ null suppression; and
■ fixed format; and
■ forward or prefix index compression.

The first three options define and execute compression at the field level, with null suppression
and fixed format compression added as field options.

The fourth option, forward or prefix index compression, compresses the descriptor values in the
Associator's inverted list. It can be implemented at the file or the database level, in which case
specific files can be set differently; the file-level setting overrides the database setting. The forward
index compression option is set using the ADALOD utility and can be changed using the ADAORD
utility. This compression option is more fully described in Inverted Lists, elsewhere in this section.

The null suppression and fixed format options are added as field options and are discussed in
Data Compression Options FI and NU.

Default compression deletes trailing blanks in alphanumeric fields and leading zeros in binary
fields. An inclusive length byte (ILB) at the beginning of the field indicates the total number of
stored bytes, including the ILB. Thus, if "Susan" is entered in a "first-name" field defined with a
20-character length and default compression, its stored size will be six bytes: five bytes for the
letters of the name, plus one byte for the ILB. In addition, empty fields in a record are not stored;
an empty field is replaced by a one-byte empty field counter (EFC). Adabas can store up to 63
contiguous empty fields in a single hexadecimal byte.

Many Adabas files require only 50% to 60% of the space used for the raw data. Even with the ad-
dition of approximately 25% for the access structures stored in the Associator, Adabas storage re-
quirements are still less than those required for traditional file storage or for DBMSs that do not
use data compression.

19Concepts and Facilities

Adabas Design

Dynamically Increasing Data Storage Space

In z/OS environments, you can dynamically increase the size of your Data Storage space. This
makes it possible to increase the size of the database without incurring a database outage, which
can be critical if your database needs to run 24x7 (24 hours a day, 7 days a week). You can do this
in one of two ways:

1. You can increase the size of the last existing Data Storage data set for the database by extending
the data set and formatting the appended space, and then allocating it to the database.

2. You can add a new Data Storage data set to the database by allocating the data set to the oper-
ating system, formatting the data set, and then allocating it to the database.

Both of these methods can be accomplished without restarting the Adabas nucleus.

For more information about dynamic increases to the Data Storage space, readDynamically Increasing
Associator and Data Storage Space, in the Adabas DBA Tasks Manual.

Associator

The Associator is an organizational unit used for storing the structures required to access data in
Data Storage. It contains the following elements:

1. Two general control blocks (GCBs) for the database. The GCBs provide information regarding the
physical characteristics of the database, such as the database ID (DBID), the number of files
loaded, the number of Associator, Data Storage, and Work extents, the Associator, Data Storage,
and Work device types, system file information, Data Storage Space Table (DSST) extents, and
the database version indicator.

2. Individual file control blocks (FCBs) for each file. The FCBs identify the physical characteristics
and associated RABNs of database files. The contents include the file name, file number, current
file status, the ISN reuse settings, the space reuse settings, MINISN and MAXISN settings, the
first free ISN, and the number of updates against the file. In addition, the first RABN, last RABN,
and first unused RABN are stored in the FCB.

Concepts and Facilities20

Adabas Design

3. All tables needed to control and maintain the database including these:
■ A field definition table (FDT) for each file. For more information about the FDT, readRecords
and Field Definitions, elsewhere in this guide.

■ A free space table (FST) that lists the unused Associator and Data Storage blocks. These are
shown in the database report (ADAREP utility) under the heading "Unused Storage".

■ A parallel participant table (PPT), used to track the active Adabas nucleus (or nuclei in a
clustered environment) that manages a particular database. For more information about the
PPT, read Parallel Participant Table (PPT), elsewhere in this guide.

■ Coupling lists for physically coupled files. For more information about physically coupled
files, read Coupled Files, elsewhere in this guide.

4. An inverted list for each descriptor in each file of the database and an address converter for
each file.

5. If spanned records are used in a file, a secondary address converter for the file.

Inverted Lists

An inverted list, which is used to resolve Adabas search commands and read records in logical
sequence, is built and maintained for each field in an Adabas file that is designated as a key field
or descriptor (read Descriptor Options DE, UQ, and XI , elsewhere in this guide). It is called an
inverted list because it is organized by descriptor value rather than by ISN. The list comprises the
normal index (NI) and as many as 14 upper indexes (UI).

The normal index (NI) of the inverted list for a particular descriptor has an entry for each value.
The entry contains the value itself, the number of records in which the value occurs, and the ISNs
of those records.

To increase search efficiency, upper index (UI) levels are automatically created by Adabas as re-
quired, each level to manage the next lower level index. The first level UI, like the NI it manages,
contains entries for only one descriptor in each index block. All other UI levels contain entries for
all descriptors in each index block. UIs require a minimal amount of space: two blocks is the
minimum.

Note: The Adabas direct access method (ADAM) facility permits the retrieval of records
directly from Data Storage without accessing the inverted lists. The Data Storage block
number in which a record is located is calculated using a randomizing algorithm based on
the ADAM key of the record. The use of ADAM is completely transparent to application
programs and query and report writer facilities. See Random Access Using the Adabas
Direct Access Method (ADAM), elsewhere in this guide, for more information.

The following figure shows a typical normal index for the descriptor CITY in a customer file.

21Concepts and Facilities

Adabas Design

The example indicates that there are 31 records with the CITY Zurich (the ISNs of these records
are 2,6,23,76...).

Forward (or front or prefix) index compression removes redundant prefix information from index
values. Within one index block, the first value is stored in full length. For all subsequent values,
the prefix that is common with the predecessor is compressed. An index value is represented by:

<l,p,value>

-where

is the number of bytes that are identical to the prefix of the preceding value.p

is the exclusive length of the remaining value including the p-byte.l

For example:

After CompressionBefore Compression

6 0 ABCDEABCDE

2 5 FABCDEF

4 3 GGGABCGGG

2 5 HABCGGH

The decision to compress index values is based on the similarity of index values and the size of
the file:

■ the more similar the index values, the better the compression results.
■ small files are not good candidates because the absolute amount of space saved would be small

whereas large files are good candidates for index compression.

Concepts and Facilities22

Adabas Design

Even in a worst case scenario where the index values for a file do not compress well, a compressed
index will not require more index blocks than an uncompressed index.

Address Converter

The address converter determines the physical location of a record. It is an index that maps the
logical identifier of a record (that is, the ISN) to the relative Adabas block number (RABN) of the
Data Storage block where the record is stored. If spanned records are used, a secondary address
converter is used to map the secondary ISNs to the RABNs of the Data Storage blocks where the
secondary records are stored. For more information about spanned records, read SpannedRecords,
elsewhere in this guide.

The address converter contains a list of RABNs in ISN order. Only the RABNs are actually stored
in the address converter; the ISNs are identified by their relative position.

The following figure shows the relationship between an inverted list, the address converter, and
Data Storage. For example, to determine the physical location of the record whose ISN is 6, Adabas
uses the ISN as an index into the address converter. The sixth entry in the address converter is 2.
Therefore, ISN 6 is located in physical block 2 in Data Storage for this file.

When a record moves or is deleted, Adabas updates the address converter automatically and
transparently.

Since the ISN for a record never changes, and its physical block address is stored only in the address
converter entry, the record itself may be moved in Data Storage with only one update to the address
converter required and with no extension to the access path of the record.

23Concepts and Facilities

Adabas Design

Even if a record has many descriptors defined, the inverted list for each descriptor need not be
modified because it contains ISNs.

This process explains how Adabas is able to perform simple and complex searches quickly and
efficiently without storing pointer information in Data Storage.

Dynamically Increasing Associator Space

On z/OS systems, you can dynamically increase the size of your Associator space. This makes it
possible to increase the size of the database without incurring a database outage, which can be
critical if your database needs to run 24x7 (24 hours a day, 7 days a week). You can do this in one
of two ways:

1. You can increase the size of the last existing Associator data set for the database by extending
the data set and formatting the appended space, and then allocating it to the database.

2. You can add a new Associator data set to the database by allocating the data set to the operating
system, formatting the data set, and then allocating it to the database.

Both of these methods can be accomplished without restarting the Adabas nucleus.

For more information about dynamic increases to the Associator space, readDynamically Increasing
Associator and Data Storage Space, in the Adabas DBA Tasks Manual.

Work

The Work area stores information in four parts:

Stores . . .Part

data protection information required by the routines for autorestart and autobackout. Read Backout,
Recovery, and Restart, elsewhere in this guide, for more information.

1

intermediate results (ISN lists) of search commands.2

final results (ISN lists) of search commands.3

data related to two-phase commit processing.4

Other Components

■ Sort and Temp Areas

Concepts and Facilities24

Adabas Design

■ Logs

Sort and Temp Areas

Certain Adabas utilities (ADAINV, ADALOD) require two additional data sets, sort and temp,
for sorting and intermediate storage of data. Certain functions of other utilities require the temp
data set for intermediate storage.

The size of the temp and sort data sets varies according to the utility function to be executed. These
data sets can be allocated during the job and then released, or permanent data sets can be allocated
and reused.

Logs

Adabas uses the following optional logs:

■ The Command log (CLOG) records information from the control block of each Adabas command
that is issued. The CLOG provides an audit trail and can be used for debugging and for monit-
oring the use of resources. Single, dual, or multiple (2-8) data sets can be used (multiple data
sets are recommended).

Timestamps in an Adabas 8 command log created using the ADARUN CLOGLAYOUT=8
parameter are stored in machine time (GMT), whereas CLOGLAYOUT=5 timestamps are stored,
as always, in local time. The LORECX record layout that describes the CLOGLAYOUT=8 com-
mand log includes a differential time field that stores the difference between machine time and
local time at the time the CLOG record is written. This field allows you to calculate the local
time of a command log record.

Because of the difference in timestamp formats, we do not recommend that you mix or merge
command logs created using different CLOGLAYOUT settings. This is especially true for Adabas
nuclei in a cluster environment. For more information, read CLOGLAYOUT : Command Logging
Format , in Adabas Operations Manual.

■ The Protection log (PLOG) records before- and after-images of records and other elements when
changes are made to the database. It is used to recover the database (up to the last completed
transaction or ET) after restart. Single, dual, or multiple (2-8) data sets can be used (multiple
data sets are recommended).

■ The Recovery log (RLOG) records additional information that the Adabas Recovery Aid uses
to construct a recovery job stream. Read theADARAI utility discussion, elsewhere in this guide,
for more information.

25Concepts and Facilities

Adabas Design

Database Files

Each database contains system files and data files. A data file is generally created for each record
structure required; that is, for each set of related fields identified.

Files are loaded into the database using the ADALOD utility. A file number must be unique in
the database and not greater than the maximum file number defined for the database in the
MAXFILES parameter. Checkpoint, security, trigger, and system files can have two-byte file
numbers, but cannot be greater than 5000. Physically coupled files cannot include files with
numbers greater than 255. File numbers are assigned by the user in any sequence.

This section describes the different types of database files:

■ System Files
■ Coupled Files
■ Structuring Files to Enhance Performance

System Files

Adabas uses certain files to store system information. Using the ADALOD utility's FILE parameter,
you can identify an Adabas system file as one of the following:

Adabas checkpoint system fileCHECKPOINT

Event Replicator system fileREPLICATOR

Adabas security system fileSECURITY

Adabas system fileSYSFILE

Event Replicator subscription logging system fileSLOG

Adabas trigger system fileTRIGGER

Coupled Files

File coupling allows you to select, using a single search command, records from one file that are
related (coupled) to records containing specified values in a second file.

■ Physical Coupling

Concepts and Facilities26

Adabas Design

■ Logical or Soft Coupling

Physical Coupling

Any two files with file numbers 255 or lower may be physically coupled if a common descriptor
(read Descriptor Options DE, UQ, and XI, elsewhere in this guide) with identical format and
length definitions is present in both files. A single file may be coupled with up to 18 other files,
but only one coupling relationship may exist between any two files at any one time. A file may
not be coupled to itself.

When files are coupled, coupling lists are created in the Associator for each file being coupled.
File coupling is bidirectional rather than hierarchical in that two coupling lists are created for each
coupling relationship with each list containing the ISNs that are coupled to the other file.

Once the physical coupling lists have been created, any key field in either file may be used within
a search criteria.

Physical coupling may add a considerable amount of overhead if the files involved are frequently
updated. The coupling lists must be updated if a record in either of the files is added or deleted,
or if the descriptor used as the basis for the coupling is updated in either file.

Physical coupling may be useful for information retrieval systems in which

■ files seldom change;
■ the additional overhead of the coupling lists is insignificant compared with the increased ease

of formulating queries; or
■ files are small and primarily query-oriented.

Logical or Soft Coupling

Multiple files may also be queried by specifying the field to be used for interfile linkage in the
search criteria. Adabas then performs all necessary search, read, and internal list matching opera-
tions.

This technique is called logical or soft coupling because it does not require the files to be physically
coupled. Although logical coupling requires read commands, it is normally more efficient because
it avoids the increased overhead of coupling lists.

27Concepts and Facilities

Adabas Design

Structuring Files to Enhance Performance

An Adabas database with one file for each record type supports any application functions required
of it and is the easiest to manipulate for interactive queries, but it may not yield the best perform-
ance:

■ As the number of Adabas files increases, the number of Adabas calls increases. Each Adabas
call requires interpretation, validation and, in multiuser mode, supervisor call (SVC) and queuing
overhead.

■ In addition to the input/output (I/O) operations necessary for accessing at least one index, address
converter, and Data Storage block from each file, the one-file-per-record-type structure requires
buffer pool space. If sufficient buffer space is not available, blocks are overwritten that may be
needed for a later request.

The number of Adabas files used by critical programs can be reduced by

■ using multiple-value fields and periodic groups (read Field Levels, elsewhere in this guide);
■ linking physical files into a single logical (expanded) file;
■ including more than one type of record in an Adabas file;
■ including records for more than one category of user in an Adabas (multiclient) file; and
■ controlling data duplication and the resulting high resource usage.

This section describes the following topics:

■ Expanded Files
■ Multiple Record Types in One File
■ Multiclient Files
■ Controlled Data Redundancy

Expanded Files

If you have a large number of records of a single type, you may need to spread the records over
multiple physical files.

To reduce the number of files accessed, Adabas allows you to link multiple physical files containing
records of the same format together as a single logical file. This file structure is called an expanded
file and the physical files comprising it are the component files. An expanded file can comprise
up to 128 component files, each with a unique range of logical ISNs. An expanded file cannot exceed
4,294,967,294 records.

Note: Since Adabas now supports larger file sizes and a greater number of Adabas physical
files and databases, the need for expanded files has, in most cases, been removed.

Although an application program addresses the logical file (the address of the file is the number
of the expanded file's base component or anchor file), Adabas selects the correct component file

Concepts and Facilities28

Adabas Design

based on the data in a field defined as the criterion field. The data in this field has characteristics
unique to records in only one component file. When an application updates the expanded file,
Adabas looks at the data in the criterion field in the record to be written to determine which
component file to update. When reading expanded file data, Adabas uses the logical ISN as the
key to finding the correct component file.

Multiple Record Types in One File

Multiple record types can be defined within a single physical record; each record type is a logical
record composed of a subset of the fields defined for the file. Fields that do not belong to a given
type are null-suppressed.

Record types can be identified to Adabas by

■ defining a record type field with values to differentiate one type from another; or
■ using values of an existing field to differentiate type; for example, to differentiate two types, a

value of zero for a field common to both types might identify one type and any nonzero value
for the same field might identify the other type.

Multiclient Files

Records for multiple users or groups of users can be stored in a single Adabas physical file defined
as multiclient. The multiclient feature divides the physical file into multiple logical files by attaching
an internal owner ID to each record.

The owner ID is assigned to a user ID. A user ID can have only one owner ID, but an owner ID
can belong to more than one user. Each user can access only the subset of records that is associated
with the user's owner ID.

Note: For any installed external security package such as RACF, CA-ACF2, or CA-Top
Secret, a user is still identified by either Natural ETID or LOGON ID.

All database requests to multiclient files are handled by the Adabas nucleus.

Controlled Data Redundancy

Physical redundancy increases storage requirements but may also enhance performance and de-
crease complexity. For example, if a database stores customer and order information in a customer-
orders file and product descriptions in an inventory file, and a program that generates invoices
requires product descriptions in addition to customer-order data, it might enhance performance
to store a duplicate copy of the product descriptions in the customer-orders file.

Logical redundancy also increases storage demands while decreasing complexity. It involves
storing in one file the results of a process on data in another file; thus, the duplicate data is implied
by the content of another file, rather than being physically stored in two places.

29Concepts and Facilities

Adabas Design

Physical and logical redundancy cause update programs to run more slowly. The duplicate updates
required when changes in one file affect records in another file may degrade performance severely.
Redundancy should be used only for static data or data that is updated rarely. You can control
data redundancy by using multiple-value fields, periodic groups, and multiple record types
within a file.

Record and Field Definitions

In Adabas, the record structure and the content of each field in a physical file are described in a
Field Definition Table, or FDT, which is stored in the Associator. There is one FDT for each database
file. The FDT is used by Adabas during the execution of Adabas commands to determine the lo-
gical structure and characteristics of any given field (or group) in the file.

Spanned records, supported in Adabas version 8 (or later), split a logical record into multiple
physical records, each smaller than one Data Storage (DS) block. For more information, read
Spanned Record Support, elsewhere in this section.

This section covers the following topics:

■ Record Structure and the FDT
■ Field Levels and Group Fields
■ System Fields
■ Field Names
■ Field Length and Data Format
■ Field Options
■ Special Fields and Descriptor Fields

Record Structure and the FDT

The FDT lists the fields of the file in physical record order, provides a quick index to the file's re-
cords, and defines the file's fields, subfields, superfields, and descriptors (including collation
descriptors, subdescriptors, superdescriptors, hyperdescriptors, and phonetic descriptors). A
minimum of one and a maximum of 3214 field definitions may be specified.

Information about each field includes the level, name, length, format, options, and special field
and descriptor attributes.

Concepts and Facilities30

Adabas Design

FIELD DESCRIPTION TABLE

I I I I I
LEVEL I NAME I LENGTH I FORMAT I OPTIONS I PARENT OF

I I I I I
------I------I--------I--------I--------------I----------------------------I

I I I I I I
1 I AA I 8 I A I DE,UQ I I
1 I AB I I I I I
2 I AC I 20 I A I NU I I
2 I AE I 20 I A I DE I SUPERDE,PHONDE I
2 I AD I 20 I A I NU I I
1 I AF I 1 I A I FI I I
1 I AG I 1 I A I FI I I
1 I AH I 6 I U I DE I I
1 I A2 I I I I I
1 I AO I 6 I A I DE I SUBDE,SUPERDE I
1 I AQ I I I PE I I
2 I AR I 3 I A I NU I SUPERDE I
2 I AS I 5 I P I NU I SUPERDE I
1 I A3 I I I I I
2 I AU I 2 I U I I SUPERDE I
2 I AV I 2 I U I NU I SUPERDE I

The order of the fields listed in the FDT determines the structure of the record and the efficiency
of retrieval. The following factors should be considered when ordering fields:

■ Fields that will be accessed frequently should be ordered first in the FDT. This technique reduces
CPU time because Adabas does not have to read the whole record when retrieving a field.

■ Fields that will frequently be accessed together should be assigned to a group field.
■ Fields that will always be accessed together should be defined as a single field. This technique

may inhibit compression and query language use; however, it decreases processing time by
providing more efficient internal processing and shorter format buffers.

■ If appropriate, fields that will frequently be empty should be ordered together in the FDT and
set to use default compression or null suppression.

■ Numeric fields should be loaded in the format in which they will be used most often.

31Concepts and Facilities

Adabas Design

Field Levels and Group Fields

When two or more consecutive fields in the FDT are frequently accessed together, you can reference
them together by defining a group field. Other than its level and Adabas short name, a group field
has no attributes defined. It immediately precedes its member fields in the FDT. A higher field
level number is used to assign the member fields to the group field. Adabas supports up to seven
field levels. User programs can access each member field individually, or all member fields together
by referencing the group field.

For example, in the illustration of the Field Definition Table (FDT) in the sectionRecords and Field
Definitions, field AB is defined as a group field and assigned to level 1. Fields AC, AE, and AD
are assigned to level 2, indicating that they belong to group field AB. The next field, AF, is assigned
to level 1, indicating that it is not part of the AB group. User programs can access AC, AE, and
AD individually, or together by referencing the group field AB.

A group field can be assigned as a periodic group field if it is comprised of fields that can have more
than one value (for example, group field AQ in the figure).

System Fields

Adabas allows you to define system fields in your Adabas files.

A system field is a field in an Adabas file whose value is automatically set by the Adabas nucleus
when records are inserted or updated on the file. Optionally, you can specify that some system
field values only be set when records are inserted. System fields are fields that store information
such as the job name of the user making the update, the eight-byte user ID of the user, the session
ID of the user, or the time at which the update was made.

The value of a system field refers to an insert or update of an entire record. You cannot define a
system field that refers to only a portion of a record.

Values for system fields are saved in the compressed storage record in the same manner that other
Adabas fields are stored.

This section covers the following topics:

■ Allowed Types of System Fields
■ Defining System Fields
■ System Fields as MU Fields
■ System Field Rules

Concepts and Facilities32

Adabas Design

■ System Field Processing by an Adabas Nucleus

Allowed Types of System Fields

System fields containing the following types of information can currently be defined in an Adabas
file:

■ Job name: The job name of the user inserting or updating a record.
■ ETID: The eight-byte user ID of the user inserting or updating a record. This is the user ID set

in the Additions 1 field of an OP (open) command for the user session.
■ Session ID: The 28-byte user ID of the user inserting or updating a record.
■ Session user: The last eight bytes of the 28-byte session ID of the user inserting or updating a

record.
■ Security system user ID: The eight-byte security system ID of the user inserting or updating a

record.
■ Time: The date or date and time at which a record is inserted or updated.

Note: Information about record deletion is not recorded in system fields for the simple
reason that the value of the system field is itself deleted along with the record.

Defining System Fields

System fields may not be part of a periodic group. Otherwise, they can be simple fields or MU
fields (although not MU fields in a periodic group).

System fields are defined in the same manner as other database fields using FNDEF definitions
in ADACMP COMPRESS utility runs, except each system field definition must include anSYfield
option. If you only want the system field values updated when a record is inserted (and not when
it is updated), you can also specify the CR field option in the system field definition. If the system
field is a multiple occurrence (MU) field, it cannot be defined with the CR field option.

System fields can also be added to a file using the ADADBS NEWFIELD utility function. The same
SY and CR field options are supported by ADADBS NEWFIELD.

The SY and CR options cannot be changed for a field using the ADADBS CHANGE utility function.
In other words, a field defined as a system field cannot later be changed from a system field to a
non-system field. However, a system field may be logically deleted. Note that system field values
for logically deleted fields are still set when record insertions or updates occur; this ensures that
the system field values are correct if they are later no longer logically deleted

For more information about the SY and CR field options, read Field Options, in the Adabas Utilities
Manual.

33Concepts and Facilities

Adabas Design

System Fields as MU Fields

A system field cannot be part of a periodic group. In addition, if the system field is defined with
the CR field option, it cannot also use the MU option. Likewise, if the system field is not defined
with the CR option, it must be defined as an MU field.

If a system field is an MU (multiple occurrence) field, Adabas sets the field values on record inser-
tion and record update in a specific way.

■ When a record is inserted, an appropriate value is set in the first occurrence of the MU system
field. The MU system field will contain only a single value (the value set in the first occurrence
of the field).

■ When a record is updated, an appropriate value is set in the first occurrence of the MU system
field. Values held previously in occurrences 1 to N of the MU system field will be shifted to oc-
currences 2 to N+1. If the maximum number of MU system field values is reached for the file,
the oldest value is dropped from the file. For example, if a file is defined with a maximum
number of MU system field values set to 5 and 5 values are already present in the file, an update
to the MU system field will drop the value in occurrence 5 of the field, shift the others down
and insert the new value in occurrence 1.

The maximum number of MU system field values allowed in a file is stored in the File Control
Block (FCB) for the file and is set when you load the file using ADALOD LOAD. Thereafter, the
SYFMAXUV value can be modified using the ADADBS MODFCB utility function. This setting
applies to all MU system fields in the file. For more information, read MODFCB: Modify File Para-
meters , in the Adabas Utilities Manual.

The following are examples of valid system fields. Note that the fourth example from the top is
not an MU field, but is defined with the CR option.

01,ET,8,A,NU,MU,SY=OPUSER
01,SU,8,A,MU,NU,NV,SY=SESSIONUSER
01,SI,28,A,NU,NV,MU,SY=SESSIONID
01,D1,8,U,NU,DT=E(DATE),SY=TIME,CR
01,TI,14,U,MU,NU,DT=E(DATETIME),SY=TIME
01,TZ,14,U,MU,NU,DT=E(DATETIME),TZ,SY=TIME
01,Z3,8,A,MU,SY=JOBNAME
01,SC,8,A,NU,MU,SY=SECUID

Concepts and Facilities34

Adabas Design

System Field Rules

The following rules apply to system fields:

1. The field format for JOBNAME, OPUSER, SESSIONID, SESSIONUSER, and SECUID system
fields must be A (alphanumeric).

2. The format and length of a TIME system field will be enforced based on the rules set for the
date-time edit mask specified for the field.

A date-time edit mask (DT field option) must be specified for time system fields. However, the
DT field option is not valid for any other type of system field.

3. System fields cannot be a periodic group field (the PE field option cannot be specified), nor can
it be a member of a periodic group.

4. A system field can be a descriptor (the DE field option can be specified) or a unique descriptor
field (the UQ field option can be specified).

5. The system field may be the parent of a superdescriptor field or of a special descriptor.

6. A system field cannot be a long alpha or wide-character field or a large object field (the LA and
LB field options cannot be specified).

7. Security-by-value is allowed for system fields.

8. The CR field option can only be specified if the SY field option is also specified for a field.

9. A system field can be defined to have a fixed storage length (the FI field option can be specified).
If FI is specified, the field length must exactly match the lengths shown in the SY field option
description. If it is not specified, any field length is allowed in the field definition; the length
of the data stored for each field will match the lengths shown in the SY field option description.

10. A system field must have either the MU option OR the CR option specified (but not both). The
MU and CR options are mutually exclusive.

11. Null values can be suppressed for a system field (the NU field option can be specified).

12. Alphanumeric system fields can be processed in the record buffer without being converted (the
NV field option can be specified).

13. The value of a system field refers to the insert or update of an entire record. You cannot define
a system field that refers to only a portion of a record.

14. Information about record deletion is not recorded in system fields for the simple reason that
the value of the system field is itself deleted along with the record.

15. System fields are not required in a file (none can be specified). In addition, one or more system
fields of the same type can be defined for a file.

16. The SY and CR options cannot be changed for a field using the ADADBS CHANGE utility
function. In other words, a field defined as a system field cannot later be changed from a system
field to a non-system field.

35Concepts and Facilities

Adabas Design

17. A system field can be logically deleted. Note that system field values for logically deleted fields
are still set when record insertions or updates occur; this ensures that the system field values
are correct if they are later no longer logically deleted.

System Field Processing by an Adabas Nucleus

When a record is inserted or updated in an Adabas database file with system fields, the system
field values are set by the nucleus. If system fields are specified one or more times in the format
buffers and record buffers of an insert or update command, the values passed by the user are ig-
nored.

The following processing occurs by the Adabas nucleus for system fields:

1. If the system field is not defined with the CR option, the system field value is set by the nucleus
when an insert command and when an update command is issued.

2. If the system field is defined with the CR option, the system field value is set by the nucleus
when an insert command is issued, and is left as is when an update command is issued.

Field Names

A field is identified to Adabas by a two-character Adabas short name that must begin with an al-
phabetic character (either upper- or lowercase) and can be followed by a numeral or an alphabetic
character (either upper-or lowercase) and must be unique within a file. The combinations E0-E9
are reserved and special characters are not allowed. Adabas assigns short names to fields automat-
ically, although you can choose to assign them yourself. Adabas uses the short names internally
and actually accesses fields by their short names.

