
Adabas

Command Reference

Version 8.5.3

April 2020

This document applies to Adabas Version 8.5.3 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ADAMF-COMREF-853-20230316

Table of Contents

Command Reference ... ix
1 Syntax Conventions ... 1
2 About this Documentation .. 3

Document Conventions ... 4
Online Information and Support ... 4
Data Protection ... 5

I Overview .. 7
3 About Adabas Commands .. 9

Command Types .. 10
Transactions and ET Logic ... 19
Competitive Updating ... 23
Non-Activity Time Limit .. 39

4 General Programming Considerations ... 41
Command, Format, and Global Format IDs .. 42
ISN List Processing ... 48
Using the Multifetch/Prefetch Feature ... 53

II Calling Adabas .. 61
5 Calling Adabas .. 63

How Adabas Distinguishes Between ACB and ACBX Direct Calls 64
Specifying an ACB Interface Direct Call .. 65
Specifying an ACBX Interface Direct Call .. 66
Mixing ACB and ACBX Direct Calls .. 68

III Adabas Control Block Structures (ACB and ACBX) ... 69
6 Adabas Control Block Structures (ACB and ACBX) ... 71

Adabas Control Block (ACB) ... 72
Extended Adabas Control Block (ACBX) ... 79
Differences between the ACB and the ACBX .. 89
Logging the Control Blocks .. 94

IV Adabas Buffer Descriptions (ABDs) .. 95
7 Adabas Buffer Descriptions (ABDs) .. 97

Available ABD Types ... 98
ABD Structure .. 99
ABD Field Descriptions .. 100
ABD DSECT ... 103
ABD Lists .. 103

V ... 105
8 Defining Buffers ... 107
9 Understanding the Different Buffer Types .. 109
10 Format Buffers ... 113

Format Buffer Syntax ... 114
Field Selection Criteria ... 115
Record Format Specifications ... 116
Specifying Field Lengths of LA (Long Alpha) Fields in Format Buffers 142

iii

Specifying Field Lengths of LOB (Large Object) Fields in Format
Buffers ... 143
Format Buffer Performance Considerations .. 143

11 Record Buffers .. 145
Specifying and Reading the SQL Null Indicator in Record Buffers 147
Specifying Field Lengths of LA (Long Alpha) Fields in Record Buffers 149
Specifying Field Lengths of LOB (Large Object) Fields in Record
Buffers ... 149
Specifying the Daylight Savings Time Offset in Record Buffers 150

12 Format and Record Buffer Examples ... 151
Example 1: Using Elementary Fields (Standard Length and Format) 152
Example 2: Using Elementary Fields (Length and Format Override) 153
Example 3: A Reference to a Periodic Group ... 154
Example 4: The First Two Occurrences of Periodic Group GB 155
Example 5: The Sixth Value of the Multiple-Value Field MF 156
Example 6: The First Two Values of the Multiple-Value Field MF 157
Example 7: The Highest Occurrence Number of a Periodic Group GC and
the Existing Number of Values for the Multiple-Value Field MF 158

13 Prefetch Buffers .. 159
14 Multifetch Buffers .. 161
15 Search Buffers .. 163

Search Buffer Syntax ... 165
16 Value Buffers .. 175

Value Buffer Syntax .. 176
SQL Null Values and Indicators ... 176
Sign Handling ... 177

17 Search and Value Buffer Examples .. 179
Example 1: Using a Single Search Expression .. 180
Example 2: Using Search Expressions Connected by AND 180
Example 3: Using Search Expressions Connected by OR 181
Example 4: Using Search Expressions Connected by FROM-TO 182
Example 5: Using Search Expression with BUT-NOT 182
Example 6: Using a Multiple-Value Descriptor .. 183
Example 7: Using a Descriptor Within a Periodic Group 183
Example 8: Using a Subdescriptor ... 184
Example 9: Using a Superdescriptor with Alphanumeric Format 184
Example 10: Using a Superdescriptor with Binary Format 185
Example 11: Using Previously Created ISN Lists .. 185
Example 12: Using a Value Operator ... 186
Example 13: Using Both Value and Connecting Operators 186
Example 14: Using Physically Coupled Files ... 187
Example 15: Using Single Soft Coupling Criterion and Single Search
Criterion ... 187
Example 16: Using Single Soft Coupling Criterion and Multiple Search
Criteria .. 188

Command Referenceiv

Command Reference

Example 17: Using Multiple Soft Coupling Criteria and Multiple Search
Criteria .. 188
Example 18: Using Multiple Soft Coupling Criteria and Multiple Search
Criteria with Physical Coupling ... 189

18 Date-Time Edit Mask Processing in Format and Search Buffers 191
19 ISN Buffers ... 193
20 User Buffers ... 195

Differentiating Between the ACB and the ACBX ... 196
Using the User Buffer with ADALNK User Exits 1 and 2 197
Using the User Buffer with Adabas Nucleus Exits 4 and 11 198

21 Performance Buffers .. 201
VI Commands ... 203

22 A1 Command: Update Record .. 205
Function and Use .. 206
ACB Interface Direct Call: A1 Command .. 206
ACBX Interface Direct Call: A1 Command .. 212
Buffers ... 216
Additional Considerations ... 217

23 BT Command: Back Out Transaction .. 221
Function and Use .. 222
ACB Interface Direct Call: BT Command ... 222
ACBX Interface Direct Call: BT Command .. 226
ISN Buffer ... 230

24 C1 Command: Write a Checkpoint .. 231
Function and Use .. 232
ACB Interface Direct Call: C1 Command ... 232
ACBX Interface Direct Call: C1 Command .. 235

25 C3 Command: Write Checkpoint ... 239
Function and Use .. 240
ACB Interface Direct Call: C3 Command ... 240
ACBX Interface Direct Call: C3 Command .. 242
Buffers ... 245

26 C5 Command: Write User Data to Protection Log .. 247
Function and Use .. 248
ACB Interface Direct Call: C5 Command ... 248
ACBX Interface Direct Call: C5 Command .. 250
Buffers ... 253

27 CL Command: Close User Session .. 255
Function and Use .. 256
ACB Interface Direct Call: CL Command .. 256
ACBX Interface Direct Call: CL Command .. 260
Buffers ... 263

28 E1 Command: Delete Record / Refresh File ... 265
Function and Use .. 266
ACB Interface Direct Call: E1 Command ... 266

vCommand Reference

Command Reference

ACBX Interface Direct Call: E1 Command ... 270
29 ET Command: End Transaction ... 275

Function and Use .. 276
ACB Interface Direct Call: ET Command ... 276
ACBX Interface Direct Call: ET Command .. 281
Buffers ... 284

30 HI Command: Hold Record ... 287
Function and Use .. 288
ACB Interface Direct Call: HI Command ... 288
ACBX Interface Direct Call: HI Command .. 290

31 L1 and L4 Commands: Read / Read and Hold Record 293
Function and Use .. 294
ACB Interface Direct Call: L1 and L4 Commands ... 295
ACBX Interface Direct Call: L1 and L4 Commands 304
Buffers ... 310

32 L2 and L5 Commands: Read Physical Sequential ... 313
Function and Use .. 314
ACB Interface Direct Call: L2 and L5 Commands ... 314
ACBX Interface Direct Call: L2 and L5 Commands 320
Buffers ... 325
Additional Considerations ... 326
Special L2 Command Call for Response 145 .. 326

33 L3 and L6 Commands: Read Logical Sequential ... 329
Function and Use .. 330
ACB Interface Direct Call: L3 and L6 Commands ... 331
ACBX Interface Direct Call: L3 and L6 Commands 341
Buffers ... 348
Additional Considerations ... 353

34 L9 Command: Read Descriptor Values ... 355
Function and Use .. 356
ACB Interface Direct Call: L9 Command ... 356
ACBX Interface Direct Call: L9 Command ... 364
Buffers ... 369
Additional Considerations ... 373

35 LF Command: Read Field Definitions ... 375
Function and Use .. 376
ACB Interface Direct Call: LF Command ... 376
ACBX Interface Direct Call: LF Command .. 379
Buffers ... 382

36 N1 and N2 Commands: Adding Records .. 401
Function and Use .. 402
ACB Interface Direct Call: N1 and N2 Commands .. 402
ACBX Interface Direct Call: N1 and N2 Commands 407
Buffers ... 411

37 OP Command: Open User Session .. 415

Command Referencevi

Command Reference

Function and Use .. 416
User Types .. 417
ACB Interface Direct Call: OP Command .. 420
ACBX Interface Direct Call: OP Command ... 428
Buffers ... 433
User Queue Element ... 435
Exceeding Time Limits ... 436
Values Returned in Control Block Fields ... 436

38 RC Command: Release Command ID or Global Format ID 439
Function and Use .. 440
ACB Interface Direct Call: RC Command .. 441
ACBX Interface Direct Call: RC Command .. 445

39 RE Command: Read ET User Data .. 449
Function and Use .. 450
ACB Interface Direct Call: RE Command .. 450
ACBX Interface Direct Call: RE Command .. 455
Buffers ... 458

40 RI Command: Release Record ... 461
Function and Use .. 462
ACB Interface Direct Call: RI Command ... 462
ACBX Interface Direct Call: RI Command ... 465

41 S1, S2, and S4 Commands: Find Records ... 469
Function and Use .. 470
ACB Interface Direct Call: S1, S2, and S4 Commands 471
ACBX Interface Direct Call: S1, S2, and S4 Commands 482
Buffers ... 488

42 S5 Command: Find Coupled ISNs ... 491
Function and Use .. 492
ACB Interface Direct Call: S5 Command ... 492
ACBX Interface Direct Call: S5 Command ... 496
Buffers ... 499

43 S8 Command: Process ISN Lists .. 501
Function and Use .. 502
ACB Interface Direct Call: S8 Command ... 503
ACBX Interface Direct Call: S8 Command ... 506
Buffers ... 510

44 S9 Command: Sort ISN Lists .. 513
Function and Use .. 514
ACB Interface Direct Call: S9 Command ... 514
ACBX Interface Direct Call: S9 Command ... 520
Buffers ... 525

VII Programming Examples ... 527
45 ACB Examples ... 529

File Definitions Used in ACB Examples ... 530
ACB Assembler Examples .. 531

viiCommand Reference

Command Reference

ACB COBOL Examples .. 539
ACB PL/I Examples .. 546
ACB Fortran Example .. 553

46 ACBX Examples ... 557
COBADA8: Batch/TSO Example .. 558
COBACI8: CICS/TS Example ... 559
PLIADAX: Batch/TSO Example ... 559
PLIADAC: CICS/TS Example ... 560

Index ... 563

Command Referenceviii

Command Reference

Command Reference

This documentation describes the powerful and flexible set of Adabas direct call commands for
performing database operations. These call commands provide a direct interface to the Adabas
database when Natural or another fourth-generation database language is not being used.

Note: Data set names starting with DD are referred to in Adabas documentation with a slash
separating the DD from the remainder of the data set name to accommodate z/VSE data set
names that do not contain the DD prefix. The slash is not part of the data set name.

The Adabas Command Reference Guide documentation is organized in the following parts:

Provides an overview of Adabas commands and some general
programming considerations when making Adabas calls.

Overview

Describes the calling procedures for Adabas commands for both the ACB
and ACBX interfaces.

Calling Adabas

Describes the Adabas control block (ACB and ACBX) structures you can
use when making calls to Adabas.

AdabasControlBlockStructures

Describes the structure and use of Adabas buffer descriptions (ABDs)
when making ACBX interface calls to Adabas. ABDs are only supported
in Adabas 8 and later releases.

Adabas Buffer Descriptions
(ABDs)

Describes the creation and use of buffer definitions when making calls to
Adabas.

Defining Buffers

Provides a detailed description of each Adabas command you can use in
an Adabas call.

Commands

Provides programming examples of Adabas calls in a variety of host
languages.

Programming Examples

ix

x

1 Syntax Conventions

This document describes the syntax conventions used in this documentation for direct calls, buffer
descriptions, and buffer specifications. Notation specific to a particular buffer is introduced in the
discussion of that area later in this section.

ExampleDescriptionIdentifies...Convention

field NCSyntax elements appearing in uppercase
and bold font are Adabas keywords. When

an Adabas
keyword

uppercase,
bold

The syntax element NC is an
Adabas keyword.

specified, these keywords must be entered
exactly as shown.

field i[-j]Syntax elements appearing in lowercase
and normal, italic font identify items that
you must supply.

a variablelowercase,
italic, normal
font The syntax elements field, i,

and j are variables. They identify
a value you must supply.

a | bVertical bars are used to separate mutually
exclusive choices.

Note: In more complex syntax involving
the use of large brackets or braces,

vertical bars
(|)

In the example above, you must
select between "a" or "b". There
are no defaults.

mutually exclusive choices are stacked
instead.

field [, length]Brackets are used to identify optional
elements. When multiple elements are

optional
elements or
choices

brackets ([])

In this example, the length
parameter is optional.

stacked or separated by vertical bars
within brackets, only one of the elements
may be supplied.

{C | S}Braces are used to identify required
elements. When multiple elements are

required
elements or
choices

braces ({ })

In this example, either "C" or "S"
must be specified.

stacked or separated by vertical bars
within braces, one and only one of the
elements must be supplied.

1

ExampleDescriptionIdentifies...Convention

Indentation is used to identify
subparameters of a parameter.

subparametersindentation

[FIELD='field-name ↩
[, option]...']...

Ellipses are used to identify elements that
can be repeated. If the term preceding the

repeated
elements

ellipsis (...)

ellipsis is an expression enclosed in square
In this example, the FIELD
parameter can be repeated. In

brackets or braces, the ellipsis applies to
the entire bracketed expression.

addition, more than one option
can be associated with a field.

If the value "ISNbbbbb" is
specified in this field, it indicates

The italicized, lowercase letter b, when
used singly or in groups (such as

blankb...

that the ISN values are to be usedbbbbbbbb) indicates a blank or a series of
blanks. Each b represents one blank. as the sorting sequence (bbbbb

represent blanks).

fmtsel redfmt.All other punctuation and symbols must
be entered exactly as shown.

required
punctuation

other
punctuation
and symbols In this example, the period is

required.

Command Reference2

Syntax Conventions

2 About this Documentation

■ Document Conventions .. 4
■ Online Information and Support ... 4
■ Data Protection ... 5

3

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Command Reference4

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

5Command Reference

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

6

I Overview

This part of the Adabas command reference documentation provides a high-level description of
the Adabas commands as well as some general programming considerations you should consider
when making an Adabas call. The procedures used to make an Adabas call are described inCalling
Adabas, elsewhere in this chapter.

The information is organized under the following headings:

About Adabas Commands

General Programming Considerations

7

8

3 About Adabas Commands

■ Command Types ... 10
■ Transactions and ET Logic .. 19
■ Competitive Updating ... 23
■ Non-Activity Time Limit ... 39

9

This section provides an overview of the Adabas commands categorized by function: database
query, database modification, Data Storage read, Associator read, logical transaction processing,
and special commands.

In addition, Adabas command facilities related to data protection, recovery, and user restart are
described. The transaction concept is introduced and ET logic operations are explained. Competitive
updating is discussed for ET logic (record hold/release and avoidance of resource deadlock) and
exclusive control users; nonactivity timeouts are described for all user types.

Command Types

The commands can be categorized into the following functions:

■ Database Query Commands (Sx)
■ Data Storage Read Commands (L1-L6)
■ Associator Read Commands (L9, LF)
■ Database Modification Commands (A1, E1, N1/N2)
■ Logical Transaction Control Commands (ET/BT)
■ Special Commands

Database Query Commands (Sx)

Database query commands (S1/S4, S2, S5) search for and return the ISNs of specified records or
record groups according to specified search criteria. Other commands in this category (S8, S9) sort
the resulting ISN lists in preparation for later operations.

The ISN lists resulting from any Sx command may be saved on the Adabas Work data set for later
retrieval during your user session.

In most cases, these commands do not actually read the database; ISNs are read directly from the
Associator's inverted lists. Options allow the ISN's record to be placed in hold status to prevent
its being updated by other programs until the record is released; if desired, additional field values
contained in the first ISN's record can be read from Data Storage.

Note: The behavior of nondescriptor searches in Adabas databases differs between mainframe
and open systems in regards to null suppression in the fields. In open systems, nondescriptor
searches do not return records with null values in a field if the field is null-suppressed (NU);
on mainframe systems, the null-suppression (NU) of fields is ignored during nondescriptor
searches. At this time, to resolve this problem, we recommend that you remove the null
suppression option (NU) for open systems fields, if the fields must be used for a nondes-
criptor search.

This section covers the following database query commands:

Command Reference10

About Adabas Commands

■ S1/S4
■ S2
■ S5
■ S8
■ S9

S1/S4

The S1/S4 command selects the records that satisfy given search criteria.

■ If only descriptors are used, the query is resolved using the inverted list alone without accessing
Data Storage.

■ If no descriptors are included in the search criteria, the S1/4 command reads each record in Data
Storage to resolve the query.

■ If both descriptors and nondescriptors are used within the search criteria, Adabas first searches
the inverted list for the descriptors and then reads the Data Storage for all matching ISNs to
check the nondescriptors.

S1 and S4 commands return the count of records that satisfy the search criterion, and a list of the
ISNs for those records. An option permits the record identified by the first ISN in the resulting
ISN list to be read from Data Storage.

The S4 command may be used to place the record identified by the first ISN in the ISN list in hold
status. This prevents another user from updating the record until it is released.

S2

The S2 command is equivalent to the S1 command except that the ISNs of the records selected are
returned in the sort sequence of a user-specified descriptor (or descriptors). One to three descriptors
may be used. Ascending or descending sequence may be specified.

S5

The S5 command is used to select the ISNs of records in one file which are coupled to a record
with a given ISN in another file.

You specify the file and ISN for which coupled ISNs are to be returned and the file in which the
coupled records are to be selected. Adabas returns the number of records coupled to the ISN and
the list of the coupled ISNs.

11Command Reference

About Adabas Commands

S8

The S8 command performs logical (AND, OR, or NOT) operations on two ISN lists previously
created by an S1/S4, S5, S8, or S9 command.

■ AND results in a single ISN list containing ISNs present in both source lists.
■ OR results in a single ISN list containing ISNs present in either source list.
■ NOT results in a single ISN list containing ISNs present in the first list but not in the second list.

S9

The S9 command sorts an ISN list created previously by a S1/S4, S2, S5, S8 or S9 command.

The ISN list may be sorted by ISN (ascending sequence only), or by one to three user-specified
descriptors (ascending or descending sequence).

Data Storage Read Commands (L1-L6)

The L1 through L6 commands are used to read actual records from Data Storage. Depending on
the specified command and its options, records are read individually in the sequence in which
they are stored, in the order of an ISN list created by one of the database query commands, or in
logical sequence according to a user-specified descriptor.

A hold option allows the database records to be locked until released by a separate command or
at transaction end.

This section covers the following data storage read commands:

■ L1/L4
■ L2/L5
■ L3/L6

L1/L4

The L1 command reads a single record from Data Storage. You specify the file number, ISN of the
record to be read, and the fields for which values are to be returned. Adabas returns the requested
field values.

The L4 command is the same as the L1 command except that the record is placed in hold status.
This prevents other users from updating the record until it is released.

The multifetch/prefetch option prefetches records on either a session or command basis. This can
reduce the overhead for multiple record fetches. The multifetch option is platform-independent.

Command Reference12

About Adabas Commands

The GET NEXT option may be used to read one or more records identified by ISNs contained in
an ISN list without requiring that you specify each ISN. Usually, the ISN list is created by a previous
Sx command.

The response code option issues a response code 145 (ADARSP145) if the L4 command cannot
place a record in hold status because it is being held by another user. Otherwise, you are placed
in wait status until the ISN (and record) are freed or the waiting user's transaction is timed out.

The ISN sequence option may be used to read records in ISN sequence. The ISN you specified is
read, unless it is not present, in which case the record which has the next higher ISN is read.

L2/L5

The L2 command reads the records from a file in the sequence in which they are physically stored
in Data Storage. You specify the file to be read and the fields for which values are to be returned.
Adabas returns the requested field values.

The L5 command is the same as the L2 command except that the record read is placed in hold
status. This prevents other users from updating the record until it is released. The multi-
fetch/prefetch and response code options (see the L1/L4 command description, above) also apply
to the L2/L5 commands.

L3/L6

The L3 command reads records from Data Storage in the logical sequence of a user-specified
descriptor. You specify the file to be read, the descriptor to be used for sequence control, and the
fields for which values are to be returned. Adabas returns the requested field values.

Command Option 2 for the L3/L6 command specifies whether the records are read in ascending
or descending order. In addition, Command Option 2 can be used to specify a start value.

The L6 command is the same as the L3 command except that the record read is placed in hold
status. This prevents other users from updating the record until it is released.

In addition to the multifetch/prefetch and response code options (see the L1/L4 command descrip-
tion, above), the start value option permits reading to begin at a user-specified value or ISN.

13Command Reference

About Adabas Commands

Associator Read Commands (L9, LF)

The L9 and LF commands read information directly from the Associator inverted lists or field
definition tables (FDTs), returning either the inverted list values for a specified descriptor or the
field definitions for a specified file in the database.

This section covers the following associator read commands:

■ L9
■ LF

L9

The L9 command returns each value contained in the inverted list for a given descriptor, and the
number of records in which the value is contained.

You specify the file and descriptor for which values are to be returned, the value at which the
command is to begin, and whether the values are returned in ascending or descending sequence.

LF

The LF command returns the field definitions for a file. You specify the file for which the field
definitions are to be returned.

The field definitions for all the fields in the file are returned. Each field definition consists of the
field name, level number, standard format, standard length, and definition options.

Database Modification Commands (A1, E1, N1/N2)

Database modification commands (A1, E1, and N1/N2) add, change, or delete database records
and update the related Associator lists accordingly. You can assign ISNs to new records or they
can be assigned by Adabas.

This section covers the following database modification commands:

■ A1
■ E1

Command Reference14

About Adabas Commands

■ N1/N2

A1

The A1 command updates the contents of one or more fields within a record. You specify the file
and ISN of the record to be updated, together with the fields to be updated and the values to be
used for updating.

Adabas performs all necessary modifications to the Associator and Data Storage. Associator up-
dating is required only if one or more descriptors are updated.

A hold option is available for the purpose of placing the record to be updated in hold status prior
to the update.

E1

The E1 command deletes a record or refreshes a file. You specify the file and ISN of the record to
be deleted, or specify the file only (without an ISN and command ID) to refresh the file.

Adabas performs all necessary modifications to the Associator and Data Storage.

A hold option is available for the purpose of placing the record to be deleted in hold status prior
to the deletion.

N1/N2

The N1/N2 command adds a new record to a file. You specify the file to which the record is to be
added together with the fields and field values to be used. Adabas performs all necessary modi-
fications to the Associator and Data Storage.

If the N1 command is used, the ISN for the new record is assigned by Adabas. If N2 is used, you
must provide the ISN.

Logical Transaction Control Commands (ET/BT)

An Adabas logical transaction defines the logical start (BT) and end (ET) of the database operation
being performed. If the user operation or Adabas itself terminates abnormally, these commands
make it possible to restart a user, beginning with the last unsuccessfully processed transaction.
ET/BT commands define the transaction start and end, restore pretransaction conditions if a situation
occurs that prevents successful completion of the transaction, and read program-specified user
data written during the transaction sequence.

Programs that use these commands are called ET logic programs. Although not required, Software
AG recommends that you use ET logic.

This section covers the following logical transaction control commands:

15Command Reference

About Adabas Commands

■ BT
■ ET

BT

The BT command backs out the current transaction being processed.

All modifications resulting from updates performed during the transaction are removed, and all
records placed in hold status during the transaction are released (unless kept in hold status by the
multifetch option; see the section Multifetch Operation Processing).

ET

The ET command indicates the end of a logical transaction.

An ET command causes Adabas to physically store all data protection information related to the
transaction. This information is used to apply all the updates performed during the transaction
at the start of the next Adabas session if the current session is terminated before these updates are
physically applied to the database.

The ET command releases all the records that have been placed in hold status during the transaction
(unless kept in hold status by the multifetch option; see the section Multifetch Operation Pro-
cessing). The ET command may also be used to store user data in an Adabas system file. This data
may be retrieved with an OP or RE command.

Special Commands

Special commands perform many of the housekeeping functions required for maintaining the
Adabas database environment. Commands in this group allow you to perform the following
functions:

■ Open and close a session (but not to control a transaction).
■ Write data protection information and checkpoints.
■ Set and release record hold status.

This section covers the following special commands:

■ CL
■ C1
■ C3
■ C5
■ HI
■ OP
■ RC
■ RE

Command Reference16

About Adabas Commands

■ RI

CL

The CL command terminates a user session, releasing all records held for that user.

■ It physically writes all current data protection information to the data protection log.
■ It releases all records currently in hold status for the user.
■ It releases all the command IDs and corresponding ISN lists currently assigned the user.
■ It stores user data in an Adabas system file (optional).

C1

The C1 command causes a checkpoint to be taken.

The C1 command physically writes all current data protection information to the data protection
log, and writes a checkpoint entry to the data protection log and the system checkpoint file. This
checkpoint entry may be used as a reference point for subsequent removal or reapplication of
updates. An option allows the C1 command to initiate a buffer flush.

C3

The C3 command, issued only by exclusive control and update users (who are not using ET logic),
writes a SYNX-03 checkpoint in the Adabas checkpoint file.

■ The checkpoint contains the current data protection log and block number.
■ The checkpoint may be used to restore the database (or certain files) to the status in effect at the

time the checkpoint was taken. This may be necessary before a program performing exclusive
control updating can be rerun or restarted.

If Command Option 2 is specified, the C3 command also stores user data in the Adabas checkpoint
file for restart purposes. The stored data may be subsequently read with an OP or RE command.

C5

The C5 command writes user data to the Adabas data protection log.

The data can be read subsequently using the ADASEL utility.

17Command Reference

About Adabas Commands

HI

The HI command places a record in hold status. Specify the file and ISN of the record to be placed
in hold status.

A record placed in hold status cannot be updated by another user until it is released.

OP

An OP command is mandatory when any of the following apply:

■ The nucleus is run with ADARUN parameter OPENRQ=YES
■ Exclusive file control (EXF) is to be performed
■ User data that was stored in an Adabas system file by a previous ET command is to be read
■ User data is to be stored in an Adabas system file, using a C3, CL, or ET command
■ You are assigned a special processing priority
■ You are an access-only user (no update commands permitted).
■ A transaction time limit or a non-activity time limit is to be set for you that differs from that

specified by ADARUN parameters TT or TNAx, respectively. Your setting must conform to the
maximum setting set by the ADARUN parameters MXTT and MXTNA, respectively.

■ Special data encoding or architecture is to be specified for your user session.

It may also be used to set the maximum number of records that you can place in hold status at the
any given time, and the maximum number of command IDs you may have active at the same
time.

RC

The RC command may be used to release one or more command IDs currently assigned to you,
or to delete one or all global format IDs.

RE

The RE command reads user data previously stored in an Adabas system file by CL or ET com-
mands.

Command Reference18

About Adabas Commands

RI

The RI command releases a record from hold status.

Specify the file and ISN of the record to be released. You may also request that all records currently
held by you are released. The RI command should be issued by non-ET users only.

Transactions and ET Logic

This section describes the concept of a transaction and anET logic user; it explains ET logic operations
including normal and abnormal transaction termination processing and the storage and retrieval
of user (ET) data.

This section covers the following topics:

■ What Is A Logical Transaction?
■ Transaction Sequence Number
■ ET Transaction Time Limit
■ Back Out Transaction (BT) Command
■ Autobackout
■ End Transaction (ET) Command
■ User (ET) Data
■ Adabas User ID

What Is A Logical Transaction?

A logical transaction is the smallest unit of work (as defined by the user) that must be performed
in its entirety to ensure the logical consistency of the information in the database. Users who use
logical transaction commands are referred to as ET logic users.

A logical transaction comprises one or more Adabas commands that read or update the database
as required to complete a logical unit of work. A logical transaction begins with the first command
that places a record in hold status and ends when an ET, BT, CL, or OP command for the same
user is issued.

The RE (read ET data) command can be used to retrieve user restart data stored by the ET or CL
command.

19Command Reference

About Adabas Commands

Transaction Sequence Number

When a program issues an ET or CL command, Adabas returns a transaction sequence number
in the command ID field of the ET or CL command's control block. The transaction sequence
number is a count of the total number of ET commands issued thus far during the user session.

The transaction sequence number is set to 1 for the first ET command issued by the user. The first
ET command following the OP command returns transaction sequence number 2 in the Command
ID field or the Adabas control block. Each subsequent OP command returns the transaction sequence
number of the last ET command issued by that same user.

ET Transaction Time Limit

Adabas provides a transaction time limit for programs that use ET logic. The time measurement
for a transaction begins when the first command places a record in hold status, and ends when
the program issues an ET, BT, or CL command.

The time limit is set with the ADARUN TT parameter; a transaction time limit that overrides this
general limit for a specific user can be set with the OP command; this limit is controlled by the
ADARUN MXTT parameter.

If a transaction exceeds the prescribed limit, Adabas generates a BT (back out transaction) command.
The BT command removes all the updates performed during the transaction and releases all held
records.

Adabas returns response code 9 (ADARSP009) for the next command issued by the user indicating
that the current transaction has been backed out. The user can either repeat the backed out trans-
action from the beginning or begin another transaction.

Back Out Transaction (BT) Command

The BT command removes all updates made during the transaction currently being processed.
This may be necessary because of a program error, a timeout, or when Adabas determines that
the transaction cannot be completed successfully.

A BT command also performs an implied ET command, which releases all the records held during
the transaction unless otherwise specified by the multifetch option; for more information, see the
section Multifetch Operation Processing.

For example, the command sequence

FIND (S4)
UPDATE (A1) (modify field XX to value 20)
FIND (S4)
UPDATE (A1) (modify field YY to value 50)
END TRANSACTION (ET)
FIND (S4)

Command Reference20

About Adabas Commands

UPDATE (A1) (modify field XX to value 10)
BACKOUT TRANSACTION (BT)

results in the field values of XX = 20 and YY = 50. The second update to field XX is removed by
the BT command.

Autobackout

Autobackout, which is performed only for ET logic users, backs out transactions automatically in
sessions that end abnormally. Adabas performs an internal BT (back out transaction) followed by
autorestart, and then returns response code 9 (ADARSP009) to indicate that the last transaction
has been backed out.

Autobackout occurs at the end of any nucleus session that was terminated with HALT.

Autobackout also occurs at the beginning of the next Adabas session to remove any updates that
were performed in partially completed transactions by ET logic users during the previous termin-
ated session.

When response code 9 (ADARSP009) indicates that the transaction was backed out, the user has
the option of either reissuing the transaction from the start or beginning another transaction.

To restart the backed-out transaction, a terminal operator may need to reenter the data for the
transaction, or an internal restart may have to be performed from the beginning of the "update
phase" of the transaction; the "update phase" of a transaction begins with the first command that
places a record in hold status.

End Transaction (ET) Command

The ET command must be issued at the end of each logical transaction. Successful execution of an
ET command ensures that all the updates performed during the transaction will be physically
applied to the database regardless of subsequent user or Adabas session interruption.

Updates performed within transactions for which ET commands have not been successfully ex-
ecuted will be backed out by the autobackout routine (see Autobackout).

Unless otherwise specified by the multifetch option, the ET command releases all records held by
the user during the transaction. Adabas returns a unique transaction sequence number (see
Transaction Sequence Number) that can be used to identify the transaction for auditing or restart
purposes.

The ET command may also be used to store user data in an Adabas system file. This data may be
used for user restart purposes, and may be read with an OP or RE command.

21Command Reference

About Adabas Commands

AdabasUser Program

record updated in Adabas buffer but not necessarily written to
the database

FIND (S4), UPDATE (A4)

record updated in Adabas buffer but not necessarily written to
the database

FIND (S1), HOLD ISN (HI), UPDATE (A4)

data protection information for the transaction is written to the
Adabas Work and data protection log, ending the transaction

END TRANSACTION (ET)

record updated in Adabas buffer but not necessarily written to
the database

FIND (S4), UPDATE (A4)

record updated in Adabas buffer but not necessarily written to
the database

FIND (S1), HOLD ISN (HI), UPDATE (A4)

. . . Adabas or user session interruption . . .

When the next Adabas session is started, or when the user is timed out, both updates for transaction
1 are physically written to the database (if they were not previously written). The updates for
transaction 2 are not physically written (or will be backed out) because no ET command was pro-
cessed for this transaction.

User (ET) Data

User data (ET data) may be stored with an ET or CL command and read with an OP or RE (read
ET data) command.

One record of user data is kept for each user ID. The data is maintained until the next ET or CL
command is issued in which user data is provided.

Each user data record is also written to the Adabas data protection log with each checkpoint
written by the transaction. This data may be subsequently read with the ADASEL utility.

User data is primarily used to perform the following functions:

■ Store data needed to restart an operation (e.g., input message data, transaction identification
data, transaction summary data).

■ Store intermediate data to be used by subsequent transactions (e.g., for audit trail purposes).
■ Communicate with other users. The data stored may be read by other users provided that the

ID of the user who stored the data is supplied in the OP command.

Software AG also suggests using the user data facility to perform the following functions:

■ Establish an installation standard for the user data record format and store data for each update
transaction with the ET command.

■ Read the user data and display it in a standard message format when the user logs on to an
application. The user is thus informed of the last successful updating activity which corresponds
to his user ID.

Command Reference22

About Adabas Commands

Software AG recommends that you keep ET commands that provide user data separate from those
that do not. Combining the two types of ET command may cause significant additional overhead
by forcing Adabas to repeatedly copy user data from the Adabas Work data set (where it is tem-
porarily stored) to the protection log.

Adabas User ID

The user ID is an identifier used by Adabas to store and retrieve user (ET) data and to assign a
special processing priority to a user. The user ID is specified in the Additions 1 field of the OP
command.

A user ID provided by the user must meet both of the following criteria:

■ It must begin with the character A (X'C1') through 9 (X'F9')
■ It must be unique to ensure that the user (ET) data is related to the user regardless of the terminal

used. User (ET) data is maintained until the user's next ET or CL command in which user (ET)
data is provided.

If the user either does not provide a user ID or provides an invalid user ID, Adabas establishes a
default user ID for the user session, and any user (ET) data stored by the user is deleted when the
current session is terminated.

To avoid later limitations, Software AG recommends that you always specify a user ID.

Competitive Updating

Competitive updating is in effect when two or more users (in multiuser mode) are updating the
same Adabas file(s).

This section describes the Adabas facilities used to ensure data integrity in a competitive updating
environment. These include record hold and release processing and the avoidance of resource
deadlock, exclusive control updating, and shared hold updating.

This section covers the following topics:

■ ET User Record Hold and Release
■ Avoiding Resource Deadlock
■ Shared Hold Status

23Command Reference

About Adabas Commands

■ Exclusive Control Updating

ET User Record Hold and Release

The record hold facility allows the ET user to place a record in hold status for updating without
allowing interim updating of the record by another user. Adabas holds a record by placing the ISN
of the record in the hold queue; as a result, record hold is also called an ISN hold.

Record hold is applicable for all ET logic users; Adabas does not place an ISN in hold status for
EXU (exclusive control updating) users. ReadExclusive Control Updating, elsewhere in this guide,
for more information.

This section covers the following topics:

■ Record Hold Commands
■ Record Update Using the Hold Option
■ Record Release

Record Hold Commands

A record is held when you use the find-with-hold command (S4), the read-with-hold commands
(L4, L5, L6), an A1 or E1 command in which the hold option is specified, or a hold record (HI)
command. An N1/N2 command issued by an ET logic user also places the added record in hold
status.

The successful completion of any of these commands places the record (ISN) in hold status. If the
record is already being held by another user, the user issuing the record hold command is placed
in a wait status until the record becomes available, at which time Adabas reactivates the command.

If the R (return code) or O (multifetch/return code) option is used with any of the record hold
commands and the record to be held is already being held by another user, Adabas returns response
code 145 (ADARSP145) instead of placing the user in a wait status.

If you issue a find (S1) or read (L1, L2, L3) command, you can access the record regardless of the
fact that the record is in hold status for another user.

Record Update Using the Hold Option

You can update or delete any records they have in hold status by issuing an A1 or E1 command.

An A1 command is executed only if the record is either in hold status for the requesting user, or
free from hold status and the you specify that the record should be held. If the record is currently
held by another user, your hold request is either placed in wait status or, if you request, you will
receive response code 145 (ADARSP145). If the record is not in hold status, response code 144
(ADARSP144) is returned, indicating that the record was placed in hold status.

Command Reference24

About Adabas Commands

If an E1 command (without the hold option) is issued for a record that is not in hold status for
you, Adabas places the record in hold status for you provided that the record is not in hold status
for another user. If you do not place a record to be deleted in hold status, there is no guarantee
that the record will not be updated or deleted by another user before the E1 command is executed.

If an N1/N2 command is issued and there is no available space in the hold queue, response code
145 (ADARSP145) is returned.

Record Release

An ET logic user releases records from hold status with the ET command following each logical
transaction, and with a close (CL) command at the end of the Adabas session. Programs using ET
logic should not release records with the release record (RI) command if any updating has been
performed during the current transaction, since this could result in a loss of data integrity.

For example, a record is updated and then released with an RI command by ET user 1, and the
transaction continues. In the meantime, the same record is updated by user 2, who then ends the
session with an ET command. If user 1's transaction is subsequently backed out due to an error
or transaction timeout, the updates performed by both users 1 and 2 are removed even though
user 2's transaction completed successfully with an ET command.

Therefore, user programs that employ ET logic should only release records at the completion of
a logical transaction with the ET command. Non-ET logic users should use A1 or E1 commands
to update or delete records and then release them.

The multifetch option allows records (and their ISNs) to be released from hold status selectively
if a non-zero count and the file number/ISN is specified in the ISN buffer when the ET (or BT)
command is issued. See the section Multifetch Operation Processing.

The CL command releases all records in hold status for the issuing user, whether an ET user or
not.

Avoiding Resource Deadlock

A resource deadlock can occur if two users are placed in wait status because each had requested
a record that was currently in hold status for the other user.

For example:

25Command Reference

About Adabas Commands

Resource Deadlock Example

Adabas protects against such a user deadlock situation by detecting the potential deadlock and
returning a response code (ADARSP145) to User 2 after putting the first user in wait status. This
occurs if the two users are serviced by the same nucleus (a non-cluster nucleus or the same cluster
nucleus). But even in a single nucleus, a deadlock might not be detected if an ISN involved in the
deadlock is being held as a shared resource by more than one user. For more information, read
about shared hold status.

Putting more records in hold status (including shared hold status) may decrease the possible
parallelism of transaction processing (and thus, the performance of multiuser applications) and
increase the likelihood of deadlocks between transactions (where each transaction holds a record
that the other wants).

Command Reference26

About Adabas Commands

Shared Hold Status

Shared hold status allows you to lock data records in shared mode, rather than in exclusive mode.
This allows your database users to read the same record in parallel transactions, but ensures that
no one can update the record concurrently.

Using shared hold status, your users can protect large object values from concurrent updates
without locking out other users who may need to read the same LOB value or other LOB values
in the same record. It also allows your users to protect the records they read against concurrent
updates for specific periods of time:

■ For the duration of the read command;
■ When the next record in a sequence is read;
■ When the user's transaction ends;
■ Indefinitely.

Shared hold updating is controlled by four command options for the BT, ET, HI, L4 - L6, RI, and
S4 commands, although all four command options do not necessarily apply to all of these com-
mands. These command options are specified in the command option 3 field of ACBX only calls
for the associated command. Each command option specifies a different shared hold time period.

■ Option C puts the record in shared hold status for the duration of the read operation. It ensures
that the version of the record being read has been committed by the last updater. This option
is available for the L4, L5, L6 and S4 commands.

■ Option Q puts the record in shared hold status until the next record in the read sequence is read
or the read sequence or transaction is terminated, whichever happens first. It ensures that the
record being read cannot be updated concurrently until the next record in the sequence is read
(or the transaction is terminated). This option is available for the L4 (when command option 2
is set to "N"), L5, L6 and S4 commands.

For the S4 command, a command ID must be given and the ISN buffer length must be set to 4.
The record returned by the S4 remains in shared hold status until the next record is retrieved
by a subsequent S4 or L4/N command with the same command ID.

■ Option S puts the record in shared hold status until the end of the transaction. It ensures that
the record being read cannot be updated concurrently until the transaction is terminated. This
option is available for the HI, L4, L5, L6, RI and S4 commands.

When specified in an HI request, the record is placed in shared hold status for the user. If a
second user also issues an HI request, the record is put in shared hold status for both users.

When specified in an RI request, if the record is in exclusive hold status and has not been updated
in the current transaction, it is placed in shared hold status; if it is in exclusive hold status and
has been updated, it is not placed in shared hold status and the exclusive hold remains in effect.

27Command Reference

About Adabas Commands

■ Option H keeps a record in shared hold status indefinitely (until the next ET or BT command).
This option is available only for the BT and ET commands. Records in shared hold status at the
time of the BT or ET command are kept in shared hold status beyond the end of the transaction
until another ET or BT command is issued (without this H option or the prefetch or multifetch
options). Any records in exclusive control are also changed to shared hold status beyond the
end of the transaction.

You cannot use option H if the multifetch or prefetch options are used (or, in Adabas on open
systems, if all resources owned by the user are to be released via a command option 1 "T" setting).

If the same record is placed in shared hold status more than once (using the C or S options or the
Q option for different read sequences), it stays in shared hold status until all of the specified hold
lifetimes have expired.

Putting more records in hold status (including shared hold status) may decrease the possible
parallelism of transaction processing (and thus, the performance of multiuser applications) and
increase the likelihood of deadlocks between transactions (where each transaction holds a record
that the other wants).

Using shared hold status affects the ADARUN NH and NISNHQ parameter settings. Each shared
hold request with a different command ID (CID), as well as a (shared or exclusive) hold request
without a CID, is counted against the NISNHQ and NH limits. This affects application programs
that make use of the new Q option for sequential reads. For example, if a program reads records
with the Q option and then updates every record, the shared hold operations from the use of the
Q option and the exclusive hold operations from the update commands are counted separately.
Such a program might need NISNHQ and NH limits set two times larger than when the Q option
is not specified.

For more information about these commands and command options, read about the individual
commands in Commands, elsewhere in this guide. Detailed description of shared hold status
processing and rules are provided in this section.

This section covers the following topics:

■ Duration (Lifetimes) of Shared Hold Status
■ Rules

Command Reference28

About Adabas Commands

■ Processing

Duration (Lifetimes) of Shared Hold Status

The following table summarizes how long records remain in shared hold status, depending on
which commands are used to place them in and release them from hold status. The key to the
codes used in the table are given below the table. Each cell in the table describes the hold status
after the command in the top row was used to place the record in hold status and the command
in the leftmost column was used to release the record from hold status. If the same record is put
in hold status more than once in different ways, it remains in hold status until it has been released
from hold status for each way.

Note: In this table, the notation xx/y indicates the command (xx) and the command option
(y).

Command used to....

Place record in hold status...Release record from hold status...

S4/QS4/SS4/CS4RI/SHI/SHILx/SLx/QLx/CLxET/HBT/H

RR---RRRRRR---RRRBT

SS---SSSSSS---SSSBT/H

RMRM---RMRMRMRMRMRM---RMRMRMBT/M

RPRP---RPRPRPRPRPRP---RPRPRPBT/P1

RSRS---RSRSRSRSRSRS---RSRSRSBT/S2

RR---RRRRRR---RRRET

SS---SSSSSS---SSSET/H

RMRM---RMRMRMRMRMRM---RMRMRMET/M

RPRP---RPRPRPRPRPRP---RPRPRPET/P1

NN---NNNNNN---NNNET/S2

SSS&RXSSXSSS&RXSSLx/C

R&SS---XSSXSR&S---XSSLx/Q

RS---XSSXSR---XSSRC

RR---RURRRURR---RURRRI

SS---SUSSSUSS---SUSSRI/S

SSS&RXSSXSSS&RXSSS4/C

R&SS---XSSXSR&S---XSSS4/Q

29Command Reference

About Adabas Commands

Key:

DescriptionCode

The record was not in hold status at the end of the first command.---

The hold status of the record has not been changed.N

The record has been released from hold status.R

The record has been released from hold status if it was specified in the ISN buffer; otherwise, it is
kept in its current (shared or exclusive) hold status.

RM

The record has been released from hold status if it was not specified in the ISN buffer; otherwise, it
is kept in its current (shared or exclusive) hold status.

RP

The record has been released or downgraded to the hold status it had at the time of the specified
target savepoint.

Caution: The record has not been put in hold status or upgraded to the hold status it had at the time
of the target savepoint.

RS

The record has been released from hold status; however, if it was updated earlier in the same
transaction, it is kept in exclusive hold status.

RU

The record is released from shared hold status and the next record in the read sequence is placed in
shared hold status.

R&S

The record is in shared hold status.S

The record has been downgraded to shared hold status; however, if it was updated earlier in the
same transaction, it is kept in exclusive hold status.

SU

The record is placed in and released from shared hold status in the course of the same command.S&R

The record is in exclusive hold status.X

Notes:

1. The prefetch option (P) for ET and BT commands is available only for Adabas on mainframe
systems.

2. The savepoint option (S) for ET and BT commands is planned or available in Adabas 6.2 on
open systems.

Corollaries:

1. A command that uses the C option has no impact on and is not impacted by the hold status
operations of other commands from the same user.

2. A command that uses the Q option, as well as an RC command, may have an impact only on
the one record from the read sequence that was previously put in shared hold status using the
Q option.

3. An updated record is never released from exclusive hold status before the update has been
committed or backed out.

Command Reference30

About Adabas Commands

4. An ET or BT command without the H, M, P, or S options always releases all records from hold
status, whether they are shared or exclusive.

5. An ET command with the S option has no effect on the hold status conditions of records.

6. A BT command with the S option only releases or downgrades records from hold status. It does
not reverse the effects of RI commands. If the application does not use RI commands, a BT
command with the S option reinstates the hold status of all records held by the user at the time
of the target savepoint.

Rules

The following rules apply to shared hold status and the associated C, Q, S, and H command options:

1. These new command options can only be issued in ACBX calls in the command option 3 field;
they are not valid in ACB calls.

2. Only ET users can put records in shared hold status. Access-only (ACC) users and exclusive-
update/exclusive-file (EXU/EXF) users who are not also ET users cannot put records in shared
hold status. Users with EXU/EXF control on a file cannot run in parallel with users who put
records of that file in shared hold status (which must be ET users).

3. Multiple users can have the same record in shared hold status at the same time, whereas only
one user at a time can have a record in exclusive hold status.

4. You can, in the course of several commands, put the same record in shared or exclusive hold
status more than once. The record is kept in hold status throughout the longest lifetime (duration)
of any of the hold status requests.

5. Use of the Q option requires that a command ID be given and, for S4 commands, that the ISN
buffer length be set to 4. The Q option is not allowed if the read is in ISN sequence (L4/I) or if
the read sequence is performed with multifetch or prefetch (command options M, O, or P).

6. Command options C, Q, and S are not allowed together with the prefetch command option (P).

7. A request to keep held records in shared hold status via the H command option on an ET or
BT command applies to all records that were ever put in hold status during the transaction and
that have not been released since.

Processing

This section describes the processing behaviors that apply to shared hold status and the associated
C, Q, S, and H command options in different situations.

1. A request to put a record in hold status cannot go forward if:

a. one user has the record in exclusive hold status and another user requests putting it in ex-
clusive hold status, too (existing logic);

b. one user has the record in exclusive hold status and another user requests putting it in shared
hold status; or

31Command Reference

About Adabas Commands

c. one or more users have the record in shared hold status and one of them, or another user,
requests putting it in exclusive hold status.

2. If a request to put a record in hold status cannot go forward, the following processing occurs,
depending on other command option settings:

a. If the return option has been specified (command option 1 = "R"), the command is returned
immediately with response code 145 (ADARSP145).

b. If the multifetch return option has been specified (command option 1 = "O"), the records
already read and put in hold status by this command are returned. If no record has already
been read and put in hold status, the command is returned with response code 145
(ADARSP145).

c. If the multifetch option has been specified (command option 1 = "M"), the records already
read and put in hold status by this command are returned. If no record has already been
read and put in hold status, the command is put in wait status until all other users have re-
leased the record from hold status, unless putting the command in wait status will cause a
deadlock between users (read point e in this list for more information about deadlock
handling).

d. If none of these command options has been specified, the command is put in wait status
until all other users have released the record from hold status, unless putting the command
in wait status will cause a deadlock between users (read point e in this list for more inform-
ation about deadlock handling).

e. The command is not put in wait status if Adabas detects that this new wait condition would
create a deadlock between users who are holding records and waiting to put another one in
hold status.

A deadlock involving multiple users who are holding the same record shared, or (with
Adabas Cluster Services or Adabas Parallel Services) who are serviced by different nuclei in
a cluster, may not be detected. In this case, the hold commands involved are delayed until
one of the waiting users incurs a transaction timeout (TT parameter).

3. While a command is waiting for other users to release a record from shared hold status so that
it can put that record in exclusive hold status, further requests by additional users to also put
the record in shared hold status will not go forward either.

A request to upgrade a record from shared to exclusive hold status can go forward in the fol-
lowing scenario:
■ Only one user has the record in shared hold status.
■ Another user is waiting to put the record in exclusive hold status, without first getting it in

shared hold status.
■ The first user requests to upgrade the hold status from shared to exclusive. This upgrade re-

quest is granted, even though another user is already waiting, because it does not increase
the set of users the second user is waiting for.

Command Reference32

About Adabas Commands

4. A record in shared hold status can be updated without specifying command option 3 as "H" in
the A1 command. If an A1 or E1 command specifies a record that the user has put in shared
hold status, the hold status is upgraded to exclusive prior to the update or deletion of the record.
(The same applies to an N1 or N2 command if the user has already put the record in shared
hold status via a previous HI command.)

Similarly, a record in shared hold status is upgraded to exclusive if it is read in an L4, L5, L6,
or S4 command without the command option 3 settings "S", "Q", and "C", or if it is specified in
an HI command without the command option 3 setting of "S".

5. If a request to upgrade a record from shared to exclusive hold status cannot go forward, the
following processing occurs, depending on other command option settings:

a. If the return option has been specified (command option 1 = "R"), the command is returned
immediately with response code 145 (ADARSP145).

b. If the multifetch return option has been specified (command option 1 = "O"), the records
already read and put in hold status by this command are returned. If no record has already
been read and put in hold status, the command is returned with response code 145
(ADARSP145).

c. If the multifetch or prefetch option has been specified (command option 1 = "M" or "P"), the
records already read and put in hold status by this command are returned. If no record has
already been read and put in hold status by this command, the command is put in wait status
until all other users have released the record from shared hold status, unless the command
cannot be put into wait status because another user is already waiting to upgrade the same
record from shared to exclusive hold status (read itempoint e in this list for more information).

d. If none of these command options has been specified, the command is put in wait status
until all other users have released the record from shared hold status, unless the command
cannot be put into wait status because another user is already waiting to upgrade the same
record from shared to exclusive hold status (read item point e in this list for more informa-
tion)..

e. The command is not put in wait status if another user is already waiting to upgrade the same
record from shared to exclusive hold status. In this case, the new command is returned with
response code 145 (ADARSP145) with a new subcode, even though the return option has
not been specified.

6. If command option 3 setting "C" is specified for an L4, L5, L6, or S4 command:

a. The target record is put in shared hold status (unless it was already in hold status for the
user prior to the command).

b. The record is read from the database.

c. The record is released from shared hold status, unless it had already been in hold status for
the user prior to the command with ‘C’ option.

d. The record read from the database is returned to the user.

33Command Reference

About Adabas Commands

This procedure ensures that the returned data will not be the result of an uncommitted update
by another user that may still be backed out.

7. If command option 3 setting "Q" is specified for an L4/N, L5, L6, or S4 command:

a. The target record is put in shared hold status (unless it was already in hold status for the
user prior to the command).

b. The record is read from the database.

c. The record read from the database is returned to the user.

d. Unless it is specified in another command that the record be kept in hold status longer, the
record is released from shared hold status when one of the following occurs:
■ the next read command in the sequence is issued, or
■ the read sequence is terminated (by releasing the associated command ID).

e. Furthermore, the record is released from shared hold status when:
■ the user’s transaction ends (e.g., via an ET command) without specifying that the record

be kept in hold status (e.g., via the option H), or
■ it is explicitly released from hold status (via an RI command).

f. If the record is updated, it remains in exclusive hold status until the end of the transaction.

This procedure ensures that the returned record will not be changed by another user before the
user reads the next record in the read sequence or terminates the read sequence or the current
transaction.

8. If command option 3 setting "S" is specified for an L4, L5, L6, or S4 command:

a. The target record is put in shared hold status (unless it was already in hold status for the
user prior to the command).

b. The record is read from the database.

c. The record read from the database is returned to the user.

d. The record is released from shared hold status when:
■ the user’s transaction ends (e.g., via an ET command), or
■ it is explicitly released from hold status (via an RI command).

e. If the record is updated, it remains in exclusive hold status until the end of the transaction.

This procedure ensures that the returned record will not be changed by another user before the
user ends the current transaction. If the user reads the record again directly (via its ISN) prior
to transaction end, the record will still exist and be unchanged. If the user attempts to read the
record again using the same selection criterion (e.g., in an L4/I, L5, L6, or S4 command), the
command might possibly return a different record, which did not satisfy the selection criterion
earlier but does satisfy it now.

9. If command option 3 setting S is specified for an HI command:

Command Reference34

About Adabas Commands

a. The target record is put in shared hold status (unless it was already in hold status for the
user prior to the command).

b. The record is released from shared hold status when:
■ the user’s transaction ends (e.g., via an ET command), or
■ it is explicitly released from hold status (via an RI command).

c. If the record is updated, it remains in exclusive hold status until the end of the transaction.

This procedure ensures that the specified record will not be changed by another user before
the user ends the current transaction.

10. By default, all shared and exclusive hold status conditions of records being held by a user are
released when the user’s current transaction ends. In particular, they are released when the
user issues a BT or ET command without command option 1 set to "M", "P" or "O", or command
option 3 is set to "H"; or when Adabas decides for internal reasons to back out the transaction.

For a BT or ET command with multifetch option (command option 1 = "M"), only the shared
and exclusive hold status conditions for the records specified in the multifetch buffer are released;
all others are kept as is.

For a BT or ET command with prefetch option (command option 1 = "P"), only the shared and
exclusive hold status conditions for the records not specified in the ISN buffer are released. The
current (shared or exclusive) hold status conditions for the records specified in the ISN buffer
are kept as is. Any additional records specified in the ISN buffer are put in exclusive hold status
(with response code 2 (ADARSP002) issued if that is not immediately possible).

11. If command option 3 setting "H" is specified for a BT or ET command, Adabas keeps in shared
hold status all records that were put in (or downgraded to) shared hold status earlier in the
transaction (or kept in shared hold status at the end of the preceding transaction) and not released
since then. Furthermore, Adabas downgrades all records to shared hold status that were put
in (or upgraded to) exclusive hold status earlier in the transaction (or kept in exclusive hold
status at the end of the preceding transaction) and not released since then.

When combined with command option 3 setting "Q" for the L4/N, L5, L6 and S4 commands,
the "H" option can be used to perform multiple transactions in the course of one read sequence,
without losing, at transaction end, the protection of the current record in the sequence against
concurrent updates by other users.

When combined with command option 3 setting "S" for the HI, L4-L6 and S4 commands, the
H option can be used to perform multiple transactions in the course of one multi-step, user-
defined operation, without losing, at transaction end, the protection of the held records against
concurrent updates by other users.

12. If command option 3 setting "S" is specified for an RI command, the target record is downgraded
from exclusive to shared hold status, provided it is in exclusive hold status for the user and has
not been updated in the current transaction. If the target record is not in exclusive hold status
for the user, the RI command has no effect. If the record has been updated in the current

35Command Reference

About Adabas Commands

transaction, response code 113 (ADARSP113) is returned (if ISN=0 was specified, response code
2, ADARSP002, is returned).

For an RI command without command option "S", the target record is released from shared or
exclusive hold status, provided it is in hold status for the user and has not been updated in the
current transaction. If the target record is not in hold status for the user, the RI command has
no effect. If the record has been updated in the current transaction, response code 113
(ADARSP113) is returned (if ISN=0 was specified, response code 2, ADARSP002, is returned).

13. If you put the same record in shared or exclusive hold status more than once, the record is kept
in hold status throughout the longest lifetime of any of the hold status requests. In particular:

a. If a record has been updated, it stays in exclusive hold status until the end of the transaction.
If the end of the transaction is triggered by a BT or ET command with the "M" (multifetch)
or "P" (prefetch) options, you can retain the record in exclusive hold status beyond the end
of the transaction. If the end of the transaction is triggered by a BT or ET command with the
"H" option, the record is downgraded to and retained in shared hold status beyond the end
of the transaction.

b. If a record has been put in exclusive hold status using an HI, L4-L6 or S4 command and has
not been updated, it stays in exclusive hold status until the end of the transaction or until its
release via an RI command, whichever occurs first. If the end of the transaction is triggered
by a BT or ET command with the "M" (multifetch) or "P" (prefetch) options, you can retain
the record in exclusive hold status beyond the end of the transaction. If the end of the trans-
action is triggered by a BT or ET command with the "H" option, the record is downgraded
to and retained in shared hold status beyond the end of the transaction.

c. If a record has been put in shared hold status using an HI, L4-L6 or S4 command with the
"S" option, it stays in shared hold status at least until the end of the transaction or until its
release via an RI command, whichever occurs first. If the end of the transaction is triggered
by a BT or ET command with the "H" or "M "or "P" options, you can retain the record in
shared hold status beyond the end of the transaction.

d. If a record has been put in shared hold status using an L4/N, L5, L6 or S4 command with the
"Q" option, it stays in shared hold status at least until the next read command in the read
sequence, the termination of the read sequence (e.g., via an RC command), the end of the
transaction, or until its release via an RI command, whichever occurs first.

If the end of the transaction is triggered by a BT or ET command with "H" or "M" or "P" option,
the user can retain the record in shared hold status beyond the end of the transaction.

e. If a record has been put in shared hold status using an L4-L6 or S4 command with the "C"
option, it stays in shared hold status only until the end of the command, unless it had already
been in hold status prior to the command.

A record remains in exclusive hold status until no reason exists anymore to keep it in this status
according to items a or b in the list above. A record remains in shared hold status until no
reason exists anymore to keep it in this status, according to rules c, d or e.

Command Reference36

About Adabas Commands

14. If you end a transaction using a BT or ET command without the "H", "M" or "P" options, all re-
cords held by your processing are released from their shared or exclusive hold status at that
time.

If you end a transaction using a BT or ET command with the "H" option, all records that were
put in shared hold status earlier (using the "Q" or "S" option) and not released since then are
kept in shared hold status for the next transaction. Records that were put in exclusive hold
status and not released since then are downgraded to shared hold status.

15. When you put a record in either shared or exclusive hold status, a new transaction starts for
you, if one is not is already active. The transaction is subject to the usual transaction timeout
logic.

If you keep records in shared or exclusive hold at the end of a transaction (via command option
"H", "M", or "P" on the BT or ET command), a new transaction starts immediately.

Caution: If an application uses the command option "H" too liberally, one user can prevent
a second user from putting a record in exclusive hold status indefinitely, across multiple
transactions of the first user, until the transaction of the second user incurs a timeout
and is backed out.

If an RI command releases the only record in (shared or exclusive) hold status for the user, the
user’s transaction ends. (Note that the record cannot have been updated).

Exclusive Control Updating

You may request exclusive control of one or more Adabas files to prevent other users from updating
the file during the execution of your user session. Adabas exclusive file control occurs in one of
the following ways:

■ UTI control is required by long-running, external utilities (such as the ADALOD utility) as well
as by short-running utility functions that are executed by the nucleus (for example, using the
Adabas Online System or ADADBS functions). It is not available to your application programs.
UTI file control is incompatible with any other use of the file; other users may not access or
update the file while it is under UTI file control.

■ EXF control can be specifically requested by your application programs. It is requested when
"EXF=file-number" is specified in the record buffer of an OP command and it is relinquished
by a CL command. EXF file control is incompatible with any other use of the file (except for
online save requests); other users may not access or update the file while it is under EXF file
control.

■ EXU control is required by external utilities (such as the ADAULD utility) and can be specifically
requested by your application programs. It is requested when "EXU=file-number" is specified
in the record buffer of an OP command and it is relinquished by a CL command. EXU file control
is incompatible with any other update access requests for the file (except for online save requests);
other users may access, but not update the file while it is under EXU file control.

37Command Reference

About Adabas Commands

When requested, EXF or UTI control is given only for a file if the file is not already in use by an-
other user or utility; EXU control is given only if the file is not already opened for update by an-
other user. If the exclusive control request is denied, Adabas returns response code 48 (ADARSP048).

In addition to preventing competitive updating of a file, exclusive control may be used to simplify
recovery procedures, in that the files may be restored regardless of other user activity.

The record hold commands need not (but may) be used for files for which the user has exclusive
control. Adabas disables hold logic processing for files being updated under exclusive file control.

Exclusive control users are assumed to be non-ET logic users, and therefore not controlled by the
ET timeout restrictions. However, if a non-ET user issues an ET command, that user automatically
becomes an ET logic user and is subject to transaction timeout restrictions if records are put in
hold status for any reason. That user retains exclusive control until either finished or timed out.

Users performing exclusive control updating can use the C1 command to request that a checkpoint
be taken. The C1 checkpoint acts as a reference point to either remove updates that have been
applied after the checkpoint, or to reapply updates that were applied before the checkpoint.

Note that a user (application) is accessing a file if the file is listed in the user's User Queue Element
(UQE) file list. The file list identifies each file the user (application) is using and the type of file
usage (ACC, EXU, EXF, or UPD). A file is added to the UQE file list when:

■ it is requested for UTI use by a utility or Adabas Online System;
■ it is specified in the record buffer of an OP command following one of the ACC, EXF, or EXU

keywords;
■ it is specified in the record buffer of an OP command with Command Option 1 set to "R" following

the UPD keyword; or
■ it is the target of a command without hold (ACC use of the file) or a command with hold (UPD

use of the file) by a user who did not start the Adabas session with an OP command specifying
Command Option 1 set to "R".

A file is deleted from the UQE file list when:

■ a utility or Adabas Online System function with UTI control over the file ends;
■ the user session ends; or
■ the user's current transaction ends (e.g., in the course of an ET or BT command) and the file had

not been added to the file list by the user's OP command.

For more information about file usage by utilities and possible resource conflicts, readUtility Usage
of Files and Databases and Possible Resource Conflicts, in the Adabas Operations Manual.

Command Reference38

About Adabas Commands

Non-Activity Time Limit

All users (access-only, ET logic, or exclusive control) are subject to a non-activity time limit. Dif-
ferent non-activity time limits may be defined for each user type with the ADARUN TNAA, TNAE,
and TNAX parameters (for more information, read Adabas Initialization (ADARUN Statement) in
Adabas Operations Manual).

A user-specific non-activity time limit may also be set with the OP command; the maximum is
controlled with the ADARUN MXTNA parameter. For more information, read OP Command:
Open User Session, elsewhere in this guide.

The following diagram summarizes the actions taken by Adabas when a user exceeds the non-
activity time limit.

Transaction and Non-Activity Time Limits

This section describes these Adabas actions in the following topics:

■ For an ET Logic User
■ For an Exclusive File Control User (EXF)

39Command Reference

About Adabas Commands

■ For an Access Only User

For an ET Logic User

For an ET logic user, Adabas performs the following processing:

■ It issues a backout transaction (BT) command for the current user transaction (if necessary).
■ It releases all records held during the transaction.
■ It deletes the user's file list in the UQE.
■ It deletes all command IDs for the user.

Adabas returns response code 9 (ADARSP009) to the user when the next command is issued if
one of the following conditions occur:

■ The user was not in ET status when the timeout occurred.
■ The user was in ET status when the timeout occurred and provided a non-blank user ID in the

OP command.

If the user was at ET status when the timeout occurred and did not provide a non-blank user ID
in the OP command, the user's UQE is deleted.

For an Exclusive File Control User (EXF)

For an exclusive file control user, Adabas deletes the user's file list in the UQE. As a result, the
user loses exclusive control of the file or files for which exclusive control was in effect.

In addition, all command IDs for the user are released and the user is changed to an access-only
user.

For an Access Only User

For an access-only user, Adabas deletes the user's file list in the UQE.

Command Reference40

About Adabas Commands

4 General Programming Considerations

■ Command, Format, and Global Format IDs ... 42
■ ISN List Processing ... 48
■ Using the Multifetch/Prefetch Feature .. 53

41

This section explains several concepts that are important to consider when programming calls.

Internal IDs can be specified to perform important functions during Adabas command execution.
In the control block of an Adabas direct call command, you can specify a:

■ Command ID (ACBCID or ACBXCID). This is a non-blank, non-zero value specified in the ACB
or ACBX that acts as an internal ID for the command processing. It can be used to eliminate re-
peated interpretation and conversion by successive commands that use the same format buffer.

■ Format ID. This is a separate four-byte internal ID for decoded format buffers defined either as
user-specific or globally available (a global format ID) to other users running on the same Adabas
nucleus.

The uses of these IDs is explored in detail in this section.

Also described in this section are the procedures used to retrieve ISNs from the Adabas Work and
the multifetch and prefetch options. Multifetch and prefetch options are used to reduce execution
time for programs that process large amounts of data in sequential order by reducing the number
of system commands needed to the complete the Adabas call.

Command, Format, and Global Format IDs

The command ID, specified in the Adabas control block (ACBCID or ACBXCID), performs important
functions during Adabas command execution. It is an automatically generated or user-specified
nonblank, nonzero value that performs the following functions:

■ It prevents repetitive format buffer decoding by acting as an internal ID for decoded record
formats.

■ It tags ISN lists generated by the Sx command for later access, and saves ISN list overflow.
■ It tags (identifies) sequential read processes through sets of records.

If desired, a separate internal format ID for decoded format buffers can be specified. This value is
identified by a flag in the high-order (leftmost) two bits of the first byte of the Additions 5 field.
Depending on the flag value, the format ID can be user-specific (an individual format ID) or
available to other users running on the same Adabas nucleus (a global format ID).

This section covers the following topics:

■ Specifying Command, Format, and Global Format IDs
■ Command IDs for Read Sequential Commands
■ Command and Format IDs for Read, Update, and Find Commands
■ Using Separate Command ID and Format IDs
■ Using a Global Format ID
■ Command IDs Used with ISN Lists
■ Automatic Command ID Generation

Command Reference42

General Programming Considerations

■ Releasing Command IDs
■ Internal Identification of Command IDs
■ Examples of Command ID Use

Specifying Command, Format, and Global Format IDs

The following table summarizes the Adabas control block (ACB or ACBX) settings required to
specify command IDs, format IDs, and global format IDs.

ACB or ACBX Field SpecificationsID
Additions 5 (ACBADD5 or ACBXADD5)Command ID (ACBCID or ACBXCID)

High-order, leftmost bits set to binary "00".Set this field to any non-blank, non-zero value.

Specifying a command ID value of
X'FFFFFFFF' causes Adabas to generate

Command
ID

command IDs automatically, beginning with
X'00000001' and incrementing by 1 for each
new command ID.

Set the high-order, leftmost two bits of the first
byte to binary "10"; set the fifth through eighth

Set this field to any non-blank, non-zero value.

Specifying a command ID value of
X'FFFFFFFF' causes Adabas to generate

Format ID

bytes to the format ID. The ID may not start with
X'FE' or X'FF'.

In non-mainframe Adabas environments, set the
first byte of the Additions 5 field to be any
lowercase letter.

command IDs automatically, beginning with
X'00000001' and incrementing by 1 for each
new command ID.

Set the high-order, leftmost two bits of the first
byte binary "11"; set the remaining bytes to the

Set this field to any non-blank, non-zero value.

Specifying a command ID value of
X'FFFFFFFF' causes Adabas to generate

Global
Format ID

ID. All eight bytes of the Additions 5 field are
used as a global format ID.

In mainframe environments, the first byte may
be assigned in the hexadecimal range E2 through

command IDs automatically, beginning with
X'00000001' and incrementing by 1 for each
new command ID.

E9 (characters S-Z); all other ranges are reserved
for use by Software AG.

In non-mainframe Adabas environments, the
first byte may be assigned in the hexadecimal
range 51-5A (characters S-Z).

Notes:

1. When B'00' is set in the high-order (leftmost) two bits of the first byte of the Additions 5 field,
the command ID is automatically used as the format ID.

43Command Reference

General Programming Considerations

2. When B'10' is set in the high-order (leftmost) two bits of the first byte of the Additions 5 field,
separate values are used for the command ID and the format ID, and the fifth through eighth
bytes of the Additions 5 field are used as the format ID.

3. When B'11' is set in the high-order (leftmost) two bits of the first byte of the Additions 5 field,
separate values are used for the command ID and the format ID, the format ID is treated as a
global format ID and all eight bytes of the field are used as the global format ID.

4. Adabas does not verify the assignment of global format IDs. It is your responsibility to ensure
that only global format IDs in the allowable range are assigned. Software AG can neither enlarge
the range of global format IDs available to users nor make any changes to its products to resolve
a global format ID assignment problem.

Command IDs for Read Sequential Commands

The read sequential commands (L2/L3, L5/L6, L9) require that a command ID be specified. The
command ID is needed by Adabas to return the records to the user in the proper sequence. These
command IDs are maintained by Adabas in the table of sequential commands.

The command ID value provided with these commands is also entered and maintained in the in-
ternal format buffer pool unless a separate format ID is provided, as described in the sectionUsing
Separate Command and Format IDs. The command ID is released by Adabas when an end-of-file
condition is detected during read sequential processing.

Command and Format IDs for Read, Update, and Find Commands

The read commands (L1-L6, L9) and update commands (A1/A4, N1/N2) require a format buffer
that identifies the fields to be read or updated. This format buffer must be interpreted and converted
into an internal format buffer by Adabas. Using a valid command ID avoids repeated interpretation
and conversion by successive commands that use the same format buffer.

A read or update command with a valid command ID causes Adabas to check whether the com-
mand ID is in the internal format buffer pool. If the command ID is present, its internal format
buffer is used, and no format buffer reinterpretation is required.

Note: When reading or updating a series of records that use the same format buffer, pro-
cessing time can be significantly reduced if you use a command ID.

Internal format buffers (and the format IDs) resulting from L9 commands can only be used by
other L9 commands. Moreover, L9 commands cannot use non-L9 internal format buffers / format
IDs. This is also true of global format buffers (and global format IDs) and L9 commands.

When reading and updating the same fields (for example, L5 followed by A1), Software AG also
recommends that the same command ID be used for both commands (see the A1/A4 and N1/N2
commands for restrictions on using the same format buffer for reading and updating).

Command Reference44

General Programming Considerations

If the read-first-record option is used with an S1/S2/S4 command and a command ID is specified,
the command ID and the resulting internal format buffer are also stored in the internal format
buffer pool.

If the internal format buffer pool is full and a command is received with a command ID without
an internal format in the pool, Adabas overwrites the longest unused entry in the pool with the
new interpreted format ID. If a command is subsequently received that uses the deleted command
ID, the reinterpreted format buffer for that command ID replaces the next-longest unused entry
in the pool. For this reason, programs must not change the format buffer between successive read
or update commands with the same command ID. Note, however, that use of a command ID does
not guarantee that the format buffer is not reinterpreted.

Using Separate Command ID and Format IDs

It is possible to use separate values for command IDs and format IDs. As long as the high-order
(leftmost) two bits of the Additions 5 field are set to binary '00', the command ID is automatically
used as the format ID. If, however, the Additions 5 field's high-order two bits are binary '10', the
fifth through eighth bytes (Additions 5 + 4(4)) of the field are used as the format ID. Note that the
ID may not start with X'FE' or X'FF'.

Note: To identify the format ID as separate from the command ID, non-mainframe Adabas
environments expect the first byte of the Additions 5 field to be any lowercase letter. When
using separate format IDs in a heterogeneous environment, it is important to identify them
alike across all platforms used in the system.

Using a Global Format ID

Particularly in an online environment, multiple users of the same program often read or update
the same fields of a file and therefore use identical format buffers.

■ When you use the individual format ID option, Adabas must store the same internal format
buffer for each user.

■ When you use the global format ID option, a single internal format buffer is shared by many
users and the need for Adabas to overwrite internal format buffer pool entries is reduced. This
option identifies the format buffer to each user by format ID only, rather than by both format
ID and terminal ID. A command ID cannot be designated as a global format ID; in addition, the
restriction of L9 formats and their IDs being valid only for use by other L9 commands also applies
to global formats and IDs.

The global format ID option is activated by setting the high-order (leftmost) two bits of the first
byte of the Additions 5 field to binary '11' (see Specifying Command, Format, and Global Format
IDs). This causes all eight bytes of Additions 5 to be recognized as the global format ID.

Note: To identify the format ID as global in non-mainframe Adabas environments, the first
byte of the Additions 5 field must be set to be any digit or uppercase letter. When using

45Command Reference

General Programming Considerations

global format IDs in a heterogeneous environment, it is important to identify them alike
across all platforms used in the system.

The first byte of the global format ID may be assigned in the hexadecimal range E2-E9; characters
S-Z. All other ranges are reserved for use by Software AG.

The allowable range of values for global format IDs in non-mainframe Adabas environments is
hexadecimal 51-5A; characters S-Z.

Caution: Adabas does not verify the assignment of global format IDs. It is the user's respons-
ibility to ensure that only global format IDs in the allowable range are assigned. Software
AG can neither enlarge the range of global format IDs available to users nor make any
changes to its products to resolve a global format ID assignment problem.

A global format ID can be deleted using the RC command and specifying the global format ID in
the Additions 5 field, as described.

Command IDs Used with ISN Lists

If a command ID is specified for any command which results in an ISN list (S1,S2,S4,S5,S8,S9), the
command ID value may be used to identify the list at a later time.

■ If the save-ISN-list option is used for an Sx command, a command ID must be provided. The
save-ISN-list option causes the entire ISN list to be stored on the Adabas Work. ISNs from the
list may subsequently be retrieved by an Sx command or by using the GET NEXT option of the
L1/L4 command.