Note: Lowercase fields will not display correctly (they will be converted to uppercase) if
you use the ADARUN parameter settings MSGCONSL=UPPER, MSGDRUCK=UPPER, or
MSGPRINT=UPPER.

Field Length and Data Format

Field values are fixed or variable in length and can be in alphanumeric, binary, fixed-point, floating-
point, packed/unpacked decimal, or wide character formats.

The length (expressed in bytes) and format (expressed as a one-character code) of a field define
the standards (defaults) to be used by Adabas during command processing. They are used when
the field is read/updated unless the user specifies an override.

If standard length is zero for a field, the field is assumed to be a variable-length field. Standard
format must be specified for a field. The format specified determines the type of default compression
to be performed on the field.

The maximum field lengths that may be specified depend on the format value:

Concepts and Facilities36

Adabas Design

Maximum LengthFormat DescriptionFormat

253 bytesAlphanumeric (left-justified): see also the long alphanumeric (LA)
option in Long Alpha Option LA and the large object (LB) option
in Large Object Option LB, elsewhere in this guide

A

126 bytesBinary (right-justified, unsigned/positive)B

8 bytes (always exactly 2, 4, or
8 bytes)

Fixed point (right-justified, signed, positive value in normal form;
negative value in two's complement form)

F

8 bytes (always exactly 4 or 8
bytes)

Floating point (normalized form, signed)G

15 bytesPacked decimal (right-justified, signed)P

29 bytesUnpacked decimal (right-justified, signed)U

253 bytesWide character (left-justified): see also the long alphanumeric (LA)
option in Long Alpha Option LA, elsewhere in this guide

W

Field Options

Field options are specified using two-character codes, which may be specified in any order, separ-
ated by a comma.

Read SectionOptionCode

System Field Options SY and CRA system field will not be modified when updates occur to the
record, but only when the record is first inserted.

CR

Descriptor Options DE, UQ, and XIThe field is to be a descriptor (key).DE

Date-Time Edit Mask Option DTA date-time edit mask is specified for the binary, fixed point,
packed decimal, or unpacked decimal field.

DT

Data Compression Options FI and
NU

The field is to have a fixed storage length; values are stored
without an internal length byte, are not compressed, and cannot
be longer than the defined field length.

FI

Long Alpha Option LA and
Comparing LA and LB Fields

An alphanumeric or wide-character, variable-length field may
contain a value up to 16,381 bytes long.

LA

Large Object Option LB and
Comparing LA and LB Fields

An alphanumeric field may contain up to 2,147,483,643 bytes
(about 2 GB) of data.

LB

MU and PE Options and Field TypesThe field may contain up to about 65,534 values in a single
record.

MU

Blank Compression Option NBTrailing blanks should not be removed (compressed) from the
LA or LB fields. Specification of this option requires the
specification of NU or NC as well.

NB

SQL Compatibility Options NC and
NN

Field may contain a null value that satisfies the SQL
interpretation of a field having no value; that is, the field's value
is not defined (not counted).

NC

SQL Compatibility Options NC and
NN

Field defined with NC option must always have a value
defined; it cannot contain an SQL null (not null).

NN

37Concepts and Facilities

Adabas Design

Read SectionOptionCode

Data Compression Options FI and
NU

Null values occurring in the field are to be suppressed.NU

Encoding Conversion Option NVAn alphanumeric or wide-character field is to be processed in
the record buffer without being converted.

NV

MU and PE Options and Field TypesThis group field is to define consecutive fields (which may
include one or more MU fields) in the FDT that repeat together
(up to about 65,534 times) in a record.

PE

System Field Options SY and CRThe field is a system field.SY

Time Zone Option TZThe date-time field value is presented in the user's local time
and stored in UTC time, allowing for differences in time zones.

TZ

Descriptor Options DE, UQ, and XIThe field is to be a unique descriptor; that is, for each record in
the file, the descriptor must have a different value.

UQ

Descriptor Options DE, UQ, and XIFor this field, the occurrence (index) number is to be excluded
from the unique descriptor (UQ) option set for a periodic group
(PE).

XI

Descriptor Options DE, UQ, and XI

A descriptor is a search key. The DE option indicates that the field is to be a descriptor. The UQ
option can only be specified if DE is also specified; it indicates that the DE field is to have a different
(i.e., unique) value for each record in the file. If the UQ field is also an MU field or a field in a
periodic group, the same value for the field may occur multiple times in the same record, but must
be unique in different records. Entries are made in the Associator's inverted list for DE fields,
adding disk space and processing overhead requirements.

Any field can be used within a selection criterion. When a field that is used extensively as a search
criterion is defined as a descriptor (key), the selection process is considerably faster since Adabas
is able to access the descriptor's values directly from the inverted list without reading any records
from Data Storage.

A descriptor field can be used as a sort key in a search command, as a way of controlling a logical
sequential read process (ascending or descending values), or as the basis for file coupling.

Any field and any number of fields in a file can be defined as descriptors. When a multiple-value
field or a field in a periodic group is defined as a descriptor, multiple key values are generated
for the record. Key searches may be limited to particular occurrences of a periodic group.

For descriptor fields that are part of a periodic group (PE field), the group index is considered part
of the descriptor value in the index. This makes it possible to search for a value plus a group index.
By default, a given value plus the group index of one occurrence of a record is considered different
than the same value plus the different group index of a second record. Because the group indexes
are different, these two occurrences do not violate the “uniqueness” criteria. If you want to elim-
inate the group index from the uniqueness criteria, use the XI option. The XI option is used for

Concepts and Facilities38

Adabas Design

unique descriptors in periodic groups to exclude the occurrence (index) number from the definition
of uniqueness.

Because the inverted list requires disk space and update overhead, the descriptor option should
be used judiciously, particularly if the file is large and the field that is being considered as a
descriptor is updated frequently. For instance, the inverted list for a periodic group used as a
descriptor may be very large because each occurrence is stored.

A descriptor may be defined at the time a file is created, or later by using an Adabas utility. Because
the definition of a descriptor is independent of and has no effect on the record structure, descriptors
may be created or deleted at any time without the need for database restructuring or reorganization.

Note, however, that if a descriptor field is not ordered first in the record structure and logically
falls past the end of the physical record, the inverted list entry for that record is not generated for
performance reasons. To generate the inverted list entry in this case, it is necessary to unload short,
decompress, and reload the file; or use an application program to reorder the field first for each
record of the file.

A portion of a field may be defined as a subdescriptor; combinations of fields or portions thereof
may be defined as a superdescriptor; a user-supplied algorithm may be the basis of a collation
descriptor or hyperdescriptor; and a sounds-like encoding algorithm may be the basis of a phonetic
descriptor, which may be customized for specific language requirements. Read Special Field and
Descriptor Attributes, elsewhere in this guide, for more information.

System Field Options SY and CR

A system field is a field in an Adabas file whose value is automatically set by the Adabas nucleus
when records are inserted or updated on the file. Optionally, you can specify that some system
field values only be set when records are inserted. A system field cannot be a PE field.

System fields containing the following types of information can currently be defined in an Adabas
file:

■ Job name: The job name of the user inserting or updating a record. When ADACMP COMPRESS
is used to define this type of field, its field value will be the job name of the ADACMP COMPRESS
job.

■ ETID: The eight-byte user ID of the user inserting or updating a record. This is the user ID set
in the Additions 1 field of an OP (open) command for the user session.

■ Session ID: The 28-byte user ID of the user inserting or updating a record.
■ Session user: The last eight bytes of the 28-byte session ID of the user inserting or updating a

record.
■ Security system user ID: The eight-byte security system ID of the user inserting or updating a

record.
■ Time: The date or date and time at which a record is inserted or updated.

39Concepts and Facilities

Adabas Design

Use the CR option to indicate that the system field value should only be maintained when a record
is inserted and not when it is updated. The CR field option can only be specified for fields defined
with the SY field option, but cannot be specified for an MU field.

For complete information about system fields, read System Fields, elsewhere in this section. For
more information about the SY and CR field options, read Field Options, in the Adabas Utilities
Manual.

Date-Time Edit Mask Option DT

DT assigns a date-time edit mask to a binary, fixed point, packed decimal, or unpacked decimal
field. This option cannot be specified for fields of other formats.

The syntax of the DT option is:

DT=E(edit-mask-name)

Valid values for edit-mask-name substitutions are described in the following table. It also shows
the required minimum field lengths for the different formats of fields that can specify the DT option;
the length of the field must be large enough to store the date-time values. Detailed discussions of
each edit mask is provided in Date-Time Edit Mask Reference, in the Adabas DBA Tasks Manual.

Note: In the table, "YYYY" represents the 4-digit year (1-9999), "MM" represents the 2-digit
month (1-12), "DD" represents the 2-digit day of the month (1-31), "HH" represents the 2-
digit hour (0-23), "II" represents the 2-digit minute within the hour (0-59), "SS" represents
the 2-digit second within the minute (0-59), and "XXXXXX" represents the 6-digit microsecond
within the second.

Minimum Field Length for Field FormatDescription
edit-mask-name

UPFB

8544The date field is in the format Z'YYYYMMDD'.DATE

6443The time field is in the format Z'HHIISS'.TIME

14886The date and time field is in the format
Z'YYYYMMDDHHIISS'

DATETIME

2011----The date and time field is in the format
Z'YYYYMMDDHHIISSXXXXXX', with microsecond
precision

TIMESTAMP

13786The time field is in Natural T format (tenths of
seconds since year zero)

NATTIME

7443The date field is in Natural D format (days since
year zero)

NATDATE

10644The time field is in UNIX time_t type format
(seconds since January 1, 1970)

UNIXTIME

Concepts and Facilities40

Adabas Design

Minimum Field Length for Field FormatDescription
edit-mask-name

UPFB

181088The date and time field is in UNIX timestamp
format, with microsecond precision, since January
1, 1970 (UNIXTIME * 60**6 + microseconds).

XTIMESTAMP

The following table contains some examples.

The field contains...Example

Numeric data in the form Z'YYYYMMDD'.1,SD,8,U,DT=E(DATE)

Numeric time in the form Z'HHIISSD'1,TI,6,U,DT=E(TIME)

A value composed of DATE and TIME1,DT,14,U,DT=E(DATETIME)

A value composed of DATETIME plus microseconds1,TS,20,U,DT=E(TIMESTAMP)

Natural T-format data (tenths of seconds since the year zero)1,TT,7,P,DT=E(NATTIME)

Natural D-format data (days since the year zero)1,DD,4,P,DT=E(NATDATE)

UNIX time_t-type data (seconds since January 1, 1970)1,UU,4,F,DT=E(UNIXTIME)

UNIX time data (microseconds since January 1, 1970)1,XS,8,F,DT=E(XTIMESTAMP)

Time Zone Option TZ

The TZ field option identifies a date-time field that should be presented in the user's local time
and stored in UTC time, allowing for differences in time zones. There is no specific syntax for the
TZ field option as there are no parameters; simply specifying TZ in the field definition of a date-
time field provides time zone support.

When TZ is specified, date-time values are converted and displayed in the user's local time, but
are stored in coordinated universal (UTC) time. This allows users in different time zones to view the
data in their individual local times, but still share the same data. Storing values in standardized
UTC time makes them easily comparable.

Adabas uses the time zone data taken from the tz database, which is also called the zoneinfo or
Olson database. The specific list of time zone names that Adabas supports in any given release can
be found in the TZINFO member of the Adabas time zone library (ADAvrs.TZ00). For more in-
formation about the TZINFO member of the time zone library, read Supported Time Zones, in the
Adabas DBA Tasks Manual.

The TZ option can be specified in field definitions that use the following date-time edit masks:

■ DATETIME
■ TIMESTAMP
■ NATTIME
■ UNIXTIME

41Concepts and Facilities

Adabas Design

https://www.iana.org/time-zones

■ XTIMESTAMP

You cannot use the TZ option in field definitions that use the DATE, TIME, or NATDATE date-
time edit masks because the timezone offsets depend on the presence of both date and time values
in the data.

Note that UNIXTIME and XTIMESTAMP fields are by definition based on the UTC; standard
conversion routines will perform time zone handling outside of Adabas. In other words, the TZ
option has no effect when reading or writing fields with the UNIXTIME or XTIMESTAMP edit
mask.

However, when the DATETIME, NATTIME, and TIMESTAMP edit masks are set in the format
buffer, the TZ option will convert the times to local time; otherwise they will be converted and
returned as UTC times.

For example, if a date-time field is stored in UTC format is February 14, 2009, 16:00 hours, user A
in time zone America/New_York will see the field displayed as February 14, 2009, 11:00 hours or
10:00 (UTC time minus 5 or 6 hours, depending on the differences in daylight savings time). Al-
ternately, user G in time zone Europe/Berlin will see the field as February 14, 2009, 17:00 hours
(UTC time plus 1).

For information on the conversions between date-time fields defined with the TZ option, read
Conversions Between Date-Time Representations for Fields with the TZ option, in the Adabas DBA Tasks
Manual.

Data Compression Options FI and NU

Default data compression is described in the section Compression. At the field level, additional
compression can be specified (null suppression option) or all compression can be disabled (fixed
storage option).

Null suppression (NU) differs from default compression in that searches on descriptor fields
defined with null suppression do not return records in which the descriptor field is empty.

Fields defined as fixed format (FI) do not include a length byte and are not compressed. This option
actually saves storage space for one-byte fields or fields that are nearly always full (e.g., a field
containing the social security number).

Concepts and Facilities42

Adabas Design

Encoding Conversion Option NV

Alphanumeric (A) or wide-character (W) format fields with the NV option are processed in the
record buffer without being converted to or from the user.

The field has the characteristics of the file encoding; that is, the default blank:

■ for A fields is always the EBCDIC blank (X'40'), and
■ for W fields is always the blank in the file encoding for W format.

The NV option is used for fields containing data that cannot be converted meaningfully or should
not be converted because the application expects the data exactly as it is stored.

The field length for NV fields is byte-swapped if the user architecture is byte-swapped.

Long Alpha Option LA

The long alphanumeric (LA) option can only be specified for variable-length alphanumeric or
wide-character fields; i.e., A- or W-format fields having a length of zero. With the LA option, such
an alphanumeric or wide-character field can contain a value up to 16,381 bytes long.

An alpha or wide field with the LA option is compressed in the same way as an alpha or wide
field without the option. The maximum length that a field with LA option can actually have is
restricted by the block size where the compressed record is stored.

In Adabas 8 (or later), the NB (no blank compression) option can be specified for LA fields to
control blank suppression.

LA fields cannot be descriptors but parents of sub/superdesciptors.

LA fields cannot also be defined with the LB field option. To assist you in determining whether
to define a field as an LA or an LB field, readComparing LAand LBFields, elsewhere in this section.

Large Object Option LB

The large object (LB) option can be specified for some fields to identify them as large object fields.
LB fields can contain up to 2,147,483,643 bytes (about 2 GB) of data.

The format of an LB field must be "A" (alphanumeric) and its default field length must currently
be defined as zero.

LB fields cannot be:

■ Descriptors or parents of a special (phonetic, sub-, super-, or hyper-) descriptor.
■ Defined with the FI or LA options.

43Concepts and Facilities

Adabas Design

To assist you in determining whether to define a field as an LA or an LB field, read Comparing
LA and LB Fields, elsewhere in this section.

■ Specified in a search buffer or in format selection criteria in a format buffer.

LB fields may be:

■ Defined with any of the following options: MU, NB, NC, NN, NU, or NV
■ Part of a simple group or a PE group.

The presence of the NB (no blank compression) field option in the LB field definition indicates
whether on not Adabas removes trailing blanks in LB fields containing characters.

LB fields containing both binary and character data are supported. An LB field defined with both
the NV and NB options can store binary large object data, as Adabas will not modify binary LB
fields in any way. The identical LB binary byte string that was stored is what is retrieved when
the LB field is read. In addition, because LB fields containing binary values are defined with the
NV and the NB options, Adabas will not convert LB field binary values according to some character
code page nor will it cut off trailing blanks in LB fields containing binary values.

Note: LB fields containing binary values are not defined using format B, because format B
can imply byte swapping in some environments with different byte orders. Byte swapping
does not apply to binary LB fields.

The following table provides some valid example of FDT definitions for LB fields:

DescriptionFDT Specification

Field L1 is a null-suppressed, character, large object field1,L1,0,A,LB,NU

Field L2 is a null-suppressed, multiple-value, binary, large object field.1,L2,0,A,LB,NV,NB,NU,MU

Commands dealing with LB fields must always be directed to the base file of a LOB file group. User
commands against LOB files are rejected.

For information on getting started using LB fields, read Large Object (LB) Files and Fields, in Adabas
DBA Tasks Manual.

Comparing LA and LB Fields

The following table comparing pertinent LA and LB field features may help you decide which to
use when defining fields for your database.

Concepts and Facilities44

Adabas Design

LB Field BehaviorLA Field BehaviorFeature

Four bytes in the corresponding record
buffer area are used to store the actual
length of the LB field.

Two bytes in the corresponding
record buffer area are used to store
the actual length of the LA field.

Zero field length
specification in format
buffers

Some LB field values (those larger than 253
bytes) are stored offline in a separate large

Alphanumeric and wide-character
fields are stored within the
compressed record.

All long values must fit into the
same compressed record. The

Data record storage

object file (the LOB file) and only
references to the LB field values in the LOB
file are included in the data record. This
allows for storing more long objects for a

maximum length of simple or single data record than using normal or
spanned data records limits the LA fields. However, the performance
number and lengths of long values overhead at runtime and for file
that can be stored. This can be a maintenance is increased for LB fields

because of this behavior.

Smaller LB field values (up to 253 bytes)
are stored directly in the compressed

problem if multiple long values are
contained in a record.

record. This improves performance for
small values, but also limits the number of
small LB field occurrences that can be
stored in the same compressed record.

Supported for LB fields of any length.Supported for LA fields of any
length.

Asterisk (*) field length
notation in format buffers

Alphanumeric LB field can be used.Alphanumeric or wide-character LA
field can be used. This avoids the

Maximum length of any
stored object does not
exceed 16,381 bytes overhead of LB fields, but limits the

number of such fields that can be
stored in a single record.

Supports objects with sizes larger than
16,381 bytes.

Not supported.Maximum length of any
stored object exceeds
16,381 bytes

Supports multiple large objects.Not supported.So many large objects that
they will not fit in a single
simple or spanned data
record

Not supported.Supported.Parent of
sub/superdescriptor

Not supported.Supported.Parent of sub/superfield

45Concepts and Facilities

Adabas Design

MU and PE Options and Field Types

Adabas supports two basic field types: elementary fields and multiple-value fields. An elementary
field has only one value per record. Multiple-value (MU) fields can have 191 up to about 65,534
values, or occurrences, in a single record. The use of more than 191 MU fields or PE groups in a
file must be explicitly allowed for a file (it is not allowed by default). This is accomplished using
the ADADBS MUPEX function or the ADACMP COMPRESS MUPEX and MUPECOUNT parameters.
Each multiple-value field has a binary occurrence counter (BOC) that stores the number of occurrences.

A periodic (PE) group field defines consecutive fields in the FDT that repeat together in a record.
Like the members of a non-periodic group field, PE members immediately follow the PE group
field, have a higher level number than the PE field, and can be accessed both individually and as
a group. Each PE has a BOC that stores the number of occurrences.

A periodic group may be repeated 191 or up to about 65,534 times per record and may contain
one or more multiple-value fields. The use of more than 191 MU fields or PE groups in a file must
be explicitly allowed for a file (it is not allowed by default). This is accomplished using the ADADBS
MUPEX function or the ADACMP COMPRESS MUPEX and MUPECOUNT parameters. Occurrences or
values that are not used require no storage space.

Adabas thus supports four field types:

Multiple Values per RecordSingle Value per Record

MUElementarySingle Field

PEGroupMultiple Fields

The actual limit to the number of occurrences of MU fields and PE groups in a file is derived from
the maximum data storage record length (the ADALOD MAXRECL parameter), which defaults
to the size of the data storage block minus 4.

The number of occurrences of each MU field or each PE group in a record can be increased from
191 to about 65,534 using the ADADBS MUPEX function or the ADACMP COMPRESS MUPEX and
MUPECOUNTparameters. However, the actual limit is derived from the maximum Data Storage record
length (the ADALOD MAXRECL parameter), which defaults to the size of the Data Storage block
minus 4, the device type, and the file type (spanned or unspanned). All MU fields and PE groups
and other fields must fit into one compressed record. If you are using spanned records (introduced
with Adabas 8), more MU fields and PE groups can be stored.

In addition, subdescriptors and superdescriptor definitions can affect the number of MU fields or
PE groups in the record. For example, if a superdescriptor is created as a combination of a PE
group and one or more MU fields and the number of occurrences is high, performance and resource
problems can occur.

Note: Excessive use of extended MU and PE fields might cause performance and resource
problems. These can result in a work storage overflow, resulting in response code 9
(ADARSP009). If this should happen, increase the ADARUN LP size for the database.

Concepts and Facilities46

Adabas Design

All MU fields and PE groups and other fields must fit into one compressed record. If you are using
spanned records (introduced with Adabas 8), more MU fields and PE groups can be stored.

The following figure illustrates the four field types in a single record structure.

A PE field cannot be nested within another PE group. Nesting an MU field within a PE group, as
shown in the figure above, is permitted but complicates programming by introducing a two-di-
mensional array. It also has implications for data access: when Adabas accesses the periodic group,
it returns only the first occurrence of the MU for each occurrence of the PE returned.

The unique characteristic of the periodic group and the reason for choosing the periodic group
structure is its ability to maintain the order of occurrences. If a periodic group originally contains
three occurrences and the first or second occurrence is later deleted, those occurrences are set to
nulls; the third occurrence remains in the third position. This contrasts with the way leading null
entries are handled in multiple-value fields. The individual values in a multiple-value field do
not retain positional integrity if one of the values is removed.

If a file has been established with extended MU or PE limits, you should not read the occurrence
count of an MU field or PE group into a one-byte field in the record buffer. If you try, Adabas re-
turns response code 55 (ADARSP055), subcode 9. Therefore, any application program that reads
the occurrence count using an xxC element in the format buffer (for example, FB='MUC.' or
FB='MUC,1,B.') must be changed to read the occurrence count into a field with two or more bytes
(for example, FB='MUC,2,B.' or FB='MUC,4,B.').

47Concepts and Facilities

Adabas Design

Blank Compression Option NB

The NB option can be used with LA and LB fields to control blank compression. When specified,
the NB option indicates that Adabas should not remove trailing blanks for the field; when not
specified, Adabas removes trailing blanks when storing an alphanumeric or wide-character field
value. If you specify the NB option for a field, you must also specify the NU or NC option for the
field; NB processing requires the use of NC or NU as well.

Note: Fields specified without the NB option can lead to differences in the stored and re-
trieved lengths of the fields. The retrieved length of a non-NB field is likely to be smaller
than the length specified for the field when it is stored due to blank compression. This may
matter if the value if not really a character string, but rather a binary value that happens to
end with the character codes for a blank. Therefore, if you want the stored and retrieved
lengths of a field to be the same, use the NB option.

Adabas does not allow the storing of a field with a length of zero unless the field has been defined
with the NB option. One way to specify a length of zero for a large object (LOB) field L1 would
be, for instance, via FB='L1L,4,B,L1,*,A.' and RB=x'00000000'. Adabas accepts this construction
if field L1 has been defined with the NB-option (for example, L1,0,A,LB,NU,NB) and will return
the length of zero if the field is later read. However, if the field has been defined without the NB
option (for example, L1,0,A,LB,NU), Adabas rejects the attempt to store the zero-length value with
response code 52 (ADARSP052), subcode 2 . Without the NB option, an empty field should be
stored as a single blank (for example, FB='L1L,4,B,L1,*,A.' and RB=x'0000000140').

For examples of this, read Read Operations, Length Indicators, and the NB (No Blank Compression)
Option, in the Adabas Command Reference Guide.

SQL Compatibility Options NC and NN

Special data definition options are included in Adabas to accommodate Software AG's mainframe
Adabas SQL Gateway (ACE) and other structured query language (SQL) database query languages
that require SQL-compatible null representation.

A field designated with the NC (not counted) option may contain a null value that satisfies the
SQL interpretation of a field having no value. An NC field containing a null means that no field
value has been entered; that is, the field's value is not defined.

This undefined state differs from a null value assigned to a non-NC field for which no value has
been specified: a non-NC field's null means the value in the field is either zero or blank, depending
on the field's format.

The NN (not null) option can be specified only for NC-defined fields. It indicates that an NC field
must always have a value defined; it cannot contain an SQL null. This ensures that the field cannot
be left undefined when a record is either created or updated. The field value may be zero or blank,
however.

Concepts and Facilities48

Adabas Design

Special Fields and Descriptor Fields

The FDT indicates whether a field is a parent field for a collation descriptor, subfield, superfield,
subdescriptor, superdescriptor, hyperdescriptor, or phonetic descriptor. Information about any
special fields and descriptors (collation descriptors, subdescriptors, subfields, superdescriptors,
superfields, phonetic descriptors, and hyperdescriptors) in a file is maintained in the special
descriptor table (SDT) part of the FDT.

SPECIAL DESCRIPTOR TABLE

I I I I I I
TYPE I NAME I LENGTH I FORMAT I OPTIONS I STRUCTURE I

I I I I I I
-------I------I--------I--------I----------------------I----------------I

I I I I I I
SUPER I H1 I 4 I B I DE,NU I AU (1 - 2) I

I I I I I AV (1 - 2) I
SUB I S1 I 4 I A I DE I AO (1 - 4) I
SUPER I S2 I 26 I A I DE I AO (1 - 6) I

I I I I I AE (1 - 20) I
SUPER I S3 I 12 I A I DE,NU,PE I AR (1 - 3) I

I I I I I AS (1 - 9) I
I I I I I I

PHON I PH I I I I PH =PHON(AE) I
I I I I I I

COL I Y1 I 20 I W I DE I CDX 8,PA I
COL I Y2 I 12 I A I DE,NU,PE I CDX 1,AR I

I I I I I I
I I I I I I

Along with the name, length, format, and specified options of each special field and descriptor,
this table provides the following information:

ExplanationColumn

TYPE Collation descriptorCOL

HyperdescriptorHYPER

Phonetic descriptorPHON

Subfield/subdescriptorSUB

Superfield/superdescriptorSUPER

The component fields and field bytes of the sub-, super-, or hyperdescriptor. Phonetic
descriptors show the equivalent alphanumeric elementary fields. Collation descriptors show
the associated collation descriptor user exit and the name of the parent field.

STRUCTURE

This section describes the special fields and descriptors:

49Concepts and Facilities

Adabas Design

■ Collation Descriptor
■ Hyperdescriptor
■ Phonetic Descriptor
■ Subfield / Superfield
■ Subdescriptor
■ Superdescriptor

Collation Descriptor

An alphanumeric or wide-character field can be defined as a parent field of a collation descriptor.
A collation descriptor is used to sort field values in a special user-defined sequence. The LF com-
mand reports the collation descriptor field information.

A collation descriptor is assigned a collation descriptor user exit (1-8) which encodes the collation
descriptor value and decodes it back to the original field value. The ADARUN parameter CDXnn
is used to specify collation descriptor user exits.

Hyperdescriptor

The hyperdescriptor option can be used to generate descriptor values based on a user-supplied
algorithm. Up to 31 different hyperdescriptors can be defined for a single physical Adabas database.
Each hyperdescriptor must be named by an appropriate HEXnn ADARUN statement parameter
in the job where it is used.

With hyperdescriptors, fuzzy matching is possible; i.e., retrieving data based on similar rather than
on exact search criteria. Hyperdescriptors allow multiple virtual indexes, meaning that several
different search index entries can be made for a single data field.

Hyperdescriptors can be used to implement n-component superdescriptors, derived keys, or
other key constructs. Using hyperdescriptors, it is possible to develop applications that are simpler
and more flexible than applications based on a strictly normalized relational structure.

One application area for hyperdescriptors is name processing. For example, the name SCHROEDER
could be stored not only with the index SCHROEDER itself, but also with the virtual indexes
SCHRODER, SCHRADER, or any other variation of the name. Thus, although only the name
SCHROEDER is physically stored in the data area of the database, multiple search indexes exist
to the data. If, subsequently, a search is made for the name SCHRODER, the record SCHROEDER
will be found.

A more sophisticated application area for hyperdescriptors is fingerprint matching, in which
typical characteristics of fingerprints can form the basis of a fuzzy matching algorithm; i.e., the
original fingerprint is stored in the database, but any number of search indexes can be made to
the fingerprint, based on an algorithm that allows small-scale deviations from the original.

Concepts and Facilities50

Adabas Design

Phonetic Descriptor

A phonetic descriptor may be defined and used to search for all records that contain similar
phonetic values. The phonetic value of a descriptor is determined by an internal algorithm based
on the first 20 bytes of the field value with only alphabetic values being considered (numeric values,
special characters and blanks are ignored).

Subfield / Superfield

A portion of a field (subfield) or any combination of fields (superfield) may be defined as an ele-
mentary field (read MU and PE Options and Field Types, elsewhere in this guide). Subfields and
superfields may be used for read operations only. They may only be changed by updating the
original fields.

Subdescriptor

A subdescriptor is part of a single field used as a descriptor. The field from which the subdescriptor
is derived may or may not be an elementary descriptor (read Descriptor Options DE, UQ, and
XI, elsewhere in this guide. If a search criteria involves a range of values contained in the first n
bytes of an alphanumeric field or the last n bytes of a numeric field, a subdescriptor may be defined
using only the relevant bytes of the field. A subdescriptor allows you to increase the efficiency of
a search by specifying a single value rather than a range of values.

For example, if the first two bytes of a five-byte field refer to a geographical region and you want
to retrieve all records for region 11 without using a subdescriptor, you would have to search for
all records in the range 11000-11999. If you define a subdescriptor comprising the first two bytes
of the field, you could search for all records with 11 in the subdescriptor.

Superdescriptor

A superdescriptor combines all or parts of 2-20 fields. The fields from which the superdescriptor
is derived may or may not be elementary descriptors. When search criteria involve values for a
combination of fields, using a superdescriptor is more efficient than using a combination of several
elementary descriptors.

For example, to search for customers by last name within regions, you could create a superdescriptor
by combining the first two bytes (i.e., the geographical region indicator) of the five-byte customer
number field and the entire customer last name field.

For complete information about defining superdescriptors, read SUPDE: Superdescriptor Definition
in the ADACMP documentation found in Adabas Utilities Manual.

51Concepts and Facilities

Adabas Design

Parallel Participant Table (PPT)

The parallel participant table (PPT) in the Associator tracks the active Adabas nucleus (or nuclei
in a clustered environment) that manages a particular database. When the nucleus becomes active,
it registers itself in the PPT.

The PPT comprises 32 blocks: one per possible nucleus in a cluster. A single (noncluster) nucleus
always occupies the first block of the table and the nucleus ID is always zero (0).

The PPT is created by the ADADEF utility for a new database or by the ADACNV utility when
an existing database, that does not yet have a PPT, is converted to the current version. Its location
is stored in the GCB. PPT entries can be modified by the nucleus or by the ADARES
PLCOPY/CLCOPY functions. The DPPT operator command displays the PPT contents; the
ADACHK PPTPRINT utility functions print out the PPT contents in interpreted and dump format.

If the nucleus terminates normally, the PPT entry is retained and marked as inactive. If the nucleus
terminates abnormally, its entry in the PPT remains unchanged until the recovery process is
complete.

Information about protection log (PLOG) data sets, command log (CLOG) data sets, and the Work
data set of a nucleus is logged in its PPT entry. As each PLOG and CLOG becomes active, it is re-
gistered in the PPT. Once all PLOGs or CLOGs have been copied after session end, the PPT entry
is marked accordingly. ADARES and the nucleus both check the PPT. Sequential PLOGs and
CLOGs are neither recorded nor maintained in the PPT.

The ADADBS RESETPPT utility function resets the PPT blocks on the Associator data set, but
should only be used when extraordinary measures are necessary. For more information, read
RESETPPT: Reset PPT Blocks, in the Adabas Utilities Manual

The PPT is used in the following situations:

■ It is used when ADARES PLCOPY or CLCOPY is copying all active protection logs or command
logs, respectively. ADARES only pulls the PLOG and CLOG information from the PPT if the
PLCOPY or CLCOPY is for a cluster database; otherwise, it uses the JCL provided in the
PLCOPY/CLCOPY job.

■ It is used to warn when a nucleus session leaves the Work, PLOG, or CLOG data set non-empty
and the next nucleus (i.e., the restart nucleus) starts with a different Work, PLOG, or CLOG data
set.

This section consists of the following topics:

■ Initialization Processing

Concepts and Facilities52

Adabas Design

■ Dynamic Allocation

Initialization Processing

The PPT exists for both cluster and noncluster nuclei. It is used to determine which PLOGs, CLOGs,
and Work data sets have been last used by each nucleus. The following discussion applies to the
session start of noncluster nuclei.

The starting nucleus uses the PPT to determine if any PLOGs or CLOGs still contain uncopied
data from a previous session. If they do, the nucleus calls UEX2 or UEX12, if specified, to submit
ADARES PLCOPY or CLCOPY jobs that will copy these PLOGs and CLOGs (or merge them, if
they were written by cluster nuclei). If the starting nucleus shares PLOG data sets with a previously
run cluster nucleus and one of the PLOGs contains uncopied data, the nucleus either reports an
error (if PLOGRQ=FORCE) or marks the PLOG as empty after giving UEX2/12 a chance to copy
off the protection data (otherwise).

If the first block of the PPT has been used by a cluster nucleus, the starting noncluster nucleus
gives UEX2/12 a chance to copy off any uncopied PLOGs and then overwrites the PPT entry with
its own PLOG and CLOG data set names, printing a warning message if the previously recorded
PLOGs have not been copied. However, if PLOGRQ=FORCE has been specified, the data set names
of the uncopied PLOGs cannot be overwritten in the PPT and the session start fails.

In any case, once the starting nucleus prepares its own PLOGs and CLOGs (specified in its JCL)
for logging, it inserts their data set names into the PPT and overwrites any previously used PLOG
or CLOG data set names that may have been recorded there.

If uncopied PLOG or CLOG data sets remain, they can still be copied with the ADARES utility,
by specifying the data sets in the ADARES JCL. Uncopied PLOGs from a cluster session can be
copied and merged using the NOPPT option. Uncopied CLOGs from a cluster session can be
copied and merged using the CLOG MERGE function.

Dynamic Allocation

The nucleus always writes its protection and command log data to the Work, PLOG, and CLOG
data sets specified in its JCL. In a noncluster environment, the ADARES PLCOPY and CLCOPY
functions always read from the PLOG and CLOG data sets specified in their JCL. In addition, the
nucleus and the ADARES utility use dynamic allocation (i.e., access the data sets via the names
recorded in the PPT, rather than via the JCL) to perform consistency checks if the PPT indicates
that the old data sets still contain needed information.

53Concepts and Facilities

Adabas Design

Spanned Records

With Adabas 8, records can be spanned in a database. In the database, the logical record is split
into a number of physical records, each part fitting into a single Data Storage (DS) block. Spanned
records may be segmented at the field or byte level. The resulting physical records are each assigned
individual ISNs. The first physical record is called the primary record and contains the beginning
of the compressed record and is assigned a primary ISN. The remaining physical records are called
secondary records and contain the rest of the data of the logical record. Secondary records are assigned
secondary ISNs. These ISNs do not affect the user ISNs assigned when using the N2 command or
the ISNs used when using the I option of the L1 command. If spanned records are used, a secondary
address converter is used to map the secondary ISNs to the RABNs of the Data Storage blocks
where the secondary records are stored.

A spanned record is comprised of one primary record and one or more secondary records. However,
the number of segments in a spanned record is limited. The Adabas nucleus allows up to five
physical records (one primary record and four secondary records) in a spanned record.

Spanned records are not directly visible to application programs. Applications always address
spanned records via the primary ISN.

Spanned records are also supported in expanded Adabas files and in multi-client files.

Note: Spanned record support must be explicitly allowed for a file. You can do this using
the ADADBS RECORDSPANNING function or theSPANparameter of ADACMP COMPRESS.
For more information, read the Adabas Utilities Manual documentation for the ADADBS
and ADACMP utilities.

This section covers the following topics:

■ Spanned Record Structure
■ Allowing Spanned Records in Files
■ Secondary Record Segmentation
■ Padding Factors
■ Spanned Record ISN Use
■ ADARUN Parameters Affected
■ Reporting on Spanned Records

Concepts and Facilities54

Adabas Design

■ Securing Spanned Records

Spanned Record Structure

A spanned logical record is comprised of one or more physical records, including a single primary
record and one or more secondary records. The number of records that comprise a spanned record
is limited. The Adabas nucleus allows up to five physical records (one primary record and four
secondary records) in a spanned record.

The primary and secondary records in a spanned record are connected using their ISNs. The
header of each physical record contains the ISN of the current record, the ISN of the primary record,
as well as the ISN of the next secondary record. In addition, the header indicates whether the
current record is the primary record or a secondary record.

The header of each physical record also provides the length of the record -- even if it is a segmented
record (in which case, it is the length of the segment).

Allowing Spanned Records in Files

Files can contain spanned records only if it has been explicitly requested via the SPAN parameter
of ADACMP COMPRESS, the RECORDSPANNING function of ADADBS or the equivalent
Adabas Online System function. The ADAREP database report and the Adabas Online System
report functions indicate whether or not a file has been defined to allow spanned records.

The SPAN attribute of a file is retained in an ADAULD UNLOAD function. In other words, when
a file is unloaded, deleted, and reloaded, its support for spanned records remains unchanged.

Similar rules hold for files that allow more than 191 MU or PE occurrences. For more information
on identifying MU and PE occurrences greater than 191 in a compressed record, read Identifying
MU and PE Occurrences Greater Than 191 in Compressed Records, in Adabas Utilities Manual.

Secondary Record Segmentation

Secondary records are segmented either by field or by byte. For performance reasons, segmentation
is done by field whenever possible. However, when any non-LB (large object) type field is larger
than the data storage block size, the record is split at the byte level. If a field is larger than the re-
maining space in the data storage block, but smaller than the data storage block size, than the field
is split at the field level and not at the byte level. The header of each secondary record indicates
which type of segment record it is.

55Concepts and Facilities

Adabas Design

Padding Factors

Padding factors are generally ignored for spanned records, in an attempt to fully use the block.
So it is frequently listed as zero on reports. The padding factor is only used in the last, short, segment
of a spanned record.

Spanned Record ISN Use

Primary and secondary records are addressed by Adabas using address converters (AC). However,
the primary address converter maps only the ISNs of primary records to the RABNs of their cor-
responding Data Storage blocks. If spanned records are used, a secondary address converter is
used to map the secondary ISNs to the RABNs of the Data Storage blocks where the secondary
records are stored. Therefore, spanned records have no affect on the index structure, since there
is still only one index for each record.

Separate ISN ranges are maintained for primary and secondary ISNs. Wherever an ISN is stored
or handled, it distinguishes between whether the action is for a primary or a secondary ISN.

All commands should be specified using the primary record's ISN; secondary record ISNs are kept
hidden and cannot be used. Physical sequential commands will automatically skip the secondary
records in Data Storage. Read commands that specify secondary ISNs will receive an error (response
code 113, ADARSP113).

The ISN of the primary records are included in TOPISN and MAXISN values. Secondary record
ISNs are not. Secondary ISNs are included in the MINSEC and MAXSEC values instead. A file
containing spanned records can be loaded by specifying an MINISN value, but the MINISN must
refer only to a primary record ISN (never a secondary record ISN).

ADARUN Parameters Affected

The following ADARUN parameters may need to be changed to support files with spanned records.

■ The number of ISNs in the hold queue per user (NISNHQ parameter) may need to be increased
as the number of spanned records to be updated also increases.

■ The length of the Adabas work pool (LWP) may also need to be increased since space is needed
to store both the before and after image of the spanned record and to support several update
threads running in parallel. Space may also be needed to accommodate larger descriptor value
tables (up to 65,534 occurrences of descriptors in PE groups are permitted).

■ The SRLOG parameter indicates how spanned records are logged to the protection logs (PLOGs).
Complete or partial logging can occur.

For complete information on these and other ADARUN parameters, read Adabas Initialization
(ADARUN Statement), in the Adabas Operations Manual.

Concepts and Facilities56

Adabas Design

Reporting on Spanned Records

Maximum record length statistics have no relevance with spanned files. Utilities that report on
the maximum record length will now report the statistics as "N/A" (not applicable). The FCB will
contain high values in the maximum record length field for a file that is using spanned records.

Securing Spanned Records

Files containing spanned records can be ciphered and protected with security-by-value. If the
primary record's ISN is referenced, all secondary segment records must be read, and therefore,
processing is time-sensitive.

57Concepts and Facilities

Adabas Design

58

4 Using Adabas

■ Accessing a Database from Programs ... 60
■ Maintaining Database Integrity ... 68

59

Generally, Adabas uses between 10% and 50% of the data processing resources (disk storage, CPU
time, elapsed processing time) used by other database management systems. Since fewer hardware
facilities are used, more can be accomplished with less. Very large online applications using sev-
eral terabytes of data have been successfully implemented, with thousands of terminal workstations,
and with the response times and the cost of much smaller systems.

Accessing a Database from Programs

Adabas access is field-oriented: user programs access and retrieve only the fields they need. User
program statements invoke Adabas search and retrieval operations automatically.

■ Direct Call Interface
■ Complex Searches
■ Access Methods
■ Using Triggers and Stored Procedures
■ Universal Encoding Support (UES)

Direct Call Interface

Adabas provides a powerful and flexible set of direct call commands for performing database
operations. Adabas direct call commands provide a direct interface to the Adabas database when
Natural or another fourth-generation database language is not being used.

The commands can be categorized by function:

■ database query
■ read (Data Storage or Associator)
■ database modification
■ logical transaction processing
■ special commands

Database Query Commands (Sx)

Database query commands (S1/S4, S2, S5)) search for and return the ISNs of specified records or
record groups according to specified search criteria. Other commands in this category (S8, S9) sort
the resulting ISN lists in preparation for later operations.

The ISN lists resulting from any Sx command may be saved on the Adabas Work data set for later
retrieval during the user session.

In most cases, these commands do not actually read the database; ISNs are read directly from the
Associator's inverted lists. Options allow the ISN's record to be placed in hold status to prevent

Concepts and Facilities60

Using Adabas

it from being updated by other programs until the record is released; if desired, additional field
values contained in the first ISN's record can be read from Data Storage.

Read Commands (Lx)

The L1 through L6 commands are used to read actual records from Data Storage. Depending on
the specified command and its options, records are read individually

■ in the sequence in which they are stored;
■ in the order of an ISN list created by one of the database query commands; or
■ in logical sequence according to a user-specified descriptor.

Read Sequential Access, elsewhere in this guide, for more information about sequential access
methods.

A hold option allows the database records to be locked until released by a separate command or
at transaction end.

The L9 and LF commands read information directly from the Associator inverted lists or field
definition tables (FDTs), returning either the inverted list values for a specified descriptor or the
field definitions for a specified file in the database.

Database Modification Commands (A1, E1, N1/N2)

Database modification commands (A1, E1, and N1/N2) change, delete, or add database records
and update the related Associator lists accordingly. ISNs can be assigned to new records either
by the user or by Adabas.

The inverted lists and the address converter are automatically maintained by Adabas. When the
user supplies a new value for a descriptor, either in a new record or as part of a record update,
Adabas performs all necessary maintenance of the inverted lists. When a new record is added or
a record is deleted, the address converter is appropriately updated. These operations are completely
transparent to the user.

Logical Transaction Control Commands (ET/BT)

An Adabas logical transaction defines the logical start (BT) and end (ET) of the database operation
being performed. If the user operation or Adabas itself terminates abnormally, these commands
provide the capability for restarting a user, beginning with the last unsuccessfully processed
transaction. ET/BT commands

■ define the transaction start and end;
■ restore pretransaction conditions if a situation occurs that prevents successful completion of the

transaction; and
■ read program-specified user data written during the transaction sequence.

61Concepts and Facilities

Using Adabas

Programs that use these commands are called ET logic programs. Although not required, Software
AG recommends that you use ET logic. Read Transaction Logic, elsewhere in this guide, for more
information.

Special Commands

Special commands perform many of the housekeeping functions required for maintaining the
Adabas database environment. Commands in this group

■ open (OP) and close (CL) a user session (but do not control a transaction);
■ write data protection information, user data, and checkpoints (C1, C3, C5); and
■ set (HI) and release (RI) record hold status.

In addition, the RC command releases one or more command IDs currently assigned to a user, or
deletes one or all global format IDs.

The RE command reads user data previously stored in an Adabas system file by C3, CL, or ET
commands.

Complex Searches

In many large database systems, the time required to process complex searches is often excessive.
Adabas efficiently solves this problem. Many Adabas applications are currently in use with up to
150 complex selection criteria created dynamically. Data is retrieved immediately from files with
more than 50 million records.

Multifile Searching

It is often necessary to perform a multifile search in order to resolve an inquiry. Multifile searching
can be accomplished using multiple search commands, physically coupled files, or soft file-coupling.
Read Coupled Files, elsewhere in this guide, for information about coupled files.

Multiple search commands may be used in which a value retrieved in one command is used as
the search value for the next command. This process is not restricted to two files.

Multi-index Searching

Fuzzy matching (i.e., retrieving data based on similar rather than on exact search criteria) can be
implemented using hyperdescriptors. Hyperdescriptors allow multiple virtual indexes, meaning
that several different search index entries can be made for a single data field. ReadHyperdescriptor
, elsewhere in this guide, for information about hyperdescriptors.

Concepts and Facilities62

Using Adabas

Access Methods

Adabas supports both sequential and random access methods. Different calls use different Adabas
access paths and components; the most efficient method depends on the kind of information you
want and the number of records you need to retrieve.

■ Sequential Access
■ Random Access
■ Random Access Using the Adabas Direct Access Method (ADAM)

Sequential Access

Physical sequence retrieves every record in a file in the order the records are stored in Data Storage.
You can limit the fields within each record for which values are to be returned. You can also specify
a starting ISN: the sequential pass then begins at the first record physically located after the record
identified by the specified ISN.

Adabas bypasses the Associator and goes directly to Data Storage, reading the first data block (or
the first record following a specified ISN) and continuing in consecutive sequence until the last
block is read. Physical sequence is the fastest way to process a large volume of records.

ISN sequence retrieves records in ISN order. Adabas uses database query commands (Sx) to build
and sort ISN lists, which can then be read using L1/L4 commands with the GET NEXT option.
When reading, Adabas uses the address converter to find the RABNs of each ISN in the list and
then reads and returns the records from Data Storage.

63Concepts and Facilities

Using Adabas

Logical sequence retrieves records by descriptor value. Adabas finds the value(s) in the inverted
list, uses the address converter to find the RABNs of the ISNs related to the value, and retrieves
the records from Data Storage.

Reading in logical sequence retrieves all the records related to a single value or a range of values
of the specified descriptor. It returns the records sorted in ascending/descending order by descriptor
value, and in ascending/descending ISN order within each value. You can specify a starting and
ending value. You can also specify the field(s) for which values are returned. Read logical is useful
when you want the returned records sorted on a particular field.

Adabas provides a special read command (L9) to determine the range of values present for a
descriptor, and the number of records that contain each value. Such a retrieval is called a histogram.
The L9 command does not require any access to data records, only to the inverted lists stored in
the Associator.

Concepts and Facilities64

Using Adabas

Random Access

Adabas uses the S1/S2/S4 commands to select records that satisfy a search criterion: the count of
the records found and a list of their ISNs is returned. The S1/S4 commands return the ISNs in as-
cending sequence; the S2 command allows you to specify a sort sequence for the returned ISNs.

The search criterion may comprise

■ one or more fields in a single file;
■ fields contained in two or more physically coupled files; or
■ search, read, and internal list matching based on the soft coupling feature.

A search criterion may contain one or more fields that are not defined as descriptors. If nondes-
criptors are used, Adabas performs read operations to determine which records to return to the
user. If only descriptors are used within the search criterion, Adabas resolves the query by using
the Associator inverted lists; no read operation is required.

Random Access Using the Adabas Direct Access Method (ADAM)

The Adabas direct access method (ADAM) improves random access performance on a particular
descriptor field in a file. ADAM uses the field value to compute the relative block address (RABN)
for record storage. The ADAM descriptor may also be used like any other descriptor within a se-
lection criterion, and for logical sequential processing as well. This option may be selected for any
given file when the file is loaded into the database.

65Concepts and Facilities

Using Adabas

Using Triggers and Stored Procedures

The Adabas triggers and stored procedures facility is an integral part of Adabas; however, Natural
(read Natural Application Development Environment , elsewhere in this guide) is required to use
the facility. The online Trigger Maintenance facility can be accessed using the Adabas Online
System add-on product.

A procedure is a Natural subprogram that is written and tested using standard Natural facilities.

■ A trigger is a procedure that is executed automatically by Adabas when a specified set of criteria
is met. The set of criteria is determined for each command sent to Adabas and is based on the
target file number and optionally the command type and/or field. The command type refers to
the find, read, store, update, and delete commands. The field must be in the corresponding
format buffer of the command.

■ A stored procedure is executed by Adabas, but is invoked directly by a special user call from any
of a number of applications that use it. Storing programs that are used by multiple clients in an
Adabas file on the server reduces the amount of data traffic to and from the server.

The same types of parameters are passed to the subprogram whether it is a trigger or a stored
procedure.

The Adabas facility for triggers and stored procedures allows you to implement and maintain
both types of procedures. It resides within Adabas and provides an extension to an application.
It can be used to

■ implement various security and auditing features for an application; and
■ provide a consistent, central environment where data can be verified or manipulated, either

manually by the application or automatically by Adabas when triggers are defined.

Concepts and Facilities66

Using Adabas

Universal Encoding Support (UES)

Adabas provides facilities for converting data bidirectionally between different architectures. This
makes it possible to support access to the mainframe database through the TCP/IP protocol from
web-based applications or from PC-based applications such as Natural for Windows.

A database can use these UES facilities if activated with ADADEF.

Adabas performs character data conversion for fields with alphanumeric (A) and wide-character
(W) formats. It supports a wide range of character sets or code pages, including Unicode, double-
byte character sets (DBCS), and multiple-byte characters sets (MBCS).

■ Alphanumeric fields are extended to support wide-character data by defining encoding keys
on both the database and file levels: the file level encoding takes precedence over the database
encoding. The encoding specifies the format in which the data is to be stored. It is also used as
the default format in which data is exchanged with a local user. The file encoding must belong
to the EBCDIC group.

■ Wide-character fields are similar to alphanumeric fields in that encoding defaults are defined
on both the database and file levels: the file encoding takes precedence over the database encod-
ing. Unicode is the default encoding.

In addition, Adabas supports the conversion of numeric data, such as low-order-byte-first or IEEE
floating point numbers.

At the client application, the Adalink code determines the default architecture (for example, ASCII,
byte-swap, and IEEE floating point). The client application can override this default by specifying
different encodings or architecture using the session open (OP command).

A number of utilities provide for special encoding and architecture settings.

To ensure round-trip compatibility between architectures and encodings, a file encoding should
be chosen that has the same or a superset of characters versus the user encoding. For example,
US-EBCDIC and ISO-8850-1 have the same character set.

Collation descriptors may be defined for alphanumeric or wide-character format fields. The
descriptor values are obtained algorithmically by calling a collation exit, for example to produce
a culturally correct, sorted key (that is, dictionary order).

67Concepts and Facilities

Using Adabas

Maintaining Database Integrity

Adabas provides facilities to ensure the logical consistency of data in a competitive updating en-
vironment and when a user or Adabas session is interrupted.

Facilities are available for both online and traditional batch update. For online, transaction-oriented
processing, Adabas ensures that the database is free of incomplete transactions. For batch mode
updating, Adabas ensures restart in the event of failure by writing checkpoints and backing
out/regenerating updates.

■ Transaction Logic
■ Distributed Transaction Processing
■ Competitive Updating
■ Timeout Controls
■ Backout, Recovery, and Restart
■ Extended Error Handling and Message Buffering

Transaction Logic

Adabas data protection, recovery, and user restart are based on the concept of a logical transaction:
the smallest unit of work (as defined by the user) that must be performed in its entirety to ensure
that the information contained in the database is logically consistent.

A logical transaction may comprise one or more Adabas commands that together perform the
database read/update required to complete a logical unit of work. A logical transaction begins
with the first command that places a record in hold status and ends when an ET (end transaction),
BT (back out transaction), CL (close), or OP (open) command is issued for the same user.

The OP (open) or RE (read ET data) commands can be used to retrieve user restart data stored by
the C3, CL, or ET command. This data is also written to the Adabas data protection log with each
checkpoint written by the transaction and can be read using the ADASEL utility.

The ET command must be issued at the end of each logical transaction. Successful execution of an
ET command ensures that all the updates performed during the transaction are physically applied
to the database, regardless of subsequent user or Adabas session interruption.

Updates performed during transactions for which ET commands are not successfully executed
are backed out, either manually by issuing the BT command or automatically by the autobackout
routine.

Concepts and Facilities68

Using Adabas

Distributed Transaction Processing

Adabas incorporates nucleus functions to support the execution of global database transactions
in distributed environments; that is, across multiple local or remote databases and/or system images
in parallel.

A two-phase commit protocol ensures that all database management systems (DBMSs) that parti-
cipate in processing the global transaction (that is, resource managers or RMs) either commit or
roll back their local parts of a transaction as a whole. In the first phase, the coordinating component
(a transaction manager or TM) prepares all involved RMs for the commit. Only when the first
phase is successful does the TM instruct the RMs to commit (second phase).

Adabas functions in this scenario as an RM. Adabas Transaction Manager, an Adabas add-on
product, functions as the coordinator within operating system images and, with the help of Entire
Net-Work, across system images.

The new protocol also integrates Adabas with other DBMSs. It is transparent to existing application
systems and to Natural.

Included in Adabas is a CICS-controlled interface that conforms to the CICS Resource Manager
Interface (RMI). It issues the appropriate Adabas commands to coordinate with the two-phase
commit protocol.

Competitive Updating

Competitive updating is in effect when two or more users (in multiuser mode) are updating the
same Adabas file(s). The Adabas facilities used to ensure data integrity in a competitive updating
environment include the following features:

record hold/release, avoidance of resource deadlock, exclusive control updating, and shared hold
updating.

■ Record Hold and Release: The Adabas record hold facility ensures that a record will not be
updated by more than one user at a time. A user can put the record in hold status (that is, the
ISN of the record is put in the hold queue) using the commands S4 (find with hold), L4/L5/L6
(read with hold), A1/E1 (update/delete) with the hold option specified, N1/N2 (add record with
hold), or HI (hold record).

If a record requested for hold status is already being held by another user or utility, the user
issuing the record hold command is put in wait status until the record becomes available, at
which time Adabas reactivates the command. You may request that a response code be returned
if you do not want to be put in wait status.

Records in hold status can be accessed (found and read) by users who do not seek to hold the
record.

69Concepts and Facilities

Using Adabas

Records in hold status are released by issuing the ET or CL commands. Options are available
with ET and BT commands to release records selectively. The CL command releases all records
in hold status for the issuing user.

■ Avoiding Resource Deadlock: Resource deadlock occurs when two users are each waiting for
a record held by the other user. Adabas protects against such a user deadlock situation by de-
tecting the potential deadlock and returning a response code to the second user after putting
the first user in wait status. This occurs if the two users are serviced by the same nucleus (a non-
cluster nucleus or the same cluster nucleus). But even in a single nucleus, a deadlock might not
be detected if an ISN involved in the deadlock is being held as a shared resource by more than
one user. For more information, read about shared hold status.