■ If the save-ISN-list option is not used and an ISN buffer overflow condition occurs (the entire
ISN list cannot be inserted in the ISN buffer), the overflow ISNs will be stored on the Adabas
Work only if a command ID value was used. In this case, the command ID and the ISN list it
identifies will be released by Adabas when all the ISNs have been returned to the user.

Automatic Command ID Generation

Automatic command ID generation may be invoked by specifying a command ID value of
X'FFFFFFFF'. This causes the Adabas nucleus to generate command IDs automatically, beginning
with X'00000001' and incrementing by 1 for each new command ID. Automatic command ID
generation may not be desirable in all cases; refer to the section Command and Format IDs for
Read, Update, and Find Commands.

Command Reference46

General Programming Considerations

Releasing Command IDs

You can release a command ID and its associated entries (or ISN list) with an RC command, a CL
command, or by using the release-CID option of any Sx command (S1, S2, S4, S5, S8, S9).

The RC command contains options that allow you to release only those command IDs contained
in the internal format buffer pool, the table of sequential commands, or the table of ISN lists.

The CL command causes all the command IDs currently active for you to be released.

The release-CID option of an Sx command causes the CID specified to be released as the first action
taken by the command.

Internal Identification of Command IDs

Each command ID entry is identified by Adabas using an internal user ID together with the com-
mand ID value. As a result, one user need not be concerned with the command ID values in use
by another. However, a user should avoid using the same command ID value for different com-
mands, particularly if the command ID is used for sequential read (L2/L5, L3/L6, L9) commands
and Sx commands.

Examples of Command ID Use

This section covers the following topics:

■ Example 1 : Find / Read Processing
■ Example 2 : Find / Read Using the GET NEXT Option
■ Example 3 : Read / Update Processing
■ Example 4 : Read / Find Processing

Example 1 : Find / Read Processing

A set of records is to be selected and read. The same format buffer is to be used for each record
being read.

FIND (S1) CID=EX1A
READ (L1) CID=EX1B
READ (L1) CID=EX1B

47Command Reference

General Programming Considerations

Example 2 : Find / Read Using the GET NEXT Option

A set of records is to be selected and read using the GET NEXT option of the L1/L4 command.

FIND (S1) CID=EX2A
READ (L1) CID=EX2A
READ (L1) CID=EX2A
READ (L1) CID=EX2A

Example 3 : Read / Update Processing

A file is to be read and updated in sequential order. The same format buffer is to be used for
reading and updating.

READ PHYS SEQ (L5) CID=EX3A
UPDATE (A4) CID=EX3A
READ PHYS SEQ (L5) CID=EX3A
UPDATE (A4) CID=EX3A

Example 4 : Read / Find Processing

A file is to be read in logical sequence. A find command is to be issued to a second file using the
value of a field read from the first file, and the records that result from the find command are then
to be read using the GET NEXT option.

READ LOG SEQ (L3) CID=EX4A
FIND (S1) CID=EX4B
READ (L1) CID=EX4B
READ (L1) CID=EX4B
READ LOG SEQ (L3) CID=EX4A
FIND (S1) CID=EX4B
READ (L1) CID=EX4B

ISN List Processing

This section discusses the procedures used to retrieve ISNs from the Adabas Work data set. If the
GET NEXT option of the L1/L4 command is used to read the records that correspond to the ISNs
contained in the ISN list, ISN handling as discussed in this section is performed automatically by
Adabas, and the user need not make use of these procedures.

The notation Sx command as used in this section refers to any command that may result in an ISN
list (S1/S2/S4/S5/S8/S9).

This section covers the following topics:

■ Storage of ISN Lists
■ Retrieval of ISN Lists

Command Reference48

General Programming Considerations

■ ISN List Processing Examples

Storage of ISN Lists

Adabas stores ISNs on the Work data set under either of the following conditions:

■ An Sx command is issued, a nonblank nonzero command ID is specified, and the save-ISN-list
option is specified. The entire resulting ISN list is stored.

■ An Sx command is issued, a non-blank non-zero command ID is specified, the save-ISN-list
option is not specified, and the resulting ISN list contains more ISNs than can be inserted in the
ISN buffer. Only the overflow ISNs are stored in this case.

If an Sx command is issued with blanks or binary zeros in the command ID field, Adabas does
not store any ISNs on the Adabas Work.

Retrieval of ISN Lists

You can retrieve ISNs stored on the Adabas Work data set by issuing an Sx command in which
the same command ID value is used as was used for the initial Sx command. When an Sx command
with an active command ID value is issued, Adabas uses this as an indicator that you are requesting
ISNs from an existing ISN list. Adabas locates the ISN list identified by the specified command
ID and inserts the next group of ISNs in the ISN buffer. As many ISNs are returned as can fit in
the ISN buffer.

This section covers the following topics:

■ Save-ISN-List Option Specified
■ Save-ISN-List Option Not Specified
■ Using the ISN Quantity Field of the Control Block

Save-ISN-List Option Specified

If the save-ISN-list option was specified with the Sx command used to create the ISN list, Adabas
uses the ISN specified in the ISN lower limit field to determine the next group of ISNs to be re-
turned.

The next group begins with the first ISN that is greater than the ISN specified in ISN lower limit.

■ If binary zeros are specified, the next group begins with the first ISN in the list.
■ If a value is specified which is greater than any ISN in the list, response code 25 (ADARSP025)

is returned.

If the ISN list was created using an S2 command, the ISN specified must be present in the ISN list.
Use of the save-ISN-list option thus permits the user to skip forward and backward within an ISN
list. This is useful for programs that must perform forward and backward screen paging.

49Command Reference

General Programming Considerations

Save-ISN-List Option Not Specified

If the save-ISN-list option was not specified with the Sx command used to create the ISN list,
Adabas returns the ISNs in the order in which they are positioned in the list, and deletes each
group from the Work when it has been inserted in the user's ISN buffer. The command ID used
to identify the list is released when the last group of ISNs has been returned to the user. The ISN
lower limit field is not used in this case, unless processing is to begin above a specified ISN range.

Using the ISN Quantity Field of the Control Block

The user can determine when all of the ISNs in a list have been retrieved using the ISN quantity
field of the control block.

■ The first Sx command returns the total number of records that satisfy the search criteria in this
field.

■ In addition, each subsequent Sx command used to retrieve ISNs from the Adabas Work uses
this field to store the number of ISNs that were inserted in the ISN buffer.

ISN List Processing Examples

This section covers the following topics:

■ Example 1 : Using Sx Command with L1/L4 Commands with GET NEXT Option
■ Example 2 : Using the Save-ISN-List Option
■ Example 3 : With ISN Overflow Handling
■ Example 4 : Without ISN Overflow Handling

Example 1 : Using Sx Command with L1/L4 Commands with GET NEXT Option

Sx command
L1/L4 command with 'GET NEXT' option
L1/L4 command with 'GET NEXT' option
L1/L4 command with 'GET NEXT' option

The following examples show various results according to the size of the ISN buffer. Positioning
for ISN list is defined by ISN lower limit.

1. ISN Buffer Length = 0
read the ISN list to the work area

2. L1/L4 with GET NEXT
result: first ISN's record ↩

1. ISN Buffer Length = 4
read first ISN with S1

Command Reference50

General Programming Considerations

2. L1/L4 with GET NEXT
result: second ISN's record

1. ISN Buffer Length = 12
read first ISN with S1
first 3 ISNs are returned in ISN buffer

2. L1/L4 with GET NEXT
result: read fourth/fifth/sixth ISNs' records

Example 2 : Using the Save-ISN-List Option

Initial Sx call using save-ISN-list option:

Command = Sx
Command ID = SX01 (save-ISN-list option)
Command Option 1 = H
ISN Lower Limit = 0
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 7 (total matching ISNs in stored list)

Resulting ISN list: (all ISNs are stored on Work):

8 12 14 15 24 31 33

Resulting ISN buffer:

8 12 14 15 24

Subsequent Sx call:

Command = Sx
Command ID = SX01
ISN Lower Limit = 24 (limit ISN choice to 24, +)
ISN Buffer Length = 20 (space for 5 ISNs from ISN list)
CALL ADABAS ...

Resulting ISN quantity = 2 (total ISNs returned in ISN buffer)

Resulting ISN buffer:

31 33 14 15 24.... remainder of ISN buffer unchanged....

Subsequent Sx call:

Command = Sx
Command ID = SX01
ISN Lower Limit = 0

51Command Reference

General Programming Considerations

ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 7

Resulting ISN buffer:

8 12 14 15 24

Example 3 : With ISN Overflow Handling

Initial Sx call (save-ISN-list option not used):

Command = Sx
Command ID = SX02
Command Option 1 = blank (no option)
ISN Lower Limit = 0
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 7 (total ISNs returned in ISN buffer and stored on Work)

Resulting ISN list: (only ISNs 31 and 33 are stored on Work)

8 12 14 15 24 31 33

Resulting ISN buffer:

8 12 14 15 24

Subsequent Sx call:

Command = Sx
Command ID = SX02
ISN Lower Limit (not used)
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 2

Resulting ISN buffer:

31 33 14 15 24

ISNs 31 and 33 are deleted from the Adabas Work, and command ID SX02 is released. A subsequent
Sx call with command ID 'SX02' will be processed as an initial Sx call since 'SX02' was released
after the last ISNs were returned to the user.

Although the ISN lower limit is not specified in this example, a non-zero value would also return
only those ISNs greater than the specified value in the ISN buffer, just as in example 2.

Command Reference52

General Programming Considerations

Example 4 : Without ISN Overflow Handling

Initial Sx call with blank or zero command ID:

Command = Sx
Command ID = blanks or binary zeros
Command Option 1 = blank (no option)
ISN Lower Limit = 0 (no lower limit specified)
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 7 (total matching ISNs)

Resulting ISN list: none are stored on Work

8 12 14 15 24 31 33

Resulting ISN buffer:

8 12 14 15 24

A subsequent Sx call with command ID equal to blanks or binary zeros and ISN lower limit equal
to 0 will result in a reexecution of the same find command with the same result as the initial call.
A subsequent call with command ID equal to blanks or binary zeros and ISN lower limit = 24
causes reexecution of the Sx command. The result will be ISN quantity of 2 with ISNs 31 and 33
in the ISN buffer.

Using the Multifetch/Prefetch Feature

Programs that process large amounts of data in sequential order require frequent storage access,
causing long execution times. The Adabas multifetch and prefetch options significantly reduce
the execution times of such programs by reducing the number of system commands needed to
complete Adabas calls.

The multifetch and prefetch options reduce execution time in almost all normal applications;
however, the specific advantage depends on the type of application program.

Note: In Adabas 8, ACBX interface calls support the multifetch but not the prefetch feature.
However, the prefetch feature is still supported for ACB interface direct calls; so, if your
application uses ACB interface direct calls, you can continue to use the prefetch feature in
those calls only.

This section covers the following topics:

■ Multifetching Versus Prefetching
■ Invoking Multifetch/Prefetch
■ Multifetch Operation Processing

53Command Reference

General Programming Considerations

■ Prefetch Operation Processing
■ The Effects of ISN Changes on Prefetched or Multifetched Records

Multifetching Versus Prefetching

The multifetch and prefetch features reduce the communication overhead between the application
program and the Adabas nucleus. Multifetch operations store multiple records that result from a
single call and then transfer the records to the user in the record buffer. Without multifetch oper-
ations, multiple Adabas calls would be necessary to obtain the same result. When anACB interface
direct call is performed, the record descriptor elements (RDEs) of multifetched records are stored
in the ISNbuffer; when anACBX interface direct call is performed, the record descriptor elements
(RDEs) of multifetched records are stored in multifetch buffers.

Multifetch operation is similar to prefetch; multifetch comprises prefetch functions and more.
Releases of Adabas prior to Adabas 8 support both prefetch and multifetch operations; however,
new programs should use the multifetch (M) option, which is common across all Adabas platforms.
In addition, the prefetch option is no longer supported for releases of Adabas 8 or later.

Invoking Multifetch/Prefetch

If you are using only ACB interface direct calls in your application, you can invoke prefetch or
multifetch processing using one of two methods. How they are invoked determines where the
preread records are held for processing and therefore what buffer space must be allocated.

■ The first method, specifying the PREFETCH=YES (for multifetch processing) or OLD (for prefetch
processing) parameter on the ADARUN statement, is the most efficient and requires no applic-
ation programming changes. These parameters provide control for batch jobs.

When PREFETCH=YES or OLD, Adabas uses a double-buffering technique that allows processing
of one group of records while the following group is being fetched.

For more information about the prefetch/multifetch ADARUN parameters, which include
PREFETCH, PREFICMD, PREFIFIL, PREFNREC, PREFSBL, PREFTBL, PREFXCMD, and PRE-
FXFIL, read Adabas Initialization (ADARUN Statement), in the Adabas Operations Manual.

Note: PREFETCH=OLD is available for the purpose of upwards compatibility. Some
newer Adabas features are no longer supported. For example, attempts to pass APLX
multiple buffers with this access will return a response code 22 (ADARSP022), subcode
51. We recommend you use PREFETCH=YES if such new features must be supported.

■ The second method is to specify the M or O option (for multifetch processing) in the L1/L4,
L2/L5, L3/L6, L9, BT or ET commands or the P option (for prefetch processing) in the L1/L4,
L2/L5, L3/L6 or L9 commands. Use of the command-level options M, O, and P are provided in
the documentation for individual commands, as well as in Multifetch Operation Processing
and Prefetch Operation Processing, elsewhere in this section.

Command Reference54

General Programming Considerations

If you use ACBX interface direct calls in your application or if you mix ACB and ACBX interface
direct calls in your application, you can invoke multifetch processing only by specifying the M or
O option in the L1/L4, L2/L5, L3/L6, L9, BT or ET commands. Use of the command-level options
M and O are provided in the documentation for individual commands, as well as in Multifetch
Operation Processing, elsewhere in this section.

Note: Prefetch processing is not supported for applications that use ACBX interface direct
calls.

Multifetch Operation Processing

Multifetch operations are compatible with the corresponding operations on non-mainframe plat-
forms, and can be used across platforms in heterogeneous environments.

Multifetching can be used with the following Adabas commands:

■ L1/L4 with I or N option (read by ISN, find with GET NEXT)
■ L2/L5 (read physical)
■ L3/L6 (read logical by descriptor)
■ L9 (histogram)
■ BT (backout transaction)
■ ET (end of transaction)

For all read calls (Lx), multifetch returns a group of records in the record buffer and a description
of these records in either the caller's ISN buffer (for ACB interface direct calls) or the caller's
multifetch buffer (for ACBX interface direct calls). The maximum number of records is limited
by the following values, which are specified in one of Adabas control blocks (ACB or ACBX) or
the ABD, as appropriate:

■ User-defined maximum as input to the call
■ Record buffer length
■ ISN buffer length (ACB interface direct calls)
■ Multifetch buffer length (ACBX interface direct calls)

This section covers the following topics:

■ READ (Lx) Multifetch Processing

55Command Reference

General Programming Considerations

■ BT / ET Multifetch Processing

READ (Lx) Multifetch Processing

If you are making a direct call for a read command and you want to use multifetch processing,
certain fields must be set prior to the call, as follows:

Where to Set It
What to Set ACBX Interface Direct CallACB Interface Direct Call

ABDACBXACB

---Command code
(ACBXCMD)

Command code
(ACBCMD)

Supported command type and
options (see the command list in
section Multifetch Operation
Processing)

---ISN lower limit
(ACBXISL)

ISN lower limit (ACBISL)Maximum number of values to
return, or 0 to multifetch all values.

---Command Option 1
(ACBXCOP1)

Command Option 1
(ACBCOP1)

Set to "M" or O (see notes below)

Buffer size
(ABDXSIZE) in the
record buffer ABD

---Record buffer length
(ACBRBL)

Length of the record buffer

------ISN buffer length
(ACBIBL)

Length of the ISN buffer

Buffer size
(ABDXSIZE) in the
multifetch buffer ABD

------Length of the multifetch buffer

Notes:

1. Command option "M" indicates that the multifetch option is to be used. Command option "O" selects
both the multifetch option ("M") and the existing command option "R" (returns Adabas response code
145 (ADARSP145) for a requested ISN that is already being held by another user) for the L4/L5/L6
commands.

2. For an L1 command, either the command option "I" (ISN sequence) or option "N" (GET NEXT option)
must be specified with the multifetch command option "M" or "O"; otherwise, Adabas response code 22
(ADARSP022) occurs.

The contents of the returned record buffer and ISN or multifetch buffer are as follows:

Record Buffer: record1,record2, ... ,recordn

Records are returned in the record buffer as usual. If more than one record is returned, all records
are placed adjoining in the record buffer.

Command Reference56

General Programming Considerations

Descriptive elements for these records are returned in the ISN or multifetch buffer. The first (left-
most) fullword of the ISN or multifetch buffer contains the number of elements that follow (signed
integer, four bytes). Following this count are the record descriptor elements, each 16 bytes long:

ISN or Multifetch Buffer: RDE count{RDE1 }...

A record descriptor element (RDE) has the structure shown in the following table.

ContentLengthFormat

Length of this record in record buffer. Records may have different lengths.4 bytesAll fields
unsigned integer,
right aligned

Adabas response for this record. If a nonzero response is given, no record is
stored in the record buffer.

4 bytes

ISN for this record.4 bytes

(L9 only) ISN quantity: value count for this descriptor.4 bytes

If an error is detected while the first record is being processed, the error response is returned in
the response code field of the appropriate Adabas control block (ACBRSP or ACBXRSP).

If an error is detected while a record other than the first is being processed, the response code is
returned in the corresponding record descriptor element in the ISN or multifetch buffer.

BT / ET Multifetch Processing

By default, Adabas releases all currently held ISNs for the user issuing a BT/ET command. With
the multifetch option, only a subset of the records held by the current transaction is released. The
records to be released from hold status are specified in the ISN buffer if you are using the ACB
direct call interface; if you are using the ACBX direct call interface, the records to be released
from hold status are specified in the multifetch buffer. The first fullword in the ISN or multifetch
buffer specifies the number of 8-byte elements following.

You can activate the command-level multifetch feature for the ET/BT command call by setting the
following fields of the Adabas control block as indicated:

If you are making a direct call for an ET or BT command and you want to use multifetch processing,
certain fields must be set prior to the call, as follows:

Where to Set It
What to Set ACBX Interface Direct CallACB Interface Direct Call

ABDACBXACB

---Command code
(ACBXCMD)

Command code (ACBCMD)"BT" or "ET"

---Command Option 1
(ACBXCOP1)

Command Option 1
(ACBCOP1)

"M"

------ISN buffer length (ACBIBL)Length of the ISN buffer

57Command Reference

General Programming Considerations

Where to Set It
What to Set ACBX Interface Direct CallACB Interface Direct Call

ABDACBXACB

Buffer size (ABDXSIZE)
in the multifetch buffer
ABD

------Length of the multifetch
buffer

Note: If multifetch is set with ADARUN PREFETCH=YES, the "P" option (prefetch) is
automatically used for ET and BT commands; the "M" option (multifetch) is automatically
used for all other commands.

The ISN or multifetch buffer must contain the following values:

ISN or Multifetch Buffer: ISN descriptor count {ISN descriptor element (See table ↩
below)} ...

An ISN descriptor element has the structure shown in the following table.

ContentLengthFormat

Adabas file number4 bytesBinary, right aligned

ISN4 bytes

Prefetch Operation Processing

Prefetch is effective for programs that call sequential commands (L1/L4 with GET NEXT, L2/L5,
L3/L6, L9) using the ACB direct call interface. It is not available for use with ACBX direct calls.

When using prefetch, a series of sequential read commands requires only one Adabas call. This
single call causes several records to be read at a time from the database. This results in a significant
reduction in interregion communication overhead and also permits the overlapped operation of
the user program and the Adabas nucleus.

Note: If the hold option is used (L4/5/6 commands), Adabas places records in hold status
when they are read into the prefetch buffer area. This means that if an ET command is issued
before all records have been processed, all records (including those not yet processed) are
released. The hold ISN option of the ET or HI command can be used to place any such records
back into hold status.

Specific commands or files can be excluded from prefetch option processing by specifying the files
or commands to be excluded with the respective ADARUN PREFXFIL or PREFXCMD parameters.

This section covers the following topics:

■ Invoking Prefetch Operation with Command Option P

Command Reference58

General Programming Considerations

■ Additional Prefetch Programming Considerations

Invoking Prefetch Operation with Command Option P

When enabling prefetch with the command-specific P option, Adabas uses the ISN buffer defined
within the user program as the intermediate storage area for the pre-read records. Each record in
the ISN buffer is preceded by a 16-byte header:

UseByte

Length of record (including length definition). A length of zero indicates the end of data.1-2

Nucleus response code3-4

Nucleus internal ID (if the response code is neither zero nor 3, a subcode is returned in the rightmost
2 bytes)

5-8

ISN of the record9-12

ISN quantity (L9 command only)13-16

The first record is provided by Adabas in the record buffer (without the 16-byte header). The user
must then process additional records from the ISN buffer. When end-of-file occurs, the header of
the last record in the ISN buffer contains Adabas response code 3 (ADARSP003), and the two-byte
end character contains binary zeros.

Additional Prefetch Programming Considerations

The following are points to consider when using the prefetch option:

■ The record buffer size should be set just large enough to contain the largest expected decom-
pressed record.

■ If the sequential pass of a file is not to be continued until end-of-file condition is detected, be
sure to issue an RC command to release the command ID used whenever file processing has
been completed.

■ The command ID should not be changed during file processing.
■ When using a command option "P" to invoke prefetch operation, the ISN buffer size must be a

multiple of the total of the record buffer length plus 16, and a final two bytes for an end character:

59Command Reference

General Programming Considerations

ISN Buffer Size for Prefetch Programming

The Effects of ISN Changes on Prefetched or Multifetched Records

If a prefetched or multifetched record is updated, the following processing is applied:

Important: You should not modify a file (especially the descriptor being accessed) while
reading or locating (finding) records in the same file.

■ Any update-protection only applies to the active session; anything done by other sessions is not
included.

■ If an ISN is modified for a record that has been prefetched or multifetched, it is re-fetched (via
the L1 command) when the program finally gets to it.

■ If an ISN is deleted for a record that has been prefetched or multifetched, it is skipped.
■ If an ISN is inserted for a record that has been prefetched or multifetched, it is skipped. For this

reason, we do not recommend that you modify files while reading or locating records in the
same file.

Command Reference60

General Programming Considerations

II Calling Adabas

61

62

5 Calling Adabas

■ How Adabas Distinguishes Between ACB and ACBX Direct Calls ... 64
■ Specifying an ACB Interface Direct Call ... 65
■ Specifying an ACBX Interface Direct Call ... 66
■ Mixing ACB and ACBX Direct Calls ... 68

63

This chapter describes the available procedures you can use to call Adabas to execute an Adabas
command. Adabas direct calls use the standard calling procedure provided by the host language
(for example, Assembler, COBOL, Fortran, C, or PL/I).

Note: Examples of Adabas calls in a variety of host languages are provided with the pro-
gramming examples in Programming Examples, elsewhere in this guide.

There are two kinds of Adabas direct calls, one for each of the different control block interfaces
supported by Adabas:

■ The ACB direct call interface is the classic direct call interface, used for Adabas releases prior to
Adabas version 8. Direct calls in this format require the use of the classic Adabas control block
(ACB). If you have been using releases of Adabas prior to Adabas 8, the direct calls used by
your applications use the ACB direct call interface.

■ The ACBX direct call interface is the extended direct call interface, used for Adabas releases
starting with Adabas 8. Direct calls in this format require the use of the extended Adabas control
block (ACBX). If you have purchased and installed Adabas 8 (or later), you can use this format
of direct call in your applications. Otherwise, you cannot.

Adabas version 8 fully supports both the ACB and the ACBX direct call interfaces:

■ Existing application programs that use the ACB direct call interface can continue to run in the
same way, without change.

■ In addition, you can decide whether you want to use the ACBX-based or ACB-based direct call
interface in your application programs, on a call-by-call basis. The same program can use both
interfaces.

The control block and the related buffers specify which Adabas command is to be executed and
provide any additional information (parameters or operands) required for the command. The
pointer to the appropriate control block (ACB or ACBX) must always be the first operand specified
in an Adabas call.

How Adabas Distinguishes Between ACB and ACBX Direct Calls

Any application program can make both ACB and ACBX direct calls. The control block (ACB or
ACBX) is the first parameter in Adabas calls using either the ACB or ACBX interfaces. Adabas 8
determines which control block is used for a call by the presence of a value starting with the letter
"F" at offset 2 of the control block. Offset 2 in the ACB is the command code field (ACBCMD), but
since there is no valid F* Adabas command, no valid direct call using the ACB will contain a value
starting with the letter "F" at offset 2. Offset 2 in the ACBX is a new version field (ACBXVER)
identifying the new ACBX.

The presence or absence of an "F" at offset 2 determines how Adabas 8 interprets the direct call.
If an "F" is specified in offset 2, Adabas interprets the control block and remaining direct call

Command Reference64

Calling Adabas

parameters as an ACBX call; if an "F" is not specified in offset 2, Adabas interprets the control block
and remaining direct call parameters as an ACB call. If, for some reason, the remaining control
block fields and direct call parameters are not specified correctly for the type of call indicated by
the presence or absence of an "F" at offset 2 (for example, if ACB parameters are specified for an
ACBX call), errors may result or the results of the call may not be as expected. For more information
about how direct calls are specified using the ACB or the ACBX, read Specifying an ACB Interface
Direct Call or Specifying an ACBX Interface Direct Call, elsewhere in this guide.

Specifying an ACB Interface Direct Call

When making a direct call using the ACB interface, syntax such as the following should be used
(this is a COBOL example):

CALL 'ADABAS' USING acb-control-block-name
[format-buffer]
[record-buffer]
[search-buffer]
[value-buffer]
[ISN-buffer]

In an ACB direct call, Adabas expects buffers to be specified in the order shown in this syntax. If
no buffers are required for a call, no buffers need be specified. However, if a given call does not
require a format buffer, but does require one of the other buffers (for example, a record buffer), a
dummy (or blank) format buffer must be specified prior to the record buffer. Likewise, if a call
requires only an ISN buffer, dummy format, record, search, and value buffers must be supplied
as well.

The following table describes each of the italicized, replaceable items in this syntax. For more in-
formation about the format of the ACB control block and Adabas buffers, read Adabas Control
Block (ACB) andDefining Buffers, elsewhere in this guide. For information about the relationships
between different ABD types, read Understanding the Different Buffer Types, elsewhere in this
guide.

WithReplace

The pointer to the Adabas Control Block (ACB) to use for the call.acb-control-block-name

The name of or pointer to the format buffer to use for the call. Only one format
buffer can be specified in a single ACB direct call.

format-buffer

The name of or pointer to the ISN buffer to use for the call. Only one ISN
buffer can be specified in a single ACB direct call.

ISN-buffer

The name of or pointer to the record buffer to use for the call. Only one record
buffer can be specified in a single ACB direct call.

record-buffer

The name of or pointer to the search buffer to use for the call. Only one search
buffer can be specified in a single ACB direct call.

search-buffer

65Command Reference

Calling Adabas

WithReplace

The name of or pointer to the value buffer to use for the call. Only one value
buffer can be specified in a single ACB direct call.

value-buffer

Specifying an ACBX Interface Direct Call

The way direct calls are made in your applications when using the new ACBX interface is different
than when using the classic ACB interface. In addition, the calls are different for mainframe applic-
ations and open systems applications. This section covers the following topics:

■ Specifying an ACBX Interface Direct Call in Mainframe Applications
■ Specifying an ACBX Interface Direct Call in Open System Applications

Specifying an ACBX Interface Direct Call in Mainframe Applications

The way direct calls are made in your applications when using the new ACBX interface is different
than when using the classic ACB interface. When making a direct call using the ACBX interface
in mainframe applications, syntax such as the following should be used (this is a COBOL example):

CALL 'ADABAS' USING acbx-control-block-name
reserved-fullword
reentrancy-token

[format-buffer-ABD record-buffer-ABD [multifetch-buffer-ABD]]...
[search-buffer-ABD]
[value-buffer-ABD]
[ISN-buffer-ABD]
[performance-buffer-ABD]
[user-buffer-ABD]

Each ABD either directly precedes its associated buffer or contains a pointer to the buffer. It effect-
ively represents the buffer.

ABDs can be specified in any sequence in an ACBX interface direct call. However, if an ABD requires
a matching ABD of another type, Adabas will match them sequentially. For example, if three
format buffer ABDs and three record buffer ABDs are included in the call, the first format buffer
ABD in the call is matched with the first record buffer ABD in the call, the second format buffer
ABD is matched with the second record buffer ABD, and the third format buffer ABD is matched
with third record buffer ABD.

If unequal numbers of match-requiring ABDs are specified, Adabas will generate a dummy ABD
(with a buffer length of zero) for the missing ABD. For example, if three format buffer ABDs are
specified, but only two record buffer ABDs are specified, a dummy record buffer ABD is created
for use with the third format buffer ABD. If you would prefer that the dummy record buffer ABD
be used for the second format buffer ABD instead, you must specify the dummy record buffer
ABD yourself prior to the record buffer ABD to be used by the third format buffer ABD.

Command Reference66

Calling Adabas

For commands where data in the record buffer is not described by a format specification in the
format buffer, no format buffer segments need be specified; if any are specified, they are ignored.
This applies to only a few commands; the most prominent of them is OP.

The following table describes each of the italicized, replaceable items in this syntax. For more in-
formation about the format of the extended Adabas control block (ACBX), Adabas buffer descrip-
tions (ABDs), and Adabas buffers, read Extended Adabas Control Block (ACBX), Adabas Buffer
Descriptions (ABDs), and Defining Buffers, elsewhere in this guide. For information about the
relationships between different buffer types, read Understanding the Different Buffer Types,
elsewhere in this guide.

WithReplace

The pointer to the extended Adabas control block (ACBX) to use for the call.acbx-control-block-name

The name of or pointer to the format buffer ABD that defines a format buffer
segment to use for the call. Each format buffer segment must end with a

format-buffer-ABD

period and be a complete and valid standalone format buffer. Multiple
format buffer ABDs can be specified in a single ACBX direct call.

The name of or pointer to the ISN buffer ABD that defines an v segment to
use for the call. Only one ISN buffer ABD can be specified in a single ACBX
direct call.

ISN-buffer-ABD

The name of or pointer to the multifetch buffer ABD that defines a multifetch
buffer segment to use for the call. Multiple multifetch buffer ABDs can be
specified in a single ACBX direct call.

multifetch-buffer-ABD

The name of or pointer to the performance buffer ABD that defines a
performance buffer segment used by Adabas Review. The performance
buffer segment is reserved for use by Adabas Review.

performance-buffer-ABD

The name of or pointer to the record buffer ABD that defines a record buffer
segment to use for the call. Multiple record buffer ABDs can be specified in
a single ACBX direct call.

record-buffer-ABD

The ADALNK reentrancy token. This is a fullword in the calling program's
storage where ADALNK stores the address of its static data area. This

reentrancy-token

fullword should be set to zero before the first Adabas call. It should then
remain unchanged for all subsequent direct calls while the program runs.

The fullword containing binary zeros. This fullword is reserved for use by
Adabas and should be set to binary zeros before the first Adabas call.

reserved-fullword

The name of or pointer to the search buffer ABD that defines a search buffer
segment to use for the call. Only one search buffer ABD can be specified in
a single ACBX direct call.

search-buffer-ABD

The name of or pointer to the user buffer ABD that defines a user buffer
segment (extension) to use for the call. The user buffer extension (UBX) is

user-buffer-ABD

used for the user data passed to user exits LNKUEX1 (link routine pre-call
exit) and LNKUEX2 (link routine post-call exit). A single user buffer ABD
can be specified in an ACBX direct call.

67Command Reference

Calling Adabas

WithReplace

The name of or pointer to the value buffer ABD that defines a value buffer
segment to use for the call. Only one value buffer ABD can be specified in
a single ACBX direct call.

value-buffer-ABD

Specifying an ACBX Interface Direct Call in Open System Applications

The way direct calls are made in your applications when using the new ACBX interface is different
than when using the classic ACB interface. When making a direct call using the ACBX interface
in open system applications, syntax such as the following should be used (this is a COBOL example):

CALL 'ADABAS' USING acbx-control-block-name
ABD-count
ABD-list-pointer

The following table describes each of the italicized, replaceable items in this syntax. For more in-
formation about the format of the extended Adabas control block (ACBX), Adabas buffer descrip-
tions (ABDs), ABD lists, and Adabas buffers, readExtendedAdabasControl Block (ACBX),Adabas
Buffer Descriptions (ABDs), ABD Lists, and Defining Buffers, elsewhere in this guide.

ConditionsWithReplace

Required.The pointer to the extended Adabas control
block (ACBX) to use for the call.

acbx-control-block-name

Required only if ABDs and
their associated buffers are
used in the direct call.

The number of ABD pointers included in the
ABD list for the direct call.

ABD-count

Required only if buffers are
required for the direct call.

The pointer to the ABD list for the direct call.
The ABD list contains pointer references for

ABD-list-pointer

all of the ABDs used by the ACBX direct call.
For more information about the ABD list, read
ABD Lists, elsewhere in this guide.

Mixing ACB and ACBX Direct Calls

You can freely mix ACB and ACBX direct calls in the same application.

In TSO or batch environments, when Adabas 8 non-reentrant (ADALNK) direct calls are invoked
using both the ACB and ACBX direct call interfaces in the same application, user context is pre-
served because the work area used for the calls is part of the ADALNK module itself. However,
if you elect to use reentrant (ADALNKR) direct calls using both the ACB and ACBX direct call
interfaces in the same application, you must ensure that the user context is preserved yourself, or
your application may produce incorrect results. For information on preserving user context in
ADALNKR direct calls, read Mixing ACB and ACBX Interface Direct Calls to ADALNKR, in Adabas
Operations Manual.

Command Reference68

Calling Adabas

III Adabas Control Block Structures (ACB and ACBX)

69

70

6 Adabas Control Block Structures (ACB and ACBX)

■ Adabas Control Block (ACB) .. 72
■ Extended Adabas Control Block (ACBX) .. 79
■ Differences between the ACB and the ACBX .. 89
■ Logging the Control Blocks .. 94

71

Two kinds of control blocks are now supported by Adabas:

■ The Adabas control block (ACB) is the classic control block, used for Adabas releases prior to
Adabas version 8. If you have been using releases of Adabas prior to Adabas 8, the direct calls
used by your applications use the ACB. It is important to note that Adabas 8 fully supports the
ACB, so you are not required to update your existing applications once you install Adabas 8.

■ The extended Adabas control block (ACBX) can be used in Adabas releases starting with Adabas
8. The ACBX supports the increased buffer sizes and segmented buffers introduced in Adabas
8. If you have purchased and installed Adabas 8 (or later), you can use the ACBX in direct calls
from your applications. Otherwise, you cannot.

The use of each applicable field in the control blocks is explained with each Adabas command in
Commands, elsewhere in this guide. To ensure user program compatibility with later Adabas re-
leases, all control block fields not used by a particular command should be set to zeros or blanks,
depending on field type.

The position of each field in a control block is fixed. In addition, all values in the control block
must be entered in the data type defined for the field. For example, the ISN field is defined as
binary format; therefore, any entry made in this field must be in binary format.

Notes:

1. Adabas and other Software AG program products use some control block fields for internal
purposes, and may return values in some fields that have no meaning to the user. These uses
and values may be release-dependent, and are not appropriate for program use. Software AG
therefore recommends that you use only the fields and values described in this documentation.
In addition, you should always initialize unused control block fields with either zeros or blanks, according
to their field types.

2. Some Adabas-dependent Software AG products return control block values such as response
codes and subcodes. Refer to the documentation for those products for a description of the
product-specific control block values.

Adabas Control Block (ACB)

The Adabas control block (ACB) is 80 bytes long . This section covers the following topics:

■ ACB Format
■ ACB Fields
■ ACB DSECT

Command Reference72

Adabas Control Block Structures (ACB and ACBX)

■ ACB Examples

ACB Format

The following table describes the format of the ACB. We recommend that you set unused ACB
fields to binary zeros before the direct call is initiated.

FormatLength (in Bytes)OffsetControl Block PositionFieldDSECT Name

binary1001Call TypeACBTYPE

binary1012(reserved)reserved

alphanumeric2023-4Command CodeACBCMD

alphanumeric / binary4045-8Command IDACBCID

binary2089-10File NumberACBFNR

binary20A11-12Response CodeACBRSP

binary40C13-16ISNACBISN

binary41017-20ISN Lower LimitACBISL

binary41421-24ISN QuantityACBISQ

binary21825-26Format Buffer LengthACBFBL

binary21A27-28Record Buffer LengthACBRBL

binary21C29-30Search Buffer LengthACBSBL

binary21E31-32Value Buffer LengthACBVBL

binary22033-34ISN Buffer LengthACBIBL

alphanumeric12235Command Option 1ACBCOP1

alphanumeric12336Command Option 2ACBCOP2

alphanumeric / binary82437-44Additions 1ACBADD1

alphanumeric / binary42C45-48Additions 2ACBADD2

alphanumeric83049-56Additions 3ACBADD3

alphanumeric83857-64Additions 4ACBADD4

alphanumeric / binary84065-72Additions 5ACBADD5

binary44873-76Command TimeACBCMDT

not applicable44C77-80User AreaACBUSER

73Command Reference

Adabas Control Block Structures (ACB and ACBX)

ACB Fields

The content of the control block fields and buffers must be set before an Adabas command (call)
is issued. Adabas also returns one or more values or codes in certain fields and buffers after each
command is executed.

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Each of the fields in the ACB is described in this section, in the order they appear in the ACB
format. The descriptions are valid for most Adabas commands; however, some Adabas commands
use some control block fields for purposes other than those described here. For complete inform-
ation about how these fields are used by each Adabas command, read Commands, elsewhere in
this guide.

Call Type (ACBTYPE)

The first byte of the Adabas control block (ADACB) is used by the Adabas API to determine the
processing to be performed. For more information, read Linking Applications to Adabas in Adabas
Operations Manual.

The values for logical requests are:

Indicates ...Hex

a 1-byte file number (file numbers between 1 and 255) or DBID.X'00'

a 2-byte file number (file numbers between 1 and 65535) or DBID.X'30'

values greater than or equal to a blank. These are accepted as "logical application calls" to maintain
compatibility with earlier releases of Adabas.

X'40'

Note: The X'44', X'48', and X'4C' calls are reserved for use by Software AG and are therefore
not accepted.

All other values in the first byte of the ADACB are reserved for use by Software AG.

Because an application can reset the value in the first byte of the ADACB on each call, it is possible
to mix both one- and two-byte file number (DBID) requests in a single application. In this case,
you must ensure the proper construction of the file number (ACBFNR) and response code (ACBRSP)
fields in the ADACB for each call type. See the discussions of these fields for more information.

Software AG recommends that an application written to use two-byte file numbers always place
X'30' in the first byte of the ADACB, the logical database ID in the ACBRSP field, and the file
number in the ACBFNR field. The application can then treat both the database ID and file number
as 2-byte binary integers, regardless of the value for the file number in use.

Applications written in Software AG's Natural language need not include this first byte of the
Adabas ACB because Natural supplies appropriate values.

Command Reference74

Adabas Control Block Structures (ACB and ACBX)

Command Code (ACBCMD)

The command code defines the command to be executed, and comprises two alphanumeric char-
acters (for example, OP, A1, BT).

Command ID (ACBCID)

The command ID field is used by many Adabas commands to identify logical read sequences,
search results, and (optionally) decoded formats for use by subsequent commands. You can specify
alphanumeric or binary command IDs as you choose or you can request the generation of new
binary command IDs by Adabas. See the section General Programming Considerations for more
information about command IDs. For ET, CL, and some OP commands, Adabas returns a binary
transaction sequence number in the command ID field.

File Number (ACBFNR)

Note: For commands that operate on a coupled file pair, this field specifies the primary file
from which ISNs or data are returned.

The file number may be one or two bytes.

Single-byte File Numbers and DBIDs

For an application program issuing Adabas commands for file numbers between 1 and 255 (single
byte), build the control block as follows:

ActionPosition

Place X'00' in the first byte of the ADACB.1

Place the file number in the second (rightmost) byte of the ACBFNR field of the ADACB. The first
(leftmost) byte of the ACBFNR field is used to store the logical (database) ID or number.

9

If the first byte in ACBFNR is set to zero (B'0000 0000'), the Adabas API uses either the database
ID from the ADARUN cards provided in DDCARD input data, or the default database ID value
assembled into the link routine at offset X'80'.

Double-byte File Numbers and DBIDs

Adabas permits the use of file numbers greater than 255 on logical requests. For an application
program issuing Adabas commands for file numbers between 256 and 5000 (two-byte), build the
control block as follows:

75Command Reference

Adabas Control Block Structures (ACB and ACBX)

ActionPosition

Place X'30' in the first byte of the ADACB.1

Use both bytes in ACBFNR for the file number, and use the two bytes in ACBRSP for the database
(logical) ID.

9

If the ACBRSP field is zero, the Adabas API uses either the database ID from the ADARUN cards
provided in DDCARD input data, or the default database ID value assembled into the link routine
at offset X'80'.

Response Code (ACBRSP)

The response code field is used for two-byte database IDs.

It is also always set to a value when the Adabas command is completed. Successful completion is
normally indicated by a response code of zero. For repeatable commands that process sequences
of records or ISNs, other response codes indicate end-of-file or end-of-ISN-list. Non-zero response
codes are defined in the Adabas Messages and Codes.

ISN (ACBISN)

The ISN field both specifies a required four-byte Adabas ISN value required by the command and,
where appropriate, returns either the first ISN of a command-generated ISN list, or an ISN of the
record read by the command.

ISN Lower Limit (ACBISL)

ISN lower limit specifies the starting point in an ISN list or range where processing is to begin.
When using the multifetch option, this field holds an optional maximum count of prefetched records
to return; if zero, there is no limit.

Following successful OP command completion, Adabas returns its system, call type, and nucleus
ID (nucid) information in this field; the timeout information previously held here is returned in
the Additions 5 field, bytes 4 and 5. See the section Values Returned in Control Block Fields for
detailed information.

ISN Quantity (ACBISQ)

The ISN quantity field is a count of ISNs returned by a command. The count can be a total of all
ISNs in an ISN list, or the total ISNs entered into the ISN buffer from a larger pool of ISNs by this
operation.

Following successful OP command completion, Adabas returns its system release information in
this field; the timeout information previously held here is returned in the Additions 5 field, bytes
6 and 7. See the section Values Returned in Control Block Fields for detailed information.

Command Reference76

Adabas Control Block Structures (ACB and ACBX)

In addition, Sx commands using security-by-value set this field to 1 when more than one ISN meet
the search criteria.

Buffer Length: Format, Record, Search, Value, and ISN (ACBFBL, ACBRBL, ACBSBL, ACBVBL, and ACBIBL)

The format, record, search, value, and ISN buffer length fields specify the size of the related buffers.
A buffer's size usually remains the same throughout a transaction. In some ISN-related operations,
the ISN buffer size value determines how a command processes ISNs; for example, specifying a
zero ISN buffer length causes some commands to store a resulting ISN list in the Adabas work
area. If a buffer is not needed for an Adabas command, the corresponding length value should be
set to zero. In some cases (multifetch option, as an example), there is a limit on the length of the
buffer; see the specific command descriptions for more information.

Command Option 1 and Command Option 2 (ACBCOP1 and ACBCOP2)

The Command Option 1 and 2 fields allow you to specify processing options (ISN hold, command-
level prefetching control, returning of ISNs, and so on).

Additions 1 (ACBADD1)

The Additions 1 field sometimes requires miscellaneous command-related parameters such as
qualifying descriptors for creating ISN lists, or the second file number of a coupled file pair.

Additions 2 (ACBADD2)

The Additions 2 field returns the compressed record length in the leftmost (high-order) two bytes
and decompressed length of record buffer-selected fields in the rightmost (low-order) two bytes
for all An, Ln, Nn, and S1/2/4 commands. The OP (open) and RE (read ET data) commands return
transaction sequence numbers in this field. If Entire Net-work is installed, some response codes
return the node ID of the "problem" node in the leftmost two bytes of the Additions 2 field.

If a command results in a nucleus response code, the Additions 2 field's low-order (rightmost)
two bytes (47 and 48) can contain a hexadecimal subcode to identify the cause of the response
code. For example, if no OP command began the session and the ADARUN statement specified
OPENRQ=YES, a response code 9 (ADARSP009), subcode 66 is returned and these bytes are set
to the hexadecimal value 0042 corresponding to the decimal 66. Response codes and their subcodes
(as decimal equivalents) are described in the section Nucleus Response Codes in the AdabasMessages
and Codes.

Note: If you are running with Entire Net-Work, the leftmost two bytes of the ACB Additions
2 field (ACBADD2) may contain the ID of the Entire Net-Work node that issued this response
code.

77Command Reference

Adabas Control Block Structures (ACB and ACBX)

Additions 3 (ACBADD3)

The Additions 3 field is for providing a user`s password for accessing password-protected files.
If the file containing the field is actually password-protected, the password in this field is replaced
with spaces (blanks) during command execution before Adabas returns control to the user program.

Additions 4 (ACBADD4)

The Additions 4 field must be set to a cipher code for those instructions that read or write encrypted
(ciphered) database data files. For commands requiring multiple command IDs but no cipher code,
one of the command IDs is specified in this field.

When processed by the nucleus, an Adabas call returns the Adabas release (version and revision)
level numbers and the database ID in the low-order (rightmost) three bytes of the Additions 4 field
with the format vrnnnn where

is the Adabas version number;v

is the Adabas revision level number; andr

is the number (hexadecimal) of the Adabas database that processed the call.nnnn

For example, "741111" indicates that an Adabas version 7.4 nucleus on database 4369 processed
the call.

Additions 5 (ACBADD5)

The high-order (leftmost) two bits of the first byte of the Additions 5 field control the unique or
global format ID selection; the low-order (rightmost) four or eight bytes can contain either an op-
tional unique or global format ID, respectively. Refer to the section Using a Global Format ID for
a complete description of this feature. A global format ID to be deleted can be specified in this
field for the RC (release command ID) command. When completed, the OP command returns any
optionally specified non-activity and/or transaction timeout values in the Additions 5 field.

Command Time (ACBCMDT)

The command time field is used by Adabas to return the elapsed time which was needed by the
nucleus to process the command. This does not include the times when the thread was waiting
on Adabas I/O operations or other resources. The time, counted in 16-microsecond units, is called
"Adabas thread time". The returned count is in binary format.

Command Reference78

Adabas Control Block Structures (ACB and ACBX)

User Area (ACBUSER)

The user area field is reserved for use by the user program. When making logical user calls, the
user area is neither written nor read by Adabas.

For compatibility with future Adabas releases, Software AG recommends that you set unused
control block fields to null values corresponding to the field's data type.

ACB DSECT

The ACB DSECT can be found in member ADACB of the distributed Adabas SRCE library.

ACB Examples

Programming examples that show control block construction in a variety of host languages are
provided in section Programming Examples of this documentation.

■ Assembler Examples
■ COBOL Examples
■ PL/ I Examples
■ FORTRAN Examples

Extended Adabas Control Block (ACBX)

The extended Adabas control block , the ACBX, supports the increase in the buffer sizes in Adabas
commands. It is 192 bytes in length (versus the 80 bytes used by the ACB). The existing, non-ex-
tended Adabas Control Block (ACB) is still supported and your existing applications will still
work, but if you want to take advantage of some of the extended features provided in Adabas 8,
you must use the new ACBX. Specifically, you must use the ACBX if you are using the long buffer
(buffers longer than 32K) or segmented buffer (multiple format/record buffer pairs or format/re-
cord/multifetch buffer triplets) features of Adabas 8.

Otherwise, your application programs may freely switch between Adabas calls using the existing
direct call interface (ACB) and calls using the new interface (ACBX).

■ ACBX Format
■ ACBX Fields

79Command Reference

Adabas Control Block Structures (ACB and ACBX)

■ ACBX DSECT

ACBX Format

The following table describes the format of the ACBX. We recommend that you set unused ACBX
fields to binary zeros before the direct call is initiated.

FormatLength
(in bytes)

OffsetControl Block
Position

FieldDSECT Field Name

binary1001Call TypeACBXTYP

binary1012Reserved 1ACBXRSV1

binary2023-4Version IndicatorACBXVER

binary2045-6ACBX LengthACBXLEN

alphanumeric2067-8Command CodeACBXCMD

binary2089-10Reserved 2ACBXRSV2

binary20A11-12Response CodeACBXRSP

alphanumeric/ binary40C13-16Command IDACBXCID

numeric41017-20Database IDACBXDBID

numeric41421-24File NumberACBXFNR

do not use81825-328-Byte ISNACBXISNG

binary41C29-32ISNACBXISN

do not use82033-408-Byte ISN Lower LimitACBXISLG

binary42437-40ISN Lower LimitACBXISL

do not use82841-488-Byte ISN QuantityACBXISQG

binary42C45-48ISN QuantityACBXISQ

alphanumeric13049Command Option 1ACBXCOP1

alphanumeric13150Command Option 2ACBXCOP2

alphanumeric13251Command Option 3ACBXCOP3

alphanumeric13352Command Option 4ACBXCOP4

alphanumeric13453Command Option 5ACBXCOP5

alphanumeric13554Command Option 6ACBXCOP6

alphanumeric13655Command Option 7ACBXCOP7

alphanumeric13756Command Option 8ACBXCOP8

alphanumeric/ binary83857-64Additions 1ACBXADD1

binary44065-68Additions 2ACBXADD2

alphanumeric/ binary84469-76Additions 3ACBXADD3

alphanumeric84C77-84Additions 4ACBXADD4

alphanumeric/ binary85485-92Additions 5ACBXADD5

Command Reference80

Adabas Control Block Structures (ACB and ACBX)

FormatLength
(in bytes)

OffsetControl Block
Position

FieldDSECT Field Name

alphanumeric/ binary85C93-100Additions 6ACBXADD6

binary464101-104Reserved 3ACBXRSV3

do not use868105-112Error Offset in Buffer (64-bit)ACBXERRG

binary46C109-112Error Offset in Buffer (32-bit)ACBXERRA

alphanumeric270113-114Error Character FieldACBXERRB

binary272115-116Error SubcodeACBXERRC

alphanumeric174117Error Buffer IDACBXERRD

do not use175118Reserved for future useACBXERRE

numeric276119-120Error Buffer Sequence NumberACBXERRF

binary278121-122Subcomponent Response CodeACBXSUBR

binary27A123-124Subcomponent Response
Subcode

ACBXSUBS

alphanumeric47C125-128Subcomponent Error TextACBXSUBT

binary880129-136Compressed Record LengthACBXLCMP

binary888137-144Decompressed Record LengthACBXLDEC

binary890145-152Command TimeACBXCMDT

not applicable1698153-168User AreaACBXUSER

do not touch24A8169-193Reserved 4ACBXRSV4

ACBX Fields

The content of the control block fields and buffers must be set before an Adabas command (call)
is issued. Adabas also returns one or more values or codes in certain fields and buffers after each
command is executed.

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Each of the fields in the ACBX is described in this section, in the order they appear in the ACBX
format. The descriptions are valid for most Adabas commands; however, some Adabas commands
use some control block fields for purposes other than those described here. For complete inform-
ation about how these fields are used by each Adabas command, read Commands, elsewhere in
this guide.

81Command Reference

Adabas Control Block Structures (ACB and ACBX)

Call Type (ACBXTYP)

The first byte of the Adabas control block (ADACBX) is used by the Adabas API to determine the
processing to be performed. See Linking Applications to Adabas in the Adabas Operations document-
ation for more information.

When issuing an Adabas command, set this field to binary zeros. This indicates that a logical user
call is being made (ACBXTUSR equate).

The following values in ACBXTYPE are reserved for use by Software AG and are therefore not
accepted by application programs: X'04', X'08', X'0c', X'10', X'14', X'18', X'1c', X'20', X'24', X'28', X'2c',
X'34', X'38', X'3c', X'44', X'48', and X'4c'.

Applications written in Software AG's Natural language need not include this first byte of the
Adabas ACBX because Natural supplies appropriate values.

Reserved 1 (ACBXRSV1)

This field is reserved. Set this field to zero.

Version Indicator (ACBXVER)

The version indicator identifies whether the Adabas control block uses the new ACBX or the
classic ACB format. If this field is set to a value starting with the letter "F" (for example "F2"),
Adabas treats the Adabas control block as though it is specified in the ACBX format. If this field
is set to any other value, Adabas treats the control block as though it is specified in the classic ACB
format.

ACBX Length (ACBXLEN)

The ACBX length field should be set to the length of the ACBX structure passed to Adabas (the
ACBXQLL equate, currently 192).

Command Code (ACBXCMD)

The command code defines the command to be executed, and comprises two alphanumeric char-
acters (for example, OP, A1, BT).

Command Reference82

Adabas Control Block Structures (ACB and ACBX)

Reserved 2 (ACBXRSV2)

This field is reserved. Set this field to zero.

Response Code (ACBXRSP)

This field gets set to a value when the Adabas command is completed. Successful completion is
normally indicated by a response code of zero. For repeatable commands that process sequences
of records or ISNs, other response codes indicate end-of-file or end-of-ISN-list. Non-zero response
codes are defined in the Adabas Messages and Codes documentation found in theAdabasMessages
and Codes Guide.

Command ID (ACBXCID)

The command ID field is used by many Adabas commands to identify logical read sequences,
search results, and (optionally) decoded formats for use by subsequent commands. You can specify
alphanumeric or binary command IDs as you choose or you can request the generation of new
binary command IDs by Adabas. See the sectionGeneral ProgrammingConsiderations, elsewhere
in this guide, for more information about command IDs. For ET, CL, and some OP commands,
Adabas returns a binary transaction sequence number in the command ID field.

Database ID (ACBXDBID)

Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the field,
with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the ADARUN
cards provided in DDCARD input data or the default database ID value provided in the LNKGBLS
module linked with or loaded by the link routine.

File Number (ACBXFNR)

Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order part
(rightmost bytes) of the field, with leading binary zeros.

Note: For commands that operate on a coupled file pair, this field specifies the primary file
from which ISNs or data are returned.

83Command Reference

Adabas Control Block Structures (ACB and ACBX)

ISN (ACBXISNG/ACBXISN)

The ISN field specifies any required Adabas ISN value required by the command and, where ap-
propriate, returns either the ISN of the record read by the command , or the first ISN of an ISN
list generated by the command.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field, which
is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

ISN Lower Limit (ACBXISLG/ACBXISL)

ISN lower limit specifies the starting point in an ISN list or range where processing is to begin.
When using the multifetch option, this field holds an optional maximum count of prefetched records
to return; if zero, there is no limit.

Following successful OP command completion, Adabas returns its system, call type, and nucleus
ID (nucid) information in this field; the timeout information previously held here is returned in
the Additions 5 field, bytes 4 and 5. See the section Values Returned in Control Block Fields for
detailed information.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field, which
is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

ISN Quantity (ACBXISQG/ACBXISQ)

The ISN quantity field is a count of ISNs returned by a search (Sx) command. The count can be a
total of all ISNs in an ISN list, or the total ISNs entered into the ISN buffer from a larger pool of
ISNs by this operation.

Following successful OP command completion, Adabas returns its system release information in
this field; the timeout information previously held here is returned in the Additions 5 field, bytes
6 and 7. See the section Values Returned in Control Block Fields for detailed information.

In addition, Sx commands using security-by-value set this field to 1 when more than one ISN meet
the search criteria.

The ACBXISQ field is a four-byte binary field embedded in the eight-byte ACBXISQG field, which
is not yet used. Set the high-order part of the ACBXISQG field to binary zeros.

Command Reference84

Adabas Control Block Structures (ACB and ACBX)

Command Options 1 through 8 (ACBXCOP1 through ACBXCOP8)

The Command Option 1 - 8 fields allow you to specify processing options (ISN hold, command-
level prefetching control, returning of ISNs, and so on). In Adabas 8.1, only the Command Option
1 and Command Option 2 field are supported. However, the other Command Option fields are
provided for potential expansion in future Adabas releases.

Additions 1 (ACBXADD1)

The Additions 1 field sometimes requires miscellaneous command-related parameters such as
qualifying descriptors for creating ISN lists, or the second file number of a coupled file pair.

Additions 2 (ACBXADD2)

OP (open) and RE (read ET data) commands return transaction sequence numbers in this field.

Additions 3 (ACBXADD3)

The Additions 3 field is for providing a user's password for accessing password-protected files.
This field is always reset to blanks during command execution.

Additions 4 (ACBXADD4)

If a command reads or writes records of an encrypted (ciphered) Adabas file, the Additions 4 field
must be set to the cipher code for that file. For commands requiring multiple command IDs but
no cipher code, one of the command IDs is specified in this field.

Adabas always resets this field to blanks during command execution.

When processed by a nucleus that is not running single-user mode (ADARUN MODE=SINGLE
is not specified), the Adabas call returns the Adabas release (version and revision) level numbers
and the database ID in the low-order (rightmost) three bytes of the Additions 4 field with the format
vrnnnn where

is the Adabas version number;v

is the Adabas revision level number; andr

is the number (hexadecimal) of the Adabas database that processed the call.nnnn

For example, "811111" indicates that an Adabas version 8.1 nucleus on database 4369 processed
the call.

85Command Reference

Adabas Control Block Structures (ACB and ACBX)

Additions 5 (ACBXADD5)

The high-order (leftmost) two bits of the first byte of the Additions 5 field control the unique or
global format ID selection; the low-order (rightmost) four or eight bytes can contain either an op-
tional unique or global format ID, respectively. A global format ID to be deleted can be specified
in this field for the RC (release command ID) command. When completed, the OP command returns
any optionally specified non-activity or transaction timeout values in the Additions 5 field.

Additions 6 (ACBXADD6)

This field is not used at this time. It must be set to binary zeros.

Reserved 3 (ACBXRSV3)

This field is reserved. Set this field must be set to binary zeros.

Error Offset in Buffer (64-bit) (ACBXERRG)

The Error Offset in Buffer (64-bit) and the Error Offset in Buffer (32-bit) fields specify the offset in
the buffer, if any, where the error is detected during the direct call.

The Error Offset in Buffer (64-bit) field, ACBXERRG, is not yet available, but may be used in some
later release. For now, use the Error Offset in Buffer (32-bit) field, ACBXERRA.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXEFFE fields are only set when the response code is related
to buffer processing.

Error Offset in Buffer (32-bit) (ACBXERRA)

The Error Offset in Buffer (64-bit) and the Error Offset in Buffer (32-bit) fields specify the offset in
the buffer, if any, where the error is detected during the direct call.

The Error Offset in Buffer (64-bit) field, ACBXERRG, is not yet available, but may be used in some
later release. For now, use the Error Offset in Buffer (32-bit) field, ACBXERRA.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRF fields are only set when the response code is related
to buffer processing.

Command Reference86

Adabas Control Block Structures (ACB and ACBX)

Error Character Field (ACBXERRB)

This field identifies the two-byte Adabas short name of the field, if any, that was being processed
when the error was detected.

The ACBXERRx fields are only set when a response code is returned from a direct call.

Error Subcode (ACBXERRC)

This field stores the subcode of the error that occurred during direct call processing.

The ACBXERRx fields are only set when a response code is returned from a direct call. If Entire
Net-work is installed, some response codes return the node ID of the problem node in the leftmost
two bytes of this field.

Error Buffer ID (ACBXERRD)

This field contains the ID (from the ABDID field) of the buffer referred to by the ACBXERRA field,
so that the buffer causing the error can be identified, when multiple buffers are involved.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRF fields are only set when the response code is related
to buffer processing.

Reserved (ACBXERRE)

This field is reserved for future use. Do not use this field at this time.

Error Buffer Sequence Number (ACBXERRF)

This field contains the two-byte sequence number of the buffer segment containing the error (if
any) referred to by the ACBXERRA and ACBXERRD fields.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRF fields are only set when the response code is related
to buffer processing.

87Command Reference

Adabas Control Block Structures (ACB and ACBX)

Subcomponent Response Code (ACBXSUBR)

This field contains the response code from any error that occurred when an Adabas add-on product
intercepts the Adabas command.

If the message was compressed using zEDC compression services and the attempt to decompress
the message failed, subcode 1 is placed in the rightmost two bytes of this field.

Subcomponent Response Subcode (ACBXSUBS)

This field contains the response subcode from any error that occurred when an Adabas add-on
product intercepts the Adabas command.

Subcomponent Error Text (ACBXSUBT)

This field contains the error text of any error that occurred when an Adabas add-on product inter-
cepts the Adabas command.

Compressed Record Length (ACBXLCMP)

This field returns the compressed record length when a record was read or written.

This is the length of the compressed data processed by the successful Adabas call. If the logical
data storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)

This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects the
total length across all buffer segments.

Command Time (ACBXCMDT)

The command time (also called thread time) field is used by Adabas to return the elapsed time that
was needed by the nucleus to process the command. This does not include the times when the
Adabas thread executing the command was waiting on Adabas I/O operations or other resources;
it does include the times when the thread was waiting for a processor so it could execute the code.
The time is measured in 1/4096 microsecond units and the returned count is in binary format.

Command Reference88

Adabas Control Block Structures (ACB and ACBX)

User Area (ACBXUSER)

The user area field is reserved for use by the user program. When making logical user calls, the
user area is neither written nor read by Adabas.

Reserved 4 (ACBXRSV4)

This field is reserved for use by Adabas. Your user program should set this field to binary zeros
before the first Adabas call using this ACBX and then leave it unmodified thereafter.

ACBX DSECT

The ACBX DSECT can be found in member ADACBX of the distributed Adabas SRCE library. For
your convenience, an ACBX Format table is also provided, elsewhere in this section.

Differences between the ACB and the ACBX

The ACBX differs in many ways from the ACB. The ACBX includes some fields that are not included
in the ACB and the sizes of some ACBX fields are larger than their ACB equivalents. These expan-
sions in the ACBX have been made to ensure that its structure can be flexible enough to handle
potential future enhancements to Adabas, without altering its fundamental structure for many
years.

This section describes the differences between the ACB and the ACBX:

■ Control Block Length
■ Buffer Length Fields
■ Command Options, Additions, and Reserved Fields
■ Unit Differences
■ Field Length Differences
■ Additional Fields in ACBX
■ ACB Dual Purpose Field Changes

89Command Reference

Adabas Control Block Structures (ACB and ACBX)

■ Structure and Offset Differences

Control Block Length

The ACBX is 192 (or X’C0’) bytes in length; the ACB is 80 bytes long.

Buffer Length Fields

The buffer length fields are not included in the ACBX as they are in the ACB. When using the
ACBXdirect call interface, they are instead provided in the individual Adabas buffer descriptions
(ABDs). So the ACBX contains no buffer fields corresponding to the ACBFBL, ACBIBL, ACBRBL,
ACBSBL, and ACBVBL found in the ACB; the ABDs associated with the call are used instead. One
ABD represents an individual Adabas buffer segment. They are described in Adabas Buffer De-
scriptions, elsewhere in this guide.

Command Options, Additions, and Reserved Fields

The number of command option, additions, and reserved control block fields are larger in the
ACBX:

■ The ACBX contains eight command option fields, up from the two command option fields
available in the ACB.

■ The ACBX contains six additions fields, up from the five additions fields available in the ACB.
■ The ACBX contains four reserved fields, up from one reserved field available in the ACB.

Reserved ACBX fields must be set to binary zeros; the reserved 4 field (ACBXRSV4) should be
initialized to binary zeros and then left unchanged.

Unit Differences

The units used to measure command time (thread time) differ between the ACB and the ACBX.
The ACB measures command time (ACBCMDT) in 16 microsecond units; the ACBX measures
command time (ACBXCMDT) in 1/4096 microsecond units.

Field Length Differences

The lengths of many control block fields are larger in the ACBX. The following table summarizes
these changes:

Command Reference90

Adabas Control Block Structures (ACB and ACBX)

LengthField Title
ACBXACB

42File Number

42Database ID

44ISN

44ISN Lower Limit

44ISN Quantity

84Compressed Record Length

84Decompressed Record Length

84Command Time

164User Area

4 (in the ABD)2Format Buffer Length

4 (in the ABD)2Record Buffer Length

4 (in the ABD)2Search Buffer Length

4 (in the ABD)2Value Buffer Length

Additional Fields in ACBX

The following additional fields are available in the ACBX:

DescriptionACBX DSECT Name

Additions 6ACBXADD6

Command options 3ACBXCOP3

Command options 4ACBXCOP4

Command options 5ACBXCOP5

Command options 6ACBXCOP6

Command options 7ACBXCOP7

Command options 8ACBXCOP8

The database ID. In the ACB, the database ID is stored in the response code field
(ACBRSP) for X’30’ calls and in the first byte of ACBFNR for other logical calls.

ACBXDBID

Error offset into the buffer (32-bit).ACBXERRA

Error character field (field name).ACBXERRB

Error subcode. In the ACB, the error subcode is stored in the Additions 2 field
(ACBADD2).

ACBXERRC

Error buffer ID, if multiple buffers are involved.ACBXERRD

Error buffer sequence number, if multiple buffers are involved.ACBXERRE

Error offset into the buffer (64-bit) - this field is not yet supported.ACBXERRG

91Command Reference

Adabas Control Block Structures (ACB and ACBX)

DescriptionACBX DSECT Name

Compressed record length (or portion of record if the entire record is not read). In the
ACB, the compressed record length is stored in the Additions 2 field (ACBADD2).

ACBXLCMP

Decompressed record length. In the ACB, the decompressed record length is stored in
the Additions 2 field (ACBADD2).

ACBXLDEC

The length of the ACBX, currently 192ACBXLEN

Reserved. The value of this field must be set to zero.ACBXRSV2

Reserved. The value of this field must be set to zero.ACBXRSV3

Reserved for use by Adabas.ACBXRSV4

Subcomponent response code, used by Adabas add-on products.ACBXSUBR

Subcomponent response subcode, used by Adabas add-on products.ACBXSUBS

Subcomponent error text, used by Adabas add-on products.ACBXSUBT

When set to C'F2', this field indicates to Adabas that the new extended ACB (ACBX) is
used.

ACBXVER

ACB Dual Purpose Field Changes

There are a number of cases where an ACB field that has multiple purposes has been split out into
additional fields in the ACBX:

■ In the ACB, the Response code field (ACBRSP) is used to store the database ID for X’30’ calls.
For the other logical calls the one-byte database ID was stored in the first byte of the file number
field, ACBFNR. The ACBX provides a Database ID field (ACBXDBID) for this purpose.

■ In the ACB, the ACBADD2 field is used to retain error information for certain Adabas response
codes. In the ACBX, error information fields (ACBXERR* series) are provided for this purpose.

■ In the ACB, the ACBADD2 field is used to return, for a successful call, the compressed and de-
compressed record lengths of the processed data. In the ACBX, for a successful call, the Com-
pressed Record field (ACBXLCMP) contains the length of the compressed data processed by
Adabas and the Decompressed Record field (ACBXLDEC) contains the length of the decom-
pressed data.

Structure and Offset Differences

The offset and sequence of ACBX fields is generally different from the corresponding ACB fields,
as depicted in the following table.

Command Reference92

Adabas Control Block Structures (ACB and ACBX)

ACBX DSECT Field NameACB DSECT Field NameOffset

ACBXTYPE (Call type)ACBTYPE (Call type)00

ACBXRSV1 (reserved 1)reserved01

ACBXVER (ACBX version indicator)ACBCMD (Command code)02

ACBXLEN (ACBX length)ACBCID (Command ID)04

ACBXCMD (Command code)(ACBCID continued)06

ACBXRSV2 (reserved 2)ACBFNR (File number)08

ACBXRSP (Response code)ACBRSP (Response code -- used for the
database ID with X’30’ calls)

0A

ACBXCID (Command ID)ACBISN (ISN)0C

ACBXDBID (Database ID)ACBISL (ISN lower limit)10

ACBXFNR (File number)ACBISQ (ISN quantity)14

ACBXISNG (8-Byte ISN)ACBFBL (Format buffer length)18

(ACBXISNG continued)ACBRBL (Record buffer length)1A

ACBXISN (ISN -- included in ACBXISNG)ACBSBL (Search buffer length)1C

(ACBXISN and ACBXISNG continued)ACBVBL (Value buffer length)1E

ACBXISLG (8-Byte ISN Lower Limit)ACBIBL (ISN buffer length)20

(ACBXISLG continued)ACBCOP1 (Command option 1)22

(ACBXISLG continued)ACBCOP2 (Command option 2)23

ACBXISL (ISN lower limit -- included in ACBXISLG)ACBADD1 (Additions 1)24

ACBXISQG (8-Byte ISN Quantity)(ACBADD1 continued)28

ACBXISQ (ISN quantity -- included in ACBXISQG)ACBADD2 (Additions 2)2C

ACBXCOP1 (Command option 1)ACBADD3 (Additions 3)30

ACBXCOP2 (Command option 2)(ACBADD3 continued)31

ACBXCOP3 (Command option 3)(ACBADD3 continued)32

ACBXCOP4 (Command option 4)(ACBADD3 continued)33

ACBXCOP5 (Command option 5)(ACBADD3 continued)34

ACBXCOP6 (Command option 6)(ACBADD3 continued)35

ACBXCOP7 (Command option 7)(ACBADD3 continued)36

ACBXCOP8 (Command option 8)(ACBADD3 continued)37

ACBXADD1 (Additions 1)ACBADD4 (Additions 4)38

ACBXADD2 (Additions 2)ACBADD5 (Additions 5)40

ACBXADD3 (Additions 3)(ACBADD5 continued)44

(ACBXADD3 continued)ACBCMDT (Command time)48

ACBXADD4 (Additions 4)ACBUSER (User area)4C

ACBXADD5 (Additions 5)---54

ACBXADD6 (Additions 6)---5C

93Command Reference

Adabas Control Block Structures (ACB and ACBX)

ACBX DSECT Field NameACB DSECT Field NameOffset

ACBXRSV3 (reserved 3)---64

ACBXERRG (Error offset in buffer, 64-bit -- this is not yet
supported).

---68

ACBXERRA (Error offset in buffer, 32-bit)---6C

ACBXERRB (Error character field)---70

ACBXERRC (Error subcode)---72

ACBXERRD (Error buffer ID)---74

ACBXERRE (Error buffer sequence number)---75

ACBXSUBR (Subcomponent response code)---78

ACBXSUBS (Subcomponent response subcode)---7A

ACBXSUBT (Subcomponent error text)---7C

ACBXLCMP (Compressed record length)---80

ACBXLDEC (Decompressed record length)---88

ACBXCMDT (Command time)---90

ACBXUSER (User area)---98

ACBXRSV4 (reserved 4)---A8

Logging the Control Blocks

All command logs (CLOGs) are written in a format as described in Command Log Formats.

For the sake of compatibility, the ADARUN CLOGLAYOUT (seeCLOGLAYOUT : Command Logging
Format in Adabas Operations Manual parameter still exists, but logs are only written in
CLOGLAYOUT=8 format.

Command Reference94

Adabas Control Block Structures (ACB and ACBX)

IV Adabas Buffer Descriptions (ABDs)

95

96

7 Adabas Buffer Descriptions (ABDs)

■ Available ABD Types .. 98
■ ABD Structure .. 99
■ ABD Field Descriptions ... 100
■ ABD DSECT ... 103
■ ABD Lists ... 103

97

If an Adabas call using the ACBX interface is made that requires buffer specifications, Adabas
buffer descriptions (ABDs) must be used. ABDs must not be used when specifying an Adabas call
using the classic ACB interface; if an Adabas call using the ACB interface is made that requires
buffer specifications, specify the buffers or pointers to the buffers directly in the Adabas call itself.
For more information about the ACBX and ACB interface direct calls, read Calling Adabas, else-
where in this guide.

Adabas 8, through its ACBX interface, supports segmented buffers (multiple pairs of format and
record buffers, or multiple triplets of format, record, and multifetch buffers). You can specify up
to 65,535 instances of each buffer type in an ACBX call.

In mainframe system applications, the addresses of ABDs are specified directly in the Adabas call;
in open system applications, the addresses of ABDs are specified in the ABD list associated with
the call.

This chapter describes the structure of an ABD and ABD lists. For information on the defining the
buffers themselves, read Defining Buffers, elsewhere in this guide.

Available ABD Types

Using ABDs in an ACBX interface direct call, the buffers used in a direct call can be contiguous
or discontiguous. With Adabas 8, you can define ABDs for eight different types of buffers:

■ Format buffers
■ Record buffers
■ Multifetch buffers
■ Search buffers
■ Value buffers
■ ISN buffers
■ User buffers
■ Performance buffers (reserved for use by Adabas Review only).

Each Adabas buffer segment is represented by a single ABD, although you can define multiple
ABDs of a given type in the same program. Offset 4 (ABDXID) in each ABD identifies the type of
buffer defined by the ABD.

In anACBX interface call, there is a one-to-one correspondence between ABD and buffer specific-
ations; each buffer you want to specify must have a corresponding ABD. The buffer can be specified
in the ABD itself or referenced by indirect reference.

ABDs can be specified in any sequence in an ACBX interface direct call. However, if an ABD re-
quires a matching ABD of another type, Adabas will match them sequentially. For example, if

Command Reference98

Adabas Buffer Descriptions (ABDs)

three format buffer ABDs and three record buffer ABDs are included in the call, the first format
buffer ABD in the call is matched with the first record buffer ABD in the call, the second format
buffer ABD is matched with the second record buffer ABD, and the third format buffer ABD is
matched with third record buffer ABD.

If unequal numbers of match-requiring ABDs are specified, Adabas will generate a dummy ABD
(with a buffer length of zero) for the missing ABD. For example, if three format buffer ABDs are
specified, but only two record buffer ABDs are specified, a dummy record buffer ABD is created
for use with the third format buffer ABD. If you would prefer that the dummy record buffer ABD
be used for the second format buffer ABD instead, you must specify the dummy record buffer
ABD yourself prior to the record buffer ABD to be used by the third format buffer ABD.

For commands where data in the record buffer is not described by a format specification in the
format buffer, no format buffer segments need be specified; if any are specified, they are ignored.
This applies to only a few commands; the most prominent of them is OP.

For information about the relationships between different buffer types, read Understanding the
Different Buffer Types, elsewhere in this guide.

ABD Structure

The following table describes the structure of the ABD.

FormatLength (in
bytes)

OffsetControl
Block
Position

FieldDSECT Field Name

binary2001-2ABD lengthABDXLEN

alphanumeric2023-4Version indicatorABDXVER

alphanumeric1045Buffer Type IDABDXID

binary1056Reserved 1ABDXRSV1

alphanumeric.
although a binary

1067Buffer location flagABDXLOC

zero (x'00') is
tolerated instead of a
blank.

binary1078Reserved 2ABDXRSV2

binary4089Reserved 3ABDXRSV3

binary40C13ALET for buffer (if
ABDXLOC=C'D')

ABDXALET

binary81017-24Buffer size (allocated length)ABDXSIZE

binary81825-32Data length to send from client
to the nucleus

ABDXSEND

99Command Reference

Adabas Buffer Descriptions (ABDs)

FormatLength (in
bytes)

OffsetControl
Block
Position

FieldDSECT Field Name

binary82033-40Data length received by the
client from the nucleus

ABDXRECV

binary82841-4864-bit indirect address pointer
(if ABDXLOC=C'I' or C'D')

ABDXADRG

binary42C45-4834-bit indirect address pointer
(if ABDXLOC=C'I' or C'D')

ABDXADR

not applicableuser-defined3049-nBuffer (if ABDXLOC=C' ' or
X'00')

ABD Field Descriptions

Each of the fields in the ABD is described in this section, in the order they appear in the ABD
structure.

ABD Length (ABDXLEN)

Required. Use this field to specify the length of the ABD. Currently, the value of this field must
be 48.

Version Indicator (ABDXVER)

Required. This field identifies the version of the ABD structure. A value of C'G2' in this field indic-
ates that the buffer definition is in the new, extended ABD structure.

Buffer Type ID (ABDXID)

Required. Use this field to identify the type of buffer described by the ABD, as shown in the fol-
lowing table:

Type of BufferID Setting

FormatC'F'

ISNC'I'

MultifetchC'M'

Performance (reserved for use by Adabas Review only)C'P'

RecordC'R'

SearchC'S'

UserC'U'

Command Reference100

Adabas Buffer Descriptions (ABDs)

Type of BufferID Setting

ValueC'V'

Reserved 1 (ABDXRSV1)

This field is reserved and must be set to binary zeros.

Buffer Location Flag (ABDXLOC)

Required. Use this field to identify whether the location of the buffer is defined at an indirect ad-
dress, is qualified by an ALET, or is defined at the end of the ABD itself.

If this field is set to "I" (C'I'), Adabas assumes indirect addressing is specified and will use the ad-
dress specified in the indirect address pointer field (ABDXADR or ABDXADRG). In this case the
buffer must reside in 31-bit or 64-bit addressable storage, in the current primary address space.

If this field is set to "D" (C'D'), Adabas assumes an ALET has been provided in ABDXALET and
indirect addressing is implied. Adabas will use the address specified in the indirect address
pointer field (ABDXADR or ABDXADRG). In this case, the buffer must reside in 31-bit or 64-bit
addressable storage, addressable using the ALET.

If this field is blank (C' ') or contains hexadecimal zeros, the buffer must immediately follow the
ABD in the primary address space.

Reserved 2 (ABDXRSV2)

This field is reserved and must be set to binary zeros.

Reserved 3 (ABDXRSV3)

This field is reserved and must be set to binary zeros.

ALET (ABDXALET)

If ABDXLOC is set to "D" (C'D'), this field must contain an ALET suitable to access the buffer. The
ALET must be on the dispatchable unit access list (DU-al) and may relate to a dataspace or an
address space.

Some special ALET values are supported. A value of zero ("0") specifies the current primary address
space (PASID) and is equivalent to specifying ABDXLOC=C'I'. A value of "1" specifies the current
secondary address space (SASID) and is not allowed, resulting in response code 253 (ADARSP253),
subcode 14. Under z/OS, a value of "2" specifies the home address space (HASID) and is equivalent
to specifying ABDXLOC=C'I' if PASID=HASID whent the command is issued.

101Command Reference

Adabas Buffer Descriptions (ABDs)

Buffer Size (ABDXSIZE)

Required. Use this field to specify the size of the buffer (in bytes), as it is allocated. A size of zero
indicates a dummy buffer, which is treated as if it was not specified at all. More than 32 KB of data
can be specified in an Adabas buffer.

Data Length to Send (ABDXSEND)

Required. Use this field to specify the length of the data (in bytes) to be sent to Adabas. A buffer
is sent to Adabas only if it is an input buffer for the type of command being issued.

Data Length Received (ABDXRECV)

This field specifies the length of the data (in bytes) returned to Adabas. The Adabas router sets
this value at the end of call processing. The maximum value of this field will not exceed the value
set for the buffer size field (ABDXSIZE). A buffer is received from Adabas only if it is an output
buffer for the type of command being issued.

64-Bit Indirect Address Pointer (ABDXADRG)

If you set the buffer location flag field (ABDXLOC) to C'I' (indirect buffer) or to C'D' (ALET-qual-
ified buffer), specify the 64-bit address of the actual buffer in this 8-byte field.

31-Bit Indirect Address Pointer (ABDXADR)

This four-byte field is an alias for the second four bytes of ABDXADRG (the 64-bit address pointer).
If you set the buffer location flag field (ABDXLOC) to C'I' (indirect buffer) or to C'D' (ALET-qual-
ified buffer), specify the 31-bit address of the actual buffer in this field and ensure that the preceding
four bytes (in ABDXADRG) are zero.

Actual Buffer

If you set the buffer location flag field (ABDXLOC) to C' ' (blanks), this field should contain the
actual buffer. For complete information on defining buffers, read Defining Buffers, elsewhere in
this guide.

Command Reference102

Adabas Buffer Descriptions (ABDs)

ABD DSECT

The ABD DSECT can be found in member ADABDX of the distributed Adabas SRCE library.

ABD Lists

AnABD list is a file containing a list of pointer references to the Adabas buffer descriptions (ABDs)
used for a direct call. ABD lists are used only for open systems ACBX direct calls. In the list, one
ABD pointer is required for every buffer segment that is needed for the direct call.

ABD lists can include pointers to the ABDs for eight different types of buffers: format, record,
multifetch, search, value, ISN, user, and performance buffers. Multiple ABDs of the same type can
be specified in an ABD list.

ABDs can be specified in the list in any sequence. However, if an ABD requires a matching ABD
of another type, Adabas will match them sequentially. For example, if three format ABDs and
three record ABDs are included in the list, the first format ABD in the list is matched with the first
record ABD in the list, the second format ABD is matched with the second record ABD, and the
third format ABD is matched with third record ABD. If unequal numbers of match-requiring ABDs
are listed (for example, if three format ABDs are listed, but only two record ABDs), Adabas will
generate a dummy ABD for the missing ABD (in this case a dummy record ABD will be created).

For complete information about the relationships between the different types of ABD or buffer
specifications, read Understanding the Different Buffer Types, elsewhere in this guide.

103Command Reference

Adabas Buffer Descriptions (ABDs)

104

V
■ 8 Defining Buffers .. 107
■ 9 Understanding the Different Buffer Types ... 109
■ 10 Format Buffers .. 113
■ 11 Record Buffers .. 145
■ 12 Format and Record Buffer Examples ... 151
■ 13 Prefetch Buffers .. 159
■ 14 Multifetch Buffers ... 161
■ 15 Search Buffers .. 163
■ 16 Value Buffers .. 175
■ 17 Search and Value Buffer Examples ... 179
■ 18 Date-Time Edit Mask Processing in Format and Search Buffers .. 191
■ 19 ISN Buffers .. 193
■ 20 User Buffers ... 195
■ 21 Performance Buffers .. 201

105

106

8 Defining Buffers

If your direct calls use the ACB direct call interface, you can define five different types of buffers:
format, record, search, value, and ISN buffers. These buffers are specified elsewhere in your ap-
plication and are indirectly referenced in the ACB direct call (via pointer references).

With Adabas 8, if your direct calls use theACBXdirect call interface, you can define eight different
types of buffer segments using Adabas buffer descriptions (ABD) and their associated buffer
definitions: format, record, multifetch, performance, search, value, ISN, and user buffers. Each
Adabas buffer segment is represented by a single ABD, although you can define multiple ABDs
of some types in the same program. (For example, you can define multiple format ABDs for use
by the same program.) A single buffer definition is associated with each ABD -- either indirectly
by pointer reference or directly in the ABD itself. For detailed information about ABDs, including
their structure, read Adabas Buffer Descriptions (ABDs), elsewhere in this guide.

This chapter covers the following topics:

Describes the different buffer types and the relationships between
them, and correspondingly, the relationships between their
associated ABDs (if you are makingACBX interface direct calls).

Understanding the Different Buffer Types

Describes format buffers and their syntax.Format Buffers

Describes record buffers and their syntax.Record Buffers

Provides examples of format and record buffer pairs.Format and Record Buffer Examples

Describes multifetch buffers and their syntax.Multifetch Buffers

Describes search buffers and their syntax.Search Buffers

Describes value buffers and their syntax.Value Buffers

Provides examples of search and value buffer pairs.Search and Value Buffer Examples

Describes how Adabas handles date-time edit masks in format
and search buffers.

Date-Time Edit Mask Processing in
Format and Search Buffers

Describes ISN buffers and their syntax.ISN Buffers

Describes user buffers and their syntax.User Buffers

107

Describes performance buffers.Performance Buffers

Command Reference108

Defining Buffers

9 Understanding the Different Buffer Types

The following syntax depicts the relationships between the different types of buffers that can be
specified for a direct call. It should assist you in determining which buffer specifications are de-
pendent on the presence of others.

[format-buffer record-buffer... [multifetch-buffer]]...
[search-buffer value-buffer]
[ISN-buffer]
[user-buffer] ...
[performance-buffer]

Notes:

1. If you are specifying an ACBX interface direct call, corresponding Adabas buffer descriptions
(ABDs) must also be specified. In addition, in ACBX interface direct calls when buffer specific-
ations require the presence of other buffer specifications (for example, a format buffer requires
the presence of a record buffer), Adabas pairs the buffers in the sequence in which they are
specified (for example, the first specified format buffer ABD with the first specified record
buffer ABD). The syntax below can assist you in determining the sequence in which the ABDs
should be listed in the call or in the ABD list.

2. If you are specifying an ACB interface direct call, the multifetch, performance, and user buffers
listed in this syntax do not apply. In addition, buffers must be specified in this sequence: format,
record, search, value, and ISN. If an earlier buffer in the sequence is not needed, but a later one
is, all of the buffers up to the needed buffer must be specified, even if they are blank. For example,
if an ACB interface direct call requires an ISN buffer but none of the other buffers, dummy
format, record, search, and value buffers must be specified before the ISN buffer.

The following table describes the elements in this syntax:

109

ConditionsDescriptionElement

Required only if you need to specify the fields to be
processed during the execution of an Adabas read or
update command.

When required, multiple format buffers can be
specified for an ACBX interface direct call. Only one

A format buffer segment to
use for the call. Each format
buffer segment must end
with a period and be a
complete and valid
standalone format buffer.

format-buffer

format buffer can be specified in an ACB interface
direct call.

If a format buffer is specified in the call, a
corresponding record buffer must also be specified.
In an ACBX interface direct call, if a record buffer is
not provided, Adabas will create a dummy one (with
length zero) to pair with the format buffer. In an ACB
interface direct call, if a record buffer is not provided,
processing errors will occur.

Optionally, in an ACBX interface direct call, a
corresponding multifetch buffer can also be specified.

Required only if you need to set aside an area in
storage to store ISNs or (in the case of an ACB interface

An ISN buffer segment to
use for the call.

ISN-buffer

direct call) an area to store the record descriptor
elements (RDEs) of multifetched or prefetched records.

When required, only one ISN buffer should be
specified for the call.

Used only by ACBX interface direct calls and required
only if you need to set aside an area in storage to store

A multifetch buffer segment
to use for the ACBX

multifetch-buffer

the record descriptor elements (RDEs) of multifetched
records.

When required, multiple multifetch buffers can be
specified for an ACBX interface direct call.

interface direct call. This
buffer is only available for
ACBX interface direct calls.

If a multifetch buffer is specified, corresponding format
and record buffers must also be specified. If they are
not, Adabas will create dummy format and record
buffers (with length zero) to correspond with the
multifetch buffer.

Not required. Used only by ACBX interface direct calls
withAdabas Review. For more information, read the
Adabas Review documentation.

A performance buffer to use
for the ACBX interface
direct call. This buffer is

performance-buffer

only available for ACBX
interface direct calls and is
only used by Adabas
Review.

Command Reference110

Understanding the Different Buffer Types

ConditionsDescriptionElement

Required only if you need to set aside an area of
storage to store record data required or collected for
the call.

When required, multiple record buffers can be
specified for an ACBX interface direct call. Only one

A record buffer segment to
use for the call.

record-buffer

record buffer can be specified in an ACB interface
direct call.

If a record buffer is specified in the call, a
corresponding format buffer must also be specified.
In an ACBX interface direct call, if a format buffer is
not provided, Adabas will create a dummy one (with
length zero) to pair with the record buffer. In an ACB
interface direct call, if a format buffer is not provided,
processing errors will occur.

Optionally, in an ACBX interface direct call, a
corresponding multifetch buffer can also be specified.

Required only if search criteria are required to select
records for the call.

If a search buffer is specified in the call, a
corresponding value buffer must also be specified.

A search buffer segment to
use for the call.

search-buffer

Only one search and value buffer pair can be specified
in a single direct call.

Used only by ACBX interface direct calls and required
only if the call requires input for the Adabas nucleus

A user buffer segment
(extension) to use for the

user-buffer

user exits 11 and 4 and the Adalink user exits 1 and 2call. The user buffer
(user exits A and B in Adabas 7). You can specify a
single user buffer in a direct call.

extension (UBX) is used for
the user data passed to
Adabas nucleus user exits
11 and 4 and Adalink user
exits 1 and 2 (user exits A
and B in Adabas 7).

Required only if search criteria are required to select
records for the call.

If a value buffer is specified in the call, a corresponding
search buffer must also be specified. Only one search

A value buffer segment to
use for the call.

value-buffer

and value buffer pair can be specified in a single direct
call.

111Command Reference

Understanding the Different Buffer Types

112

10 Format Buffers

■ Format Buffer Syntax .. 114
■ Field Selection Criteria .. 115
■ Record Format Specifications .. 116
■ Specifying Field Lengths of LA (Long Alpha) Fields in Format Buffers ... 142
■ Specifying Field Lengths of LOB (Large Object) Fields in Format Buffers .. 143
■ Format Buffer Performance Considerations ... 143

113

Format buffers specify the fields to be processed during the execution of an Adabas read or update
command. The format buffer must be long enough to hold the largest field definition contained
in the related program, including the ending point (.) of the buffer itself.

Format buffers are used in combination with record buffers and, in ACBX interface direct calls,
multifetch buffers. If a format buffer is specified, a record buffer must also be specified. If a record
buffer is not provided, Adabas will create dummy record buffer (with length zero) to pair with
the format buffer.

When using the ACBX direct call interface, multiple format buffers can be specified for an Adabas
direct call.

In anACBX interface direct calls, a multifetch buffer segment may also be listed. For more inform-
ation, read Record Buffers and Multifetch Buffers, elsewhere in this guide.

For complete information about the relationships between the different types of ABD or buffer
specifications, read Understanding the Different Buffer Types, elsewhere in this guide.

Format Buffer Syntax

Format buffers are divided into two parts: optional field selection criteria for the buffer and the
record format expected.

Multiple record formats may be specified in the format buffer for files that contain various record
formats. The specific record format to be used is determined by the value of a field in the file (for
example, record type). When specifying multiple record formats, each one must be preceded by
a format selection criterion.

The format buffer has the following syntax:

[field-selection-criteria1] record-format1[,[field-selection-criteria2] record-format2]... ↩
.

A comma must be used to separate all format buffer entries. One or more spaces may be present
between entries. The last entry may not be followed by a comma.

The format buffer must end with a period.

The following sections describe the components of this syntax:

■ Field Selection Criteria
■ Record Format Specifications

Command Reference114

Format Buffers

Field Selection Criteria

Field selection criteria (field-selection-criteria1 and field-selection-criteria2) are op-
tional in a format buffer. They allow you to restrict record formats to specific values of fields. The
syntax of field selection criteria is:

(field-name operator value1 [, value2]...)

field-name
The field name used in field selection criteria must be the valid name of a field in the FDT of
the Adabas file being read. It cannot be:
■ The name of a group or periodic group
■ A field using any of the MU, PE, LA, or LB options
■ A subfield, superfield, subdescriptor, or superdescriptor
■ A collation descriptor
■ A hyperdescriptor
■ A phonetic descriptor.

In addition, fields specified with the NU or NC/NN options must have a non-null value; oth-
erwise the selection criteria will be false.

operator
The following table lists the operators that can be used in the format buffer field selection cri-
teria.

MeaningOperator

equal toEQ

equal to=

not equal toNE

less thanLT

less than<

greater thanGT

greater than>

less than or equal toLE

greater than or equal toGE

value1, value2
The value must be a numeric integer or an alphanumeric value.

If you use the EQ or = operator, a series of values can be specified, separated by commas. An
alphanumeric value must be enclosed within apostrophes (for example, 'value').

115Command Reference

Format Buffers

Consider the following example:

(SA = 1) record-format-1, (SA = 2,3,4) record-format-2, (SA GE 4) record-format-3.

The field selection criteria specifies that:
■ If the value of field SA is "1", record-format-1 is used;
■ If the value of field SA is "2", "3" or "4", record-format-2 is used;
■ If the value of field SA is equal to or greater than "4", record-format-3 is used.

The first criterion that is met is used. If no criteria are met, a response code is returned. In the
example above, if the value of field SA is "4", both the last two conditions in the field selection
criteria are satisfied. However, record-format-2 will always be used, rather than record-format
3 because it is the first criteria satisfied. Likewise, if the value of SA is "0", a response code is
returned.

Record Format Specifications

The record format (record-format1) is required and is used to indicate which fields should be
read or updated in the Adabas direct call. Additional record formats can also be specified (record-
format2).

The syntax of the record format is:

For information about each of the elements in this syntax, read the section listed in the following
table:

ReadSyntax Element

field Syntaxfield

Length and Data Formatlength

Length and Data Formatdata-format

Field Series Notationfield-name - field-name

Space Notation (nX)nX

Text Insertion Notation'text'

Command Reference116

Format Buffers

field Syntax

The syntax for a field in record format syntax is:

This section covers the following topics related to this field syntax:

■ field-name Specifications
■ Index or Range Notation (i [-j] Notation)
■ Periodic Group References
■ Multiple-Value Fields
■ Multiple-Value Fields within Periodic Groups
■ Summary of Valid MU and PE Index Specifications in Format and Search Buffers
■ Count Indicator (C)
■ Daylight Savings Indicator (D)
■ Length Indicator (L)
■ Highest Occurrence/Value Indicator (N)
■ SQL Significance Indicator (S)
■ Selecting LOB Values or LOB Value Segments

field-name Specifications

The field-name is the name of the field or group for which the value, range, or count is requested
or for which a new value is being provided. The name specified must be two characters in length
and must be present in the FDT of the file being read or updated by the Adabas direct call. The
name can refer to an elementary, subfield, superfield, multiple-value field, a group, or a periodic
group.

A field name that refers to a group results in all the fields within the group being referenced. Use
of group names can greatly reduce the time required to process the command. A group name
cannot be used if the group contains a multiple-value or variable-length field (no standard length).

117Command Reference

Format Buffers

For access commands, the same name may be specified more than once. In this case, the field value
is returned multiple times.

For update commands, the same name cannot be used more than once (except in the case of mul-
tiple-value fields, as explained later in this section).

A subfield, superfield, subdescriptor, or superdescriptor name may be specified for access com-
mands but not for update commands.

The following table illustrates the relationship between allowed single-value field types and the
type of command:

COLDESUPERDESUBDEDESuperfieldSubfieldFieldCommand Type

yes 3yesyesyesyesyesyesRead (Ln) 1

nononoyesnonoyesAdd (Nn)

yesyesyesyesyesyesyesFind (Sn)

nononoyesnonoyesUpdate (A1/4) 2

Notes:

1. Format C may be used with read commands to request the record in its compressed format.

2. A field specified for an update command cannot be repeated, cannot contain a "1-N"-type spe-
cification, and cannot specify a group and an element (field or group) contained in the group.

3. A collation descriptor (COLDE) can only be specified in the format buffer of the L9 command
and only when the decode option has been specified in the user exit. The value returned is not
the index value but the original field value.

Index or Range Notation (i [-j] Notation)

The following is the field name syntax for selecting multiple-value fields or occurrences of periodic
groups:

field-name i[-j]

where:

is the periodic group or multiple-value occurrencei

is the periodic group or multiple-value occurrence rangei-j

Periodic group namesmust be followed by a numeric or other appropriate suffix (see the discussions
of the Count Indicator (C) and the highest occurrence/value indicator Highest Occurrence/Value
Indicator (N) for more information). Specifying a periodic group name as the field name alone is
incorrect syntax.

Command Reference118

Format Buffers

Multiple-value fields can be specified by explicitly identifying a particular value (indexing) or by
referencing each value in sequence, letting Adabas assign an index based on the sequence. See
Multiple-Value Fields for more information.

Selects . . .Example

the third value of multiple-value field ZZ, the third occurrence of periodic group ZZ, or the first
occurrence of the single- or multiple-value field ZZ contained within the third occurrence of a
periodic group.

ZZ3.

the third through sixth values of the multiple-value field ZZ, the third through sixth occurrences
of periodic group ZZ, or the first occurrence of the (single or multiple-value) field ZZ contained
within the third through sixth occurrences of a periodic group.

ZZ3-6.

Periodic Group References

If a periodic group (or a field within a periodic group) is to be referenced, the specific occurrence
to be used must be specified. This is accomplished by appending a one- to three-digit index (value
1-191, leading zeros are permitted) to the name.

Consider the following examples:

Note: The examples in this section use the Adabas file definitions described in FileDefinitions
Used in Examples.

1. An occurrence is identified by the name of the periodic group and the occurrence number.

Selects . . .Example

the third occurrence of periodic group GB (fields BA3, BB3, BC3).GB3.

2. When selecting fields within one or more periodic groups, the field name and occurrences
(values) are used; the group name is implied.

Selects . . .Example

the sixth occurrence of field BB.BB06.

3. To refer to a range of occurrences of a periodic group (or a field within a periodic group), enter
the periodic group or field name, followed by the first and last occurrence numbers separated
by a hyphen. The occurrence numbers must occur in ascending sequence; a descending range
is not permitted.

119Command Reference

Format Buffers

Selects . . .Example

the second through fourth occurrences of periodic group GB, including all fields within
these occurrences (BA2, BB2, BC2; BA3, BB3, BC3; and BA4, BB4, BC4).

GB2-4.

the second through fourth occurrences of field BA and BC (BA2, BA3, BA4, BC2, BC3,
BC4).

BA2-4,BC2-4.

Multiple-Value Fields

Multiple-value fields can be specified in the format buffer in two ways: by explicitly identifying
a particular value (indexing) or by referencing each value in sequence, letting Adabas assign an
index based on the sequence. These two methods apply as well to sub- or superdescriptors derived
from multiple-value fields.

Note: The examples in this section use the Adabas file definitions described in FileDefinitions
Used in Examples.

1. Indexing: To refer to a particular value of a multiple-value field, enter a one- to three-digit index
(value 1-191, leading zeros permitted) after the field name.

Selects . . .Example

the second value of the multiple-value field MF.MF2.

the first and tenth values of the multiple-value field MF.MF1, MF10.

To refer to a range of values for a multiple-value field, specify the first and last values desired,
connected by a hyphen, immediately after field name. An ascending range must be specified.

Selects . . .Example

the first three values of the multiple-value field MF.MF1-3.

2. Sequencing: To refer to multiple-value fields by repeating the field name, first specify the first
value, then the second, and so on.

Selects . . .Example

the first and second values of the multiple-value field MF.MF,MF.

the first three values of the multiple-value field MF and the values for the fields
AA, AB and AC, in the order shown.

AA,MF,AB,MF,AC,MF.

Both methods of referencing a multiple-value field can be used in the same format buffer. If no
occurrence index is specified, an index that is one higher than the last index, proceeding from left
to right, is implicitly (or explicitly) assigned. If the last index was specified as "N" or "1-N", referring
to the highest existing occurrence, a new field specification without an explicit index will refer to

Command Reference120

Format Buffers

the same field occurrence as the last specification. See Highest Occurrence/Value Indicator (N) for
more information about the highest occurrence/value indicator N/1-N/NC.

For an update command where all format buffer references to a multiple-value field are specified
without indexes (i.e., by sequencing), only those occurrences specified will remain in the record;
all other occurrences that might exist are deleted. If any one reference to a multiple-value field is
specified with an index, then only the specified occurrences are changed; all other occurrences
remain unchanged.

Multiple-Value Fields within Periodic Groups

If a multiple-value field is within a periodic group, specifying the multiple-value field name implies
the periodic group name. The group name, therefore, does not have to be specified; only the group
occurrence or occurrence range is required. The general syntax for selecting a multiple-value field
value or value range within a periodic group occurrence or occurrence range is:

field-name i[-j] (i[- j])

where:

is the periodic group occurrencei

is the periodic group occurrence rangei-j

is the multiple-value field value(i)

is the multiple-value field value range(i-j)

Consider the following examples:

Note: The examples in this section use the Adabas file definitions described in FileDefinitions
Used in Examples.

1. To refer to a multiple-value field contained within a periodic group, enter the occurrence
number of the periodic group after the field name, followed by the desired multiple-value field
values or range of values enclosed within parentheses.

Selects . . .Example

the fifth value of the multiple-value field CB in the second occurrence of the periodic group
that contains field CB.

CB2(5).

the first five values of the multiple-value field CB in the second occurrence of the periodic
group that contains field CB.

CB2(1-5).

2. To refer to either the same multiple-value field or the same ranges of multiple-value fields
contained within a range of periodic group occurrences, enter the range of occurrences after
the field name, followed by the multiple-value field value or range of values, enclosed within
parentheses.

121Command Reference

Format Buffers

Selects . . .Example

the second value of multiple-value field CB in each of the third through the fifth occurrences
of the periodic group containing field CB.

CB3-5(2).

the first four values of the multiple-value field CB in the first occurrence of the periodic
group containing field CB, followed by the first four values of CB in the second occurrence
of the periodic group.

CB1-2(1-4).

Summary of Valid MU and PE Index Specifications in Format and Search Buffers

Any of the following MU and PE index specifications are valid in format and search buffer syntax:

DescriptionSpecification

MU index for an MU field or a PE index for a PE group.i

Range of MU indices or PE indices.i-j

The highest MU index for an MU field or PE index for a PE group. For more information about
the N indicator, read Highest Occurrence/Value Indicator (N), elsewhere in this section.

N

Range of all MU or PE indices. This specification is not allowed for update commands. For
more information about the N indicator, readHighestOccurrence/Value Indicator (N), elsewhere
in this section.

1-N

The MU index (m) for an MU field in the PE group identified by the PE index (i).i(m)

A range of MU indices (m-n) for an MU field in the PE group identified by the PE index (i).i(m-n)

The highest MU index (N) for an MU field in the PE group identified by the PE index (i).i(N)

All MU indices (1-N) for an MU field in the PE group identified by the PE index (i).This
specification is not allowed for update commands.

i(1-N)

The MU index (m) for an MU field in the PE group identified by the highest PE index (N).N(m)

The range of MU indices (m-n) for an MU field in the PE group identified by the highest PE
index (N). This specification is not allowed for update commands.

N(m-n)

The highest MU index (N) for an MU field in the PE group identified by the highest PE index
(N).

N(N)

All MU indices (1-N) for an MU field in the PE group identified by the highest PE index (N).
This specification is not allowed for update commands.

N(1-N)

The MU index (m) for an MU field in the PE group identified by the range of PE indices (i-j).i-j(m)

The range of MU indices (m-n) for an MU field in the PE group identified by the range of PE
indices (i-j).

i-j(m-n)

The higheset MU index (N) for an MU field in the PE group identified by the range of PE
indices (i-j).

i-j(N)

Command Reference122

Format Buffers

DescriptionSpecification

All MU indices (1-N) for an MU field in the PE group identified by the range of PE indices
(i-j). This specification is not allowed for update commands.

i-j(1-N)

Count Indicator (C)

To obtain the count of periodic group occurrences, or the count of existing values of a multiple-
value field not in a periodic group, specify the periodic group or multiple-value field name followed
by "C":

field-name C count for multiple-value field or periodic group "field-name"

Selects . . .Example

the highest occurrence number (also the occurrence count) in periodic group GB.GBC

the number of existing values in multiple-value field MF that are not contained in a periodic group.MFC

The count is returned in the record buffer as a one-byte binary number unless an explicit length
and/or format is specified (see Length and Data Format).

If your Adabas file uses the Adabas 8 extended MU/PE limits, verify that your program reads the
occurrence count into a record buffer field with two or more bytes so that it can handle two-byte
occurrence count values (for example, FB='MUC,2,B.'). Adabas returns response code 55
(ADARSP055), subcode 9 if you only provide a one-byte field in the record buffer for the occurrence
count of an MU field or PE group in a file with extended MU/PE limits.

To obtain the count of the existing values of a multiple-value field contained within a periodic
group, enter the multiple-value field name followed by the group occurrence and "C":

field-name i C count for multiple-value field "field-name" within a group occurrence

Selects . . .Example

the number of existing values of multiple-value field CB in the fourth occurrence of a periodic
group.

CB4C.

For update commands, specifying "C" causes Adabas to skip in the record buffer the number of
positions occupied by the count field, thus ignoring the count.

The user cannot directly update multiple-value or periodic group count fields. These count fields
are updated by Adabas when multiple-value field values and periodic group occurrences are added
or deleted.

123Command Reference

Format Buffers

Daylight Savings Indicator (D)

If a user session time zone uses daylight savings time, the user's local time requires a daylight
savings indicator to ensure that the accurate time is reported during the hour when time is turned
back from daylight savings time to standard time. Specifying the daylight savings indicator (D)
on a date-time field can be used to provide you with information about whether the field's date-
time value is in standard or daylight savings time.

The syntax of the daylight savings indicator is simply the letter "D" specified after the field name
and before any optional MU index, PE index, or MU-PE index combinations:

fnD[mu-pe-index]

The daylight savings indicator can only be specified for date-time fields defined with the TZ option.
When a daylight savings indicator is specified for a field in a format buffer, it must have a format
of 2,F. The offset from standard time (in seconds) is specified in the record buffer associated with
the format buffer in a halfword:

H'nnnn'

The value nnnn represents the number of seconds that the stored time should be offset from
standard time to calculate daylight savings time. A value of zero indicates that standard time
should be used; any value other than zero indicates that daylight savings time should be adjusted
for and specifies the offset for that adjustment.

It is possible that the daylight savings time offset is negative if the previous standard time belongs
to a different time zone and the regrouping coincided with the change to daylight savings time.
In addition, any security-by-value criteria on a date-time field defined with the TZ option will be
evaluated as given in UTC time.

■ MU and PE Index Specifications in Daylight Savings Indicator Syntax
■ Daylight Savings Indicator Rules
■ Daylight Savings Indicator Example

MU and PE Index Specifications in Daylight Savings Indicator Syntax

Valid MU and PE index specifications in daylight savings indicator syntax can be any of the fol-
lowing:

■ An MU index for an MU field
■ A PE index for a PE group
■ A range of MU indices
■ A range of PE indices
■ A PE index or range of PE indices and an MU index or range of MU indices for an MU field

within a PE group.

Command Reference124

Format Buffers

For example, assuming field AA is a date-time field (or a PE group containing a date-time field),
any of the following daylight savings indicator specifications might be valid:

■ AAD. -- Daylight savings time adjustments should be applied to field AA.
■ AAD1. --Daylight savings time adjustments should be applied to occurrence 1 of MU field AA

or PE field AA.
■ AAD2(5). -- Daylight savings time adjustments should be applied to occurrence 5 of the multiple-

value field AA in the second occurrence of the periodic group including field AA.

Daylight Savings Indicator Rules

The following rules apply to the use of a daylight savings indicator:

1. Date-time edit masks and the daylight savings indicator are not allowed in the field selection
criteria of a format buffer.

2. Fields with the daylight savings indicator specified in the format buffer must have formats of
2,F.

3. The daylight savings indicator can be specified only for fields defined with the TZ option.

4. Each date-time field with a daylight savings indicator in a format buffer must also be specified
alone (without the daylight savings indicator) in the format buffer. For example:

"AA,14,U,AAD,2,F."

5. If the field for which a daylight savings indicator is specified is a multiple value field, the older
MU syntax is not supported. For example, instead of specifying the MU syntax
"AAD,AAD,AAD.", you must specify "AAD1-3.".

6. The daylight savings indicator cannot be specified more than once for the same field, MU oc-
currence or MU start occurrence.

7. The following rules apply in update operations::
■ The daylight savings indicator is evaluated for times where the daylight savings time is set

back to disambiguate between date-time values and when advancing the clock for daylight
savings time to detect invalid nonexistent local times.

■ If the daylight savings indicator is omitted, Adabas assumes that standard time is used in
cases whether the date-time value might be ambiguous.

8. In search buffers, the following rules apply:
■ A daylight savings indicator cannot be specified without a corresponding date-time field.

The date-time field must be defined with one of the following date-time edit masks: DATE-
TIME, TIMESTAMP, or NATTIME).

■ The daylight savings indicator must precede the corresponding date-time field. For example:

125Command Reference

Format Buffers

AAD,AA,14,U,E(DATETIME),GE

9. When sorting or reading local time values of a field with the TZ option, it may seem that the
values do not appear to be in the correct order. Only when combined with the the daylight
savings indicator can the local time can be precisely represented: Suppose we have stored the
following DATETIME UTC values:

2009-11-01 07:40:00
2009-11-01 08:30:00
2009-11-01 09:20:00

When reading with "TZ=America/Denver", the second value or the response appears to be not
in sequence:

2009-11-01 01:40:00
2009-11-01 01:30:00
2009-11-01 02:20:00

Yet the D indicator for the 3 values returns:

H'3600'
H'0'
H'0'

The first time value was when the 1 hour of daylight saving time was active.

Daylight Savings Indicator Example

Suppose the definition of field AA in the FDT is:

"1,AA,14,U,TZ,DT=E(DATETIME)"

A valid format buffer might be:

"AA,14,U,AAD,2,F."

The corresponding record buffer might be:

"20080814120000",H'3600'

In this example the daylight savings offset for field AA is 1 hour (3600 seconds) from standard
time.

Command Reference126

Format Buffers

Length Indicator (L)

The format buffer indicator, L, can be used to retrieve or specify the actual length of any LA or LB
alphanumeric or wide-character field value. This format buffer element is referred to as the length
indicator.

Note: At this time, the length indicator can only be used in format buffer specifications for
LA or LB fields. Support for use of the length indicator in other fields as well will be con-
sidered in a future release of Adabas.

The length indicator is specified using the field name followed by the character L (for example,
FB='ACL,4,B.' would return the length of the AC field). If the field is a multiple-value field or is
located in a periodic group, the field name and character L are followed by the related occurrence
indices (for example, FB='ACL2,4,B.' would return the length of the second value of multiple-
value field AC). The compressed field length is returned in four-byte binary format. A different
length and format cannot be specified.

■ Using the Length Indicator with MU/PE Fields
■ Using the Length Indicator in Read Commands
■ Using the Length Indicator in Update Commands

Using the Length Indicator with MU/PE Fields

When used with MU or PE fields, the length indicator must specify occurrence indices, including
the range of occurrence index. However, it cannot specify the 1-N occurrence index. Consider the
following examples.

1. In the following example, the length of the fifth value of the second occurrence of periodic
group field AC would be returned:

FB='ACL2(5).'

2. In the following example, the lengths of the first ten values of multiple value field AC would
be returned:

FB='ACL1-10.'

3. The following example is illegal as the 1-N notation is notation is not allowed with the length
indicator in MU/PE fields:

127Command Reference

Format Buffers

FB='ACL1-N.'

4. The following example is also illegal as the length indicator does not support MU fields with
out an occurrence index:

FB='MCL.'

In addition, if you elect to combine the length indicator and an asterisk length notation value re-
quest in the same format buffer for an MU or PE field, the value requests must use corresponding
ranges as the length requests. It does not matter whether the length requests and value requests
are specified in the same or different format buffer segments. Consider the following examples,
where XX is an LA or LB field with the MU option:

1. The following valid examples request the length of the first two values of the XX field as well
as their actual values.

FB='XXL1-2,XX1-2,*.'

FB='XXL1,XXL2,XX1,*,XX2,*.'

2. The following invalid examples are attempts to request the length of the first two values of the
XX field as well as their actual values. However, these examples are invalid because the ranges
specified for the MU field in the length and value requests are not specified in a corresponding
manner.

FB='XXL1,XXL2,XX1-2,*.'

FB='XXL1-2,XX1,*,XX2,*.'

3. The following two format buffers request the length of the third and fourth values of the XX
field, as well as their actual values.

FB='XXL3,XXL4.'

FB='XX3,*,XX4,*.'

4. The following invalid format buffers attempt to request the length of the third and fourth values
of the XX field, as well as their actual values, but fail because the ranges specified for the length
and value requests are not specified in a corresponding manner.

Command Reference128

Format Buffers

FB='XXL3,XXL4.'

FB='XX3-4,*.'

Using the Length Indicator in Read Commands

When the length indicator is specified for a field in the format buffer of a read command, the
number of bytes required for the field value in the record buffer (without padding and with no
further length indication) is returned at the corresponding field position in the record buffer. The
amount of space required in the record buffer is based on the field format and the UES-related
definitions for the database, file, and user.

You cannot, in the same format buffer, specify the length indicator to retrieve the length of an LA
or LB field in combination with a request for the actual field value in a different format (converted)
from the field's base format. For example, if character LB field L1 is stored in format A,
FB='L1L,4,B,L1,*,W.' is an illegal format buffer specification because it requests the length of
the the L1 field in addition to the value of the L1 field converted to Unicode (format W). The
reason for this restriction is that the length element gives the length of the field in its native format,
but the length of the value returned in the requested format (Unicode) would be different due to
the conversion.

If character LB field L1 (format A) contains a 40,000-byte EBCDIC value, consider the following
examples:

1. Suppose the format buffer specification for L1 is:

FB='L1L,4,B.'

The record buffer will contain the four-byte binary length of the value of field L1:

X'00009C40'

2. Suppose the format buffer specification for L1 is:

FB='L1L,4,B,L1,*,A.'

The record buffer will contain the four-byte binary length of the value of field L1 at the beginning
of the record buffer area , followed by 40,000 characters of the actual L1 data.

Empty Values, Length Indicators, and the NB (No Blank Compression) Option

If the length indicator of a field is specified in the format buffer (for example, FB='L1L,4,B.'),
and if the field is not subject to blank compression (the NB option is specified for the field in the
FDT), the length returned is the number of bytes specified when the value was stored (which can
be zero). However, if the field is subject to blank compression, the length returned is the number
of significant left-most bytes, beyond which the value is padded with blanks. For an all blank

129Command Reference

Format Buffers

value, the returned length is the length of one blank (one byte for alphanumeric fields, two bytes
for wide-character fields).

The following examples depict this. For the first three examples, suppose the FDT is defined as
follows:

1 | Z1 | 022 | A | NU
1 | Z2 | 000 | A | LB NU
1 | Z3 | 022 | A | NU

Note: In Natural, Z2 is a large object (LOB) field with DYNAMIC specified in the DDM. So
note that the field length is zero ("000") in the FDT.

Example 1: A Natural application fills all three fields:

Z1-FIELD := '1234567'
Z2-FIELD := 'LOB LOB LOB'
Z3-FIELD := '89101112'

Result: Response Code 0 (ADARSP000).

Example 2: A Natural application fills fields Z1 and Z3:

Z1-FIELD := '1234567'
Z3-FIELD := '89101112'

Result:NAT3052 Error processing a buffer. DB/FNR/Subcode xxx/yyy/2. Invalid length for variable-
length field specified in record buffer.

Example 2 failed because an attempt was made to store field Z2 with a length of zero. Adabas as-
sumes that fields cannot be stored with a length of zero unless they are defined with the NB option.
If a field is not defined with the NB option (as with Z2 in this case), but an attempt is made to store
it with a length of zero, an error results. To resolve this, store the field you want empty as a single
blank (as shown in the next example) or define it as an NB field (as shown in Example 4).

Example 3: A Natural application fills fields Z1 and Z3 with values, but fills field Z2 with only the
initial value of an Alpha field (blank):

Z1-FIELD := '1234567'
Z2-FIELD := ' '
Z3-FIELD := '89101112'

Result: Response Code 0 (ADARSP000).

Now suppose the definition of field Z2 in the FDT is not subject to blank compression (the NB
option has been added to its FDT definition):

Command Reference130

Format Buffers

1 | Z1 | 022 | A | NU
1 | Z2 | 000 | A | LB NU NB
1 | Z3 | 022 | A | NU

In this case, Example 2 above would respond differently, as shown below in Example 4.

Example 4: A Natural application fills fields Z1 and Z3, when Z2 includes the NB option:

Z1-FIELD := '1234567'
Z3-FIELD := '89101112'

Result: Response Code 0 (ADARSP000).

Using the Length Indicator in Update Commands

When a length indicator is specified in the format buffer for an update command, the corresponding
value in the record buffer specifies the actual value length of the field in the record buffer. Only
one length indicator for the base field can be specified and it must be accompanied by the asterisk
(*) length notation in the format buffer.

The length indicator must occur in its format buffer segment prior to any format element that
implies a variable length in the record buffer (due to the use of asterisk notation or zero length
notation). In other words, the length indicator is located in a constant position, independent of
the values of any fields mentioned in the format.

Highest Occurrence/Value Indicator (N)

The indicator "N" selects the last value in a series of values comprising a multiple-value field, or
the last occurrence of a periodic group, removing the need to know the number of the last value
or occurrence.

Note: The 1-N notation is not supported for LB fields.

The notation "1-N" selects all values comprising a multiple-value field, or all occurrences of a
periodic group. For multiple-value fields in periodic groups, it is not possible to combine the
specification 1-N for the group occurrence with any specification for the field occurrences.

The notation "NC" selects the count of the existing values of a multiple-value field in the last oc-
currence of the periodic group containing the field.

131Command Reference

Format Buffers

Last occurrence of periodic group field-name or the highest value of
multiple-value field field-name.

field-name N

Count of values for multiple-value field field-name in the last occurrence
of the periodic group containing field-name.

field-name NC

Selects all values of multiple-value field field-name or all occurrences of the
periodic group field-name.

field-name NC

The last value of multiple-value field field-name in the last occurrence of
the periodic group containing field-name.

field-name N (N)

All values of multiple-value field field-name in the last occurrence of the
periodic group containing field-name.

field-name N(1-N)

Value or range of values of multiple-value field field-name in the last
occurrence of the periodic group containing field-name.

For multiple value LB fields and LB fields within periodic groups, you must
specify a specific occurrence of the field. In the following example, the first
value of multiple-value LB field L2 is selected:

field-name N(i [- j ↩
])

FB='L21.'

You cannot specify the base field without an occurrence index. For example,
the following format buffer specification is not valid:

FB='L2.'

The last value of multiple-value field field-name in an occurrence or range
of occurrences of the periodic group containing field-name.

For multiple value LB fields and LB fields within periodic groups, you must
specify a specific occurrence of the field. In the following example, the fifth
value of LB field L3 in its second PE-group instance is selected:

field-name i [- j] ↩
(N)

FB='L32(5).'

All values of multiple-value field field-name in an occurrence or range of
occurrences of the periodic group containing field-name.

field-name i [-j] ↩
(1-N)

Selects . . .Example

the highest (last) value of multiple-value field MF. If multiple-value field MF contains four
values, the fourth value (the last value entered) is selected.

MFN.

the highest occurrence number of a periodic group GB.GBN.

the count of existing values for the multiple-value field MF in the highest occurrence of the
periodic group containing MF.

MFNC.

all values of the multiple-value field MF.MF1-N.

all occurrences of periodic group GB.GB1-N.

Command Reference132

Format Buffers

Selects . . .Example

all values for the multiple-value field MF in the highest occurrence of the periodic group
containing MF.

MFN(1-N).

the highest value for the multiple-value field MF in the highest occurrence of the periodic
group containing MF.

MFN(N).

the fourth value of the multiple-value field MF in the highest occurrence of the periodic group
containing MF.

MFN(4).

the highest value of the multiple-value field CB in the third through fifth occurrences of the
periodic group containing CB.

CB3-5(N).

all values of the multiple-value field CB in the second occurrence of the periodic group
containing CB.

CB2(1-N).

SQL Significance Indicator (S)

The "S" significance, or null, indicator and the corresponding null indicator value in the record
buffer indicate whether a field's value is significant, including zero or blank, or not significant
(undefined). The S indicator can only be applied to elementary fields that are defined with the NC
option, but not for an NU option field:

field-name S SQL significance indicator

See the section Record Buffer for a description of the null value indicator, and the ADACMP
utility description in the Adabas Utilities documentation for information about defining SQL null
fields.

The related null indicator value in the record buffer, described below, has a two-byte standard
length and fixed point format; this length and format cannot be overridden.

For update-type commands, a null value will be stored in the field if the corresponding null indic-
ator value is X`FFFF' and no NN option is specified for the field. Otherwise, the null indicator
must be X`0000'. This, combined with the S indicator, shows that the field's value given elsewhere
in the record buffer is to be stored.

The S indicator is not required for update-type commands; if the S indicator is not specified, the
field value is updated exactly as if the S indicator had been specified and the corresponding null
indicator value had been set to zero (a null in the field is a value). See the examples below.

For read-type commands, the S indicator is required when the NC fields are defined without the
NN option. If the S indicator is not present when a read command detects an NC-specified field
and the field actually contains a null value, a response code 55 (ADARSP055) with subcode 5 is
returned.

133Command Reference

Format Buffers

Example:

This example uses the "field-name S" indicator with the two-byte null indicator in the record buffer
to update or add a record, setting field AA equal to the SQL null value and ignoring the value for
field AA:

Name of the fields to be readAAS , AA , 2 ,Format Buffer

Field values returned by AdabasRecord Buffer FFFF 123F

For examples showing the use of the SQL significance indicator when a group or range of fields
containing an NC field is specified, see the section The SQL Significance Indicator and Field Series
Notation.

The "field-name S" indicator can be anywhere within the format buffer; that is, it need not precede
the corresponding field element. For update-type commands, the format buffer cannot contain
more than one element referring to the same field:

valid for read/update commandsAAS.

valid for read/update commandsAA.

valid for read commands onlyAAS,AA,AAS.

This means that several format buffer elements referring to the same field cannot be specified for
an update-type command:

causes response code 44 (ADARSP044)AA,AA.

causes response code 44 (ADARSP044)AA,AAS,AA.

Selecting LOB Values or LOB Value Segments

Complete or partial large object (LB) fields (LOB fields) can be specified using the following syntax
for field-name:

field-name [index-or-range] [(bytenum,LOBlength[,LOBlength2])]

The following substitutions can be used in this LOB field syntax:

■ A two-character LOB field name should be specified for field-name. The LOB field may be an
elementary or a multiple-value LOB field and can be located in a periodic group. This is the
LOB field whose whole or partial value you intend to read or write.

■ If the LOB field is a multiple value field or a field in a periodic group, you must specify the ap-
propriate index-or-range notation used for MU or PE fields to identify the specific MU or PE
field occurrence you want to read or write. If you only want a partial LOB value (if you specify

Command Reference134

Format Buffers

the (bytenum,LOBlength[,LOBlength2]) construct), a single occurrence of an MU or PE LOB
field must be specified; in this case the range notation is not allowed.

■ The (bytenum,LOBlength[,LOBlength2]) construct is optional and is known as LOB segment
notation. It can be used to select only part (a segment) of a LOB value to be read or written. If
this construct is omitted, the entire LOB field value is read or written. To use this construct, the
field name must defined with the LB (LOB field) option.

You cannot specify the same LOB field (or the same instance of an MU or PE LOB field) more
than once in the same format buffer (with our without LOB segment notation) in a single store
or update command (N1 or A1 command).

■ Valid values for bytenum in LOB segment notation are unsigned decimal numbers or an asterisk
(*). If a number is specified, it must lie in the range from 1 through 2,147,483,647. If a number
is specified, it denotes the starting position of the byte within the LOB value where the LOB
segment read or write should begin. The first (leftmost) byte of an entire LOB value is byte
number one (1).

If an asterisk (*) is specified, it denotes the current position in the LOB value. The current position
of a LOB value is tracked in the ISN Lower Limit (ACBISL or ACBXISL) field of the Adabas
control block, which contains the number of bytes preceding the segment you now want to read
or update. The asterisk notation is valid in A1 and L1/L4 commands that also have their Com-
mand Option 2 (ACBCOP2 or ACBXCOP2) fields set to "L". It is useful for reading or writing a
LOB value using multiple calls with a single, constant format, as it avoids the need to adjust the
bytenum value in the format for each call in the sequence. At the end of each of these calls,
Adabas returns in the ISN Lower Limit field the byte number of the last byte of the LOB segment
just processed. Only one format element can be specified that uses the asterisk positioning
notation in all sections of the format buffer.

■ Valid values for LOBlength in LOB segment notation are unsigned decimal numbers ranging
from 0 to 2,147,483,647. It specifies the length, in bytes, of the LOB value segment that should
be read or written. Space for a LOB value segment of this size must be provided at the corres-
ponding position in the record buffer segment. If a numeric value is specified for bytenum in
LOB segment notation, the sum of the byte number referenced by bytenum and the value of
LOBlength must be less than or equal to 2,147,483,647.

■ Valid values for LOBlength2 in LOB segment notation are unsigned decimal numbers ranging
from 0 to 2,147,483,647. LOBlength2 is optional, and can only be specified in write operations.
When it is specified, its value must equal the value of LOBlength. LOBlength2 indicates that the
LOB value segment in the record buffer should replace a segment of the same size in an existing
LOB value, without deleting any existing remainder of the value.

■ Length and format overrides are not allowed in format elements for LOB segments (when LOB
segment notation is used in the format buffer). For example, the following notations are all in-
valid:
■ FB = 'LB(100001,25000),0,A.'

■ FB = 'LB(100001,25000),*,A.'

135Command Reference

Format Buffers

■ FB = 'LB(100001,25000),25000,A.'

On the other hand, the following notations are all valid:
■ FB = 'LB.': Selects the entire LOB value.
■ FB = 'LB,100000.': Selects 100,000 bytes of data from the beginning of the LOB value.
■ FB = 'LB(100001,25000).': Selects 25,000 bytes of data starting at the 100,001st byte of the

LOB value.
■ FB = 'LB(100001,25000,25000).': Selects (in an update) 25,000 bytes of data replacing the

same number of bytes starting at the 100,001st byte of the LOB value.
■ FB = 'LB2(100001,25000).': Selects 25,000 bytes of data starting at the 100,001st byte of the

LOB value, which is the second occurrence of a multiple-value or periodic-group LOB field.

For complete information about processing partial LOB fields, read Processing LOB Field Segments,
in the Adabas DBA Tasks Manual.

Length and Data Format

The length and format parameters are used if a field value is being provided or is to be returned
in a length or format different from the standard defined for the field in the FDT. If the length or
format parameters are omitted, the field value must be provided or is returned in the standard
length and format of the field:

[, length] [, data-format]

Possible format and length conversions are suggested by the information in the following table.
A format conversion cannot be specified for subfields or subdescriptors; superfields or super-
descriptors; or hyperdescriptors.

Compatible FormatsData TypeMax Length (in bytes)Fmt

Walphanumeric, left-justified253A

Awide-character, left-justified253 1W

W,Aalphanumeric or wide-character with
LA (long alpha) option; left-justified;

16,381 1, 2, 3A,W

preceded by optional two-byte binary
(inclusive) length

Nonealphanumeric with LB (LOB) option;
left-justified; preceded by optional
four-byte binary (inclusive) length

2,147,483,6433, 4A

A,F,P,Ubinary; right-justified; unsigned126B

A,B,P,Ufixed-point; right-justified; signed; two,
four, or eight bytes

8F

nonefloating-point; four or eight bytes8G

Command Reference136

Format Buffers

Compatible FormatsData TypeMax Length (in bytes)Fmt

A,B,F,Upacked decimal; signed;
positive=A,C,E, or F; negative=B or D

15P

A,B,F,Punpacked decimal; signed;
positive=A,C,E, or F; negative=B or D

29U

Note:

1. Like an alphanumeric field, a wide-character field may be a standard length in bytes defined in the FDT,
or variable length. Any non-variable length override for a wide-character field must be compatible with
the user encoding; for example, a user encoding in Unicode requires an even length (maximum of 252
bytes for non-LA fields, maximum of 16,380 bytes for LA fields).

2. If the LA value in the record buffer is preceded by its two-byte length (variable field length notation),
the maximum length value is 16,383 bytes.

3. For LA and LB fields only, you can specify an asterisk (*) instead of a length in the format element. For
more information, read Asterisk (*) Length Notation, elsewhere in this section.

4. If the LOB value in the record buffer is preceded by its four-byte length (variable field length notation),
the maximum length value is 2,147,483,647 bytes.

The length specified must be large enough to contain the value in the chosen format, but cannot
exceed the maximum length permitted.

If a length of zero is specified, or if no length is specified and field-name refers to a variable-length
field (no standard length), the amount of record buffer space used for the field is variable and
depends on its actual value. The value returned by Adabas begins with a length indicator that
specifies the value's length in binary format, including the space for the indicator itself. For update
commands, you must provide this length indicator at the beginning of the field value in the record
buffer.

■ For a field without the LA- and LB-options, the length indicator is one byte.
■ For an LA field, the length indicator is two bytes.
■ For an LB field, the length indicator is four bytes.

For example, if the length in the format buffer is given as zero, an LA field with a 1000-byte value
is represented in the record buffer as two bytes containing the number 1002 in binary format, fol-
lowed by 1000 bytes containing the field value proper.

The format specified must be compatible with the standard format of the field.

■ Conversion between packed/unpacked decimal values and binary is limited to values between
0 and 2,147,483,647.

■ Conversion from a numeric format to alphanumeric results in an unpacked value, left justified,
without leading zeros and with trailing blanks. For example, the three-byte packed value "10043F"
would be converted to "F1F0F0F4F3404040". Value truncation is possible with this type of con-
version.

137Command Reference

Format Buffers

Note: Length and format overrides are not allowed in format elements for LOB segments
(when LOB segment notation is used in the format buffer).

The following additional topics are covered in this section:

■ Asterisk (*) Length Notation
■ Edit Mask Notation (Read Operations Only)
■ Examples

Asterisk (*) Length Notation

For LA and LB fields only, you can specify an asterisk (*) instead of a length in the format element.
Asterisks cannot be specified for regular alphanumeric or wide-character fields. The presence of
an asterisk indicates that the amount of space available for the LB field value in the record buffer
is variable and depends on the actual value of the LB field. However, unlike the zero length spe-
cification setting, no four-byte length field precedes the LB field value in the record buffer; the record
buffer area corresponding to the LB format element only contains the value of the LB field. The
actual LB field value length should be retrieved for read commands andmust be specified for update
commands using the new format buffer length indicator, L. For more information about the length
indicator, read Length Indicator (L), elsewhere in this guide.

In the following example, the record buffer for LB field L1 contains only the value of the L1 field,
followed by the value of the AA field for which 10 bytes have been allotted.

FB='L1,*,AA,10,A.'

In the following example, the record buffer for LB multi-value field L2 contains the first ten values
of L2.

FB='L21-10,*.'

The record buffer is not necessarily required to provide sufficient space for the entire field if its
format element includes an asterisk length setting. However, in read command processing, the
field value can be truncated if both of the following conditions are met:

■ The record buffer space available is insufficient for the field value.
■ A field with asterisk notation is specified at the end of the format buffer.

In these conditions, no error is returned. If this were the case in the second example above
(FB='L21-10,*.'), Adabas would truncate the ten values to be read down to the length of the
corresponding record buffer segment. (The truncation occurs from right to left; that is, the last
value is truncated first; if the remaining space is still insufficient, the second-to-last value is trun-
cated, and so on.) In extreme cases, if no space is available at all for the field value, the value is
truncated down to zero bytes.

Command Reference138

Format Buffers

In the first example above (FB='L1,*,AA,10,A.'), if the record buffer segment is too short, no
truncation occurs because this is not allowed for fields specified with a fixed length or length of
zero (0). Rather, the nucleus returns response code 53 (ADARSP053), indicating that the record
buffer is too small.

Only read commands executed by the Adabas nucleus may truncate values specified with the as-
terisk notation; no truncation occurs in update commands. In addition, the ADACMP utility does
not truncate values specified with the asterisk notation.

Edit Mask Notation (Read Operations Only)

Edit masks are used according to the standard edit mask rules used in the COBOL programming
language.

An edit mask may only be specified for numeric fields. All data returned by Adabas to an edited
field is converted to unpacked decimal format regardless of the standard format of the field. A
maximum of 15 digits (not counting edit characters) can be returned to an edited field.

For a field with an edit format specified, the length parameter must be large enough to contain
the field value plus all required edit characters.

Generates the edit mask . . .Format

zzzzzzzzzzzzzzzE1

zzzzzzzzzzzzz9-E2

zzzzzzzzz99.99.99E3

zzzzzzzzz99/99/99E4

z.zzz.zzz.zzz.zzz,zzE5

z,zzz,zzz,zzz,zzz.zzE6

z,zzz,zzz,zzz,zz9.99-E7

z.zzz.zzz.zzz.zz9,99-E8

*,***,***,***,**9.99-E9

*.***.***.***.**9,99-E10

user-designated maskE11

user-designated maskE12

user-designated maskE13

user-designated maskE14

user-designated maskE15

Note: Although edit formats E3 and E4 provide space for the century digits (see the following
examples), they do not enforce date formats that are compatible with year 2000 requirements.

139Command Reference

Format Buffers

For information on date-time edit masks, supplied with Adabas, readDate-Time EditMask Reference,
in the Adabas DBA Tasks Manual. Date-time edit masks can be used for record updates, in addition
to reads. For information on how these date-time edit masks can be used and processed in format
and search buffers, read Date-Time Edit Mask Processing in Format and Search Buffers, elsewhere in
this guide.

Examples

Edited ValueField ValueFormat Buffer

bbbbbbbbbbb9877009877XC,15,E1.

30/11/77301177XC,8,E4.

3.66--366XB,5,E7.

**5.42542XB,7,E9.

2000/02/2920000229Y2,10,E4.

Field Series Notation

The notation "field-name - field-name" may be used to refer to a series of consecutive fields (as
ordered in an FDT). The user specifies the beginning and ending field names connected by a dash:

field-name - field-name series notation

No multiple-value field or periodic group may be contained within the series.

A name that refers to a group may not be specified as the beginning or ending name, but a group
may be embedded within the series.

Standard format and length is in effect for all the fields within the series. No length or format
override is permitted.

Selects . . .Example

the fields AA, AB, and AC.AA-AC.

nothing. The series may not contain a multiple-value field or a periodic group.AA-GC.

nothing. The series may not begin/end with a group.GA-AC.

nothing. A length and/or format override is not permitted in a series notation.AA,5,U,-AD.

The SQL Significance Indicator and Field Series Notation

When a group or range of fields contains a field specified with the NC option, the corresponding
S operator is optional for read (Lx) commands. For update (A1) commands, the S operator must
not be specified. Adabas assumes that the null indicator corresponding to the NC field in the
format buffer is located just in front of the field's value in the record buffer.

For example, given the following field definitions in the FDT:

Command Reference140

Format Buffers

01,GR
02,AA,8,A
02,BB,8,A,NC
02,CC,8,A

If the format buffer of an update-type command specifies "GR." or "AA-CC." , the record buffer
has the following structure:

AA-value null-indicator-BB BB-value CC-value

That is, the null indicator must be included in the record buffer sequence, although the S indicator
was not (and must not be) specified in the format buffer.

If the format buffer of a read (Lx) command specifies "GR,BBS." or "AA-CC,BBS.", the record buffer
has the following structure:

AA-value null-indicator-BB BB-value CC-value
null-indicator-BB

In other words, the first appearance of the null indicator is implied in the record buffer while the
second appearance was explicitly called for by the format buffer.

Space Notation (nX)

The nX syntax is used differently for read and update commands:

nX

For read commands, nX indicates that "n" spaces are to be inserted in the record buffer by Adabas
immediately before the next field value:

Name of the fields to be readAA , 5X , BB.Format Buffer

Field values returned by AdabasRecord Buffer value-AA 5-blanks value-BB

For update commands, nX causes "n" positions in the record buffer to be ignored by Adabas:

Name of the fields to be updatedXX , 5X , YY.Format Buffer

Field values provided by userRecord Buffer value-XX ignore-5-bytes value-YY

141Command Reference

Format Buffers

Text Insertion Notation

The text syntax is used differently for read and update commands:

'text'

For read commands, the character string specified in the format buffer is to be inserted in the record
buffer immediately before the next field value. The character string provided can be 1-255 bytes
long, and may contain any alphanumeric character except a quotation mark.

For example:

Name of the fields to be readAA,'here is some text', BB.Format Buffer

Field values returned by AdabasRecord Buffer value-AA here is some text value-BB

For update commands, the number of positions enclosed within the apostrophes in the format
buffer will be ignored in the corresponding positions of the record buffer.

Specifying Field Lengths of LA (Long Alpha) Fields in Format Buffers

The LA option is normally used with variable-length data. The length of an alphanumeric field
with the LA option can also be specified in the format buffer. However, the length is then limited
to 16381 bytes:

Name of the fields to be readBA,5,Format Buffer

Field values returned by AdabasRecord Buffer ABCDE

A field with LA option can also have the NU (null suppression), NC/NN SQL null significance,
or the MU (multiple-value field) option, and can be a member of a PE (periodic) group.

A field with the LA option cannot be a descriptor and cannot be the parent of hyperdescriptors
or phonetic descriptors.

A field is compressed the same way, with or without the LA option; that is, by removing trailing
blanks. This must be kept in mind if you store binary data in an LA field.

Command Reference142

Format Buffers

Specifying Field Lengths of LOB (Large Object) Fields in Format Buffers

The LB option is normally used with variable-length data. The length of an alphanumeric field
with the LB option can also be specified in the format buffer.

Name of the fields to be readL1,100000,Format Buffer

Field values returned by AdabasRecord Buffer ABCDE all together 100000 bytes of data

Format Buffer Performance Considerations

Performance improvements may be achieved by using the following guidelines during format
buffer construction:

■ Use group names wherever possible rather than referring to elementary fields individually. Use
of group names reduces the time required by Adabas to interpret the format buffer.

■ Use of the field series notation does not result in performance improvements. A field series
notation is converted by Adabas into a series of elementary fields.

■ Use length and format overrides only when necessary. Using overrides requires additional
processing time when interpreting the format buffer and when processing the field.

■ If the same fields of a record are to be read and then updated, the same format buffer should
be used for the read and update commands. For more information, refer to the descriptions of
command and format IDs.

■ You should request periodic (PE) group and multiple-value (MU) field occurrences, based on
the requirements of the application. In other words, do not arbitrarily request all occurrences;
doing so requires extra time to translate the format buffer, and may mean decompressing nu-
merous empty occurrences. Generally, the AA1-N field argument is the most efficient for selecting
periodic group occurrences.

143Command Reference

Format Buffers

144

11 Record Buffers

■ Specifying and Reading the SQL Null Indicator in Record Buffers .. 147
■ Specifying Field Lengths of LA (Long Alpha) Fields in Record Buffers .. 149
■ Specifying Field Lengths of LOB (Large Object) Fields in Record Buffers .. 149
■ Specifying the Daylight Savings Time Offset in Record Buffers .. 150

145

A record buffer defines an area in storage to which Adabas can return data or in which you supply
data for processing. When a record buffer is required, a corresponding format buffer is expected
as well. If a format buffer is not provided, Adabas will create a dummy format buffer (with length
zero) to pair with the record buffer. For complete information about the relationships between the
different types of ABD or buffer specifications, read Understanding the Different Buffer Types,
elsewhere in this guide.

When using theACBXdirect call interface, multiple record buffers can be specified for an Adabas
direct call.

Record buffers are used primarily with read, search, and update commands:

■ For read commands, the values of the fields specified in the format buffer are returned by
Adabas in the record buffer. They are returned in the order specified by the format buffer. Here
is an example of a format buffer and its corresponding record buffer.

Name of the fields to be updatedAA,BB.Format Buffer

Field values provided by userRecord Buffer value-AA value-BB

Each value is returned in the standard length and format defined for the field unless a length
or format override was specified in the format buffer. If the value is a null value, it is returned
in the format that is in effect for the field, as follows:

Null value represented by . . .Field Type

blanks (hex '40') or blank of user override encodingAlphanumeric (A)

binary zeros (hex '00')Binary (B)

binary zeros (hex '00')Fixed (F)

binary zeros (hex '00')Floating Point (G)

decimal packed zeros with sign (hex '00' followed by '0A', '0B', '0C', '0D' or '0F' in
the rightmost, low-order byte)

Packed (P)

decimal unpacked zeros with sign (hex 'F0' followed by 'C0' or 'D0' in the rightmost,
low-order byte)

Unpacked (U)

Unicode blanks (hex '20') or blank of user override encodingWide-character (W)

Note: SQL-compatible null values in NC/NN option fields require the additional null
value and significance indicator. See Specifying and Reading the SQL Null Indicator in
Record Buffers, and SQL Significance Indicator (S).

Adabas returns the number of bytes equal to the combined lengths (standard or overridden) of
all requested fields.

■ For add or update commands, the new values for the fields specified in the format buffer are
provided by the user in the record buffer.

Command Reference146

Record Buffers

Name of the fields to be updatedXX,YY.Format Buffer

Field values provided by userRecord Buffer value-XX value-YY

When updating a record, you must specify the new value in the record buffer. If a null value is
being provided, it must be provided according to the field type in effect, as described above.

■ The record buffer is also used to transfer information between the user program and Adabas in
the following commands:

Data ReturnedData ProvidedCommand

User data (optional)Files to update and the operation type (ET, exclusive control)

The user's individual time zone

OP

Field definitions for the file-LF

User data stored in system file-RE

-Protection log user dataC5

-User data (optional)ET/CL

For the OP command, the record buffer indicates the type of user and the files to be used and
optionally, the time zone of the user..

The record buffer is also used for user data (OP, RE, CL, ET commands).

Specifying and Reading the SQL Null Indicator in Record Buffers

To support Adabas SQL Gateway (ACE) and other structured query languages (SQLs), fields
defined with the NC/NN (not-counted/null-not-allowed) options indicate an SQL-significant null
with a two-byte binary null indicator in the record buffer.

Whether a field's zero value is significant or an irrelevant null (unspecified) depends on the null
indicator specified in the record buffer when the value is entered or changed, or returned in the
record buffer when the value is read.

In addition to specifying or reading the value itself, either:

■ set the null indicator into the record buffer position that corresponds to the field's designation
in the format buffer for an update operation, or

■ ensure that your program examines the null indicator (if any) returned in the record buffer po-
sition corresponding to the field's position in the format buffer for a read operation.

The null indicator is always two bytes long and has fixed-point format, regardless of the data
format.

147Command Reference

Record Buffers

For a read (Lx) or find with read (Sx with format buffer entry) command, the null indicator value
returns one of the following (hexadecimal) null indicator values, according to the actual value that
the selected field contains:

DescriptionHex Value

A null value in the field is not significant.FFFF

A null value in the field is a significant value; that is, a true zero or blank.0000

The field is truncated. The null indicator value contains the length (xxxx) of the entire value as
stored in the database record if the length is less than 32,768.

xxxx

The field is significant and the value is truncated, and the length of the value does not fit into
the S element because it is greater than 32, 767.

0001

For an update (Ax) or add (Nx) command, the (hexadecimal) null indicator value in the record
buffer must be set to one of the following values:

DescriptionHex Value

The field value is set to "undefined", an insignificant null; the field's contents in the record buffer
are irrelevant when set to binary zero or blank characters.

FFFF

If either no value is specified in the record buffer, or binary zero or blanks are specified, the field
contains a significant null value.

0000

For an add command, if no value for the field is supplied in the record buffer for a field defined
with the NC option, the field is treated as a null field. The following example shows how a null
would be represented in a two-byte Adabas binary field AA defined with the NC option:

Field definition: 01,AA,2,B,NC

For nullFor a blankFor a nonzero value

FFFF (binary null is not
significant)

0 (binary null is
significant)

0 (binary value is
significant)

Null Value indicator in Record
Buffer

not relevant0000 (zero)0005Data

C102000205Adabas internal
representation

For an update (A1/N1) command, the field value is always significant whenever the field is defined
with the NC option; the field is treated as if a hexadecimal null indicator value of "0000" has been
specified.

For a read command, if the null indicator is not specified for an NC option field, the field value is
returned in the record buffer whenever there is a significant value in the record. If the Data Storage
record contains a "not significant" (FFFF) indicator value for the field, response code 55
(ADARSP055) will be returned when the record is read.

Command Reference148

Record Buffers

Specifying Field Lengths of LA (Long Alpha) Fields in Record Buffers

The LA option is normally used with variable-length data. If the length is not explicitly specified
in the format buffer then the length of an alphanumeric field with the LA option can be specified
in the record buffer or will be returned by Adabas.

The field value is preceded by a two-byte length field containing the length of the value, plus 2
(inclusive length).

Name of the fields to be read without explicit length
specifications.

BA,

or

Format Buffer

BA,0, … .

Field values specified for Adabas or returned by Adabas
in hexadecimal.

In the first case the value is three bytes long; in the
second case the value is 10,000 bytes long.

Record Buffer X´0005C1C1C1´...

or

X´2712...(10,000 ↩
characters)...

Specifying Field Lengths of LOB (Large Object) Fields in Record Buffers

The LB option is normally used with variable-length data. If the length is not explicitly specified
in the format buffer then the length of an alphanumeric field with the LB option can be specified
in the record buffer or will be returned by Adabas.

The field value is preceded by a four-byte length field containing the length of the value, plus 4
(inclusive length).

Name of the fields to be read or updated without
explicit length specifications.

L1,

or

Format Buffer

L1,0, … .

149Command Reference

Record Buffers

Field values specified for Adabas or returned by Adabas
in hexadecimal.

In the first case the value is three bytes long; in the
second case the value is 100,000 bytes long.

Record Buffer X´00000007C1C1C1´...

or

X´000186A4...(100,000 ↩
characters)...

Specifying the Daylight Savings Time Offset in Record Buffers

The daylight savings offset from standard time (in seconds) is specified in the record buffer asso-
ciated with the format buffer in the following format:

H'nnnn'

The value nnnn represents the number of seconds that the stored time should be offset from
standard time to calculate daylight savings time. A value of zero indicates that standard time
should be used; any value other than zero indicates that daylight savings time should be adjusted
for and specifies the offset for that adjustment.

Suppose the definition of field AA in the FDT is:

"1,AA,14,U,TZ,DT-E(DATETIME)"

A valid format buffer might be:

"AA,14,U,AAD,2,F."

The corresponding record buffer might be:

"20080814120000",H'3600'

In this example the daylight savings offset for field AA is 1 hour (3600 seconds) from standard
time.

Read Daylight Savings Indicator (D), in the format buffer description elsewhere in this guide for
more information about daylight savings indicator usage in format and search buffers.

Command Reference150

Record Buffers

12 Format and Record Buffer Examples

■ Example 1: Using Elementary Fields (Standard Length and Format) .. 152
■ Example 2: Using Elementary Fields (Length and Format Override) ... 153
■ Example 3: A Reference to a Periodic Group ... 154
■ Example 4: The First Two Occurrences of Periodic Group GB ... 155
■ Example 5: The Sixth Value of the Multiple-Value Field MF .. 156
■ Example 6: The First Two Values of the Multiple-Value Field MF ... 157
■ Example 7: The Highest Occurrence Number of a Periodic Group GC and the Existing Number of Values for
the Multiple-Value Field MF .. 158

151

This section provides examples of format and record buffer construction. For the Adabas file
definitions used in all the examples in this section, see File Definitions Used in Examples.

Example 1: Using Elementary Fields (Standard Length and Format)

Command Reference152

Format and Record Buffer Examples

Example 2: Using Elementary Fields (Length and Format Override)

153Command Reference

Format and Record Buffer Examples

Example 3: A Reference to a Periodic Group

Command Reference154

Format and Record Buffer Examples

Example 4: The First Two Occurrences of Periodic Group GB

155Command Reference

Format and Record Buffer Examples

Example 5: The Sixth Value of the Multiple-Value Field MF

Command Reference156

Format and Record Buffer Examples

Example 6: The First Two Values of the Multiple-Value Field MF

157Command Reference

Format and Record Buffer Examples

Example 7: The Highest Occurrence Number of a Periodic Group GC and the
Existing Number of Values for the Multiple-Value Field MF

Command Reference158

Format and Record Buffer Examples

13 Prefetch Buffers

When using prefetch buffer segments in an ACB call, the Adabas 8 behavior is unchanged from
prior Adabas releases. However, the prefetch option P is not supported in an ACBX-based direct
call.

159

160

14 Multifetch Buffers

Multifetch buffers are needed only for some Adabas commands run using the ACBX direct call
interface; they are not needed for any ACB interface direct calls.

A multifetch buffer defines an area in storage to which Adabas can return the record descriptor
elements (RDEs) of multifetched records. This buffer is only required by Adabas commands for
which the multifetch option has been activated (by setting Command Option 1 to "M"). RDEs are
each 16 bytes long.

A record descriptor element (RDE) has the structure shown in the following table.

ContentLengthFormat

Length of this record in record buffer. Records may have different lengths.4 bytesAll fields
unsigned integer,
right aligned

Adabas response for this record. If a nonzero response is given, no record is
stored in the record buffer.

4 bytes

ISN for this record.4 bytes

(L9 only) ISN quantity: value count for this descriptor.4 bytes

When the multifetch optionM is set in the Command Option 1 field of an ACBX command, Adabas
returns all records being read in the specified record buffer segments, based on the format specific-
ations in the corresponding format buffer segments. For each record buffer segment, the corres-
ponding multifetch buffer segment contains multifetch headers describing the records in the record
buffer segment.

For BT or ET commands, a multifetch buffer is not needed if Command Option 1 is set to "M". In
this case, the ISN buffer is used to store the ISNs that need to be removed from the hold queue.

When a multifetch buffer is required, a corresponding format and record buffer are expected as
well. If they are not provided, Adabas will create dummy format and record buffers (with length
zero) to pair with the multifetch buffer. For complete information about the relationships between

161

the different types of ABD or buffer specifications, read Understanding the Different Buffer Types,
in the Adabas Command Reference Guide.