■ SharedHold Status: Shared hold status can be used to lock data records in shared mode, rather
than in exclusive mode. This allows your database users to read the same record in parallel
transactions, but ensures that no one can update the record concurrently.

Using shared hold status, your users can protect large object values from concurrent updates
without locking out other users who may need to read the same LOB value or other LOB values
in the same record. It also allows your users to protect the records they read against concurrent
updates for specific periods of time:
■ For the duration of the read command;
■ When the next record in a sequence is read;
■ When the user's transaction ends;
■ Indefinitely.
■ Option C puts the record in shared hold status for the duration of the read operation. It ensures

that the version of the record being read has been comitted by the last updater. This option
is available for the L4, L5, L6 and S4 commands. For the S4 command, the shared hold remains
in place for the duration of the read operation.

■ Option Q puts the record in shared hold status until the next record in the read sequence is
read or the read sequence or transaction is terminated, whichever happens first. It ensures
that the record being read cannot be updated concurrently until the next record in the sequence
is read (or the transaction is terminated). This option is available for the L4 (when command
option 2 is set to "N"), L5, L6 and S4 commands.

■ Option S puts the record in shared hold status until the end of the transaction. It ensures that
the record being read cannot be updated concurrently until the transaction is terminated. This
option is available for the HI, L4, L5, L6, RI and S4 commands.

■ Option H keeps a record in shared hold status indefinitely (until the next ET or BT command).
This option is available for the BT and ET commands. Records in shared hold status at the
time of the BT or ET command are kept in shared hold status beyond the end of the transaction
until another ET or BT command is issued (without this H option or the prefetch or multifetch
options). Any records in exclusive control are also changed to shared hold status beyond the
end of the transaction.

Concepts and Facilities70

Using Adabas

If the same record is placed in shared hold status more than once (using the C or S options or
the Q option for different read sequences), it stays in shared hold status until all of the specified
hold lifetimes have expired.

For more information about these command options and their detailed functioning in each
command, read about the individual commands in Commands, in the Adabas Command Reference
Guide.

For complete information about shared hold updating, read Shared Hold Status, in the Adabas
Command Reference Guide.

■ Exclusive Control Updating: Users who use logical transaction commands (ET/BT) are called
ET logic users.

Alternatively, a user can request exclusive control of one or more Adabas files for the duration
of the user session. If the file or files for which exclusive control is requested are not already
opened for update by another user or utility, exclusive control is granted and the user becomes
an exclusive update (EXU) user. Adabas treats EXU users as non-ET logic users.

Adabas does not place an ISN in hold status for EXU users. Adabas disables hold logic processing
for files being updated under exclusive file control.

Instead of using ET commands, EXU users can request checkpoints to act as reference points;
for example, updates applied after a checkpoint can be removed.

For complete and detailed information about competitive updating, read Competitive Updating, in
the Adabas Command Reference Guide

Timeout Controls

Adabas times out:

■ transactions that exceed a specified limit; and
■ users who are inactive for a specified amount of time.

Transaction Time Limit

Adabas provides a transaction duration time limit for ET logic users. The time limit is set with the
ADARUN TT parameter; an override for a specific user can be set using the OP command.

If a transaction exceeds the prescribed limit, Adabas generates a BT (back out transaction) command
to remove all the updates performed during the transaction and release all held records. The user
can then either repeat the backed out transaction from the beginning or begin another transaction.

71Concepts and Facilities

Using Adabas

Non-Activity Time Limit

All users are subject to a non-activity time limit; different limits can be set for different user types
and for specific users within each user type.

If a user exceeds the prescribed limit and the user is

■ an ET logic user, Adabas backs out the current transaction, releases all held records and command
IDs, and deletes the user's file list.

■ an EXU user, Adabas deletes the user's file list and releases all command IDs. The user loses his
EXU user status and becomes an access-only user.

■ an access-only user, Adabas deletes the user's file list.

Backout, Recovery, and Restart

Backout, recovery, and restart may be required when a user or Adabas session is interrupted due
to a timeout (read Timeout Controls, elsewhere in this guide); a program error when Adabas de-
termines that a transaction cannot be completed successfully; an Adabas, hardware, or operating
system failure; or a power failure.

A user session is a sequence of Adabas calls optionally starting with an open (OP) command and
ending with a close (CL) command. A user is either a batch mode program or a person using a
terminal. The uniqueness of each user is assured by the user ID, a machine, an address space, and
a terminal ID.

An Adabas session starts when Adabas is activated and continues until Adabas is terminated.
During this time, the Adabas nucleus creates a sequence of protection entries in exact historical
sequence reflecting all modifications made in the database. The sequence of protection entries is
written to the Work data set (part 1) and to a protection log in blocks. Each block contains the
nucleus session number, a unique block number, and a time stamp.

User Program Error

A user program that is processing a transaction can detect that the transaction cannot be completed
successfully. In this case, a BT (back out transaction) command is used to remove or back out the
incomplete transaction.

If a user program error causes logical damage to the database, it may be necessary to recover the
affected files using the ADASAV and ADARES utilities.

Concepts and Facilities72

Using Adabas

Adabas, Hardware, or Operating System Failure

After any failure that causes the Adabas nucleus to terminate abnormally, an automatic procedure
is executed when Adabas is reactivated to bring the database to a physically and logically valid
status. All partially executed update commands are reset; all incomplete transactions are backed
out.

The automatic procedure comprises three steps: repair the database, autorestart, and autobackout:

■ Database repair modifies the database to the status it would have had if a buffer flush had just
been completed at the time of failure. That is, all blocks in the database are at a status that enables
the nucleus to perform normally.

■ Autorestart backs out updates of single update commands that were partially executed when
the system failed. It resolves internal inconsistencies in the database and ensures physical integ-
rity.

■ Autobackout, which is performed only for ET logic users, backs out updates of user transactions
that were partially executed when the system failed. Adabas performs an internal BT (back out
transaction) followed by autorestart, and then informs the user that the last transaction has been
backed out.

The autobackout routine is executed at the end of an ET session that was terminated with HALT.
It is also executed automatically at the beginning of the next Adabas session to remove any updates
performed within transactions that did not complete successfully.

After autobackout execution, the database contains updates only from logically complete transac-
tions.

Note: ET users can manually back out an incomplete transaction at any time by issuing the
BT (back out transaction) command. Read Maintaining Database Integrity, elsewhere in
this guide.

If an Adabas, hardware, or operating system failure results in physical damage to the database,
it may be necessary to recreate the database using the ADASAV and ADARES utilities.

Power Failure

Depending on the hardware, a power failure during an I/O operation may damage the Adabas
blocks that were being processed. This damage cannot be detected during autorestart and therefore
can result in problems later such as unexpected response codes or lost database updates.

If the ADARUN IGNDIB=YES parameter is set, the autorestart routine checks whether a buffer
flush was active when the session interruption occurred. If a buffer flush was in process, the
autorestart shuts down and Adabas alerts the user to the potential problem and includes a list of
the files being updated when the buffer flush was in process. The DBA must then determine
whether a power failure occurred.

73Concepts and Facilities

Using Adabas

If the cause of a session interruption

■ is a power failure, Software AG strongly recommends recovering the affected files using the
ADASAV and ADARES utilities.

■ is definitely not a power failure and the integrity of the information on the output hardware can
be guaranteed, the database can be reactivated immediately. Database recovery is not necessary.

Extended Error Handling and Message Buffering

The error handling and message buffering facility helps implement 24X7 operations by analyzing
and recovering from certain types of errors automatically with little or no DBA intervention. It
also generates additional information so that the error can be diagnosed by the user and by Software
AG.

A wrap-around message buffer collects Adabas messages for later review by Adabas Online System
in case online access to the console or to DDPRINT messages becomes unavailable. The buffer
aids problem analysis and performance tuning.

The error handling functions of the facility can be invoked from the operator console or from
Adabas Online System.

User exits and hyperdescriptor exits that are essential to the operation of the Adabas nucleus can
be marked as critical (the default) or not:

■ a criticaluser exit is not affected by the error handling and message buffering facility: an abnormal
termination in it causes the Adabas nucleus to terminate abnormally as well.

■ for a notcritical user exit, the facility maintains an active Adabas nucleus, optionally refrains
from invoking that exit, takes a dump of the nucleus at the point when the exit failed, and issues
messages to the system log to inform the DBA of the problem. The DBA can then examine the
diagnostic information, use it to resolve the problem, then load and reactivate the corrected exit.

The extensions (plug-in routines or PINs) analyze and, in some cases, determine the cause of an
abend while allowing the nucleus to continue processing. Each PIN service routine handles a
predefined condition when encountered, allowing the Adabas nucleus to

■ remain active when it otherwise would terminate abnormally; or
■ print extended error diagnostics as an aid to error recovery.

While the PIN is executing, most Adabas functionality is available to it as the registers at the time
of the abnormal event are available. The PIN determines whether it is safe to allow the nucleus to
continue processing and prints appropriate messages to notify the DBA.

Based on its execution, a PIN can either transfer control to the Adabas nucleus so that it can resume
normal processing-usually with a response code -- or it can return control to the error handling
and message buffering facility, allowing the Adabas nucleus to terminate abnormally.

Concepts and Facilities74

Using Adabas

A PIN can also be used to format an intelligent dump in a number of circumstances to help debug
a particular response or abend code.

A special PIN routine user exit can be used to obtain additional information about response codes
and abends. The user exit allows you to specify particular response codes or response code/subcode
combinations to be monitored. Once you have modified the user exit, you can reload it and make
your changes effective without bringing the database down.

75Concepts and Facilities

Using Adabas

76

5 Adabas Utilities

■ Initial Design and Load Operations ... 78
■ Backup / Restore / Recovery Routines ... 81
■ Database Modification Routines ... 84
■ Audit / Control / Tuning/Reporting Procedures ... 92

77

Database services such as loading or deleting files are handled by an integrated set of online and
batch-mode utilities. Most utilities can be run in parallel with normal database activity to preclude
interruption of daily production. See the Adabas Utilities Manual documentation for more inform-
ation.

Adabas utilities address initial design and load operations, backup/restore/recovery routines,
database modification routines, and audit/control/tuning procedures.

Note: ReadAdabasOnline System, elsewhere in this guide, for information about this menu-
driven, interactive DBA tool.

Initial Design and Load Operations

■ ADACMP: Compress / Decompress
■ ADALOD: Loader
■ ADAULD: Unload

ADACMP: Compress / Decompress

ADACMP COMPRESS is used to edit and compress data records to be loaded into the database
using ADALOD; ADACMP DECOMPRESS is used to decompress individual files for data structure
or field definition changes, or for use as input to non-Adabas programs.

COMPRESS

Input

ADACMP input data must be in a sequential data set/file. Indexed sequential and VSAM input
cannot be used. The records may be fixed, variable, or of undefined length. The maximum input
record length permitted depends on the operating system. The maximum compressed record
length is restricted by the Data Storage block size in use and the maximum compressed record
length set for the file (read about the MAXRECL parameter of the ADALOD utility). The input
records can be in either blocked or unblocked format.

It is possible to omit the input data set if the parameter NUMREC=0 is supplied.

The logical structure and characteristics of the data for input to COMPRESS are described with
field definitions statements (FNDEF to define fields or groups of fields; SUBFN and SUPFN to
define sub- or superfields, respectively; COLDE, HYPDE, PHONDE, SUBDE, and SUPDE to define
various types of descriptors). Field definitions are used to create the Adabas field definition table
(FDT).

By default, input data records are processed in the order of the field definition statements. The
FORMAT parameter allows you to change the order of field processing or skip fields.

Concepts and Facilities78

Adabas Utilities

To support universal encoding (UES), parameters allow you to specify the data architecture and
user encodings of the input and the desired file and user encodings to use during compression.

Processing

ADACMP COMPRESS edits and compresses the data records.

Editing includes checking each field defined with a packed (P) or unpacked (U) format to ensure
that the field value is numeric and in the correct format. Any record that contains invalid data is
written to the ADACMP error data set and is not written to the compressed data set. Adabas user
exit 6 can be used to specify additional editing to be performed during ADACMP COMPRESS
processing. Read the Adabas User, Hyperdescriptor, Collation Descriptor, and SMF Exits Manual doc-
umentation for information about user exits.

Compression includes removing trailing blanks from alphanumeric fields; removing leading zeros
from numeric fields; removing trailing zeros in floating-point format fields; and packing numeric
unpacked fields. Fields with the fixed (FI) option are not compressed, and empty fields located at
the end of the record are neither stored nor compressed. Null value fields are processed differently
depending on options being used. SQL null value processing is supported.

If universal encoding support (UES) parameters have been specified, compression includes con-
verting the input to the specified encoding for compressed files.

Output

Processed data records are written out together with the file definition information to a sequential
data set with the variable blocked record format. This data set, or several such data sets from
multiple ADACMP executions, can be used as input to the ADALOD utility. The data set can be
used as input to ADALOD even if it contains no records, meaning that no records were provided
on the input data set or all records were rejected during editing.

The ADACMP processing report indicates the approximate amount of space required in Data
Storage for the compressed records by device type (specified with the DEVICE parameter) and
for Data Storage padding factors between 5 and 30 percent. The compression rate is computed
based on the real amount of data used as input to the compression routine.

DECOMPRESS

ADACMP DECOMPRESS accepts as input data records from existing Adabas files, either directly
without separate file unloading, or already unloaded with the ADAULD utility. If a file is directly
decompressed, it is unloaded without FDT information as part of the decompression process,
which can save time when decompressing larger files.

Direct decompression of multiclient files can be limited to records for a specific user only when a
valid owner ID (ETID parameter) is specified.

79Concepts and Facilities

Adabas Utilities

The FORMAT parameter may be used to decompress the record to a format other than that specified
by the FDT. This is particularly useful when the FDT of an existing file is to be changed.

If universal encoding support (UES) is used, the encoding characteristics for the decompressed
file are passed in the header of the compressed sequential input. Parameters allow you to overwrite
these encoding characteristics.

Processed data records are written to a sequential data set with the variable blocked record format.
Rejected data records are written to the error data set.

ADALOD: Loader

The ADALOD LOAD function loads a file into the database. Compressed records produced by
the ADACMP or ADAULD utility may be used as input. A parameter specifies whether the file
index is loaded in compressed or uncompressed form.

ADALOD loads each compressed record into Data Storage, builds the address converter for the
file, and enters the field definitions for the file into the field definition table (FDT). ADALOD also
extracts the values for all descriptors in the file together with the ISNs of all records in which the
value is present, to an intermediate data set. This data set is then sorted into value/ISN sequence
and entered into the Associator inverted lists.

The ADALOD UPDATE function is used to add or delete a large number of records to/from an
Adabas file. The UPDATE function requires considerably less processing time than the repetitive
execution of the Adabas add/delete record commands. Records to be added may be the compressed
records produced by the ADACMP or ADAULD utility. The ISNs of records to be deleted can be
provided either in an input data set or by using control statements.

Records may be added and other records deleted during a single execution of ADALOD.

ADAULD: Unload

The ADAULD utility unloads an Adabas file from the database or from a save tape.

Adabas files are unloaded from a database to

■ permit the data to be processed by a non-Adabas program. In this case, the file must also be
decompressed after unloading using the DECOMPRESS function of the ADACMP utility.

■ create one or more test files, all of which contain the same data. This procedure requires that a
file be unloaded, and then reloaded as a test file with a different file number.

■ change the field definition table (FDT). This requires that the file be unloaded, decompressed,
compressed using the modified field definitions, and reloaded. If the ADADBS utility is used
to add field definitions to a file, the file does not need to be unloaded first.

The sequence in which the records are unloaded may be

Concepts and Facilities80

Adabas Utilities

the order in which they are physically positioned within Data Storage.physical

a sequence controlled by the values of a user-specified descriptor.logical

ascending ISN sequence.ISN

The unloaded record output is in compressed format. The output records have the same format
as the records produced by the ADACMP utility.

Adabas files may be unloaded from a qualified database or file save tape to

■ include a file from a save tape in one or another test environment.
■ move a file from a save tape with one block size to a database with another.

Backup / Restore / Recovery Routines

■ ADAPLP: Protection Log / Work Print
■ ADARAI: Recovery Aid
■ ADARES: Restart
■ ADASAV: Save / Restore Database or Files
■ ADASEL: Select Protection Data

ADAPLP: Protection Log / Work Print

The ADAPLP utility prints data protection records contained on the Adabas Work data set or the
Adabas data protection log.

Note: The ADAPLP utility is primarily a debugging tool for Software AG developers.
Consequently, detailed information about its output is not documented.

You can specify whether to print:

all protection records-the defaultALL

just Associator protection recordsASSO

just Data Storage protection recordsDATA

records resulting from Adabas C1 commandsC1

records resulting from Adabas C5 commandsC5

records written at completion of a nucleus buffer flushEEKZ

records resulting from Adabas ET commandsET

Work data set records used by autorestart to repair the indexREPR

records resulting from online SAVE database/file operationsSAVO

records written at completion of update commandsVEKZ

81Concepts and Facilities

Adabas Utilities

The number of protection records printed can be reduced even more by specifying a file, ISN, or
RABN.

ADARAI: Recovery Aid

The Adabas Recovery Aid utility ADARAI can be used to automate and optimize database recovery.
For more information, read Adabas Restart and Recovery in Adabas Operations.

ADARAI supports all Adabas-compatible tape management systems.

The ADARAI utility prepares the recovery log file (RLOG), which records the information about
data sets, utility parameters, and protection logs needed to build the recovery job control statements.
ADARAI lists the information contained in the RLOG, creates the job control statements to recover
the database, and disables ADARAI logging.

Information is stored on the RLOG by generations. A generation includes all activity between
consecutive ADASAV SAVE/RESTORE (database) or RESTORE GCB operations. The first gener-
ation includes the first ADASAV SAVE/RESTORE (database) or RESTORE GCB operation and
extends to (but excludes) the second.

Minimally, the RLOG retains the number of generations specified by the MINGENS parameter
during the ADARAI PREPARE step. However, a maximum of 32 generations will be stored on
the RLOG if there is enough space available.

Systems using the Recovery Aid feature require a recovery log (RLOG) data set DD/RLOGR1,
which must first be formatted with the ADAFRM utility and then defined using the ADARAI
utility.

ADARES: Restart

The ADARES utility performs functions related to database recovery:

■ BACKOUT removes all the updates applied between two checkpoints. The checkpoints used
are normally the result of a non-synchronized checkpoint command (C1) but may also be syn-
chronized checkpoints. The complete database may be included in the back-out process, or
backout may be limited to selected files.

■ CLCOPY copies a command log data set from disk to a sequential data set. This function is ne-
cessary only if dual or multiple command logging is in effect for an Adabas session.

■ COPY copies a sequential Adabas protection log data set. This function should be executed if
the Adabas session in which the sequential protection log data set was created was terminated
abnormally.

■ MERGE CLOG manually merges command log data sets resulting from individual nucleus
CLCOPY executions into a single command log for a cluster of nuclei.

■ PLCOPY copies a protection log data set from disk to a sequential data set. This function is ne-
cessary only if dual or multiple protection logging is in effect for an Adabas session.

Concepts and Facilities82

Adabas Utilities

■ REGENERATE reapplies all the updates performed between two user-specified checkpoints.
The checkpoints specified may be the result of a non-synchronized checkpoint command (C1)
but may also be synchronized checkpoints. The REGENERATE function may process all files
or be limited to one or more files. It is most often used after the database (or one or more files)
has been restored to a previous status with the RESTORE or RESTONL function of the ADASAV
utility.

■ REPAIR repairs one or more blocks in Data Storage that, for any reason, have become unusable.
The most recent save tape of the database and any protection log tapes created thereafter are
used as input to this function.

To minimize the time required to recover after a system failure, the BACKOUT, BACKOUT DPLOG
or MPLOG, and REGENERATE functions of ADARES can be executed in multiple threads that
simulate the original update environment with multiple commands active at one time.

ADASAV: Save / Restore Database or Files

The ADASAV utility saves and restores the contents of the database, or one or more files, to or
from a sequential data set. ADASAV should be run as often as required for the number and size
of the files contained in the database, and the amount and type of updating. For large databases,
ADASAV functions may be run in parallel for the various disk packs on which the database is
contained.

Special ADASAV functions are available for use with the Adabas Delta Save Facility. For more
information, read the Adabas Delta Save Facility Facility documentation.

RESTONL functions restore from one or more SAVE data sets created while the Adabas nucleus
was active (that is, online); RESTORE functions restore from one or more SAVE data sets created
while the Adabas nucleus was inactive (that is, offline).

RESTONL and RESTORE have the subfunctions GCB, FILES, and FMOVE:

■ Without a subfunction, RESTONL and RESTORE restore entire databases.
■ With the GCB subfunction, they restore the general control blocks, Associator RABNs 3-30 of

the database, and specified files.
■ With the FILES subfunction, they restore one or more files into an existing database to their

original RABNs.
■ With the FMOVE subfunction, they restore one or more files into an existing database to any

free space, allowing changes to extent sizes.

If changes occurred during an online SAVE, the RESTONL function is followed automatically by
the RESTPLOG function. RESTPLOG applies the updates that occurred during, and therefore were
not included in, the online SAVE.

83Concepts and Facilities

Adabas Utilities

RESTPLOG is also executed following a RESTONL or RESTONL FILES function that ended before
the protection log (PLOG) updates were completely restored. RESTPLOG applies the database
updates not applied by the unsuccessful RESTONL function.

The SAVE function to save a database or one or more files may be executed while the Adabas
nucleus is active (online) or inactive (offline). If the Recovery Aid option is active, a SAVE database
operation begins a new RLOG generation.

ADASEL: Select Protection Data

The ADASEL utility selects information in the Adabas sequential (SIBA), dual, or multiple (PLOG)
protection log. ADASEL decompresses the information and writes it to a print data set (DD/DRUCK)
or to a user-specified output data set.

The protection log contains information on all updates applied to the database during a given
Adabas session. Information selected by ADASEL can be used for auditing or as input to a Natural
or non-Adabas program.

You can select before-images, after-images, or both for new, updated, and deleted records. You
can also select data written to the protection log by an Adabas C5 command.

Database Modification Routines

■ ADACDC: Changed-Data Capture
■ ADACNV: Database Conversion
■ ADADBS: Database Services
■ ADADEF: Define a Database
■ ADAFRM: Format Data Sets
■ ADAINV: Invert
■ ADAORD: Reorder
■ ADAZAP: Modify Physical Database Blocks

ADACDC: Changed-Data Capture

ADACDC is an interval-driven, asynchronous mass update feature to generate a sequential file
containing all database modifications. This feature is important for open systems and data ware-
housing solutions.

ADACDC then processes the raw data in the sequential file to isolate the latest status of the data.
The ADACDC utility

■ takes as input one or more sequential protection logs; and
■ produces as output a delta of all changes made to the database over the period covered by the

input protection logs.

Concepts and Facilities84

Adabas Utilities

A delta of changes means that the last change to each ISN in a file that was altered during this
period appears on the primary output file.

This output may be used on a regular basis as input for data warehousing population procedures
so that what is applied to the data warehouse database is the delta of changes to a database rather
than a copy of the entire database. This affords more frequent and less time consuming updates
to the data warehouse, ensuring greater accuracy of the information stored there.

ADACNV: Database Conversion

The utility ADACNVmust be used to perform all necessary conversions of both operating system-
dependent and -independent database system structures when moving in either direction between
Adabas versions.

The ADACNV utility converts (CONVERT) an Adabas database from lower versions to higher
versions; it also reverts (REVERT) an Adabas database from a higher version to a lower one. Some
restrictions may apply these functions.

To ensure database integrity, ADACNV writes changed blocks first to intermediate storage; that
is, to the sequential data set DD/FILEA. After all changed blocks have been written out to
DD/FILEA, a point of no return is reached and the changed blocks are written to the database. If
ADACNV terminates abnormally after the point of no return, the RESTART parameter can be
used to begin the ADACNV run by reading the contents of DD/FILEA and writing them out to
the database.

The TEST parameter is provided to check the feasibility of a conversion or reversion without
writing any changes to the database.

ADADBS: Database Services

All ADADBS functions can also be performed using Adabas Online System (AOS). When the
Adabas Recovery Aid is active, using AOS is preferable for file change operations because it writes
checkpoints that are necessary for recovery operation.

ADADBS offers a variety of functions, any number of which may be performed during a single
execution of the utility.

85Concepts and Facilities

Adabas Utilities

Database Functions

The ADD function adds a new data set to the Associator or Data Storage to a maximum of 99 data
sets for each. However, your actual real maximum will be less because the maximum derived
from the block size of the first Associator data set (DDASSOR1).

The DECREASE function reduces the size of the last data set currently being used for Associator
or Data Storage. The space to be released must be available in the free space table (FST).

The DECREASE function does not deallocate any of the specified physical extent space. To deal-
locate space, you must decrease the database with the DECREASE function; save it with ADASAV
SAVE; reformat the data sets with ADAFRM; and restore the database with ADASAV.

The INCREASE function increases the size of the last data set currently being used for the Associ-
ator or Data Storage. This function may be executed any number of times for the Associator. When
the maximum (99) number of Data Storage Space Tables (DSSTs) has been reached, all Data Storage
extents must be combined into a single extent with either the REORASSO or REORDB function
of the ADAORD utility.

The RENAME function changes the name assigned to a file or database. If a file is not specified
or is specified with file number zero, the database is renamed.

The TRANSACTIONS function suspends and resumes update transaction processing; that is, it
creates a quiesced state for the database that could be a recoverable starting point.

File Functions

The ALLOCATE/DEALLOCATE functions are used to allocate/deallocate, respectively, a logical
extent (an address converter, Data Storage, normal or upper index) of a specific size. Only one
extent may be allocated or deallocated per ADADBS execution.

The CHANGE function changes the standard length of an Adabas field but does not modify records
in Data Storage. The user is, therefore, responsible for preventing references to the field that would
cause invalid results because of an inconsistency between the new standard length as defined to
Adabas and the actual number of bytes contained in the record.

The DELETE function deletes an Adabas file from the database. The file may not be coupled. If
an Adabas expanded file is specified, the complete expanded file (the anchor and all component
files) is deleted. The deletion process deallocates all logical extents assigned to the file, releasing
space that may be used for a new file or for a new extent of an existing file.

The DSREUSE function determines, for a specified file, whether Data Storage blocks that become
free as a result of record deletion are reused. Block reuse is originally determined when a file is
loaded into the database with the ADALOD FILE function, or when the system file is defined with
the ADADEF DEFINE function. In both cases, block reuse defaults to YES.

Concepts and Facilities86

Adabas Utilities

To support universal encoding (UES), the ENCODEF function can be used to define encodings
for fields in a file that is already loaded:

■ an EBCDIC file encoding for alphanumeric fields; or
■ a user encoding for the wide-character fields. The file encoding of wide-character fields cannot

be changed using this function.

The ISNREUSE function determines, for a specified file, whether Adabas reuses the ISN of a deleted
record for a new record. If not, each new record is assigned the next higher unused ISN.

For a specified Adabas file that is not a system file, the MODFCB function modifies parameters
such as file padding factors for the Associator or Data Storage; maximum size of secondary logical
extent allocations for Data Storage, normal index, and upper index; maximum compressed record
length permitted; and whether a user program is allowed to perform a file refresh operation by
issuing a special E1 command.

The NEWFIELD function adds one or more fields to a specified Adabas file that is not a system
file. The new field definition is added to the end of the field definition table (FDT). NEWFIELD
cannot be used to specify actual Data Storage data for the new field; the data can be specified later
using Adabas add or update commands, or Natural commands.

The ONLINVERT function allows you to invert files when online applications are active, ensuring
continuous access to the files. You can add one descriptor per file per run.