Multiple multifetch buffers can be specified for an Adabas direct call. For complete information
about multifetch processing, read Multifetch Operation Processing, elsewhere in this guide.

Command Reference162

Multifetch Buffers

15 Search Buffers

■ Search Buffer Syntax .. 165

163

The search and value buffers are used together to define:

■ the search criteria used to select a set of records using a FIND command (S1, S2, S4); and
■ the range of values to be traversed by logical sequential read commands (L3/6, L9).

If a search buffer is provided, a value buffer is also expected. If it is not provided, Adabas will
create a dummy value buffer to pair with the search buffer. For complete information about the
relationships between the different types of ABD or buffer specifications, read Understanding the
Different Buffer Types, elsewhere in this guide.

Only one search and value buffer pair should be specified in a single Adabas direct call.

The user provides the search expressions in the search buffer and the values which correspond to
the search expressions in the value buffer.

The syntax used for the search buffer depends on the type of search criteria to be employed:

1. Single file search. The search criteria consists of one or more fields contained in a single file;

2. Multiple file search using physically coupled files. The search criteria consists of fields contained
in two or more files which have been physically coupled using the ADAINV utility;

3. Search using the soft coupling feature. This feature provides for a combination of search, read,
and internal list matching.

A search criteria may also contain one or more fields which are not defined as descriptors. If
nondescriptors are used, Adabas performs a read operation to determine which records are to be
returned to the user.

Notes:

1. On files containing a large number of records, performing a search using nondescriptors can
result in excessive response times.

2. The behavior of nondescriptor searches in Adabas databases differs between mainframe and
open systems in regards to null suppression in the fields. In open systems, nondescriptor
searches do not return records with null values in a field if the field is null-suppressed (NU);
on mainframe systems, the null-suppression (NU) of fields is ignored during nondescriptor
searches. At this time, to resolve this problem, we recommend that you remove the null sup-
pression option (NU) for open systems fields, if the fields must be used for a nondescriptor
search.

Command Reference164

Search Buffers

Search Buffer Syntax

This section outlines the syntax statement options for the search buffer. Delimiters (commas,
slashes, parentheses, semicolons) must separate all search buffer entries as indicated. One or more
spaces may be present between entries. The search statement must end with a period.

This section covers the following topics:

■ Search Expression
■ Connecting Search Expressions
■ Searching One File
■ Searching Multiple, Physically Coupled Files
■ Searching One or More Files Using Soft Coupling
■ Physically Coupled Files
■ Soft Coupling

Search Expression

The search expression syntax is common to all types of searches:

Each of the elements in this syntax is now described:

field-name
The search expression can name a field (descriptor or nondescriptor), subdescriptor, super-
descriptor, hyperdescriptor, collation descriptor, or phonetic descriptor. When using nondes-
criptors, multiple-value fields are permitted, but sub-/superfields are not.

If a nondescriptor is used, Adabas reads the entire file in order to determine which records
satisfy the search criteria. If only descriptors are used, the inverted lists are used and no reading
of records is necessary. Search criteria containing nondescriptors and descriptors may be
combined.

If a descriptor field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons and therefore, the
record will not be returned in a search. To generate the inverted list entry in this case, it is ne-

165Command Reference

Search Buffers

cessary to unload short, decompress, and reload the file; or use an application program to
initialize the field for each record of the file.

If the descriptor is defined with the NU option (null-value suppression), null values are not
stored in the inverted lists; therefore, a search for all the records which have the null value
will always result in no records found (even if there are records in Data Storage which contain
a null value for the descriptor). This rule also applies to subdescriptors. A superdescriptor
value is not stored if any field from which it is derived is defined with the NU option and the
value of that field is actually null.

Note: Large object (LB) fields cannot be specified in a search buffer, nor can they be
specified in format selection criteria.

command-id
The command ID value is enclosed in parentheses and identifies a list of ISNs resulting from
a previous Sx command that specified the save-ISN-list option.

i (Occurrence Index)
The occurrence index (i) identifies a particular occurrence of a descriptor or nondescriptor
within a periodic group and is used to limit the search to only the values located in the specified
occurrence. If no index is provided, the values in all occurrences are searched.
■ The index comprises one to five digits; leading zeros are permitted.
■ An index is not permitted for a descriptor that is a multiple-value field, or a subdescriptor

or superdescriptor derived from a multiple-value field. However, if the multiple value field
is within a periodic group, the index is allowed but identifies the occurrence within the PE
group and not within the multiple-value field.

D Daylight Savings Time Indicator
For fields with the time zone option TZ, a selection for daylight savings time can also be made
using a D indicator element similar to that described in the section Daylight Savings Indicator
(D), in the format buffer description elsewhere in this guide.

In search buffers, the following rules apply:
■ A daylight savings indicator cannot be specified without a corresponding date-time field.

The date-time field must be defined with one of the following date-time edit masks: DATE-
TIME, TIMESTAMP, or NATTIME).

■ The daylight savings indicator must precede the corresponding date-time field. For example:

AAD,AA,14,U,E(DATETIME),GE.

Be sure to read Daylight Savings Indicator Rules, in the format buffer description elsewhere in
this guide for more information about daylight savings indicator usage in format and search
buffers.

Command Reference166

Search Buffers

S (Significance) and Null Indicators
For fields with the SQL null value compression option NC, a selection for "null" or "not null"
can also be made using an "S" null indicator element similar to that described in the section
The SQL Significance Indicator and Field Series Notation.

Note: The NC option cannot be applied to fields with the NU (null-value suppression),
FI (fixed storage), MU (multiple-value), or PE (periodic group) options, or to group
fields.

The SQL significance ("S") indicator must be added to the field name ("field-nameS") and the
corresponding SQL null indicator must be specified in the value buffer.

The following hexadecimal null indicators are allowed as search argument values:

select null valuesFFFF

select non-null values0000

Any other null indicator value causes an Adabas response code 52 (ADARSP052).

The null indicator (hexadecimal FFFF or 0000) has a standard length of two bytes and fixed-
point format; this length and format cannot be overridden.

The "S" indicator can only be used with the equals (=) value-operator; using S with any other
value operators causes an Adabas response code 61 (ADARSP061).

Examples:

The S significance operator is part of the search argument for the field AA.

AAS.

Select records with the FN field value of packed +1 and the AA field value of null (undefined):

Search argumentFN , 2 , P , D , AAS.Search Buffer

Field value specificationValue Buffer 001F FFFF

Note: Insignificant null values are not stored in the index. This can cause a search-for-
null operation to be quite costly for an application program's performance.

Select records with the FN field value of packed +1 and the AA field value of non-null:

167Command Reference

Search Buffers

Search argumentFN , 2 , P , D , AAS.Search Buffer

Field value specificationValue Buffer 001F 0000

length
The length of the field/descriptor value as provided in the value buffer. If the length is omitted,
the value in the value buffer must comply with the standard length of the field/descriptor, as
shown in Length and Data Format.

format
The format of the field/descriptor value as provided in the value buffer. If the format is omitted,
the value in the value buffer must comply with the standard format of the field/descriptor, as
shown in Length and Data Format.

value-operator
A value-operator indicates the logical operation to be performed between the preceding
descriptor and its corresponding value in the value buffer.

The following operators may be specified:

DescriptionOperator

equalsEQ (or) =

greater than or equal toGE

greater thanGT (or) >

less than or equal toLE

less thanLT (or) <

not equal toNE

If no value-operator is specified, an equals (EQ) operation is assumed.

Examples:

The following search buffer examples show the use of a value-operator:

DescriptionExample

AA equals the value specified in the value buffer (the default)AA.

AA is less than the value specified in the value bufferAA,LT.

AA is greater than or equal to the value specified in the value buffer.AA,GE.

The following search buffer using the NE (not equal to) operator selects all records with the
FN field not equal to "MIKE":

Command Reference168

Search Buffers

Search argumentFN,4,A,NE.Search Buffer

Field value specificationValue Buffer MIKE

Replacing the NE operator in this example with EQ (equal to) would select only records with
FN field with values of "MIKE".

Connecting Search Expressions

A connecting operator may be used to connect search expressions. The permissible connecting op-
erators are as follows:

DescriptionOperator

The results of two search expressions are to be combined using a logical AND operation. For
example:

AA,D,AB.

D

The results of two search expressions are to be combined using a logical OR operation. The OR
operator may only be used to connect search expressions which use the same descriptor. Here is
a valid and an invalid example:

Valid:

O

AA,O,AA.

Invalid (two different descriptors are used):

AA,O,AB.

Fields or command IDs that point to ISN lists derived from different descriptors are to be combined
using a logical OR operation. For example:

AA,5,A,R,AB,LT.

R

A FROM-TO range (inclusive) which involves two search expressions. The same descriptor must
be used in both expressions. Here is a valid and an invalid example:

Valid:

S

AA,S,AA.

Invalid (two different descriptors are used):

AA,S,AB. ↩

Excludes a single value or a range of values from the immediately preceding FROM-TO range.
This operator can only be specified in conjunction with the S operator, and must apply to the same

N

169Command Reference

Search Buffers

DescriptionOperator

field specified in the FROM-TO range. Phonetic descriptors cannot be specified. Here are some
valid and invalid examples:

■ Valid:

AA,S,AA,N,AA.

Invalid (two different descriptors are used):

AA,S,AA,N,AB.

■ Valid:

AA,S,AA,N,AA,S,AA.

Invalid (two different descriptors are used):

AA,S,AA,N,AA,S,AB.

AA,S,AA,N,AA,N,AB.

The results of any number of D, O, R, S, and N search operations can be combined using a logical
AND operation. For example:

AA,D,AB,Y,AA,O,AA,Y,AA,S,AA,N,AA,S,AA.

Y

The Y connecting operator functions like parentheses: only one level is allowed; that is, nested
parentheses are not supported. All search expressions connected with the Y operator must apply
to the same file.

If different operators are used within a single search buffer argument, the operators are processed
in the following sequence:

1. Evaluate all S operations, as described in this documentation.

2. Evaluate all N operations, as described in this documentation.

3. Evaluate all O operations, as described in this documentation.

4. Evaluate all D operations, if needed.

5. Evaluate all R operations, if needed.

6. Evaluate all Y operations, if needed.

Example:

The following search buffer:

AA,S,AA,O,AA,D,AB,R,AC,D,AD.

is processed in this sequence:

Command Reference170

Search Buffers

(((AA,S,AA),O,AA),D,AB),R,(AC,D,AD)

The following search buffer:

AA,D,AB,Y,AA,O,AA,Y,AA,S,AA,N,AA,S,AA.

is processed in this sequence:

(AA,D,AB),Y,(AA,O,AA),Y,((AA,S,AA),N,(AA,S,AA))

Searching One File

The following syntax statement is relevant when searching fields in a single file:

search-expression [{,connecting-operator,search-expression}...] .

For the syntax of the search-expression, read Search Expression, elsewhere in this section. For
information about the connecting-operator, read Connecting Search Expressions, elsewhere in
this section.

Searching Multiple, Physically Coupled Files

The following syntax statement is relevant for multiple-file searches in which fields from two or
more physically coupled files are to be used:

/file-x/search-expression[{,connecting-operator,search-expression}...]
{,D,/file-y search-expression/[{,connecting-operator,search-expression}...]}... .

where file-x and file-y are the file numbers of the physically coupled files. For information
about search buffer syntax using physically coupled files, seePhysically Coupled Files, elsewhere
in this section. For the syntax of the search-expression, read Search Expression, elsewhere in
this section. For information about the connecting-operator, readConnecting Search Expressions,
elsewhere in this section.

Searching One or More Files Using Soft Coupling

The following syntax statement is relevant for searching one or more files using soft coupling:

(m-file,m-field,s-file,s-field[{;m-file,m-field,s-file,s-field ↩
}...])/s-file-x/search-expression[{,connecting-operator,search-expression}...]
[{,D,/s-file-y/search-expression[{,connecting-operator,search-expression}...]}...] .

where m-file and s-file are...., m-fields-file-x and s-file-y are the file numbers of the softly
coupled files.

For information about search buffer syntax using soft coupling, see Soft Coupling, elsewhere in
this section. For the syntax of the search-expression, read Search Expression, elsewhere in this
section. For information about the connecting-operator, read Connecting Search Expressions,
elsewhere in this section.

171Command Reference

Search Buffers

Physically Coupled Files

The syntax of the search buffer for a multiple-file search in which fields from two or more physically
coupled files are to be used is:

/file-x/search-expression[{,connecting-operator,search-expression}...]
{,D,/file-y search-expression/[{,connecting-operator,search-expression}...]}... .

The search criteria of the physically coupled files can be specified in any order. The ISN values
actually returned are from the coupled file specified by the Adabas control block's file number
field; this file is called the "primary" file.

The elements in this syntax are now described:

file-x and file-y
The file numbers of the physically coupled files. All files specified must have been previously
coupled using the COUPLE function of the ADAINV utility. A file number can appear only
once for a given file. The file number must immediately precede its search criteria (consisting
of one or more search expressions and appropriate connecting operators). A maximum of five
(5) files may be specified in a single search buffer for physically coupled files.

D
The only connecting operator allowed between the search criteria of the physically coupled
files is the AND (D) symbol.

search-expression
A search expression for the associated physically coupled file. For the syntax of the search-
expression, read Search Expression, elsewhere in this section.

connecting-operator
A connecting operator to connect the search expressions of the search criteria for an individual
physically coupled file. While the connecting operator between search criteria for the physically
coupled files must be "D" (AND), the connecting operators between the search expressions
that comprise the search criteria for an individual file can be any of the operators described in
Connecting Search Expressions, elsewhere in this section.

Example:

Find the ISNs of all the records in file 1 that contain the three-byte (length override) unpacked
decimal (format override) value "+20" in their AB fields, and that are coupled to records in file 2
containing the value "ABCDE" for field RB, which has a standard length of ten bytes and an alpha-
numeric format.

Command Reference172

Search Buffers

Search argument/1/AB,3,U,D,/2/RB.Search Buffer

Field value specificationcharacter-notationValue Buffer

020ABCDEbbbbb

hex-notation

F0F2F0C1C2C3C4C54040404040

Soft Coupling

The syntax of search buffer for a search in which soft coupling is to be used is:

(m-file,m-field,s-file,s-field[{;m-file,m-field,s-file,s-field ↩
}...])/s-file-x/search-expression[{,connecting-operator,search-expression}...]
[{,D,/s-file-y/search-expression[{,connecting-operator,search-expression}...]}...] .

The elements in this syntax are now described:

m-file, m-field
For m-file, specify the number of the main file. This file must also be specified in the file
number field of the Adabas control block. The final resulting ISN list will include ISNs contained
in the main file only.

For m-field, specify the field in the main file that is to be used as the soft-coupling link field.
This field must be a descriptor, subdescriptor, superdescriptor, or hyperdescriptor. It may not
be a long alphanumeric field or be contained within a periodic group.

The combination of m-file, m-field, s-file, and s-field specifications comprise a single
soft coupling. A maximum of 42 soft-coupling criteria may be specified. All of the soft coupling
must be specified in one set of parentheses.

s-file, s-field
For s-file, specify the file number of the search file; for s-field, specify a field within the
search file. For each ISN selected from this search file (according to the search criteria), the
field specified as s-field will be read. The value of the field will then be used to determine
which ISNs in the main file have a matching value.

The field may be a descriptor or nondescriptor; it can be a subdescriptor, superdescriptor,
hyperdescriptor, or a long alphanumeric field. It must have the same format as the correspond-
ing m-field. The standard length may be different. The field may not be contained within a
periodic group.

The combination of m-file, m-field, s-file, and s-field specifications comprise a single
soft coupling. A maximum of 42 soft-coupling criteria may be specified. All of the soft coupling
must be specified in one set of parentheses.

173Command Reference

Search Buffers

s-file-x and s-file-y
The file number of the coupled files for which you want to specify search criteria. A file number
can appear only once for a given file. The file number must immediately precede its search
criteria (consisting of one or more search expressions and appropriate connecting operators).
A maximum of five (5) files may be specified in a single search buffer.

D
The only connecting operator allowed between the search criteria of the coupled files is the
AND (D) symbol.

search-expression
A search expression for the associated coupled file. For the syntax of the search-expression,
read Search Expression, elsewhere in this section.

connecting-operator
A connecting operator to connect the search expressions of the search criteria for an individual
coupled file. While the connecting operator between search criteria for the physically coupled
files must be "D" (AND), the connecting operators between the search expressions that comprise
the search criteria for an individual file can be any of the operators described in Connecting
Search Expressions, elsewhere in this section.

Command Reference174

Search Buffers

16 Value Buffers

■ Value Buffer Syntax .. 176
■ SQL Null Values and Indicators .. 176
■ Sign Handling ... 177

175

The search and value buffers are used together to define:

■ the search criteria to select a set of records using a FIND command (S1, S2, S4); and
■ the range of values to be traversed by logical sequential read commands (L3/6, L9).

If a value buffer is provided, a search buffer is also expected. If it is not provided, Adabas will
create a dummy search buffer to pair with the value buffer. For complete information about the
relationships between the different types of ABD or buffer specifications, read Understanding the
Different Buffer Types, elsewhere in this guide.

Only one search and value buffer pair should be specified in a single Adabas direct call.

The user provides the search expressions in the search buffer and the values which correspond to
the search expressions in the value buffer.

In the value buffer, the user specifies the values for each descriptor specified in the search buffer.

If the search expression is a command ID, no corresponding entry is made in the value buffer.

Value Buffer Syntax

The values provided must be in the same sequence as the corresponding search expressions specified
in the search buffer. All values provided must correspond to the standard length and format of
the corresponding descriptor unless the user has explicitly overridden the standard length or
format in the search buffer.

No intervening blanks or other characters such as a comma can be inserted between values in the
value buffer. A period is not required to end the value buffer entry.

SQL Null Values and Indicators

When searching for fields defined with the NC (SQL null not counted) option, the search buffer
field definition must contain a null significance (S) indicator and the corresponding value buffer
argument value must display a two-byte binary null value indicator. See the section S (Significance)
and Null Indicators for more information and examples of the null value indicator in the value
buffer.

Command Reference176

Value Buffers

Sign Handling

Binary values are treated as unsigned numbers. Fixed-point, unpacked, and packed values are
treated as signed numbers. Valid signs which may be provided are described in thissection:

■ Fixed Value Signs
■ Unpacked Value Signs
■ Packed Value Signs

Fixed Value Signs

For fixed values, the sign is contained in bit 0 (high-order bit):

■ 0 = positive
■ 1 = negative (two's complement)

Here are two fixed value sign examples showing the hexadecimal notation and the decimal equi-
valent:

00000005 = +5
FFFFFFFB = -5

Unpacked Value Signs

For unpacked values, the sign is contained in the four high-order bits of the low-order byte:

■ C or A or F or E = positive (CAFE)
■ B or D = negative (BD)

Here are two unpacked value sign examples showing the hexadecimal notation and the decimal
equivalent:

F1F2F3 = +123
F1F2D3 = -123

177Command Reference

Value Buffers

Packed Value Signs

For packed values, the sign is contained in the four low-order bits of the low-order byte:

■ A or C or E or F = positive
■ B or D = negative

If a search value is being provided for a superdescriptor which is derived from a packed field, an
F positive sign or a D negative sign must be provided.

Here are two packed value sign examples showing the hexadecimal notation and the decimal
equivalent:

X'123F' = +123
X'123C' = +123
X'123D' = -123

Command Reference178

Value Buffers

17 Search and Value Buffer Examples

■ Example 1: Using a Single Search Expression ... 180
■ Example 2: Using Search Expressions Connected by AND .. 180
■ Example 3: Using Search Expressions Connected by OR .. 181
■ Example 4: Using Search Expressions Connected by FROM-TO ... 182
■ Example 5: Using Search Expression with BUT-NOT .. 182
■ Example 6: Using a Multiple-Value Descriptor .. 183
■ Example 7: Using a Descriptor Within a Periodic Group ... 183
■ Example 8: Using a Subdescriptor .. 184
■ Example 9: Using a Superdescriptor with Alphanumeric Format .. 184
■ Example 10: Using a Superdescriptor with Binary Format .. 185
■ Example 11: Using Previously Created ISN Lists .. 185
■ Example 12: Using a Value Operator ... 186
■ Example 13: Using Both Value and Connecting Operators ... 186
■ Example 14: Using Physically Coupled Files ... 187
■ Example 15: Using Single Soft Coupling Criterion and Single Search Criterion ... 187
■ Example 16: Using Single Soft Coupling Criterion and Multiple Search Criteria ... 188
■ Example 17: Using Multiple Soft Coupling Criteria and Multiple Search Criteria .. 188
■ Example 18: Using Multiple Soft Coupling Criteria and Multiple Search Criteria with Physical Coupling 189

179

This section contains examples of search and value buffer construction. For the Adabas file
definitions used in all the examples in this section, see File Definitions Used in Examples. The
values for the value buffer are shown in character and/or hexadecimal notation.

Example 1: Using a Single Search Expression

A search that uses a single search expression.

Select the ISNs of all the records in file 1 that contain the value "12345" for field AA, which has a
standard length of eight bytes and numeric format.

Search argumentAA.Search Buffer

Field value specificationcharacter-notationValue Buffer

00012345

hex-notation

F0F0F0F1F2F3F4F5

The same search may be performed using "AA,5." (length override) in the search buffer and the
value "12345" (without trailing blanks) in the value buffer.

Example 2: Using Search Expressions Connected by AND

A search that uses two search expressions connected by the AND operator.

Select the ISNs of all the records in file 1 that contain the value "12345678" for the field AA, which
has a standard length of eight bytes and numeric format, and the value "+2" for the field AB, which
has a standard length of two bytes and packed decimal format.

Search argumentAA,D,AB.Search Buffer

Command Reference180

Search and Value Buffer Examples

Field value specificationhex-notationValue Buffer

F1F2F3F4F5F6F7F8002C

Select the ISNs of all the records in file 1 that contain the value "12345678" for the field AA, which
has a standard length of eight bytes and numeric format, and the value "+2" for the field AB, which
has a length of three bytes (override) and unpacked decimal (override) format.

Search argumentAA,D,AB,3,U.Search Buffer

Field value specificationcharacter-notationValue Buffer

12345678002

hex-notation

F1F2F3F4F5F6F7F8F0F0F2

This second search produces the same result as the first search, but shows the use of the length
and format override in the search buffer.

Example 3: Using Search Expressions Connected by OR

A search that uses three search expressions connected by the OR operator.

Select the ISNs of all the records in file 2 that contain any of the values "284", "285", or "290" for
the field XB. Length and format overrides are used.

Search argumentXB,3,U,O,XB,3,U,O,XB,3,U.Search Buffer

Field value specificationcharacter-notationValue Buffer

284285290

hex-notation

181Command Reference

Search and Value Buffer Examples

F2F8F4F2F8F5F2F9F0

Example 4: Using Search Expressions Connected by FROM-TO

A search that uses two search expressions connected by the FROM-TO operator.

Select the ISNs of all the records in file 2 that contain any value in the range "+20" through "+30"
for the field XB.

Search argumentXB,S,XB.Search Buffer

Field value specificationhex-notationValue Buffer

020C030C

Example 5: Using Search Expression with BUT-NOT

A search that uses three search expressions connected by the FROM-TO and BUT-NOT operators.

Select the ISNs of all the records in file 2 that contain any of the values in the range "+20" through
"+30" but not "+27" for the field XB.

Search argumentXB,S,XB,N,XB.Search Buffer

Field value specificationhex-notationValue Buffer

020C030C027C

Select the ISNs of all the records in file 2 that contain any of the values in the range "+1" through
"+200" or "+500" through "+600" for the field XB.

Search argumentXB,S,XB,O,XB,S,XB.Search Buffer

Command Reference182

Search and Value Buffer Examples

Field value specificationhex-notationValue Buffer

001C200C500C600C

Example 6: Using a Multiple-Value Descriptor

A search in which a multiple-value field is used.

Select the ISNs of all the records in file 1 that contain the value "ABC" for any value of the multiple-
value field MF.

Search argumentMF.Search Buffer

Field value specificationcharacter-notationValue Buffer

ABC ↩

hex-notation

C1C2C3

It is not possible to limit the search to a specific occurrence of a multiple-value field. The following
search buffer entry is invalid:

Search argumentMF2.Search Buffer

Example 7: Using a Descriptor Within a Periodic Group

A search in which a descriptor within a periodic group is used.

Select the ISNs of all the records in file 1 that contain the value "4" in any occurrence of the descriptor
BA (which is contained in a periodic group).

183Command Reference

Search and Value Buffer Examples

Search argumentBA.Search Buffer

Field value specificationhex-notationValue Buffer

04

Select the ISNs of all records in file 1 that contain the value "4" in the third occurrence of the
descriptor BA (which is contained within a periodic group).

Search argumentBA3.Search Buffer

Field value specificationhex-notationValue Buffer

04

Example 8: Using a Subdescriptor

A search that uses a subdescriptor. SA is a subdescriptor derived from the first four bytes of the
field RA.

Select the ISNs of all the records in file 2 that contain the value "ABCD" for the subdescriptor SA.

Search argumentSA.Search Buffer

Field value specificationhex-notationValue Buffer

C1C2C3C4

Example 9: Using a Superdescriptor with Alphanumeric Format

A search that uses a superdescriptor with alphanumeric format. SB is a superdescriptor derived
from the first eight bytes of the field RA and the first four bytes of the field RB.

Select the ISNs of all the records in file 2 that contain the value "ABCDEFGH1234" for the super-
descriptor SB.

Command Reference184

Search and Value Buffer Examples

Search argumentSB.Search Buffer

Field value specificationhex-notationValue Buffer

C1C2C3C4C5C6C7C8F1F2F3F4

Example 10: Using a Superdescriptor with Binary Format

A search that uses a superdescriptor with binary format. SC is a superdescriptor derived from the
fields XB and XC.

Select the ISNs of all the records in file 2 that contain the value "+20" for the field XB and the value
"123456" for the field XC.

Search argumentSC.Search Buffer

Field value specificationhex-notationValue Buffer

020FF1F2F3F4F5F6

Example 11: Using Previously Created ISN Lists

A search that uses previously created ISN lists (identified by their command IDs).

Select the ISNs present in both ISN lists identified by the command IDs "CID1" and "CID2".

Search argument(CID1),D,(CID2).Search Buffer

Field value specificationnot usedValue Buffer

Select the ISNs of all the records in file 1 for which an ISN is present in the ISN list identified by
"CID1" and which contain the value "+123" for the field AB.

185Command Reference

Search and Value Buffer Examples

Search argument(CID1),D,AB,3,U.Search Buffer

Field value specificationcharacter-notationValue Buffer

123

hex-notation

F1F2F3

Example 12: Using a Value Operator

A search in which a value operator is used.

Select the ISNs of all the records in file 1 that contain a value greater than "+100" for the field AB.

Search argumentAB,3,U,GT.Search Buffer

Field value specificationcharacter-notationValue Buffer

100

hex-notation

F1F0F0

Example 13: Using Both Value and Connecting Operators

A search in which both value and connecting operators are used.

Select the ISNs of all the records in file 1 that contain a value greater than "+100" for the field AB
and a value greater than "A" for the field AA.

Search argumentAB,3,U,GT,D,AA,1,GT.Search Buffer

Command Reference186

Search and Value Buffer Examples

Field value specificationcharacter-notationValue Buffer

100A

hex-notation

F1F0F0C1

Example 14: Using Physically Coupled Files

A search using search expressions that refer to physically coupled files.

Select the ISNs of all the records in file 1 that contain the value "+20" for the field AB and are
coupled to records in file 2 that contain the value "ABCDE" for field RB. Length and format override
are used for field AB.

Search argument/1/AB,3,U,D,/2/RB.Search Buffer

Field value specificationcharacter-notationValue Buffer

020ABCDEbbbbb

hex-notation

F0F2F0C1C2C3C4C54040404040

Example 15: Using Single Soft Coupling Criterion and Single Search Criterion

The file for which ISNs will be returned is determined by the file number field.

4File Number

Search argument(4,AB,1,AC)/1/AB,S,AB.Search Buffer

Field value specificationValue Buffer -------------

1. Search file 1 for AB = value as provided in value buffer.

2. For each resulting ISN in file 1, read field AC and internally match the value with the corres-
ponding value list for file 4. The resulting ISN list from file 4 is provided in the ISN buffer.

187Command Reference

Search and Value Buffer Examples

Example 16: Using Single Soft Coupling Criterion andMultiple Search Criteria

The file for which ISNs will be returned is determined by the file number field. The order in which
the criteria are specified is arbitrary.

1File Number

Search argument(1,AA,2,AB)/1/AC,D,AE,D,/2/AF,S,AF.Search Buffer

Field value specificationValue Buffer -------------

1. Search file 2 for AF = ... through ... (values in value buffer)

2. For each resulting ISN in file 2, read field AB and internally match the value with the corres-
ponding value list for file 1.

3. Search file 1 for AC = ... and AE = ... (values in value buffer).

4. Match resulting ISN lists from steps 2 and 3. The resulting ISNs are provided in the ISN buffer.

Example 17: UsingMultiple Soft Coupling Criteria andMultiple Search Criteria

1File Number

Search argument(1,AA,2,AB; 1,AA,5,BA)Search Buffer

/1/AC,D,AE,D,/2/AF,S,AF,D,/5/BC,S,BC.
 ↩

Field value specificationValue Buffer -------------

1. Search file 2 for AF = ... through ... (values in value buffer).

2. For each resulting ISN in file 2, read field AB and internally match the value with the corres-
ponding value list for file 1.

3. Search file 5 for BC = ... through ... (values in value buffer).

4. For each resulting ISN in file 5, read field BA and internally match the value with the corres-
ponding value list for file 1.

5. Search file 1 for AC = ... and AE = ... (values in value buffer).

6. Match resulting ISN lists from steps 2, 4 and 5. The resulting ISNs are provided in the ISN
buffer.

Command Reference188

Search and Value Buffer Examples

Example 18: UsingMultiple Soft Coupling Criteria andMultiple Search Criteria
with Physical Coupling

Search argument(1,AA,2,AB)
/1/AC,D,AE,D,/2/AF,S,AF,D,/5/BC,S,BC.

Search Buffer

Field value specificationValue Buffer -------------

1. Search file 2 for AF = ... through ... (values in value buffer)

2. For each resulting ISN in file 2, read field AB and internally match the value with the corres-
ponding value list for file 1.

3. Search file 5 for BC = ... through ... (values in value buffer)

4. For each resulting ISN in file 5, use the physical coupling lists created by the ADAINV utility
to perform ISN matching. This is done since no soft coupling criteria was provided from file 5
to the main file (file 1). If a physical coupling list does not exist, any ISNs from file 5 will not be
considered.

5. Search file 1 for AC = ... and AE = ... (values in value buffer).

6. Match resulting ISN lists from steps 2, 4 and 5. The resulting ISNs are provided in the ISN
buffer.

189Command Reference

Search and Value Buffer Examples

190

18 Date-Time Edit Mask Processing in Format and Search

Buffers

Date-time edit masks can be used to describe the layout of a date/time field in format and search
buffers. These edit masks can be used to convert values from the record into a date-time format
you need. Unlike the other format buffer edit masks, date-time edit masks can also be used to
update records.

For example, the following format buffer example produces output for field ND in DATE format:

...,ND,8,U,E(DATE).

If the field is defined in the FDT with format NATDATE, it will be converted in the record buffer
to DATE format.

This chapter describes how Adabas handles date-time edit masks in format and search buffers.

A complete reference of the different date-time edit masks possible is provided in Date-Time Edit
Mask Reference, in theAdabasDBATasksManual. Valid values range from 0001-01-00:00:00:00.000000
through 9999:12-31:23:59:59.999999 are allowed.

■ A value of zero (0) is allowed for those date-time edit masks where zero is nota valid value. In
these cases, the meaning of the value zero is interpreted as "unknown." If the value is specified
for an NC field, the significance indicator is set to "-1", independent of a significance indicator
provided in the format or record buffer.

If you try to convert a date-time edit mask with value zero (when zero represents an unknown
date-time value) with another date-time edit mask, the result is always zero. If the target is an
NC field, the significance indicator is set to "-1".

■ Dates before 1582 (when the Gregorian calendar was introduced) are handled as if the
Gregorian calendar was valid also before 1582. Gregorian calendar leap year rules also apply.

191

Adabas allows you to add a date-time edit mask to any field with formats B, F, P, or U in a loaded
file. However, the field may have values stored in the database which are not correct for the spe-
cified date-time edit mask. For compatibility reasons, Adabas uses the following processing rules:

■ If no date-time edit mask is given in the format or search buffer, no date-time conversions and
checks are performed.

■ If a date-time edit mask is not compatible with the data-time edit mask in the field definition,
an error is issued (response code 41, ADARSP041).

■ When specifying a date-time edit mask in the format buffer for a store or update command, the
value is checked for a correct date-time value. If the field definition and the edit mask do not
match, an error is issued (response code 55, ADARSP055).

■ If you specify a date-time edit mask in the format buffer for a read command and the field
contains an invalid date-time value or the length of the field is not sufficient to store the value,
an error is issued (response code 55, ADARSP055).

Depending on the format and length used for UNIXTIME and XTIMESTAMP fields, you may find
that only a subset of the range between) and 9999 years are supported:

■ With format B for UNIXTIME or XTIMESTAMP fields, you cannot store date-time values before
1970; this would require negative values that are not supported in binary (B) format.

■ Formt F with a length of 4 limits date-time values to January 19, 2038.
■ The maximum date for UNIX time is in the 23rd centry with format U and a length of 10.

Fields with date-time edit masks should not be used to store time intervals (ranges) because:

■ Zero (0) has a special meaning in date-time values.
■ Date-time conversions follow the rules of the underlying format and may return wrong results

on interval values.

Date-time edit masks and the daylight saving indicator are not allowed in format selection criteria.

Command Reference192

Date-Time Edit Mask Processing in Format and Search Buffers

19 ISN Buffers

The ISN buffer defines an area in storage to which Adabas can return the ISNs of the records that
satisfy the specified search criteria for a command. In addition, if Command Option 1 for a command
is set to "M" (or "P"), assuming these are valid settings for that command, and if the command is
issued using the ACB direct call interface, the ISN buffer holds the record descriptor elements
(RDEs) of multifetched or prefetched records awaiting processing. If, instead, the command is issued
using the ACBX direct call interface, the ISN buffer is not used for this purpose; the multifetch
buffer is used instead.

When needed, only one ISN buffer should be specified in a direct call.

The four-byte binary ISNs are usually provided in the ISN buffer in ascending sequence. For the
S2 or S9 command, the ISNs are provided according to the user-specified sort sequence. If the ISN
buffer is not large enough to contain the entire resulting ISN list, Adabas stores the overflow ISNs
on the Adabas work data set, if requested. These overflow ISNs can then be retrieved at a later
time.

If the resulting ISNs are to be read using the GET NEXT option of the L1 or L4 commands, the
ISN buffer is not needed.

The ISN buffer also supplies an ISN list to be used as input when the ET or BT command specifies
a Command Option 1 of "M" (or "P").

193

194

20 User Buffers

■ Differentiating Between the ACB and the ACBX ... 196
■ Using the User Buffer with ADALNK User Exits 1 and 2 ... 197
■ Using the User Buffer with Adabas Nucleus Exits 4 and 11 ... 198

195

User buffers can be used to pass data between the ADALNK user exits 1 and 2 (or A and B in
Adabas 7 installations) and Adabas nucleus user exit 11 and 4. Callers using the extended Adabas
control block (ACBX) can also pass information between their applications and the exits.

The syntax of this input to user exit 11 and 4 depends upon your requirements. Adabas makes no
use of your user buffer data in any way. For complete information about Adabas user exits 11 and
4, read User Exit 11 (General Processing) and User Exit 4 (User-Generated Log Data), in the Adabas
User, Hyperdescriptor, Collation Descriptor, and SMF Exits Manual. For complete information about
Adalink user exits 1 and 2 (or A and B), read the appropriate Adabas installation documentation.

ADALNK can be configured to allocate a user buffer by creating an ADALNK globals table and
coding a nonzero value for the LGBLSET LUINFO parameter. (For more information about the
LGBLSET parameters, refer to yourAdabas Installationdocumentation.) The user buffer is normally
used to pass information between user exits and ADALNK and the nucleus. The user buffer itself
is not available directly to the command issuer when it is allocated by ADALNK.

This chapter refers to fields from several different Adabas data structures. In general, you can
identify the data structure of a field by the first two or three characters of the field name, which
will indicate the DSECT name. Assembly language DSECTs for these structures can be found in
the Adabas source library. There is often additional information about the fields in the DSECT.

Assembly Language DSECTData Structure

ADADBXAdabas buffer description (ABD)

ADACBClassic Adabas control block (ACB)

ADACBXExtended Adabas control block (ACBX)

APLClassic Adabas parameter list

APLXExtended Adabas parameter list

CQXExternal command queue

UBUser block

EX11PARMUser exit 11 parameter list

This chapter covers the following topics:

Differentiating Between the ACB and the ACBX

The user buffer format may differ depending on whether the command originated from an ACB
or ACBX call. For this reason, it is important that you (or your applications) can differentiate
between ACB and ACBX calls.

In ADALNK exits 1 and 2, the distinction between an ACB or ACBX call is determined using the
first entry in the parameter list (APL or APLX) pointed to by user block field UBAUPL. The ACB
or ACBX can be examined to see if the byte at offset +2 (ACBCMD or ACBXVERT) contains the

Command Reference196

User Buffers

character “F” (X’C6’ or ADACBX DSECT symbol ACBXVERE). For more information about the
differences between ACB and ACBX calls, read Differences between the ACB and the ACBX,
elsewhere in this guide.

Internally, Adabas uses only the ACBX and related Adabas buffer descriptions (ABDs). Commands
originating from an ACB call are converted to an ACBX call by ADASVC. When a command has
been converted, nucleus exits 4 and 11 are passed the address of a read-only copy of the original
ACB. In exit 11, this address is in field EX11PACB of EX11PARM. In exit 4, first locate the CQX
using the address in R1 offset 12 (X’C’). Field CQXACB will have the ACB address. In either exit,
if the pointer is zero the command originated from an ACBX call.

Using the User Buffer with ADALNK User Exits 1 and 2

ADALNK user exit 1 is invoked before a command is sent to its target and user exit 2 is invoked
after the command has completed. These exits have the address of a user block (UB) as a parameter.
The user block provides the user buffer address and length.

ADALNK will not set the user block flag UBFLAG.UBFINUB for commands issued from most
environments. When this is the case the user buffer is found immediately after the user block at
label UBUINFO. The first two bytes of the user buffer contain the length of the user buffer including
the two byte length field. The length of the user buffer is also accumulated within UBLUINFO. In
ADALNK user exit 1, it is not recommended to do so but you may decrease the effective size of
the user buffer by decrementing UBLUINFO appropriately, however you must not reduce
UBLUINFO by more than the value specified on the LGBLSET LUINFO parameter. An abend
occurs if UBLUINFO is increased.

Flag UBFLAG.UBFINUB is used when a command-issuing environment must service multiple
users and give each a unique job name, the most common example being Entire Net-Work. Such
environments typically use a copy of ADALNK without user exits.

However, should UBFLAG.UBFINUB be set and the command originated from an ACB call, field
UBAUINFO has the address of the 2-byte user block physical length. This is followed by the user
buffer itself with its own length prefix, whose value includes the length field. If the command
originated from an ACBX call, UBAUINFO may instead have the address of a type "U" Adabas
buffer description (ABD). When flag UBFLAG.UBFINUB is set, user exits may not change the
value of UBLUINFO and should not change anything else in the user block. The user buffer itself
can be accessed and updated without restriction.

Here is an example. Suppose ADALNK is configured to allocated a 48-byte (X'30') user buffer.
Assuming flag UBFLAG.UBFINUB is not set, you will see the following in ADALNK exits 1 and
2:

197Command Reference

User Buffers

UBINFOUBLUINFOACB(X)

x'0030...'x'0030'ACB

x'0030...'x'0030'ACBX

Note: In the example above, if Adabas Review is installed then UBLUINFO will be the ac-
cumulation of x’0030’ and Adabas Review’s own buffer requirements.

Using the User Buffer with Adabas Nucleus Exits 4 and 11

Adabas user exits 4 (command logging) and 11 (command initiation) may access and update the
user buffer. One parameter passed to each of these exits is the address of an external command
queue (CQX), a read-only copy of the CQE. Field CQXAUI contains the address of an Adabas
buffer description (ABD) that describes the first or only user buffer. It contains zero if there are
no user buffers.

The user buffer ABD is arranged in the same manner as all ABDs in the nucleus. Field ABDXID
in the ABD will have the value ABDEQUI (X'E4' or C'U') indicating this is a user buffer. Field
ABDXLOC will have the value ABDXQIND (X'C9' or C'I'), indicating that the buffer address is
found in field ABDXADR. The physical size of the user buffer is provided in field ABDXSIZE; the
number of bytes copied from the caller's buffer to the nucleus is provided in the field ABDXSEND.
If the user buffer is to be returned from the nucleus to the caller, a nonzero value must be set in
field ABDXRECV, representing the number of bytes to copy back to the caller’s buffer. The number
of bytes provided in ABDXRECV cannot exceed ABDXSIZE.

For complete information about Adabas buffer descriptions, read Adabas Buffer Descriptions
(ABDs), elsewhere in this guide.

This section describes the format of the user buffer when the commands originates from an ACB
call and from an ACBX call.

■ User Buffer Format for ACB Calls
■ User Buffer Format for ACBX Calls

Command Reference198

User Buffers

■ Example

User Buffer Format for ACB Calls

When ADALNK is invoked with a parameter list for a classic ACB call, the user buffer is formatted
as it was in Adabas version 7, so it is compatible with that release. The user buffer will have two
2-byte length prefixes. The first is the buffer length exclusive of the first prefix and the second is
inclusive of the second prefix. These values are the same. The ABD field ABDXSIZE will show
two bytes more than the ADALNK-generated length to allow for the first length prefix.

If certain add-on products such as Adabas Review are being used, the user buffer may have been
increased by ADALNK beyond the user-specified size. The user-specified portion comes first,
followed by the add-on product extension.

User Buffer Format for ACBX Calls

When ADALNK is invoked with a parameter list for an ACBX call, the user buffer will have a
single 2-byte length prefix. This value includes the length prefix itself.

An ACBX call may provide additional user buffers by constructing an Adabas buffer description
(ABD) for each additional user buffer and by including the ABD addresses in the ADALNK
parameter list. External command queue (CQX) field CQXAUI will point to the first user buffer
ABD, which will describe the first caller-provided user buffer. Other user buffer ABDs follow in
a contiguous array with the ADALNK-provided user buffer as the last one of that type. Unless
the number of user-allocated user buffers can be predetermined, it may not be possible to step
through them starting with CQXAUI. In this case it becomes necessary to scan the entire array of
ABDs. Exits 4 and 11 provide, as parameters, the address of the first ABD in the array and the total
number of ABDs. Refer to the section Locating the Correct ABD, in the user exit documentation for
more information about accessing the array of ABDs.

Example

In this example, suppose ADALNK is configured to allocate a 48-byte (x'30') user buffer. In user
exits 4 and 11 you will see:

User BufferABDXSIZEACB(X)

x'0030 0030..x´2E byte long user data .'x'32'ACB

x'0030… x´2E byte long user data ..'x'30'ACBX

199Command Reference

User Buffers

200

21 Performance Buffers

Performance buffers are used only if you are using Adabas Review. For complete information,
read your Adabas Review documentation.

201

202

VI Commands

This chapter provides a detailed description of each Adabas command arranged in alphabetical
order by command code.

DescriptionSummaryCommand
Code

Update record(s) (hold option)Update recordA1

Remove database updates for ET logic usersBackout transactionBT

Write command ID, PLOG, RABN RABN checkpoint,
buffer flush option

Write checkpointC1

Write SYNX-03 checkpoint for exclusive control update
users; option to store user data

Write SYNX-03 checkpointC3

Write user data on SIBA/PLOGWrite user data to protection logC5

End ET session and update databaseClose user sessionCL

Delete record (hold option) or refresh fileDelete record / refresh fileE1

End and save current transactionEnd transactionET

Prevent record update by other usersHold recordHI

Read record of specified ISNRead recordL1

Read records in physical orderRead physical sequential recordL2

Read records in descriptor value orderRead logical sequential recordL3

Read record and hold, "wait for held record/issue return
code" option

Read and hold recordL4

Read records in physical order and hold, "wait/issue
return code" option

Read physical sequential record and
hold

L5

Read records in descriptor value order with "wait/issue
return code" option

Read logical sequential record and
hold

L6

Read the values of a specified descriptorRead descriptor valuesL9

Read the characteristics of all fields in a fileRead field definitionLF

Add new database record with ISN assigned by AdabasAdd record with Adabas-assigned ISNN1

203

DescriptionSummaryCommand
Code

Add new database record with user-assigned ISNAdd record with user-assigned ISNN2

Open user sessionOpen user sessionOP

Release one or more command IDs or a global format
ID for the issuing user

Release command ID or global format
ID

RC

Read ET data for this, another, or all usersRead ET user dataRE

Release held record and ISNRelease held record and ISNRI

Return count and ISNs of records satisfying the search
criterion

Find recordsS1

Return count of records and ISNs in user-specified
order

Find records in user-specified orderS2

Return count and ISNs of records satisfying the search
criterion and put first ISN in list on hold

Find records and holdS4

Return or save a list of coupled ISNs for the specified
file

Find coupled ISNsS5

Combine two ISN lists from the same file with an AND,
OR, or NOT operation

Process ISN listsS8

Sort ISN list in ascending ISN or descriptor-specified
sequence

Sort ISN listsS9

Adabas includes some V* and Y* commands, which you may see mentioned in Adabas shutdown
statistics or in Adabas Online System (AOS) screens. These commands are used internally by
Adabas and Adabas add-on products and should not be used in direct calls in your applications.
Should you use them, errors will result.

Command Reference204

Commands

22 A1 Command: Update Record

■ Function and Use .. 206
■ ACB Interface Direct Call: A1 Command .. 206
■ ACBX Interface Direct Call: A1 Command .. 212
■ Buffers .. 216
■ Additional Considerations .. 217

205

The A1 command updates records with a hold option.

Function and Use

The A1 command is used to change the value of one or more fields in a record. The record contain-
ing the field (or fields) to be updated is identified by the file number in which it is contained and
its ISN. Specify the fields to be updated in the format buffer and provide the updating values for
these fields in the record buffer. Only the fields specified are modified. All other fields in the record
remain unchanged.

All necessary updating to the Associator and Data Storage is performed by Adabas.

A hold option is available to place the record in hold status before it is updated.

If the user is operating in multiuser mode, the A1 command will be executed only if the record to
be updated is in hold status for the user.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Note: The A4 command from previous Adabas releases is executed as an A1 command.

ACB Interface Direct Call: A1 Command

This section describes ACB-interface direct calls for the A1 command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions
■ ACB Examples

Command Reference206

A1 Command: Update Record

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric / binary5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

UFbinary13-16ISN

A1--binary17-20ISN Lower Limit

A1--binary21-24ISN Quantity

UFbinary25-26Format Buffer Length

UFbinary27-28Record Buffer Length

------29-34

UFalphanumeric35-36Command Option 1 / 2

------37-44

Aalphanumeric / binary45-48Additions 2

AFalphanumeric49-56Additions 3

AFalphanumeric57-64Additions 4

UFalphanumeric65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

Notes

1. These fields are used and not reset by Adabas if coupled files are used.

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UFFormat

UFRecord

where:

207Command Reference

A1 Command: Update Record

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
A1

Command ID (ACBCID)
If a series of records is to be updated by using a series of A1 calls, and the same fields are
specified in the format buffer for each call (such as when updating a set of records resulting
from a find command), this field should be set to a non-blank, non-zero value. If the A1 com-
mand is used in conjunction with an L1/L4, L2/L5, or L3/L6 command, and the same fields
within each record are read and updated, the same command ID used for the read command
should be used for the A1 calls. In both cases, this reduces the time needed to process each
successive A1 call.

If only a single record is to be updated with a single A1 call, or the format buffer is modified
between A1 calls, this field should be set to blanks.

The leftmost byte of this field may not be set to hexadecimal 'FF'.

File Number (ACBFNR)
Specify the binary number of the file to be read in this field. For physical direct calls, specify
the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
The ISN of the record to be updated.

Command Reference208

A1 Command: Update Record

ISN Quantity/Lower Limit (ACBISQ and ACBISL)
These fields are set to nulls following completion of the A1 operation unless coupled files or
partial large object (LOB) fields are used.

If coupled files are used, these fields are used by A1 processing and are not reset.

If a partial LOB field is requested and the Command Option 2 field is set to L, the ACBISL
field is used to keep track of the current position in the LOB value when multiple A1 calls are
made for the field.

Format Buffer Length (ACBFBL)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

Command Option 1 and Command Option 2 (ACBCOP1 and ACBCOP2)

DescriptionOption

An "H" in either the Command Option 1 or Command Option 2 field places the record in hold
status before it is updated. If the record is currently being held by another user, the command

H

is placed in wait status until either the record becomes available or the transaction times
out-unless option "R" is also specified.

An L in the Command Option 2 field indicates that the position within a large object (LOB) field
be tracked in the ACBISL (ISN lower limit) field. This option is useful when multiple A1

L

commands are being issued in a series for a LOB field. This option can only be used if a LOB
field is specified in the format buffer using LOB segment notation with asterisk notation in the
bytenum specification.

If this option is specified, it must be specified in the Command Option 1 field and option "H"
must be specified in the Command Option 2 field. Option "R" causes Adabas to return response

R

code 145 (ADARSP145) if the record to be held is not available. The command is not placed in
wait status.

Additions 2 - Length of Compressed Record - (ACBADD2)
If the command is processed successfully, the following information is returned in this field:
■ If the record buffer contains at least one valid field value, the leftmost two bytes contain the

length (in binary form) of the compressed record accessed;
■ If the A1 command returns a non-zero response code, the rightmost two bytes may contain

a subcode defining the exact response code meaning. Response codes and their subcodes
are defined in the Adabas Messages and Codes Manual documentation.

Additions 3 - Password - (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

209Command Reference

A1 Command: Update Record

If the accessed file is password protected, Adabas sets this field to blanks during command
processing to protect the integrity of the password.

Additions 4 - Cipher Code - (ACBADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5 - Format ID, Global Format ID - (ACBADD5)
This field may be used to provide a separate format ID to identify the internal format buffer
used for this command, or to provide a global format ID.

As long as the high order bit of the first byte of the Additions 5 field is not set to 1, the value
provided in the command ID field will be used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand ID, Format ID,Global Format ID for more information and examples.

ACB Examples

For the Adabas file definitions used in all the examples in this section, see File Definitions Used
in Examples.

■ Example 1
■ Example 2

Example 1

ISN 4 of file 1 is to be updated with the following values:

1234Field AA

20Field AB

Command Reference210

A1 Command: Update Record

Control Block

A1Command Code

only 1 record is to be updatedbbbb (blanks)Command ID

1File Number

4ISN

or larger10Format Buffer Length

or larger10Record Buffer Length

file is not security protectedbbbbbbbb (blanks)Additions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

AA,AB,2,U.Format Buffer

X'F1F2F3F440404040F2F0'Record Buffer

Example 2

A set of records (previously identified with a FIND command) in file 2 are to be updated with the
following values:

ABCDField RA

80Field XB

0Field XC

Control Block

A1Command Code

a non-blank, non-zero command ID is recommended because the
same fields in a series of records are being updated

ABCDCommand ID

2File Number

each ISN resulting from the previous FIND command will be
inserted in this field before each call

nISN

or larger9Format Buffer Length

or larger16Record Buffer Length

file 2 is security protectedpasswordAdditions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

211Command Reference

A1 Command: Update Record

Buffer Areas

RA,XB,XC.Format Buffer

X'C1C2C3C440404040080CF0F0F0F0F0F0'Record Buffer

The A1 call is repeated for each ISN which resulted from the previous find command.

ACBX Interface Direct Call: A1 Command

This section describes ACBX-interface direct calls for the A1 command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------binary1-2

UFbinary3-4Version Indicator

------binary5-6

UFalphanumeric7-8Command Code

------binary9-10

U---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

UFbinary29-32ISN

---------33-36

A1---binary37-40ISN Lower Limit

---------41-44

A1---binary45-48ISN Quantity

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

---------51-68

Command Reference212

A1 Command: Update Record

After Adabas CallBefore Adabas CallFormatPositionField

AFalphanumeric/ binary69-76Additions 3

AFalphanumeric77-84Additions 4

UFalphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

---------117-128

A---binary129-136Compressed Record Length

A---binary137-144Decompressed Record Length

A---binary145-152Command Time

U---not applicable153-168User Area

---------169-193

Notes

1. These fields are used and not reset by Adabas if coupled files are used.

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

UFFormat

UFRecord

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
A1

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can

213Command Reference

A1 Command: Update Record

also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
If a series of records is to be updated by using a series of A1 calls, and the same fields are
specified in the format buffer for each call (such as when updating a set of records resulting
from a find command), this field should be set to a non-blank, non-zero value. If the A1 com-
mand is used in conjunction with an L1/L4, L2/L5, or L3/L6 command, and the same fields
within each record are read and updated, the same command ID used for the read command
should be used for the A1 calls. In both cases, this reduces the time needed to process each
successive A1 call.

If only a single record is to be updated with a single A1 call, or the format buffer is modified
between A1 calls, this field should be set to blanks.

The leftmost byte of this field may not be set to hexadecimal 'FF'.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISN)
Use this field to specify the ISN of the record to be updated.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

ISN Lower Limit (ACBXISL)
These fields are set to nulls following completion of the A1 operation unless coupled files or
partial large object (LOB) fields are used.

If coupled files are used, these fields are used by A1 processing and are not reset.

If a partial LOB field is requested and the Command Option 2 field is set to L, the ACBXISL
field is used to keep track of the current position in the LOB value when multiple A1 calls are
made for the field.

Command Reference214

A1 Command: Update Record

ISN Quantity (ACBXISQ)
This field is set to nulls following completion of the A1 operation, unless hard-coupled files
are used. If coupled files are used, this field is used during A1 operation and is not reset.

Command Option 1 and Command Option 2 (ACBXCOP1 and ACBXCOP2)

DescriptionOption

An "H" in either the Command Option 1 or Command Option 2 places the record in hold status
before it is updated. If the record is currently being held by another user, the command is placed

H

in wait status until either the record becomes available or the transaction times out-unless option
"R" is also specified.

An L in the Command Option 2 field indicates that the position within a large object (LOB) field
be tracked in the ACBXISL (ISN lower limit) field. This option is useful when multiple A1

L

commands are being issued in a series for a LOB field. This option can only be used if a LOB
field is specified in the format buffer using LOB segment notation with asterisk notation in the
bytenum specification.

If specified, this setting must be specified in the Command Option 1 field and option "H" must
be specified in the Command Option 2 field. Option "R" causes Adabas to return response code

R

145 (ADARSP145) if the record to be held is not available. The command is not placed in wait
status.

Additions 3 - Password - (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

If the accessed file is password protected, Adabas sets this field to blanks during command
processing to protect the integrity of the password.

Additions 4 - Cipher Code - (ACBXADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5 - Format ID, Global Format ID - (ACBXADD5)
This field may be used to provide a separate format ID to identify the internal format buffer
used for this command, or to provide a global format ID.

As long as the high order bit of the first byte of the Additions 5 field is not set to 1, the value
provided in the command ID field will be used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

215Command Reference

A1 Command: Update Record

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand ID, Format ID,Global Format ID for more information and examples.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Compressed Record Length (ACBXLCMP)
This field returns the compressed record length when a record was read or written. This is the
length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)
This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects
the total length across all buffer segments.

Buffers

The following buffers should be specified with an A1 command:

■ Format Buffer
■ Record Buffer

Format Buffer

The fields to be updated must be specified in this buffer. When performing an A1 command, the
format buffer cannot contain any of the following:

■ Field selection criteria;
■ An edit mask element;
■ A reference to a subdescriptor or superdescriptor field;
■ The same field specified more than once (except a multiple-value field);
■ An "-N" type of specification for an multiple-value field, or for fields in a periodic group (for

example, ABN or AB1-N).

Any of the above in the format buffer will cause a nucleus response of 44 for an A1 command.

Command Reference216

A1 Command: Update Record

Descriptions of the syntax and examples of format buffer construction are provided in Format
Buffers, elsewhere in this guide.

Record Buffer

The values to be used for updating are provided in this buffer according to the length and format
as specified in the format buffer. For more information, read Record Buffers, elsewhere in this
guide.

Additional Considerations

The following additional considerations are applicable for the A1 command:

1. Subdescriptors, superdescriptors, and phonetic descriptors may not be directly updated. To
update any of these descriptors, the fields used to derive them must be updated. All correspond-
ing subdescriptor, superdescriptor, or phonetic descriptor values will then be updated by
Adabas.

2. Theoretically, the maximum record length permitted is 32767 bytes before compression. The
actual maximum is limited by block size restrictions. It is also smaller depending on the size of
the LU parameter specified for the Adabas session; the maximum is (LU - format buffer length
- 108). The maximum record length after compression is equal to the smaller of either the Data
Storage block size - 4 bytes, or the Work block size - 110 bytes.

3. A descriptor value cannot be larger than 253 bytes.

4. If a field is updated using a length override that exceeds the standard length (not permitted if
the field is defined with the Fixed Storage option), all subsequent references to this field should
specify the length that was used. If a subsequent reference uses the standard length, value
truncation of an alphanumeric fields, a response code 55 (ADARSP055) for a numeric field may
occur.

5. A multiple-value field or a field within a periodic group may be specified more than once in
the format buffer. A multiple-value field may be specified without an index several times, or
with different indices. A periodic field must always have different indices.

6. A multiple-value or periodic group count field specified in the format buffer will be ignored
by Adabas. The corresponding value in the record buffer will also be ignored. A literal in the
format buffer will be ignored by Adabas, and the corresponding positions in the record buffer
will also be ignored.

7. If a multiple-value field is updated and the field count must be changed, Adabas updates the
multiple-value field count according to the following rules:
■ For a multiple-value field defined with the null suppression (NU) option, the count field is

adjusted to reflect the current number of existing non-null values. Null values are completely
suppressed.

217Command Reference

A1 Command: Update Record

01,MF,5,A,MU,NUField Definition

XXXXX,YYYYYMF values before update

MF4.Format Buffer

ZZZZZRecord Buffer

XXXXX,YYYYY,ZZZZZ
MF count = 3

Result after update

XXXXX,YYYYY,ZZZZZMF values before update

MF2.Format Buffer

bbbbb (blanks)Record Buffer

XXXXX,ZZZZZ
MF count = 2

Result after update

XXXXX,ZZZZZMF values before update

MF1-2.Format Buffer

bbbbbbbbbb (blanks)Record Buffer

Values suppressed
MF count = 0

Result after update

■ For a multiple-value field defined without the NU option, the count is adjusted to reflect the
current number of existing values (including null values).

01,MF,5,A,MUField Definition

XXXXX,YYYYYMF values before update

MF4.Format Buffer

DDDDDRecord Buffer

XXXXX,YYYYY,b(blank),DDDDD
MF count = 4

Result after update

XXXXX,YYYYY,ZZZZZMF values before update

MF3.Format Buffer

bbbbb (blanks)Record Buffer

XXXXX,YYYYY,b (blank)
MF count = 3

Result after update

A maximum of 191 values is permitted for a multiple-value field.

An exception to the rules is when the format buffer contains a multiple-value field without
an index specification. In this case, only the new values specified are used and all other values
are deleted regardless of the content of the value.

Command Reference218

A1 Command: Update Record

01,MF,5,A,MU,NUField Definition

XXXXX,YYYYYMF values before update

MF.Format Buffer

AAAAARecord Buffer

AAAAA
MF count = 1

Result after update

XXXXX,YYYYYMF values before update

MF1.Format Buffer

AAAAARecord Buffer

AAAAA,YYYYY
MF count = 2

Result after update

XXXXX,YYYYY,ZZZZZMF values before update

MF.Format Buffer

bbbbb (blanks)Record Buffer

value suppressed
MF count = 0

Result after update

8. If one or more fields contained in a periodic group are updated, Adabas updates the periodic
group count, if necessary, according to the following rule:

The count is adjusted to reflect the highest occurrence number referenced in the format buffer
(provided that this occurrence is higher than the existing highest occurrence number).

01,GB,PE
02,BA,1,B,DE,NU
02,BB,5,P,NU

Field Definitions

GB (1st occurrence)
BA = 5 BB = 20
GB (2nd occurrence)
BA = 6 BB = 25
GB count = 2

GB values before update

GB4.Format Buffer

X'08000000500F'Record Buffer

GB (1st occurrence)
BA = 5 BB = 20
GB (2nd occurrence)
BA = 6 BB = 25
GB (3rd occurrence)
BA = 0 BB = 0
GB (4th occurrence)
BA = 8 BB = 500
GB count = 4

Result after update

219Command Reference

A1 Command: Update Record

GB (1st occurrence)
BA = 5 BB = 20
GB (2nd occurrence)
BA = 6 BB = 25
GB count = 2

GB values before update

GB1.Format Buffer

X'00000000000F'Record Buffer

GB (1st occurrence)
BA = 0 BB = 0
GB (2nd occurrence)
BA = 6 BB = 25
GB count = 2

Result after update

A maximum of 191 occurrences is permitted for a periodic group.

9. If a field defined with variable length (no standard length) is specified in the format buffer, the
corresponding value in the record buffer must be preceded by a one-byte binary length value
that includes the length byte itself.

01,AA,3,A
01,AB,A

Field Definitions

AA,AB.Format Buffer

X'F1F2F306F1F2F3F4F5'Record Buffer

Fields AA and AB are to be updated. The new value for AA is "123". The new value for AB
(which is a variable-length field) is "12345".

Command Reference220

A1 Command: Update Record

23 BT Command: Back Out Transaction

■ Function and Use .. 222
■ ACB Interface Direct Call: BT Command .. 222
■ ACBX Interface Direct Call: BT Command .. 226
■ ISN Buffer .. 230

221

The BT command removes database updates for ET logic users.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The BT command is used to remove all database modifications (adds, deletes, updates) performed
during the user's current logical transaction. This may be necessary because of a program error
or the determination that the entire transaction cannot be completed successfully. BT commands
may only be issued by ET logic users.

Adabas issues an implicit ET command as the last step in the processing of a BT command. This
causes the current data protection block to be physically written to the Adabas Work and the data
protection log, and the release of all records which were held during the transaction.

The Command Option 1 field provides the "P" option to place all records listed in the ISN buffer
in hold status. The "M" (multifetch) option releases a subset of the records held by the current
transaction. The records to be released from hold status are specified in the ISN buffer. The first
fullword in the buffer specifies the number of 8-byte elements following.

The Command Option 2 field provides the "F" (exclude file) option to exclude a single file from
backout processing. The updates performed to the file specified will not be backed out. Any records
in the file that are in hold status for the user will, however, be released.

ACB Interface Direct Call: BT Command

This section describes ACB interface direct calls for the BT command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Command Reference222

BT Command: Back Out Transaction

■ ACB Examples

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

A--binary5-8Command ID

UF *binary9-10File Number *

A--binary11-12Response Code

------13-16

UFbinary17-20ISN Lower Limit

------21-32

UF **binary33-34ISN Buffer Length **

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

------37-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UFISN **

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Required only if Command Option 2 is specified*

Required only if Command Option 1 is specified**

Not used--

223Command Reference

BT Command: Back Out Transaction

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
BT

Command ID (ACBCID)
In this field, Adabas returns the transaction sequence number of the transaction that has been
backed out. The number is returned in binary format.

File Number (ACBFNR)
If a file is to be excluded from backout processing, the number of the file to be excluded must
be specified in this field, and option F must be specified in the Command Option 2 field.

If no file is to be excluded (option F is not specified), any value specified in the file number
field is disregarded.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
In this field, Adabas returns the response code for the command. Response code 0 (ADARSP000)
indicates that the command was executed successfully. If the BT command returns a non-zero
response code, the rightmost two bytes of the Adabas control block, bytes 45 - 48 (Additions
2 field) may contain a subcode defining the exact response code meaning. Response codes and
their subcodes are defined in the Adabas Messages and Codes Manual documentation.

ISN Lower Limit (ACBISL)
If the hold ISNs option is specified, this field must contain the count of six-byte ISN buffer
entries.

ISN Buffer Length (ACBIBL)
The ISN buffer length (in bytes). This length is required only if the hold ISNs or multifetch
option is used (see the Command Option 1 field description). If the multifetch feature is spe-
cified, this value must be less than 32 KB.

Command Option 1: Hold ISNs Option (ACBCOP1)

Note: If multifetch is set with ADARUN PREFETCH=YES, the "P" option is automatically
used for ET/BT commands (the "M" option is automatically used for all other commands).
You cannot override this option setting by using this field.

By default as part of BT command execution, Adabas releases all ISNs currently held by the
user.

Command Reference224

BT Command: Back Out Transaction

DescriptionOption

Places all or a portion of these ISNs back into hold status. The ISNs to be returned
to hold status must be provided in the ISN buffer, and the ISN count must be
specified in the ISN lower limit field.

P

Releases only a subset instead of all of the ISNs held by the current transaction.
The records to be released from hold status are specified in the ISN buffer.The
first fullword in the buffer specifies the number of 8-byte elements following.

M (command-level
multifetch)

Command Option 2: Exclude File Option (ACBCOP2)

DescriptionOption

Excludes the single file specified in the file number field from backout processing. The
updates performed to the specified file are not backed out but committed. Any records
in the file that are in hold status for the user are released.

F (exclude file)

All files are to be included in backout processing.blanks

ACB Examples

■ Example 1
■ Example 2
■ Example 3

Example 1

The current user transaction is to be backed out. All files are to be included in the backout process.

Control Block

BTCommand Code

no ISNs are heldblankCommand Option 1

file exclude option not usedbCommand Option 2

Example 2

The current user transaction is to be backed out. Updates made to file 4 are not to be included in
the backout process.

225Command Reference

BT Command: Back Out Transaction

Control Block

BTCommand Code

file 4 to be excluded from backout4File Number

file exclude option usedFCommand Option 2

Example 3

The current user transaction is to be backed out. ISNs 1, 2, and 3 which are contained in file 6 are
to be placed into hold status.

Control Block

BTCommand Code

place ISNs into hold status optionPCommand Option 1

file exclude option not usedbCommand Option 2

Buffer Areas

ISN Buffer

ISN 1000600000001

ISN 2000600000002

ISN 2000600000003

ACBX Interface Direct Call: BT Command

This section describes ACBX interface direct calls for the BT command. It covers the following
topics:

■ Control Block and Buffer Overview

Command Reference226

BT Command: Back Out Transaction

■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

------binary5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

A---alphanumeric/ binary13-16Command ID

UF*numeric17-20Database ID*

UF*numeric21-24File Number*

---------25-36

UFbinary37-40ISN Lower Limit

---------45-48

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

UFalphanumeric51Command Option 3

---------52-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

---------169-193

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

UFISN **

where:

227Command Reference

BT Command: Back Out Transaction

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Required only if Command Option 2 is specified*

Required only if Command Option 1 is specified**

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
BT

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
In this field, Adabas returns the transaction sequence number of the transaction that has been
backed out. The number is returned in binary format.

Database ID (ACBXDBID)
Use this field to specify the database ID of the file to be excluded from backout processing.
The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to be excluded from backout processing (option
F must be specified in the Command Option 2 field).

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

If no file is to be excluded (option F is not specified in Command Option 2), any value specified
in the file number field is disregarded.

Command Reference228

BT Command: Back Out Transaction

ISN Lower Limit (ACBXISL)
If the hold ISNs option is specified, this field must contain the count of six-byte ISN buffer
entries.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

Command Option 1: Hold ISNs Option (ACBXCOP1)
By default as part of BT command execution, Adabas releases all ISNs currently held by the
user.

DescriptionOption

Places all or a portion of these ISNs back into hold status. The ISNs to be returned
to hold status must be provided in the ISN buffer, and the ISN count must be
specified in the ISN lower limit field.

P

Releases only a subset instead of all of the ISNs held by the current transaction.
The records to be released from hold status are specified in the ISN buffer. The
first fullword in the buffer specifies the number of 8-byte elements following.

M (command-level
multifetch)

Command Option 2: Exclude File Option (ACBXCOP2)

DescriptionOption

Excludes the single file specified in the file number field from backout processing. The
updates performed to the specified file are not backed out but committed. Any records
in the file that are in hold status for the user are released.

F (exclude file)

All files are to be included in backout processing.blanks

Command Option 3: Shared Hold Status (ACBXCOP3)

DescriptionOption

Keeps the record in shared hold status indefinitely. Records in shared hold status at the time of
the BT command are kept in shared hold status beyond the end of the transaction until another

H

ET or BT command is issued (without this H option or the prefetch or multifetch options). Any
records in exclusive hold status are also changed to shared hold status beyond the end of the
transaction.

You cannot use option H if the multifetch or prefetch options are used (or, in Adabas on open
systems, if all resources owned by the user are to be released via a command option 1 "T" setting).

For complete information about shared hold updating, read Shared Hold Status, elsewhere
in this guide.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

229Command Reference

BT Command: Back Out Transaction

ISN Buffer

If the Command Option 1 field is set to "P", each ISN whose record is to be returned to hold status
must be provided as a six-byte binary entry in which:

■ the first two bytes specify the number of the file containing the record; and
■ the next four bytes contain the ISN of the record to be held.

If the Command Option 1 field is set to "M", only a subset of the records held by the current
transaction are to be released. The first fullword in the ISN buffer specifies the number of eight-
byte elements, and each following eight-byte group is interpreted as one file number/ISN identifier
of records to be released from hold status (read BT/ET Multifetch Processing).

Command Reference230

BT Command: Back Out Transaction

24 C1 Command: Write a Checkpoint

■ Function and Use .. 232
■ ACB Interface Direct Call: C1 Command .. 232
■ ACBX Interface Direct Call: C1 Command .. 235

231

The C1 command writes the command ID, PLOG, RABN checkpoint, and buffer flush option.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The C1 command is used to request that a checkpoint be taken.

C1 commands are normally only issued by exclusive control update users (who are not using ET
logic) or by users who are operating in single-user mode.

Adabas executes an implied C1 command at the beginning of a user program in which exclusive
file control updating has been requested.

The result of the C1 command is a checkpoint entry in the Adabas checkpoint table. This checkpoint
entry:

■ contains the checkpoint identifier (the value provided by the user in the command ID field),
and the current data protection log and block number.

■ may be used to restore the database (or certain files) to the status in effect at the time the
checkpoint was taken. This may be necessary before a program performing exclusive control
updating can be rerun or restarted.

Specifying the "F" (flush buffers) option in the Command Option 1 or Command Option 2 fields
forces Adabas to flush the contents of the Adabas buffer pool to external storage at the end of
command processing.

ACB Interface Direct Call: C1 Command

This section describes ACB interface direct calls for the C1 command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Command Reference232

C1 Command: Write a Checkpoint

■ ACB Example

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

AFalphanumeric5-8Command ID

UFbinary9-10File Number *

A--binary11-12Response Code

------13-34

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

------37-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

None used.

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

*

Not used--

233Command Reference

C1 Command: Write a Checkpoint

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
C1

Command ID (ACBCID)
A non-blank, non-zero value must be entered in this field. This value identifies the checkpoint
taken. It is not necessary that each value provided for each checkpoint be unique.

A value of "0000" or "SYNC" may not be specified.

The first byte of this field may not be set to hexadecimal 'FF'.

File Number (ACBFNR)
A database ID is only necessary if you are accessing a database other than the application's
default database (read in by ADARUN DBID parameter, provided in the loaded link globals
table, or linked with the link routine).

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. If the C1 command returns a non-zero
response code, the rightmost two bytes of the Adabas control block, bytes 45-48 (Additions 2
field), may contain a subcode defining the exact response code meaning. Response codes and
their subcodes are defined in the Adabas Messages and Codes Manual documentation.

CommandOption 1 andCommandOption 2: Flush BuffersOption (ACBCOP1 andACBCOP2)

DescriptionOption

Specify this option in either the Command Option1 or Command Option2 field to
force Adabas to flush the contents of the Adabas buffer pool to external storage at the
end of command processing.

F (flush buffers)

ACB Example

A checkpoint entry is to be written. The checkpoint is to be identified by the value "UCP4".

Control Block

C1Command Code

checkpoint identifierUCP4Command ID

Command Reference234

C1 Command: Write a Checkpoint

ACBX Interface Direct Call: C1 Command

This section describes ACBX interface direct calls for the C1 command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

AFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID*

---------21-48

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

---------51-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

---------169-193

ABDs and Buffers

None used.

where:

235Command Reference

C1 Command: Write a Checkpoint

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

*

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
C1

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
A non-blank, non-zero value must be entered in this field. This value identifies the checkpoint
taken. It is not necessary that each value provided for each checkpoint be unique.

A value of "0000" or "SYNC" may not be specified.

The first byte of this field may not be set to hexadecimal 'FF'.

Database ID (ACBXDBID)
Use this field to specify the database ID only if you are accessing a database other than the
application's default database (read in by ADARUN DBID parameter, provided in the loaded
link globals table, or linked with the link routine). The Adabas call will be directed to this
database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

Command Reference236

C1 Command: Write a Checkpoint

CommandOption1andCommandOption2: FlushBuffersOption (ACBXCOP1andACBXCOP2)

DescriptionOption

Specify this option in either the Command Option 1 or Command Option 2 field to
force Adabas to flush the contents of the Adabas buffer pool to external storage at the
end of command processing.

F (flush buffers)

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

237Command Reference

C1 Command: Write a Checkpoint

238

25 C3 Command: Write Checkpoint

■ Function and Use .. 240
■ ACB Interface Direct Call: C3 Command .. 240
■ ACBX Interface Direct Call: C3 Command .. 242
■ Buffers .. 245

239

The C3 command writes a SYNX-03 checkpoint in the Adabas checkpoint file.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The C3 command may be issued only by exclusive control/update users (who are not using ET
logic).

The primary function of the C3 command is to write a SYNX-03 checkpoint in the Adabas checkpoint
file. This checkpoint entry:

■ contains the current data protection log and block number.
■ may be used to restore the database (or certain files) to the status in effect at the time the

checkpoint was taken. This may be necessary before a program performing exclusive control
updating can be rerun or restarted.

If Command Option 2 is specified, the C3 command also stores user data in the Adabas checkpoint
file for restart purposes. The stored data may be subsequently read with an OP or RE command.

ACB Interface Direct Call: C3 Command

This section describes ACB interface direct calls for the C3 command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions
■ ACB Example

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

------5-8

UFbinary9-10File Number **

A--binary11-12Response Code

------13-26

Command Reference240

C3 Command: Write Checkpoint

After Adabas CallBefore Adabas CallFormatPositionField

UFbinary27-28Record Buffer Length

------29-35

UFalphanumeric36Command Option 2

------37-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

*Format

UFRecord

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but must be included in parameter list of call statement*

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

**

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
C3

File Number (ACBFNR)
A database ID is only necessary if you are accessing a database other than the application's
default database (read in by ADARUN DBID parameter, provided in the loaded link globals
table, or linked with the link routine).

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully.

Response codes and their subcodes are defined in the AdabasMessages and Codes Manual docu-
mentation.

241Command Reference

C3 Command: Write Checkpoint

Record Buffer Length (ACBRBL)
This field is used only if Command Option 2 is specified.

The number of bytes of user data to be stored must be specified in this field.

The maximum length that may be specified is 2000 bytes.

Command Option 2: Store User Data (ACBCOP2)

DescriptionOption

Indicates that user data is to be stored in the Adabas checkpoint file when the session terminates.
This option is only available if you provided a non-blank, unique user ID during the OP command
for the user session.

E

ACB Example

A user program issues a C3 command and provides user data to be stored in the Adabas checkpoint
file.

Control Block

C3Command Code

17 bytes of user data to be stored17Record Buffer Length

user data is to be storedECommand Option 2

Buffer

EXU-USER ET-DATARecord Buffer

ACBX Interface Direct Call: C3 Command

This section describes ACBX interface direct calls for the C3 command. It covers the following
topics:

■ Control Block and Buffer Overview

Command Reference242

C3 Command: Write Checkpoint

■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

---------13-16---

UFnumeric17-20Database ID**

---------21-49

UFalphanumeric50Command Option 2

---------51-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

---------169-193

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

*Format

UFRecord

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but should be included in Adabas call or one will be automatically generated.*

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

**

Not used--

243Command Reference

C3 Command: Write Checkpoint

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
C3

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Database ID (ACBXDBID)
Use this field to specify the database ID only if you are accessing a database other than the
application's default database (read in by ADARUN DBID parameter, provided in the loaded
link globals table, or linked with the link routine). The Adabas call will be directed to this
database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

Command Option 2: Store User Data (ACBXCOP2)

DescriptionOption

Indicates that user data is to be stored in the Adabas checkpoint file when the session terminates.
This option is only available if you provided a non-blank, unique user ID during the OP command
for the user session.

E

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Command Reference244

C3 Command: Write Checkpoint

Buffers

The following buffers apply to a C3 command:

■ Format Buffer
■ Record Buffer

Format Buffer

A format buffer is not used by the C3 command, but should be included in the Adabas call. If this
is an ACB interface direct call and a format buffer is not specified, a processing error will occur;
ACB interface direct calls expect buffers to be specified in a set sequence. If this is anACBX interface
direct call and a format buffer is not specified, one will be automatically generated.

Record Buffer

The record buffer contains the user data to be stored in the Adabas checkpoint file. The number
of bytes actually stored is determined by the value specified in the record buffer length field.

The user data is retained only if you issued an OP command for the user session in which a non-
blank, unique user ID was provided. The data is retained until you issue the next C3 or CL command
in which user data is provided. If a non-blank, unique user ID was not provided, the data cannot
be retrieved in a subsequent session.

245Command Reference

C3 Command: Write Checkpoint

246

26 C5 Command: Write User Data to Protection Log

■ Function and Use .. 248
■ ACB Interface Direct Call: C5 Command .. 248
■ ACBX Interface Direct Call: C5 Command .. 250
■ Buffers .. 253

247

The C5 command writes user data on SIBA/PLOG . If you have Event Replicator for Adabas in-
stalled, however, you can also use the C5 command to send messages from the originating applic-
ation to one or more Event Replicator Server destinations. For more information on this Event
Replicator for Adabas functionality, read your Event Replicator for Adabas documentation.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The C5 command is used to write user data to the Adabas data protection log. This data may be
read and displayed using the ADASEL utility. The data that is written has no effect on Adabas
recovery processing. The ADASAV and ADARES utilities ignore all data written to the data pro-
tection log as a result of a C5 command.

ACB Interface Direct Call: C5 Command

This section describes ACB interface direct calls for the C5 command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions
■ ACB Example

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

------5-8

UFbinary9-10File Number **

A--binary11-12Response Code

------13-26

UFbinary27-28Record Buffer Length

------29-34

UFalphanumeric35Command Option 1***

------36

UFalphanumeric37-44Additions 1***

Command Reference248

C5 Command: Write User Data to Protection Log

After Adabas CallBefore Adabas CallFormatPositionField

------45-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

*Format

UFRecord

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but must be included in parameter list of call statement*

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

However, if you are using Event Replicator for Adabas and the Command Option 1 field is set to "R",
a file number must be specified to identify the file to which the C5 command applies. For more
information, read your Event Replicator for Adabas documentation.

**

Only used if you are using Event Replicator for Adabas. For more information, read your Event Replicator
for Adabas documentation.

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
C5

File Number (ACBFNR)
A database ID is only necessary if you are accessing a database other than the application's
default database (read in by ADARUN DBID parameter, provided in the loaded link globals
table, or linked with the link routine).

However, if you are using Event Replicator for Adabas and the Command Option 1 field is
set to "R", a file number must be specified to identify the file to which the C5 command applies.
For more information, read your Event Replicator for Adabas documentation.

249Command Reference

C5 Command: Write User Data to Protection Log

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. If the C5 command returns a non-zero
response code, the rightmost two bytes of the Adabas control block, bytes 45-48 (Additions 2
field) may contain a subcode defining the exact response code meaning. Response codes and
their subcodes are defined in the Adabas Messages and Codes Manual documentation.

Record Buffer Length (ACBRBL)
The number of bytes specified in this field will be written to the Adabas data protection log.

The maximum length which may be specified is 2048 bytes.

Command Option 1 (ACBCOP1)
Used only if you are using the Event Replicator for Adabas. Otherwise, this field must be blank.
For more information, read your Event Replicator for Adabas documentation.

Additions 1 (ACBADD1)
Used only if you are using the Event Replicator for Adabas. For more information, read your
Event Replicator for Adabas documentation.

ACB Example

The information "ULRR0422 UPDATES FOR JANUARY" is to be written to the Adabas data pro-
tection log.

Control Block

C5Command Code

28Record Buffer Length

Buffer Areas

ULRR0422 UPDATES FOR JANUARYRecord Buffer

ACBX Interface Direct Call: C5 Command

This section describes ACBX interface direct calls for the C5 command. It covers the following
topics:

■ Control Block and Buffer Overview

Command Reference250

C5 Command: Write User Data to Protection Log

■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

---------13-16

UFnumeric17-20Database ID**

UFnumeric21-24File Number***

---------25-48

UFalphanumeric49Command Option 1***

---------50-56

UFalphanumeric/ binary57-64Additions 1***

---------65-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

*Format

UFRecord

where:

251Command Reference

C5 Command: Write User Data to Protection Log

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but should be included in Adabas call or one will be automatically generated.*

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

However, if you are using Event Replicator for Adabas and the Command Option 1 field is set to "R",
a file number must be specified to identify the file to which the C5 command applies. For more
information, read your Event Replicator for Adabas documentation.

**

Only used if you are using Event Replicator for Adabas. For more information, read your Event Replicator
for Adabas documentation.

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
C5

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Database ID (ACBXDBID)
Use this field to specify the database ID only if you are accessing a database other than the
application's default database (read in by ADARUN DBID parameter, provided in the loaded
link globals table, or linked with the link routine). The Adabas call will be directed to this
database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

Command Reference252

C5 Command: Write User Data to Protection Log

File Number (ACBXFNR)
If you are using Event Replicator for Adabas and the Command Option 2 field is set to "R",
use this field to specify the number of the file to which the C5 command should be directed.
For more information, read your Event Replicator for Adabas documentation.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

Command Option 1 (ACBXCOP1)
Used only if you are using the Event Replicator for Adabas. Otherwise, this field must be blank.
For more information, read your Event Replicator for Adabas documentation.

Additions 1 (ACBXADD1)
Used only if you are using the Event Replicator for Adabas. For more information, read your
Event Replicator for Adabas documentation.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Buffers

The following buffers apply to a C5 command:

Format Buffer

A format buffer is not used by the C5 command, but should be included in the Adabas call. If this
is an ACB interface direct call and a format buffer is not specified, a processing error will occur;
ACB interface direct calls expect buffers to be specified in a set sequence. If this is anACBX interface
direct call and a format buffer is not specified, one will be automatically generated.

Record Buffer

The information to be written to the data protection log is provided in this buffer.

The information written may be selected subsequently using the ADASEL utility by specifying
the beginning characters (1 to 30 characters) as originally contained in the record buffer. It is,
therefore, recommended that you provide a unique identification of your data in the beginning
positions of the record buffer. This will ensure that the data can be properly identified and selected.

253Command Reference

C5 Command: Write User Data to Protection Log

254

27 CL Command: Close User Session

■ Function and Use .. 256
■ ACB Interface Direct Call: CL Command .. 256
■ ACBX Interface Direct Call: CL Command .. 260
■ Buffers .. 263

255

The CL command ends an ET session and updates the database.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The CL command is used to terminate a user session. Software AG recommends that all user
programs issue a CL command upon completion of database processing. User programs operating
in single-user mode which are performing database updating must issue a CL command to ensure
that all updates have been written to the database.

A CL command:

■ issues an implicit ET command (ET-logic users only);
■ stores user data in an Adabas system file (optional);
■ releases all records currently in hold status for the user as well as all command ID entries (and

corresponding ISN lists) assigned to the user;
■ transfers the user's ET data from the Adabas Work to an Adabas system file. This is done only

if a user ID was provided with the OP command; otherwise, any ET data stored during the
session is lost.

A CL command issued by a user operating in single-user mode causes a physical close of the
database (Associator, Data Storage, Work, and the data protection log). It is therefore not possible
for a single-user mode user to follow a CL command with another command (for example, an OP
command).

ACB Interface Direct Call: CL Command

This section describes ACB interface direct calls for the CL command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Command Reference256

CL Command: Close User Session

■ ACB Examples

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

A--binary5-8Command ID

UFbinary9-10File Number ***

A--binary11-12Response Code

A--binary13-16ISN

A--binary17-20ISN Lower Limit

A--binary21-24ISN Quantity

------25-26

UF *binary27-28Record Buffer Length

------29-35

UFalphanumeric36Command Option 2

------37-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

--**Format *

UFRecord *

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Required only if user data is to be stored*

Not used but must be included in parameter list of call statement if user data to be stored**

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

Not used--

257Command Reference

CL Command: Close User Session

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
CL

Command ID (ACBCID)
For ET logic users, Adabas returns the transaction sequence number of the user's last success-
fully executed transaction in this field. The number is provided in binary format.

Because the CL command includes an ET command (see Function and Use), it also increments
the transaction sequence number by one (regardless of whether it completes a transaction with
or without update commands). The incremented transaction sequence number is then returned.

The CL command returns binary zeros if it ends the session of an ET user without update
commands.

File Number (ACBFNR)
A database ID is only necessary if you are accessing a database other than the application's
default database (read in by ADARUN DBID parameter, provided in the loaded link globals
table, or linked with the link routine).

Response Code (ACBRSP)
In this field, Adabas returns the response code for the command. Response Code 0 indicates
that the command was executed successfully. If the CL command returns a nonzero response
code, the rightmost two bytes of the Adabas control block, Additions 2 field (bytes 47 and 48)
may contain a subcode defining the exact response code meaning. Response codes and their
subcodes are defined in the Adabas Messages and Codes Manual documentation.

ISN: Number of I/Os (ACBISN)
Adabas returns the number of I/O operations resulting from this session's Adabas calls in this
field.

ISN Lower Limit: Number of Commands (ACBISL)
In this field, Adabas returns the number of commands issued by the user during the user session.

ISN Quantity: CPU Time (ACBISQ)
In this field, Adabas returns an estimate of the amount of processor time used by this user for
Adabas command processing.

The time is provided in units of 1.048576 seconds.

Record Buffer Length (ACBRBL)
If user data is to be stored in an Adabas system file, the length of the record buffer must be
specified in this field. The length specified determines the number of bytes of user data to be
stored.

The maximum length which may be specified is 2000 bytes.

If no user data is to be stored, this field is not used.

Command Reference258

CL Command: Close User Session

Command Option 2: Store User Data (ACBCOP2)

DescriptionOption

Indicates that user data is to be stored in an Adabas system file.E

ACB Examples

■ Example 1
■ Example 2

Example 1

The user program has completed all database activity and issues the CL command. No user data
is to be stored.

Control Block

CLCommand Code

no user data is to be storedbCommand Option 2

Example 2

The user program issues a CL command and provides user data to be stored in an Adabas system
file.

Control Block

CLCommand Code

17 bytes of user data to be stored17Record Buffer Length

user data is to be storedECommand Option 2

Buffer

USER 7 NORMAL ENDRecord Buffer

259Command Reference

CL Command: Close User Session

ACBX Interface Direct Call: CL Command

This section describes ACBX interface direct calls for the CL command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

A---alphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID***

---------21-28

A---binary29-32Number of I/Os

---------33-36

A---binary37-40Number of Commands

A---binary41-48CPU Time

---------49

UFalphanumeric50Command Option 2

---------51-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

Command Reference260

CL Command: Close User Session

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

--**Format *

UFRecord *

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Required only if user data to be stored*

Not used but should be included in Adabas call or one will be automatically generated.**

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

Not used--

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
CL

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
For ET logic users, Adabas returns the transaction sequence number of the user's last success-
fully executed transaction in this field. The number is provided in binary format.

Because the CL command includes an ET command (see Function and Use), it also increments
the transaction sequence number by one (regardless of whether it completes a transaction with
or without update commands). The incremented transaction sequence number is then returned.

The CL command returns binary zeros if it ends the session of an ET user without update
commands.

261Command Reference

CL Command: Close User Session

Database ID (ACBXDBID)
Use this field to specify the database ID only if you are accessing a database other than the
application's default database (read in by ADARUN DBID parameter, provided in the loaded
link globals table, or linked with the link routine). The Adabas call will be directed to this
database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

ISN: Number of I/Os (ACBXISN)
Adabas returns the number of I/O operations resulting from this session's Adabas calls in this
field.

ISN Lower Limit: Number of Commands (ACBXISL)
In this field, Adabas returns the number of commands issued by the user during the user session.

ISN Quantity: CPU Time (ACBXISQG)
In this field, Adabas returns an estimate of the amount of processor time used by this user for
Adabas command processing.

The time is provided in units of 1/4096 microseconds; therefore, the high-order word of this
field contains the estimated processor time in units of 1.048576 seconds.

Command Option 2: Store User Data (ACBXCOP2)

DescriptionOption

Indicates that user data is to be stored in an Adabas system file.E

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Command Reference262

CL Command: Close User Session

Buffers

The following buffers apply to a CL command:

■ Format Buffer
■ Record Buffer

Format Buffer

A format buffer is not used by the CL command, but should be included in the Adabas call. If this
is an ACB interface direct call and a format buffer is not specified, a processing error will occur;
ACB interface direct calls expect buffers to be specified in a set sequence. If this is anACBX interface
direct call and a format buffer is not specified, one will be automatically generated.

Record Buffer

User data output from the command is stored in this buffer. The number of bytes actually stored
is determined by the value specified in the record buffer length field. The data is retained only if
you have issued an OP command in which a nonblank, unique user ID was provided. If so, the
data is retained until you issue the next ET or CL command in which user data is provided. If a
nonblank user ID was not provided, the data cannot be retrieved in a subsequent session.

263Command Reference

CL Command: Close User Session

264

28 E1 Command: Delete Record / Refresh File

■ Function and Use .. 266
■ ACB Interface Direct Call: E1 Command .. 266
■ ACBX Interface Direct Call: E1 Command .. 270

265

The E1 command deletes a record with the hold option, or refreshes a file.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The E1 command deletes a record when the record's ISN is specified, or refreshes a file when an
ISN value of zero is specified.

You must specify the file number and ISN of the record to be deleted. Adabas deletes the record
from Data Storage. If no ISN is specified and the command ID field contains no command ID (that
is, is set to spaces) and the specified file was last loaded with the ADALOD parameter PGMRE-
FRESH=YES, the E1 command refreshes the specified file by first deleting all records of the file
and reducing the Associator and Data Storage components of the file to a single extent.

Whether deleting a record or refreshing the entire file, the E1 command also makes the necessary
changes to the Associator. You cannot perform both a delete record and file refresh in the same
E1 command operation.

If the user is operating in multiuser mode and the record to be deleted is not in hold status for the
user, Adabas will place the record in hold status for the user. If the record is in hold status for
another user, the E1 command is placed in wait status until the record becomes available. If the
R option is specified in the Command Option 1 field and the requested record is not available,
response code 145 (ADARSP145) is returned.

Note: The E4 command supported in earlier Adabas releases is executed as an E1 command.

ACB Interface Direct Call: E1 Command

This section describes ACB interface direct calls for the E1 command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Command Reference266

E1 Command: Delete Record / Refresh File

■ ACB Examples

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric / binary5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

UFbinary13-16ISN

A1--binary17-20ISN Lower Limit

A1--binary21-24ISN Quantity

------25-34

UFalphanumeric35Command Option 1

------36-48

AFalphanumeric49-56Additions 3

AFalphanumeric57-64Additions 4

------65-72

A--binary73-76Command Time

U----77-80User Area

Notes

1. These fields are used and not reset by Adabas if coupled files are used.

Buffer Areas

None used.

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used--

267Command Reference

E1 Command: Delete Record / Refresh File

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
E1

Command ID (ACBCID)
To refresh a file, set this field to blanks and the ISN field to zero. If you set this field to any
other value while specifying an ISN field of zero, the E1 command attempts to remove the record
for ISN 0 from the specified file, which causes response code 114 (ADARSP114).

File Number (ACBFNR)
Specify the binary number of the file to be read in this field. For physical direct calls, specify
the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. If the E1 command returns a nonzero
response code, the rightmost two bytes of the Adabas control block Additions 2 field, bytes
47 and 48, may contain a subcode defining the exact response code meaning. Response codes
and their subcodes are defined in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
The ISN of the record to be deleted. If the command ID field contains blanks and this field
contains zero, the file specified by the file number field is refreshed. If the command ID field
contains non-blanks and this field contains zero, a response code 114 (ADARSP114) occurs.

ISN Quantity/Lower Limit (ACBISQ and ACBISL)
These fields are set to nulls following completion of the E1 command operation only if hard-
coupled files are not used. If coupled files are used, these fields are used for E1 command
processing and are not reset.

Command Option 1: Response Code 145 (ADARSP145) if Record not Available (ACBCOP1)
If the user is an ET logic user and the record to be deleted is not in hold status for the user,
Adabas places the record in hold status for the user. If the record to be deleted is being held
by another user, the action taken by Adabas is controlled by the setting of the Command Option
1 field:

Command Reference268

E1 Command: Delete Record / Refresh File

DescriptionOption

Causes Adabas to return response code 145 (ADARSP145) if the record to be deleted is not
available. The command is not placed in wait status.

R (return)

Otherwise, Adabas places the E1 command in wait status until either the record becomes
available or the transaction times out.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code (ACBADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

ACB Examples

■ Example 1
■ Example 2

Example 1

ISN 4 in file 2 is to be deleted.

Control Block

E1Command Code

record to be deleted is in file 22File Number

record with ISN 4 to be deleted4ISN

file 2 is security-protectedpasswordAdditions 3

269Command Reference

E1 Command: Delete Record / Refresh File

Example 2

The file specified in the file field (4) is to be refreshed

Control Block

E1Command Code

refresh file 44File Number

set to binary zeroISN

set to blanksbbbbCommand ID

The E1 command refreshes file 4.

ACBX Interface Direct Call: E1 Command

This section describes ACBX interface direct calls for the E1 command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

------25-28

UFbinary29-32ISN

------33-36

A1---binary37-40ISN Lower Limit

------41-44

Command Reference270

E1 Command: Delete Record / Refresh File

After Adabas CallBefore Adabas CallFormatPositionField

A1---binary45-48ISN Quantity

UFalphanumeric49Command Option 1

---------50-68

AFalphanumeric/ binary69-76Additions 3

AFalphanumeric77-84Additions 4

---------85-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

Notes

1. These fields are used and not reset by Adabas if coupled files are used.

ABDs and Buffers

None used.

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
E1

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

271Command Reference

E1 Command: Delete Record / Refresh File

Command ID (ACBXCID)
To refresh a file, set this field to blanks and the ISN field to zero. If you set this field to any
other value while specifying an ISN field of zero, the E1 command attempts to remove the record
for ISN 0 from the specified file, which causes response code 114 (ADARSP114).

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISL)
The ISN of the record to be deleted. If the command ID field contains blanks and this field
contains zero, the file specified by the file number field is refreshed. If the command ID field
contains non-blanks and this field contains zero, a response code 114 (ADARSP114) occurs.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

This field is set to nulls following completion of the E1 command operation, unless hard-
coupled files are used. If coupled files are used, this field is used for E1 command processing
and is not reset.

ISN Quantity (ACBXISQ)
This field is set to nulls following completion of the E1 command operation, unless hard-
coupled files are used. If coupled files are used, this field is used for E1 command processing
and is not reset.

Command Option 1: Response Code 145 (ADARSP145) if Record not Available (ACBXCOP1)
If the user is an ET logic user and the record to be deleted is not in hold status for the user,
Adabas places the record in hold status for the user. If the record to be deleted is being held
by another user, the action taken by Adabas is controlled by the setting of the Command Option
1 field:

Command Reference272

E1 Command: Delete Record / Refresh File

DescriptionOption

Causes Adabas to return response code 145 (ADARSP145) if the record to be deleted is not
available. The command is not placed in wait status.

R (return)

Otherwise, Adabas places the E1 command in wait status until either the record becomes
available or the transaction times out.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code (ACBXADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

273Command Reference

E1 Command: Delete Record / Refresh File

274

29 ET Command: End Transaction

■ Function and Use .. 276
■ ACB Interface Direct Call: ET Command .. 276
■ ACBX Interface Direct Call: ET Command .. 281
■ Buffers .. 284

275

The ET command ends and saves the current transaction.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The ET command is used to indicate the end of a logical transaction. Each logical transaction
should be secured by issuing an ET command. Subsequent restoring or backing out of any later
transaction returns the database status to that set by the last successful ET command.

The ET command:

■ writes all current data protection information to the Adabas data protection log and Adabas
Work for all update commands executed successfully during the transaction. If the current session
ends abnormally, Adabas uses this protection information to reapply the updates for this
transaction to the Associator and Data Storage during the next session;

■ releases all records held by the user during the current transaction. ISN lists which were saved
by the user as a result of find commands are not released (an option is also available by which
these ISNs can be returned to hold status);

■ optionally stores user data in an Adabas system file. This data may be read subsequently with
an OP or RE command as part of a program restart procedure;

■ returns a unique sequence number for the transaction in the command ID field of this and any
following OP or CL commands issued by the same user. This sequence number may be used to
identify the last successfully processed transaction for the user.

The successful execution of an ET command guarantees that all the updates performed during
the transaction will be applied to the database, regardless of any subsequent user or Adabas session
interruption.

If an ET logic user issues an OP command after a system failure or in the middle of a transaction,
Adabas automatically issues a BT command.

ACB Interface Direct Call: ET Command

This section describes ACB interface direct calls for the ET command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Command Reference276

ET Command: End Transaction

■ ACB Examples

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

A--binary5-8Command ID

UFbinary9-10File Number****

A--binary11-12Response Code

------13-16

UFbinary17-20ISN Lower Limit

A--binary21-24ISN Quantity

----25-26

UF *binary27-28Record Buffer Length

------29-32

UF **binary33-34ISN Buffer Length **

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

------37-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

--***Format *

UFRecord *

UFISN **

where:

277Command Reference

ET Command: End Transaction

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Required only if ET data is to be stored*

Required for hold ISN option; optional for multifetch option**

Not used but must be included in parameter list of call statement if ET data is to be stored***

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
ET

Command ID (ACBCID)
Adabas returns either binary zeros or the transaction sequence number in this field.

If the ET command completes a transaction without update commands (that is, A1, E1, N1,
N2), Adabas returns binary zeros.

Otherwise, Adabas returns the transaction sequence number in binary format. These numbers
are assigned in ascending sequence during a given user session, starting with 1.

File Number (ACBFNR)
A database ID is only necessary if you are accessing a database other than the application's
default database (read in by ADARUN DBID parameter, provided in the loaded link globals
table, or linked with the link routine).

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. If the ET command returns a non-zero
response code, the rightmost two bytes of the Adabas control block, bytes 45-48 (Additions 2
field) may contain a subcode defining the exact response code meaning. Response codes and
their subcodes are defined in the Adabas Messages and Codes Manual documentation.

ISN Lower Limit (ACBISL)
If the hold ISNs option is specified, this field must contain the count of six-byte ISN buffer
entries.

ISN Quantity (ACBISQ)
In this field, Adabas returns the transaction duration time specified in timer units (each unit
equals 1.05 seconds).

Command Reference278

ET Command: End Transaction

Record Buffer Length (ACBRBL)
If user data is to be stored in an Adabas system file, the number of bytes of user data to be
stored must be specified in this field.

Adabas will store the number of bytes specified in this field. The maximum number of bytes
which may be specified is 2000 bytes.

If no user data is to be stored, this field is not used.

ISN Buffer Length (ACBIBL)
The ISN buffer length (in bytes). This length is required only if the hold ISNs or multifetch
option is used (see the Command Option 1 field description).

Command Option 1: Hold ISNs Option (ACBCOP1)

Note: If multifetch is set with ADARUN PREFETCH=YES, the "P" option is automatically
used for ET/BT commands (the "M" option is automatically used for all other commands).
You cannot override this option setting by using this field.

By default as part of ET command execution, Adabas releases all ISNs currently held by the
user.

DescriptionOption

Places all or a portion of the ISNs back into hold status. The ISNs to be returned
to hold status must be provided in the ISN buffer, and the ISN count must be
specified in the ISN lower limit field.

P

Releases only a subset of the records held by the current transaction. The records
to be released from hold status are specified in the ISN buffer. The first fullword

M (command-level
multifetch)

in the ISN buffer specifies the number of eight-byte elements and each following
eight-byte group is interpreted as one file number/ISN identifier of records to be
released from hold status.

Command Option 2: Store User Data (ACBCOP2)

DescriptionOption

Indicates that user data is to be stored in an Adabas system file.E

279Command Reference

ET Command: End Transaction

ACB Examples

■ Example 1: ET without User Data
■ Example 2: ET with User Data
■ Example 3: ET with Hold ISN Option

Example 1: ET without User Data

Control Block

ETCommand Code

no user data is to be storedbCommand Option 2

Example 2: ET with User Data

Control Block

ETCommand Code

25 bytes of user data to be stored25Record Buffer Length

user data to be storedECommand Option 2

Buffer Areas

USER DATA FOR TRANSACTIONRecord Buffer

Example 3: ET with Hold ISN Option

Control Block

ETCommand Code

3ISN Lower Limit

18ISN Buffer Length

place ISNs in hold statusPCommand Option 1

Command Reference280

ET Command: End Transaction

Buffer Areas

ISN Buffer

ISN 1000600000001

ISN 2000600000002

ISN 3000600000003

ACBX Interface Direct Call: ET Command

This section describes ACBX interface direct calls for the ET command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

A---alphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID****

---------21-36

UFbinary37-40ISN Lower Limit

---------41-44

A---binary45-48ISN Quantity

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

UFalphanumeric51Command Option 3

---------52-114

A---binary115-116Error Subcode

---------117-144

281Command Reference

ET Command: End Transaction

After Adabas CallBefore Adabas CallFormatPositionField

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

--***Format *

UFRecord *

UFISN **

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Required only of ET data to be stored*

Required for hold ISN option; optional for multifetch option**

Not used but should be included in Adabas call if ET data is to be stored. If not specified, one will be
automatically generated.

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
ET

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
Adabas returns either binary zeros or the transaction sequence number in this field.

Command Reference282

ET Command: End Transaction

If the ET command completes a transaction without update commands (that is, A1, E1, N1,
N2), Adabas returns binary zeros.

Otherwise, Adabas returns the transaction sequence number in binary format. These numbers
are assigned in ascending sequence during a given user session, starting with 1.

Database ID (ACBXDBID)
Use this field to specify the database ID only if you are accessing a database other than the
application's default database (read in by ADARUN DBID parameter, provided in the loaded
link globals table, or linked with the link routine). The Adabas call will be directed to this
database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

ISN Lower Limit (ACBXISL)
If the hold ISNs option is specified, this field must contain the count of six-byte ISN buffer
entries.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

ISN Quantity (ACBXISQ)
In this field, Adabas returns the transaction duration time specified in timer units (each unit
equals 1.05 seconds).

Command Option 1: Hold ISNs Option (ACBXCOP1)
By default as part of ET command execution, Adabas releases all ISNs currently held by the
user.

DescriptionOption

places all or a portion of the ISNs back into hold status. The ISNs to be returned
to hold status must be provided in the ISN buffer, and the ISN count must be
specified in the ISN lower limit field.

P

Releases only a subset of the records held by the current transaction. The records
to be released from hold status are specified in the ISN buffer. The first fullword

M (command-level
multifetch)

in the ISN buffer specifies the number of eight-byte elements and each following
eight-byte group is interpreted as one file number/ISN identifier of records to be
released from hold status.

283Command Reference

ET Command: End Transaction

Command Option 2: Store User Data (ACBXCOP2)

DescriptionOption

Indicates that user data is to be stored in an Adabas system file.E

Command Option 3: Shared Hold Status (ACBXCOP3)

DescriptionOption

Keeps the record in shared hold status indefinitely. Records in shared hold status at the time of
the ET command are kept in shared hold status beyond the end of the transaction until another

H

ET or BT command is issued (without this H option or the prefetch or multifetch options). Any
records in exclusive hold status are also changed to shared hold status beyond the end of the
transaction.

You cannot use option H if the multifetch or prefetch options are used (or, in Adabas on open
systems, if all resources owned by the user are to be released via a command option 1 "T" setting).

For complete information about shared hold updating, read Shared Hold Status, elsewhere
in this guide.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Buffers

The following buffers apply to an ET command:

■ Format Buffer
■ Record Buffer
■ ISN Buffer

Format Buffer

A format buffer is not used by the ET command, but should be included in the Adabas call if ET
data is to be stored. If this is an ACB interface direct call and a format buffer is not specified, a
processing error will occur; ACB interface direct calls expect buffers to be specified in a set sequence.
If this is anACBX interface direct call and a format buffer is not specified, one will be automatically
generated.

Command Reference284

ET Command: End Transaction

Record Buffer

The user data to be stored in an Adabas system file is provided in this buffer, if ET data is to be
stored.

The data is retained until you issue the next ET or CL command containing ET data. The user data
will be retained when the user session terminates only if you issued an OP command in which a
unique, non-blank user ID was provided.

ISN Buffer

If the Command Option 1 field is set to "P", each ISN to be returned to hold status must be provided
as a six-byte binary entry in which the first two bytes contain the number of the file in which the
record is contained, and the next four bytes contain the ISN of the record to be held. Neither the
file numbers nor the ISNs are checked for validity.

If the Command Option 1 field is set to "M", only a subset of the records held by the current
transaction are to be released. The first fullword in the ISN buffer specifies the number of eight-
byte elements, and each following eight-byte group is interpreted as one file number/ISN identifier
of records to be released from hold status. For more information, readBT / ETMultifetchProcessing,
elsewhere in this guide.

285Command Reference

ET Command: End Transaction

286

30 HI Command: Hold Record

■ Function and Use .. 288
■ ACB Interface Direct Call: HI Command ... 288
■ ACBX Interface Direct Call: HI Command ... 290

287

The HI command prevents record update by other users.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The HI command is used to place a record in hold status. This command is used to hold a record
for subsequent updating without allowing other users to update the record until it is released.

Specify the file number and ISN of the record to be held.

If the record to be held is currently being held by another user, the action taken by Adabas is
controlled by the setting of the Command Option 1 field in the Adabas control block. If the Com-
mand Option 1 field:

■ contains an "R", Adabas returns response code 145 (ADARSP145) if the record to be held is not
available;

■ does not contain an "R", Adabas places the user in wait status until the record becomes available,
at which time the user is reactivated automatically.

ACB Interface Direct Call: HI Command

This section describes ACB interface direct calls for the HI command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions
■ ACB Example

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

------5-8

UFbinary9-10File Number

A--binary11-12Response Code

UFbinary13-16ISN

Command Reference288

HI Command: Hold Record

After Adabas CallBefore Adabas CallFormatPositionField

------17-34

UFalphanumeric35Command Option 1

------36-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

None used.

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
HI

File Number (ACBFNR)
The number of the file that contains the record to be held.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
In this field, Adabas returns the response code for the command. Response code 0 (ADARSP000)
indicates that the command was executed successfully. If the HI command returns a non-zero
response code, the rightmost two bytes of Adabas control block bytes 45-48 (Additions 2 field)
may contain a subcode defining the exact response code meaning. Response codes and their
subcodes are defined in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
The ISN of the record to be placed in hold status.

Command Option 1: Response Code 145 (ADARSP145) if Record Not Available (ACBCOP1)
If the record to be held is currently being held by another user, the action taken by Adabas is
controlled by the setting of the Command Option 1 field:

289Command Reference

HI Command: Hold Record

DescriptionOption

Causes Adabas to return response code 145 (ADARSP145) if the record to be held is not
available. The command is not placed in wait status.

R (return)

Otherwise, Adabas places the command in wait status until either the record becomes available,
at which time command and user are reactivated automatically, or the transaction times out.

ACB Example

The record identified by ISN 3 in file 2 is to be placed in hold status. Control is not to be returned
until the record is available.

Control Block

HICommand Code

record to be held is in file 22File Number

record with ISN 3 to be held3ISN

response code 145 (ADARSP145) option not usedbCommand Option 1

ACBX Interface Direct Call: HI Command

This section describes ACBX interface direct calls for the HI command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

---------13-16---

UFnumeric17-20Database ID

Command Reference290

HI Command: Hold Record

After Adabas CallBefore Adabas CallFormatPositionField

UFnumeric21-24File Number

---------25-28

UFbinary29-32ISN

---------33-48

UFalphanumeric49Command Option 1

---------50

UFalphanumeric51Command Option 3

---------52-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

Buffer Areas

None used.

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used--

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
HI

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

291Command Reference

HI Command: Hold Record

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISN)
Use this field to specify the ISN of the record to be placed in hold status.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

Command Option 1: Response Code 145 (ADARSP145) if Record Not Available (ACBXCOP1)
If the record to be held is currently being held by another user, the action taken by Adabas is
controlled by the setting of the Command Option 1 field:

DescriptionOption

Causes Adabas to return response code 145 (ADARSP145) if the record to be held is not
available. The command is not placed in wait status.

R (return)

Otherwise, Adabas places the command in wait status until either the record becomes available,
at which time command and user are reactivated automatically, or the transaction times out.

Command Option 3: Shared Hold Status (ACBXCOP3)

DescriptionOption

Puts the record in shared hold status until the end of the transaction. The record is placed in
shared hold status only if the record is not already in hold status.

S

If the same record is placed in shared hold status more than once (using the C or S options or
the Q option for different read sequences), it stays in shared hold status until all of the specified
hold lifetimes have expired.

For complete information about shared hold updating, read Shared Hold Status, elsewhere
in this guide.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Command Reference292

HI Command: Hold Record

31 L1 and L4 Commands: Read / Read and Hold Record

■ Function and Use .. 294
■ ACB Interface Direct Call: L1 and L4 Commands ... 295
■ ACBX Interface Direct Call: L1 and L4 Commands ... 304
■ Buffers .. 310

293

The L1 and L4 commands read a single record from Data Storage.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

Specify the file number and ISN of the record to be read. In addition, indicate in the format buffer
which fields are to be read. Adabas returns the requested field values in the record buffer.

The L4 command performs the same function as the L1 command, but places the record in hold
status. If the record to be held is currently being held by another user, the command is placed in
wait status until either the record becomes available or the transaction times out. If the L4 command
is issued with the Command Option 1 field set to "R", Adabas returns response code 145
(ADARSP145) if the record to be read and held is unavailable.

The first-unused-ISN (F) option specified in the Command Option 2 field returns the next highest
unused ISN for the specified file in the ISN field. The F option cannot be used for expanded files.

The multifetch/prefetch option can improve performance by eliminating the time needed for single-
record fetches. Multifetching/prefetching can be enabled by specifying "M", "O" (for multifetching)
or "P" (for prefetching) in the Command Option 1 field. Refer to the section Using the Multi-
fetch/Prefetch Feature, elsewhere in this guide, for more information.

The GET NEXT (N) option specified in the Command Option 2 field reads the records identified
by the ISNs contained in an ISN list (which was created previously by an Sx command) without
the user having to provide the ISN of the record to be read with each L1 or L4 call. Adabas selects
the ISN from the list and reads the record identified by that ISN.

The read by ISN sequence (I) option specified in the Command Option 2 field reads a record
identified by the ISN you specify in the ISN field. If the ISN specified is not present in the file, the
record of the next higher ISN is read, and that record's ISN is returned in the ISN field.

The compressed option (set by specifying "C." in the format buffer) can be used to request that the
record read is to be returned in compressed format as it is stored internally by Adabas.

Command Reference294

L1 and L4 Commands: Read / Read and Hold Record

ACB Interface Direct Call: L1 and L4 Commands

This section describes ACB interface direct calls for the L1 and L4 commands. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions
■ ACB Examples

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

U *Fbinary13-16ISN

UFbinary17-20ISN Lower Limit

------21-24

UFbinary25-26Format Buffer Length

UFbinary27-28Record Buffer Length

------29-32

UFbinary33-34ISN Buffer Length **

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

------37-44

A--binary / binary45-48Additions 2

AFalphanumeric49-56Additions 3

AFalphanumeric57-64Additions 4

UFalphanumeric65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

295Command Reference

L1 and L4 Commands: Read / Read and Hold Record

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UFFormat

A--Record

A--ISN **

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Except for special options*

The ISN buffer and length are required only if the multifetch or prefetch option is specified**

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
L1 or L4

Command ID (ACBCID)
If a series of records is to be read with a series of L1 or L4 calls, and the same fields are to be
specified in the format buffer for each call, this field should be set to a non-blank, non-zero
value. This results in a reduction of the time required to process each L1 or L4 call.

If the GET NEXT option is to be used, the command ID of the ISN list to be used must be spe-
cified in this field. The format buffer may not be changed between successive L1 or L4 calls
when the GET NEXT option is used.

If only a single record is to be read, or if the format buffer is to be modified between L1 or L4
calls, this field should be set to blanks.

If the command ID value is X'FFFFFFFF', automatic command ID generation will be in effect.
In this case, the Adabas nucleus will generate values for command ID beginning with
X'00000001', and will increment the value by 1 for each L1 or L4 call. When specifying user-
defined command IDs, the user must ensure that each command ID is unique.

See also the Additions 5 field for separate format ID and/or global format ID usage.

File Number (ACBFNR)
Specify the binary number of the file to be read in this field. For physical direct calls, specify
the file number as follows:

Command Reference296

L1 and L4 Commands: Read / Read and Hold Record

■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte
(9), should be set to binary zero (B'0000 0000').

■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Nonzero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

Response code 3 (ADARSP003) indicates an end-of-list condition (applicable only if the GET
NEXT option is used).

ISN (ACBISN)
Specify the ISN of the record to be read.

If you specify the GET NEXT (N) option, Adabas selects ISNs from the ISN list identified by
the command ID, reads the record of that ISN, and returns the ISN for the next record in this
field; any specified ISN value is ignored.

If you specify the ISN sequence (I) option, you must also specify an ISN value in this field. The
L1 or L4 command returns that ISN's data record in the record buffer.

If you specify the "F" option, the L1 or L4 command returns the next higher available ISN re-
corded in the file control block (FCB) in this field.

When a record is read, Adabas returns that record's ISN in this field, regardless of the option
selected. With the option "F", this field returns the next higher unused ISN.

ISN Lower Limit: Multifetch Record Count (ACBISL)
If either "M" or "O" (multifetch option) is specified in the Command Option 1 field, a non-zero
value in this field determines the maximum number of records to be multifetched. If this value
is zero, the number of records to be multifetched is limited by the record and ISN buffer lengths.
Refer to the section Using the Multifetch/Prefetch Feature for more information.

If a partial LOB field is requested by this command and the Command Option 2 field is set to
L, the ACBISL field is used to keep track of the current position in the LOB value when multiple
L1 or L4 calls are made for the field.

Format Buffer Length (ACBFBL)
The format buffer length (in bytes). The actual format buffer area defined in the user program
must be at least as large as the length specified.

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The actual record buffer area defined in the user program
must be at least as large as the length specified.

297Command Reference

L1 and L4 Commands: Read / Read and Hold Record

ISN Buffer Length: With Command-Level Multifetch/Prefetch Option Only (ACBIBL)
The ISN buffer length (in bytes). The ISN buffer defined in the user program must be at least
as large as the length specified.

Command Option 1 (ACBCOP1)

DescriptionOption

Returns the next highest unused ISN for the specified file in the ISN
field. The next unused ISN is determined by referring to the file control

F (first unused)

block (FCB). Do not use the F option when reading Adabas expanded
files.

Multifetch processing is performed for this command.M (multifetching)

Multifetch processing and R option processing (see below) is performed
for this command.

O (multifetching with the R
option)

Prefetch processing is performed for this command.P (prefetching)

Returns response code 145 (ADARSP145) if the record to be read and
held by an L4 command is not available.

R (return)

Specifying the M, O, or P option indicates that the prefetch or multifetch option is to be used
for the command. The selected option is active if either the ISN sequence (I) or GET NEXT (N)
option is specified in the Command Option 2 field. The multifetch/prefetch option can improve
performance by eliminating the time needed for single-record fetches. Refer to the section
Using the Multifetch/Prefetch Feature for more information.

Command Option 2 (ACBCOP2)

DescriptionOption

Returns the next higher, unused, ISN for the specified file in the ISN field. The
next unused ISN is determined by referring to the file control block (FCB). Do not
use the F option when reading Adabas expanded files.

F (first unused ISN)

Reads the record identified by the ISN specified in the ISN field if the ISN is present
in the file. If the ISN is not present in the file, the record with the next higher ISN

I (read by ISN
sequence)

is read and that record's ISN is returned in the ISN field. If the ISN is not present
and no higher ISN is present in the file, no record is read and response code 3
(ADARSP003) is returned.

An L in the Command Option 2 field indicates that the position within a large
object (LOB) field be tracked in the ACBISL (ISN lower limit) field. This option is

L (track LOB field
position)

useful when multiple L1/L4 commands are being issued in a series for a LOB field.
This option can only be used if a LOB field is specified in the format buffer using
LOB segment notation with asterisk notation in the bytenum specification.

Reads the records identified by the ISNs in an ISN list without the user having to
provide the ISN of the record to be read with each L1 or L4 call. Adabas selects

N (GET NEXT)

the ISN from the list and reads the record identified by that ISN. The ISN list to
be used must be identified by the command ID field and must have been created
previously by an Sx command. Response code 3 (ADARSP003) is returned when

Command Reference298

L1 and L4 Commands: Read / Read and Hold Record

DescriptionOption

all the ISNs in the list have been selected. Refer to the section ISN List Processing
for more information.

Additions 2: Length of Compressed and Decompressed Record (ACBADD2)
If the command is processed successfully, the following information is returned in this field:
■ If the record buffer contains at least one valid field value, the leftmost two bytes contain the

length (in binary form) of the compressed record accessed;
■ The rightmost two bytes contain the length (in binary form) of the decompressed fields se-

lected by the format buffer and accessed.

If the L1 or L4 command returns a nonzero response code, the rightmost two bytes may contain
a subcode defining the exact response code meaning. Response codes and their subcodes are
defined in the Adabas Messages and Codes Manual documentation.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code (ACBADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Format ID, Global Format ID (ACBADD5)
This field may be used to provide a separate format ID which is to be used to identify the in-
ternal format buffer used for this command, or to provide a global format ID.

If the high-order (leftmost) bit of the Additions 5 field is not set to 1, the value provided in the
command ID field is used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand, Format, andGlobal Format IDs for more information and examples.

299Command Reference

L1 and L4 Commands: Read / Read and Hold Record

ACB Examples

For the Adabas file definitions used in all the examples in this section, see File Definitions Used
in Examples, elsewhere in this guide.

■ Example 1: Reading a Single Record
■ Example 2: Reading a Set of Records
■ Example 3: Reading a Set of Records Using the GET NEXT Option
■ Example 4: Read with Hold
■ Example 5: Read Using the Read ISN Sequence Option
■ Example 6: Reading Multiple-Value Fields and Periodic Groups

Example 1: Reading a Single Record

ISN 4 in file 1 is to be read. The values for fields AA and AB are to be returned.

Control Block

L1Command Code

only 1 record is to be readbbbb (blanks)Command ID

1File Number

4ISN

or larger6Format Buffer Length

or larger10Record Buffer Length

GET NEXT or read ISN sequence options not usedbCommand Option 2

file not security-protectedbbbbbbbb (blanks)Additions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

AA,AB.Format Buffer

Example 2: Reading a Set of Records

A set of records for which the ISNs have been obtained previously by a find command are to be
read from file 2. The values for fields RA and XB are to be returned with the value for field XB to
be returned with length 3 and format U.

Command Reference300

L1 and L4 Commands: Read / Read and Hold Record

Control Block

L1Command Code

a nonblank CID is recommended for a series of read operations in
which the same fields are being read in each record

ABCDCommand ID

2File Number

ISNs are taken from the ISN list created by the find command*nISN

or larger10Format Buffer Length

or larger11Record Buffer Length

GET NEXT or read ISN sequence options not usedbCommand Option 2

file is security-protectedpasswordAdditions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

RA,XB,3,U.Format Buffer

* n indicates an ISN from the ISN list which resulted from the find command. The L1 call is repeated
for each ISN in the ISN list.

Example 3: Reading a Set of Records Using the GET NEXT Option

The requirement as stated for example 2 may also be satisfied by using the GET NEXT option.

Control Block

L1Command Code

CID of ISN list to be usedABCDCommand ID

2File Number

the entire ISN list is to be selected starting with the first ISN in the
list

0ISN

or larger10Format Buffer Length

or larger11Record Buffer Length

GET NEXT option to be usedNCommand Option 2

file is security-protectedpasswordAdditions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

301Command Reference

L1 and L4 Commands: Read / Read and Hold Record

Buffer Areas

RA,XB,3,U.Format Buffer

The L1 call is repeated for each ISN in the ISN list. No changes to the control block are required
between L1 calls. Response code 3 (ADARSP003) will be returned when all the ISNs in the list
have been selected.

Example 4: Read with Hold

ISN 5 in file 2 is to be read and held for updating. The values for fields XC and XD are to be re-
turned.

Control Block

read with holdL4Command Code

only 1 record to be readbbbb (blanks)Command ID

2File Number

5ISN

or larger6Format Buffer Length

or larger14Record Buffer Length

response code 145 (ADARSP145) option not usedbCommand Option 1

GET NEXT or read ISN sequence options not usedbCommand Option 2

file is security-protectedpasswordAdditions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

XC,XD.Format Buffer

Example 5: Read Using the Read ISN Sequence Option

File 1 is to be read using the read ISN sequence option. The values for fields AA, AB, and AC are
to be returned.

Command Reference302

L1 and L4 Commands: Read / Read and Hold Record

Control Block

L1Command Code

nonblank CID is recommended when a series of records for which
the same fields are to be returned is to be read

BCDECommand ID

1File Number

if ISN 1 is not present, the record of the next higher ISN in the file
is read, and the ISN is returned in this field

1ISN

or larger6Format Buffer Length

or larger30Record Buffer Length

read ISN sequence option invokedICommand Option 2

file is not security-protectedbbbbbbbb (blanks)Additions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

GA,AC.Format Buffer

Adabas returns the ISN of the record which has been read in the ISN field of the control block.
The record with the next higher ISN may be read by adding 1 to the ISN field and repeating the
L1 command.

Example 6: Reading Multiple-Value Fields and Periodic Groups

The record identified by ISN 2 in file 1 is to be read. The value for field AA, all values for the
multiple-value field MF, and all occurrences of the periodic group GB are to be returned.

Alternative 1: For Six or More Occurrences

1. Issue a L1 call to obtain the count of the number of values which exist for MF, and the highest
occurrence count for GB.

Control Block Field

L1Command Code

only 1 record is to be readbbbb (blanks)Command ID

1File Number

2ISN

or larger8Format Buffer Length

or larger2Record Buffer Length

GET NEXT or read ISN sequence option not usedbCommand Option 2

303Command Reference

L1 and L4 Commands: Read / Read and Hold Record

Buffer Areas

MFC,GBC.Format Buffer

2. Assuming that the result of the above L1 call was the record containing four values for MF and
six occurrences for GB, repeat the L1 call using the following format buffer:

AA,MF01-04,GB01-06

For each call, the length of the format and record buffers must be large enough to hold all entries
and values.

When using this procedure to read a series of records, a valid command ID should be used in
step 1, and no command ID (blanks) should be used for step 2 since the content of the format
buffer may vary with each step 2 call.

Alternative 2: For Fewer Than Six Occurrences

An alternative solution for example 5 usually provides better performance if the number of val-
ues/occurrences is small (less than six) in a large percentage of the records.

1. Issue a L1 call in which the counts for MF and GB are requested, plus the expected number of
values and occurrences of MF and GB, plus field AA.

Assuming that the expected number of values for MF is 2, and the expected number of occur-
rences of GB is 3, the format buffer for step 1 would be:

AA,MFC,GBC,MF01-02,GB01-03.*

* Maximum performance is normally achieved if a number which will retrieve all of the val-
ues/occurrences in 90 per cent of the records is specified.

2. If either the count received for MF exceeds 2 or the count received for GB exceeds 3, a format
buffer similar to that in step 2 of the previous example could be used to obtain the additional
values and/or occurrences. Otherwise, no additional call is required.

ACBX Interface Direct Call: L1 and L4 Commands

This section describes ACBX interface direct calls for the L1 and L4 commands. It covers the fol-
lowing topics:

■ Control Block and Buffer Overview

Command Reference304

L1 and L4 Commands: Read / Read and Hold Record

■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

U*Fbinary29-32ISN

---------33-36

UFbinary37-40ISN Lower Limit

---------41-48

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

UFalphanumeric51Command Option 3 (L4 only)

---------52-64

AFalphanumeric/ binary69-76Additions 3

AFalphanumeric77-84Additions 4

UFalphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

---------117-128

A---binary129-136Compressed Record Length

A---binary137-144Decompressed Record Length

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

305Command Reference

L1 and L4 Commands: Read / Read and Hold Record

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

UFFormat

A--Record

A--Multifetch **

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Except for special options*

The multifetch buffer is required only if the multifetch option is specified.**

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
L1 or L4

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Response code 3 (ADARSP003) indicates an end-of-list condition (applicable only if the GET
NEXT option is used).

Command ID (ACBXCID)
If a series of records is to be read with a series of L1 or L4 calls, and the same fields are to be
specified in the format buffer for each call, this field should be set to a non-blank, non-zero
value. This results in a reduction of the time required to process each L1 or L4 call.

If the GET NEXT option is to be used, the command ID of the ISN list to be used must be spe-
cified in this field. The format buffer may not be changed between successive L1 or L4 calls
when the GET NEXT option is used.

If only a single record is to be read, or if the format buffer is to be modified between L1 or L4
calls, this field should be set to blanks.

Command Reference306

L1 and L4 Commands: Read / Read and Hold Record

If the command ID value is X'FFFFFFFF', automatic command ID generation will be in effect.
In this case, the Adabas nucleus will generate values for command ID beginning with
X'00000001', and will increment the value by 1 for each L1 or L4 call. When specifying user-
defined command IDs, the user must ensure that each command ID is unique.

See also the Additions 5 field for separate format ID and/or global format ID usage.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISN)
Use this field to specify the ISN of the record to be read.

If you specify the GET NEXT (N) option, Adabas selects ISNs from the ISN list identified by
the command ID, reads the record of that ISN, and returns the ISN for the next record in this
field; any specified ISN value is ignored.

If you specify the ISN sequence (I) option, you must also specify an ISN value in this field. The
L1 or L4 command returns that ISN's data record in the record buffer.

If you specify the F option, the L1 or L4 command returns the next higher available ISN recorded
in the file control block (FCB) in this field.

When a record is read, Adabas returns that record's ISN in this field, regardless of the option
selected. With the option "F", this field returns the next higher unused ISN.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

ISN Lower Limit: Multifetch Record Count (ACBXISL)
If either "M" or "O" (multifetch option) is specified in the Command Option 1 field, a non-zero
value in this field determines the maximum number of records to be multifetched. If this value
is zero, the number of records to be multifetched is limited by the record and ISN buffer lengths.
Refer to the section Using the Multifetch/Prefetch Feature for more information.

307Command Reference

L1 and L4 Commands: Read / Read and Hold Record

If a partial LOB field is requested by this command and the Command Option 2 field is set to
L, the ACBXISL field is used to keep track of the current position in the LOB value when
multiple L1 or L4 calls are made for the field.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet fully used. Set the high-order part of the ACBXISLG field to binary zeros.

Command Option 1 (ACBXCOP1)

DescriptionOption

Returns the next highest unused ISN for the specified file in the ISN
field. The next unused ISN is determined by referring to the file control

F (first unused)

block (FCB). Do not use the F option when reading Adabas expanded
files.

Multifetch processing is performed for this command.M (multifetching)

Multifetch processing and R option processing (see below) is performed
for this command.

O (multifetching with the R
option)

Returns response code 145 (ADARSP145) if the record to be read and
held by an L4 command is not available.

R (return)

Specifying the "M" or "O" option indicates that the multifetch option is to be used for the
command. The selected option is active if either the ISN sequence (I) or GET NEXT (N) option
is specified in the Command Option 2 field. The multifetch option can improve performance
by eliminating the time needed for single-record fetches. Refer to the section Using the Multi-
fetch/Prefetch Feature for more information.

Command Option 2 (ACBXCOP2)

DescriptionOption

Returns the next higher, unused, ISN for the specified file in the ISN field. The
next unused ISN is determined by referring to the file control block (FCB). Do not
use the F option when reading Adabas expanded files.

F (first unused ISN)

Reads the record identified by the ISN specified in the ISN field if the ISN is present
in the file. If the ISN is not present in the file, the record with the next higher ISN

I (read by ISN
sequence)

is read and that record's ISN is returned in the ISN field. If the ISN is not present
and no higher ISN is present in the file, no record is read and response code 3
(ADARSP003) is returned.

An L in the Command Option 2 field indicates that the position within a large
object (LOB) field be tracked in the ACBXISL (ISN lower limit) field. This option

L (track LOB field
position)

is useful when multiple L1/L4 commands are being issued in a series for a LOB
field. This option can only be used if a LOB field is specified in the format buffer
using LOB segment notation with asterisk notation in the bytenum specification.

Reads the records identified by the ISNs in an ISN list without the user having to
provide the ISN of the record to be read with each L1 or L4 call. Adabas selects

N (GET NEXT)

the ISN from the list and reads the record identified by that ISN. The ISN list to
be used must be identified by the command ID field and must have been created

Command Reference308

L1 and L4 Commands: Read / Read and Hold Record

DescriptionOption

previously by an Sx command. Response code 3 (ADARSP003) is returned when
all the ISNs in the list have been selected. Refer to the section ISN List Processing
for more information.

Command Option 3: Shared Hold Status (ACBXCOP3)
The following command options are available for L4 commands only.

DescriptionOption

Puts the record in shared hold status for the duration of the read operation.C

Puts the record in shared hold status until the next record in the read sequence is read or the
read sequence or transaction is terminated, whichever happens first. This option is available for
the L4 command when command option 2 is set to "N".

Q

Puts the record in shared hold status until the end of the transaction.S

If the same record is placed in shared hold status more than once (using the C or S options or
the Q option for different read sequences), it stays in shared hold status until all of the specified
hold lifetimes have expired.

For complete information about shared hold updating, read Shared Hold Status, elsewhere
in this guide.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code (ACBXADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Format ID, Global Format ID (ACBXADD5)
This field may be used to provide a separate format ID which is to be used to identify the in-
ternal format buffer used for this command, or to provide a global format ID.

If the high-order (leftmost) bit of the Additions 5 field is not set to 1, the value provided in the
command ID field is used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

309Command Reference

L1 and L4 Commands: Read / Read and Hold Record

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand, Format, andGlobal Format IDs for more information and examples.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Compressed Record Length (ACBXLCMP)
This field returns the compressed record length when a record was read or written. This is the
length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)
This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects
the total length across all buffer segments.

Buffers

The following buffers apply to L1 and L4 commands:

■ Format Buffer
■ Record Buffer
■ ISN Buffer
■ Multifetch Buffer

Format Buffer

Qualify the fields to be read in this buffer. Descriptions of the syntax and examples of format
buffer construction are provided in Defining Buffers, elsewhere in this guide.

A "C." in the first two positions of the format buffer causes the record to be returned in compressed
instead of decompressed format.

Command Reference310

L1 and L4 Commands: Read / Read and Hold Record

Record Buffer

Adabas returns the requested field values in this buffer. All values are returned according to the
standard format and length of the field unless the user specifies a different length or format in the
format buffer.

ISN Buffer

The ISN buffer is used only if the command-level multifetch option is requested and only if the
direct call is made using the ACB interface. For more information, read Using the Multi-
fetch/Prefetch Feature, elsewhere in this guide. When multifetching is used, the L1 and L4 com-
mands return descriptor elements, each up to 16 bytes long, in the ISN buffer (see the section
BT/ET Multifetch Processing).

Multifetch Buffer

The multifetch buffer is used only if the command-level multifetch option is requested and only
if the direct call is made using the ACBX interface. For more information, read Using the Multi-
fetch/Prefetch Feature, elsewhere in this guide. When multifetching is used, the L1 and L4 com-
mands return descriptor elements, each up to 16 bytes long, in the multifetch buffer (see the section
BT/ET Multifetch Processing).

311Command Reference

L1 and L4 Commands: Read / Read and Hold Record

312

32 L2 and L5 Commands: Read Physical Sequential

■ Function and Use .. 314
■ ACB Interface Direct Call: L2 and L5 Commands ... 314
■ ACBX Interface Direct Call: L2 and L5 Commands ... 320
■ Buffers .. 325
■ Additional Considerations .. 326
■ Special L2 Command Call for Response 145 ... 326

313

The L2 and L5 commands read records in the sequence in which they are physically located in
Data Storage.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The L5 command performs the same function as the L2 command, but places each record read in
hold status. If the record to be read and held is currently being held by another user, the user will
be placed in wait status until the record becomes available. If the L5 command was issued with
the Command Option 1 field set to "R", Adabas returns response code 145 (ADARSP145) if the
record is not available.

The L2 and L5 commands do not read records in any particular logical order unless the records
were loaded initially in a particular logical sequence and no subsequent update changed this order.

The L2 and L5 commands may be used to read an entire file at optimum speed since no access is
required to the Associator (as with the L3 command), and all physical blocks are read in consecutive
sequence.

Specify the file to be read and the fields within each record for which values are to be returned.
Specify the fields in the format buffer. Adabas returns the requested field values in the record
buffer.

The multifetch/prefetch option allows prior accessing of one or more sequential records, reducing
overall operating time and eliminating the time needed for single-record fetches. Multifetching
or prefetching can be enabled by specifying "M", "O" (for multifetching), or "P" (for prefetching)
in the Command Option 1 field. For more information, readUsing theMultifetch/Prefetch Feature,
elsewhere in this guide.

The compressed option (set by specifying "C." in the format buffer) causes the record read to be
returned in compressed format, that is, as stored internally by Adabas.

ACB Interface Direct Call: L2 and L5 Commands

This section describes ACB interface direct calls for the L2 and L5 commands. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Command Reference314

L2 and L5 Commands: Read Physical Sequential

■ ACB Examples

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

AFbinary13-16ISN

UFbinary17-20ISN Lower Limit

------21-24

UFbinary25-26Format Buffer Length

UFbinary27-28Record Buffer Length

------29-32

UFbinary33-34ISN Buffer Length *

UFalphanumeric35Command Option 1

------36-44

A--binary / binary45-48Additions 2

AFalphanumeric49-56Additions 3

AFalphanumeric57-64Additions 4

UFalphanumeric65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UF**Format

A--Record

UFISN *

where:

315Command Reference

L2 and L5 Commands: Read Physical Sequential

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

The ISN buffer and length are required only of the multifetch or prefetch option is specified*

May contain compress option control characters "C."**

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
L2 or L5

Command ID (ACBCID)
This field must be set to a non-blank, non-zero value. It is used by Adabas to provide the records
in the correct physical order and to avoid the repetitive interpretation of the format buffer.
The value provided must not be modified during any given sequential pass of a file.

The first byte of this field may not be set to hexadecimal 'FF'.

If the command ID value is X'FFFFFFFF', automatic command ID generation will be in effect.
In this case, the Adabas nucleus will generate values for command ID beginning with
X'00000001', and will increment the value by 1 for each L2 or L5 call. When specifying user-
defined command IDs, the user must ensure that each command ID is unique.

See also the Additions 5 field for separate format ID or global format ID usage.

File Number (ACBFNR)
Specify the binary number of the file to be read in this field. For physical direct calls, specify
the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

Response code 3 (ADARSP003) indicates an end-of-file (EOF) condition was detected.

Command Reference316

L2 and L5 Commands: Read Physical Sequential

ISN (ACBISN)
If this field is set to zero before the initial L2 or L5 call, the sequential pass will begin with the
first record contained in the first physical block of the file.

If this field is set to an ISN value before the initial L2 or L5 call, the sequential pass will begin
at the first record physically located after the record identified by the ISN specified. The ISN
specified must be present in the file.

This field need not be modified by the user after the initial L2 or L5 call. Adabas returns the
ISN of the record which has been read in this field.

ISN Lower Limit: Multifetch Record Count (ACBISL)
If either "M" or "O" (multifetching option) is specified in the Command Option 1 field, a non-
zero value in this field determines the maximum number of records to be multifetched. If this
value is zero, the number of records to be multifetched is limited by the record and ISN buffer
lengths. Refer to the section Using the Multifetch/Prefetch Feature for more information.

Format Buffer Length (ACBFBL)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified. If either multifetch option "M" or "O" is
specified in the Command Option 1 field, this value must be less than 32 kilobytes.

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified. If either multifetch option "M" or "O" is
specified in the Command Option 1 field, this value must be less than 32 kilobytes.

ISN Buffer Length: Only with Command-Level Multifetch/Prefetch Option (ACBIBL)
The ISN buffer length (in bytes). The ISN buffer area defined in the user program must be as
large as (or larger than) the length specified.

Command Option 1 (ACBCOP1)
To improve performance by eliminating the time needed for single-record fetches, set option
M, O, or P to enable multifetch or prefetch processing for the command. Refer to the section
Using the Multifetch/Prefetch Feature for more information.

DescriptionOption

Enable multifetchingM

Use multifetching with the "R" option described belowO

Use prefetchingP

Returns response code 145 (ADARSP145) if the record to be read and held by an L5 command
is not available.

R (return)

Additions 2: Length of Compressed and Decompressed Record (ACBADD2)
If the command is processed successfully, the following information is returned in this field:
■ If the record buffer contains at least one valid field value, the leftmost two bytes contain the

length (in binary form) of the compressed record accessed;

317Command Reference

L2 and L5 Commands: Read Physical Sequential

■ The rightmost two bytes contain the length (in binary form) of the decompressed fields se-
lected by the format buffer and accessed.

If the L2 or L5 command returns a non-zero response code, the rightmost two bytes may contain
a subcode defining the exact response code meaning. Response codes and their subcodes are
defined in the Adabas Messages and Codes Manual documentation.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security or Adabas SAF Security password. If the
database, file, or fields are security-protected, the user must provide a valid security password.
Adabas sets the Additions 3 field to blanks during command processing to enhance password
integrity.

Additions 4: Cipher Code (ACBADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Format ID, Global Format ID (ACBADD5)
This field may be used to provide a separate format ID which is to be used to identify the in-
ternal format buffer used for this command, or to provide a global format ID.

As long as the high-order (leftmost) bit of the first byte of the Additions 5 field is not set to 1,
the value provided in the command ID field will be used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand ID, Format ID,Global Format ID for more information and examples.

ACB Examples

■ Example 1

Command Reference318

L2 and L5 Commands: Read Physical Sequential

■ Example 2

Example 1

File 2 is to be read in physical sequential order. All the values for all the fields within each record
are to be returned.

Control Block

L2Command Code

nonblank CID requiredEXL2Command ID

2File Number

all records are to be read0ISN

or larger3Format Buffer Length

or larger49Record Buffer Length

return option not usedbCommand Option 1

file 2 is security-protectedpasswordAdditions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

RG.Format Buffer

The L2 call is repeated to obtain each successive record. The ISN field need not be modified between
calls.

Example 2

File 2 is to be read in physical sequential order. The values for fields RA, XA, and XB (3 bytes un-
packed) are to be returned. Each record read is to be placed in hold status for updating purposes.

Control Block

L5Command Code

nonblank CID is requiredEXL5Command ID

2File Number

all records are to be read0ISN

or larger13Format Buffer Length

or larger21Record Buffer Length

response code 145 (ADARSP145) option not usedbCommand Option 1

file 2 is security-protectedpasswordAdditions 3

319Command Reference

L2 and L5 Commands: Read Physical Sequential

file 2 is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

RA,XA,XB,3,U.Format Buffer

The L5 call is repeated to obtain each successive record. The ISN field need not be modified between
L5 calls.

To complete logical transactions and release held records, ET logic users should issue an ET
command. Non-ET users should release held records with an A4, E4, or RI command.

ACBX Interface Direct Call: L2 and L5 Commands

This section describes ACBX interface direct calls for the L2 and L5 commands. It covers the fol-
lowing topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

AFbinary29-32ISN

---------33-36

UFbinary37-40ISN Lower Limit

---------41-48

UFalphanumeric49Command Option 1

Command Reference320

L2 and L5 Commands: Read Physical Sequential

After Adabas CallBefore Adabas CallFormatPositionField

---------50

UFalphanumeric51Command Option 3 (L5 only)

---------52-64

AFalphanumeric/ binary69-76Additions 3

AFalphanumeric77-84Additions 4

UFalphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

---------117-128

A---binary129-136Compressed Record Length

A---binary137-144Decompressed Record Length

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

UF**Format

A--Record

UFMultifetch *

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

A multifetch buffer is required only if the multifetch option is specified.*

May contain compress option control characters "C."**

Not used---

321Command Reference

L2 and L5 Commands: Read Physical Sequential

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
L2 or L5

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Response code 3 (ADARSP003) indicates an end-of-file (EOF) condition was detected.

Command ID (ACBXCID)
This field must be set to a non-blank, non-zero value. It is used by Adabas to provide the records
in the correct physical order and to avoid the repetitive interpretation of the format buffer.
The value provided must not be modified during any given sequential pass of a file.

The first byte of this field may not be set to hexadecimal 'FF'.

If the command ID value is X'FFFFFFFF', automatic command ID generation will be in effect.
In this case, the Adabas nucleus will generate values for command ID beginning with
X'00000001', and will increment the value by 1 for each L2 or L5 call. When specifying user-
defined command IDs, the user must ensure that each command ID is unique.

See also the Additions 5 field for separate format ID or global format ID usage.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

Command Reference322

L2 and L5 Commands: Read Physical Sequential

ISN (ACBXISN)
If this field is set to zero before the initial L2 or L5 call, the sequential pass will begin with the
first record contained in the first physical block of the file.

If this field is set to an ISN value before the initial L2 or L5 call, the sequential pass will begin
at the first record physically located after the record identified by the ISN specified. The ISN
specified must be present in the file.

This field need not be modified by the user after the initial L2 or L5 call. Adabas returns the
ISN of the record which has been read in this field.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

ISN Lower Limit: Multifetch Record Count (ACBXISL)
If either "M" or "O" (multifetching option) is specified in the Command Option 1 field, a non-
zero value in this field determines the maximum number of records to be multifetched. If this
value is zero, the number of records to be multifetched is limited by the record andmultifetch
buffer lengths. Refer to the sectionUsing theMultifetch/Prefetch Feature for more information.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

Command Option 1 (ACBXCOP1)
To improve performance by eliminating the time needed for single-record fetches, set option
M, O, or P to enable multifetch or prefetch processing for the command. Refer to the section
Using the Multifetch/Prefetch Feature for more information.

DescriptionOption

Enable multifetchingM

Enable multifetching with the "R" option, described belowO

Returns response code 145 (ADARSP145) if the record to be read and held by an L5 command
is not available.

R (return)

Command Option 3: Shared Hold Status (ACBXCOP3)
This following command options are only available for L5 commands:

DescriptionOption

Puts the record in shared hold status for the duration of the read operation.C

Puts the record in shared hold status until the next record in the read sequence is read or the
read sequence or transaction is terminated, whichever happens first.

Q

Puts the record in shared hold status until the end of the transaction.S

If the same record is placed in shared hold status more than once (using the C or S options or
the Q option for different read sequences), it stays in shared hold status until all of the specified
hold lifetimes have expired.

323Command Reference

L2 and L5 Commands: Read Physical Sequential

For complete information about shared hold updating, read Shared Hold Status, elsewhere
in this guide.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security or Adabas SAF Security password. If the
database, file, or fields are security-protected, the user must provide a valid security password.
Adabas sets the Additions 3 field to blanks during command processing to enhance password
integrity.

Additions 4: Cipher Code (ACBXADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Format ID, Global Format ID (ACBXADD5)
This field may be used to provide a separate format ID which is to be used to identify the in-
ternal format buffer used for this command, or to provide a global format ID.

As long as the high-order (leftmost) bit of the first byte of the Additions 5 field is not set to 1,
the value provided in the command ID field will be used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand ID, Format ID,Global Format ID for more information and examples.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Compressed Record Length (ACBXLCMP)
This field returns the compressed record length when a record was read or written. This is the
length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)
This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects
the total length across all buffer segments.

Command Reference324

L2 and L5 Commands: Read Physical Sequential

Buffers

The following buffers apply to L2 and L5 commands:

■ Format Buffer
■ Record Buffer
■ ISN Buffer
■ Multifetch Buffer

Format Buffer

The fields for which values are to be returned are specified in this buffer. Descriptions of the syntax
and examples of format buffer construction are provided in Defining Buffers, elsewhere in this
guide.

A "C." in the first two positions of the format buffer indicates that the compressed option is to be
in effect. This causes the record to be returned in compressed instead of decompressed format.

The format buffer may not be modified after the initial L2 or L5 call has been issued.

Record Buffer

Adabas returns the requested field values in this buffer. All field values are returned according
to the standard length and format of each field, unless the user specifies a different length and/or
format in the format buffer.

ISN Buffer

The ISN buffer is used only if the command-level multifetch option is used and if the command
is issued using an ACB interface direct call. For more information, read Using the Multi-
fetch/Prefetch Feature, elsewhere in this guide. When multifetching is used, the L2 or L5 command
returns record descriptor elements, each up to 16 bytes long, in the ISN buffer (see the section
BT/ET Multifetch Processing).

Multifetch Buffer

The multifetch buffer is used only if the command-level multifetch option is used and if the com-
mand is issued using an ACBX interface direct call. For more information, read Using the Multi-
fetch/Prefetch Feature, elsewhere in this guide. When multifetching is used, the L2 or L5 command
returns record descriptor elements, each up to 16 bytes long, in the multifetch buffer (see the section
BT/ET Multifetch Processing).

325Command Reference

L2 and L5 Commands: Read Physical Sequential

Additional Considerations

The following additional considerations are applicable for the L2 and L5 commands:

1. The command ID used with an L2 or L5 command is saved internally and used by Adabas. It
is released by Adabas when an end-of-file condition is detected, an RC or CL command is issued,
or the Adabas session is terminated. The same command ID may not be used by the user for
another read sequential command until it has been released.

2. You are permitted to update or delete records from a file that you are reading with an L2 or L5
command. Adabas maintains information about the last and next record to be provided to you,
and is able to provide the correct next record despite any interim record update or deletion you
may perform.

3. If another user is updating the file being read with an L2 or L5 command, it is possible that you
will not receive one or more records in the file when reading it with the L2 or L5 command. In
addition, you may receive the same record more than once during a given sequential pass of
the file.

Special L2 Command Call for Response 145

A special L2 command call can be issued if you receive a response code 145 (ADARSP145). When
you execute the L2 command with ISN=0, FNR=-4(X'FFFC), and an appropriate format buffer, you
can obtain information about the user currently holding the ISN when the response code was issued.

Note: You can also obtain this event log information using the ADADBS DEVENTLOG
utility function. For more information, read DEVENTLOG: Display Adabas Event Log, in the
Adabas Utilities Manual.

The ACBX control block for this special call should contain the following settings:

Setting/DescriptionControl Block Item

L2Command Code

nonblank command ID requiredCommand ID

-4(X'FFFC')File number

0ISN

3 or largerFormat buffer length

8 or largerRecord buffer length

The format buffer should be set according to the FDT of file "-4". For example:

Command Reference326

L2 and L5 Commands: Read Physical Sequential

'1,AA,2,B,FI' Event type
'1,AB,2,B,FI' Event sub type
'1,AC,2,B,FI' DBID
'1,AD,2,B,FI' NUCID
'1,AE,4,B,FI' File Number
'1,AF,2,B,FI' Response Code
'1,AG,2,B,FI' Subcode
'1,AH,8,B,FI' ISN
'1,AT,8,B,FI' Time of Event
'1,AI,8,A,FI' Job Name of affected user
'1,AJ,28,A,FI,NV' User ID of affected user
'1,AK,8,A,FI' ET ID of affected user
'1,AL,8,A,FI' SAF ID of affected user
'1,AQ,4,B,FI' TID of affected user
'1,AM,8,A,FI' Job Name of the causer
'1,AN,28,A,FI,NV' User ID of the causer
'1,AO,8,A,FI' ET ID of the causer
'1,AP,8,A,FI' SAF ID of the causer
'1,AR,4,B,FI' TID of causer

Should the result of this special L2 call be response code 3 (ADARSP003), no entry for the user
could be found for one of the following situations:

■ The user did not get a response code 145 (ADARSP145).
■ The ADARUN INFOBUFFERSIZE parameter is set to "0", so no Adabas event log was allocated

for the run.
■ The corresponding entry in the Adabas event log was overwritten. When the Adabas event log

fills up, it starts overwriting the oldest records in the log.