The ONLREORFASSO (reorder Associator), ONLREORFDATA (reorder Data Storage), and ON-
LREORFILE (reorder both Associator and Data Storage) functions allow you to reorder a list of
files when online applications are active, ensuring continuous access to the files. Files are reordered
within their existing extents, thus increasing I/O performance as free space is recovered and the
sort sequence of data records is changed according to processing needs.

The REFRESH function sets the file to "0" records loaded; sets the first extent for the address con-
verter, Data Storage, normal index, and upper index to empty status; and deallocates other extents.

The RELEASE function releases a descriptor from descriptor status. All space currently occupied
in the Associator inverted list for this descriptor is released. The space can then be reused for this
file by reordering or by ADALOD UPDATE. No changes are made to Data Storage.

The RENAME function changes the name assigned to a file or database. If a file is not specified
or is specified with file number zero, the database is renamed.

The RENUMBER function changes the number of an Adabas file that is not a system file. If the
new number specified is already assigned to another file, the RENUMBER function will not execute.

The UNCOUPLE function eliminates the coupling relationship between two files.

87Concepts and Facilities

Adabas Utilities

Other Functions

The CVOLSER function prints the Adabas file extents that are contained on a disk volume specified
by its volume serial number.

The DELCP function deletes checkpoint information recorded up to and including a specified
date; checkpoint information recorded after the date specified is not deleted. After running ADADBS
DELCP, the remaining records are reassigned ISNs to include those ISNs made available when
the checkpoint records were deleted. The lower ISNs are assigned but the chronological order of
checkpoints is maintained.

The OPERCOM function issues operator commands to the Adabas nucleus. Adabas issues a
message to the operator, confirming command execution. In cluster environments, OPERCOM
commands can often be directed to another nucleus in the cluster or to all nuclei in the cluster for
execution.

The PRIORITY function sets or changes the Adabas priority of a user. A user's priority can range
from 0 (the lowest) to 255 (the highest, and the default). The priority value is added to the operating
system priority by the interregion communications mechanism. The user for which a priority is
to be set or changed is identified by the same user ID provided in the Adabas control block (OP
command, Additions 1 field).

The RECOVER function recovers space allocated by rebuilding the free space table (FST). RECOVER
subtracts file and DSST extents from the total available space.

The REFRESHSTATS function resets statistical values maintained by the Adabas nucleus for its
current session. Parameters may be used to restrict the function to particular groups of statistical
values:

■ ALL (the default) resets values for the combination of CMDUSAGE, COUNTERS, FILEUSAGE,
POOLUSAGE, and THREADUSAGE.

■ CMDUSAGE resets the counters for Adabas direct call commands such as Lx, Sx, or A1.
■ COUNTERS resets the counter fields for local or remote, physical or logical calls, format trans-

lations, format overwrites, autorestarts, protection log switches, buffer flushes, and command
throw-backs.

■ FILEUSAGE resets the count of commands for each file.
■ POOLUSAGE resets the high-water marks for the nucleus pools such as the Work pool, the

command queue, or the user queue.
■ THREADUSAGE resets the count of commands for each Adabas thread.

Adabas maintains a list of the files used by each Adabas utility in the data integrity block (DIB).
The DDIB operator command (or Adabas Online System) displays this block to determine which
jobs are using which files. A utility removes its entry from the DIB when it terminates normally.
If a utility terminates abnormally (for example, the job is canceled by the operator), the files used

Concepts and Facilities88

Adabas Utilities

by that utility remain in use. The RESETDIB function releases any such files and resets the DIB
entries for a specified job and/or a particular utility execution.

ADADEF: Define a Database

The ADADEF utility is used to

■ define a new database (DEFINE functions), including the checkpoint file,
■ set database encoding defaults for a new database or modify them (MODIFY function) for an

existing database
■ define a new Work file (NEWWORK function) for an existing database.

Databases are defined with name, ID, components (Associator, Data Storage, and Work) with
device type and size, and default encodings.

Adabas uses certain files to store system information. The checkpoint file is used to store checkpoint
data as well as user data provided with the Adabas CL and ET commands. It is required and must
be specified in the ADADEF DEFINE (database) function.

Before database components (Associator, Data Storage, and Work) can be defined with ADADEF,
each must be formatted by the ADAFRM utility.

ADAFRM: Format Data Sets

The ADAFRM utility formats the Adabas direct access (DASD) data sets; that is, the Associator,
Data Storage, and Work data sets as well as the intermediate storage (temp, sort, recovery log,
and dual or multiple command/protection log) data sets.

Formatting with ADAFRM comprises two basic operations: creating blocks (that is, RABNs) on
the specified tracks/cylinders; and filling the created blocks with binary zeros (nulls).

Any new data set must be formatted before it can be used by the Adabas nucleus or an Adabas
utility. After increasing a data set with the ADADBS INCREASE or ADD function, new RABNs
must also be formatted.

ADAFRM also provides functions to reset existing Associator, Data Storage, or Work blocks to
binary zeros (nulls).

More than one ADAFRM function (ASSOFRM, DATAFRM, RLOGFRM, and so on) can be per-
formed in the same job. However, each function must be specified on separate statements.

89Concepts and Facilities

Adabas Utilities

ADAINV: Invert

The ADAINV utility is used to

■ create a descriptor (INVERT function); or
■ couple two files (COUPLE function).

The INVERT function

■ modifies the field definition table (FDT) to indicate that the specified field is a descriptor; and
■ adds all values and corresponding ISN lists for the field to the inverted list.

The newly defined descriptor may then be used in the same manner as any other descriptor. This
function may also be used to create a subdescriptor, superdescriptor, phonetic descriptor, hyper-
descriptor, or collation descriptor.

The COUPLE function adds a common descriptor to two files (updates their inverted lists). Any
two files may be coupled provided that a common descriptor with identical format and length
definitions is present in both files. A single file may be coupled with up to 18 other files, but only
one coupling relationship may exist between any two files at any one time. A file may not be
coupled to itself.

Note: Only files with numbers 255 or lower can be coupled.

Changes affecting a coupled file's inverted lists are automatically made to the other file. The DBA
should consider the additional overhead required to update the coupling lists when the descriptor
used as the basis for coupling is updated, or when records are added to or deleted from either file.
For example, if a field used as the basis for coupling contains a large number of null values and
is not defined with the NU (null suppression) option, the result may be a significant increase in
execution time and required disk space to store the coupling lists.

An interrupted ADAINV operation can be restarted without first having to restore the file.

ADAORD: Reorder

Three types of functions are available within the ADAORD utility; only one function may be ex-
ecuted during a given execution of ADAORD.

Concepts and Facilities90

Adabas Utilities

Reorder Functions

The REORASSO function physically reorders all Associator blocks for all files; REORFASSO reorders
the Associator for a single file. This eliminates Associator space fragmentation, and combines
multiple address converter, normal and upper index, and Data Storage Space Table (DSST) com-
ponent extents into a single logical extent for each component.

The REORDATA function reorders Data Storage for all files in the database; REORFDATA reorders
Data Storage for a single file. This condenses extents containing only empty blocks, and also
eliminates any Data Storage fragmentation caused by file deletion.

The REORDB function performs both the REORASSO and REORDATA functions in a single
ADAORD execution; the REORFILE function performs both the REORFASSO and REORFDATA
functions in a single ADAORD execution. The records may be reordered in the logical sequence
by a descriptor, by ISN, or in the current sequence.

Restructure Functions

The RESTRUCTURE functions are used to relocate a database or specified files to a different
physical device.

The RESTRUCTUREDB function unloads an entire database to a sequential data set; RESTRUC-
TUREF unloads one or more files to a sequential data set. This data set can be used as input to the
STORE function.

Store Function

The STORE function loads one or more files into an existing database using the output produced
by the RESTRUCTURE functions or the REORDB function.

ADAZAP: Modify Physical Database Blocks

The ADAZAP utility is used to modify physical database blocks. It can be used to

■ write a checkpoint for each VER and REP it processes providing an audit trail of database
modifications. SYNP 3F checkpoints are printed by both Adabas Online System and ADAREP
and are ignored by ADARES.

■ handle errors according to standard Adabas utility conventions.

Because caution is necessary when running ADAZAP:

■ Software AG recommends that you have a current save tape available before running ADAZAP.
If an error is encountered while running ADAZAP, it may be necessary to restore the affected
file or database.

■ a mastercode available only to authorized personnel controls its use. The mastercode is distributed
by Software AG on written request.

91Concepts and Facilities

Adabas Utilities

Audit / Control / Tuning/Reporting Procedures

■ ADAACK: Check Address Converter
■ ADACHK: Adabas Common Check Utility
■ ADADCK: Check Data Storage
■ ADADRU: Database Resource Usage Utility
■ ADAICK: Check Index and Address Converter
■ ADAMER: ADAM Estimation
■ ADAPRI: Print Selected Adabas Blocks
■ ADAREP: Report
■ ADAVAL: Validate the Database
■ ADAWRK Utility: Work Area Recovery Reports
■ ADAZIN: Print Database Information

ADAACK: Check Address Converter

Note: Support for the ADAACK utility will be dropped in a future release of Adabas. We
encourage you to start using the ADACHK utility instead as soon as possible.

ADAACK should only be used for diagnostic purposes. It checks

■ the address converter for a specified file(s) and ISN range. It is used in conjunction with ADAICK.
■ each address converter element to determine whether the Data Storage RABN is within the used

portion of the Data Storage extents specified in the file control block.
■ the ISN for each record in each Data Storage block within the specified ISN range to ensure that

the address converter element for that ISN contains the correct Data Storage RABN.

ADACHK: Adabas Common Check Utility

The ADACHK utility performs a variety of functions and is intended to replace ADAACK,
ADADCK, ADAICK, ADAVAL, and ADAPRI. It provides the existing functionality provided by
these other utilities as well as additional features. It also includes the integrity checks that ADAREP
currently performs and checks all persistent data structures on disk with minimal impact to the
production environment.

You should only use ADACHK for diagnostic purposes. It:

■ checks the address converter for a specified file(s) and ISN range;
■ checks each address converter element to determine whether the Data Storage RABN is within

the used portion of the Data Storage extents specified in the file control block;
■ checks the ISN for each record in each Data Storage block within the specified ISN range to ensure

that the address converter element for that ISN contains the correct Data Storage RABN;

Concepts and Facilities92

Adabas Utilities

■ checks whether the block length is within the permitted range (4 block length physical block
size);

■ checks that the sum of the lengths of all records in the Data Storage block plus 4 equals the block
length;

■ checks that any record exists with a record length greater than the maximum compressed record
length for the file or with a length 0;

■ checks that any duplicate ISNs exist within one block;
■ checks that the associated DSST element contains the correct value (if not the DSST must be re-

paired using the ADACHK DSCHECK REPAIR parameter);
■ checks the physical structure of the Associator;
■ validates the index based upon the descriptor value structures and the Associator extents defined

by the general control blocks (GCBs) and file control blocks (FCBs);
■ compares the actual descriptor values contained in the records in Data Storage with the corres-

ponding values stored in the Associator to ensure that the Associator and Data Storage are
synchronized, and that there are no values missing from the Associator; and

■ checks the entire database for overlaps or gaps and the integrity of any expanded file chains.

ADADCK: Check Data Storage

Note: Support for the ADADCK utility will be dropped in a future release of Adabas. We
encourage you to start using the ADACHK utility instead as soon as possible.

ADADCK should only be used for diagnostic purposes. It checks the Data Storage and the Data
Storage Space Table (DSST) of a specific file (or files) in the database.

ADADCK reads each used Data Storage block (according to the Data Storage extents in the file
control block) and checks whether:

■ the block length is within the permitted range (4 block length physical block size).
■ the sum of the lengths of all records in the Data Storage block plus 4 equals the block length.
■ any record exists with a record length greater than the maximum compressed record length for

the file or with a length 0.
■ any duplicate ISNs exist within one block.
■ the associated DSST element contains the correct value. If not, the DSST must be repaired (read

about the ADADCK REPAIR parameter).

93Concepts and Facilities

Adabas Utilities

ADADRU: Database Resource Usage Utility

ADADRU should only be used for reporting purposes. It may be used to:

■ produce detailed reports about the space usage of files;
■ produce reports to show the RABN allocation, the free space inside RABNs for ASSO (Normal

Index) and DATA areas with indications of available padding space inside this free space, the
presence of free blocks, and the average characteristics of objects (record lengths and number
of records in the block); and

■ estimate the efficiency of database space usage (for one or more specific files or for the database
as a whole) and can be a helpful as source of information when deciding whether database re-
organization is required to optimize block sizes, decrease fragmentation and space occupied,
and increase overall performance etc

ADAICK: Check Index and Address Converter

Note: Support for the ADAICK utility will be dropped in a future release of Adabas. We
encourage you to start using the ADACHK utility instead as soon as possible.

ADAICK should only be used for diagnostic purposes. It checks the physical structure of the As-
sociator. This includes validating the index based upon the descriptor value structures and the
Associator extents defined by the general control blocks (GCBs) and file control blocks (FCBs).

ADAICK can

■ check index and address converter for specific files;
■ print/dump the contents of any Associator or Data Storage block in the database; or
■ produce a formatted print/dump of the contents of the GCBs, FCBs, and FDTs.

ADAMER: ADAM Estimation

The ADAMER utility produces statistics that indicate the number of Data Storage accesses required
to find and read a record when using an ADAM descriptor. This information is used to determine

■ whether the number of accesses required to retrieve a record using an ADAM descriptor would
be less than the standard Adabas accessing method;

■ the amount of Data Storage space required to produce an optimum distribution of records based
on the randomization of the ADAM descriptor.

The input data for ADAMER is a data set containing the compressed records of a file produced
by the ADACMP or ADAULD utility.

Concepts and Facilities94

Adabas Utilities

The field to be used as the ADAM descriptor is specified with the ADAMDE parameter. A multiple
value field or a field contained within a periodic group may not be used. The ISN assigned to the
record may be used instead of a descriptor as the basis for randomization (ADAMDE=ISN).

The ADAM descriptor must contain a different value in each record, since the file cannot be suc-
cessfully loaded with the ADAM option of the ADALOD utility if duplicate values are present
for the ADAM descriptor. The ADAMER utility requires a descriptor field defined as unique (UQ),
but does not check for unique values; checking for unique descriptor values is done by the ADALOD
utility when loading the file as an ADAM file.

The BITRANGE parameter may be used to specify that a given number of bits are to be truncated
from each ADAM descriptor value before the value is used as input to the randomization algorithm.
This permits records containing ADAM descriptor values beginning with the same value (for ex-
ample, 40643210, 40643220, 40643344) to be loaded into the same physical block in Data Storage.
This technique can be used to optimize sequential reading of the file when using the ADAM
descriptor to control the read sequence, or to remove insignificant information such as a check
digit.

ADAPRI: Print Selected Adabas Blocks

Note: Support for the ADAPRI utility will be dropped in a future release of Adabas. We
encourage you to start using the ADACHK utility instead as soon as possible.

The ADAPRI utility prints the contents of a block (or range of blocks) contained in the Associator,
Data Storage, Work, temp, sort, dual or multiple command log (CLOG), dual or multiple data
protection log (PLOG), the recovery log (RLOG), or the Delta Save images (DSIM) data set.

ADAREP: Report

The ADAREP utility produces a status report that provides information concerning the current
physical layout and logical contents of the database or a qualified save tape.

The information provided in this report includes:

■ a database overview: the database name, number, creation date/time, file status, and current
log number;

■ current space resources for Associator, Data Storage, and Work: amount and locations of currently
used space, and allocated but unused space;

■ summary and detailed file information: summary by file of ISN, extent, padding factor,
used/unused Associator and Data Storage space, and file options; and detailed, optionally by
file, that includes all summary information plus MINISN/MAXISN settings, detailed space in-
formation, creation and last use date/time, field definition table (FDT) contents, and general or
extended checkpoint file information;

■ checkpoint information: general and extended checkpoint file information; and

95Concepts and Facilities

Adabas Utilities

■ physical structure: Associator/Data Storage RABN information including device type, VOLSER
number, file number (if appropriate), and usage (AC, NI/UI, Data Storage, DSST, or unused).

The purpose of the save tape report is to determine what the save tape contains.

ADAVAL: Validate the Database

Note: Support for the ADAVAL utility will be dropped in a future release of Adabas. We
encourage you to start using the ADACHK utility instead as soon as possible.

The ADAVAL utility validates any or all files within an Adabas database except the checkpoint
and security files.

ADAVAL compares the actual descriptor values contained in the records in Data Storage with
the corresponding values stored in the Associator to ensure that the Associator and Data Storage
are synchronized, and that there are no values missing from the Associator.

Before running ADAVAL, the consistency of the inverted lists should be checked with the ADACHK
utility.

ADAWRK Utility: Work Area Recovery Reports

The ADAWRK utility can be used to produce reports from records in the autorestart area of Work
part 1. This information can be used when the database autostart fails and the database will not
come up. In such a situation, you need to know what can be done to get the database back up and
running quickly, with a minimum amount of lost data and with enough information to retrieve
any lost updates.

The data on the ADAWRK reports can help you determine whether:

■ you should run a restore/regenerate (ADASAV RESTORE utility function followed by the
ADARES REGENERATE utility function) of the database, which can be time-consuming;

■ excluding specific files from the autorestart using AREXCLUDE and then restoring/regenerating
only these single files would be beneficial; or

■ the database can be quickly repaired so it can be started and functional more quickly.

ADAWRK can produce the following reports:

■ The Environment report is always produced, regardless of the ADAWRK parameters specified.
It identifies the ADAWRK parameters used to produce the report as well as the Work data sets
used for the report.

■ The Summary report is produced by default and provides an overview of the data in the
autorestart area of Work part 1.

■ The File report is an optional report that provides a breakdown of the data in the autorestart
area of Work part 1 by file.

Concepts and Facilities96

Adabas Utilities

■ The Transaction report is an optional report that provides a breakdown of the data in the
autorestart area of Work part 1 by transaction.

■ The Checkpoint record report is an optional report that lists the checkpoint records and associated
data within the autostart area of Work part 1.

■ The Replication-related reports are optional reports that report on data that may need to be
replicated.

The ADAWRK utility will only report on transactions that may need to be corrected as part of the
autorestart processing logic. You can filter all of the Work part 1 autorestart area records processed
and reports produced in an ADAWRK run by communication ID, ETID, user ID, and file number.

ADAZIN: Print Database Information

The ADAZIN utility can be used to print maintenance information about Adabas load modules
and status information about the Adabas SVC/BS2000 router on the system in which ADAZIN is
run. Names of target load modules and SVC or router numbers can be specified to the utility to
limit the range of the printed report. Module information in the ADAZIN report includes:

■ The load module name;
■ CSECT names (if appropriate);
■ The date the module was last compiled;
■ The Adabas version and release of the module;
■ The number of the library from which the module was loaded within the concatenation list;
■ A list of zap numbers applied to the module for the zap base level.
■ The load module name CSECT names (if appropriate), the date the module was last compiled,

the Adabas version and release of the module, the number of the library from which the module
was loaded within the concatenation list, a list of zap numbers applied to the module for the
zap base level.

ADAZIN processing varies by operating system:

■ In z/OS environments, the Adabas modules that ADAZIN reviews for the report reside in a load
library (or concatenation of load libraries) defined through either the DDZIN or STEPLIB job
control statements in the ADAZIN batch job.

■ In BS2000 environments, ADAZIN uses the BLSLIB chain. Loading modules from the DDZIN
link name is not supported. Status information is available concerning the router. The SVC and
SVCRANGE parameters are ignored in BS2000 environments.

■ In z/VSE environments, ADAZIN uses the LIBDEF PHASE search chain to identify the libraries
from which modules will be loaded. Loading modules from a library associated with DLBL
DDZIN is not supported. There is no support for providing SVC status information on z/VSE.
On BS2000 there is status information on the router. The SVC and SVCRANGE parameters are
ignored in z/VSE and BS2000 environments.

97Concepts and Facilities

Adabas Utilities

98

6 Licensing Adabas

You must install a valid license file on all mainframe platforms in which your Software AG
mainframe product is installed.

The license file is provided as an XML document (encoded in US-ASCII). This document can be
viewed using a browsing tool or text editor on a PC. It can also be viewed on the mainframe using
the DISPLAY function of the license utility, LICUTIL, described Software AG Mainframe Product
Licensing, in the Software AGMainframe Product Licensing. The license file contains text that represents
the licensing information for your product and an associated digital signature, the license key.
Among other things, it also displays Software AG legal notices and environmental information.

Your license file is obtained from your Software AG sales representative. If you should have
problems with your license file, please contact your sales representative. Please do not edit the
file yourself, as you may invalidate it during your attempt. If the product license is incorrect, in-
sufficient, or not installed, Adabas terminates. Contact your Software AG sales representative for
assistance.

Adabas requires MLC Version 1.3.5 or higher. For complete information about the licensing process
for Software AG mainframe products, read Software AGMainframe Product Licensing, in the Software
AG Mainframe Product Licensing.

99

100

7 Adabas Security

■ Security System User IDs .. 102
■ Data Encryption ... 105
■ Multiclient Files ... 105
■ Adabas Security and ADASCR ... 106
■ Adabas SAF Security ... 107
■ Related Security Options ... 111

101

Adabas provides the following facilities to prevent unauthorized access and updates to Adabas
database files:

Security System User IDs

Security system user IDs are the sign-on user IDs provided by security software such as RACF,
ACF2, or Top Secret. Adabas support for security system user IDs allows you to track user activity
in Adabas databases. Support for security system user IDs is provided in z/OS and z/VSE environ-
ments only.

Security system user IDs are supported in Adabas system fields. command logs, some operator
commands, operator command output displays, PRILOG displays, Adabas utilities, and Adabas
session statistics. A SECUID ADARUN parameter is provided to allow you to specify the require-
ment level of security system user IDs for a database. This section describes security system user
ID support in Adabas in more detail.

■ CICS System Requirements
■ SECUID ADARUN Parameter
■ SECUID Operator Command
■ STOPSU and STOPSUR Operator Commands
■ System Field Support for Security System User IDs
■ SECUID Field Included in Command and Protection Logs
■ Operator Command Output Displays
■ PRILOG Displays
■ Adabas Utility Support
■ Adabas Session Statistics

CICS System Requirements

In CICS environments only, if you want your security system user IDs to be stored in Adabas user
queue elements (making them available for display and review as well as preventing response
code 200, ADARSP200, subcode 21 when ADARUN SECUID=REQUIRE is in effect for Adabas),
you must code the SAF parameter as YES. This is only required in CICS environments; in other
environments, the security system user IDs are automatically stored.

For more information, read Step 6. Prepare the CICS Link Globals Table -- CICSGBL and SAF: Adabas
Security Interface Flag, in the Adabas z/OS Installation Guide.

Concepts and Facilities102

Adabas Security

SECUID ADARUN Parameter

Use the SECUID ADARUN parameter to specify the requirement level of security system user
IDs for a database. You can indicate how Adabas handles calls from users without a security system
user ID or with a security system user ID that changed during the Adabas session. For complete
information about the SECUID ADARUN parameter, read SECUIDParameter: Security SystemUser
ID Requirement Level, in the Adabas Operations Manual.

SECUID Operator Command

The SECUID operator command can be used to alter the setting of the ADARUN SECUID para-
meter while the nucleus is active. This operator command is valid for use both on the console and
in the ADADBS OPERCOM utility function. For more information about the SECUID operator
command, read SECUID Command, in the Adabas Operations Manual; for more information about
use of the SECUID operator command in the ADADBS OPERCOM utility function, read about
the SECUID operator command, in the Adabas Utilities Manual.

STOPSU and STOPSUR Operator Commands

You can use the STOPSU operator command to stop and delete a user with a specified security
user ID. Any open transactions of the stopped user are backed out. No response code is issued;
the next time the stopped user issues a command, a new user queue element (UQE) is created. For
more information about the STOPSU operator command, read STOPSU Command, in the Adabas
Operations Manual; for more information about use of the STOPSU operator command in the
ADADBS OPERCOM utility function, read about the STOPSU operator command, in the Adabas
Utilities Manual.

You can use the STOPSUR operator command to stop a user with a specified security user ID, but
the stopped user is not immediately deleted. Any open transactions of the stopped user are backed
out. The stopped user is only deleted after he or she has issued a subsequent command and response
code 22 (ADARSP22), subcode 54 has been issued in response to that command. This response
code-subcode combination is used to notify users that their Adabas activity has been halted and
their user session resources have been freed. Only after the response code-subcode combination
has been issued is the user queue element (UQE) of the stopped user deleted. For more information
about the STOPSUR operator command, read STOPSUR Command, in the Adabas Operations
Manual; for more information about use of the STOPSUR operator command in the ADADBS
OPERCOM utility function, read about the STOPSUR operator command, in the Adabas Utilities
Manual.

103Concepts and Facilities

Adabas Security

System Field Support for Security System User IDs

Security system user IDs (SSIDs) can be stored in system fields in an Adabas file. The value
"SECUID" can be used in field definitions that include the SY field option. This SY=SECUID value
indicates that the system field contains an SSID. For complete information read System
Fieldselsewhere in this guide and SY: System Field in the Adabas Utilities Manual.

SECUID Field Included in Command and Protection Logs

The SECUID field is included in Adabas command logs (CLOGs) and protection logs (PLOGs).

Operator Command Output Displays

Output reports from various operator commands (such as the DPARM, DCQ, DFILES, DUQ, or
DHQA operator commands) include the current SECUID setting of the user's actual security system
user ID.

PRILOG Displays

The PRILOG print program displays the SECUID when CLOGLAYOUT=8 is used. All of the reports
produced by the PRILOG print program include this field.

Adabas Utility Support

The following Adabas utilities support security system user IDs:

■ The security system user ID will appear in the extract file and the primary output file produced
by the ADACDC utility. If the security system user ID is not known, blanks are stored in the
extract file. For more information, read ADACDC Utility: Changed-Data Capture, in the Adabas
Utilities Manual.

■ The ADASEL utility supports security system user IDs in three places in the SELECT parameter
of the ADASEL utility:

1. The SECUID parameter can be used to specify a security system user ID or range of security
system user IDs in the value-criterion of the WITH clause or the IF statement.

2. The SECUID [HEX] parameter can be used in the DISPLAY instruction to indicate that the
security system user ID of the user who added, updated, or deleted the record should be
displayed.

3. The security system user ID appears in the output log data set if the EXPANDED keyword
is specified in the output instruction of the ADASEL utility. If the security system user ID is
not known, "UNKNOWN" displays.

For more information, readADASELUtility: Select Protection Data, in theAdabas UtilitiesManual.

Concepts and Facilities104

Adabas Security

■ The ADAWRK utility includes a SECUID parameter that you can use to specify up to 24 security
system user IDs (SECUIDs) in character format. Each SECUID must be one to eight bytes long.
When SECUIDs are specified, only Work part 1 autorestart area records for those SECUIDs are
processed by the ADAWRK utility and printed on its reports. For more information, read
ADAWRK Utility: Work Area Recovery Reports, in the Adabas Utilities Manual.

Adabas Session Statistics

The high usage session statistics produced for a nucleus session include the user's security system
user ID, if it is known. For more information, read High Usage Session Statistics, in the Adabas DBA
Tasks Manual.

Data Encryption

Data encryption is an integral feature of Adabas and requires no options or extra modules. Data
may be enciphered before being placed in the database.

The user must provide the cipher key at the time records are stored. This key is not stored and
must be available to request or decipher the data. This minimizes the chances of data being com-
promised by unauthorized access to the system.

To retain maximum control over cipher codes, an Adabas user exit program can be created to insert
the currently valid cipher code into user applications; this removes the need to make the codes
known to users, and protects the file from corruption that can occur by adding data that is encrypted
with the wrong cipher code.

Multiclient Files

Also available as an integral feature of Adabas that requires no options or special modules is the
multiclient file.

A single Adabas physical file defined as multiclient can store records for multiple users or groups
of users. The multiclient feature divides the physical file into multiple logical files by attaching an
internal owner ID to each record.

The owner ID is assigned to a user ID. A user ID can have only one owner ID, but an owner ID
can belong to more than one user. Each user can access only the subset of records that is associated
with the user's owner ID.

Note: For any installed external security package such as RACF or CA-Top Secret, a user is
still identified by either Natural ETID or LOGON ID.

105Concepts and Facilities

Adabas Security

All database requests to multiclient files are handled by the Adabas nucleus.

Adabas Security and ADASCR

Access/update control is available only with Adabas Security and the related security utility
ADASCR that defines and controls Adabas Security functions.

Adabas Security provides two levels of protection: access/update and value.

■ Access/Update Level Protection
■ Value Level Protection

Note: Adabas Security documentation is available upon request. For complete information
about Adabas Security, contact your Software AG representative.

Access/Update Level Protection

Access-/update-level protection applies a basic level of security on a file-by-file basis. Access/update
protection can be defined for some files and not for others. It restricts use of a file or field within
the file to those having an appropriate access/update profile definition and a password specified
by the user of the file.

Access/update permission values ranging from 0 to 14 are defined for each user and attached to
that user's password, and each protected file (and selected field or fields, if desired) has equivalent
access/update threshold protection values of the same range. Only a user whose permission value
equals or is greater than the protection level of the specified file (and, when applicable, field) is
permitted to perform that operation type (access or update) on the file or field. An access/update
permission level of 0 only allows access/update of unprotected files or fields with protection level
0 or no defined protection password.

Value Level Protection

Value-level protection applies restrictions on the type and range of values that can be accessed or
updated in specific fields. The restrictions are applied according to user password (files with fields
using value-level protection must be password-protected). They can be for specific values or for
value ranges, and can be either accept or reject criteria.

Concepts and Facilities106

Adabas Security

Adabas SAF Security

■ Adabas Interface to SAF-based Packages
■ Adabas SAF Security Overview

Adabas Interface to SAF-based Packages

The System Authorization Facility (SAF) is used by z/OS and compatible sites to provide rigorous
control of the resources available to a user or group of users. Compatible security packages such
as IBM's RACF and Computer Associates' ACF2 or Top Secret allow the system administrator

■ to maintain user identification credentials such as user ID and password; and
■ to establish profiles determining the data sets, storage volumes, transactions, and reports

available to a user.

Generally, a security package allows the system administrator to authorize a user's access to system
resources. The security package then monitors all users and their resource usage to ensure that
no unauthorized access or change occurs. Attempts by unauthorized users to use either the system
or specific system resources are recorded and reported.

A user profile, which can be for a single user or a group of users, defines which system hardware
and software resources a user is allowed to use. A resource profile defines access/update privileges
for one or more devices, volumes, and/or programs (resources that must be used together to perform
certain functions can be defined together in the same profile).

When a user logs on to the system, the security package uses the user's logon ID to identify that
user's profile. Each time the user attempts to perform a task or access information, the security
package uses information in its resource profiles to allow or deny access. Using the profile concept,
the security package expands the single point of authorization-the logon ID-to provide extensive
control over all system resources.

The resulting security repository and the infrastructure to administer it represent a significant in-
vestment. At the same time, the volume of critical information held by a business is constantly
growing, as is the number of users referencing the data. The challenge of controlling these ever-
increasing accesses requires a solution that is flexible, easy to implement and, above all, one that
safeguards the company's investment.

107Concepts and Facilities

Adabas Security

Adabas SAF Security Overview

Adabas SAF Security enhances the scope of SAF-based security packages by integrating Adabas
resources into the central security repository. Adabas SAF Security enables:

■ a single control and audit system for all resources;
■ industry-standard protection of Adabas data; and
■ maximized return on investment in the security repository.

Adabas SAF Security operation can be tailored on a nucleus-by-nucleus basis, allowing great
flexibility in its implementation. It comprises:

■ a server operating in each secured Adabas address space;
■ an online administration and monitoring system, an application written in Natural and accessed

from either the demo or full version of Adabas Online System (AOS); and
■ a plug-in routine PINSAF that interfaces with the Adabas error handling facility. It is activated

automatically at initialization to aid problem diagnosis.

Adabas SAF Security allows you to protect the following Adabas resources:

ProtectionResource

Adabas Nucleus ■ Controls the users allowed to start an Adabas nucleus.
■ Controls the users allowed to perform Adabas nucleus administration functions;

for example, a user or group might be allowed to display nucleus session
parameters but not modify them.

■ Controls the Adabas nucleus operator commands that can be issued from the
system console.

Adabas Utilities ■ Controls the users allowed to execute utilities by utility name or database ID; for
example, a user or group might be allowed to run ADAREP but not ADASAV
against a particular database.

■ Controls the users allowed to execute utilities by utility function; for example, a
user or group might be allowed to run ADASAV SAVE but not ADASAV RESTORE
against a particular database.

■ Controls the users allowed to execute utilities by function and file number; for
example, a user or group might be allowed to run ADASAV SAVE FILE=10 but
not ADASAV SAVE FILE=20 against a particular database.

Adabas Files ■ Controls the users allowed to access database files.
■ Controls the users allowed to use access (READ/FIND) and update

(STORE/UPDATE/DELETE) commands. To optimize performance, commands
that are not file-specific (such as RC) are disregarded.

Concepts and Facilities108

Adabas Security

ProtectionResource

Controls the users allowed to operate in a production or test environment. Such
cross-level checking could be used, for example, to prevent damage by an application
program inadvertently cataloged against the wrong database ID.

Production
Environment Data

Controls the users allowed to store or retrieve ET data.Transaction Data

Dynamically applies passwords and codes held in the security repository or supplied
by a user exit. This eliminates the need for the application to manage security data

File Passwords and
Cipher Codes

and removes the requirement to transmit sensitive information from the client to
the database.

Controls the users allowed to perform online administration of the Adabas
environment. The following administration services can be protected in this way:

Administration
Services

■ Adabas Basic Services
■ Adabas System Coordinator Administration Services
■ Adabas Fastpath Administration Services
■ Adabas Vista Administration Services
■ Adabas Transaction ManagerAdministration Services
■ Adabas SAF Security Administration Services

Refer to the Adabas SAF Security documentation for more information regarding the protection of
the above resources.

In the following figure, all traffic between clients and the Adabas nucleus is controlled by the
Adabas router (ADASVC). The Adabas router extracts the user’s logon ID from the user’s ACEE
(a system representation of the user’s identification) and makes it available for Adabas SAF Security
(ADASAF) to perform security checks using the installed external security package.

109Concepts and Facilities

Adabas Security

The central security logon ID is used to log on to the system. Through the operating system or TP
monitor, the installed external security package package performs authentication of the logon ID.
For calls from a remote workstation or non-IBM platform, a remote logon procedure is used to
give the logon ID to ADASAF.

Full, flexible control is maintained with a one user : one definition approach while previous invest-
ments in host-based security systems and infrastructures are enhanced, not discarded.

Concepts and Facilities110

Adabas Security

Related Security Options

■ Adabas Online System Security
■ Natural Security
■ Using the SAF Repository to Secure Software AG Products
■ Entire Net-Work SAF Security (NETSAF)

Adabas Online System Security

The demo version of Adabas Online System (AOS) distributed with Adabas includes a security
facility for restricting access to the Adabas online facilities. AOS Security requires Natural Security
as a prerequisite. See the Adabas Security documentation for more information.

Natural Security

The Natural Security system provides extensive security for Adabas/Natural users. It is required
for AOS Security and recommended for other features of Adabas. See the Natural Security docu-
mentation for more information.

Using the SAF Repository to Secure Software AG Products

Adabas SAF Security or ADASAF is one of several Software AG security products that enhance
the effectiveness of the SAF central security repository:

ProtectsProduct

AdabasAdabas SAF Security

Entire Net-Work version 5.6 and aboveEntire Net-Work SAF Security

EntireX, Entire Broker, Broker ServicesEntireX Security

NaturalNatural SAF Security

Entire Net-Work SAF Security (NETSAF)

The Entire Net-Work SAF Security (NETSAF) is a separate, optional product for z/OS environments
running Entire Net-Work version 5.6 or above. It allows Entire Net-Work clients to access SAF-
secured data sources (targets); for example, Adabas, EntireX Communicator, and Entire System
Server.

NETSAF can be activated on a link-by-link basis. If only one node of several communicates extern-
ally, security can be activated for that node alone and only for external links.

To secure Entire Net-Work, it is necessary to define resource profiles in the SAF repository. Resource
profiles are defined for each host target. Adabas resource profiles can be defined at the file level.

111Concepts and Facilities

Adabas Security

The command type determines the access level required for successful authorization: valid access
levels are READ, UPDATE, and CONTROL. CONTROL applies to AOS commands, for example.

Point-of-access verification of incoming requests is made against the SAF-based central security
repository: all access from mainframe clients can be verified against the same security profile.

Security checks are based on a trusted user ID, which must exist in the central security repository.
In some cases, the user ID is authenticated in the caller's home environment or is fixed by, for ex-
ample, the Entire Net-Work configuration. A user ID can be lost if calls are routed through an in-
termediate gateway node.

Concepts and Facilities112

Adabas Security

8 Optional Product Extensions

■ Adabas Bridges ... 114
■ Adabas Caching Facility .. 118
■ Adabas Cluster Services ... 119
■ Adabas Delta Save Facility .. 122
■ Adabas Fastpath ... 123
■ Adabas Native SQL .. 124
■ Adabas Online System ... 124
■ Adabas Parallel Services .. 126
■ Adabas Review ... 127
■ Adabas SQL Gateway .. 130
■ Adabas SQL Server ... 130
■ Adabas Statistics Facility ... 132
■ Adabas Text Retrieval ... 134
■ Adabas Transaction Manager ... 135
■ Adabas Vista .. 136
■ Data Archiving for Adabas ... 137
■ Event Replicator for Adabas .. 138
■ Entire Net-Work Multisystem Processing Tool .. 141
■ Entire Transaction Propagator .. 143
■ Natural Application Development Environment .. 144
■ Predict Data Dictionary System .. 145

113

The add-on products discussed in this chapter are available to Adabas customers who have exer-
cised a separate purchase agreement for the feature or product.

Adabas Bridges

Adabas Bridge technology allows you to access the DL/I (and IMS/DB) and VSAM application
development environments efficiently. Emulation requires no modifications to application programs
and the delay and expense of traditional conversion are avoided.

Note: Solutions are also available for TOTAL and SESAM.

Adabas Bridge technology provides

■ user application transparency (it is not necessary to change any existing application programs
or third party application software using native VSAM or DL/I calls);

■ support for batch and online processing environments and the RPG, COBOL, PL/I, FORTRAN,
and Assembler programming languages;

■ data and application integrity.

Adabas Bridge for VSAM

Adabas Bridge for VSAM (AVB) allows application software written to access data in the VSAM
environment to access data in an Adabas environment. It operates either in batch mode or online
(under CICS) and is available for z/OS and z/VSE operating environments.

AVB may be executed in an environment with Adabas files only; VSAM files only; or both Adabas
and VSAM files (mixed environments). The ability to operate in a mixed environment means that
your migration schedule can be tailored to your needs and resources. You can migrate files from
VSAM to Adabas as needed, one application or even one file at a time.

AVB uses a transparency table to map the names and structures of VSAM files to the numbers
and structures of corresponding Adabas files. Once a VSAM file has been migrated to Adabas and
defined in the AVB transparency table, it can be bridged to Adabas. When a VSAM file is bridged,
AVB converts each request for the VSAM file to an Adabas call; the Adabas file is accessed instead
of the VSAM file.

When AVB is active, it intercepts each file OPEN and CLOSE request and performs a series of
checks to determine whether to process the request against an Adabas file. If not, AVB passes the
request to the operating system to open the referenced VSAM file.

When AVB detects an OPEN or CLOSE for a bridged file, it converts it to an Adabas command
and calls Adabas to open or close the corresponding Adabas file. After the OPEN, all requests to
read or update the VSAM file are passed directly to AVB.

Concepts and Facilities114

Optional Product Extensions

AVB allocates VSAM control blocks and inserts information the application needs to process results
as if they were returned from a standard VSAM file request. After the Adabas call, AVB returns
the results to the application using standard VSAM control blocks and work areas.

Advantages of Adabas over VSAM

The availability of Adabas in an environment in which only VSAM file structures were previously
used results in the following benefits:

■ Applications can be extended with the powerful indexing facilities of Adabas. You can query,
retrieve, and manipulate data using efficient views and paths.

■ Applications can be extended with programming languages such as Natural and SQL.
■ Application programs are independent of the data structure, which reduces maintenance costs

and increases programmer productivity.
■ Automatic restart/recovery ensures the physical integrity of the database in the event of a

hardware or software failure.
■ Data compression significantly reduces the amount of online storage required and allows you

to transmit more information per physical I/O.
■ Security is improved by password protection at both the file and field levels and, on the basis

of data values, at the record level as well.
■ Adabas provides encryption options, including a user-provided key that drives the encryption

process.

After migration, your application programs have the same view of data as before, but you can
structure the new Adabas files to optimize the benefits outlined above.

115Concepts and Facilities

Optional Product Extensions

The tables that identify files to Adabas are external to the applications and may be changed without
relinking the application programs. This feature is especially useful when you want to change file
or security information, or move applications from test to production status.

Adabas Bridge for DL/I (and IMS/DB)

Adabas Bridge for DL/I (ADL) is a tool for migrating DL/I or IMS/DB databases into Adabas. The
term DL/I is used as a generic term for IMS/VS and DL/I DOS/VS. ADL operates either in batch
mode or online (under CICS or IMS/DC) and is available for z/OS and z/VSE operating environ-
ments.

DL/I applications can continue to run without change: the migrated data can be accessed by Nat-
ural and by SQL applications if the Adabas SQL Gateway is available. ADL can also be used to
run standard DL/I applications against Adabas databases.

Functional Units

ADL comprises six major functional units:

■ A collection of conversion utilities automatically converts DL/I databases into Adabas files called
ADL files to emphasize the special properties of these files as opposed to native Adabas files.

■ As a result of the conversion process, the DL/I database definitions (DBDs) and the related
Adabas file layouts are stored on an Adabas file called the ADL directory, which also contains
the ADL error messages and other information.

■ A menu-driven application written in Natural provides a number of online services, including
reports on the contents of the ADL directory.

■ A special set of integration programs uses data from the ADL directory to generate Predict
definitions for ADL files, which can then be used to generate Natural views.

■ A call interface allows DL/I applications to access ADL files in the same way as original DL/I
databases (and both concurrently in mixed mode). It supports Assembler, COBOL, PL/I, RPG,
FORTRAN, and Natural for DL/I. A special precompiler is provided for programs using the
EXEC DL/1 interface.

■ A consistency interface provides access to ADL files for Natural applications or programs using
Adabas direct calls. This interface preserves the hierarchical structure of the data, which is im-
portant for ongoing DL/I applications.

Concepts and Facilities116

Optional Product Extensions

Advantages of Adabas over DL/I

The availability of Adabas in an environment in which only DL/I file structures were previously
used results in the following benefits:

■ Data can be manipulated by Natural, Software AG's fourth generation language;
■ Data is compressed at field level automatically by Adabas;
■ Deleted data records are released from storage immediately. This is in contrast to DL/I, which

simply sets a flag in such records but does not release the storage used by them. With Adabas,
the released space can be reused immediately for new records: there is no requirement to
maintain records that are marked as deleted, and less reorganization of the database is required;

■ All converted DBDs have full HIDAM functionality, regardless of the original access method;
■ The length of a field can be increased without unloading and reloading the data;
■ Segments can be added to the end of a DBD without unloading and reloading the data;
■ Trace facilities are available for online and batch;
■ The batch CALLDLI test program is available.
■ Since Adabas (unlike DL/I) does not run in the CICS region/partition, online system resources

are reduced.

117Concepts and Facilities

Optional Product Extensions

■ A symbolic checkpoint facility is available under z/VSE.
■ HD databases are available under z/OS.

Adabas Caching Facility

Adabas Caching Facility helps improve system performance and make full use of ESA functions
by augmenting the Adabas buffer pool in extended memory, data space, hiperspace and, in z/OS
version 1.2 and above environments, 64-bit virtual storage.

Adabas Caching Facility augments the Adabas buffer manager by reducing the number of read
Execute Channel Programs (EXCPs; UPAM SVCs for BS2000) to the database. This allows you to
use the available operating system facilities without monopolizing valuable virtual memory re-
sources.

Note: Write EXCPs are always issued to maintain the integrity of the database.

Adabas Caching Facility is functionally similar to the Adabas buffer manager, but offers the fol-
lowing additional capabilities:

■ User-specified RABNs (blocks) can be cached or fenced to make them readily accessible when
demand arises, even though the activity against them is not sufficient to keep them in the active
buffer pool. RABN-fencing reduces the required I/O response time if the Adabas nucleus needs
to reread those RABNs.

■ The Adabas Work data set parts 2 and 3 can be cached to improve performance in environments
that service large numbers of complex queries. Adabas Work parts 2 and 3 serve as temporary
work areas used to resolve and maintain the ISN lists of complex queries. Reducing the number
of read and write EXCPs to Work parts 2 and 3 for these complex queries can decrease processing
time dramatically and improve performance substantially.

■ A file or range of files can be specified to cache all associated RABNs. It is also possible to cache
only Associator or Data Storage blocks if required. Files can be prioritized by assigning a class
of service which determines the percentage of the maximum available cache space that a given
file can use and when the file's RABN blocks will be purged from the cache.

■ Operator commands are available to dynamically respond to a changing database environment
by modifying
■ the RABNs to be cached by RABN range, file, or file range;
■ the RABNs to be enabled or disabled by RABN range, file, or file range;
■ when to acquire and release the system resources used by the Adabas Caching Facility.

■ When processing serial Adabas commands (e.g., read logical, read physical, histogram, and
searches using non-descriptors) with the read-ahead caching option, a single EXCP is issued to
read all the consecutive ASSO and/or DATA blocks that reside on a single track of the disk

Concepts and Facilities118

Optional Product Extensions

device. The blocks are kept in cache and are immediately available when the nucleus requests
the next block in a sequence. This feature may enhance performance by reducing the number
of physical read I/Os for a 3380 ASSO by as much as 18:1.

The integrity of the database is preserved because Adabas RABNs are not kept redundantly in
both the Adabas buffer pool and the cache. An Adabas RABN may reside either in the Adabas
buffer pool or in the cache area, but never in both. All database updates and consequently all
buffer flushes occur only from the Adabas buffer pool. Unlike other caching systems, this mech-
anism of non-redundant caching conserves valuable system resources.

The demo or full version of Adabas Online System is required to use the online cache-maintenance
application Cache Services. For more information, see the Adabas Caching Facility documentation.

Adabas Cluster Services

Adabas Cluster Services implements multinucleus, multithread parallel processing and optimizes
Adabas in an IBM Parallel Sysplex (systems complex) environment. The Adabas nuclei in a sysplex
cluster can be distributed to multiple z/OS images that are synchronized by a Sysplex Timer®

(IBM). One or more Adabas nuclei may be run under a z/OS image.

Adabas Cluster Services comprises software components that ensure intercommunicability and
data integrity among the z/OS images and the associated Adabas nuclei in each sysplex nucleus
cluster. An unlimited number of sysplex clusters each comprising up to 32 clustered nuclei can
reside on multiple z/OS images in the sysplex.

In addition to the increased throughput that results from parallel processing, Adabas Cluster
Services increases database availability during planned or unplanned outages; the database can
remain available when a particular operating system image or cluster nucleus requires maintenance
or goes down unexpectedly.

To support a cluster environment that includes more than one operating system image, a limited
Software AG Entire Net-Work library is included as part of Adabas Cluster Services (see also Entire
Net-WorkMultisystemProcessing Tool, elsewhere in this guide). Entire Net-Work is used to send
Adabas and Adabas Cluster Services commands back and forth between z/OS images. It provides
the communication mechanism among the nuclei in the sysplex cluster. No changes have been
made to Entire Net-Work to accommodate Adabas Cluster Services.

The ADACOM module is used to monitor and control the clustered nuclei. For each cluster, the
ADACOM module must be executed in each z/OS image that either has a nucleus that participates
in the cluster or has users who access the cluster database.

The Adabas Cluster Services SVC component SVCCLU is prelinked to the Adabas SVC and is
used to route commands to local and remote nuclei. CSA space is used to maintain information
about local and remote active nuclei, and currently active users.

119Concepts and Facilities

Optional Product Extensions

The sysplex cache structure is used to hold ASSO/DATA blocks that have been updated during
the session. It synchronizes the nuclei, users, and the z/OS images; ensures data integrity, and
handles restart and recovery among the nuclei.

Cluster Services With Other Adabas Products

Adabas Online System communicates with all nuclei within the sysplex cluster.

Adabas Caching Facility supports clustered nuclei and can provide a performance boost to the
cluster.

Advantages of Using Entire Net-Work

In an Adabas Cluster Services environment, Entire Net-Work allows users on various network
nodes to query a logical database across multiple z/OS images. Users access a cluster database as
they would a conventional, single-node database.

A request to Adabas can be made from within an existing application, without change. The request
is processed automatically by the system; the logistics of the process are transparent to the applic-
ation.

Entire Net-Work ensures compatibility by using Adabas-dependent service routines for the oper-
ating system interface as well as for interregion communication. Job control statements for running
Entire Net-Work are much like those needed to run Adabas. For example, the EXEC statement
invokes the ADARUN program for Entire Net-Work just as it does for Adabas, and the ADARUN
parameters for Entire Net-Work are a subset of Adabas parameters.

Because status information is broadcast to all nodes whenever a target or service establishes or
terminates communication with the network, there is no need to maintain or refer to database or
target parameter files at a central location.

Allowing only one Entire Net-Work task on each node enforces control over the network topology
by maintaining all required information in one place. This avoids confusion in network operation
and maintenance. If, however, more than one Entire Net-Work task is required, this can be accom-
plished by installing additional routers.

Each Entire Net-Work node maintains only one request queue and one attached buffer pool for
economical use of buffer storage. All buffers that are not required for a particular command are
eliminated from transmission. In addition, only those portions of the record buffer and ISN Buffer
that have actually been filled are returned to the user on a database reply.

Buffer size support in Entire Net-Work is comparable to that in Adabas, ensuring that all buffer
sizes that are valid for Adabas can also be transmitted to remote nodes.

Concepts and Facilities120

Optional Product Extensions

■ Entire Net-Work XCF Option

Entire Net-Work XCF Option

Actual network data traffic is controlled by the Entire Net-Work XCF Option, an interface to IBM's
cross-system coupling facility (XCF) which allows authorized applications on one system to
communicate with applications on the same system or on other systems. XCF transfers data and
status information between members of a group that reside on one or more z/OS images in a sysplex.

The Entire Net-Work XCF Option, which is installed on each Entire Net-Work node, provides high
performance, transparent communications between z/OS images that reside on different central
processors in the sysplex. Multiple connections to other nodes are supported, and the line driver's
modular design permits easy addition of new access method support to the system.

A member is a specific function (one or more modules/routines) of a multisystem application that
is defined to XCF and assigned to a group by the multisystem application. A member resides on
one z/OS image in the sysplex and can use XCF services to communicate (send and receive data)
with other members of the same group. Each Entire Net-Work node running the XCF line driver
is identified as a different member in a group specifically set up for Entire Net-Work connectivity.

121Concepts and Facilities

Optional Product Extensions

Adabas Delta Save Facility

Adabas Delta Save Facility (DSF) offers significant enhancements to ADASAV utility processing
by backing up only the changed (delta) portions of Adabas databases. It reduces the volume of
save output produced and shortens the duration of save operations; this increases database
availability. By allowing more frequent save operations to be performed, it also reduces database
recovery time.

Adabas Delta Save Facility provides for:

■ more frequent saves without interrupting database availability;
■ enhanced 24-by-7 operation;
■ full offline saving parallel with the active database; and
■ short REGENERATE duration during recovery.

Adabas Delta Save Facility achieves these objectives by saving only those Associator and Data
Storage blocks that have changed (delta portion) since the last save operation. The result of this
operation is called a delta save tape. Because a much smaller volume of output is written to delta
save tapes, contention for secondary (tape, cassette etc.) storage is reduced.

Adabas Delta Save Facility can:

■ maintain a log of changed database blocks (RABNs);
■ create and merge interim delta save tapes while the database remains online, if required;
■ consolidate delta save tapes with the most recent database save tape to create an up-to-date full

save tape;
■ restore the database from the most recent full save tape and all subsequent delta save tapes.

Adabas Delta Save Facility is intended for Adabas sites with one or more large, heavily updated
databases that need to be available most of the time. It is particularly beneficial when the volume
of data changed on a day-to-day basis is considerably smaller than the total database volume.

The demo or full version of Adabas Online System is required to use DSF. For more information,
see the Adabas Delta Save Facility Facility documentation.

Concepts and Facilities122

Optional Product Extensions

Adabas Fastpath

Adabas Fastpath optimizes response time and resources by bringing reference data closer to the
user, reducing overhead, and reducing response times by servicing requests locally (that is, within
the same region or partition).

Fastpath satisfies an Adabas query from within the application process, thus avoiding the operating
system overheads needed to send a query to and from the database. Database activity such as
command queue processing, format pool processing, buffer pool scanning, and decompression
are also avoided.

Fastpath uses a query sampler to efficiently identify:

■ the most commonly issued direct access queries; that is, queries where the client identifies the
data being sought (e.g., ISN, search value).

■ sequential access queries; that is, queries where the client identifies a series of data items related
by sequence or search criteria.

The query sampler reports interactively and at shutdown the exact types of queries that can be
optimized and their relative popularity.

For each type of query, Fastpath uses algorithms to recognize and retain the most popular data
and discard or overwrite the least popular data. Given a particular amount of memory to use that
is available to all clients within an operating system, Fastpath retains the results of popular data
queries so that they can be resolved in the client process when repeated. The retained results
comprise a common knowledge base that reflects the experience gained from past queries. The
knowledge base is dynamic in that it is continually updated; the least popular data held there is
discarded or overwritten.

A Fastpath component attached to the DBMS ensures that any changes to popular data are reflected
in the results returned to the knowledge base. Fastpath data is always consistent with the DBMS
data.

Before a query is passed to the DBMS, the Fastpath optimizer attempts to resolve the query from
the knowledge base. If successful, the query is satisfied faster, without interprocess communication
or DBMS activity. Fastpath optimizes sequences by dynamically applying Adabas prefetch read-
ahead logic to reduce DBMS activity. As many as 256 data items can be retrieved in a single visit
to the DBMS.

Fastpath optimization occurs in the client process, but requires no change to application systems.
Different optimization profiles can be applied automatically at different times of the day. Once
started, the Fastpath buffer can be left active without intervention; Fastpath reacts automatically
to DBMS startup and shutdown.

For more information, refer to the Adabas Fastpath documentation.

123Concepts and Facilities

Optional Product Extensions

Adabas Native SQL

Adabas Native SQL is Software AG's high-level, descriptive data manipulation language (DML)
for accessing Adabas files from applications written in Ada, COBOL, FORTRAN, and PL/I.

Database access is specified in an SQL-like syntax embedded within the application program. The
Adabas Native SQL precompiler then translates the SQL statement into a transparent Adabas
native call.

Software AG's Adabas, Natural, Predict, and the Software AG Editor are prerequisites for Adabas
Native SQL, which makes full use of the Natural user view concept and the Predict data dictionary
system to access all the facilities of Adabas.

Using your Natural field specifications, Adabas Native SQL automatically creates Ada, COBOL,
FORTRAN, or PL/I data declarations with the correct set of fields, field names, field sequence,
record structure, field format and length.

Adabas Native SQL uses information about file and record layouts contained in Predict to generate
the data structures that the generated Ada, COBOL, FORTRAN, or PL/I program needs to access
the database. Then, as Adabas Native SQL processes the program, it records in Predict active cross-
reference (Xref) information including the names of the files and fields that the program accesses.