327Command Reference

L2 and L5 Commands: Read Physical Sequential

328

33 L3 and L6 Commands: Read Logical Sequential

■ Function and Use .. 330
■ ACB Interface Direct Call: L3 and L6 Commands ... 331
■ ACBX Interface Direct Call: L3 and L6 Commands ... 341
■ Buffers .. 348
■ Additional Considerations .. 353

329

The L3 and L6 commands are used to read a file in logical sequential order, based on the sequence
of the values for a given descriptor.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

Specify the:

■ file to be read;
■ search descriptor whose values are to control the read sequence (phonetic descriptors and

descriptors contained within or derived from a field within a periodic group may not be used);
■ field or fields within each record for which values are to be returned.

Each L3 or L6 command returns the requested values for one record's field or fields in the record
buffer. Repeating the command returns the values of each field in order of the search descriptor
values.

The ascending and descending options specify whether the records are read in ascending or des-
cending order. The ascending, descending, and value start options may be used to position to a
given value before sequential reading begins or to position to a given value during sequential
reading. This allows you to position to a specific record in the file without having to read each
record.

The multifetch or prefetch options allow prior accessing of one or more sequential records, reducing
overall operating time and eliminating the time needed for single-record fetches. Multifetching
and prefetching can be enabled by specifying "M" or "O" (for multifetching) in the Command
Option 1 field. Refer to the section Using the Multifetch/Prefetch Feature for more information.

If the format buffer contains "C.", the field values for each record read are returned in compressed
format; otherwise, they are returned in uncompressed format.

Processing for the L3 command uses an internal table (the table of sequential commands) to keep
track of the most recently returned value and ISN. Normal and expanded files are operationally di-
verse and for performance reasons, the value and ISN for each are handled differently in the table.
Specifically, the entries for normal files keep the value and ISN that was returned on the last call.
The entries for expanded files keep the value and ISN that must be returned to the application on
the next call. This means that for normal files where concurrent updates are taking place, the L3
command returns a newly inserted value/ISN combination as long as it is greater than or equal to
the last value/ISN returned. For expanded files where concurrent updates are taking place, the L3
command returns a newly inserted value/ISN combination as long as it is greater than or equal to
the value/ISN that is kept in the table of sequential commands entry as the next value/ISN to be
returned.

Command Reference330

L3 and L6 Commands: Read Logical Sequential

The L6 command performs the same function as the L3 command, but places each record read in
hold status. If a record to be read and held is currently being held by another user, the read oper-
ation stops and the user is placed in wait status until the record becomes available or an operation
timeout occurs. If the Command Option 1 field is set to either "O" or "R" and a requested record
is already being held, the L6 command returns response code 145 (ADARSP145).

■ Repositioning to a Particular Value
■ Changing the Direction of the Read

Repositioning to a Particular Value

For information about specifying a starting value for the sequence-controlling descriptor, read
about the ISN control block field in ISN: Optional Start ISN/Record Read ISN in eitherACB Interface
Direct Call: L3 and L6 Commands or ACBX Interface Direct Call: L3 and L6 Commands. The fol-
lowing procedure is used to reposition to a particular value during a sequential pass:

1. Set the last six positions of the Additions 1 field (the descriptor controlling the read sequence)
to blanks.

2. Insert in the value buffer the value to which the read sequence is to reposition.

3. Set the ISN field to zero.

4. Set the Command Option 2 field to "A", "D", or "V".

Changing the Direction of the Read

Within a logical read sequence, the direction of the read can be changed at any time from ascending
to descending or back without repositioning by specifying "D" or "A" for Command Option 2.

This option is not supported if prefetch or multifetch processing is also requested.

ACB Interface Direct Call: L3 and L6 Commands

This section describes ACB interface direct calls for L3 and L6 commands. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

331Command Reference

L3 and L6 Commands: Read Logical Sequential

■ ACB Examples

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

----binary1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

AFbinary13-16ISN

UFbinary17-20ISN Lower Limit

------21-24

UFbinary25-26Format Buffer Length

UFbinary27-28Record Buffer Length

UF *binary29-30Search Buffer Length

UF *binary31-32Value Buffer Length

UFbinary33-34ISN Buffer Length **

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

AFalphanumeric37-44Additions 1

A--binary / binary45-48Additions 2

AFalphanumeric49-56Additions 3

AFalphanumeric57-64Additions 4

UFalphanumeric65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UF ***Format

A--Record

UFSearch *

UFValue *

UFISN **

Command Reference332

L3 and L6 Commands: Read Logical Sequential

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Required only if value start option is being used*

The ISN buffer and length is required only if the multifetch or prefetch option is specified.**

May contain compress option control characters "C."***

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
L3 or L6

Command ID (ACBCID)
This field must be set to a non-blank, non-zero value. The value provided is used by Adabas
to provide the records in the correct sequence and to avoid repetitive interpretation of the
format buffer.

The first byte of this field may not be set to hexadecimal 'FF', and must not be changed during
a given sequential pass of a file.

If the command ID value is X'FFFFFFFF', the command ID is automatically generated. The
Adabas nucleus generates command ID values beginning with X'00000001', and increments
the value by 1 for each L3 or L6 call.

When specifying user-defined command IDs, the user must ensure that each command ID is
unique.

See also the Additions 5 field for separate format ID and/or global format ID usage.

File Number (ACBFNR)
Specify the binary number of the file to be read in this field. For physical direct calls, specify
the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

333Command Reference

L3 and L6 Commands: Read Logical Sequential

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

Response code 3 (ADARSP003) indicates that an end-of-file condition has been detected.

ISN: Optional Start ISN/Record Read ISN (ACBISN)
For initial or subsequent positioning to a specific location in the logical read sequence when
the last six bytes of the Additions 1 field are set to blanks, the ISN field is used together with
the starting descriptor value specified in the value buffer to determine the position where
reading starts or restarts.

If an existing read sequence is to be continued without repositioning when the last six bytes
of the Additions 1 field are not changed from the most recent read command of the sequence,
the ISN field is ignored.

Adabas returns in the ISN field the ISN of the record that was read.

When positioning or repositioning in the logical read sequence occurs, the ISN field is not used
for positioning if the comparator for the starting descriptor value is set to:
■ GT (greater than) for an ascending read sequence; or
■ LT (less than) for a descending read sequence.

Otherwise, the ISN field plays a role and the following rules apply:

Rules for Reading Forward (Ascending Option)

If the starting descriptor value specified in the value buffer is present in the logical read se-
quence, specifying:
■ an ISN of zero results in positioning to the first (lowest) ISN with that descriptor value;
■ a non-zero ISN results in positioning to the lowest ISN greater than the specified ISN with

that descriptor value, if such an ISN exists. Otherwise, positioning is to the first ISN of the
next higher descriptor value.

If the starting descriptor value specified in the value buffer is not present in the logical read
sequence, positioning is always to the first ISN of the next higher descriptor value, regardless
of the specified ISN.

Rules for Reading Backward (Descending Option)

If the starting descriptor value specified in the value buffer is present in the logical read se-
quence, specifying:
■ an ISN of zero results in positioning to the last (highest) ISN with that descriptor value;

Command Reference334

L3 and L6 Commands: Read Logical Sequential

■ a non-zero ISN results in positioning to the highest ISN less than the specified ISN with that
descriptor value, if such an ISN exists. Otherwise, positioning is to the last ISN of the next
lower descriptor value.

If the starting descriptor value specified in the value buffer is not present in the logical read
sequence, positioning is always to the last ISN of the next lower descriptor value, regardless of
the specified ISN.

ISN Lower Limit: Multifetch Record Count (ACBISL)
If either "M" or "O" (multifetching option) is specified in the Command Option 1 field, a non-
zero value in this field determines the maximum number of records to be multifetched. If this
value is zero, the number of records to be multifetched is limited by the record and ISN buffer
lengths. Refer to the section Using the Multifetch/Prefetch Feature for more information.

Format Buffer Length (ACBFBL)
The format buffer length (in bytes). The format buffer area defined in the user program must
be at least as large as the length specified.

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The record buffer area defined in the user program must
be at least as large as the length specified.

Search Buffer Length (ACBSBL)
The search buffer length (in bytes). The search buffer area defined in the user program must
be at least as large as the length specified.

Value Buffer Length (ACBVBL)
The value buffer length (in bytes). The value buffer area defined in the user program must be
at least as large as the length specified.

ISN Buffer Length (ACBIBL)
The ISN buffer length (in bytes).

When the Command Option 1 field specifies "P", the L3 and L6 commands use the ISN buffer
to hold prefetched descriptor values. The ISN buffer must be large enough to hold the largest
descriptor value plus a 16-byte header preceding each value. The actual ISN buffer area defined
in the user program must be at least as large as the length specified.

Command Option 1 (ACBCOP1)

DescriptionOption

Multifetch processing is activated.M (multifetching)

Multifetch processing as well as option R (see below) processing
is activated.

O (multifetching with the R option)

Prefetch processing is activated.P (prefetching)

Returns response code 145 (ADARSP145) if the record to be read
and held by an L6 command is not available.

R (return)

335Command Reference

L3 and L6 Commands: Read Logical Sequential

Specifying "M", "O", or "P" indicates that the (command-level) prefetch or multifetch option is
to be used. The multifetch/prefetch option can improve performance by allowing prior access
to one or more sequential records, reducing overall operating time and eliminating the time
needed for single-record fetches. For more information, see the section Using the Multi-
fetch/Prefetch Feature.

Command Option 2 (ACBCOP2)
This option specifies the sequence in which the descriptor's entries are to be processed.

DescriptionOption

Processes entries for the descriptor in ascending sequence with an optional specification
of a starting value. A starting descriptor value can be specified in the value buffer. In

A (ascending)

addition, a non-null value in the ISN field can be used to position within multiple
matching descriptor value entries. If the search buffer and value buffer are omitted
(SBL and VBL are set to zero (0)), all entries for the descriptor are processed.

Processes entries for the descriptor in descending sequence with an optional
specification of a starting value. A starting descriptor value can be specified in the

D (descending)

value buffer. In addition, a non-null value in the ISN field can be used to position
within multiple matching descriptor value entries. If the search buffer and value buffer
are omitted (SBL and VBL are set to zero (0)), all entries for the descriptor are processed.

Specifies an ascending sequential pass to begin (or continue) at a user-specified value
rather than with the lowest (or next) value of the descriptor. The user-specified value

V (value start)

must be in the value buffer, and the value's length and format must be specified in the
search buffer. A non-null value specified in the ISN field can further qualify the read
operation. This option was used in Adabas prior to version 6; it is maintained to support
existing programs.

Specifies an ascending sequential pass without a starting value; all values present are
processed. The search buffer and value buffer are ignored when present. This option
was used in Adabas prior to version 6; it is maintained to support existing programs.

blank

Additions 1: Descriptor Used for Sequence Control (ACBADD1)
The descriptor to be used to control the read sequence must be specified in this field. A
descriptor, subdescriptor, or superdescriptor may be specified.
■ Phonetic descriptors and descriptors contained within or derived from a field contained

within a periodic group may not be specified.
■ A descriptor which is a multiple-value field may be specified, in which case the same record

may be read several times (once for each different value within a given record) during the
sequential pass through the file.

■ If the descriptor specified is defined with the null value suppression (NU) option, any records
containing a null value for the descriptor will not be read.

■ The descriptor name is specified in the first two positions of this field. All remaining positions
must be set to blanks on the initial call.

The Additions 1 field should not be modified between L3 or L6 calls. The exception is when
the user wishes to reposition to a particular value during a sequential pass. This is done by

Command Reference336

L3 and L6 Commands: Read Logical Sequential

setting the last six positions of this field to blanks, inserting the value to which repositioning
is to occur in the value buffer, setting the ISN field to zero, and setting the Command Option
2 field to "A", "D", or "V".

Additions 2: Length of Compressed and Decompressed Record (ACBADD2)
If the command is processed successfully, the following information is returned in this field:
■ If the record buffer contains at least one valid field value, the leftmost two bytes contain the

length (in binary form) of the compressed record accessed;
■ The rightmost two bytes contain the length (in binary form) of the decompressed fields se-

lected by the format buffer and accessed.

If the L3 or L6 command returns a non-zero response code, the rightmost two bytes may contain
a subcode defining the exact response code meaning. Response codes and their subcodes are
described in the Adabas Messages and Codes Manual documentation.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code (ACBADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Format ID, Global Format ID (ACBADD5)
Use this field to specify a separate format ID that identifies the internal format buffer used for
this command, or to provide a global format ID allowing use of the internal format buffer by
all users.

As long as the leftmost bit of the Additions 5 field is set to 0, the value provided in the command
ID field is used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand, Format, andGlobal Format IDs for more information and examples.

337Command Reference

L3 and L6 Commands: Read Logical Sequential

ACB Examples

■ Example 1
■ Example 2: Read Logical Sequential with Record Hold
■ Example 3: ASCENDING Option
■ Example 4: DESCENDING Option with Repositioning

Example 1

File 2 is to be read in logical sequential order. The descriptor RB is to be used for sequence control.
The values for the fields RA and RB are to be returned. The entire file is to be read.

Control Block

L3Command Code

a non-blank CID is requiredEX01Command ID

2File Number

all records are to be read0ISN

or larger6Format Buffer Length

or larger18Record Buffer Length

0Search Buffer Length

0Value Buffer Length

response code 145 (ADARSP145) or prefetch options not usedbCommand Option 1

Ascending order with no search or value buffer specifiedACommand Option 2

descriptor RB to be used for sequence control, where bbbbbb
represents blanks.

RBbbbbbbAdditions 1

file is security-protectedpasswordAdditions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

RA,RB.Format Buffer

The L3 call is repeated to obtain each successive record. The CID and Additions 1 field must not
be modified between L3 calls. Response code 3 (ADARSP003) will be returned when all records
have been read.

Command Reference338

L3 and L6 Commands: Read Logical Sequential

Example 2: Read Logical Sequential with Record Hold

File 1 is to be read in logical sequential order. The descriptor AA is to be used for sequence control.
The values for fields AA and AB are to be returned. Each record read is to be placed in hold status.

Control Block

L6Command Code

non-blank CID requiredEX02Command ID

1File Number

all records to be read0ISN

or larger3Format Buffer Length

or larger10Record Buffer Length

0Search Buffer Length

0Value Buffer Length

response code 145 (ADARSP145) or prefetch options not usedbCommand Option 1

Ascending order with no search or value buffer specifiedbCommand Option 2

descriptor AA to be used for sequence control, where bbbbbb
represents blanks.

AAbbbbbbAdditions 1

file is not security-protectedbbbbbbbb (blanks)Additions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

GA.Format Buffer

To complete logical transactions and release held records, ET logic users should issue an ET
command. Non-ET users should release held records with an A4, E4, or RI command.

Example 3: ASCENDING Option

The same requirement as example 1 except that reading is to begin with the value "N".

Control Block

L3Command Code

non-blank CID requiredEX03Command ID

2File Number

all records are to be read0ISN

or larger6Format Buffer Length

or larger18Record Buffer Length

339Command Reference

L3 and L6 Commands: Read Logical Sequential

or larger7Search Buffer Length

or larger1Value Buffer Length

response code 145 (ADARSP145) option not usedbCommand Option 1

ascending option with start value suppliedACommand Option 2

RB is to be used for sequence control, where bbbbbb represents
blanks.

RBbbbbbbAdditions 1

file is security-protectedpasswordAdditions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

RA,RB.Format Buffer

RB,1,A.Search Buffer

reading to begin with value NNValue Buffer

The initial L3 call will result in the return of the first record which contains the value "N" for the
descriptor RB. If no records exist with this value, the first record which contains a value greater
than "N" (such as "NA") will be returned.

Example 4: DESCENDING Option with Repositioning

The same requirement as example 3 except that a value repositioning is to be performed. The se-
quential read process is to continue with the value "Q".

Control Block

L3Command Code

the CID field may not be changed when repositioningEX03Command ID

2File Number

this field must be set to zeros for value repositioning0ISN

or larger6Format Buffer Length

or larger18Record Buffer Length

or larger7Search Buffer Length

or larger1Value Buffer Length

response code 145 (ADARSP145) option not usedbCommand Option 1

descending option with value repositioningDCommand Option 2

the last six positions of this field must be set to blanks for value
repositioning

RBbbbbbbAdditions 1

file 2 is security-protectedpasswordAdditions 3

file 2 is not cipheredbbbbbbbb (blanks)Additions 4

Command Reference340

L3 and L6 Commands: Read Logical Sequential

Buffer Areas

RA,RB.Format Buffer

RB,1,A,LE.Search Buffer

reposition to value "Q"QValue Buffer

ACBX Interface Direct Call: L3 and L6 Commands

This section describes ACBX interface direct calls for L3 and L6 commands. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

AFbinary29-32ISN

---------33-36

UFbinary37-40ISN Lower Limit

---------41-48

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

UFalphanumeric51Command Option 3 (L6 only)

---------52-56

AFalphanumeric/ binary57-64Additions 1

341Command Reference

L3 and L6 Commands: Read Logical Sequential

After Adabas CallBefore Adabas CallFormatPositionField

AFalphanumeric/ binary69-76Additions 3

AFalphanumeric77-84Additions 4

UFalphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

---------117-128

A---binary129-136Compressed Record Length

A---binary137-144Decompressed Record Length

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

UF ***Format

A--Record

UFSearch *

UFValue *

UFMultifetch **

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Required only if value start option is being used*

The multifetch buffer is required only if the multifetch option is specified.**

May contain compress option control characters "C."***

Not used---

Command Reference342

L3 and L6 Commands: Read Logical Sequential

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
L3 or L6

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Response code 3 (ADARSP003) indicates that an end-of-file condition has been detected.

Command ID (ACBXCID)
This field must be set to a non-blank, non-zero value. The value provided is used by Adabas
to provide the records in the correct sequence and to avoid repetitive interpretation of the
format buffer.

The first byte of this field may not be set to hexadecimal 'FF', and must not be changed during
a given sequential pass of a file.

If the command ID value is X'FFFFFFFF', the command ID is automatically generated. The
Adabas nucleus generates command ID values beginning with X'00000001', and increments
the value by 1 for each L3 or L6 call.

When specifying user-defined command IDs, the user must ensure that each command ID is
unique.

See also the Additions 5 field for separate format ID and/or global format ID usage.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

343Command Reference

L3 and L6 Commands: Read Logical Sequential

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN: Optional Start ISN/Record Read ISN (ACBXISN)
For initial or subsequent positioning to a specific location in the logical read sequence when
the last six bytes of the Additions 1 field are set to blanks, the ISN field is used together with
the starting descriptor value specified in the value buffer to determine the position where
reading starts or restarts.

If an existing read sequence is to be continued without repositioning when the last six bytes
of the Additions 1 field are not changed from the most recent read command of the sequence,
the ISN field is ignored.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

Adabas returns in the ISN field the ISN of the record that was read.

When positioning or repositioning in the logical read sequence occurs, the ISN field is not used
for positioning if the comparator for the starting descriptor value is set to:
■ GT (greater than) for an ascending read sequence; or
■ LT (less than) for a descending read sequence.

Otherwise, the ISN field plays a role and the following rules apply:

Rules for Reading Forward (Ascending Option)

If the starting descriptor value specified in the value buffer is present in the logical read se-
quence, specifying:
■ an ISN of zero results in positioning to the first (lowest) ISN with that descriptor value;
■ a non-zero ISN results in positioning to the lowest ISN greater than the specified ISN with

that descriptor value, if such an ISN exists. Otherwise, positioning is to the first ISN of the
next higher descriptor value.

If the starting descriptor value specified in the value buffer is not present in the logical read
sequence, positioning is always to the first ISN of the next higher descriptor value, regardless
of the specified ISN.

Rules for Reading Backward (Descending Option)

If the starting descriptor value specified in the value buffer is present in the logical read se-
quence, specifying:
■ an ISN of zero results in positioning to the last (highest) ISN with that descriptor value;

Command Reference344

L3 and L6 Commands: Read Logical Sequential

■ a non-zero ISN results in positioning to the highest ISN less than the specified ISN with that
descriptor value, if such an ISN exists. Otherwise, positioning is to the last ISN of the next
lower descriptor value.

If the starting descriptor value specified in the value buffer is not present in the logical read
sequence, positioning is always to the last ISN of the next lower descriptor value, regardless of
the specified ISN.

ISN Lower Limit: Multifetch Record Count (ACBXISL)
If either "M" or "O" (multifetching option) is specified in the Command Option 1 field, a non-
zero value in this field determines the maximum number of records to be multifetched. If this
value is zero, the number of records to be multifetched is limited by the record and multifetch
buffer lengths. Refer to the sectionUsing theMultifetch/Prefetch Feature for more information.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

Command Option 1 (ACBXCOP1)

DescriptionOption

Multifetch processing is activated.M (multifetching)

Multifetch processing as well as option R (see below) processing
is activated.

O (multifetching with the R option)

Returns response code 145 (ADARSP145) if the record to be read
and held by an L6 command is not available.

R (return)

Specifying the M or O options indicates that the (command-level) multifetch option is to be
used. The multifetch option can improve performance by allowing prior access to one or more
sequential records, reducing overall operating time and eliminating the time needed for single-
record fetches. For more information, see the section Using the Multifetch/Prefetch Feature.

Command Option 2 (ACBXCOP2)
This option specifies the sequence in which the descriptor's entries are to be processed.

DescriptionOption

Processes entries for the descriptor in ascending sequence with an optional specification
of a starting value. A starting descriptor value can be specified in the value buffer. In

A (ascending)

addition, a non-null value in the ISN field can be used to position within multiple
matching descriptor value entries. If the search buffer and value buffer are omitted
(SBL and VBL are set to zero (0)), all entries for the descriptor are processed.

Processes entries for the descriptor in descending sequence with an optional
specification of a starting value. A starting descriptor value can be specified in the

D (descending)

value buffer. In addition, a non-null value in the ISN field can be used to position
within multiple matching descriptor value entries. If the search buffer and value buffer
are omitted (SBL and VBL are set to zero (0)), all entries for the descriptor are processed.

345Command Reference

L3 and L6 Commands: Read Logical Sequential

DescriptionOption

Specifies an ascending sequential pass to begin (or continue) at a user-specified value
rather than with the lowest (or next) value of the descriptor. The user-specified value

V (value start)

must be in the value buffer, and the value's length and format must be specified in the
search buffer. A non-null value specified in the ISN field can further qualify the read
operation. This option was used in Adabas prior to version 6; it is maintained to support
existing programs.

Specifies an ascending sequential pass without a starting value; all values present are
processed. The search buffer and value buffer are ignored when present. This option
was used in Adabas prior to version 6; it is maintained to support existing programs.

blank

Command Option 3: Shared Hold Status (ACBXCOP3)
This following command options are only available for L6 commands:

DescriptionOption

Puts the record in shared hold status for the duration of the read operation.C

Puts the record in shared hold status until the next record in the read sequence is read or the
read sequence or transaction is terminated, whichever happens first.

Q

Puts the record in shared hold status until the end of the transaction.S

If the same record is placed in shared hold status more than once (using the C or S options or
the Q option for different read sequences), it stays in shared hold status until all of the specified
hold lifetimes have expired.

For complete information about shared hold updating, read Shared Hold Status, elsewhere
in this guide.

Additions 1: Descriptor Used for Sequence Control (ACBXADD1)
The descriptor to be used to control the read sequence must be specified in this field. A
descriptor, subdescriptor, or superdescriptor may be specified.
■ Phonetic descriptors and descriptors contained within or derived from a field contained

within a periodic group may not be specified.
■ A descriptor which is a multiple-value field may be specified, in which case the same record

may be read several times (once for each different value within a given record) during the
sequential pass through the file.

■ If the descriptor specified is defined with the null value suppression (NU) option, any records
containing a null value for the descriptor will not be read.

■ The descriptor name is specified in the first two positions of this field. All remaining positions
must be set to blanks on the initial call.

The Additions 1 field should not be modified between L3 or L6 calls. The exception is when
the user wishes to reposition to a particular value during a sequential pass. This is done by
setting the last six positions of this field to blanks, inserting the value to which repositioning

Command Reference346

L3 and L6 Commands: Read Logical Sequential

is to occur in the value buffer, setting the ISN field to zero, and setting the Command Option
2 field to "A", "D", or "V".

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code (ACBXADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Format ID, Global Format ID (ACBXADD5)
Use this field to specify a separate format ID that identifies the internal format buffer used for
this command, or to provide a global format ID allowing use of the internal format buffer by
all users.

As long as the leftmost bit of the Additions 5 field is set to 0, the value provided in the command
ID field is used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand, Format, andGlobal Format ID for more information and examples.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Compressed Record Length (ACBXLCMP)
This field returns the compressed record length when a record was read or written. This is the
length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)
This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects
the total length across all buffer segments.

347Command Reference

L3 and L6 Commands: Read Logical Sequential

Buffers

The following buffers apply to L3 and L6 commands:

■ Format Buffer
■ Record Buffer
■ Search Buffer
■ Value Buffer
■ Search and Value Buffer Examples
■ ISN Buffer
■ Multifetch Buffer

Format Buffer

The fields for which values are to be returned must be specified in this buffer. Descriptions of the
syntax and examples of format buffer construction are provided in Defining Buffers, elsewhere in
this guide.

Specifying "C." in the first two positions indicates that the compressed option is in effect. This
causes the record to be returned in compressed instead of decompressed format.

Record Buffer

Adabas returns the requested field values in this buffer. The field values are returned according
to the standard format and length of each field, unless the user has requested a different format
and/or length in the format buffer.

Search Buffer

Note: Commas separate elements in the search buffer; a period terminates the syntax state-
ment.

The search buffer length (SBL) must be set in the control block. If the search buffer is not used,
SBL must be set to zero (0).

If the value start (V) option is used for Command Option 2, the starting value of the descriptor
used for sequence control must be specified in the value buffer and the value's length and format
must be specified in the search buffer.

If the ascending (A) or descending (D) option is used for Command Option 2, a search buffer may
be used but is not required. If either the search or value buffer is omitted, all values for a given
descriptor are processed. If a starting value, ending value, or both are specified in the value buffer,
the search buffer must be used to limit the number of descriptor entries retrieved.

Command Reference348

L3 and L6 Commands: Read Logical Sequential

The length and format of the descriptor value as provided in the value buffer must be specified
in the search buffer if different from the standard length and/or format of the named descriptor.

When a single value is provided in the value buffer (that is, the starting value with option A or
the ending value with option D), the syntax for the search buffer is

name [,length] [,format] [,comparator]

When two values are provided in the value buffer (that is, a starting and an ending value), the
syntax for the search buffer is

name [,length] [,format] ,S ,name [,length] [,format]

The elements used in the search buffer syntax statements are

is the name of the descriptor to be used for sequence control. The name specified must be the
same as that specified in the Additions 1 field.

name

is the length of the value provided in the value buffer. If the length is not specified, it is assumed
that the value is being provided using the standard length of the descriptor. See the section
Length and Data Format for the allowed length settings.

length

is the format of the value provided in the value buffer. If the format is not specified, it is assumed
that the value is being provided using the standard format of the descriptor. See the section
Length and Data Format for the allowed format settings.

format

identifies the scope of the read sequence:comparator

greater than or equal to the value to/from the highest value (the default)GE

greater than the value to/from the highest valueGT

less than or equal to the value to/from the lowest valueLE

less than the value to/from the lowest valueLT

A FROM-TO range (inclusive) that involves two search expressions. The same descriptor must
be used in both expressions:

S

validAA,S,AA.

invalidAA,S,AB.

See Example 3: Overview of SequenceOptions for an overview of sequence options resulting from
the choice of A or D for Command Option 2 and various search and value buffer options.

349Command Reference

L3 and L6 Commands: Read Logical Sequential

Value Buffer

The value buffer length (VBL) must be set in the control block. If the value buffer is not used, VBL
must be set to zero (0).

If the value start option is to be used, or if value repositioning is to be performed, the value with
which reading is to start (or continue) must be specified in this buffer.

If the ascending (A) or descending (D) option is used for Command Option 2, a value buffer may
be used but is not required. If either the search or value buffer is omitted, all values for a given
descriptor are processed. If a starting value, ending value, or both are specified in the value buffer,
the search buffer is required in order to limit the number of descriptor entries retrieved.

If the ascending (A) option is used for Command Option 2, reading starts (or continues) with the
first record containing the value specified. If there are no records with keys equal to a start or re-
position (continue) value, reading begins with the first record containing the next higher value.

When two values are provided in the value buffer, the first specifies the lower limit of a range and
the second specifies the upper limit. Each value is either the starting or ending value depending
on the Command Option 2 setting of A or D.

In addition, if the ISN field is set to a non-zero value, reading will start (or continue) or end with
the first record whose ISN is present for the value specified, provided that the ISN is greater than
the ISN in the ISN field. If no such ISN exists, the first record with the next higher (or lower) value
is read.

Search and Value Buffer Examples

■ Example 1: Ascending Option with Optional Search and Value Buffer
■ Example 2: Descending Option with Optional Search and Value Buffer
■ Example 3: Overview of Sequence Options

Example 1: Ascending Option with Optional Search and Value Buffer

Inverted list for the descriptor used for sequence control:

ISN ListValue

1, 4A

2B

3, 5D

Initial L3 or L6 command with Command Option 2 set to "A" (ascending option), or subsequent
L3 or L6 command with Command Option 2 set to "A" and the last six bytes of Additions 1 reset
to blanks:

Command Reference350

L3 and L6 Commands: Read Logical Sequential

ISN Where Reading Starts or ContinuesUser-Supplied ISNUser-Supplied Value

10A

41A

42A

24A

25A

20B

21B

32B

33B

31BABC

30C

30D

53D

54D

response code 3 (ADARSP003)5D

response code 3 (ADARSP003)-E-Z

Example 2: Descending Option with Optional Search and Value Buffer

Inverted list for the descriptor used for sequence control:

ISN ListValue

1, 9, 25A

3, 18, 21B

7, 8, 11C

Initial L3 or L6 command with Command Option 2 set to "D" (descending option), ISN=0 for op-
tional start, search buffer comparator set to "LT", and value buffer containing value "C". The start
position is the highest ISN of the next lower descriptor value: in this example, ISN 21 of descriptor
value "B".

351Command Reference

L3 and L6 Commands: Read Logical Sequential

Example 3: Overview of Sequence Options

The following table illustrates the possibilities for using the ascending/descending option in con-
junction with various search buffer and value buffer contents. The following applies to the file
being read and ISN=0 (no further positioning within matching start values):

Overview of Sequence Options

Command Reference352

L3 and L6 Commands: Read Logical Sequential

ISN Buffer

The ISN buffer is used only if the command-level multifetch option is used and if this command
is issued using the ACB direct call interface. For more information, read Using the Multi-
fetch/Prefetch Feature, elsewhere in this guide.

Multifetch Buffer

The multifetch buffer is used only if the command-level multifetch option is used and if this
command is issued using the ACBX direct call interface. For more information, read Using the
Multifetch/Prefetch Feature, elsewhere in this guide.

Additional Considerations

The following additional considerations are applicable for the L3 or L6 command:

1. The command ID used with the L3 or L6 command is saved internally and used by Adabas. It
is released by Adabas when an end-of-file condition is detected, an RC or CL command is issued,
or the Adabas session is terminated. You may not use the same command ID for another read
sequential command until the command ID has been released.

2. You are permitted to update or delete records from a file that you are reading with an L3 or L6
command. If the inserted record or records are to be read, you must reposition after having in-
serted the record or records.

3. If any user is updating the file being read with an L3 or L6 command, it is possible that you
may not receive one or more records in the file while reading it with the L3 or L6 command. In
addition, you may receive the same record more than once during a sequential pass of the file.

Note: You should avoid updating any descriptor field that controls the read sequence with
a value greater than that which it currently contains.

353Command Reference

L3 and L6 Commands: Read Logical Sequential

354

34 L9 Command: Read Descriptor Values

■ Function and Use .. 356
■ ACB Interface Direct Call: L9 Command ... 356
■ ACBX Interface Direct Call: L9 Command ... 364
■ Buffers .. 369
■ Additional Considerations .. 373

355

The L9 command reads the values of a specified descriptor.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The L9 command is used to determine the range of values present for a descriptor and the number
of records that contain each value.

Specify the file containing the descriptor, the descriptor for which the values are to be returned,
and the value at which processing is to begin. Each L9 call returns the next value for the descriptor
in the record buffer, and the count of records containing that value in the ISN quantity field. The
values may be either positive or negative. Null values for descriptors defined with the null value
suppression (NU) option are not returned.

The multifetch and prefetch options improve performance by reading several descriptor values
at a time. Multifetching can be enabled by specifying "M" (for multifetching) in the Command
Option 1 field. Refer to the section Using the Multifetch/Prefetch Feature for more information.

The "I" option specified in the Command Option 2 field returns the ISNs of each value in the record
buffer. The L9 command reads the Associator inverted lists only; no Data Storage access is required.

Within a logical read sequence, the direction of the read can be changed at any time from ascending
to descending or back by specifying "A" or "D" for Command Option 2. See Example 3: Overview
of Sequence Options for an overview of sequence options resulting from the choice of A or D for
Command Option 2 and various search and value buffer options. The ascending and descending
options are not supported with multifetch processing.

ACB Interface Direct Call: L9 Command

This section describes ACB interface direct calls for the L9 command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Command Reference356

L9 Command: Read Descriptor Values

■ ACB Examples

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

A--binary13-16ISN

AFbinary17-20ISN Lower Limit

A--binary21-24ISN Quantity

UFbinary25-26Format Buffer Length

UFbinary27-28Record Buffer Length

UFbinary29-30Search Buffer Length

UFbinary31-32Value Buffer Length

UFbinary33-34ISN Buffer Length *

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

UFalphanumeric37-44Additions 1

A--binary45-48Additions 2

AFalphanumeric49-56Additions 3

------57-64

UFalphanumeric65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UFFormat

A--Record

UFSearch

UFValue

A--ISN *

357Command Reference

L9 Command: Read Descriptor Values

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

The ISN buffer and length required only if the multifetch or prefetch option is specified*

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
L9

Command ID (ACBCID)
This field must be set to a non-blank, non-zero value. This value is used by Adabas to provide
the values in the correct sequence and to avoid the repetitive interpretation of the format buffer.

This field must not be modified during a given sequential pass of the file.

The first byte of this field may not be set to hexadecimal 'FF'.

File Number (ACBFNR)
Specify the binary number of the file to be read in this field. For physical direct calls, specify
the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

Response code 3 (ADARSP003) indicates that an end-of-file condition has been detected.

ISN: Periodic Group Occurrence (ACBISN)
If the descriptor for which values are to be returned is contained within a periodic group,
Adabas returns in this field the occurrence number in which the value being returned is located.
The occurrence number is provided in binary format in the two low-order bytes.

Command Reference358

L9 Command: Read Descriptor Values

If the prefetch option is specified, any occurrence for prefetched values is returned in the
header preceding the value in the ISN buffer.

ISN Lower Limit: Lowest ISN in Record Buffer (ACBISL)
Adabas returns values in this field as follows:

The L9 command . . .Command
Option 2

Command
Option 1

returns the ISNs for each value in the record buffer; no value is returned
in the ISN lower limit field.

Iblank

places the first ISN of the returned ISN list in the ISN lower limit field.not I

returns the first ISN in the record buffer and all prefetched descriptor
values in the ISN buffer, preceded by a 16-byte header; no value is
returned in the ISN lower limit field.

IP (prefetch)

places the first ISN of the last value prefetched in the ISN lower limit
field.

not I

returns the group of multifetched records in the record buffer and a
description of these records in the caller's ISN buffer; no value is returned
in the ISN lower limit field.

IM (multifetch)

places the first ISN of the last value multifetched in the ISN lower limit
field.

not I

If Command Option 1 is set to "M" (multifetch option), you can set:
■ a non-zero value in the ISN lower limit field to limit the number of values to be multifetched.
■ zero in the ISN lower limit field to multifetch all values.

Refer to the section Using the Multifetch/Prefetch Feature, elsewhere in this guide, for more
information.

ISN Quantity: Record Count (ACBISQ)
Except when the return ISNs option (I) is specified in Command Option 2, Adabas uses this
field to return the number of records containing the value returned in the record buffer.

If the prefetch option is specified, the count of prefetched values is in the header that precedes
the value in the ISN buffer.

Format Buffer Length (ACBFBL)
The format buffer length (in bytes). The format buffer area defined in the user program must
be at least as large as the length specified.

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The record buffer area defined in the user program must
be at least as large as the length specified.

Search Buffer Length (ACBSBL)
The search buffer length (in bytes). The search buffer area defined in the user program must
be at least as large as the length specified.

359Command Reference

L9 Command: Read Descriptor Values

Value Buffer Length (ACBVBL)
The value buffer length (in bytes). The value buffer area defined in the user program must be
at least as large as the length specified.

ISN Buffer Length: Only with Command-Level Multifetch/Prefetch Option (ACBIBL)
The ISN buffer length (in bytes).

When the Command Option 1 field is set to "P", the L9 command uses the ISN buffer to hold
prefetched descriptor values. The ISN buffer must be large enough to hold the largest descriptor
value plus a 16-byte header preceding each value. The actual ISN buffer area defined in the
user program must be at least as large as the length specified.

Command Option 1: Command-Level Multifetch/Prefetch Option (ACBCOP1)
Specifying one of these options indicates that the (command-level) prefetch or multifetch option
is to be used. The multifetch/prefetch option can improve performance reading several
descriptor values at a time thereby eliminating the time needed for single-record fetches. For
more information, see the section Using the Multifetch/Prefetch Feature.

DescriptionOption

Multifetch processing is enabled.

In conjunction with this option, you can set:

M (multifetching)

■ a non-zero value in the ISN Lower Limit field to limit the number of values to be
multifetched.

■ zero in the ISN Lower Limit field to multifetch all values. The format of the ISN
buffer data with the M option reflects the standard record descriptor data format.

Prefetch processing is enabled.P (prefetching)

If the M or P options are specified, the L9 command puts all prefetched or multifetched
descriptor values in the ISN buffer, preceded by a 16-byte header. The ISN buffer must be
large enough to hold the largest descriptor value plus 16 bytes. The actual ISN buffer area
defined in the user program must be at least as large as the ISN buffer length specified.

Command Option 2: Return ISNs Option (ACBCOP2)

DescriptionOption

Adabas stores the ISNs for each value in the record buffer, as well as the values themselves. The
L9 command reads the Associator inverted lists only; no Data Storage access is required.

I

The descriptor's entries are processed in ascending order.A

The descriptor's entries are processed in descending order.D

Additions 1: Descriptor Name (ACBADD1)
If both the search and value buffer lengths are set to zero, a value in the Additions 1 field is
the name of the descriptor for which values are to be returned. The name must be the same as
the descriptor name specified in the format buffer.

Command Reference360

L9 Command: Read Descriptor Values

In this case, L9 processes all values for the specified descriptor from the beginning of the file.

The descriptor name is specified in the first two positions of this field. The remaining positions
must be set to blanks.

Additions 2: Response Subcodes (ACBADD2)
If the L9 command returns a nonzero response code, the rightmost two bytes of this field may
contain a subcode defining the exact response code meaning. Response codes and their subcodes
are defined in the Adabas Messages and Codes Manual documentation.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 5: Format ID, Global Format ID (ACBADD5)
Use this field to specify a separate format ID that identifies the internal format buffer used for
this command, or to provide a global format ID allowing use of the internal format buffer by
all users.

As long as the leftmost bit of the Additions 5 field is set to 0, the value provided in the command
ID field is used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand ID, Format ID,Global Format ID for more information and examples.

ACB Examples

■ Example 1
■ Example 2
■ Example 3: Overview of Sequence Options

Example 1

All values for the descriptor RB in file 2 are to be returned.

361Command Reference

L9 Command: Read Descriptor Values

Control Block

L9Command Code

a non-blank CID is requiredL901Command ID

2File Number

or larger3Format Buffer Length

or larger10Record Buffer Length

or larger5Search Buffer Length

or larger1Value Buffer Length

file 2 is security-protectedpasswordAdditions 3

Buffer Areas

the values are to be returned using standard length and formatRB.Format Buffer

the values for descriptor RB are to be returned, and the starting value is being provided
with standard format and length equal to 1

RB,1.Search Buffer

processing is to begin with the first value for RB equal or greater than 'b'bValue Buffer

Each successive L9 call will result in the return of the next value (values are provided in ascending
order). The number of records containing the value is returned in the ISN quantity field.

Example 2

The values for descriptor AB in file 1 are to be returned. Only values which are equal to or greater
than 20 are to be returned.

Control Block

L9Command Code

a non-blank CID is requiredL902Command ID

1File Number

or larger7Format Buffer Length

or larger3Record Buffer Length

or larger7Search Buffer Length

or larger2Value Buffer Length

file 1 is not security-protectedbbbbbbbb (blanks)Additions 3

Command Reference362

L9 Command: Read Descriptor Values

Buffer Areas

the values are to be returned with length=3 and with format=unpackedAB,3,U.Format Buffer

the values for the descriptor AB are to be returned, and the starting value is to be
provided as a 2-byte unpacked number

AB,2,U.Search Buffer

processing is to begin with the first value for AB that is equal to or greater than 20X'F2F0'Value Buffer

Example 3: Overview of Sequence Options

The following table illustrates the possibilities for using the ascending/descending option in con-
junction with various search buffer and value buffer contents. The following applies to the file
being read:

Overview of Sequence Options

363Command Reference

L9 Command: Read Descriptor Values

ACBX Interface Direct Call: L9 Command

This section describes ACBX interface direct calls for the L9 command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

A---binary29-32ISN

---------33-36

AFbinary37-40ISN Lower Limit

---------41-44

A---binary45-48ISN Quantity

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

---------51-56

UFalphanumeric/ binary57-64Additions 1

---------65-68---

AFalphanumeric/ binary69-76Additions 3

---------77-84

UFalphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

Command Reference364

L9 Command: Read Descriptor Values

After Adabas CallBefore Adabas CallFormatPositionField

---------117-128

A---binary129-136Compressed Record Length

A---binary137-144Decompressed Record Length

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

UFFormat

A---Record

UFSearch

UFValue

A---Multifetch *

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

The multifetch buffer is required only if the multifetch option is specified*

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
L9

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Response code 3 (ADARSP003) indicates that an end-of-file condition has been detected.

365Command Reference

L9 Command: Read Descriptor Values

Command ID (ACBXCID)
This field must be set to a non-blank, non-zero value. This value is used by Adabas to provide
the values in the correct sequence and to avoid the repetitive interpretation of the format buffer.

This field must not be modified during a given sequential pass of the file.

The first byte of this field may not be set to hexadecimal 'FF'.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN: Periodic Group Occurrence (ACBXISN)
If the descriptor for which values are to be returned is contained within a periodic group,
Adabas returns in this field the occurrence number in which the value being returned is located.
The occurrence number is provided in binary format in the two low-order bytes.

If the prefetch option is specified, any occurrence for prefetched values is returned in the
header preceding the value in the ISN buffer.

ISN Lower Limit: Lowest ISN in Record Buffer (ACBXISL)
Adabas returns values in this field as follows:

The L9 command . . .Cmd Op 2Cmd Op 1

returns the ISNs for each value in the record buffer; no value is returned in the
ISN lower limit field.

Iblank

places the first ISN of the returned ISN list in the ISN lower limit field.not I

returns the first ISN in the record buffer and all prefetched descriptor values in
the ISN buffer, preceded by a 16-byte header; no value is returned in the ISN
lower limit field.

IP(refetch)

places the first ISN of the last value prefetched in the ISN lower limit field.not I

returns the group of multifetched records in the record buffer and a description
of these records in the caller's ISN buffer; no value is returned in the ISN lower
limit field.

IM(ultifetch)

places the first ISN of the last value multifetched in the ISN lower limit field.not I

Command Reference366

L9 Command: Read Descriptor Values

If Command Option 1 is set to "M" (multifetch option), you can set:
■ a non-zero value in the ISN lower limit field to limit the number of values to be multifetched.
■ zero in the ISN lower limit field to multifetch all values.

Refer to the section Using the Multifetch/Prefetch Feature for more information.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

ISN Quantity: Record Count (ACBXISQ)
Except when the "return ISNs" (Command Option I) is specified, Adabas returns in this field
the number of records containing the value returned in the record buffer.

If the prefetch option is specified, the count of prefetched values is in the header that precedes
the value in the ISN buffer.

Command Option 1: Command-Level Multifetch/Prefetch Option (ACBXCOP1)
Specifying an M option in this field indicates that the (command-level) multifetch option is to
be used. The multifetch option can improve performance reading several descriptor values at
a time thereby eliminating the time needed for single-record fetches. For more information,
see the section Using the Multifetch/Prefetch Feature.

DescriptionOption

Multifetch processing is enabled.

In conjunction with this option, you can set:

M (multifetching)

■ a non-zero value in the ISN lower limit field to limit the number of values to be
multifetched.

■ zero in the ISN lower limit field to multifetch all values. The format of the ISN
buffer data with the "M" option reflects the standard record descriptor data format.

If the M option is specified, the L9 command puts all multifetched descriptor values in the
multifetch buffer, preceded by a 16-byte header. The multifetch buffer must be large enough
to hold the largest descriptor value plus 16 bytes. The actual multifetch buffer area defined in
the user program must be at least as large as the multifetch buffer length specified in the cor-
responding multifetch buffer ABD.

Command Option 2: Return ISNs Option (ACBXCOP2)

DescriptionOption

returns the ISNs for each value in the record buffer. The L9 command reads the Associator
inverted lists only; no Data Storage access is required.

I

the descriptor's entries are processed in ascending order.A

the descriptor's entries are processed in descending order.D

367Command Reference

L9 Command: Read Descriptor Values

Additions 1: Descriptor Name (ACBXADD1)
If both the search and value buffer lengths are set to zero, a value in the Additions 1 field is
the name of the descriptor for which values are to be returned. The name must be the same as
the descriptor name specified in the format buffer.

In this case, L9 processes all values for the specified descriptor from the beginning of the file.

The descriptor name is specified in the first two positions of this field. The remaining positions
must be set to blanks.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 5: Format ID, Global Format ID (ACBXADD5)
Use this field to specify a separate format ID that identifies the internal format buffer used for
this command, or to provide a global format ID allowing use of the internal format buffer by
all users.

As long as the leftmost bit of the Additions 5 field is set to 0, the value provided in the command
ID field is used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand, Format, andGlobal Format IDs for more information and examples.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Compressed Record Length (ACBXLCMP)
This field returns the compressed record length when a record was read or written. This is the
length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)
This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects
the total length across all buffer segments.

Command Reference368

L9 Command: Read Descriptor Values

Buffers

The following buffers apply to the L9 command:

■ Format Buffer
■ Record Buffer
■ Search Buffer
■ Value Buffer
■ ISN Buffer
■ Multifetch Buffer

Format Buffer

Note: Commas separate elements in the format buffer; a period terminates the syntax
statement. For more information about format buffer syntax, read Format Buffers, elsewhere
in this guide.

The format in which the values are to be returned must be specified in this buffer.

The syntax of the format buffer for L9 operation is:

name [,length] [,format] .

where:

The name of the descriptor for which values are to be returned. A phonetic descriptor may not be
specified. A collation descriptor may only be specified if the decode option has been specified in

name

its user exit: the value returned for it is not the index but the original field value. Subdescriptors,
superdescriptors, hyperdescriptors and descriptors defined as a multiple-value field may be
specified.

The length in which the value is to be returned. If length is not specified, the value will be returned
using the standard length of the descriptor.

length

The format in which the value is to be returned. The format specified must be compatible with the
standard format of the descriptor. If no format is specified, the value will be returned using the
standard format of the descriptor.

format

369Command Reference

L9 Command: Read Descriptor Values

Record Buffer

The descriptor value for the descriptor specified in the search and value buffers is returned in this
field. A different value is provided with each L9 call. If the descriptor is defined with the null
value suppression option, no value for the descriptor will be returned. If the Command Option 2
field is set to "I", Adabas returns a list of ISNs containing the requested value as well as the value
itself in this buffer. The ISNs are provided in ascending sequence.

The descriptor value is provided as follows:

length value count ISN-list

where:

A one-byte binary value which is the length of the value being provided. If the value has a
standard length according to the descriptor type, this field is zero.

length

A descriptor value.value

The number of values present in the file for the specified descriptor. This number may be
returned in one or two bytes. If in one byte, the format is X'cc' where "cc" is the count; if in two
bytes, the format is X'8ccc' where "ccc" is the count.

count

If the Command Option 2 field specified "I", the rest of the record buffer contains ISNs of the
records containing this value. One record buffer will contain only the ISNs from one NI (normal
index) block. Therefore:

ISN-list

■ the record buffer should be large enough to contain an entire NI block; and
■ the same value may appear several times with ascending ISNs.

Search Buffer

Note: Commas separate elements in the search buffer; a period terminates the syntax state-
ment. For more information about search buffer syntax, read Search Buffers, elsewhere in
this guide.

If both the search and value buffer lengths are set to zero, a value in the Additions 1 field is the
name of the descriptor for which values are to be returned. In this case, L9 processes all values for
the specified descriptor from the beginning of the file. The search and value buffers are not used.

If a starting value, ending value, or both are specified in the value buffer, the search buffer is re-
quired in order to limit the number of descriptor entries retrieved.

The length and format of the descriptor value as provided in the value buffer must be specified
in the search buffer if different from the standard length and/or format of the named descriptor.

When a single value is provided in the value buffer (that is, the starting value when Command
Option 2 is set to 'A' or the ending value when Command Option 2 is set to 'D'), the syntax for the
search buffer is

Command Reference370

L9 Command: Read Descriptor Values

name [i] [,length] [,format] [,comparator].

When two values are provided in the value buffer, the syntax for the search buffer is

name [i] [,length] [,format] ,S ,name [,length] [,format].

The elements used in the search buffer syntax statements are as follows:

The name of the descriptor for which values are to be returned. The name must be the same
as that specified in the format buffer.

name

A one- to three-digit occurrence number subscript appended to the descriptor name if the
descriptor is contained within a periodic group and only values within that particular
occurrence are to be returned.

i

The length of the value provided in the value buffer. If the length is not specified, it is assumed
that the value is being provided using the standard length of the descriptor.

length

The format of the value provided in the value buffer. If the format is not specified, it is
assumed that the value is being provided using the standard format of the descriptor.

format

The scope of the read sequence:comparator
greater than or equal to the value to/from the highest value (the default)GE

greater than the value to/from the highest valueGT

less than or equal to the value to/from the lowest valueLE

less than the value to/from the lowest valueLT

A FROM-TO range (inclusive) that involves two search expressions. The same descriptor
must be used in both expressions:

S

validAA,S,AA.

invalidAA,S,AB.

Value Buffer

If both the search and value buffer lengths are set to binary zeros, a value in the Additions 1 field
is the name of the descriptor for which values are to be returned. In this case, L9 processes all
values for the specified descriptor in the sequence specified in the Command Option 2 field: from
the beginning (A option) or end (D option) of the file. The search and value buffers are not used.

If a starting value, ending value, or both are specified in the value buffer, the search buffer is re-
quired in order to limit the number of descriptor entries retrieved.

If the search buffer comparator is GE or GT and a single value is provided in the value buffer, it
represents the starting value when Command Option 2 is set to A or the ending value when
Command Option 2 is set to D.

When two values are provided in the value buffer, the first specifies the lower limit of a range and
the second specifies the upper limit. Each value is either the starting or ending value depending
on the Command Option 2 setting of A or D.

371Command Reference

L9 Command: Read Descriptor Values

If a value specified is not present in the file, Adabas finds the next higher or lower value, depending
on the Command Option 2 setting of A or D. In this case, search buffer comparator LE is equivalent
to LT and GE is equivalent to GT. If the value specified is not present and no higher (or lower)
value is present, response code 3 (ADARSP003) is returned.

ISN Buffer

The ISN buffer is used only if the command-level multifetch option is used and if this command
is issued using the ACB direct call interface. The information held in the ISN buffer following an
L9 command results from specifying the M (multifetch) or P (prefetch) option in the Command
Option 1 field. The format of the ISN buffer data depends on which option was specified.

■ Data Format for the Multifetch Option (M)
■ Data Format for the Prefetch Option (P)

Data Format for the Multifetch Option (M)

See section READ (Lx) Multifetch Processing for the record descriptor data format.

Data Format for the Prefetch Option (P)

Note: The prefetch option is valid only for ACB interface direct calls.

The ISN buffer holds the optionally prefetched descriptor values, each preceded by a 16-byte
header. The 16-byte header preceding each value has the following format:

UsageByte

length of descriptor (including this header)1-2

nucleus response code3-4

nucleus internal ID5-8

periodic group occurrence (see the ISN field description)9-12

record count (see the ISN quantity field description)13-16

Multifetch Buffer

The multifetch buffer is used only if the command-level multifetch option is used and if this
command is issued using the ACBX direct call interface. See section READ (Lx) Multifetch Pro-
cessing for the record descriptor data format. For more information, read Using the Multi-
fetch/Prefetch Feature, elsewhere in this guide.

Command Reference372

L9 Command: Read Descriptor Values

Additional Considerations

The following additional considerations are applicable for the L9 command:

1. The command ID used with the L9 command is saved internally and used by Adabas. It is re-
leased by Adabas when an end-of-file condition is detected, an RC or CL command is issued,
or the Adabas session is terminated. Until it is released, the command ID may not be used for
another command.

2. If another user is updating the file being read with an L9 command, it is possible that you will
not receive one or more values in the file while reading with the L9 command.

3. Records can be updated in or deleted from a file being read by an L9 command. Adabas attempts
to keep track of the last and the next value to be provided to the L9 command, and to provide
the correct next value despite any interim update or deletion. However, if the record about to
be accessed by the L9 command changes for some reason (it is updated or deleted by another
user, for example), the L9 command continues processing as though no change occurred. In
other words, a record deleted just before its inverted list entry is accessed by the L9 command
is still considered a valid entry by the L9 command.

4. An internal format buffer used by an L9 command must have been created by a previous L9
command. Non-L9 commands cannot use internal format buffers created by L9 commands.

373Command Reference

L9 Command: Read Descriptor Values

374

35 LF Command: Read Field Definitions

■ Function and Use .. 376
■ ACB Interface Direct Call: LF Command ... 376
■ ACBX Interface Direct Call: LF Command ... 379
■ Buffers .. 382

375

The LF command reads the characteristics of all fields in a file.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The LF command is used to read the field definition information for a file. This command is used
primarily by Adabas subsystems; it is normally not used by an application program.

The user specifies the file number for which the field definitions are to be returned.

Adabas provides the field information in the record buffer in one of four formats, according to
the setting of the Command Option 2 field. The timestamp when the field definitions were created
or last updated is returned in the record buffer with the Command Option 2 field is set to X or F.
If a file is stored with ADAORD or restored with ADASAV, the timestamp of the store or restore
is not stored; the original timestamp of the file when it was reordered or saved is kept.

ACB Interface Direct Call: LF Command

This section describes ACB interface direct calls for the LF command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions
■ ACB Example

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

------5-8

UFbinary9-10File Number

A--binary11-12Response Code

------13-26

UFbinary27-28Record Buffer Length

------29-35

UFalphanumeric36Command Option 2

Command Reference376

LF Command: Read Field Definitions

After Adabas CallBefore Adabas CallFormatPositionField

------37-48

AFalphanumeric49-56Additions 3

------57-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

--*Format

A--Record

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but must be included in parameter list of call statement*

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
LF

File Number (ACBFNR)
The number of the file for which the field definition information is to be returned.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. If the LF command returns a nonzero
response code, the rightmost two bytes of Adabas control block bytes 45-48 (Additions 2 field)
may contain a subcode defining the exact response code meaning. Response codes and their
subcodes are defined in the Adabas Messages and Codes Manual documentation.

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The length specified must be large enough to contain all
field definition information for the file, but not larger than the size of the record buffer area

377Command Reference

LF Command: Read Field Definitions

defined in the user program. If your FDT is larger than 32,767 bytes use an ACBX call (with
its APLX/ADACBX interface) where larger buffers are supported.

Command Option 2: Type of Information to Be Displayed (ACBCOP2)
The setting of the Command Option 2 field determines the format and type of field information
to be returned in the record buffer.

DescriptionOption

This option delivers the same information as the "X" option (below), including information on
logically deleted fields and descriptors.

Logically deleted fields will be returned with a specific indicator. All entries with logically
deleted descriptors will be returned with a specific indicator.

F

Returns all field information in Adabas internal format.I

Returns all field information, including collation descriptor, subfield and superfield,
subdescriptor, superdescriptor, hyperdescriptor, and phonetic descriptor information.

However, this information may not be complete; in particular, new features introduced beginning
with Adabas Version 8.2 are not included.

S

Note: Very large FDTs cannot be read with the ACB interface if the required space exceeds the
record buffer size limit of 32 KB (minus 1 byte) length.

Returns extended field information, including collation descriptor, subfield, superfield,
subdescriptor, superdescriptor, hyperdescriptor, and phonetic descriptor information with
extended date and time formats.

For logically deleted fields, no entry will be returned. For logically deleted descriptors on fields,
subdescriptors, and superdescriptors, an entry will be returned with the descriptor options

X

reset. For collation descriptors, hyperdescriptors, and phonetic descriptors, no entry will be
returned.

Note: Very large FDTs cannot be read with the ACB interface if the required space exceeds the
record buffer size limit of 32 KB (minus 1 byte) length.

If this field is left blank or contains binary zero, the LF command returns field information
excluding sub-/super-/hyper-/phonetic or collation descriptor information. This is the same
format as provided in Adabas version 4.

Additions 3: Password (ACBADD3)
This field is used to provide a security password. If the file to be used is not security-protected,
this field should be set to blanks. If the file is security-protected, the user must provide a valid
password.

If the accessed file is password-protected, Adabas replaces the password with blanks during
command processing to protect password integrity.

Command Reference378

LF Command: Read Field Definitions

ACB Example

The field definition information for file 1 is to be read.

Control Block

LFCommand Code

field definitions requested for file 11File Number

100Record Buffer Length

information for all types of descriptors and sub/superfields is to
be returned

SCommand Option 2

file is not security-protectedbbbbbbbb (blanks)Additions 3

ACBX Interface Direct Call: LF Command

This section describes ACBX interface direct calls for the LF command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

---------13-16

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-49

UFalphanumeric50Command Option 2

---------51-68

AFalphanumeric/ binary69-76Additions 3

379Command Reference

LF Command: Read Field Definitions

After Adabas CallBefore Adabas CallFormatPositionField

---------77-114

A---binary115-116Error Subcode

---------117-128

A---binary129-136Compressed Record Length

A---binary137-144Decompressed Record Length

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

--*Format

A--Record

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but should be included in Adabas call or one will be automatically generated.*

Not used--

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
LF

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

Command Reference380

LF Command: Read Field Definitions

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file for which the field definition information is to
be returned.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

Command Option 2: Type of Information to Be Displayed (ACBXCOP2)
The setting of the Command Option 2 field determines the format and type of field information
to be returned in the record buffer.

DescriptionOption

his option delivers the same information as the "X" option (below), including information on
logically deleted fields and descriptors.

Logically deleted fields will be returned with a specific indicator. All entries with logically
deleted descriptors will be returned with a specific indicator.

F

Returns all field information in Adabas internal format.I

Returns all field information, including collation descriptor, subfield and superfield,
subdescriptor, superdescriptor, hyperdescriptor, and phonetic descriptor information.

Note: Beginning with Adabas 8.2, new field options (e.g. date-time and system fields) are not
returned when Command Option 2 is set to "S", due to the fixed length of the field information
output element. We recommend you set Command Option 2 to "X" instead.

S

Returns extended field information, including collation descriptor, subfield, superfield,
subdescriptor, superdescriptor, hyperdescriptor, and phonetic descriptor information with
extended date and time formats.

For logically deleted fields, no entry will be returned. For logically deleted descriptors on fields,
subdescriptors, and superdescriptors, an entry will be returned without descriptor options set.
For collation descriptors, hyperdescriptors, and phonetic descriptors, no entry will be returned.

X

If this field is left blank or contains binary zero, the LF command returns field information
excluding sub-/super-/hyper-/phonetic or collation descriptor information. This is the same
format as provided in Adabas version 4.

381Command Reference

LF Command: Read Field Definitions

Additions 3: Password (ACBXADD3)
This field is used to provide a security password. If the file to be used is not security-protected,
this field should be set to blanks. If the file is security-protected, the user must provide a valid
password.

If the accessed file is password-protected, Adabas replaces the password with blanks during
command processing to protect password integrity.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Compressed Record Length (ACBXLCMP)
This field returns the compressed record length when a record was read or written. This is the
length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)
This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects
the total length across all buffer segments.

Buffers

A format buffer is not used by the LF command, but should be included in the Adabas call.

All field definition information is returned in the record buffer, in one of four formats, depending
on the setting of the Command Option 2 field.

This section covers the following topics:

■ Format Buffer
■ Record Buffer When Command Option 2=S
■ Record Buffer When Command Option 2=F or X
■ Record Buffer When Command Option 2=I

Command Reference382

LF Command: Read Field Definitions

■ Record Buffer When Command Option 2 Not Set

Format Buffer

A format buffer is not used by the LF command, but should be included in the Adabas call. If this
is an ACB interface direct call and a format buffer is not specified, a processing error will occur;
ACB interface direct calls expect buffers to be specified in a set sequence. If this is anACBX interface
direct call and a format buffer is not specified, one will be automatically generated.

Record Buffer When Command Option 2=S

If the Command Option 2 field is set to "S", all field information, including collation descriptor,
subdescriptor, superdescriptor, hyperdescriptor, and phonetic descriptor and sub-/superfield in-
formation is returned in the following format:

Note: If you are using Adabas 8, and an LF command with Command Option 2 set to "S" is
run, and large object (LB) fields are encountered, the LB field description is returned in an
F-type FDT field definition. Bit 6 in the second format byte (at offset 7 or byte 8 in the ele-
ment) is set to indicate that the LB (large object) option is set for the field. In addition, bit 1
of the second format byte indicates whether the LB field is defined with the NB (no blank
compression) option.

UsageBytes

total length of information1-2

number of fields in the FDT (including SDTs, as described below)3-4

field entries; each entry is 8 bytes, maximum number of entries is 32145-N

special descriptor table (SDT) including(N+1) - M

■ sub-/superdescriptors (or sub-/superfields)
■ phonetic descriptors
■ hyperdescriptors
■ collation descriptors

The length of a sub-/phonetic/collation descriptor element is eight bytes. Superdescriptor or
hyperdescriptor elements are two or more 8-byte entries long.

The following sections provide details of this format:

■ FDT Field Entries
■ SDT Field Definitions
■ Collation Descriptor Entries
■ Hyperdescriptor Entries
■ Phonetic Descriptor Entries
■ Subfield/Subdescriptor Entries

383Command Reference

LF Command: Read Field Definitions

■ Superdescriptor/Superfield Entries

FDT Field Entries

The syntax of FDT field entry is:

'F' field-name option level length format

The following table describes this syntax:

UsageBytesNotation

"F" indicates an FDT field entry1F

field name2-3field-name

definition options:4option

■ bit 1=1: descriptor
■ bit 2=1: fixed length
■ bit 3=1: multiple-value field
■ bit 4=1: null suppression
■ bit 5=1: periodic group field
■ bit 6=1: parent of phonetic descriptor
■ bit 7=1: parent of subdescriptor or superdescriptor
■ bit 8=1: unique descriptor

level number (in binary)5level

length6length

type of data:7format

■ A -- alphanumeric
■ B -- binary
■ F -- fixed point
■ G -- floating point
■ P -- packed decimal
■ U -- unpaced decimal
■ W -- wide-character

Command Reference384

LF Command: Read Field Definitions

UsageBytesNotation

options (continued):8

■ bit 1=1: NB (no blank compression) option
■ bit 2=1: NV (not converted) option
■ bit 3=1: unused
■ bit 4=1: XI (exclude PE occurrence number from UQ) option
■ bit 5=1: LA (long alpha) option
■ bit 6=1: LB (large object) option
■ bit 7=1: NN option
■ bit 8=1: NC option

Note: A field within a periodic group has the following characteristics: - an option field
(byte 4) with bit 5=1; and - a level field (byte 5) with level number greater than 1. The periodic
group field itself always has option bit 5=1 and a level number of 1.

SDT Field Definitions

x SDT-definition

where x is one of the following:

DescriptionValue of x

Collation descriptor; see the section Collation Descriptor EntriesC

Hyperdescriptor; see the section Hyperdescriptor EntriesH

Phonetic descriptor; see the section Phonetic Descriptor EntriesP

Subfield or subdescriptor;, see the section Subfield/Subdescriptor EntriesS

Superfield or superdescriptor; see the sectionSuperdescriptor/Superfield EntriesT

Element continuationX'00'

Collation Descriptor Entries

'C' name option exit length p-field-name

385Command Reference

LF Command: Read Field Definitions

UsageBytesNotation

'C' indicates collation descriptor1'C'

collation descriptor name2-3name

definition options:4option

descriptorbit 1=1

exclude PE occurrence number from UQbit 2=1

multiple-value formatbit 3=1

null-value suppressionbit 4=1

periodic-group fieldbit 5=1

(unused)bits 6-7

unique descriptorbit 8=1

collation exit number (binary, values 1-8 permitted)5exit

length6length

parent-field name7-8p-field-name

Hyperdescriptor Entries

'H' name option exit length format X'00'
X'00' X'00' p-fieldname-list ...

UsageBytesNotation

'H' indicates a hyperdescriptor definition1'H'

hyperdescriptor name2-3name

definition options:4option

(unused)bit 1

fixed lengthbit 2=1

multiple valuebit 3=1

null-value suppressionbit 4=1

periodic groupbit 5=1

(unused)bit 6-7

unique descriptorbit 8=1

hyperdescriptor exit number (binary; values 1-31 permitted)5level

length6length

format:7format

Command Reference386

LF Command: Read Field Definitions

UsageBytesNotation

alphanumericA

binaryB

fixed pointF

floating pointG

packed decimalP

unpacked decimalU

options (continued)8X'00'

(unused)bits 1-3

XI (exclude PE occurrence number from UQ) optionbit 4=1

(unused)bits 5-8

A hyperdescriptor parent-field name list is an extension of a hyperdescriptor definition. It has the
following format for all eight-byte groups after the first:

ExplanationBytesNotation

X'00' indicates continuation1X'00'

(unused)2X'00'

parent-field name list: each name is two bytes; six bytes total (that is, three
names. If fewer than three names are provided, the additional bytes are
filled with X'00').

3-8p-fieldname-list...

Phonetic Descriptor Entries

'P' desc-name option p-field-name X'0000'

ExplanationBytesNotation

'P' indicates phonetic descriptor1'P'

phonetic descriptor name2-3desc-name

(unused)4option

parent-field name5-6p-field-name

(unused; set to nulls)7-8X'0000'

387Command Reference

LF Command: Read Field Definitions

Subfield/Subdescriptor Entries

'S' s-name option p-field-name from to

UsageBytesNotation

'S' indicates subdescriptor/subfield1'S'

subdescriptor or subfield name2-3s-name

definition options:4option

descriptorbit 1=1

exclude PE occurrence number
from UQ

bit 2=1

multiple-value formatbit 3=1

null-value suppressionbit 4=1

periodic-group fieldbit 5=1

(unused)bit 6-7

unique descriptorbit 8=1

parent-field name5-6p-field-name

starting (inclusive) byte7from

ending (inclusive) byte8to

Superdescriptor/Superfield Entries

'T' sup-name option p-field-name from to
X'00' X'000000'p-field-name from to

UsageBytesNotation

'T' indicates superdescriptor/superfield1'T'

superdescriptor name2-3sup-name

definition options:4option

descriptorbit 1=1

exclude PE occurrence number
from UQ

bit 2=1

multiple-value formatbit 3=1

null-value suppressionbit 4=1

periodic-group fieldbit 5=1

(unused)bit 6-7

unique descriptorbit 8=1

parent-field name5-6p-field-name

starting (inclusive) byte7from

Command Reference388

LF Command: Read Field Definitions

UsageBytesNotation

ending (inclusive) byte8to

Extension of a superdescriptor or superfield definition has the following format on all eight-byte
groups after the first:

ExplanationBytesNotation

indicates continuation1X'00'

(unused)2-4X'000000'

parent-field name5-6p-field-name

starting (inclusive) byte7from

ending (inclusive) byte8to

Record Buffer When Command Option 2=F or X

If the Command Option 2 field is set to "F" or "X", extended field information, including collation
descriptor, subdescriptor, superdescriptor, hyperdescriptor, and phonetic descriptor and sub-
/superfield information is returned in the following format:

The "F" option delivers the same information as the "X" option, including information on logically
deleted fields and descriptors. Logically deleted fields will be returned with a specific indicator;
entries with logically deleted descriptors will be returned with the specific indicator.

UsageBytes

Total length of information1-4

Structure level5

Flag byte for future use6

Number of field definition entries in the FDT (including SDTs, as described below). The maximum
number of entries is 3214.

7-8

UNIX timestamp (the number of microseconds since 1970)9-16

FDT Field entries: each entry is 16 bytes long. Future versions of Adabas may introduce additional,
larger entries. Therefore, unknown entry types should not be considered in error.

17-N

Special descriptor table (SDT) entries including:(N+1) - M

■ sub-/superdescriptors (or sub-/superfields)
■ phonetic descriptors
■ hyperdescriptors
■ collation descriptors

For SDT entries, an SDT element has an integral length and is a multiple of 8 bytes.

Referential integrity constraint table (RIT). This table is not applicable to mainframe systems; it
is used in Adabas open systems environments only.

(M+1) - L

389Command Reference

LF Command: Read Field Definitions

The following sections provide format details of the field and descriptor entries included in the
record buffer:

■ FDT Field Entries
■ SDT Field Entries
■ Collation Descriptor Entries
■ Hyperdescriptor Entries
■ Phonetic Descriptor Entries
■ Subfield/Subdescriptor Entries
■ Superdescriptor/Superfield Entries

These entries may be larger with each Adabas version. Therefore, you should always use the entry
field length (in byte 2) to skip to the next entry. The length of each entry is aligned to four bytes
so you can access 4-byte integer values without alignment problems.

FDT Field Entries

The following table describes the FDT field entry format when Command Option 2 is set to "F" or
"X".

UsageBytes

"F" indicates an FDT field definition1

Total length of FDT field entry2

Field name3-4

Field format:5

■ A: alphanumeric
■ B: binary
■ F: fixed point
■ G: floating point
■ P: packed decimal
■ U: unpaced decimal
■ W: wide-character

Definition options:6

■ bit 1=1: descriptor
■ bit 2=1: fixed length
■ bit 3=1: multiple-value field
■ bit 4=1: null suppression
■ bit 5=1: periodic group field
■ bit 6=1: parent of phonetic descriptor

Command Reference390

LF Command: Read Field Definitions

UsageBytes

■ bit 7=1: parent of subdescriptor or superdescriptor
■ bit 8=1: unique descriptor

Additional options:7

■ bit 1=1: NB (no blank compression) option
■ bit 2=1: NV (not converted) option
■ bit 3=1: unused
■ bit 4=1: XI (exclude PE occurrence number from UQ) option
■ bit 5=1: LA (long alpha) option
■ bit 6=1: LB (large object) option
■ bit 7=1: NN option
■ bit 8=1: NC option

Level number (in binary)8

Date/time edit masks:9

■ 1: E(DATE)
■ 2: E(TIME)
■ 3: E(DATETIME)
■ 4: E(TIMESTAMP)
■ 5: E(NATDATE)
■ 6: E(NATTIME)
■ 7: E(UNIXTIME)
■ 8: E(XTIMESTAMP)

For the datetime/edit masks, the following additional information is supplied:10

■ bit 0x01: TZ (timezone) option

For the SY option, the following additional information is supplied:

■ bit 0x40: CR option in use

SY function options or the user exit number:11

■ 1: TIME
■ 2: SESSIONID
■ 3: OPUSER
■ 4: SESSIONUSER (mainframe only)
■ 5: JOBNAME (mainframe only)

391Command Reference

LF Command: Read Field Definitions

UsageBytes

Additional field status information*:12

■ bit 0x01: Field logically deleted
■ bit 0x02: Descriptor logically deleted (mainframe only)

*: This information will only be given when Command Option 2 is set to "F"; other descriptor-related
flags also remain set. When Command Option 2 is set to "X", the field entry for the logically deleted
field will be suppressed entirely; descriptor-related flags for logically deleted descriptors will be
reset.

Field length13-16

Note: A field within a periodic group has the following characteristics: - an option field
(byte 6) with bit 5=1; and - a level field (byte 8) with level number greater than 1. The periodic
group field itself always has option bit 5=1 and a level number of 1.

SDT Field Entries

x SDT-definition

where x is one of the following:

DescriptionValue of x

Collation descriptor entry; see the section Collation Descriptor EntriesC

Hyperdescriptor entry; see the section Hyperdescriptor EntriesH

Phonetic descriptor entry; see the section Phonetic Descriptor EntriesP

Subfield or subdescriptor entry; see the section Subfield/Subdescriptor EntriesS

Superfield or superdescriptor entry; see the sectionSuperdescriptor/Superfield EntriesT

Element continuationX'00'

Collation Descriptor Entries

The following table describes the format of collation descriptor entries:

UsageBytes

"C" indicates a collation descriptor1

Total length of collation descriptor entry.2

Collation descriptor name3-4

Parent field format (only "W" is possible in Adabas open systems environments; both "A"
and "W" are possible in Adabas mainframe environments).