These features help to eliminate the risk of writing incorrect data declarations in programs that
access the database. In addition, they create comprehensive records in the data dictionary that
show which programs read from the database and which programs update it, providing the DBA
with an effective management tool.

For more information, refer to the Adabas Native SQL documentation.

Adabas Online System

Note: Adabas includes a demo version of the Adabas Online System to illustrate its capab-
ilities and to provide access to selected other services.

Adabas Online System (AOS) provides an online database administration tool for Adabas. The
same functionality is available using a batch-style set of utilities.

AOS is an interactive menu-driven system providing a series of services used for online Adabas
database analysis and control. These services allow a database administrator (DBA) to:

■ display Adabas user statistics, monitor and control access and operation of one or all users;
■ display and modify Adabas fields and files: add fields, allocate and remove file space, change

file and database layout, view and remove field descriptors;

Concepts and Facilities124

Optional Product Extensions

■ restrict file use to utility users only, or lock/unlock file access completely.

Support is also provided for nucleus cluster environments as well as SAF security. In addition,
AOS has the ability to dynamically modify ADARUN parameters.

AOS is written in Natural, Software AG's fourth generation application development facility. AOS
security functions are available only if Software AG's Natural Security is installed and operating.

AOS includes functions that are comparable to the Adabas operator commands and utilities.

Basic Services makes it possible for the DBA to interactively monitor and change aspects of an
Adabas database while an Adabas session is active. Using menu options or direct commands, the
DBA can view resource status and user queues, display and revise space allocation, change file
and database parameters, define a new file online, and stop a selected user or current Adabas
session.

125Concepts and Facilities

Optional Product Extensions

AOS is delivered in a separate data set/library from Adabas. In the initial Adabas delivery, AOS
functions as a demonstration system. For full functionality, the contents of the AOS load library
must be copied to the Adabas load library, or the AOS load library must be concatenated in the
STEPLIB of the Adabas nucleus JCL. In addition, all AOS users (demo or full version) and Predict
users must include the load module AOSASM from the Adabas load library in the link of the
Natural nucleus.

For more information, refer to the Adabas Online System documentation.

Adabas Parallel Services

Adabas Parallel Services implements multinucleus, multithread parallel processing and optimizes
Adabas in a multiple-engine processor environment on a single operating system image.

Up to 31 Adabas nuclei in an Adabas Parallel Services cluster are distributed over the multiple
engines that are synchronized by the operating system.

All nuclei in the cluster access a single physical database simultaneously. A single physical database
is one set of Associator and Data Storage data sets identified by a single database ID number
(DBID).

The nuclei communicate and cooperate with each other to process a user's work. Compression,
decompression, format buffer translation, sorting, retrieving, searching, and updating operations
can all occur in parallel.

In addition to the increased throughput that results from parallel processing, Adabas Parallel
Services increases database availability during planned or unplanned outages: the database can
remain available when a particular cluster nucleus requires maintenance or goes down unexpec-
tedly.

An unlimited number of Adabas Parallel Services clusters can operate in the same operating system
image under the same or different Routers or SVCs; that is, an unlimited number of separate
databases can be processed, each with its own Adabas Parallel Services cluster of up to 31 nuclei.

Applications see only one database target; no interface changes are required. Applications still
communicate with their intended databases and communicate with an Adabas Parallel Services
cluster of nuclei without modification.

For more information, refer to the Adabas Parallel Services documentation.

Concepts and Facilities126

Optional Product Extensions

Adabas Review

Adabas Review (formerly Review Database) provides a set of monitoring, accounting, and reporting
tools that enable you to monitor the performance of the Adabas environment and the applications
executing within them.

Information retrieved about Adabas usage helps you tune application programs to achieve max-
imum performance with minimal resources.

In addition to the local mode with Adabas Review running in the Adabas address space, Adabas
Review offers the hub mode, a client/server approach to the collection of performance data for
Adabas:

■ the Adabas Review interface (the client) resides on each Adabas nucleus.
■ the Adabas Review hub (the server) resides in its own address space, partition, or region.

Cluster Services statistics gathering is supported. Both file-level (CF) caching statistics and Cluster
Services locks can be monitored over a period of time and at user-defined intervals. Statistics are
written to the Review History file and can be retrieved or viewed using the power of Review re-
porting facilities.

For additional, information, refer to the Adabas Review documentation.

■ The Hub Server
■ The Interface Client
■ Interface Calls
■ Example Client/Server Environment

The Hub Server

The Adabas Review hub is the data collector and the reporting interface for the user. The hub
handles the data consolidation and reporting functions for monitoring an Adabas database, includ-
ing usage information related to applications, commands, minimum command response time
(CMDRESP), I/O activity, and buffer efficiency.

An interactive reporting facility allows you to pinpoint problems quickly, providing detailed and
summary data about Adabas activities. Specific information about each database is also available.

Proven Adabas and Review components are combined in the centralized collection server (hub)
with the following advantages:

■ A single hub can collect information from multiple Adabas nuclei and from Adabas nucleus
clusters managed by either Adabas Parallel Services or Adabas Cluster Services. This means
that the number of Adabas Review nuclei required to support an enterprise-wide distribution
of Adabas nuclei is minimized, resource requirements are minimized, and performance increases.

127Concepts and Facilities

Optional Product Extensions

■ Removing the Review subtask from the address space, partition, or region of each Adabas
nucleus improves the performance of the Adabas main task. At the same time, the isolation
minimizes the impact of future Adabas releases on the functioning of Adabas Review.

The hub comprises

■ ADAREV, a logic module that manages and supervises the incoming Review data calls and re-
quests;

■ REVHUB, a module to establish and maintain the environment for Adabas Review; and
■ the Review nucleus and subsystems including RAOSAUTO, the autostarted report parameter

generation routine, and RAOSHIST, the historical data population routine.

The Interface Client

The Adabas Review interface constructs and then transmits the Review data from the Adabas
nucleus to the Adabas Review hub. An Adabas Review interface is integrated with each Adabas
nucleus that is monitored.

The interface utilizes the existing Adabas interregion communication process; that is, ADALNK,
ADASVC or BS2000 router, and ADAMPM. This communication process is consistent across
supported platforms.

When all supported platforms and systems are networked correctly, Adabas Review supports a
multiple platform, multiple operating system, Adabas database environment.

The interface comprises the following:

■ ADALOG, the Adabas command logging module;
■ RAOSDAEX, the Adabas Review command log extension module that is responsible for acquiring

additional information not present in the Adabas command log record; and
■ ADARVU, which handles the environment conditions for RAOSDAEX and the Adabas API

requirements for transmitting the Review data to the Adabas Review hub.

Interface Calls

To maximize performance, the ADARVU module issues an optimistic call from an Adabas nucleus
to the Adabas Review hub without waiting for a completion or post from the hub; ADARVU as-
sumes that the Review data was successfully passed to the hub.

However, ADARVU does perform an initialization step to ensure that the hub is active prior to
any command processing by the Adabas nucleus. If the hub is not active, ADARVU informs you
using WTOs or a user exit. If a user exit is used, you are given the option to wait for the hub to be
activated, or continue initialization and call the hub only when it is active.

Concepts and Facilities128

Optional Product Extensions

On the hub side of the call, the elimination of the cross-memory post call enhances performance
by reducing the overhead of active communication with the Adabas clients. This allows the hub
to remain a passive data collector.

Example Client/Server Environment

The following figure shows the major components of the Adabas Review interface (Adabas nucleus
address space) and the Adabas Review hub (Adabas Review hub address space) in a client/server
architecture.

129Concepts and Facilities

Optional Product Extensions

Adabas SQL Gateway

The Adabas SQL Gateway is a subset of CONNX, a unique client/server connectivity programming
tool set that makes it possible to use computers in real-time interactive operation with many
databases. The CONNX data access engine is unique in that it not only provides access to the
databases, but it presents them as one enterprise-spanning relational data source. CONNX also
offers ODBC SQL Level 2 compatibility, additional security, metadata management, enhanced
SQL capability, views, heterogeneous joins, bidirectional data conversion, and enables read/write
access to the data. Such technology can be used in data warehousing, data integration, application
integration, e-commerce, data migration, and for reporting purposes. The technology also has a
place within companies seeking to make use of disparate data sources, that need to Web-enable
their data, or that have older applications storing mission-critical information.

CONNX includes the following components:

■ CONNX Data Dictionary (CDD)
■ CONNX ODBC Driver

CONNX OLE RPC Server (Not implemented for CONNX and VSAM)
■ CONNX Host Data Server (RMS, VSAM [Implemented as CICS/C++ TCP/IP Listener/Server],

C-ISAM, Rdb, and DBMS)
■ CONNX JDBC Driver (Thin Client)
■ CONNX JDBC Server
■ CONNX JDBC Router

In addition to other databases, CONNX supports Adabas on IBM z/OS, Windows 2000/XP/2003,
AIX, Solaris, Linux, HP-UX, and other platforms.

For complete information about the Adabas SQL Gateway, read the Adabas SQL Gateway docu-
mentation.

Adabas SQL Server

Adabas SQL Server is Software AG's implementation of the ANSI/ISO Standard for the standard
database query language SQL. It provides an SQL interface to Adabas and an interactive facility
to execute SQL statements dynamically and retrieve information from the catalog.

The server supports embedded static and dynamic SQL, as well as interactive SQL and SQL2 ex-
tensions. It automatically normalizes complex Adabas data structures into a series of two-dimen-
sional data views that can then be processed with standard SQL.

Concepts and Facilities130

Optional Product Extensions

Adabas SQL Server accesses and manipulates Adabas data by submitting statements

■ embedded in a Natural application program.
■ embedded in the third generation host languages C, COBOL, or PL/I.
■ using a direct, interactive interface.

Currently, Adabas SQL Server provides precompilers for SQL statements embedded in C, COBOL,
and PL/I. The precompiler scans the program source and replaces the SQL statements with host
language statements. Due to the modular design of Adabas SQL Server, the functionality is
identical regardless of the host language chosen.

Because certain extensions not provided for by the standard are available to take full advantage
of Adabas functions, one of three SQL modes must be selected when compiling an application
program: ANSI compatibility mode, DB2 compatibility mode, or Adabas SQL Server mode.

Both local and remote clients can communicate with the server using Entire Net-Work as the
protocol for transporting the client/server requests. With the Adabas ODBC Client, an ODBC
driver allows access to Adabas SQL Server using ODBC-compliant desktop tools. Entire Access,
also ODBC-compliant, provides a common SQL-eligible application programming interface (API)
for both local and remote database access representing a client-server solution for Adabas SQL
Server.

Software AG is committed to making Adabas SQL Server available in most hardware and operating
system environments where Adabas itself is available. The core functionality of the Adabas SQL
Server will be identical across platforms.

For more information, refer to the Adabas SQL Server documentation.

131Concepts and Facilities

Optional Product Extensions

Adabas Statistics Facility

A database administrator (DBA) regularly checks the status of the database (such as disk and
memory utilization) and plans for the long term, such as ensuring that the future disk space re-
quirements can be met, based on current trends.

For Adabas, the DBA can check the status of individual databases and files using the ADAREP
(Database Report) utility, the nucleus end session protocol, and ad hoc inquiries made using the
Adabas Online System. This is often a time consuming process.

The Adabas Statistics Facility (ASF) provides an automated environment comprising:

■ A store program that collects database status information during an active nucleus session. The
store program is normally scheduled to run at regular intervals (for example once per day) over
a period of many weeks or months to collect data that can be statistically evaluated. The store
program can also be started by the DBA on an ad hoc basis, using commands in the ASF online
menu system.

■ A set of evaluation programs to interpret the statistics gathered by the store program and publish
summary evaluation reports to either the screen or a hardcopy printer. Reports may also be
downloaded to a PC using Entire Connection.

Database information can be collected at the start, at the end, and during a nucleus session. The
start and end nucleus data, when accumulated over periods of weeks or months, gives an indication
of long term database growth and permits projections of future database requirements. The nuc-
leus performance data, such as main memory and pool usage, permits the DBA to analyze and
tune the Adabas nucleus parameters.

For more information, refer to the Adabas Statistics Facility documentation.

Data Collection Program

ASF uses a data collection program called the store program to collect database status information
at the start of, at the end of, or during an active nucleus session. This program is normally scheduled
to run as a batch program at regular intervals (perhaps once per day) over a period of weeks or
months to collect data that can be statistically evaluated. The store program can also be started by
the DBA on an ad hoc basis, using commands in the ASF online menu system.

The DBA defines store profiles, each specifying a different set of databases and files to be monitored,
that are specified as input to the store program when it runs. Several store programs, each with a
different store profile, can run concurrently.

Approximately 170 criteria called data fields are used for monitoring Adabas databases and files.
The data fields represent aspects of an Adabas database such as disk and buffer usage, thread

Concepts and Facilities132

Optional Product Extensions

usage, database load, ADARUN parameters, pool usage, and frequency of use of particular Adabas
commands. All data fields are stored for each database and file specified in the store profile.

Start and end nucleus data, when accumulated over periods of weeks or months, give an indication
of the long term database growth, and permit projections of future database requirements. Nucleus
performance data, such as main memory usage and pool usage, provide information for tuning
Adabas nucleus parameters.

Data Evaluation Programs

ASF uses a set of programs called evaluation programs to evaluate the statistics gathered by the
Store Program and produce summary reports called evaluation reports that can be viewed online,
printed, or downloaded to a PC.

For each evaluation report, the DBA uses the online menu system to define an evaluation profile
specifying

■ the databases and files for which data is to be evaluated (data for these must have been collected
by a store program);

■ for each database and file specified, one or more data fields to be analyzed in the report;
■ the units of measurement of the data fields specified;
■ upper and lower values representing critical levels for the data fields specified; and
■ one of ten report types (01-10) which determines the format of the report heading.

The main types of reports are

■ General evaluation: an analysis of the past and present database status. The statistical tables
generated provide an overview of the status of various databases and files. The maximum and
minimum values in rows of the output tables can be displayed, as well as statistical quantities
such as the sum and average of the values.

■ Trend evaluation: tables of projected statistics, in time steps of days, weeks, or months, until a
specified end date.

■ Critical Report: a report of databases and files for which the specified data fields have reached
or exceeded the specified critical limits.

■ Critical Trend Report: a report of databases and files for which the specified data fields will
reach or exceed their critical limits within a time frame, based on an extrapolation of current
trends.

133Concepts and Facilities

Optional Product Extensions

Adabas Text Retrieval

Adabas Text Retrieval is an extension of Adabas that allows you to develop applications that access
both formatted and unformatted (that is, text) data simultaneously. Adabas Text Retrieval manages
the index information and not the content of the data, making it possible to store the document
contents at any location: Adabas, sequential files, CD-ROM, PC, etc. The call interface for Adabas
Text Retrieval can be embedded in Natural, Software AG's fourth generation application develop-
ment environment, or in any third generation language such as COBOL or PL/I.

Documents comprise chapters designated as either free text to be managed by Adabas Text Re-
trieval or formatted fields to be managed by Adabas itself. Free-text chapters comprise paragraphs
and sentences, which can be individually searched.

Concepts and Facilities134

Optional Product Extensions

Text substrings of an entered text are identified or tokenized by identifying a character defined
in the Adabas Text Retrieval character table, by using algorithms to identify characters based on
their contexts, or by using translation tables to sort or limit previously identified characters.

Document index entries are created when unformatted data is inverted. The full text can be inverted,
or the inversion can be limited by a controlled thesaurus or by ignoring words in a stopword list.

Searches can be based on words, parts of words (right/left/middle truncations are possible),
phonetics, synonyms, integrated thesaurus relations (broader/narrower terms), proximity operators
(adjacent, near, in sentence, in paragraph), relational operators, Boolean operators, references to
previous queries (refinement), or sorts (ascending or descending). Searches can be independent
of structure, meaning that they may encompass any combination of free text and formatted fields.
Search returns can be highlighted.

Natural users can expand the functions of Adabas Text Retrieval using Natural Document Man-
agement, which provides complete document management services.

Adabas Transaction Manager

Adabas Transaction Manager introduces distributed transaction support to Adabas. Transactions
may be distributed over multiple Adabas databases in one or more operating systems (connected
by Entire Net-Work). Transactions may also be distributed over non-Adabas DBMSs such as DB2,
IMS, and so on. Where transactions are distributed over a non-Adabas DBMS, Adabas Transaction
Manager must be configured to inter-operate with other transaction coordinators such as IBM's
CICS Syncpoint Manager and/or IBM's Recoverable Resource Management Services. At any time,
Adabas Transaction Manager can account for in-flight transactions, suspect transactions, particip-
ating databases, and more.

Adabas Transaction Manager (ATM) is an Adabas add-on product that:

■ coordinates changes to Adabas databases participating in a global transaction;
■ (function not available in first release) processes two-phase commit directions from transaction

managers that take a higher-level, controlling role in coordinating global transactions such as
IBM's RRMS or the CICS Syncpoint Manager allowing transactions to encompass both Adabas
and non-Adabas databases operating within a single operating system image; and

■ plays a key role in coordinating global transactions that change Adabas databases on more than
one system image. In this case, the communication mechanism between the components across
the system images in Entire Net-Work.

Each Adabas Transaction Manager instance (one per operating system image) executes in its own
address space as a special kind of Adabas nucleus. Each Adabas Transaction Manager is aware
of and partners with the other Adabas Transaction Managers in the distributed system and the
databases they coordinate. At any time, each Adabas Transaction Manager can account for the
status of the global transactions it is coordinating.

135Concepts and Facilities

Optional Product Extensions

Adabas Transaction Manager addresses two basic needs of the enterprise object revolution:

■ the need to deliver industrial strength enterprise objects for widespread commercial use in
mainstream, critical business systems; and

■ the need to spread the masses of data that Adabas customers manage more evenly across the
computer(s) and organization.

Adabas Transaction Manager includes an online administration system based on Natural and
available through Adabas Online System.

For more information, refer to the Adabas Transaction Manager documentation.

Adabas Vista

Adabas Vista allows you to partition data into separately managed files without reconstructing
your business applications, which continue to refer to one (simple) Adabas file entity even though
the physical data model is partitioned and possibly distributed across a wide-ranging computer
complex.

Data can be partitioned across multiple Adabas database services. When a large file is partitioned
across two or more databases, the processing load is actually being spread across the computer
service. With more than one CPU engine in your computer, greater use is made of the parallel
availability of the CPU engines.

Adabas Vista partitions are truly independent Adabas files:

■ partitions need not be identical. Provided all the partitions support all of the views to be used
by Adabas Vista, the files can operate with different physical layouts (FDTs). Of course, the
Adabas source fields that are common to all partitions must be defined identically in each FDT.

■ partitions can be maintained individually. You can size, order, and restore according to the
needs of the individual partition. You do not have to make all partitions operate from the same
physical constraints. You may choose some to be large, others medium, etc. You can also tune
the ASSO space according to the partition.

You can select the applications for which Adabas Vista provides a single file image for all the
partitions. You can also set an application for mixed access mode so that a program can access a
partition directly by its real file number, even while using the single file image.

A file is usually partitioned based upon the overall dominance of a key field such as location or
date: the partition criteria. However, it is possible to partition a file without a partition criteria.

Applications generally access the file with search data based to some extent on the key field.
Adabas Vista minimizes processing overhead by detecting access explicitly or implicitly based

Concepts and Facilities136

Optional Product Extensions

upon the partition criteria, interrogating the search argument, and directing the access to the
specific partition(s) needed. This is referred to as focused access.

The partition outage facility of Adabas Vista allows you to control what happens when a partition
becomes unavailable. You can set sensitivity to partition outage unilaterally and allow business
application to override it on a user basis. For example, if your partition criteria is location and only
data in a particular location is critical to users in that location, you can set partition outage so that
users are interrupted by outages in their own location but unaffected by outages in other locations.
This can greatly increase the overall availability of your data, which can significantly enhance the
effectiveness of your business.

The restricted partition facility of Adabas Vista allows you to hide partitions even though the data
is available. You can use this facility to limit data to particular users based on role, location, or
other business definition for security or performance reasons.

The consolidation facility of Adabas Vista allows you to impose a single file image upon multiple,
previously unrelated files. The files may well be different but they support the same consolidated
view.

Adabas Vista can be used in mainframe environments (z/OS, z/VSE, or BS2000) with all supported
versions of Adabas.

Adabas Vista supports Adabas calls from 3GL programs as well as from Natural. An online services
option is available in a Natural environment.

Adabas Vista comprises a stub (client) part and a server part. By design, most processing occurs
in the client process rather than the server to

■ minimize CPU usage;
■ minimize the impact of overhead associated with partitioning on the database service; and
■ spread the load among as many CPU engines in parallel or even computers as possible.

For more information, refer to the Adabas Vista documentation.

Data Archiving for Adabas

Data Archiving for Adabas provides the tooling to implement a well-managed, automated, ac-
countable, secure place to store, search and recall data archived from Adabas.

Most, if not all enterprises experience database content growth at an increasing rate. Studies show
as much as 85% of database content is inactive. This pattern emerges across all types of industry.
There are many reasons for the growth in data content, too many to cover here. The fact is that
growth is a continuing phenomenon which pressures primary production services. At the same
time, there are increasing legislative reasons why information must be kept for longer, creating

137Concepts and Facilities

Optional Product Extensions

even more pressure. Data Archiving for Adabas relieves the pressure by making it easy to archive
and recall data on a large scale on a long-term basis.

Using Data Archiving for Adabas you can archive data from your Adabas databases (both main-
frame and open system) to an Data Archiving for Adabas vault.. A vault is a flat-file store which
contains all the accumulated archived data taken since the inception of the archive. Any number
of vaults may be defined. For complete information, read your Data Archiving for Adabas docu-
mentation.

Event Replicator for Adabas

The Event Replicator for Adabas is composed of a family of Software AG products. The basic
product can be used to monitor data modifications in an Adabas database and replicate the mod-
ified data to another application. For more information, read the following topics:

■ Event Replication Overview
■ Event Replicator Target Adapter

For complete information about the Event Replicator for Adabas, read the Event Replicator for
Adabas documentation.

Event Replication Overview

Software AG's Event Replicator for Adabas allows specific Adabas files to be monitored for data
modifications. Whenever any record modification (delete, store, or update) occurs in one of the
monitored files, the Event Replicator extracts each modified record and delivers it to one or more
target applications through a messaging system (such as webMethods EntireX or IBM MQSeries).
The set of replicated files are defined in one or more subscriptions.

Note: The term MQSeries is used in this documentation when referring to the product now
known as WebSphere MQ.

The Event Replicator is an essential tool for organizations that need Adabas data modifications
delivered to a target application while minimally impacting the normal processing of Adabas. The
principle features of the Event Replicator include:

■ Near real-time replication
■ Asynchronous replication
■ Guaranteed consistency and sequence of the delivered replicated data
■ Replication of committed updates only

With the Event Replicator, whole Adabas files or a specific set of records can be replicated to the
target location, as defined in one or more subscriptions. Data replication is asynchronous, which

Concepts and Facilities138

Optional Product Extensions

allows the Adabas database to operate normally while replication takes place. Only committed
Adabas modifications are replicated for the predefined set of replicated files, at the transaction
level.

For complete information about the Event Replicator for Adabas, read the Event Replicator for
Adabas documentation.

Event Replicator Target Adapter

The Event Replicator Target Adapter can be used to transform and apply replicated data to a rela-
tional database, such as Oracle, DB2, Microsoft SQL Server, MySQL, or Sybase.

The Event Replicator Target Adapter requires the use of:

■ An Event Replicator for Adabas subscription for which a global format buffer field table has
been generated. If no field table has been generated, the Event Replicator Target Adapter will
not work.

■ At least one Event Replicator for Adabas destination definition with a class type of "SAGTARG".
This destination must be used by the subscription.

When a subscription definition and one or more of its associated destination definitions have been
defined in this manner and if they are activated, the Event Replicator for Adabas automatically
creates a schema that maps the replicated data. The Event Replicator Target Adapter uses the
schema to transform and apply the replicated data to your relational database. The Event Replic-
ator Target Adapter will dynamically create tables if they don't exist and populate the tables with
Adabas data using insert, update, and delete processing as these processes occur in near real-time
in the replicated Adabas file.

Event Replicator for Adabas and Event Replicator Target Adapter high-level processing are depicted
in the following diagram.

139Concepts and Facilities

Optional Product Extensions

Once appropriate Event Replicator subscription and destination definitions are activated and the
Event Replicator Target Adapter is started, normal processing for the Event Replicator Target
Adapter will transform and apply replicated data to a relational database as the data is processed
by the subscription. In addition, you can manually submit requests to the Event Replicator Target
Adapter that:

■ initiate an initial-state request to populate the relational database tables
■ clear data in the relational database tables
■ delete relational database tables and their data.

The Event Replicator Target Adapter includes the following component products, in addition to
its own code that allows you to transform and apply replicated data to a relational database.

Concepts and Facilities140

Optional Product Extensions

■ The Administration tool.

You can use the Administration tool to configure your Event Replicator Target Adapter install-
ation.

■ The Data Mapping Tool.

You can use the Data Mapping Tool to generate a global format buffer (GFB) and field table
(GFFT) for use with the Event Replicator and the Event Replicator Target Adapter.

■ The Adabas Administration Services.

Adabas Administration Services (AAS) provides remote administration and system service
support for Software AG products. Specifically, Adabas Administration Services allows you to
perform the following remote administration tasks for Software AG products with which it is
supported:
■ You can start and stop the product remotely.
■ You can obtain product log files remotely.
■ You can read and write product files remotely.
■ You can read directories remotely.

In addition, Adabas Administration Services allows you to operate the Software AG product
as a system service.

Ordinarily, Adabas Administration Services starts up automatically after it is installed or
whenever the machine on which it is installed is started. In UNIX environments, however, you
may occasionally need to start it manually.

For complete information on the use and maintenance of Adabas Administration Services, read
the Adabas Administration Services Installation and Administration Guide.

For complete information about the Event Replicator Target Adapter, read the Event Replicator for
Adabas documentation.

Entire Net-Work Multisystem Processing Tool

Entire Net-Work, Software AG's multisystem processing tool, provides the benefits of distributed
processing by allowing you to communicate with Adabas and other service tasks on a network-
wide scope. This flexibility allows you to

■ run Adabas database applications on networked systems without regard to the database location;
■ operate a distributed Adabas database with components located on various network nodes;
■ perform specific types of tasks on the network nodes most suitable for performing those services

without limiting access to those services from other network systems;

141Concepts and Facilities

Optional Product Extensions

■ access Entire System Server (formerly Natural Process) to perform operating system-oriented
functions on remote systems;

■ access Entire Broker in order to implement your client/server applications.

Mainframe Entire Net-Work supports BS2000, z/OS, z/VSE, and Fujitsu Technology Solutions'
MSP. It provides transparent connectivity between client and server programs running on different
physical or virtual machines, with potentially different operating systems and hardware architec-
tures.

Entire Net-Work is additionally available on the midrange platforms such as UNIX platforms, as
well as workstation platforms such as Windows and Linux. See Software AG's Empower web site
for more information about platform support.

At its lowest level, Entire Net-Work accepts messages destined for targets or servers on remote
systems, and delivers them to the appropriate destination. Replies to these requests are then re-
turned to the originating client application, without any change to the application.

The method of operation and the location and operating characteristics of the servers are fully
transparent to the user and the client applications. The servers and applications can be located on
any node within the system where Entire Net-Work is installed and communicating. The user's
view of the network targets and servers is the same as if they were located on the user's local node.
Note that due to possible teleprocessing delays, timing of some transactions may vary.

Entire Net-Work insulates applications from platform-specific syntax requirements and shields
the user from underlying network properties. It also provides dynamic reconfiguration and
rerouting (in the event of a down line) to effect network path optimization and generate network-
level statistics.

Entire Net-Work is installed on each participating host or workstation system requiring client/server
capability. The configuration for a given system comprises an Entire Net-Work control module,
control module service routines, and any required line driver. Each system with Entire Net-Work
installed becomes a node in the network. Each node's adjacent links to other nodes are defined by
name and driver type.

Each Entire Net-Work node maintains a request queue for incoming requests. This queue is similar
to the Command Queue used by Adabas; it allows the node to receive Adabas calls from locally
executing user/client programs, which Entire Net-Work then dequeues and transports to the nodes
where the requested services reside.

Each local Entire Net-Work node also keeps track of all active network services, and therefore can
determine whether the user's request can be satisfied or must be rejected. If the request can be
serviced, the message is transmitted; otherwise, Entire Net-Work advises the calling user immedi-
ately, just as the Adabas router would do for a local database request.

Actual network data traffic is controlled by Entire Net-Work line drivers, which are interfaces to
the supported communications access methods, such as VTAM, FCTC, IUCV, DCAM, XCF, and
TCP/IP, or directly to hardware devices, such as channel-to-channel adapters (CTCAs). Each Entire

Concepts and Facilities142

Optional Product Extensions

https://empower.softwareag.com/default.asp

Net-Work node contains only those line drivers required by the access methods active at that node.
In addition, each line driver supports multiple connections to other nodes; this modular line driver
design permits easy addition of new access method support to the system.

The Entire Net-Work XTI interface allows users to write their own client/server applications, typ-
ically in C, which are independent of the Adabas structures. XTI is an internationally accepted
vehicle for creating truly portable applications. In theory, an application created according to XTI
specifications can easily be ported to any other platform that supports the XTI implementation.

The Entire Net-Work XTI implementation supports communication between programs running
on the same machine and programs running on different machines. Entire Net-Work is viewed
as the transport provider from the application programmer's point of view.

For more information, refer to the Entire Net-Work documentation.

Entire Transaction Propagator

Entire Transaction Propagator (ETP) allows Adabas users to have duplicate, or replicate, database
files in a single database or distributed network. The copies can be distributed throughout a network
to provide quick, economical access at user locations.

The concept of a distributed database provides operating efficiency and flexibility while at the
same time offering almost unlimited data capacity. Such a networked database structure means

143Concepts and Facilities

Optional Product Extensions

that the portion of the database data needed by a particular department can be located on local
systems and still be available corporate-wide as part of the common database resource.

One particularly appealing feature of distributed databases is the possibility of having duplicate
copies of data at those locations where the data is needed most. This concept allows duplicate
copies of a data file to be located throughout the database network, yet the copies are viewed lo-
gically by users as a single file.

Normally, a replicated file requires an intricate control process to ensure data integrity in all file
copies after each change. For distributed systems with a high ratio of read transactions compared
to write transactions, however, such critical control may be unnecessary. ETP provides an altern-
ative replicated file concept using a less critical control process, but with virtually all the other
advantages of replicated files. Using a master/replicate system of control, ETP resynchronizes all
replicate copies with a master copy at user-specified intervals.

Natural Application Development Environment

High-level access to Adabas is provided by Natural, Software AG's advanced fourth generation
application development environment and the cornerstone of Software AG's application engineering
product family which includes analysis/design, code-generation, and repository facilities.

The access can either be directly from Natural to Adabas or using an Entire Access call via Adabas
SQL Server.

Whereas the FDT defines the physical records in an Adabas file, Natural programs define and use
logical views of the physical file to access the file. There can be two levels of views: data definition
modules and user views.

Data definition modules (DDMs) are Natural modules that look much like the Adabas FDT. They
consist of a set of fields and their attributes (type, format, length, etc.), and may contain additional
specifications for reporting formats, edit masks, and so on.

A DDM can include all the fields defined in the FDT or a subset of them. There must be at least
one DDM for each Adabas file. For example, the Adabas file Employees could have a DDM called
Employees. The Natural statement READ EMPLOYEES BY NAME actually refers to the DDM
rather than the physical file; the DDM links the Natural statement to the Adabas file.

You can define multiple DDMs for an Adabas file. Multiple DDMs are a way of restricting access
to fields in a file. For example, a DDM for a program used by managers could include fields that
contain restricted information; these fields would not be included in a DDM for a general-use
program. In a workstation group, a database administrator may define a standard set of DDMs
for the group.

A new Adabas FDT can be created from an existing Natural DDM. Conversely, Adabas can gen-
erate or overwrite a DDM automatically when an FDT is created or changed.

Concepts and Facilities144

Optional Product Extensions

Note: When you delete a field from an Adabas file, you must also eliminate it from Natural
programs that reference it.

A Natural user view often contains a subset of the fields in a DDM. User views can be defined in
the Data Area Editor or within a program or routine. When a user view references a DDM, the
format and length do not need to be defined, since they are already defined in the DDM. Note
that in a DDM or user view, you can define the sequence of fields differently from the FDT sequence.

Adabas access is field-oriented: Natural programs access and retrieve only the fields they need.
Natural statements invoke Adabas search and retrieval operations automatically.

Adabas supports a variety of sequential and random access methods. Different Natural statements
use different Adabas access paths and components; the most efficient method depends on the
kind of information you want and the number of records you need to retrieve.

For more information, refer to the Natural documentation.

Predict Data Dictionary System

Predict, the Adabas data dictionary system, is used to establish and maintain an online data dic-
tionary. Because it is stored in a standard Adabas file, it can be accessed directly from Natural.

A data dictionary contains information about the definition, structure, and use of data. It does not
store the actual data itself, but rather data about data or metadata. Containing all of the definitions
of the data, the dictionary becomes the information repository for the data's attributes, character-
istics, sources, use, and interrelationships with other data. The dictionary collects the information
needed to make the data more useful.

A data dictionary enables the DBA to better manage and control the organization's data resources.
Advanced users of data dictionaries find them to be valuable tools in project management and
systems design.

Database information may be entered into the dictionary in online or batch mode. The description
of the data in the Adabas dictionary includes information about files, the fields defined for each
file, and the relationship between files. The description of use includes information about the
owners and users of the data in addition to the systems, programs, modules and reports that use
the data. Dictionary entries are provided for information about

■ network structures
■ Adabas databases
■ files, fields, and relationships
■ owners and users
■ systems, programs, modules and reports

145Concepts and Facilities

Optional Product Extensions

■ field verification (processing rules)

Standard data dictionary reports may be used to

■ display the entire contents of the data dictionary
■ print field, file, and relationship information
■ print field information by file

For more information, refer to the Predict documentation.

Concepts and Facilities146

Optional Product Extensions

Index

A
accept

security-by-value criterion
overview, 106

Access methods
random, 65

access methods
description, 63
sequential, 63

ACF2
Adabas interface to, 107

ADAACK utility
check address converter, 92

Adabas
add-on products, 113
bridges to VSAM, DL/I, IMS/DB, TOTAL, SESAM, 114
definition of, 6
implementing SAF security with, 108

Adabas Bridge for DL/I
overview, 116

Adabas Bridge for VSAM
overview, 114
use of transparency table, 114

Adabas Caching Facility
online services, 119
overview, 118
read-ahead caching, 118

Adabas Cluster Services
overview, 119

Adabas Delta Save Facility
online services, 122
overview, 122

Adabas Direct Access Method (ADAM), 65
bypassing the inverted lists, 65
random access retrieval, 65

Adabas Online System
overview, 124
requirement for delta save, 122
security, 111
use with Adabas Cluster Services, 120

Adabas Parallel Services
multiple thread processing, 126
overview, 126
parallel processing, 126

Adabas Review
hub (server) component, 127
interface (client) component, 128
interface calls, 128

overview, 127
sample environment, 129

Adabas SAF Security
router, 109

Adabas SQL Gateway, 130
Adabas SQL Server, 130
Adabas Statistics Facility

data fields, 132
online menu system, 132
report type

critical, 133
critical trend, 133
general evaluation, 133
trend evaluation, 133

store profiles, 132
Adabas Transaction Manager, 135
Adabas Vista, 136
ADACDC utility, 84
ADACHK utility

description, 92
ADACMP utility

compress/decompress data, 78
ADACNV utility, 85
ADADBS utility

database functions, 86
file functions, 86
other functions, 88

ADADCK utility
block length check within range, 93
check data storage, 93
correct value in DSST, 93
duplicate ISNs in block, 93
max compressed record length, 93
record length sum, 93

ADADEF utility
define a database, 89

ADADRU utility
database resource usage, 94

ADAFRM utility
format Adabas direct access (DASD) data sets, 89

ADAICK utility
check index and address converter, 94

ADAINV utility
create a descriptor or couple two files, 90

Adalink
definition of, 11

ADALOD utility
load a file into Adabas, 80

ADAM (see Adabas Direct Access Method (ADAM))
bypassing the inverted lists, 21

147

estimation using ADAMER utility, 94
ADAMER utility

ADAM estimation, 94
ADAORD utility

reorder databases and files, 90
ADAPLP utility

print data protection records, 81
ADAPRI utility

print selected Adabas blocks, 95
ADARAI utility

database recovery aid, 82
ADAREP utility

produce database status report, 95
produce save tape status report, 95

ADARES utility
database recovery and restart, 82

adarsp052, 48
ADARUN parameters

affected by spanned records, 56
ADASAV utility

save/restore database/files, 83
ADASEL utility

select and write data protection log, 84
ADAULD utility

unload an Adabas file, 80
ADAUSER

link with Adabas API, 11
ADAVAL utility

validate the database, 96
ADAWRK utility

Work part 1 recovery reports, 96
ADAZAP utility

modifying physical database blocks, 91
ADAZIN utility

print database information, 97
address

areas
by operating system, 12

address converter
check using ADAACK utility, 92
check using ADAICK utility, 94
function of, 23
secondary address converter, 23

alphanumeric fields
no conversion option (NV), 43

API
link applications to Adabas, 11

Associator
component of Adabas, 17, 20
function of, 10
read commands (L9, LF), 61
reorder

using utility, 91
audit routines

ADAACK utility, 92
ADACHK utility, 92
ADADCK utility, 93
ADAICK utility, 94
ADAPRI utility, 95
ADAREP utility, 95
description, 92

autobackout, 73
autorestart, 73

buffer flush check, 73

B
Backout

remove changes between checkpoints, 82
backout, 72
backup routines

ADAPLP utility, 81
ADASEL, 84
description, 81

binary occurrence counter (BOC)
definition of, 46

blocks
reorder

using utility, 91
BOC (see binary occurrence counter (BOC))
bridges

to VSAM, DL/I, IMS/DB, TOTAL, SESAM, 114
buffer flush

database status after, 73
from I/O buffer, 9
session interruption during, 73

buffer manager
augmented by Caching Facility, 118

C
CA-ACF2

use with Adabas SAF Security, 107
CA-Top Secret

using with Adabas SAF Security, 107
cache

Work parts 2 and 3, 118
capturing changed data, 84
Checkpoint

system file, 26
Checkpoints

reapply changes between (ADARES REGENERATE), 83
checkpoints

command to write, 62
CICS

operation with Adabas, 7
ciphering

of critical data, 105
collation descriptor, 50
Com-plete

operation with Adabas, 7
command ID

release
using command, 62

Command log, 25
copy from disk to sequential data set (CLCOPY), 82
merge across a cluster, 82

commands
database modification, 61
database query (Sx, 60
logical transaction control (ET/BT), 61
operator, 14
read (Lx), 61
special housekeeping, 62
types of direct calls, 60

Compression
forward index, 22

control routines
ADAVAL utility, 96

Concepts and Facilities148

Index

description, 92
converting databases between Adabas versions, 85
coupling two files, 90
creating a descriptor, 90
CTCA

driver with Entire Net-Work, 7

D
Data Archiving for Adabas

overview, 137
Data compression

options
fixed-storage (FI), 42
null-value suppression, 42

data compression
default, 19
options, 19

data definition
CR (insert-only system field) field option, 39
DE (descriptor) field option, 38
DT (date-time edit mask) field option, 40
FI (fixed format) field option, 42
field options

overview, 37
LA (long alphanumeric) field option, 43
LB (large object) field option, 43
MU (multiple-value) field option, 46
NB (no blank compression) field option, 48
NC (null not counted) field option, 48
NN (not null) field option, 48
NU (null value suppression) field option, 42
NV (no conversion) field option, 43
PE (periodic group) field option, 46
SY (system field) field option, 39
TZ (time zone) field option, 41
UQ (unique descriptor) field option, 38
XI (index exclusion) field option, 38

data dictionary
function and use, 145

data protection area
command to write information to, 62

data redundancy
logical, 29
physical, 29

Data Storage
check using ADADCK utility, 93
component of Adabas, 17
function of, 10
reorder

using utility, 91
repair blocks, 83

data Storage
read commands (L1-L6), 61

database
accessing from programs, 60
definition of, 16
definition of single physical, 126
maintaining integrity of, 68
modification commands (A1, E1, N1/N2)

overview, 61
query commands (Sx)

overview, 60
repair after nucleus abend, 73

restructure
using utility, 91

single physical
defined, 126

supported models, 8
database information

ADAZIN utility, 97
database modification routines

ADACDC utility, 84
ADACNV utility, 85
ADADBS utility, 85
ADADEF utility, 89
ADAFRM utility, 89
ADAINV utility, 90
ADAORD utility, 90
ADAZAP utility, 91
creating a descriptor or coupling two files, 90
defining a database, 89
description, 84
formatting DASD, 89

database resource usage
ADADRU utility, 94

date-time edit mask (DT) field option
description, 40

DCAM
driver with Entire Net-Work, 7

deadlock
avoiding resource, 70

defining a database, 89
description (DE) field option

description, 38
descriptor

collation, 50
definition of, 38
hyperdescriptor, 50
phonetic, 51
subdescriptor, 51
superdescriptor, 51
value to order inverted list, 21

direct calls, 10
types of commands, 60

DL/I
bridging files to Adabas, 116

E
elementary

field type, 46
empty field counter

definition of, 19
Entire Net-Work

operation with Adabas, 7
SAF Security Interface

description, 111
supported drivers, 7
using with Adabas Cluster Services, 120
XCF line driver, 121

ET logic, 68
Event Replicator for Adabas, 138
Event Replicator Target Adapter, 139
Execute Channel Program (EXCP)

read and write, 118
expanded files

definition of, 28

149Concepts and Facilities

Index

F
FDT (see Field Definition Table (FDT))
Field Definition Table (FDT)

definition of, 30
field options

CR (insert-only system field), 39
DE (descriptor), 38
DT (date-time edit mask), 40
FI (fixed format), 42
LA (long alphanumeric), 43
LB (large object), 43
MU (multiple-value), 46
NB (no blank compression), 48
NC (null not counted), 48
NN (not null), 48
NU (null value suppression), 42
NV (no conversion), 43
PE (periodic group), 46
SY (system field), 39
TZ (time zone), 41
UQ (unique descriptor), 38
XI (index exclusion), 38

field type, 46
fields

definition of, 16
elementary, 46
group, 32
levels, 32
multiple value, 46
parent, 49
periodic group, 46
short names, 36

file coupling
logical

definition of, 27
physical

definition of, 27
files

definition of, 16
restructure

using utility, 91
security

access/update level, 106
by password, 106

system, 26
fixed format (FI) field option

description, 42
format Adabas DASD, 89
format ID

command to delete global, 62

G
group

field type, 32

H
hold facility

command to release record hold status, 62
command to set record hold status, 62

housekeeping commands, 62
hyperdescriptor, 50

I
I/O Buffer

algorithm for, 9
purpose of, 9

IMS
bridging IMS/DB files to Adabas, 116
operation with Adabas, 7

inclusive length byte
definition of, 19

index
check using ADAICK utility, 94

index exclusion (XI) field option
description, 38

insert-only system field (CR) field option
description, 39

Intercepts
OPEN or CLOSE, 114

inverted list
associator element, 21
function of, 21
normal index (NI), 21
upper index (UI), 21

ISN sequence, 63
ISNs

definition of, 17
reusing, 17
use in spanned records, 56

IUCV
driver with Entire Net-Work, 7

L
large object (LB) field option

description, 43
logical sequence, 64
logs

types of, 25
long alphanumeric (LA) field option

description, 43

M
modes of operation

multiuser, 13
single-user, 13

modifying physical database blocks, 91
multi-index searches, 62
multiclient files

definition of, 29
security use, 105

multifile searches, 62
multiple-value (MU) field option

description, 46
multiple-value fields

field type, 46

N
Natural

DDM, 144
use with Adabas, 144
user view, 145

Natural Security, 111

Concepts and Facilities150

Index

no blank compression (NB) field option
description, 48

no conversion (NV) field option
description, 43

normal index (NI), 21
not null (NN) field option

description, 48
nucleus

cluster
definition of, 126

definition of, 9
number per operating system image, 119

null not counted (NC) field option
description, 48

null suppression (NU) field option
description, 42

null value
SQL

meaning of, 48

O
OpenEdition MVS

support for, 11
operating systems

supported, 119
Operations

highlights, 6
operations

environments supported, 7
overview of Adabas, 8
TP monitors supported, 7

operator commands, 14

P
Padding area

function of, 18
parallel participant table (PPT)

dynamic allocation, 53
initialization processing, 53
overview, 52

parent field
of special descriptor, 49

password
protection

overview, 106
periodic group (PE) field option

description, 46
periodic groups

field type, 46
restrictions on using, 47

phonetic descriptor, 51
physical sequence, 63
PINSAF, 108
PPT (see parallel participant table (PPT))
Predict

using with Adabas, 145
profile

resource/user
description of a, 107

Protection log, 25
copy sequential data set (COPY), 82
copy to sequential data set (PLCOPY), 82

R
RABNs

definition of, 17
fencing, 118
location, 119

RACF
Adabas interface to, 107
using with Adabas SAF Security, 107

random access methods
ADAM, 65
overview, 65

records
definition of, 16
hold and release, 69
resource deadlock, 70
spanned, 54
structure of, 30

recovery, 72
Recovery log, 25
recovery routines

ADARAI utility, 82
ADARES, 82
description, 81

region
address space as a, 12

reject
security-by-value criterion, 106

Remote processing, 120
reordering databases and files, 90
Replicator

system file, 26
reporting

spanned record considerations, 57
reporting routines

description, 92
reports

database audit reports, 95
database information reports, 97
database resource usage reports, 94
database status reports, 95
Work part 1 recovery reports, 96

resources
access/update privileges for, 107

response code 52 (ADARSP052), 48
restart, 72

processing after system failure, 73
restoration routines

ADASAV utility, 83
description, 81

router
Adabas SAF Security, 109

S
SAF Security Interface

Adabas, 108
Entire Net-Work, 111

SAF-based security system
securing Software AG products with, 111

searches
complex, 62
multi-index, 62
multifile, 62

151Concepts and Facilities

Index

secondary address converter, 23
secondary record segmentation, 55
Security

system file, 26
security

options available, 102
package (non-Software AG)

general description, 107
general operation, 107

spanned records, 57
sequential access methods

ISN sequence, 63
logical sequence, 64
overview, 63
physical sequence, 63

session
Adabas, 12, 72
command to

close, 62
open, 62

types of, 12
user, 12, 72
utility, 12

Sort
data set for, 25

space
management, 17

spanned records
ADARUN parameters affected, 56
allowing, 55
description, 54
ISN use, 56
reporting, 57
secondary record segmentation, 55
securing, 57
structure, 55

SQL
interface to Adabas, 130

stored procedure
definition of, 11, 66

subdescriptor, 51
subfield, 51
subscription logging

system file, 26
superdescriptor, 51
superfield, 51
SYSACF application

online cache maintenance, 119
SYSFILE

system file, 26
system field (SY) field option

description, 39
system fields

definition, 32
SY and CR field options, 39

T
TCP/IP

driver with Entire Net-Work, 7
Temp

data set for, 25
threads

multithread processing, 9

size and number, 9
threshold (protection) levels

overview, 106
TIAM

operation with Adabas, 7
time zone (TZ) field option

description, 41
timeout controls

non-activity time limit, 72
transaction time limit, 71

Top Secret
Adabas interface to, 107

TP monitor
overview in Adabas operation, 11

transaction
control commands (ET/BT), 61
definition of, 68

Trigger
system file, 26

trigger
definition of, 11, 66

triggers and stored procedures
overview, 66

TSO
operation with Adabas, 7

tuning routines
ADAMER utility, 94
description, 92

U
unique descriptor (UQ) field option

description, 38
universal encoding support (UES)

no conversion field option (NV), 43
Updating

reapply backed-out update, 83
updating

competitive, 69
exclusive control, 71

upper index (UI), 21
user

exclusive control
updating, 71

isolating within a file, 29, 105
multiuser operating mode, 13
profile, 107
program

relationship to Adabas operation, 10
session, 12

definition of, 72
single-user operating mode, 13

user data
read

using direct call command, 62
User exits

controlling cipher codes with, 105
utilities

overview, 10, 78
session

definition of, 12
UTM

operation with Adabas, 7

Concepts and Facilities152

Index

V
value

security by
overview, 106

VSAM
bridging files to Adabas, 114

VTAM
driver with Entire Net-Work, 7

W
wide-character fields

no conversion option (NV), 43
Work

component of Adabas, 17
function of, 10, 24

Work part 1 recovery reports
ADAWRK utility, 96

X
XCF

driver with Entire Net-Work, 7
XCF line driver, 121
XCF member

definition, 121

153Concepts and Facilities

Index

154

	Concepts and Facilities
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Adabas Is . . .
	Operational Highlights
	High Availability
	Storage Space Optimization
	Performance
	Fault Tolerance

	Operating Environments
	Supported Data Models
	Operating Structure
	Nucleus, I/O Buffer, and Threads
	Data Storage, Associator, and Work
	Utilities, User Programs, and TP Monitors
	Utilities
	User Programs
	Special User Programs: Triggers and Stored Procedures
	TP Monitors, Adalinks, and the Adabas API

	Running Adabas
	Session Types
	Storage Areas
	Modes of Operation
	ADARUN Startup Parameters
	Session Control

	3 Adabas Design
	Adabas Entities
	Adabas Limits
	Adabas Space Management

	Database Components
	Data Storage
	Free Space and Space Reusage
	Compression
	Dynamically Increasing Data Storage Space

	Associator
	Inverted Lists
	Address Converter
	Dynamically Increasing Associator Space

	Work
	Other Components
	Sort and Temp Areas
	Logs

	Database Files
	System Files
	Coupled Files
	Physical Coupling
	Logical or Soft Coupling

	Structuring Files to Enhance Performance
	Expanded Files
	Multiple Record Types in One File
	Multiclient Files
	Controlled Data Redundancy

	Record and Field Definitions
	Record Structure and the FDT
	Field Levels and Group Fields
	System Fields
	Allowed Types of System Fields
	Defining System Fields
	System Fields as MU Fields
	System Field Rules
	System Field Processing by an Adabas Nucleus

	Field Names
	Field Length and Data Format
	Field Options
	Descriptor Options DE, UQ, and XI
	System Field Options SY and CR
	Date-Time Edit Mask Option DT
	Time Zone Option TZ
	Data Compression Options FI and NU
	Encoding Conversion Option NV
	Long Alpha Option LA
	Large Object Option LB
	Comparing LA and LB Fields
	MU and PE Options and Field Types
	Blank Compression Option NB
	SQL Compatibility Options NC and NN

	Special Fields and Descriptor Fields
	Collation Descriptor
	Hyperdescriptor
	Phonetic Descriptor
	Subfield / Superfield
	Subdescriptor
	Superdescriptor

	Parallel Participant Table (PPT)
	Initialization Processing
	Dynamic Allocation

	Spanned Records
	Spanned Record Structure
	Allowing Spanned Records in Files
	Secondary Record Segmentation
	Padding Factors
	Spanned Record ISN Use
	ADARUN Parameters Affected
	Reporting on Spanned Records
	Securing Spanned Records

	4 Using Adabas
	Accessing a Database from Programs
	Direct Call Interface
	Database Query Commands (Sx)
	Read Commands (Lx)
	Database Modification Commands (A1, E1, N1/N2)
	Logical Transaction Control Commands (ET/BT)
	Special Commands

	Complex Searches
	Multifile Searching
	Multi-index Searching

	Access Methods
	Sequential Access
	Random Access
	Random Access Using the Adabas Direct Access Method (ADAM)

	Using Triggers and Stored Procedures
	Universal Encoding Support (UES)

	Maintaining Database Integrity
	Transaction Logic
	Distributed Transaction Processing
	Competitive Updating
	Timeout Controls
	Transaction Time Limit
	Non-Activity Time Limit

	Backout, Recovery, and Restart
	User Program Error
	Adabas, Hardware, or Operating System Failure
	Power Failure

	Extended Error Handling and Message Buffering

	5 Adabas Utilities
	Initial Design and Load Operations
	ADACMP: Compress / Decompress
	COMPRESS
	DECOMPRESS

	ADALOD: Loader
	ADAULD: Unload

	Backup / Restore / Recovery Routines
	ADAPLP: Protection Log / Work Print
	ADARAI: Recovery Aid
	ADARES: Restart
	ADASAV: Save / Restore Database or Files
	ADASEL: Select Protection Data

	Database Modification Routines
	ADACDC: Changed-Data Capture
	ADACNV: Database Conversion
	ADADBS: Database Services
	Database Functions
	File Functions
	Other Functions

	ADADEF: Define a Database
	ADAFRM: Format Data Sets
	ADAINV: Invert
	ADAORD: Reorder
	Reorder Functions
	Restructure Functions
	Store Function

	ADAZAP: Modify Physical Database Blocks

	Audit / Control / Tuning/Reporting Procedures
	ADAACK: Check Address Converter
	ADACHK: Adabas Common Check Utility
	ADADCK: Check Data Storage
	ADADRU: Database Resource Usage Utility
	ADAICK: Check Index and Address Converter
	ADAMER: ADAM Estimation
	ADAPRI: Print Selected Adabas Blocks
	ADAREP: Report
	ADAVAL: Validate the Database
	ADAWRK Utility: Work Area Recovery Reports
	ADAZIN: Print Database Information

	6 Licensing Adabas
	7 Adabas Security
	Security System User IDs
	CICS System Requirements
	SECUID ADARUN Parameter
	SECUID Operator Command
	STOPSU and STOPSUR Operator Commands
	System Field Support for Security System User IDs
	SECUID Field Included in Command and Protection Logs
	Operator Command Output Displays
	PRILOG Displays
	Adabas Utility Support
	Adabas Session Statistics

	Data Encryption
	Multiclient Files
	Adabas Security and ADASCR
	Access/Update Level Protection
	Value Level Protection

	Adabas SAF Security
	Adabas Interface to SAF-based Packages
	Adabas SAF Security Overview

	Related Security Options
	Adabas Online System Security
	Natural Security
	Using the SAF Repository to Secure Software AG Products
	Entire Net-Work SAF Security (NETSAF)

	8 Optional Product Extensions
	Adabas Bridges
	Adabas Bridge for VSAM
	Advantages of Adabas over VSAM

	Adabas Bridge for DL/I (and IMS/DB)
	Functional Units
	Advantages of Adabas over DL/I

	Adabas Caching Facility
	Adabas Cluster Services
	Cluster Services With Other Adabas Products
	Advantages of Using Entire Net-Work
	Entire Net-Work XCF Option

	Adabas Delta Save Facility
	Adabas Fastpath
	Adabas Native SQL
	Adabas Online System
	Adabas Parallel Services
	Adabas Review
	The Hub Server
	The Interface Client
	Interface Calls
	Example Client/Server Environment

	Adabas SQL Gateway
	Adabas SQL Server
	Adabas Statistics Facility
	Data Collection Program
	Data Evaluation Programs

	Adabas Text Retrieval
	Adabas Transaction Manager
	Adabas Vista
	Data Archiving for Adabas
	Event Replicator for Adabas
	Event Replication Overview
	Event Replicator Target Adapter

	Entire Net-Work Multisystem Processing Tool
	Entire Transaction Propagator
	Natural Application Development Environment
	Predict Data Dictionary System

	Index