5

Command Reference392

LF Command: Read Field Definitions

UsageBytes

Definition options:6

■ bit 1=1: descriptor
■ bit 2=1: XI (exclude PE occurrence number from UQ) option
■ bit 3=1: multiple-value field
■ bit 4=1: null suppression
■ bit 5=1: periodic group field
■ bit 6=1: parent of phonetic descriptor
■ bit 7=1: parent of subdescriptor or superdescriptor
■ bit 8=1: unique descriptor

Standard length7-8

Parent field name9-10

Maximum internal length11-12

Additional options:13

■ 0x01: NC (open systems)
■ 0x02: Descriptor logically deleted (mainframe systems only)*

■ 0x04: LA (open systems only)
■ 0x08: LB (open systems only)
■ 0x80: Collation defined via collation exit

When this bit is not set, the collation is defined via ICU
■ Other bits are unused

*: This information will only be given when Command Option 2 is set to "F";
descriptor-related flags also remain set. When Command Option 2 is set to "X", the entry
for the logically deleted descriptor will be suppressed entirely.

String length of the collation attribute string (length byte and termination null character
not included)

14

Collation attribute string as null terminated string. For example: "'de',PRIMARY"

If the collation is defined via the collation exit, the exit number as a null terminated string
is placed here. For example: "1".

15-(14+byte14)

Notes:

1. The collation descriptor entry length is aligned to four bytes.

2. The format of the parent field is relevant if you specify a parent field value in the value buffer.
In Adabas on open systems, you can also specify the internal collation descriptor values if the

393Command Reference

LF Command: Read Field Definitions

collation descriptor is defined without the HE option. These values are values of format A with
option NV.

Hyperdescriptor Entries

The following table describes the format of hyperdescriptor entries:

UsageBytes

"H" indicates a hyperdescriptor definition1

Total length of the hyperdescriptor entry2

Hyperdescriptor name3-4

Field format5

Definition options:6

■ bit 1=1: descriptor
■ bit 3=1: multiple-value field
■ bit 4=1: null suppression
■ bit 5=1: periodic group field
■ bit 6=1: parent of phonetic descriptor
■ bit 7=1: parent of subdescriptor or superdescriptor
■ bit 8=1: unique descriptor

Hyperdescriptor length7-8

Exit number9

Additional field status information:*10

■ bit 0x02: Descriptor logically deleted (mainframe only)

*: This information will only be given when Command Option 2 is set to "F";
descriptor-related flags remain set. When Command Option 2 is set to "X", the field
entry for the logically deleted field will be suppressed entirely.

Unused11

Number of parent fields12

Parent field names13-(12+2* byte-12)

Note: The hyperdescriptor entry length is aligned to four bytes.

Command Reference394

LF Command: Read Field Definitions

Phonetic Descriptor Entries

The following table describes the format of phonetic descriptor entries:

UsageBytes

"P " identifies a phonetic descriptor1

Total length of phonetic descriptor entry2

Phonetic descriptor name3-4

Field format (currently only "A"-format supported)5

Additional field status information:*

*: This information will only be given when Command Option 2 is set to "F". When Command Option
2 is set to "X", the field entry for the logically deleted field will be suppressed entirely.

6

Phonetic descriptor length7-8

unused9-10

Phonetic descriptor parent field name11-12

Subfield/Subdescriptor Entries

The following table describes the format of subfield or subdescriptor entries:

UsageBytes

"S" identifies a subdescriptor or subfield1

Total length of the subfield or subdescriptor entry.2

Subdescriptor or subfield name3-4

Field format5

Definition options:6

■ bit 1=1: descriptor
■ bit 2=1: XI (exclude PE occurrence number from UQ) option
■ bit 3=1: multiple-value field
■ bit 4=1: null suppression
■ bit 5=1: periodic group field
■ bit 6=1: parent of phonetic descriptor
■ bit 7=1: parent of subdescriptor or superdescriptor
■ bit 8=1: unique descriptor

Descriptor length7-8

Additional field status information: *9

■ bit 0x02: Descriptor logically deleted (mainframe systems only)

395Command Reference

LF Command: Read Field Definitions

UsageBytes
*: This information will only be given when Command Option 2 is set to "F";
descriptor-related flags also remain set. When Command Option 2 is set to "X", the entry
for the logically deleted descriptor will appear with all descriptor related flags reset.

Number of parent fields ("1" for every subfield)10

Parent field entries. For each parent field, the following format is used:11-(10+ 6 *
byte10)

■ Parent field name (2 bytes)
■ From byte (2 bytes)
■ To byte (2 bytes)

Note: The subdescriptor entry length is aligned to four bytes.

Superdescriptor/Superfield Entries

The following table describes the format of superfield or superdescriptor entries:

UsageBytes

"T" identifies a superdescriptor or superfield1

Total length of the superfield or superdescriptor entry.2

Superdescriptor or superfield name3-4

Field format5

Definition options:6

■ bit 1=1: descriptor
■ bit 2=1: XI (exclude PE occurrence number from UQ) option
■ bit 3=1: multiple-value field
■ bit 4=1: null suppression
■ bit 5=1: periodic group field
■ bit 6=1: parent of phonetic descriptor
■ bit 7=1: parent of subdescriptor or superdescriptor
■ bit 8=1: unique descriptor

Descriptor length7-8

Additional field status information: *9

■ bit 0x02: Descriptor logically deleted (mainframe systems only)

*: This information will only be given when Command Option 2 is set to "F";
descriptor-related flags also remain set. When Command Option 2 is set to "X", the entry
for the logically deleted descriptor will appear with all descriptor related flags reset.

Command Reference396

LF Command: Read Field Definitions

UsageBytes

Number of parent fields ("1" for every superdescriptor)10

Parent field entries. For each parent field, the following format is used:11-(10+ 6 *
byte10)

■ Parent field name (2 bytes)
■ From byte (2 bytes)
■ To byte (2 bytes)

Record Buffer When Command Option 2=I

If "I" is set for Command Option 2, field information is returned in Adabas internal format:

ContentsBytes

X'80'1

B'00000xyz' where xyz are ciphering bits: 1=yes; 0=no2

userx

newy

oldz

binary zeros3-4

total inclusive length of FDT, including field definition table (FDT proper), FDT index, and
special descriptor table (SDT) [= p – 4]

5-8

Inclusive length of field definition table (FDT proper) [= n – 8]9-12

FDT field descriptor elements (20 bytes per element; see the following description)13-n

Inclusive length of FDT index [= m – n]n+1 to n+4

FDT indexn+5 to m

Inclusive length of special descriptor table (SDT) [= p – m]m+1 to m+4

Special descriptor table (SDT)m+5 to p

The format of each FDT field descriptor elements is described in the following table:

ContentsOffset

field level0

field name1 - 2

special field options3

reserved4 - 6

default field length7

field format8

descriptor definition options9

397Command Reference

LF Command: Read Field Definitions

ContentsOffset

special descriptor parent options10

periodic group count field11

FDT element chain pointer12-13

field security levels14

reserved15 - 19

The meaning of FDT elements is described in the Adabas architecture training information.

Record Buffer When Command Option 2 Not Set

Note: Command option 2 may be set to values other than "I" or "S" to support older programs;
these values do not support newer features. Software AG recommends "I" or "S" for new
programs.

If the Command Option 2 field contains neither "I" nor "S", the field information returned excludes
collation descriptor and sub-/super-/hyper-/phonetic descriptor information. The information is
provided in the same format as provided in Adabas version 4:

n field-def

where:

is the number of fields in the file. The number is provided as a four-byte binary number in the
first four bytes of the record buffer.

n

is the field definition information for each field within the file. The information for each field
is provided in six bytes according to the following format:

field-def

UsageBytes

level number (binary)1

name (alphanumeric)2 - 3

standard length (binary)4

standard format (alphanumeric):5

alphanumericA

binaryB

fixed pointF

floating pointG

packed decimalP

unpacked decimalU

wide-characterW

definition options:6

Command Reference398

LF Command: Read Field Definitions

UsageBytes

descriptorbit1=1

fixed storagebit 2=1

multiple-value fieldbit 3=1

null-value
suppression

bit 4=1

periodic group fieldbit 5=1

phonetic source fieldbit 6=1

sub-/superdescriptor
source field

bit 7=1

unique descriptorbit 8=1

The information for the next field immediately follows the information for the preceding field
with no intervening spaces.

399Command Reference

LF Command: Read Field Definitions

400

36 N1 and N2 Commands: Adding Records

■ Function and Use .. 402
■ ACB Interface Direct Call: N1 and N2 Commands .. 402
■ ACBX Interface Direct Call: N1 and N2 Commands .. 407
■ Buffers .. 411

401

The N1 and N2 commands are used to add a new record to a file.

The N1 command adds a new database record with an ISN assigned by Adabas. The N2 command
adds a new database record with an ISN assigned by the user.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The user specifies the file to which the record is to be added, and the fields for which values are
being provided. Any fields not specified will contain a null value in the record added.

Adabas assigns the record an ISN, adds the record to Data Storage, and performs any Associator
updating which may be required.

The N2 command is used if the ISN to be assigned to the record is being provided by the user. To
keep the ISN assigned to the same record, the unloaded file must be reloaded with the USER-
ISN=YES option.

If the user is an ET logic user and is operating in multiuser mode, the record added is placed in
hold status.

ACB Interface Direct Call: N1 and N2 Commands

This section describes ACB interface direct calls for N1 and N2 commands. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions
■ ACB Examples

Command Reference402

N1 and N2 Commands: Adding Records

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

A/U1Fbinary13-16ISN

A2--binary17-20ISN Lower Limit

A2--binary21-24ISN Quantity

UFbinary25-26Format Buffer Length

UFbinary27-28Record Buffer Length

------29-44

A--alphanumeric45-48Additions 2

AFalphanumeric49-56Additions 3

AFalphanumeric57-64Additions 4

UFalphanumeric65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

Notes

1. Supplied by Adabas for N1; unchanged for N2.

2. These fields are used and not reset by Adabas if coupled files are used.

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UFFormat

UFRecord

where:

403Command Reference

N1 and N2 Commands: Adding Records

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
N1 or N2

Command ID (ACBCID)
If a series of records is being added using a series of N1 or N2 calls, and the same fields are
specified in the format buffer for each call, this field should be set to a non-blank, non-zero
value. This results in a reduction in the time required to process each N1 or N2 call.

If only a single record is being added, or if the format buffer is modified between N1 or N2
calls, this field should be set to blanks.

The first byte of this field may not be set to hexadecimal 'FF'.

File Number (ACBFNR)
Specify the binary number of the file to be read in this field. For physical direct calls, specify
the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
If the N1 command is being executed, Adabas returns the ISN assigned to the record in this
field.

If the N2 command is being executed, the ISN to be assigned to the record must be provided
in this field. The ISN provided must not already be assigned to a record in the file, and must
be within the limit (MAXISN) in effect for the file. MAXISN is set by the DBA when the file is
loaded.

Command Reference404

N1 and N2 Commands: Adding Records

Note: You cannot assign an ISN that is greater than the value specified by the MAXISN
parameter for the file.

ISN Quantity/Lower Limit (ACBISQ and ACBISL)
These fields are set to nulls following completion of the N1 or N2 command operation, unless
hard-coupled files are used. If coupled files are used, these fields are used by N1 or N2 com-
mand processing and are not reset.

Format Buffer Length (ACBFBL)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

Additions 2: Length of Compressed Record (ACBADD2)
If the command is processed successfully, the following information is returned in this field:
■ If the record buffer contains at least one valid field value, the leftmost two bytes contain the

length (in binary form) of the newly added compressed record;
■ If the N1 or N2 command returns a nonzero response code, the rightmost two bytes may

contain a subcode defining the exact response code meaning. Response codes and their
subcodes are defined in the Adabas Messages and Codes Manual documentation.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code (ACBADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Format ID, Global Format ID (ACBADD5)
Use this field to specify a separate format ID that identifies the internal format buffer used for
this command, or to provide a global format ID allowing use of the internal format buffer by
all users.

As long as the leftmost bit of the Additions 5 field is set to 0, the value provided in the command
ID field will be used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

405Command Reference

N1 and N2 Commands: Adding Records

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand, Format, andGlobal Format IDs for more information and examples.

ACB Examples

■ Example 1
■ Example 2

Example 1

A record is to be added to file 1. The ISN of the record is to be assigned by Adabas. The field values
which are to be provided are as follows:

ValueField

ABCDAA

AAAMF (value 1)

BBBMF (value 2)

5BA (1st occurrence)

6BA (2nd occurrence)

Control Block

N1Command Code

only 1 record being addedbbbb (blanks)Command ID

1File Number

or larger15Format Buffer Length

or larger16Record Buffer Length

file 1 is not security-protectedbbbbbbbb (blanks)Additions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

AA,MF1-2,BA1-2.Format Buffer

X'C1C2C3C440404040C1C1C1C2C2C20506'Record Buffer

Command Reference406

N1 and N2 Commands: Adding Records

Example 2

A record is to be added to file 2. The ISN of the record is to be provided by the user. The field
values to be provided are as follows:

ValueField

12345678RA

ABCDRB

Control Block

N2Command Code

only 1 record is to be addedbbbb (blanks)Command ID

2File Number

ISN 20 is to be assigned to the record20ISN

or larger6Format Buffer Length

or larger18Record Buffer Length

file 2 is security-protectedpasswordAdditions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

RA,RB.Format Buffer

X'F1F2F3F4F5F6F7F8C1C2C3C4404040404040'Record Buffer

ACBX Interface Direct Call: N1 and N2 Commands

This section describes ACBX interface direct calls for N1 and N2 commands. It covers the following
topics:

■ Control Block and Buffer Overview

407Command Reference

N1 and N2 Commands: Adding Records

■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

A/U1Fbinary29-32ISN

---------33-36

A2---binary37-40ISN Lower Limit

---------41-44

A2---binary45-48ISN Quantity

---------49-64

AFalphanumeric/ binary69-76Additions 3

AFalphanumeric77-84Additions 4

UFalphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

---------117-128

A---binary129-136Compressed Record Length

A---binary137-144Decompressed Record Length

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

Notes

1. Supplied by Adabas for N1; unchanged for N2.

2. These fields are used and not reset by Adabas if coupled files are used.

Command Reference408

N1 and N2 Commands: Adding Records

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

UFFormat

UFRecord

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
N1 or N2

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
If a series of records is being added using a series of N1 or N2 calls, and the same fields are
specified in the format buffer for each call, this field should be set to a non-blank, non-zero
value. This results in a reduction in the time required to process each N1 or N2 call.

If only a single record is being added, or if the format buffer is modified between N1 or N2
calls, this field should be set to blanks.

The first byte of this field may not be set to hexadecimal 'FF'.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

409Command Reference

N1 and N2 Commands: Adding Records

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISN)
If the N1 command is being executed, Adabas returns the ISN assigned to the record in this
field.

If the N2 command is being executed, the ISN to be assigned to the record must be provided
in this field. The ISN provided must not already be assigned to a record in the file, and must
be within the limit (MAXISN) in effect for the file. MAXISN is set by the DBA when the file is
loaded.

Note: You cannot assign an ISN that is greater than the value specified by the MAXISN
parameter for the file.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

ISN Lower Limit (ACBXISL)
This field is set to nulls following completion of the N1 or N2 command operation, unless
hard-coupled files are used. If coupled files are used, this field is used by N1 or N2 command
processing and is not reset.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

ISN Quantity (ACBXISQ)
This field is set to nulls following completion of the N1 or N2 command operation, unless
hard-coupled files are used. If coupled files are used, this field is used by N1 or N2 command
processing and is not reset.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code (ACBXADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Command Reference410

N1 and N2 Commands: Adding Records

Additions 5: Format ID, Global Format ID (ACBXADD5)
Use this field to specify a separate format ID that identifies the internal format buffer used for
this command, or to provide a global format ID allowing use of the internal format buffer by
all users.

As long as the leftmost bit of the Additions 5 field is set to 0, the value provided in the command
ID field will be used as the format ID as well.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

See the sectionCommand, Format, andGlobal Format IDs for more information and examples.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Compressed Record Length (ACBXLCMP)
This field returns the compressed record length when a record was read or written. This is the
length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)
This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects
the total length across all buffer segments.

Buffers

■ Format Buffer

411Command Reference

N1 and N2 Commands: Adding Records

■ Record Buffer

Format Buffer

The fields for which values are being provided in the record buffer must be specified in this buffer.
When performing an N1 command, the format buffer cannot contain any of the following:

■ format selection criteria ("field-name operator value...");
■ an edit mask element;
■ a reference to a sub-/superdescriptor field;
■ the same field specified more than once (except a multiple-value field);
■ an "-N" type of record format specification (for example, ABN or AB1 - N).

Any of the above in the format buffer cause a nucleus response of 44 for an N1 command. Any
fields that are not specified in the format buffer will contain a null value in the record being added.

The following rules control the processing of non-NU descriptors which are not specified in the
format buffer for an N1 or N2 command:

■ Any omitted non-NU descriptor whose definition in the field definition table (FDT) is both the
farthest from the beginning of the FDT, and precedes the FDT definition of the last field specified
in the format buffer will have null values entered in the inverted list for the descriptor;

■ Any omitted non-NU descriptor whose definition in the field definition table (FDT) is both the
farthest from the beginning of the FDT, and follows the FDT definition of the last field specified
in the format buffer will not have null values entered in the inverted list for the descriptor.

Therefore, the format buffer entry should reference either all non-NU descriptors, or at least one
field following (in FDT order) all non-NU descriptor fields. This ensures that null values are cor-
rectly inserted in the inverted lists for all non-NU descriptors.

For non-NU descriptors that are contained in a periodic group, null values are entered in their
inverted lists only for null occurrences that precede the highest occurrence number specified in
the format buffer.

The following additional format buffer considerations are applicable for the N1 or N2 command:

1. Subdescriptors, superdescriptors, hyperdescriptors, and phonetic descriptors may not be spe-
cified in the format buffer. Adabas automatically creates the correct value for any of the above
if a field from which such a descriptor is derived is specified in the format buffer.

2. Theoretically, the maximum record length permitted is 32767 bytes before compression. The
actual maximum is limited by block size restrictions. It is also smaller depending on the size of
the LU parameter specified for the Adabas session; the maximum is (LU - format buffer length
- 108). The maximum record length after compression is equal to the smaller of either the Data
Storage block size - 4 bytes, or the Work block size - 110 bytes.

Command Reference412

N1 and N2 Commands: Adding Records

3. If a field is specified using a length override that exceeds the standard length (not permitted if
the field is defined with the fixed storage option), all subsequent references to this field should
specify the length that was used. If a subsequent reference uses the standard length, value
truncation for alphanumeric fields or a non-zero response code for numeric fields may occur.

4. Only a multiple-value field may be specified more than once in the format buffer.

5. A multiple-value count field, periodic group count field, or literal value specified in the format
buffer is ignored by Adabas. The corresponding value in the record buffer is also ignored.

6. If a multiple-value field is specified in the format buffer, Adabas sets the multiple-value field
count according to the following rules:
■ For a multiple-value field defined with the NU option, the count field is adjusted to reflect

the number of existing nonblank values. Blank values are completely suppressed.

01,MF,5,A,MU,NUField definition

MF1-3.Format buffer

XXXXXYYYYYZZZZZRecord buffer

XXXXX,YYYYY,ZZZZZ
MF count = 3

Result after add

MF1-3.Format buffer

XXXXXbbbbbZZZZZRecord buffer

XXXXX,ZZZZZ
MF count = 2

Result after add

MF1-3.Format buffer

bbbbbbbbbbbbbbb (blanks)Record buffer

values suppressed
MF count = 0

Result after add

■ For a multiple value field defined without the NU option, the count is adjusted to reflect the
number of existing values (including null values).

01,MF,5,A,MUField definition

MF1-3.Format buffer

XXXXXYYYYYbbbbbRecord buffer

XXXXX,YYYYY,b(blank)
MF count = 3

Result after add

MF1.Format buffer

bbbbb (blanks)Record buffer

b (blank)
MF count = 1

Result after add

Up to 191 values are permitted for a multiple-value field.

413Command Reference

N1 and N2 Commands: Adding Records

7. If a periodic group or a field within a periodic group is specified in the format buffer, Adabas
sets the periodic group count equal to the highest occurrence number specified in the format
buffer. If the highest occurrence suppresses null values, the count is adjusted accordingly.

01,GB,PE
02,BA,1,B,DE,NU
02,BB,5,P,NU

Field definitions

GB1-2.Format buffer

X'08000000500F09000000600F'Record buffer

GB (1st occurrence) BA = 8 BB = 500
GB (2nd occurrence) BA = 9 BB = 600
GB count = 2

Result after add

GB1-2.Format buffer

X'00000000000F00000000000F'Record buffer

GB (1st occurrence) values suppressed
GB (2nd occurrence) values suppressed
GB count = 0

Result after add

Up to 191 occurrences are permitted for a periodic group.

8. 8. If a field defined with variable length (no standard length) is specified in the format buffer,
the corresponding value in the record buffer must be preceded by a 1-byte binary number that
represents the length of the value (including the length byte).

01,AA,3,A
01,AB,A

Field definitions

AA,AB.Format buffer

X'F1F2F306F1F2F3F4F5'Record buffer

Fields AA and AB are to be added. The value for AA is "123". The value for AB (which is a
variable length field) is "12345".

Record Buffer

The value for each field specified in the format buffer must be provided in the record buffer.

Each value must be provided according to the standard length and format of the field for which
the value is being provided, unless a different length and/or format is specified in the format
buffer.

If the field is defined as a variable-length field (no standard length), a 1-byte binary field containing
the length of the field (including the length byte) must be provided immediately before the value.

If the field for which the value is being provided is defined as a unique descriptor, the value
provided must not already exist for the descriptor; otherwise, the command will be rejected.

Command Reference414

N1 and N2 Commands: Adding Records

37 OP Command: Open User Session

■ Function and Use .. 416
■ User Types ... 417
■ ACB Interface Direct Call: OP Command .. 420
■ ACBX Interface Direct Call: OP Command .. 428
■ Buffers .. 433
■ User Queue Element .. 435
■ Exceeding Time Limits .. 436
■ Values Returned in Control Block Fields ... 436

415

The OP command indicates the beginning of a user session and specifies options for that user
session.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

Software AG recommends that all users start their Adabas sessions with an OP command.

An OP command is mandatory if any of the following is true for the user:

■ The nucleus is run with ADARUN parameter OPENRQ=YES.
■ Exclusive file control (EXF) is to be performed.
■ User data that was stored in an Adabas system file by a previous ET command is to be read.
■ User data is to be stored in an Adabas system file, using a C3, CL, or ET command.
■ The user is to be assigned a special processing priority.
■ The user is to be an access-only user (no update commands permitted).
■ A transaction time limit or a non-activity time limit is to be set for the user that differs from that

specified by ADARUN parameters TT or TNAx, respectively. The setting for a user must conform
to the maximum (two-byte) setting set by the ADARUN parameters MXTT and MXTNA, re-
spectively.

■ Special data encoding or architecture is to be specified for the user session.

An OP command is otherwise optional. An implicit OP command is issued by Adabas when the
first Adabas command is issued by a user who is not currently identified to Adabas.

Users accessing files that are protected by Adabas Security are not required to issue an OP com-
mand; such users must, however, provide a password with each command directed to a security-
protected file. Ask your DBA or system security specialist for more information.

If an OP command is issued by an active ET logic user, and the user is not at ET status (an OP, ET,
or BT command has not been previously issued with one or more records in hold status), Adabas
issues a BT command for the user and returns response code 9 (ADARSP009) for the OP command.
If an OP command is issued by any other type of active user, Adabas issues a CL command for the
user before processing the OP command.

A user operating in single-user mode cannot issue more than one OP command during a given
session execution.

Command Reference416

OP Command: Open User Session

User Types

Adabas recognizes various user types depending on whether the file is updated or just accessed,
and if exclusive control user was requested. This chart shows the procedure flow through the OP
command.

OP Command, Procedure Flow

417Command Reference

OP Command: Open User Session

OP Command, Procedure Flow (continued)

Command Reference418

OP Command: Open User Session

OP Command, Procedure Flow (continued)

■ Access-Only Users
■ Exclusive Control Users

419Command Reference

OP Command: Open User Session

■ ET Logic Users

Access-Only Users

If an OP command is issued in which access-only (ACC parameter) is specified, the user is defined
to be an access-only user. Such users may not issue hold, update, delete, add record, ET, or BT
commands.

Note: Access-/update-level security can also be controlled through Adabas Security on a
file and field level, and through Adabas SAF Security on a database and file level. The se-
curity control supplements the user type control; that is, an access-only user's access level
can be further defined on a file, field, or value level with Adabas Security, but cannot be
changed to an update level.

Exclusive Control Users

If an OP command is issued in which exclusive file control (EXF or EXU parameter) is specified,
the user is defined to be an exclusive control user. Such a user is considered to be a non-ET logic
user (unless the UPD parameter has also been specified in which case the user is defined to be an
ET logic user). If such a user issues an ET command, the user is changed to an ET logic user when
the first ET command is issued.

ET Logic Users

All other users (including users who do not issue an OP command) are defined as ET logic users.
Transactions issued by such users are subject to the transaction duration time limit.

ACB Interface Direct Call: OP Command

This section describes ACB interface direct calls for the OP command. It covers the following
topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions

Command Reference420

OP Command: Open User Session

■ ACB Examples

Control Block and Buffer Information

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

A--alphanumeric5-8Command ID

UFbinary9-10File Number**

A--binary11-12Response Code

A--binary13-16ISN

AFbinary17-20ISN Lower Limit

AFbinary21-24ISN Quantity

------25-26

UFbinary27-28Record Buffer Length

------29-34

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

UFalphanumeric37-44Additions 1

A--alphanumeric45-48Additions 2

------49-56

AFbinary57-64Additions 4

A--binary65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

*Format

AFRecord

where:

421Command Reference

OP Command: Open User Session

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but must be included in parameter list of the call statement*

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

**

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
OP

Command ID (ACBCID)
Adabas will return binary zeros in this field if the previous session for this user was terminated
successfully with a CL command, or no previous session existed for this user.

If the previous session for this user was not terminated successfully with a CL command,
Adabas will return in this field the transaction sequence number of the last successfully com-
pleted user transaction.

The above information is returned only if the user is an ET logic user. If the user is a non-ET
logic user, this field is not modified by Adabas.

File Number (ACBFNR)
A database ID is only necessary if you are accessing a database other than the application's
default database (read in by ADARUN DBID parameter, provided in the loaded link globals
table, or linked with the link routine).

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
Adabas sets this field to binary zero on return.

ISN Lower Limit: Non-activity Time Limit (ACBISL)
This field may be used to provide a user-specific non-activity time limit. This limit must conform
to the maximum specified by the ADARUN parameter MXTNA. If this field contains binary
zeros, the non-activity time limit specified by the appropriate ADARUN parameter (TNAA,
TNAE, or TNAX) for the Adabas session is in effect.

Command Reference422

OP Command: Open User Session

Following successful OP completion, Adabas returns its system, call type, and nucleus ID
(nucid) information in this field; the timeout information previously held here is returned in
the Additions 5 field, bytes 4 and 5. See the section Values Returned in Control Block Fields
for detailed information.

ISN Quantity: Transaction Time Limit (ACBISQ)
This field may be used to provide a user-specific transaction time limit. This limit must conform
to the maximum specified by the ADARUN parameter MXTT. If this field contains binary
zeros, the transaction time limit specified by the ADARUN TT parameter for the Adabas session
is in effect.

Following successful OP completion, Adabas returns its system release information in this
field; the timeout information previously held here is returned in the Additions 5 field, bytes
6 and 7. See the section Values Returned in Control Block Fields for detailed information.

Record Buffer Length (ACBRBL)
The length of the record buffer must be specified in this field. The length specified must be
large enough to accommodate all required record buffer entries. The record buffer length
should be set to zero if an empty record buffer is to be supplied.

If user data stored in an Adabas system file is to be returned, the length specified must be large
enough to permit the user data to be inserted in the record buffer; otherwise, the user data will
be truncated.

Command Option 1: Restrict Files Option (ACBCOP1)

DescriptionOption

The user is restricted to the files specified in the file list provided in the record buffer.
The OP command returns a response code 48 (ADARSP048) if a specified file is not

R (restrict files)

available. Later commands issue response code 17 (ADARSP017) if the user attempts
to access/update a file not contained in the file list. If the "R" option is not specified and
an attempt is made to access a file not currently in the specified file list, Adabas tests
to determine whether the file is currently in use by an Adabas utility and if not, the
file is added to the user's list. See the sectionUserQueue Element for more information.

Command Option 2: Read User Data (ACBCOP2)

DescriptionOption

user (ET) data stored in an Adabas system file by the last successful C3, CL, or ET command
issued by the user (in which user data was provided) is returned in the record buffer. This option

E

may only be used if the user has provided the same user ID for this user session and the session
during which the user data was stored.

Additions 1: User ID (ACBADD1)
This field may be used to provide a user ID for the user session. To avoid later limitations,
Software AG recommends that you always specify a user ID.

423Command Reference

OP Command: Open User Session

The value provided for the user ID should be unique for the user (that is, not used by any
other user at the same time), and must begin with the value "A" through "9". If the value is not
unique, a response code 48 (ADARSP048) occurs. If the other user has been inactive for 60
seconds, the nucleus schedules an internal autobackout for that user and returns response
code 9 (ADARSP009) for the OP command. With another OP command, the user can take over
the user ID (ETID) of the other user, who loses the user ID due to the internal backout transac-
tion (BT) command and receives response code 9 (ADARSP009) on the next call.

A user ID must be provided if any of the following is true:
■ The user intends to first read (if any) and then store user data, and the user wishes the data

to be available during a subsequent user or Adabas session.

A user that specifies a user ID (ETID) can store ET data that remains available in later sessions.
ET data stored by a user having no user ID is available during the user's current session
only. Data to be stored can be provided with the ET command or at the end of the session
with a close (CL) command. ET data stored with a user ID in a previous session can be read
with either the OP or RE command.

■ The user is to be assigned a special processing priority (priorities are assigned with Adabas
Online System or the ADADBS utility's PRIORITY function);

■ The operation being started is on a multiclient file; see the Adabas DBA Reference document-
ation for more information about multiclient files. A user with a blank or missing owner ID
receives response code 3 (ADARSP003) or 113 (ADARSP113) when trying to access a mul-
ticlient file.

Users for whom none of the above conditions are true may set this field to blanks.

Additions 2: Transaction Sequence Number (ACBADD2)
Adabas returns in this field the transaction sequence number of the last transaction for which
an ET command with ET data was executed successfully.

If the OP command returns a non-zero response code, the rightmost two bytes may contain a
subcode defining the exact response code meaning. Response codes and their subcodes are
defined in the Adabas Messages and Codes Manual documentation.

Additions 4: Maximum Settings (ACBADD4)
This field may be used to set the following user-specific maximum binary values:

UsageBytes

maximum number of ISNs that may be stored in the internal ISN element table resulting from
the execution of a Sx command. Increasing the default setting will result in less access to the
Adabas Work being necessary. The maximum allowed is 1000.

57-58

maximum number of records that a user may have in hold status at the same time. The default
is the value set by the ADARUN NISNHQ parameter. The maximum is the smaller of either the

59-60

value set by the ADARUN NH parameter or 16,777,215. If the value is set to hex 'FFFF', the value
set by the ADARUN NH parameter will be used.

Command Reference424

OP Command: Open User Session

UsageBytes

maximum number of command IDs that may be active for a user at the same time. This value
cannot be greater than 1/240 X LQ (where LQ is the ADARUN sequential command table length
parameter value, which has a default of 10000).

61-62

maximum amount of time permitted for the execution of an Sx command.63-64

If one or more of the values above are not specified, the system-wide specifications for the
nucleus become the defaults. The user should consult with the DBA concerning the system
defaults in effect for these values before entering any user-specific values in this field.

Values specified must be in binary. Specifying blanks or binary zero is equivalent to "no value".

Adabas sets the Additions 4 field to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Returned Time-Out Values (ACBADD5)
User-specific timeout values are returned in the left (high-order) and right (low-order) halves,
respectively, of the rightmost fullword of the Additions 5 field. For more information, see the
section Values Returned in Control Block Fields.

ACB Examples

■ Example 1: Access-Only User
■ Example 2: ET Logic User
■ Example 3: Exclusive Control User Without ET Logic
■ Example 4: Exclusive Control User with ET Logic
■ Example 5: Special Encoding for Wide-Character Fields

Example 1: Access-Only User

An access-only user session is to be opened.

Control Block

OPCommand Code

or larger4Record Buffer Length

425Command Reference

OP Command: Open User Session

Buffer Areas

ACC. (or ACC= . or ACC=file-list.)Record Buffer

Allows all selected files to be accessed.

Example 2: ET Logic User

A user session is to be opened during which the user intends to access files 8 and 9 and update
files 8 and 16. The user intends to store user data in an Adabas system file during the session. The
user data stored during the previous session is to be read. The ID for the user is "USER0001".

Control Block

OPCommand Code

or larger15Record Buffer Length

user data is to be readECommand Option 2

user ID is required if user data is to be stored and/or readUSER0001Additions 1

Buffer Areas

ACC=9,UPD=8,16.Record Buffer

Example 3: Exclusive Control User Without ET Logic

A user session is to be opened during which the user wishes to have exclusive control of files 10,
11, and 12. The user does not intend to use ET commands and does not intend to store or read
user data in an Adabas system file.

Control Block

OPCommand Code

or larger13Record Buffer Length

user data is not to be stored or readb (blank)Command Option 2

user ID is not requiredbbbbbbbb (blanks)Additions 1

Command Reference426

OP Command: Open User Session

Buffer Areas

EXU=10,11,12.Record Buffer

Example 4: Exclusive Control User with ET Logic

A user session is to be opened during which the user wishes to have exclusive control of files 10,11,
and 12. The user intends to use ET commands.

Control Block

OPCommand Code

or larger26Record Buffer Length

user data is not to be stored or readb (blank)Command Option 2

user ID is not requiredbbbbbbbb (blanks)Additions 1

Buffer Areas

EXU=10,11,12,UPD=10,11,12.Record Buffer

Example 5: Special Encoding for Wide-Character Fields

A user session is to be opened with shift-JIS special encoding for wide-character fields. The user
intends to update file number 1.

Control Block

OPCommand Code

or larger16Record Buffer Length

Buffer Areas

UPD=1,WCODE=932.Record Buffer

427Command Reference

OP Command: Open User Session

ACBX Interface Direct Call: OP Command

This section describes ACBX interface direct calls for the OP command. It covers the following
topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions

Control Block and Buffer Information

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

A---alphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID**

---------21-28

A---binary29-32ISN

---------33-36

AFbinary37-40ISN Lower Limit

---------41-44

AFbinary45-48ISN Quantity

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

---------51-56

UFalphanumeric/ binary57-64Additions 1

A---binary65-68Additions 2

---------69-76

AFalphanumeric77-84Additions 4

A---alphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

---------117-144

Command Reference428

OP Command: Open User Session

After Adabas CallBefore Adabas CallFormatPositionField

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

*Format

AFRecord

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but should be included in Adabas call or one will be automatically generated.*

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

**

Not used--

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
OP

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
Adabas will return binary zeros in this field if the previous session for this user was terminated
successfully with a CL command, or no previous session existed for this user.

If the previous session for this user was not terminated successfully with a CL command,
Adabas will return in this field the transaction sequence number of the last successfully com-
pleted user transaction.

429Command Reference

OP Command: Open User Session

The above information is returned only if the user is an ET logic user. If the user is a non-ET
logic user, this field is not modified by Adabas.

Database ID (ACBXDBID)
Use this field to specify the database ID only if you are accessing a database other than the
application's default database (read in by ADARUN DBID parameter, provided in the loaded
link globals table, or linked with the link routine). The Adabas call will be directed to this
database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

ISN (ACBXISN)
Adabas sets this field to binary zero on return.

ISN Lower Limit: Non-activity Time Limit (ACBXISL)
This field may be used to provide a user-specific non-activity time limit. This limit must conform
to the maximum specified by the ADARUN parameter MXTNA. If this field contains binary
zeros, the non-activity time limit specified by the appropriate ADARUN parameter (TNAA,
TNAE, or TNAX) for the Adabas session is in effect.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

Following successful OP completion, Adabas returns its system, call type, and nucleus ID
(nucid) information in this field; the timeout information previously held here is returned in
the Additions 5 field, bytes 4 and 5. See the section Values Returned in Control Block Fields
for detailed information.

ISN Quantity: Transaction Time Limit (ACBXISQ)
This field may be used to provide a user-specific transaction time limit. This limit must conform
to the maximum specified by the ADARUN parameter MXTT. If this field contains binary
zeros, the transaction time limit specified by the ADARUN TT parameter for the Adabas session
is in effect.

The ACBXISQ field is a four-byte binary field embedded in the eight-byte ACBXISQG field,
which is not yet used. Set the high-order part of the ACBXISQG field to binary zeros.

Following successful OP completion, Adabas returns its system release information in this
field; the timeout information previously held here is returned in the Additions 5 field, bytes
6 and 7. See the section Values Returned in Control Block Fields for detailed information.

Command Reference430

OP Command: Open User Session

Command Option 1: Restrict Files Option (ACBXCOP1)

DescriptionOption

The user is restricted to the files specified in the file list provided in the record buffer.
The OP command returns a response code 48 (ADARSP048) if a specified file is not

R (restrict files)

available. Later commands issue response code 17 (ADARSP017) if the user attempts
to access/update a file not contained in the file list. If the "R" option is not specified and
an attempt is made to access a file not currently in the specified file list, Adabas tests
to determine whether the file is currently in use by an Adabas utility and if not, the
file is added to the user's list. See the sectionUserQueue Element for more information.

Command Option 2: Read User Data (ACBXCOP2)

DescriptionOption

user (ET) data stored in an Adabas system file by the last successful C3, CL, or ET command
issued by the user (in which user data was provided) is returned in the record buffer. This option

E

may only be used if the user has provided the same user ID for this user session and the session
during which the user data was stored.

Additions 1: User ID (ACBXADD1)
This field may be used to provide a user ID for the user session. To avoid later limitations,
Software AG recommends that you always specify a user ID.

The value provided for the user ID should be unique for the user (that is, not used by any
other user at the same time), and must begin with the value "A" through "9". If the value is not
unique, a response code 48 (ADARSP048) occurs. If the other user has been inactive for 60
seconds, the nucleus schedules an internal autobackout for that user and returns response
code 9 (ADARSP009) for the OP command. With another OP command, the user can take over
the user ID (ETID) of the other user, who loses the user ID due to the internal backout transac-
tion (BT) command and receives response code 9 (ADARSP009) on the next call.

A user ID must be provided if any of the following is true:
■ The user intends to first read (if any) and then store user data, and the user wishes the data

to be available during a subsequent user or Adabas session.

A user that specifies a user ID (ETID) can store ET data that remains available in later sessions.
ET data stored by a user having no user ID is available during the user's current session
only. Data to be stored can be provided with the ET command or at the end of the session
with a close (CL) command. ET data stored with a user ID in a previous session can be read
with either the OP or RE command.

■ The user is to be assigned a special processing priority (priorities are assigned with Adabas
Online System or the ADADBS utility's PRIORITY function);

■ The operation being started is on a multiclient file; see the Adabas DBA Reference document-
ation for more information about multiclient files. A user with a blank or missing owner ID

431Command Reference

OP Command: Open User Session

receives response code 3 (ADARSP003) or 113 (ADARSP113) when trying to access a mul-
ticlient file.

Users for whom none of the above conditions are true may set this field to blanks.

Additions 2: Transaction Sequence Number (ACBXADD2)
Adabas returns in this field the transaction sequence number of the last transaction for which
an ET command with ET data was executed successfully.

Additions 4: Maximum Settings (ACBXADD4)
This field may be used to set the following user-specific maximum binary values:

UsageBytes

maximum number of ISNs that may be stored in the internal ISN element table resulting from
the execution of a Sx command. Increasing the default setting will result in less access to the
Adabas Work being necessary. The maximum allowed is 1000.

77-78

maximum number of records that a user may have in hold status at the same time. The default
is the value set by the ADARUN NISNHQ parameter. The maximum is the smaller of either the

79-80

value set by the ADARUN NH parameter or 16,777,215. If the value is set to hex 'FFFF', the value
set by the ADARUN NH parameter will be used.

maximum number of command IDs that may be active for a user at the same time. This value
cannot be greater than 1/240 X LQ (where LQ is the ADARUN sequential command table length
parameter value, which has a default of 10000).

81-82

maximum amount of time permitted for the execution of an Sx command.83-84

If one or more of the values above are not specified, the system-wide specifications for the
nucleus become the defaults. The user should consult with the DBA concerning the system
defaults in effect for these values before entering any user-specific values in this field.

Values specified must be in binary. Specifying blanks or binary zero is equivalent to "no value".

Adabas sets the Additions 4 field to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Additions 5: Returned Time-Out Values (ACBXADD5)
User-specific timeout values are returned in the left (high-order) and right (low-order) halves,
respectively, of the rightmost fullword of the Additions 5 field. For more information, see the
section Values Returned in Control Block Fields.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Command Reference432

OP Command: Open User Session

Buffers

The following buffers apply to OP commands:

■ Format Buffer
■ Record Buffer

Format Buffer

A format buffer is not used by the OP command, but should be included in the Adabas call. If this
is an ACB interface direct call and a format buffer is not specified, a processing error will occur;
ACB interface direct calls expect buffers to be specified in a set sequence. If this is anACBX interface
direct call and a format buffer is not specified, one will be automatically generated.

Record Buffer

The record buffer specifies:

■ the files to be accessed or updated, as well as the type of updating to be performed
■ special encoding for alphanumeric or wide-character fields during the session
■ for fields in record and value buffers, special architecture that overrides the architecture for re-

mote calls set by Entire Net-work.

The syntax of the record buffer is

where:

■ keyword is one of the following:

433Command Reference

OP Command: Open User Session

file is to be accessed onlyACC ESS

file is to be updated (implies ET logic)UPD ATE

exclusive file control: no other users may access/update the fileEXF

file is to be updated under exclusive control of the user. No other user can update the specified
file while this user session is active. Exclusive control is given only if no other active user has
issued an OP command specifying the EXF/EXU or UPD parameter for the file.

EXU

■ file-list is one or more 1-5-digit file numbers (leading zeros permitted) indicating the Adabas
file(s) for which the preceding file-list keyword is applicable.

■ ACODE assigns special encoding for A-type fields during the user session.

alpha-key specifies the key of supplied encoding descriptor objects.
■ ARC defines a special data architecture for fields in the record and value buffers. This definition

overrides the architecture key defined for remote calls in Entire Net-work.

Note: The ARC setting does not affect the data conversion performed by ADALNK /
LNKUES on the Adabas control block (ACB) and buffers with fixed layout such as the
search and format buffers.

architecture-key is an integer which is the sum of the following numbers:

high-order byte firstb=0byte order

low-order byte firstb=1

ASCII encoding familye=0encoding family

EBCDIC encoding family (default for local calls)e=2

IBM370 floating-point formatf=0floating-point format

VAX floating-point formatf=4

IEEE floating-point formatf=8

The default is ARC = b + e + f = 2; that is, high-order byte first; EBCDIC encoding family; and
IBM370 floating-point format (b=0; e=2; f=0).

User data from an Intel386 PC provides the example: b=1; e=0; f=8; or ARC=9.
■ TZ assigns the time zone for the user session. Adabas uses this time zone setting to convert the

user local date-time value (the fields with the TZ option) to or from the value stored in universal
time (UTC). If no time zone is specified for a user session, Adabas issues respone 55 subcode 30
when attempting this conversion.

timezone-name specifies the name of a valid Adabas-supported time zone. For information
about the time zone names in the Adabas time zone library, read Supported Time Zones, in the
Adabas DBA Tasks Manual.

Command Reference434

OP Command: Open User Session

Note: Time zone names are case-sensitive and must be specified in single quotation marks.

For example:

TZ='America/New_York'

■ WCODE assigns special encoding for W-type fields during the user session.

wchar-key specifies the key of supplied encoding descriptor objects.

The record buffer syntax must end with a period (".").

If no parameters are specified for the record buffer, it contains only a period ("."). In this case, the
record buffer length can be set to zero in the Adabas control block and the record buffer need not
be supplied.

If a user-type keyword is to apply to a series of files, each file for which the keyword is applicable
may be specified with a comma between each file number. Duplicate file numbers within a keyword
are permitted. Duplicate file numbers across keywords are permitted. Each keyword may appear
only once.

UPD and EXU also imply access to the file. If ACC is the only keyword specified, a file list is not
required.

If no user-type keyword is specified, the user automatically becomes an ET logic user.

User Queue Element

During the time that a user is active, Adabas maintains a user queue element (UQE) for the user.

■ User Type and File Lists
■ Special Encoding Information

User Type and File Lists

The UQE lists the numbers of up to 5000 files the user is currently using. For a non-ET user, Adabas
creates the file list when the user issues an OP command; no file list is created for an ET user. The
file list may be modified during the user session. If no OP command is issued, the file list will
initially contain no files. Each file in the file list is marked with one of the following use classes:

■ ACC, access only;
■ EXF/EXU, access and update and under exclusive control;
■ UPD, access and update;

435Command Reference

OP Command: Open User Session

■ UTI, access and update and in use by an Adabas utility.

If a subsequent attempt is made to access a file not currently in the specified file list, Adabas tests
to determine whether the file is currently in use by an Adabas utility. If not, the file is added to
the user's UQE and marked as ACC. However, if the OP command specifies the restrict files option
in the Command Option 1 field with a file list in the record buffer, and then tries to access a file
not in the file list, response code 17 (ADARSP017) occurs.

If a subsequent attempt is made to update a file not currently in the user's file list, the following
tests are applied:

■ Does the request conflict with the user type? For example, an access-only user may not issue
update commands.

■ Is the file to be updated under exclusive control of another user or Adabas utility?

If the file is determined to be available for the user, the file is added to the user's UQE and marked
as UPD.

Special Encoding Information

If the user specifies ACODE, WCODE, and/or ARC to determine the special encoding to be used,
this information is communicated to the Adabas nucleus, which stores it in the UQE.

Exceeding Time Limits

See the section on timeout characteristics in the Adabas Operations documentation for information
on which action will be taken if a user exceeds the non-activity time limit.

Values Returned in Control Block Fields

In some cases, values are returned in the ISN lower limit and ISN quantity fields to allow compat-
ibility with VMS/UNIX systems. As a result, any user-specific timeout values previously held in
these fields in early Adabas releases are now returned in the Additions 5 field. These changes also
affect the corresponding command log fields.

The ISN quantity field returns the following binary values after OP execution:

Command Reference436

OP Command: Open User Session

Binary Values Returned after OP Execution

This returned information provides compatibility with VMS/UNIX.

The ISN lower limit (ISL) field now returns the following binary information:

437Command Reference

OP Command: Open User Session

Binary Information Returned from ISL

The rightmost two bytes indicate whether the user program is running in a noncluster (00) or
cluster (nn) nucleus environment. The specific cluster nucleus type return code is for use by Software
AG technical support.

Any timeout values specified in the ISL/ISQ fields at the start of OP processing are returned in
the Additions 5 field, as follows:

Timeout Values

and correspondingly, in the Additions 5 command log entry.

Command Reference438

OP Command: Open User Session

38 RC Command: Release Command ID or Global Format

ID
■ Function and Use .. 440
■ ACB Interface Direct Call: RC Command .. 441
■ ACBX Interface Direct Call: RC Command .. 445

439

The RC command releases one or more command IDs or a global format ID for the issuing user.

We recommend that you set unused ACB and ACBX fields to binary zeros before the direct call
is initiated.

Function and Use

The RC command may be used to release one or more command IDs currently assigned to a user,
or to delete one or all global format IDs, as follows:

■ Internal format buffer pool command IDs. Related internal formats are also released;
■ ISN list (TBI) command IDs;
■ Command IDs in the table of sequential commands (TBLES/TBQ);
■ Command IDs equal to and greater than the specified command ID value in either the internal

format buffer pool or the TBI, TBLES and TBQ, or both;
■ One special global format ID for a user group;
■ All existing global format IDs.

If no selective options are specified, the entered command ID is released from all of the above
areas. When a command ID is released, its related TBI or TBLES/TBQ entries are also removed;
however, the internal format buffer pool entry is not necessarily released.

The RC command should be used under the following conditions:

■ The user has completed processing an ISN list stored on the Adabas Work by an Sx command
that specified the save-ISN-list option. Issuing the RC command permits Adabas to reuse the
space currently occupied by the list;

■ The user wishes to terminate a sequential pass of a file (using an L2/L5, L3/L6, or L9 command)
before reaching an end-of-file condition;

■ The user has completed a series of L1/L4, A1/A4, or N1/N2 commands in which a non-blank
command ID was used.

Command Reference440

RC Command: Release Command ID or Global Format ID

ACB Interface Direct Call: RC Command

This section describes ACB interface direct calls for the RC command. It covers the following
topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions
■ ACB Examples

Control Block and Buffer Information

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

------13-34

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

UFalphanumeric37-44Additions 1

------45-64

UFalphanumeric65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

None used.

where:

441Command Reference

RC Command: Release Command ID or Global Format ID

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
RC

Command ID (ACBCID)
The command ID to be released or to be used as a reference is specified in this field. A value
of blanks or binary zeros releases all the command IDs currently assigned to the user.

File Number (ACBFNR)
If the Command Option 1 field is set to D, E, or O, the file number field must contain the binary
number of the file associated with the format or global format ID to be released.

For physical direct calls, specify the file number as follows:
■ For a one-byte file number, enter the file number in the rightmost byte (10); the leftmost byte

(9), should be set to binary zero (B'0000 0000').
■ For a two-byte file number, use both bytes (9 and 10) of the field.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

Command Option 1/2: Type of Command IDs to Be Released (ACBCOP1 and ACBCOP2)
These fields are used to indicate that a command ID, format ID, or global format ID is to be
released from the internal format buffer pool, the ISN list table (TBI), or the table of sequential
commands (TBLES/TBQ). For information about the tables, see the sectionGeneral Programming
Considerations.

If both Command Option 1/2 fields are set to blanks or binary zeros, the command ID specified
in the command ID field is released from all tables in which it is present.

If either Command Option field is set to one of the following values, the resources associated
with the command ID, format ID, or global format ID are released as indicated:

Command Reference442

RC Command: Release Command ID or Global Format ID

Releases . . .Option

all existing global formatsC

all formats for a given file number and descriptor nameD

all global formats for a given file number and descriptor nameE

the format associated with the specified command IDF

all existing formats associated with command IDs greater than or equal to the specified command
ID

G

the ISN list (TBI) associated with the specified command IDI

the global format ID contained in the Additions 5 field.L

the global format ID contained in the Additions 5 field for a given file number.O

the sequential commands (TBLES/TBQ) associated with the specified command IDS

all ISN lists (TBI) and sequential commands (TBLES/TBQ) associated with command IDs that
are greater than or equal to the specified command ID. Internal formats are not released.

X

Options D and E are used when the format was created by an L3 or L6 command to ensure
the return of correct data in an environment where Smith/Jones problems are possible. The
underlying format identifier in these cases is 12 bytes: an 8-byte format ID, a 2-byte file number,
and a 2-byte descriptor name.

Additions 1: Descriptor Name (ACBADD1)
If Command Option D or E is specified, the first two bytes of the Additions 1 field must contain
the alphanumeric descriptor field name associated with the format or global format ID to be
released. All remaining positions must be set to blanks.

If the format to be released was not created using the L3 or L6 command, this field is not used.

Additions 5: Released Global Format ID (ACBADD5)
In this field, specify a global format ID to be released.

ACB Examples

■ Example 1
■ Example 2
■ Example 3
■ Example 4

443Command Reference

RC Command: Release Command ID or Global Format ID

■ Example 5

Example 1

The command ID "0003" is to be released.

Control Block

RCCommand Code

command ID 003 to be releasedX'0003'Command ID

all CID types to be releasedbb (blanks)Command Option 1/2

Example 2

All command IDs currently assigned to the user are to be released.

Control Block

RCCommand Code

binary zeros indicate that all command IDs are to be releasedX'00000000'Command ID

all CID types to be releasedbb (blanks)Command Option 1/2

Example 3

All the command IDs assigned to the user and contained in the table of sequential commands or
the internal format buffer pool are to be released.

Control Block

RCCommand Code

binary zeros indicate that all command IDs are to be releasedX'00000000'Command ID

F indicates that command IDs contained in the internal format buffer pool
are to be released

FCommand Option 1

S indicates that command IDs contained in the table of sequential commands
are to be released

SCommand Option 2

Command Reference444

RC Command: Release Command ID or Global Format ID

Example 4

The same global format ID is defined for several files. Release it for all files.

Control Block

RCCommand Code

releases the formats of the global format ID contained in the Additions
5 field.

LCommand Option 1/2

B'11' in the two high-order (leftmost) bits of the first byte of this number
identify all eight bytes as the global format ID.

C'TGLOB001'Additions 5

Example 5

The same global format ID is defined for several files. Release it for the file 3 only.

Control Block

RCCommand Code

binary number of the file for which the global format ID is to be released.03File Number

releases the formats of the global format ID contained in the Additions
5 field for the file specified in the file number field.

OCommand Option 1/2

B'11' in the two high-order (leftmost) bits of the first byte of this number
identify all eight bytes as the global format ID.

C'TGLOB001'Additions 5

ACBX Interface Direct Call: RC Command

This section describes ACBX interface direct calls for the RC command. It covers the following
topics:

■ Control Block and Buffer Information

445Command Reference

RC Command: Release Command ID or Global Format ID

■ Control Block Field Descriptions

Control Block and Buffer Information

Control Block

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-48

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

---------51-56

UFalphanumeric/ binary57-64Additions 1

------65-84

UFalphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

None used.

where:

Command Reference446

RC Command: Release Command ID or Global Format ID

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used--

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
RC

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
The command ID to be released or to be used as a reference is specified in this field. A value
of blanks or binary zeros releases all the command IDs currently assigned to the user.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
If the Command Option 1 field is set to D, E, or O, use this field to specify the number of the
file associated with the format or global format ID to be released.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

CommandOptions 1 and 2: Type ofCommand IDs toBeReleased (ACBXCOP1 andACBXCOP2)
These fields are used to indicate that a command ID, format ID, or global format ID is to be
released from the internal format buffer pool, the ISN list table (TBI), or the table of sequential
commands (TBLES/TBQ). For information about the tables, see the sectionGeneral Programming
Considerations.

447Command Reference

RC Command: Release Command ID or Global Format ID

If both Command Option 1/2 fields are set to blanks or binary zeros, the command ID specified
in the command ID field is released from all tables in which it is present.

If either Command Option field is set to one of the following values, the resources associated
with the command ID, format ID, or global format ID are released as indicated:

Releases . . .Option

all existing global formatsC

all formats for a given file number and descriptor nameD

all global formats for a given file number and descriptor nameE

the format associated with the specified command IDF

all existing formats associated with command IDs greater than or equal to the specified command
ID

G

the ISN list (TBI) associated with the specified command IDI

the global format ID contained in the Additions 5 field.L

the global format ID contained in the Additions 5 field for a given file number.O

the sequential commands (TBLES/TBQ) associated with the specified command IDS

all ISN lists (TBI) and sequential commands (TBLES/TBQ) associated with command IDs that
are greater than or equal to the specified command ID. Internal formats are not released.

X

Options D and E are used when the format was created by an L3 or L6 command to ensure
the return of correct data in an environment where Smith/Jones problems are possible. The
underlying format identifier in these cases is 12 bytes: an 8-byte format ID, a 2-byte file number,
and a 2-byte descriptor name.

Additions 1: Descriptor Name (ACBXADD1)
If Command Option D or E is specified, the first two bytes of the Additions 1 field must contain
the alphanumeric descriptor field name associated with the format or global format ID to be
released. All remaining positions must be set to blanks.

If the format to be released was not created using the L3 or L6 command, this field is not used.

Additions 5: Released Global Format ID (ACBXADD5)
In this field, specify a global format ID to be released.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Command Reference448

RC Command: Release Command ID or Global Format ID

39 RE Command: Read ET User Data

■ Function and Use .. 450
■ ACB Interface Direct Call: RE Command .. 450
■ ACBX Interface Direct Call: RE Command .. 455
■ Buffers .. 458

449

The RE command reads ET (user) data for the current user, another user, or all users.

Function and Use

The RE command reads user data that was previously stored in an Adabas system checkpoint file
by a C3, CL, or ET command. The user data is returned in the record buffer. This user data may
be needed for a user restart following abnormal termination of a user or Adabas session.

User data is read for the issuing user if no value is specified in the Command Option 1 field. The
RE command reads user data stored during a previous session for the issuing user if the previous
and current sessions both began with OP commands specifying the user ID.

Depending on the specified Command Option, the RE command reads user data for either another
specific user (if that user ID is specified) or for all users.

■ If "I" is specified in the Command Option 1 field, user data stored by another user may be read
if the ID of the user who stored the data is specified in the Additions 1 field.

■ If "A" is specified in the Command Option 1 field, the current and the following RE commands
read all user data for all user IDs in ascending logical sequence. The corresponding user ID is
returned in the Additions 1 field as each RE command is completed. The RE command with
option "A" reads only the user data written to the checkpoint file whose transactions ended with
an ET command; user data is not read for users' transactions that are not yet closed with an ET
command.

ACB Interface Direct Call: RE Command

This section describes ACB interface direct calls for the RE command. It covers the following topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions

Command Reference450

RE Command: Read ET User Data

■ ACB Examples

Control Block and Buffer Information

Control Block

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

A--binary5-8Command ID

UFbinary9-10File Number ****

A--binary11-12Response Code

AFbinary13-16ISN

------17-26

UFbinary27-28Record Buffer Length

------29-34

UFalphanumeric35Command Option 1

------36

U/A **F *alphanumeric37-44Additions 1

A--alphanumeric45-48Additions 2

------49-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

--***Format

A--Record

where:

451Command Reference

RE Command: Read ET User Data

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Supplied ET data user ID when Command Option 1 equals "I"*

User ID for ET data in record buffer if Command Option 1 equals "A"**

Not used but must be included in parameter list of call statement***

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
RE

Command ID (ACBCID)
Adabas will return a transaction sequence number or binary zeros in this field.

Adabas returns binary zeros in this field if the user whose user data is to be read is not active
and either no previous session exists for this user or the previous session for this user was ter-
minated successfully with a CL command. Non-ET-logic users receive binary zeros in this
field.

If the user is currently active or the previous session for the user was not terminated successfully
with a CL command, Adabas returns the transaction sequence number of the last successfully
completed user transaction.

File Number (ACBFNR)
A database ID is only necessary if you are accessing a database other than the application's
default database (read in by ADARUN DBID parameter, provided in the loaded link globals
table, or linked with the link routine).

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. If Command Option 1 specified "A",
a response code 3 (ADARSP003) indicates end-of-file for the user data. Nonzero response
codes, which can also have accompanying subcodes returned in the rightmost half of the Ad-
ditions 2 field, are described in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
If Command Option 1 specifies "A", user data is returned in logical sequence starting with this
ISN. If this field specifies zero, all user data is returned.

Command Reference452

RE Command: Read ET User Data

Record Buffer Length (ACBRBL)
The length of the record buffer. The length specified determines the number of bytes of user
data to be returned.

If the length specified is less than the number of bytes of user data available, only the specified
number of bytes are inserted in the record buffer and the rightmost bytes are truncated.

Command Option 1 (ACBCOP1)
If no value is specified in the Command Option 1 field, user data is read for the issuing user.
The RE command reads user data stored during a previous session for the issuing user if the
previous and current sessions both began with OP commands specifying the user ID.

If a Command Option 1 value is specified, the RE command reads user data for either another
specific user or for all users as follows:

DescriptionOption

Reads user data stored by another user if the ID of the user who stored the data is specified
in the Additions 1 field.

I (ID of user)

The current and following RE commands read all user data in the
record buffer for all user IDs in ascending logical (ISN) sequence. A starting ISN can be
specified in the ISN field. If the ISN field specifies zero, all user data is returned. The user

A (all users)

ID for the user data contained in the record buffer at the end of the current and each
following RE operation is returned in the Additions 1 field as each RE command is
completed. RE reads only the user data written to the checkpoint file for users whose
transactions ended with an ET command; user data is not read for users' transactions that
are not yet closed with an ET command. For this option, a response code 3 (ADARSP003)
returned in the response code field indicates end-of-file for the user data.

Additions 1: User ID (ACBADD1)
If user data stored by another user is to be read, this field must be set to the ID of the user who
stored the data. If Command Option 1 specifies "A", this field returns the user ID for the user
data contained in the record buffer at the end of this and each following RE operation.

Additions 2: Transaction Sequence Number (ACBADD2)
If an ET logic user stored the data being read, Adabas will return, in this field, the transaction
sequence number of the user's last successfully completed transaction in which user data was
stored with an ET or CL command.

If the RE command returns a non-zero response code, the rightmost two bytes of the Additions
2 field may contain a subcode defining the exact response code meaning. Response codes and
their subcodes are defined in the Adabas Messages and Codes Manual documentation.

453Command Reference

RE Command: Read ET User Data

ACB Examples

■ Example 1
■ Example 2
■ Example 3

Example 1

The user wishes to read the user's own data previously stored with an ET command.

Control Block

RECommand Code

100 bytes of user data is to be read100Record Buffer Length

the user data to be read was stored by this userblankCommand Option 1

0ISN

Example 2

The user wishes to read user data stored by another user (user ID = USER0002).

Control Block

RECommand Code

150 bytes of user data is to be read150Record Buffer Length

the user data to be read was stored by another userICommand Option 1

ID of the user who stored the user dataUSER0002Additions 1

0ISN

Example 3

In the following example, the user wishes to read all user data and the corresponding user ID.

Control Block

RECommand Code

250 bytes of user data is to be read, per user250Record Buffer Length

ACommand Option 1

read all user data0ISN

Command Reference454

RE Command: Read ET User Data

ACBX Interface Direct Call: RE Command

This section describes ACBX interface direct calls for the RE command. It covers the following
topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions

Control Block and Buffer Information

Control Block

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

A---alphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID****

UFnumeric21-24File Number

---------25-28

AFbinary29-32ISN

---------33-48

UFalphanumeric49Command Option 1

---------50-56

U/A**F*alphanumeric/ binary57-64Additions 1

A---binary65-68Additions 2

---------69-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

455Command Reference

RE Command: Read ET User Data

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

--***Format

A--Record

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Supplied ET data user ID when Command Option 1 equals "I"*

User ID for ET data in record buffer if Command Option 1 equals "A"**

Not used but should be included in Adabas call or one will be automatically generated.***

A database ID is only necessary if you are accessing a database other than the application's default
database (read in by ADARUN DBID parameter, provided in the loaded link globals table, or linked
with the link routine).

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
RE

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

If Command Option 1 specified "A", a response code 3 (ADARSP003) indicates end-of-file for
the user data.

Command ID (ACBXCID)
Adabas will return a transaction sequence number or binary zeros in this field.

Adabas returns binary zeros in this field if the user whose user data is to be read is not active
and either no previous session exists for this user or the previous session for this user was ter-
minated successfully with a CL command. Non-ET-logic users receive binary zeros in this
field.

Command Reference456

RE Command: Read ET User Data

If the user is currently active or the previous session for the user was not terminated successfully
with a CL command, Adabas returns the transaction sequence number of the last successfully
completed user transaction.

Database ID (ACBXDBID)
Use this field to specify the database ID only if you are accessing a database other than the
application's default database (read in by ADARUN DBID parameter, provided in the loaded
link globals table, or linked with the link routine). The Adabas call will be directed to this
database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISN)
If Command Option 1 specifies "A", user data is returned in logical sequence starting with this
ISN. If this field specifies zero, all user data is returned.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

Command Option 1 (ACBXCOP1)
If no value is specified in the Command Option 1 field, user data is read for the issuing user.
The RE command reads user data stored during a previous session for the issuing user if the
previous and current sessions both began with OP commands specifying the user ID.

If a Command Option 1 value is specified, the RE command reads user data for either another
specific user or for all users as follows:

DescriptionOption

Reads user data stored by another user if the ID of the user who stored the data is specified
in the Additions 1 field.

I (ID of user)

The current and following RE commands read all user data in the
record buffer for all user IDs in ascending logical (ISN) sequence. A starting ISN can be
specified in the ISN field. If the ISN field specifies zero, all user data is returned. The user

A (all users)

ID for the user data contained in the record buffer at the end of the current and each
following RE operation is returned in the Additions 1 field as each RE command is
completed. RE reads only the user data written to the checkpoint file for users whose

457Command Reference

RE Command: Read ET User Data

DescriptionOption

transactions ended with an ET command; user data is not read for users' transactions that
are not yet closed with an ET command. For this option, a response code 3 (ADARSP003)
returned in the response code field indicates end-of-file for the user data.

Additions 1: User ID (ACBXADD1)
If Command Option 1 specifies an "I", this field must be set to the user ID of the user who
stored the data.

If Command Option 1 specifies "A", this field returns the user ID for the user data contained
in the record buffer at the end of this and each following RE operation.

Additions 2: Transaction Sequence Number (ACBXADD2)
If an ET logic user stored the data being read, Adabas will return, in this field, the transaction
sequence number of the user's last successfully completed transaction in which user data was
stored with an ET or CL command.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Buffers

The following buffers apply to the RE command:

■ Format Buffer
■ Record Buffer

Format Buffer

A format buffer is not used by the RE command, but should be included in the Adabas call. If this
is an ACB interface direct call and a format buffer is not specified, a processing error will occur;
ACB interface direct calls expect buffers to be specified in a set sequence. If this is anACBX interface
direct call and a format buffer is not specified, one will be automatically generated.

Command Reference458

RE Command: Read ET User Data

Record Buffer

Adabas returns the user data in the record buffer. If no user data was found, this contains blanks
at the end of RE operation.

459Command Reference

RE Command: Read ET User Data

460

40 RI Command: Release Record

■ Function and Use .. 462
■ ACB Interface Direct Call: RI Command ... 462
■ ACBX Interface Direct Call: RI Command ... 465

461

The RI command releases a held record and ISN, although records are not released unconditionally,
as described in Function and Use, next in this chapter.

Function and Use

The RI command releases ISNs for records being held by the issuing user. The selected ISN for a
single database file, or all ISNs held by the issuing user in all files can be released.

Effective with Adabas 8.2.2, records are no longer released unconditionally. If your application issues
an RI command for a record that has been updated in the current transaction, Adabas will now
return response code 113 (ADARSP113), or if ISN=0 was specified, response code 2 (ADARSP002).
This behavior may affect how your application programs are coded. If your application programs
perform updates and if they try to release updated records from hold status, they may be affected.
Such application programs should be adjusted to either not issue RI commands for updated records
or suppress the resulting response code 113 (ADARSP113). (The ADARUN RIAFTERUPDATE
parameter can be used to suppress the response code 113 and response code 2 results, and only
records that have not been updated in the current transaction will be released from hold.) In addi-
tion, if your installation has Natural installed, you must apply Natural zap NA76045 for downward
compatibility, which is available using Empower.

To use this command, specify the file and ISN of the record to be released in the appropriate
Adabas control block fields. Specifying zeros in the ISN field releases all the records currently
being held by the user in all files.

Note: Programs using ET logic should not release records with the RI command if any up-
dating has been performed during the current transaction, since this could result in a loss
of data integrity. ET users should release ISNs with the ET or CL commands.

ACB Interface Direct Call: RI Command

This section describes ACB interface direct calls for the RI command. It covers the following topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions

Command Reference462

RI Command: Release Record

https://empower.softwareag.com

■ ACB Examples

Control Block and Buffer Information

Control Block

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

------5-8

UFbinary9-10File Number

A--binary11-12Response Code

UFbinary13-16ISN

------17-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

None used.

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
RI

File Number (ACBFNR)
The number of the file containing the record to be released.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

463Command Reference

RI Command: Release Record

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
The ISN of the record to be released. If an ISN value is entered, the file number must also be
specified. To release all ISNs held by the user, set this field to binary zeros.

ACB Examples

■ Example 1
■ Example 2

Example 1

The record identified by ISN 3 in file 2 is to be released from hold status.

Control Block

RICommand Code

record to be released is in file 22File Number

record with ISN 3 is to be released3ISN

Example 2

Any records being held by the issuing user are to be released from hold status.

Control Block

RICommand Code

a value in this field is ignored if the ISN field is zero-File Number

release ISNs for all held records from all files0ISN

Command Reference464

RI Command: Release Record

ACBX Interface Direct Call: RI Command

This section describes ACBX interface direct calls for the RI command. It covers the following
topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions

Control Block and Buffer Information

Control Block

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

---------13-16

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

UFbinary29-32ISN

---------33-50

UFalphanumeric51Command Option 3

---------52-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

None used.

where:

465Command Reference

RI Command: Release Record

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
RI

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file containing the record to be released.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISN)
The ISN of the record to be released. If an ISN value is entered, the file number must also be
specified. To release all ISNs held by the user, set this field to binary zeros.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

Command Reference466

RI Command: Release Record

Command Option 3: Shared Hold Status (ACBXCOP3)

DescriptionOption

Puts the record in shared hold status until the end of the transaction. When specified in an RI
request, if the record is in exclusive hold status and has not been updated in the current

S

transaction, it is placed in shared hold status; if it is in exclusive hold status and has been updated,
it is not placed in shared hold status and the exclusive hold remains in effect.

If the same record is placed in shared hold status more than once (using the C or S options or
the Q option for different read sequences), it stays in shared hold status until all of the specified
hold lifetimes have expired.

For complete information about shared hold updating, read Shared Hold Status, elsewhere
in this guide.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

467Command Reference

RI Command: Release Record

468

41 S1, S2, and S4 Commands: Find Records

■ Function and Use .. 470
■ ACB Interface Direct Call: S1, S2, and S4 Commands .. 471
■ ACBX Interface Direct Call: S1, S2, and S4 Commands .. 482
■ Buffers .. 488

469

The S1, S2, and S4 commands return a count of records and ISNs of records satisfying the search
criterion.

Function and Use

The S1, S2, and S4 commands are used to select records that satisfy a given search criterion. They
can be performed on Adabas expanded files as well.

The result of an S1, S2, or S4 command is the number of records which satisfy the query and a list
of the records' ISNs. The S1/S4 commands return the ISNs, sorted in ascending sequence; the S2
command returns the ISNs according to a sort sequence specified in the Additions 1 field. Regardless
of sequence, the ISNs are returned to the ISN buffer.

Note: ISN lists that are not in ascending sequence cannot be processed by a later S8 command.

The following types of searches are possible:

■ Single file search. The search criterion consists of one or more fields contained in a single file.
■ Multiple file search using physically coupled files. The search criterion consists of fields contained

in two or more files that have been physically coupled using the ADAINV utility.
■ Search using the soft coupling feature. This feature provides for a combination of search, read,

and internal list matching.

A search criterion may contain one or more fields that are not defined as descriptors. If nondes-
criptors are used, Adabas performs read operations to determine which records to return to the
user. If only descriptors are used within the search criterion, Adabas resolves the query by using
the Associator inverted lists; no read operation is required.

Note: The behavior of nondescriptor searches in Adabas databases differs between mainframe
and open systems in regards to null suppression in the fields. In open systems, nondescriptor
searches do not return records with null values in a field if the field is null-suppressed (NU);
on mainframe systems, the null-suppression (NU) of fields is ignored during nondescriptor
searches. At this time, to resolve this problem, we recommend that you remove the null
suppression option (NU) for open systems fields, if the fields must be used for a nondes-
criptor search.

If a valid command ID is specified, Adabas will store on Adabas Work any ISNs that could not
be inserted in the ISN buffer on the initial S1, S2, or S4 command. These overflow ISNs may be
retrieved to the ISN buffer later with additional S1, S2, or S4 commands that specify the same
command ID.

Adabas releases an overflow ISN list when the last ISN in the list has been returned to the user.
If the user needs to retain the entire ISN list indefinitely, the save-ISN-list option may be used. If

Command Reference470

S1, S2, and S4 Commands: Find Records

this option is specified, the entire ISN list is stored on Adabas Work. The ISN list is not released
until either an RC, CL, or Sx command with the release CID option is issued, or the Adabas session
is terminated.

If the user intends to use the GET NEXT option of an L1 or L4 command to read the records
identified by the ISNs, neither the ISN buffer entry nor the save-ISN-list option is required. In this
case, the L1 and L4 commands obtain the ISNs automatically from the ISN list stored by Adabas.

By placing field names in the format buffer, the user can read the field's contents from the record
of the first ISN in the resulting ISN list. The field's contents are read into the record buffer. The
S4 command also places the first ISN of the resulting ISN list in hold status.

ACB Interface Direct Call: S1, S2, and S4 Commands

This section describes ACB interface direct calls for the S1, S2, and S4 commands. It covers the
following topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions
■ ACB Examples

Control Block and Buffer Information

Control Block

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

A--binary13-16ISN

UFbinary17-20ISN Lower Limit

AF *binary21-24ISN Quantity

UFbinary25-26Format Buffer Length

UFbinary27-28Record Buffer Length

UFbinary29-30Search Buffer Length

UFbinary31-32Value Buffer Length

UFbinary33-34ISN Buffer Length

471Command Reference

S1, S2, and S4 Commands: Find Records

After Adabas CallBefore Adabas CallFormatPositionField

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

UFalphanumeric37-44Additions 1

A--binary / binary45-48Additions 2

AFalphanumeric49-56Additions 3

AFalphanumeric57-64Additions 4

UFalphanumeric65-72Additions 5

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

UFFormat

A--Record

UFSearch

UFValue

A--ISN

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Optional timeout value, in seconds*

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
S1, S2, or S4

Command ID (ACBCID)
This value identifies the resulting complete or overflow ISN list stored on Adabas Work, and
identifies the format buffer for subsequent commands if the read-first-record option is in effect
(see the section Format Buffer).

If the save-ISN-list option is to be used, or if overflow ISNs are to be stored, a non-blank, non-
zero value must be provided in this field.

Command Reference472

S1, S2, and S4 Commands: Find Records

The first byte of this field may not be set to hexadecimal 'FF'.

See the section ISN List Processing for more information.

File Number (ACBFNR)
File number specifies the number of the file from which the ISNs are to be selected.

If a query using coupled files is to be performed, the file specified in this field will be considered
the "primary" file. The file number of physically coupled files must be no greater than 255.

The search can also be performed on Adabas expanded files.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
Adabas returns the first ISN of the resulting ISN list in this field. If there were no resulting
ISNs, this field is set to zeros.

ISN Lower Limit (ACBISL)
Use this field in the first S1 or S4 call to specify a minimum ISN value for the resulting ISN
list. The list will then contain only the ISNs greater than the ISN specified in this field. If this
field is set to zeros, Adabas will return all qualifying ISNs.

Note: Note this will not work for an S2 call. For sorted ISN lists (S2 commands), this
field must be set either to zero or to a valid ISN.

This field is also used when a group of ISNs from a saved ISN list is being retrieved from
Adabas Work.

ISN Quantity (ACBISQ)
This field defines the maximum number of seconds that can be used for Sx command execution.

As a result of an initial Sx call, Adabas returns the number of records that satisfy the search
criterion in this field. If security-by-value is being used, response code 1 (ADARSP001) is re-
turned in this field along with the value 0 (one record found) or 1 (more than one record found).
For more information, see the Adabas Security Manual.

As a result of a subsequent Sx call used to retrieve ISNs from Adabas Work, Adabas provides
the number of returned ISNs in this field. The ISNs themselves are returned in the ISN buffer.

Format Buffer Length (ACBFBL)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

473Command Reference

S1, S2, and S4 Commands: Find Records

Record Buffer Length (ACBRBL)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

Search Buffer Length (ACBSBL)
The search buffer length (in bytes). The search buffer area defined in the user program must
be as large as (or larger than) the length specified.

Value Buffer Length (ACBVBL)
The value buffer length (in bytes). The value buffer area defined in the user program must be
as large as (or larger than) the length specified.

ISN Buffer Length (ACBIBL)
The ISN buffer length (in bytes). This length is used to determine the number of ISNs placed
in the ISN buffer.

If this field is set to zeros, no ISNs will be inserted in the ISN buffer. This field should be set
to zeros if the resulting ISN list is to be read with the GET NEXT option of the L1 or L4 com-
mand, or if the command is being issued only to determine the number of qualifying records.

If a non-zero value is specified, it should be a multiple of 4. If it is not, Adabas will reduce the
length to the next lower integer which is a multiple of 4.

Command Option 1 (ACBCOP1)

DescriptionOption

Stores the entire ISN list resulting from an Sx command on Adabas Work under the
specified command ID. A valid command ID must be specified. If no command ID

H (save ISN list)

is specified, the ISN list is not stored on Work and any ISNs not saved in the ISN
buffer are lost.

For an S4 command, returns response code 145 (ADARSP145) if a record to be read
and held is not available.

R (return)

Command Option 2 (ACBCOP2)

DescriptionOption

For an S2 command, sorts descriptor values in descending sequence.D (descending sequence)

If no Command Option 2 is specified for an S2 command, the descriptor values are sorted in
ascending sequence.

Command Option 1/2: Release CID Option (ACBCOP1 and ACBCOP2)
The I option may be specified in either the Command Option 1 or Command Option 2 field:

Command Reference474

S1, S2, and S4 Commands: Find Records

DescriptionOption

Releases the command ID (CID) value specified in the command ID field as the first action taken
during command execution. The specified command ID is released only from the table of ISN
lists. The same command ID is then reused to identify the resulting list of ISNs.

I

Additions 1: S2 Command, Descriptors Used for Sort Control (ACBADD1)
If the S2 command is being used, this field must specify the descriptor (or descriptors) to be
used to control the sort sequence; if no sort argument is specified, the S2 command returns
response code 28 (ADARSP028).

One to three descriptors, including subdescriptors and superdescriptors, can be specified.
Phonetic descriptors or descriptors contained within a periodic group cannot be specified. A
multiple-value field can be specified, in which case the ISNs will be sorted according to the
lowest value present within a given record.

Any unused positions of this field must be set to blanks. For example:

XXYYbbbb

where:

is the major sort descriptor; andXX

is the minor sort descriptorYY

blanksbbbb

The number of ISNs that can be sorted depends on the size of the sort work area (ADARUN
LS parameter) defined by the DBA. If the sort area is too small, no sort will be performed; re-
sponse code 1 (ADARSP001) will be returned, and the ISNs will be returned in ascending se-
quence.

Additions 2: Length of Compressed and Decompressed Record (ACBADD2)
If the command is processed successfully, the following information is returned in this field:
■ If the record buffer contains at least one valid field value, the leftmost two bytes contain the

length (in binary form) of the compressed record accessed;
■ The rightmost two bytes contain the length (in binary form) of the decompressed fields se-

lected by the format buffer and accessed.

If the Sx command returns a non-zero response code, the rightmost two bytes may contain a
subcode defining the exact response code meaning. Response codes and their subcodes are
defined in the Adabas Messages and Codes Manual documentation.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

475Command Reference

S1, S2, and S4 Commands: Find Records

Additions 4: Cipher Code and Version/Nucleus ID (ACBADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and the database ID in the rightmost (low-order) three bytes of this field. For more in-
formation, see the section Control Block Fields.

Additions 5: Format ID, Global Format ID (ACBADD5)
This field may be used to provide a separate format ID to identify the internal format buffer
to be used for this command, or to provide a global format ID.

If the high-order bit of the Additions 5 field is zero (0), the value provided in the command
ID field is also used as the format ID.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

For more information, refer to the section Command, Format, and Global Format IDs.

ACB Examples

For the Adabas file definitions used in all the examples in this section, see File Definitions Used
in Examples.

■ Example 1
■ Example 2
■ Example 3
■ Example 4
■ Example 5
■ Example 6
■ Example 7

Command Reference476

S1, S2, and S4 Commands: Find Records

■ Example 8

Example 1

Select the records in file 1 that contain a value in the range "A" to "J" for the descriptor AA.

Control Block

S1Command Code

no ISNs are to be stored on the Adabas Workbbbb (blanks)Command ID

1File Number

all qualifying ISNs are to be returned0ISN Lower Limit

or larger1Format Buffer Length

or larger12Search Buffer Length

or larger2Value Buffer Length

no more than 50 ISNs are expected200ISN Buffer Length

save-ISN-list option not usedb (blank)Command Option 1

the file is not security-protectedbbbbbbbb (blanks)Additions 3

Buffer Areas

no read to be done.Format Buffer

AA,1,S,AA,1.Search Buffer

AJValue Buffer

Example 2

Find with read option. Select the ISN of the record containing the value "ABCDEFGH" for the field
AA in file 1. Also, read the record from Data Storage and return the value for the field AC.

Control Block

S1Command Code

no ISNs are to be stored on the Adabas Workbbbb (blanks)Command ID

1File Number

all qualifying ISNs are to be returned0ISN Lower Limit

or larger3Format Buffer Length

or larger20Record Buffer Length

or larger3Search Buffer Length

or larger8Value Buffer Length

no more than one ISN is expected4ISN Buffer Length

477Command Reference

S1, S2, and S4 Commands: Find Records

save-ISN-list option not usedb (blank)Command Option 1

file is not security-protectedbbbbbbbb (blanks)Additions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

the value for field AC is to be returnedAC.Format Buffer

AA.Search Buffer

ABCDEFGHValue Buffer

Example 3

Find with ISN buffer overflow. Select the records that contain any value in the range "A" to "D"
for field AA in file 1. Use ISN buffer overflow handling.

Control Block

S1Command Code

a non-blank command ID is requiredABCDCommand ID

1File Number

all qualifying ISNs are to be returned0ISN Lower Limit

or larger1Format Buffer Length

or larger0Record Buffer Length

or larger12Search Buffer Length

or larger2Value Buffer Length

up to 25 ISNs will be returned with each call100ISN Buffer Length

save-ISN-list option not usedb (blank)Command Option 1

file is not security-protectedbbbbbbbb (blanks)Additions 3

Buffer Areas

no read to be done.Format Buffer

AA,1,S,AA,1.Search Buffer

ADValue Buffer

Adabas will return, as a result of the initial S1 call, a maximum of 25 ISNs in the ISN buffer. If
more than 25 ISNs resulted from the query, the remaining ISNs will be stored on Adabas Work
under the command ID "ABCD". These overflow ISNs may be retrieved by repeating the S1 call
using the same command ID.

Command Reference478

S1, S2, and S4 Commands: Find Records

Example 4

Find with save-ISN-list option. Select all the records containing the value "+80" for the field XB in
file 2. Store the entire resulting ISN list on the Adabas Work.

Control Block

S1Command Code

a non-blank command ID is required when using the save-ISN-list optionBCDECommand ID

2File Number

all qualifying ISNs are to be selected0ISN Lower Limit

or larger1Format Buffer Length

or larger0Record Buffer Length

or larger3Search Buffer Length

or larger2Value Buffer Length

a maximum of 50 ISNs will be returned on each call200ISN Buffer Length

save-ISN-list option is to be usedHCommand Option 1

file is security-protectedpasswordAdditions 3

Buffer Areas

no read is to be done.Format Buffer

XB.Search Buffer

The "080C" notation is actually a two-byte hexadecimal representation of postitive
(+) packed number 80. The X' ' wrapping should not be specified as part of the
value buffer.

X'080C'Value Buffer

The user may retrieve any group of ISNs from the ISN list that is stored as a result of this call by
repeating the S1 command using the command ID "BCDE". Adabas will insert as many ISNs as
can be accommodated in the ISN buffer starting with the first ISN that is greater than the ISN
specified in the ISN lower limit field.

Example 5

Find with sort. Select all records containing a value in the range "A" to "F" for the field AA in file
1. Return the resulting ISN list in ascending order of the values for field AB.

479Command Reference

S1, S2, and S4 Commands: Find Records

Control Block

S2Command Code

a non-blank command ID is required when using the S2 commandCDEFCommand ID

1File Number

all qualifying ISNs are to be selected0ISN Lower Limit

or larger1Format Buffer Length

or larger0Record Buffer Length

or larger12Search Buffer Length

or larger2Value Buffer Length

a maximum of 25 ISNs will be returned on each call100ISN Buffer Length

the save-ISN-list option is not usedbCommand Option 1

the descending sort option is not usedbCommand Option 2

resulting ISNs are to be sorted on the values of field AB, where
bbbbbb represents blanks.

ABbbbbbbAdditions 1

file is not security-protectedbbbbbbbb (blanks)Additions 3

Buffer Areas

no read is to be done.Format Buffer

AA,1,S,AA,1.Search Buffer

AFValue Buffer

Example 6

Find with hold. Select the record in file 1 containing the value "87654321" for field AA. Also, read
the record and place it in hold status. Return the values for fields AB and AC.

Control Block

S4Command Code

blank command ID may be used since save-ISN-list option is not
to be used and no overflow ISNs are expected

bbbb (blanks)Command ID

1File Number

all qualifying ISNs are to be selected0ISN Lower Limit

or larger6Format Buffer Length

or larger22Record Buffer Length

or larger3Search Buffer Length

or larger8Value Buffer Length

only one ISN is expected4ISN Buffer Length

Command Reference480

S1, S2, and S4 Commands: Find Records

the save-ISN-list option is not to be usedb (blank)Command Option 1

file is not security-protectedbbbbbbbb (blanks)Additions 3

file is not cipheredbbbbbbbb (blanks)Additions 4

Buffer Areas

the record identified by the first ISN is to be read, values for fields AB and AC are
to be returned

AB,AC.Format Buffer

AA.Search Buffer

87654321Value Buffer

Example 7

Find using coupled files. Select the records in file 1 containing the value "+100" for the field AB
that are coupled to records in file 2 containing the value 'ABCDE' for the field RB.

Control Block

S1Command Code

a non-blank command ID is used since ISN overflow may occurEFGHCommand ID

file 1 is the primary file1File Number

select all qualifying ISNs0ISN Lower Limit

or larger1Format Buffer Length

or larger0Record Buffer Length

or larger14Search Buffer Length

or larger12Value Buffer Length

return a maximum of 25 ISNs with each call100ISN Buffer Length

save-ISN-list option is not to be usedbCommand Option 1

file 2 is security-protectedpasswordAdditions 3

Buffer Areas

no read is to be done.Format Buffer

/1/AB,D,/2/RB.Search Buffer

The "100CC1C2C3C4C54040404040" notation is actually a
hexadecimal representation of positive (+) packed number

X'100CC1C2C3C4C54040404040'Value Buffer

100 and the letters ABCDEF, followed by five spaces. The
X' ' wrapping should not be specified as part of the value
buffer.

481Command Reference

S1, S2, and S4 Commands: Find Records

Because file 1 was specified as the primary file, the resulting ISNs will be from file 1. If ISNs from
file 2 are also desired, the find may be repeated with file number 2 specified in the file number
field. The order of the search criteria in the search buffer need not be changed.

Example 8

Find using multiple search criteria (complex search). Select the set of records in file 2 containing
a value of "ABCD" for subdescriptor SA, a value less than "80" for field XB, and a value in the
range "MMMMM" through "ZZZZZ" (but not "Sbbbb" through "TZZZZ") for field XE.

Control Block

S1Command Code

a non-blank command ID is used since the save-ISN-list option is to be usedGGGGCommand ID

2File Number

select all qualifying ISNs0ISN Lower Limit

or larger1Format Buffer Length

or larger0Record Buffer Length

or larger35Search Buffer Length

or larger27Value Buffer Length

no ISNs to be returned in the ISN buffer0ISN Buffer Length

save-ISN-list option is to be usedHCommand Option 1

file 2 is security-protectedpasswordAdditions 3

Buffer Areas

no read is to be done.Format Buffer

SA,D,XB,3,U,LT,D,XE,S,XE,N,XE,S,XE.Search Buffer

ABCD080MMMMMZZZZZSbbbbTZZZZValue Buffer

ACBX Interface Direct Call: S1, S2, and S4 Commands

This section describes ACBX interface direct calls for the S1, S2, and S4 commands. It covers the
following topics:

■ Control Block and Buffer Information

Command Reference482

S1, S2, and S4 Commands: Find Records

■ Control Block Field Descriptions

Control Block and Buffer Information

Control Block

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

A---binary29-32ISN

---------33-36

UFbinary37-40ISN Lower Limit

---------41-44

AF*binary45-48ISN Quantity

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

UFalphanumeric51Command Option 3 (S4 only)

---------52-56

UFalphanumeric/ binary57-64Additions 1

AFalphanumeric/ binary69-76Additions 3

AFalphanumeric77-84Additions 4

UFalphanumeric/ binary85-92Additions 5

---------93-114

A---binary115-116Error Subcode

---------117-128

A---binary129-136Compressed Record Length

A---binary137-144Decompressed Record Length

A---binary145-152Command Time

483Command Reference

S1, S2, and S4 Commands: Find Records

After Adabas CallBefore Adabas CallFormatPositionField

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

UFFormat

A---Record

UFSearch

UFValue

A---ISN

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Optional timeout value, in seconds*

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
S1, S2, or S4

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
This value identifies the resulting complete or overflow ISN list stored on Adabas Work, and
identifies the format buffer for subsequent commands if the read-first-record option is in effect
(see the section Format Buffer).

If the save-ISN-list option is to be used, or if overflow ISNs are to be stored, a non-blank, non-
zero value must be provided in this field.

Command Reference484

S1, S2, and S4 Commands: Find Records

The first byte of this field may not be set to hexadecimal 'FF'.

See the section ISN List Processing for more information.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file from which the ISNs are to be selected.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

Note: For commands that operate on a coupled file pair, this field specifies the primary
file from which ISNs or data are returned. The file number of physically coupled files
must be no greater than 255.

The search can also be performed on Adabas expanded files.

ISN (ACBXISN)
Adabas returns the first ISN of the resulting ISN list in this field. If there were no resulting
ISNs, this field is set to zeros.

ISN Lower Limit (ACBXISL)
Use this field in the first S1 or S4 call to specify a minimum ISN value for the resulting ISN
list. The list will then contain only the ISNs greater than the ISN specified in this field. If this
field is set to zeros, Adabas will return all qualifying ISNs.

Note: Note this will not work for an S2 call. For sorted ISN lists (S2 commands), this
field must be set either to zero or to a valid ISN.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

This field is also used when a group of ISNs from a saved ISN list is being retrieved from
Adabas Work.

ISN Quantity (ACBXISQ)
This field defines the maximum number of seconds that can be used for Sx command execution.

The ACBXISQ field is a four-byte binary field embedded in the eight-byte ACBXISQG field,
which is not yet used. Set the high-order part of the ACBXISQG field to binary zeros.

485Command Reference

S1, S2, and S4 Commands: Find Records

As a result of an initial Sx call, Adabas returns the number of records that satisfy the search
criterion in this field. If security-by-value is being used, response code 1 (ADARSP001) is re-
turned in this field along with the value 0 (one record found) or 1 (more than one record found).
For more information, see the Adabas Security Manual.

As a result of a subsequent Sx call used to retrieve ISNs from Adabas Work, Adabas provides
the number of returned ISNs in this field. The ISNs themselves are returned in the ISN buffer.

Command Option 1 (ACBXCOP1)

DescriptionOption

Stores the entire ISN list resulting from an Sx command on Adabas Work under the
specified command ID. A valid command ID must be specified. If no command ID

H (save ISN list)

is specified, the ISN list is not stored on Work and any ISNs not saved in the ISN
buffer are lost.

For an S4 command, returns response code 145 (ADARSP145) if a record to be read
and held is not available.

R (return)

Command Option 2 (ACBXCOP2)

DescriptionOption

For an S2 command, sorts descriptor values in descending sequence.D (descending sequence)

If no Command Option 2 is specified for an S2 command, the descriptor values are sorted in
ascending sequence.

Command Option 1/2: Release CID Option (ACBXCOP1 and ACBXCOP2)
The "I" option may be specified in either the Command Option 1 or Command Option 2 field:

DescriptionOption

Releases the command ID (CID) value specified in the command ID field as the first action taken
during command execution. The specified command ID is released only from the table of ISN
lists. The same command ID is then reused to identify the resulting list of ISNs.

I

Command Option 3: Shared Hold Status (ACBXCOP3)
The following command options are available for the S4 command only:

DescriptionOption

Puts the record in shared hold status for the duration of the read operation.C

Puts the record in shared hold status until the next record in the read sequence is read or the
read sequence or transaction is terminated, whichever happens first.

A command ID must be given and the ISN buffer length must be set to 4. The record returned
by the S4 remains in shared hold until the next record is retrieved by a subsequent S4 or L4/N
command with the same command ID.

Q

Command Reference486

S1, S2, and S4 Commands: Find Records

DescriptionOption

Puts the record in shared hold status until the end of the transaction.S

If the same record is placed in shared hold status more than once (using the C or S options or
the Q option for different read sequences), it stays in shared hold status until all of the specified
hold lifetimes have expired.

For complete information about shared hold updating, read Shared Hold Status, elsewhere
in this guide.

Additions 1: S2 Command, Descriptors Used for Sort Control (ACBXADD1)
If the S2 command is being used, this field must specify the descriptor (or descriptors) to be
used to control the sort sequence; if no sort argument is specified, the S2 command returns
response code 28 (ADARSP028).

One to three descriptors, including subdescriptors and superdescriptors, can be specified.
Phonetic descriptors or descriptors contained within a periodic group cannot be specified. A
multiple-value field can be specified, in which case the ISNs will be sorted according to the
lowest value present within a given record.

Any unused positions of this field must be set to blanks. For example:

XXYYbbbb

where:

is the major sort descriptor; andXX

is the minor sort descriptorYY

blanksbbbb

The number of ISNs that can be sorted depends on the size of the sort work area (ADARUN
LS parameter) defined by the DBA. If the sort area is too small, no sort will be performed; re-
sponse code 1 (ADARSP001) will be returned, and the ISNs will be returned in ascending se-
quence.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Cipher Code and Version/Nucleus ID (ACBXADD4)
This field is used to provide a cipher code. If the file is ciphered, the user must provide a valid
cipher code. If the file is not ciphered, this field should be set to blanks.

Adabas sets any cipher code to blanks during command processing, and returns a version
code and the database ID in the rightmost (low-order) three bytes of this field. For more in-
formation, see the section Control Block Fields.

487Command Reference

S1, S2, and S4 Commands: Find Records

Additions 5: Format ID, Global Format ID (ACBXADD5)
This field may be used to provide a separate format ID to identify the internal format buffer
to be used for this command, or to provide a global format ID.

If the high-order bit of the Additions 5 field is zero (0), the value provided in the command
ID field is also used as the format ID.

If, however, this bit is set to 1, the fifth through eighth bytes of the Additions 5 field are used
as the format ID.

If the two high-order (leftmost) bits of the first byte of Additions 5 field are set to one (B'11'),
all eight bytes of the Additions 5 field are used as a global format ID (that is, the format ID can
be used by several users at the same time).

For more information, refer to the section Command, Format, and Global Format IDs.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Compressed Record Length (ACBXLCMP)
This field returns the compressed record length when a record was read or written. This is the
length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)
This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects
the total length across all buffer segments.

Buffers

The following buffers should be specified with the S1, S2, and S4 commands:

■ Format Buffer
■ Record Buffer
■ Search and Value Buffers

Command Reference488

S1, S2, and S4 Commands: Find Records

■ ISN Buffer

Format Buffer

If the record identified by the first ISN in the resulting ISN list is to be read from Data Storage, the
fields within the record for which values are to be returned must be specified in this buffer. De-
scriptions of the syntax and examples of format buffer construction are provided in Defining
Buffers, elsewhere in this guide. User-specified fields for controlling the S2 command's ISN sort
sequence must be specified in the Additions 1 field.

If no read is to be performed, the first non-blank character of this buffer must be a period (.).

If a valid command ID is specified, Adabas retains this decoded format buffer for use by later
commands specifying the same command ID.

Record Buffer

If the format buffer contains field definitions to enable the read option, Adabas returns the requested
field values in this buffer.

The values are returned according to the standard length and format of the field, unless the user
specifies a different length and/or format in the format buffer.

Search and Value Buffers

Search and value buffers are used to define the search criteria. The search expression (or expressions)
is provided in the search buffer, and the values which correspond to the search expressions are
provided in the value buffer.

Descriptions of the syntax and examples of format buffer construction are provided in Defining
Buffers, elsewhere in this guide.

ISN Buffer

Adabas places the list of resulting ISNs in this buffer. Each ISN is returned as a four-byte binary
number. The ISNs are returned in ascending ISN sequence unless the S2 command is being used,
in which case they are returned in the user-specified sort sequence.

If the query contains one or more file-coupling criteria, the resulting ISN list contains only those
ISNs in the primary file (the file specified in the control block's file number field).

If the ISN buffer length field is set to less than 4, no ISNs are returned in the ISN buffer. If a valid
command ID is specified, the ISN buffer length is not zero, but the ISN buffer is still too small to
contain all the resulting ISNs, Adabas will store the overflow ISNs on Adabas Work. These ISNs
may then be retrieved using further S1, S2, or S4 calls in which the same command ID is used.

489Command Reference

S1, S2, and S4 Commands: Find Records

See the section ISN List Processing for additional information.

Command Reference490

S1, S2, and S4 Commands: Find Records

42 S5 Command: Find Coupled ISNs

■ Function and Use .. 492
■ ACB Interface Direct Call: S5 Command .. 492
■ ACBX Interface Direct Call: S5 Command .. 496
■ Buffers .. 499

491

The S5 command returns or saves a list of coupled ISNs for the specified file.

Function and Use

The S5 command is used to determine the records in one file that are coupled to a given record in
another file.

The user specifies the file number and a given ISN within the file, plus the file number from which
the coupled ISNs are to be returned. An optional ISN value above which ISNs are to be returned
can also be specified.

Adabas determines which records are coupled to the specified record by using the Associator
coupling lists. No access to Data Storage is required.

Adabas returns the resulting ISNs in the ISN buffer.

ACB Interface Direct Call: S5 Command

This section describes ACB interface direct calls for the S5 command. It covers the following topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions
■ ACB Example

Control Block and Buffer Overview

Control Block

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

AFbinary13-16ISN

UFbinary17-20ISN Lower Limit

A--binary21-24ISN Quantity

------25-32

Command Reference492

S5 Command: Find Coupled ISNs

After Adabas CallBefore Adabas CallFormatPositionField

UFbinary33-34ISN Buffer Length

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

UFalphanumeric37-44Additions 1

------45-48

AFalphanumeric49-56Additions 3

------57-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

--*Format

--*Record

--*Search

--*Value

A--ISN

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but must be included in parameter list of call statement*

Not used--

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
S5

Command ID (ACBCID)
A non-blank, non-zero value can be specified in this field if the Save ISN List option is to be
used, or if overflow ISNs are to be stored on and then later read from the Adabas Work.

The first byte of this field may not be set to hexadecimal 'FF'.

493Command Reference

S5 Command: Find Coupled ISNs

File Number (ACBFNR)
The number of the file from which the coupled ISNs are to be selected. This file, called the
primary file, must be coupled to the file specified in the Additions 1 field, and cannot be an
Adabas expanded file. The file number of physically coupled files must be no greater than 255.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Nonzero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
The ISN of the record for which the coupled ISNs are to be returned. The ISN must be present
in the file specified in the Additions 1 field. Adabas will return the first ISN of the resulting
coupled ISN list in this field.

ISN Lower Limit (ACBISL)
This field may be used in an initial Sx call to limit the resulting ISN list to those ISNs which
are greater than the ISN specified in this field. If this field is set to zeros, Adabas returns all
qualifying ISNs.

This field is also used when a group of ISNs from a saved ISN list is being retrieved from the
Adabas Work.

ISN Quantity (ACBISQ)
An initial S5 call returns the number of records in the specified file that satisfy the search cri-
teria.

In subsequent Sx calls used to retrieve ISNs from the Adabas Work, this field contains the
number of ISNs placed in the ISN buffer.

ISN Buffer Length (ACBIBL)
The ISN buffer length (in bytes). This length is used to determine the number of ISNs placed
in the ISN buffer.

If this field is set to zeros, no ISNs will be inserted in the ISN buffer.

To save the ISN list on Work for later processing, specify "H" in the Command Option 1 field
and a valid command ID. The ISN buffer length field should be set to zeros if the resulting
ISN list is to be read with the GET NEXT option of the L1 or L4 command, or if the command
is being issued only to determine the number of qualifying records.

If a non-zero value is specified, it should be a multiple of 4. If it is not, Adabas reduces the
length to the next lower integer which is a multiple of 4.

Command Reference494

S5 Command: Find Coupled ISNs

Command Option 1: Save ISN List Option (ACBCOP1)

DescriptionOption

Stores the entire ISN list resulting from an S5 command on the Adabas Work under
the specified command ID. A valid command ID must be specified. If no command

H (save ISN list)

ID is specified, the ISN list is not stored on Work and any ISNs not saved in the ISN
buffer are lost.

Command Option 1 or 2: Release Command ID Option (ACBCOP1 or ACBCOP2)
The "I" option may be specified in either the Command Option 1 or Command Option 2 field:

DescriptionOption

Releases the command ID (CID) value specified in the command ID field. This is the first action
taken during S5 execution. The specified command ID is released only from the table of ISN
lists. The same command ID is then reused to identify the resulting list of ISNs.

I

Additions 1: File Number (ACBADD1)
The number of the file which contains the ISN specified in the ISN field. The file number must
be entered in the first two bytes of this field. The number must be provided in binary format.
The remaining positions of this field must be set to blanks. This field must not be changed
between successive S5 calls.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

ACB Example

Select the records in file 2 that are coupled to the record in file 1 identified with ISN 5. Use the
save-ISN-list option.

Control Block

S5Command Code

a non-blank command ID is required if the save-ISN-list option is
to be used

S501Command ID

records to be selected from file 22File Number

ISN 5 identifies the record for which the coupled records are to be
selected

5ISN

all qualifying ISNs are to be selected0ISN Lower Limit

no ISNs are to be returned in the ISN buffer0ISN Buffer Length

save-ISN-list option to be usedHCommand Option 1

495Command Reference

S5 Command: Find Coupled ISNs

the record for which the coupled records are to be selected is
contained in file 1

X'0001404040404040'Additions 1

file is security-protectedpasswordAdditions 3

ACBX Interface Direct Call: S5 Command

This section describes ACBX interface direct calls for the S5 command. It covers the following
topics:

■ Control Block and Buffer Overview
■ Control Block Field Descriptions

Control Block and Buffer Overview

Control Block

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

AFbinary29-32ISN

---------33-36

UFbinary37-40ISN Lower Limit

---------41-44

A---binary45-48ISN Quantity

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

---------51-56

UFalphanumeric/ binary57-64Additions 1

---------65-68

Command Reference496

S5 Command: Find Coupled ISNs

After Adabas CallBefore Adabas CallFormatPositionField

AFalphanumeric/ binary69-76Additions 3

---------77-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

A---ISN

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
S5

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
A non-blank, non-zero value can be specified in this field if the Save ISN List option is to be
used, or if overflow ISNs are to be stored on and then later read from the Adabas Work.

The first byte of this field may not be set to hexadecimal 'FF'.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

497Command Reference

S5 Command: Find Coupled ISNs

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file from which the coupled ISNs are to be selected.
This file, called the primary file, must be coupled to the file specified in the Additions 1 field,
and cannot be an Adabas expanded file. The file number of physically coupled files must be
no greater than 255.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISN)
The ISN of the record for which the coupled ISNs are to be returned. The ISN must be present
in the file specified in the Additions 1 field. Adabas will return the first ISN of the resulting
coupled ISN list in this field.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field,
which is not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

ISN Lower Limit (ACBXISL)
This field may be used in an initial Sx call to limit the resulting ISN list to those ISNs which
are greater than the ISN specified in this field. If this field is set to zeros, Adabas returns all
qualifying ISNs.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

This field is also used when a group of ISNs from a saved ISN list is being retrieved from the
Adabas Work.

ISN Quantity (ACBXISQ)
An initial S5 call returns the number of records in the specified file that satisfy the search cri-
teria.

In subsequent Sx calls used to retrieve ISNs from the Adabas Work, this field contains the
number of ISNs placed in the ISN buffer.

Command Reference498

S5 Command: Find Coupled ISNs

Command Option 1: Save ISN List Option (ACBXCOP1)

DescriptionOption

Stores the entire ISN list resulting from an S5 command on the Adabas Work under
the specified command ID. A valid command ID must be specified. If no command

H (save ISN list)

ID is specified, the ISN list is not stored on Work and any ISNs not saved in the ISN
buffer are lost.

Command Option 1 or 2: Release Command ID Option (ACBXCOP1 or ACBXCOP2)
The "I" option may be specified in either the Command Option 1 or Command Option 2 field:

DescriptionOption

Releases the command ID (CID) value specified in the command ID field. This is the first action
taken during S5 execution. The specified command ID is released only from the table of ISN
lists. The same command ID is then reused to identify the resulting list of ISNs.

I

Additions 1: File Number (ACBXADD1)
The number of the file which contains the ISN specified in the ISN field. The file number must
be entered in the first two bytes of this field. The number must be provided in binary format.
The remaining positions of this field must be set to blanks. This field must not be changed
between successive S5 calls.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Buffers

The following buffers apply to the S5 command:

■ Format Buffer
■ Record Buffer
■ Search Buffer
■ Value Buffer

499Command Reference

S5 Command: Find Coupled ISNs

■ ISN Buffer

Format Buffer

If this is an ACB interface direct call and a format buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a format buffer is not needed.

Record Buffer

If this is an ACB interface direct call and a record buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a record buffer is not needed.

Search Buffer

If this is an ACB interface direct call and a search buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a search buffer is not needed.

Value Buffer

If this is an ACB interface direct call and a value buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a value buffer is not needed.

ISN Buffer

Adabas places the list of resulting ISNs in the ISN buffer. Each ISN is returned as a four-byte binary
number. The first ISN in the list is also returned in the control block's ISN field.

The ISNs are returned in ascending ISN sequence.

If the ISN buffer length is neither zero nor large enough to contain all the resulting ISNs, and a
valid command ID was used, Adabas will store the overflow ISNs on the Adabas Work. These
ISNs may then be retrieved using additional S5 calls that specify the same command ID. See the
section ISN List Processing for additional information.

Command Reference500

S5 Command: Find Coupled ISNs

43 S8 Command: Process ISN Lists

■ Function and Use .. 502
■ ACB Interface Direct Call: S8 Command .. 503
■ ACBX Interface Direct Call: S8 Command .. 506
■ Buffers .. 510

501

The S8 command combines two ISN lists from the same file with an AND, OR, or NOT operation.
For more information refer to the section ISN List Processing.

Function and Use

The S8 command performs logical processing on two ISN lists that were previously created with
Sx commands. Both ISN lists must be

■ derived from the same file;
■ in ISN sequence;
■ stored on the Work data set; and
■ identified by command IDs assigned to the lists when they were created.

ISN lists resulting from an S2 or S9 command that are not in ascending ISN sequence cannot be
used.

No activity (access or update) may be performed on the ISN lists to be processed between the time
they are created and the time the S8 command is executed.

The S8 command may be used to perform the following logical operations:

The resulting ISN list contains those ISNS that are present in . . .Operator

both ISN listsAND

either of the ISN listsOR

the first ISN list but not the second ISN listNOT

The resulting ISNs are returned in the ISN buffer and/or stored on the Work data set in ascending
ISN sequence, depending on the specified Command Option and the command ID field setting:

■ The resulting ISN list is saved in both the ISN buffer and on the Work data set when a non-
blank, non-zero command ID is specified and the save-ISN-list option is also specified.

■ The resulting ISN list is saved in the ISN buffer but not on the Work data set when no (or an in-
valid) command ID is specified with the save-ISN-list option.

Command Reference502

S8 Command: Process ISN Lists

ACB Interface Direct Call: S8 Command

This section describes ACB interface direct calls for the S8 command. It covers the following topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions
■ ACB Example

Control Block and Buffer Information

Control Block

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

A--binary13-16ISN

UFbinary17-20ISN Lower Limit

A--binary21-24ISN Quantity

------25-32

UFbinary33-34ISN Buffer Length

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

UFalphanumeric37-44Additions 1

------45-48

AFalphanumeric49-56Additions 3

------57-72

A--binary73-76Command Time

U----77-80User Area

503Command Reference

S8 Command: Process ISN Lists

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

--*Format

--*Record

--*Search

--*Value

A--ISN

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but must be included in parameter list of call statement*

Control Block Field Descriptions

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
S8

Command ID (ACBCID)
A nonblank, nonzero command ID must be specified in this field if a command option is spe-
cified in Command Option 1 field:
■ The i (release command ID) option releases the specified command ID and any related ISN

list as the first action taken during the S8 execution.
■ With the H (save-ISN-list) option, the ISN list resulting from the S8 execution is stored under

the specified command ID. If no command ID is specified, the ISN list is not stored on Work
and any ISNs not saved in the ISN buffer are lost.

For more information refer to the section ISN List Processing.

The first byte of this field may not be set to hexadecimal 'FF'.

File Number (ACBFNR)
The number of the file from which both ISN lists to be processed were obtained.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the rightmost half of the Additions 2 field, are
described in the Adabas Messages and Codes Manual documentation.

Command Reference504

S8 Command: Process ISN Lists

ISN (ACBISN)
Adabas returns the first ISN of the resulting ISN list in this field. If there were no resulting
ISNs, this field is not modified. This applies to both the initial call and any subsequent calls
that are used to retrieve ISNs from the Adabas Work data set.

ISN Lower Limit (ACBISL)
This field may be used in an initial Sx call to limit the resulting ISN list to those ISNs that are
greater than the ISN specified in this field. If this field is set to zeros, Adabas returns all quali-
fying ISNs.

This field is also used when a group of ISNs from a saved ISN list is being retrieved from the
Adabas Work data set.

ISN Quantity (ACBISQ)
As a result of an initial S8 call, this field returns the number of ISNs in the resulting ISN list.

As a result of a subsequent S8 call to retrieve ISNs from the Adabas Work data set, this field
contains the number of ISNs returned in the ISN buffer.

ISN Buffer Length (ACBIBL)
The ISN buffer length (in bytes). This length is used to determine the number of ISNs placed
in the ISN buffer.

If this field is set to zeros, no ISNs are inserted in the ISN buffer. This field should be set to
zeros if the resulting ISN list is to be read with the GET NEXT option of the L1 or L4 command,
or if the command is being issued only to determine the number of qualifying records.

If a non-zero value is specified, it should be a multiple of 4. If it is not, Adabas reduces the
length to the next lower integer which is a multiple of 4.

Command Option 1: Save ISN List Option, Release Command ID Option (ACBCOP1)

DescriptionOption

Stores the entire ISN list resulting from an S8 command on the Adabas Work under
the specified command ID. A valid command ID must be specified. If no command

H (save ISN list)

ID is specified, the ISN list is not stored on Work and any ISNs not saved in the ISN
buffer are lost.

Releases the command ID (CID) value specified in the command ID field and any
related ISN list as the first action taken during the S8 execution. The specified command

I

ID is released only from the table of ISN lists. The same command ID is then reused
to identify the resulting list of ISNs.

Command Option 2: Logical Operator (ACBCOP2)
The value entered in this field indicates the logical operation to be performed on the ISN lists:

505Command Reference

S8 Command: Process ISN Lists

The resulting ISN list contains those ISNs that are present in ...OperationOption

both ISN lists.ANDD

either ISN list.ORO

the first ISN list but not the second ISN list.NOTN

Additions 1: Command IDs (ACBADD1)
The command IDs that identify the ISN lists to be processed must be specified in this field
(four bytes per command ID). Each ISN list must be currently stored on the Adabas Work data
set and should contain ISNs from the same file.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

ACB Example

Perform a logical OR operation between two ISN lists to produce a third ISN list that contains
ISNs present in either list. The ISN lists to be processed were stored on the Adabas Work data set
under the command IDs "U020" and "U021". Store the resulting ISN list on the Adabas Work under
the command ID "U999". Use the save-ISN-list option.

Control Block

S8Command Code

store the resulting ISN list under the command ID U999U999Command ID

select all of the resulting ISNs0ISN Lower Limit

no ISNs are to be returned in the ISN buffer0ISN Buffer Length

use the save-ISN-list optionHCommand Option 1

perform an OR operationOCommand Option 2

process the ISN lists identified by the command IDs U020 and U021U020U021Additions 1

file not security-protectedbbbbbbbb (blanks)Additions 3

ACBX Interface Direct Call: S8 Command

This section describes ACBX interface direct calls for the S8 command. It covers the following
topics:

■ Control Block and Buffer Information

Command Reference506

S8 Command: Process ISN Lists

■ Control Block Field Descriptions

Control Block and Buffer Information

Control Block

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

---------25-28

A---binary29-32ISN

---------33-36

UFbinary37-40ISN Lower Limit

---------41-44

A---binary45-48ISN Quantity

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

---------51-56

UFalphanumeric/ binary57-64Additions 1

---------65-68

AFalphanumeric/ binary69-76Additions 3

---------77-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

507Command Reference

S8 Command: Process ISN Lists

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

A---ISN

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used---

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
S8

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
A nonblank, nonzero command ID must be specified in this field if a command option is spe-
cified in Command Option 1 field:
■ The "I" (release command ID) option releases the specified command ID and any related

ISN list as the first action taken during the S8 execution.
■ With the "H" (save-ISN-list) option, the ISN list resulting from the S8 execution is stored

under the specified command ID. If no command ID is specified, the ISN list is not stored
on Work and any ISNs not saved in the ISN buffer are lost.

For more information refer to the section ISN List Processing.

The first byte of this field may not be set to hexadecimal 'FF'.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

Command Reference508

S8 Command: Process ISN Lists

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file from which both ISN lists to be processed were
obtained.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

ISN (ACBXISN)
Adabas returns the first ISN of the resulting ISN list in this field. If there were no resulting
ISNs, this field is not modified. This applies to both the initial call and any subsequent calls
that are used to retrieve ISNs from the Adabas Work data set.

ISN Lower Limit (ACBXISL)
This field may be used in an initial Sx call to limit the resulting ISN list to those ISNs that are
greater than the ISN specified in this field. If this field is set to zeros, Adabas returns all quali-
fying ISNs.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

This field is also used when a group of ISNs from a saved ISN list is being retrieved from the
Adabas Work data set.

ISN Quantity (ACBXISQ)
As a result of an initial S8 call, this field returns the number of ISNs in the resulting ISN list.

As a result of a subsequent S8 call to retrieve ISNs from the Adabas Work data set, this field
contains the number of ISNs returned in the ISN buffer.

Command Option 1: Save ISN List Option, Release Command ID Option (ACBXCOP1)

DescriptionOption

Stores the entire ISN list resulting from an S8 command on the Adabas Work under
the specified command ID. A valid command ID must be specified. If no command

H (save ISN list)

ID is specified, the ISN list is not stored on Work and any ISNs not saved in the ISN
buffer are lost.

Releases the command ID (CID) value specified in the command ID field and any
related ISN list as the first action taken during the S8 execution. The specified command

I

ID is released only from the table of ISN lists. The same command ID is then reused
to identify the resulting list of ISNs.

509Command Reference

S8 Command: Process ISN Lists

Command Option 2: Logical Operator (ACBXCOP2)
The value entered in this field indicates the logical operation to be performed on the ISN lists:

The resulting ISN list contains those ISNs that are present in ...OperationOption

both ISN lists.ANDD

either ISN list.ORO

the first ISN list but not the second ISN list.NOTN

Additions 1: Command IDs (ACBXADD1)
The command IDs that identify the ISN lists to be processed must be specified in this field
(four bytes per command ID). Each ISN list must be currently stored on the Adabas Work data
set and should contain ISNs from the same file.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Buffers

The following buffers apply to the S8 command:

■ Format Buffer
■ Record Buffer
■ Search Buffer
■ Value Buffer
■ ISN Buffer

Format Buffer

If this is an ACB interface direct call and a format buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a format buffer is not needed.

Command Reference510

S8 Command: Process ISN Lists

Record Buffer

If this is an ACB interface direct call and a record buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a record buffer is not needed.

Search Buffer

If this is an ACB interface direct call and a search buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a search buffer is not needed.

Value Buffer

If this is an ACB interface direct call and a value buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a value buffer is not needed.

ISN Buffer

Adabas places the list of resulting ISNs in this buffer. Each ISN is returned as a four-byte binary
number. The ISNs are returned in ISN sequence.

If the ISN buffer is too small to contain all the resulting ISNs and a non-blank, non-zero command
ID was used, Adabas stores the overflow ISNs on the Work data set. These ISNs can be retrieved
with further Sx calls using the same command ID. For more information refer to the section ISN
List Processing.

511Command Reference

S8 Command: Process ISN Lists

512

44 S9 Command: Sort ISN Lists

■ Function and Use .. 514
■ ACB Interface Direct Call: S9 Command .. 514
■ ACBX Interface Direct Call: S9 Command .. 520
■ Buffers .. 525

513

The S9 command sorts an ISN list in ascending ISN or descriptor-specified sequence.

Function and Use

The S9 command sorts an ISN list provided by the user or created by a previous Sx command.
The ISN list to be sorted may either be in the ISN buffer or on the Adabas Work data set (if the
command ID assigned to the list when it was created is specified in the Additions 4 field).

The ISN list may be sorted in order of:

■ ISN value (ascending ISN sequence);
■ one to three user-specified descriptors.

You can specify from one to three descriptors which are to be used to control the sort sequence.
Either ascending or descending sequence may be specified.

The ISN list to be sorted must contain ISNs in ascending sequence, which implies that the list was
not created by an S2 or an S9 command that specified the descriptor sequence option.

The resulting ISN list is either returned in the ISN buffer or, optionally, stored on the Adabas
Work data set.

The S9 command can also be performed on Adabas expanded files.

ACB Interface Direct Call: S9 Command

This section describes ACB interface direct calls for the S9 command. It covers the following topics:

■ Control Block and Buffer Information
■ Control Block
■ ACB Example

Control Block and Buffer Information

Control Block

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Reference514

S9 Command: Sort ISN Lists

After Adabas CallBefore Adabas CallFormatPositionField

------1-2

UFalphanumeric3-4Command Code

UFalphanumeric5-8Command ID

UFbinary9-10File Number

A--binary11-12Response Code

A--binary13-16ISN

UFbinary17-20ISN Lower Limit

AFbinary21-24ISN Quantity

------25-32

UFbinary33-34ISN Buffer Length

UFalphanumeric35Command Option 1

UFalphanumeric36Command Option 2

UFalphanumeric37-44Additions 1

------45-48

AFalphanumeric49-56Additions 3

AFalphanumeric57-64Additions 4

------65-72

A--binary73-76Command Time

U----77-80User Area

Buffer Areas

After Adabas CallBefore Adabas CallBuffer

--*Format

--*Record

--*Search

--*Value

AFISN

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used but must be included in parameter list of call statement*

Not used--

515Command Reference

S9 Command: Sort ISN Lists

Control Block

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Command Code (ACBCMD)
S9

Command ID (ACBCID)
A non-blank, non-zero command ID may be specified in this field. This command ID applies
only to the "I" (release command ID) or "H" (save-ISN-list) options; the command ID for obtain-
ing an ISN list stored on Work must be specified in the Additions 4 field.

The first byte of this field may not be set to a hexadecimal 'FF'.

File Number (ACBFNR)
The number of the file from which the ISN list to be sorted was obtained.

The S9 command can also be performed on Adabas expanded files.

Note: When using two-byte file numbers and database IDs, a X'30' must be coded in the
first byte of the control block.

Response Code (ACBRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command executed successfully. Non-zero response codes, which can also
have accompanying subcodes returned in the rightmost half of the Additions 2 field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

ISN (ACBISN)
Adabas returns the first ISN of the resulting ISN list in this field. If there are no resulting ISNs,
this field is not modified. This applies to both the initial call and any subsequent calls that are
used to retrieve ISNs from the Adabas Work data set.

ISN Lower Limit (ACBISL)
This field may be used in an initial Sx call to limit the resulting ISN list to those that are
greater than the ISN specified in this field. If this field is set to zeros, Adabas returns all quali-
fying ISNs.

This field is also used when a group of overflow ISNs from a saved ISN list is being retrieved
from the Adabas Work data set.

ISN Quantity (ACBISQ)
If the ISN list to be sorted is being provided in the ISN buffer, this field must contain the
number of ISNs that are to be sorted. If security-by-value is being used, a response code 1
(ADARSP001) is returned combined with the value 0 (one record found) or 1 (more than one
record found) in this field. For more information, see the Adabas Security Manual.

Command Reference516

S9 Command: Sort ISN Lists

For an initial S9 call, Adabas returns the number of records contained in the resulting ISN list.
For any subsequent S9 call that retrieves ISNs from the Work data set, Adabas returns the
number of ISNs placed in the ISN buffer.

ISN Buffer Length (ACBIBL)
The ISN buffer length (in bytes) is used to determine the number of ISNs placed in the ISN
buffer.
■ If this field is set to zeros, no ISNs are inserted in the ISN buffer. Set this field to zeros and

specify "H" in the Command Option 1 field if the resulting ISN list is to be read with the
GET NEXT option of the L1 or L4 command. If the S9 command is being issued only to de-
termine the number of qualifying records, specify zero in this field and no command ID to
prevent a sorted ISN list from being returned or stored.

■ If a non-zero value is specified, it should be a multiple of 4. If it is not, Adabas reduces the
length to the next lower integer that is a multiple of 4.

If the ISNs to be sorted are contained in the ISN buffer, this field must contain a value equal
to or larger than the number of ISNs to be sorted, multiplied by 4. ISN overflow is stored on
Work, and can be retrieved by a later Sx command with a command ID matching that specified
in the command ID field.

Command Option 1: Save ISN List Option (ACBCOP1)

DescriptionOption

Stores the entire ISN list resulting from an S9 command on the Adabas Work under
the specified command ID. A valid command ID must be specified. If no command

H (save ISN list)

ID is specified, the ISN list is not stored on Work and any ISNs not saved in the ISN
buffer are lost. If the resulting ISN list is to be read with the GET NEXT option of the
L1 or L4 command, use this option with the ISN buffer length field set to zeros. If this
option is specified, Command Option 2 cannot specify the "I" (release command ID)
option.

Command Option 2: Descending Option (ACBCOP2)

DescriptionOption

Sorts the ISN list in descending sequence. This option may not be specified
when sorting by ISN values.

D (descending sequence)

If no Command Option 2 is specified for an S9 command, the ISN list is sorted in ascending
sequence.

Command Option 1 or 2: Release Command ID Option (ACBCOP1 or ACBCOP2)
The "I" option may be specified in either the Command Option 1 or Command Option 2 field:

517Command Reference

S9 Command: Sort ISN Lists

DescriptionOption

Releases the command ID (CID) value specified in the command ID field as the first action taken
during S9 execution. The specified command ID is released only from the table of ISN lists. The

I

same command ID is then reused to identify the resulting list of ISNs. If the "H" (save-ISN-list)
option is specified as Command Option 1, this option cannot be specified as Command Option
2.

Additions 1: Sort Sequence (ACBADD1)
The sort sequence to be used must be specified in this field.

The value "ISNbbbbb" indicates that the ISN values are to be used as the sorting sequence
(where bbbbb represents blanks).

If the sort sequence is to be based on the values of one or more descriptors, the descriptors to
be used must be specified in this field. One to three descriptors, subdescriptors, or super-
descriptors may be specified. Phonetic descriptors and descriptors contained within a periodic
group may not be specified. A multiple-value field may be specified, in which case the ISNs
will be sorted according to the lowest value present within a given record. The descriptors are
specified beginning with byte 1 (left justified). Any remaining positions must be set to blanks.

The number of ISNs that can be sorted depends on the size of the ADARUN parameters defined
by the DBA. If this limit is exceeded, no sort is performed and response code 1 (ADARSP001)
is returned.

Additions 3: Password (ACBADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Command ID (ACBADD4)
If the ISN list to be sorted is contained on the Adabas Work data set, the command ID under
which the list is stored must be specified in the first 4 bytes of this field.

If the ISN list to be sorted is in the ISN buffer, this field must be set to blanks.

Adabas sets the Additions 4 field to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Command Reference518

S9 Command: Sort ISN Lists

ACB Example

■ Example 1
■ Example 2

Example 1

Sort an ISN list contained in the ISN buffer in ISN sequence. Sort 622 ISNs.

Control Block

S9Command Code

a non-blank, non-zero command ID is requiredS901Command ID

derive the ISN list to be sorted from file 11File Number

sort 622 ISNs622ISN Quantity

select all ISNs0ISN Lower Limit

or larger; each ISN to be sorted requires 4 bytes2488ISN Buffer Length

use the save-ISN-list optionHCommand Option 1

use ascending sequenceb (blank)Command Option 2

use the ISN values as the sorting sequence, where bbbbb represents
blanks.

ISNbbbbbAdditions 1

file not security-protectedbbbbbbbb (blanks)Additions 3

the ISN list to be sorted is contained in the ISN bufferbbbbbbbb (blanks)Additions 4

Buffer Areas

The ISNs to be sorted are provided in this buffer. Each ISN must be provided as a 4-byte binary
number.

ISN Buffer

Example 2

Sort an ISN list stored on the Adabas Work. The command ID under which the ISN list is stored
is "U066". Sort the list using the descriptors AA and AB as the major and minor sequence fields.
Use the descending option.

519Command Reference

S9 Command: Sort ISN Lists

Control Block

S9Command Code

a non-blank, non-zero command ID is requiredS902Command ID

derive the ISN list to be sorted from file 11File Number

select all ISNs0ISN Lower Limit

no ISNs are to be returned in the ISN buffer0ISN Buffer Length

use the save-ISN-list optionHCommand Option 1

use the descending sequenceDCommand Option 2

use AA as the major sequence field and AB as the minor sequence
field, where bbbb represents blanks.

AAABbbbbAdditions 1

file not security-protectedbbbbbbbb (blanks)Additions 3

the ISN list to be sorted is stored on the Adabas Work under the
command ID "U066", where bbbb represents blanks.

U066bbbbAdditions 4

ACBX Interface Direct Call: S9 Command

This section describes ACBX interface direct calls for the S9 command. It covers the following
topics:

■ Control Block and Buffer Information
■ Control Block Field Descriptions

Control Block and Buffer Information

Control Block

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

After Adabas CallBefore Adabas CallFormatPositionField

---------1-2

UFbinary3-4Version Indicator

---------5-6

UFalphanumeric7-8Command Code

---------9-10

A---binary11-12Response Code

UFalphanumeric/ binary13-16Command ID

UFnumeric17-20Database ID

UFnumeric21-24File Number

Command Reference520

S9 Command: Sort ISN Lists

After Adabas CallBefore Adabas CallFormatPositionField

---------25-28

A---binary29-32ISN

---------33-36

UFbinary37-40ISN Lower Limit

---------41-44

AFbinary45-48ISN Quantity

UFalphanumeric49Command Option 1

UFalphanumeric50Command Option 2

---------51-56

UFalphanumeric/ binary57-64Additions 1

---------65-68

AFalphanumeric/ binary69-76Additions 3

AFalphanumeric77-84Additions 4

---------85-114

A---binary115-116Error Subcode

---------117-144

A---binary145-152Command Time

U---not applicable153-168User Area

------do not touch169-193---

ABDs and Buffers

After Adabas CallBefore Adabas CallABD and Buffer

AFISN

where:

Supplied by user before Adabas callF

Supplied by AdabasA

Unchanged after Adabas callU

Not used---

521Command Reference

S9 Command: Sort ISN Lists

Control Block Field Descriptions

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Version Indicator (ACBXVER)
F2

Command Code (ACBXCMD)
S9

Response Code (ACBXRSP)
Adabas returns the response code for the command in this field. Response code 0 (ADARSP000)
indicates that the command was executed successfully. Non-zero response codes, which can
also have accompanying subcodes returned in the Error Subcode (ACBXERRC) field, are de-
scribed in the Adabas Messages and Codes Manual documentation.

Command ID (ACBXCID)
A non-blank, non-zero command ID may be specified in this field. This command ID applies
only to the "I" (release command ID) or "H" (save-ISN-list) options; the command ID for obtain-
ing an ISN list stored on Work must be specified in the Additions 4 field.

The first byte of this field may not be set to a hexadecimal 'FF'.

Database ID (ACBXDBID)
Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part (rightmost bytes) of the
field, with leading binary zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the
ADARUN cards provided in DDCARD input data or the default database ID value provided
in the LNKGBLS module linked with or loaded by the link routine.

File Number (ACBXFNR)
Use this field to specify the number of the file from which the ISN list to be sorted is obtained.

This field is a four-byte binary field, but the file number should be specified in the low-order
part (rightmost bytes) of the field, with leading binary zeros.

The S9 command can also be performed on Adabas expanded files.

ISN (ACBXISN)
Adabas returns the first ISN of the resulting ISN list in this field. If there are no resulting ISNs,
this field is not modified. This applies to both the initial call and any subsequent calls that are
used to retrieve ISNs from the Adabas Work data set.

ISN Lower Limit (ACBXISL)
This field may be used in an initial Sx call to limit the resulting ISN list to those that are
greater than the ISN specified in this field. If this field is set to zeros, Adabas returns all quali-
fying ISNs.

Command Reference522

S9 Command: Sort ISN Lists

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field,
which is not yet used. Set the high-order part of the ACBXISLG field to binary zeros.

This field is also used when a group of overflow ISNs from a saved ISN list is being retrieved
from the Adabas Work data set.

ISN Quantity (ACBXISQ)
If the ISN list to be sorted is being provided in the ISN buffer, this field must contain the
number of ISNs that are to be sorted. If security-by-value is being used, a response code 1
(ADARSP001) is returned combined with the value 0 (one record found) or 1 (more than one
record found) in this field. For more information, see the Adabas Security Manual.

The ACBXISQ field is a four-byte binary field embedded in the eight-byte ACBXISQG field,
which is not yet used. Set the high-order part of the ACBXISQG field to binary zeros.

For an initial S9 call, Adabas returns the number of records contained in the resulting ISN list.
For any subsequent S9 call that retrieves ISNs from the Work data set, Adabas returns the
number of ISNs placed in the ISN buffer.

Command Option 1: Save ISN List Option (ACBXCOP1)

DescriptionOption

Stores the entire ISN list resulting from an S9 command on the Adabas Work under
the specified command ID. A valid command ID must be specified. If no command

H (save ISN list)

ID is specified, the ISN list is not stored on Work and any ISNs not saved in the ISN
buffer are lost. If the resulting ISN list is to be read with the GET NEXT option of the
L1 or L4 command, use this option with the ISN buffer length field set to zeros. If this
option is specified, Command Option 2 cannot specify the "I" (release command ID)
option.

Command Option 2: Descending Option (ACBXCOP2)

DescriptionOption

Sorts the ISN list in descending sequence. This option may not be specified
when sorting by ISN values.

D (descending sequence

If no Command Option 2 is specified for an S9 command, the ISN list is sorted in ascending
sequence.

Command Option 1 or 2: Release Command ID Option (ACBXCOP1 and ACBXCOP2)
The "I" option may be specified in either the Command Option 1 or Command Option 2 field:

523Command Reference

S9 Command: Sort ISN Lists

DescriptionOption

Releases the command ID (CID) value specified in the command ID field as the first action taken
during S9 execution. The specified command ID is released only from the table of ISN lists. The

I

same command ID is then reused to identify the resulting list of ISNs. If the "H" (save-ISN-list)
option is specified as Command Option 1, this option cannot be specified as Command Option
2.

Additions 1: Sort Sequence (ACBXADD1)
The sort sequence to be used must be specified in this field.

The value "ISNbbbbb" indicates that the ISN values are to be used as the sorting sequence,
where bbbbb represents blanks.

If the sort sequence is to be based on the values of one or more descriptors, the descriptors to
be used must be specified in this field. One to three descriptors, subdescriptors, or super-
descriptors may be specified. Phonetic descriptors and descriptors contained within a periodic
group may not be specified. A multiple-value field may be specified, in which case the ISNs
will be sorted according to the lowest value present within a given record. The descriptors are
specified beginning with byte 1 (left justified). Any remaining positions must be set to blanks.

The number of ISNs that can be sorted depends on the size of the ADARUN parameters defined
by the DBA. If this limit is exceeded, no sort is performed and response code 1 (ADARSP001)
is returned.

Additions 3: Password (ACBXADD3)
This field is used to provide an Adabas security password. If the database, file, or fields are
security-protected, the user must provide a valid security password. Adabas sets the Additions
3 field to blanks during command processing to enhance password integrity.

Additions 4: Command ID (ACBXADD4)
If the ISN list to be sorted is contained on the Adabas Work data set, the command ID under
which the list is stored must be specified in the first 4 bytes of this field.

If the ISN list to be sorted is in the ISN buffer, this field must be set to blanks.

Adabas sets the Additions 4 field to blanks during command processing, and returns a version
code and database ID in the rightmost (low-order) three bytes of this field. For more information,
see the section Control Block Fields.

Error Subcode (ACBXERRC)
If the command returns a nonzero response code, this field contains a subcode defining the
exact response code meaning. Response codes and their subcodes are defined in the Adabas
Messages and Codes Manual documentation.

Command Reference524

S9 Command: Sort ISN Lists

Buffers

The following buffers apply to the S9 command:

■ Format Buffer
■ Record Buffer
■ Search Buffer
■ Value Buffer
■ ISN Buffer

Format Buffer

If this is an ACB interface direct call and a format buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a format buffer is not needed.

Record Buffer

If this is an ACB interface direct call and a record buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a record buffer is not needed.

Search Buffer

If this is an ACB interface direct call and a search buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a search buffer is not needed.

Value Buffer

If this is an ACB interface direct call and a value buffer is not specified, a processing error will
occur; ACB interface direct calls expect buffers to be specified in a set sequence. If this is an ACBX
interface direct call, a value buffer is not needed.

525Command Reference

S9 Command: Sort ISN Lists

ISN Buffer

The ISN list to be sorted may be provided by the user in this buffer.

Adabas places the list of resulting ISNs in this buffer. Each ISN is returned as a four-byte binary
number. If the ISN sort option is in effect ("ISNbbbbb" is entered in the Additions 1 field), the ISNs
are returned in ascending ISN sequence. Otherwise, the ISNs are returned in the order of the values
of the user-specified descriptors.

If the ISN buffer length is neither zero nor large enough to contain all the resulting ISNs and a
valid command ID was specified, Adabas stores the overflow ISNs on the Adabas Work data set.
These ISNs may then be retrieved using further S9 calls in which the same command ID is specified
in the Additions 4 field. For more information, refer to the section ISN List Processing, elsewhere
in this guide.

Command Reference526

S9 Command: Sort ISN Lists

VII Programming Examples

This chapter provides examples of direct Adabas calls in a variety of languages.

The information is organized under the following headings:

ACB Examples

ACBX Examples

527

528

45 ACB Examples

■ File Definitions Used in ACB Examples .. 530
■ ACB Assembler Examples ... 531
■ ACB COBOL Examples .. 539
■ ACB PL/I Examples .. 546
■ ACB Fortran Example ... 553

529

This chapter describes examples of direct calls using the ACB interface.

File Definitions Used in ACB Examples

The following file definitions are used in the examples that follow in this documentation. Two file
structures (files 1 and 2) are used.

The following tables show the structures of files 1 and 2 where

is standard formatSF

is standard lengthSL

File 1

File 1 is neither security-protected nor ciphered. Certain examples in the documentation assume
that file 1 has been coupled to file 2 using the descriptor AA as the basis for coupling.

ExplanationAdabas Definition

Group GA, consisting of fields AA and AB.01,GA

Elementary field AA; SL is 8 bytes, SF is alphanumeric, descriptor, null value
suppression.

02,AA,8,A,DE,NU

Elementary field AB; SL is 2, SF is packed, descriptor, null value suppression.02,AB,2,P,DE,NU

Elementary field AC; SL is 20, SF is alphanumeric, null value suppression.01,AC,20,A,NU

Multiple value field MF; SL is 3, SF is alphanumeric, descriptor, null value
suppression.

01,MF,3,A,MU,DE,NU

Periodic group GB.01,GB,PE

Elementary field BA (within periodic group GB); SL is 1, SF is binary, descriptor,
null value suppression.

02,BA,1,B,DE,NU

Elementary field BB (within periodic group GB); SL is 5, SF is packed, null value
suppression.

02,BB,5,P,NU

Elementary field BC (within periodic group GB); SL is 10, SF is alphanumeric, null
value suppression.

02,BC,10,A,NU

Periodic group GC.01,GC,PE

Elementary field CA (within periodic group GC); SL is 7, SF is alphanumeric,
descriptor, null value suppression.

02,CA,7,A,DE,NU

Multiple value field CB (within periodic group GC); SL is 10, is alphanumeric, null
value suppression.

02,CB,10,A,MU,NU SF

Command Reference530

ACB Examples

File 2

File 2 is security-protected. It is not ciphered. Certain examples in this documentation assume that
file 2 is coupled to file 1 using field RA as the basis for coupling.

ExplanationAdabas Definition

Group RG, consisting of all the fields in the record.01,RG

Elementary field RA; SL is 8, SF is alphanumeric, descriptor, null value suppression.02,RA,8,A,DE,NU

Elementary field RB; SL is 10, SF is alphanumeric, descriptor.02,RB,10,A,DE

Group GX, consisting of the fields XA, XB, XC, XD, and XE.02,GX

Elementary field XA; SL is 10, SF is alphanumeric.03,XA,10,A

Elementary field XB; SL is 2, SF is packed, descriptor.03,XB,2,P,DE

Elementary field XC; SL is 6, SF is unpacked.03,XC,6,U

Elementary field XD; SL is 8, SF is alphanumeric, descriptor, null value suppression.03,XD,8,A,DE,NU

Elementary field XE; SL is 5, SF is alphanumeric, descriptor, null value suppression.03,XE,5,A,DE,NU

Subdescriptor SA; derived from bytes 1 through 4 of field RA, format is alphanumeric.SA=RA(1,4)

Superdescriptor SB; derived from bytes 1 through 8 of field RA and bytes 1 through 4
of field RB, format is alphanumeric.

SB=RA(1,8),RB(1,4)

Superdescriptor SC; derived from bytes 1 through 2 of field XB and bytes 1 through 6
of field XC, format is binary.

SC=XB(1,2),XC(1,6)

ACB Assembler Examples

This section contains examples of using direct Adabas calls in Assembler. The previously defined
Adabas files defined are used in each example.

*** CONTROL BLOCK
 DS 0F
CB DS 0CL80 USER CONTROL BLOCK
 DC CL2' ' RESERVED FOR ADABAS USE
CCODE DC CL2' ' COMMAND CODE
CID DC CL4' ' COMMAND ID
FNR DC H'0' FILE NUMBER
RC DC H'0' RESPONSE CODE
ISN DC F'0' ISN
ISNLL DC F'0' ISN LOWER LIMIT
ISNQ DC F'0' ISN QUANTITY
FBL DC H'100' FORMAT BUFFER LENGTH
RBL DC H'250' RECORD BUFFER LENGTH
SBL DC H'50' SEARCH BUFFER LENGTH
VBL DC H'100' VALUE BUFFER LENGTH
IBL DC H'20' ISN BUFFER LENGTH
COPT1 DC CL1' ' COMMAND OPTION 1

531Command Reference

ACB Examples

COPT2 DC CL1' ' COMMAND OPTION 2
ADD1 DC CL8' ' ADDITIONS 1
ADD2 DC CL4' ' ADDITIONS 2
ADD3 DC CL8' ' ADDITIONS 3
ADD4 DC CL8' ' ADDITIONS 4
ADD5 DC CL8' ' ADDITIONS 5
CTIME DC F'0' COMMAND TIME
UAREA DC CL4' ' USER AREA
*
*
*** USER BUFFER AREAS
FB DC CL100' ' FORMAT BUFFER
RB DC CL250' ' RECORD BUFFER
SB DC CL50' ' SEARCH BUFFER
VB DC CL100' ' VALUE BUFFER
IB DC CL20' ' ISN BUFFER
* * * ↩

This section provides the following examples:

■ Example 1
■ Example 2
■ Example 3 : User Session with ET Logic

Example 1

■ Find the set of records in file 2 with XB = 99.
■ Read each record selected using the GET NEXT option.

Issue Open Command

EXMP1 MVC CCODE,=C'OP' OP COMMAND
MVC RB(4),=C'ACC.' ACCESS ONLY REQUESTED
CALL ADABAS,(CB,FB,RB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BNE EX1ERR BRANCH IF NOT 0

Issue Find Command

MVC CCODE,=C'S1' FIND COMMAND
MVC CID,=C'S101' NONBLANK CID REQUIRED FOR

* IDENTIFICATION OF THE LIST
MVC FNR,=H'2' FILE 2
MVC ISNLL,=F'0' ALL QUALIFYING ISNS DESIRED
MVC IBL,=H'0' ISN BUFFER NOT REQUIRED
MVI FB,C'.' NO READ OF DATA STORAGE
MVC SB(7),=C'XB,3,U.' SEARCH CRITERION
MVC VB(3),=C'099' SEARCH VALUE
CALL ADABAS,(CB,FB,RB,SB,VB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE

Command Reference532

ACB Examples

BNE EX1ERR BRANCH IF NOT 0
CLC ISNQ,=F'0' CHECK NUMBER OF ISNS FOUND
BE EX1EXIT BRANCH TO EXIT IF NO ISNS FOUND

Read Each Qualifying Record

EX1B MVC CCODE,=C'L1' READ COMMAND
MVC ISN,=F'0' BEGIN WITH 1ST ISN IN LIST
MVI COPT2,C'N' GET NEXT OPTION TO BE USED
MVC FB(3),=C'RG.' ALL FIELDS TO BE RETURNED

EX1C CALL ADABAS,(CB,FB,RB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX1D BRANCH IF RESPONSE CODE 0
CLC RC,=H'3' CHECK IF ALL RECORDS READ
BE EX1EXIT BRANCH IF YES
B EX1ERR BRANCH TO ERROR ROUTINE

EX1D . . . PROCESS RECORD . . .
B EX1C BRANCH TO READ NEXT RECORD

Error Routine

EX1ERR EQU *
* DISPLAY ERROR MESSAGE
* . TERMINATE USER PROGRAM

Issue Close Command

EX1EXIT MVC CCODE,=C'CL' CLOSE COMMAND
CALL ADABAS,(CB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BNE EX1ERR BRANCH IF NOT 0

Example 2

■ All records in file 1 are to be read in physical sequential order.
■ Each record read is to be updated with the following values:

■ Field AA = ABCDEFGH
■ Field AB = 500

■ User is to have exclusive control of file 1.

533Command Reference

ACB Examples

Issue Open Command

EXMP2 MVC CCODE,=C'OP' OPEN COMMAND
MVC RB(6),=C'EXU=1.' EXCLUSIVE CONTROL REQUESTED
CALL ADABAS,(CB,FB,RB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX2A BRANCH IF RESPONSE CODE 0
B EX2ERR BRANCH IF NOT 0

Issue Read Physical Sequential Command

EX2A MVC CID,=C'L201' NONBLANK CID REQUIRED
MVC FNR,=H'1' FILE 1 TO BE READ
MVC ISN,=F'0' ALL RECORDS TO BE READ
MVC FB(3),=C'GA.' VALUES FOR FIELDS AA AND AB

* (GROUP GA) TO BE RETURNED
EX2B MVC CCODE,=C'L2' READ PHYS. SEQ.

CALL ADABAS,(CB,FB,RB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX2C BRANCH IF RESPONSE CODE 0
CLC RC,=H'3' CHECK FOR END-OF-FILE
BE EX2EXIT BRANCH TO EXIT IF END-OF-FILE
B EX2ERR BRANCH TO ERROR ROUTINE

Update Record

■ The same fields are to be updated as were read.
■ The same CID and format buffer can be used for the update command.
■ The ISN of the record to be updated is already in the ISN field as a result of the L2 command.

EX2C MVC CCODE,=C'A1' UPDATE COMMAND
MVC RB(8),=C'ABCDEFGH' VALUE FOR FIELD AA
MVC RB+8(2),=PL2'500' VALUE FOR FIELD AB
CALL ADABAS,(CB,FB,RB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX2B BRANCH TO READ NEXT RECORD

Error Routine

EX2ERR EQU *
* . DISPLAY ERROR MESSAGE
* . TERMINATE USER PROGRAM

Command Reference534

ACB Examples

Close User Session

EX2EXIT MVC CCODE,=C'CL' CLOSE COMMAND
 CALL ADABAS,(CB) CALL ADABAS
 CLC RC,=H'0' CHECK RESPONSE CODE
 BNE EX2ERR BRANCH IF NOT 0
 . . .
 ↩

Example 3 : User Session with ET Logic

During user session initialization, the user program is to display information indicating the last
successfully processed transaction of the previous user session.

For each user transaction, the user program is to

■ accept from a terminal 8 characters of input to be used as the key for updating files 1 and 2; and
■ issue the Find command for file 1 to determine if a record exists with field AA = input key.

If no record is found, the user program is to issue a message. If a record is found, the user program
is to

■ delete the record from file 1; and
■ add a new record to file 2: Field RA = input key entered.

Other fields are to contain a null value.

If the record cannot be successfully added, the user program is to issue a BT command and display
an error message.

If both updates are successful, the user program is to issue an ET command.

■ Session Initialization
■ Transaction Processing

Session Initialization

The section of the program illustrated is only executed during user session initialization:

Issue Open Command

The OP command is issued with ET data of the previous session being read:

535Command Reference

ACB Examples

EXMP3 EQU *
MVC CCODE,=C'OP' OPEN COMMAND
MVI COPT2,C'E' ET DATA TO BE READ
MVC ADD1,=C'USER0001' USER IDENTIFICATION
MVC ADD3,=C'PASSWORD' USER PASSWORD
MVC RB(8),=C'UPD=1,2.' FILES 1 AND 2 TO BE UPDATED
CALL ADABAS,(CB,FB,RB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX3A BRANCH IF RESPONSE CODE 0
CLC RC,=H'9' CHECK FOR RESPONSE CODE 9
BE EXMP3 BRANCH TO REPEAT OPEN
B EX3ERR BRANCH IF NOT 0 OR 9

EX3A EQU *
CLC CID,=F'0' CHECK IF ET DATA FROM

* PREVIOUS SESSION EXISTS
BE EX3B BRANCH IF NO ET DATA

* . . .

Display ET Data

Display the ET data contained in the record buffer on the terminal screen to inform the user of the
last successfully processed transaction of the previous user session:

B EX3C BRANCH TO BEGIN TRANS. PROCESS.
EX3B EQU *

No ET Data Received

If no ET data was received, a message is displayed indicating that no transactions were successfully
processed during the previous user session.

Transaction Processing

This section is executed for each user transaction:

EX3C EQU *
* . . . ACCEPT INPUT FROM TERMINAL . . .

Issue Find Command

Issue the Find command for file 1 to determine if a record exists with the field AA equal to the
input key entered:

Command Reference536

ACB Examples

EX3D EQU *
MVC CCODE,=C'S4' FIND WITH HOLD COMMAND
MVC CID,=C' ' ISN LIST NOT TO BE SAVED
MVC FNR,=H'1' FILE 1
MVC ISNLL,=F'0' ALL QUALIFY. ISNS TO BE RETURNED
MVI FB,C'.' NO READ OF DATA STORAGE
MVC SB(3),=C'AA.' SEARCH CRITERION
MVC VB(8),INPUT SEARCH VALUE
CALL ADABAS,(CB,FB,RB,SB,VB,IB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX3E BRANCH IF RESPONSE CODE 0
B EX3ERR BRANCH TO ERROR ROUTINE

EX3E EQU *
CLC ISNQ,=F'0' CHECK NUMBER OF RECORDS FOUND
BNE EX3F BRANCH IF RECORD FOUND

Issue Message if No Record is Found

If no record is found, the user program issues a message requesting a correction:

B EX3C RETURN TO ACCEPT USER INPUT ↩

Delete Record from File 1

The ISN of the record to be deleted is already in the ISN field and in hold status as a result of the
S4 command.

EX3F EQU *
MVC CCODE,=C'E4' DELETE COMMAND
CALL ADABAS,(CB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX3G BRANCH IF RESPONSE CODE 0
CLC RC,=H'9' CHECK IF CURRENT TRANS. HAS BEEN

* BACKED OUT BY ADABAS
BE EX3D IF YES, BRANCH TO REPEAT S4
B EX3ERR BRANCH TO ERROR ROUTINE

Add a New Record to File 2

EX3G EQU *
MVC CCODE,=C'N1' ADD NEW RECORD
MVC FNR,=H'2' FILE 2
MVC FB(6),=C'RA.' VALUE BEING PROVIDED FOR RA
MVC RB(8),INPUT VALUE FOR FIELD RA
CALL ADABAS,(CB,FB,RB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX3I BRANCH IF RESPONSE CODE 0
CLC RC,=H'9' WAS TRANSACTION BACKED OUT?
BE EX3D IF YES, RETURN TO REISSUE TRANS.

537Command Reference

ACB Examples

Unable to Add a New Record

If the attempt to add a new record is not successful, the transaction is backed out and the user is
notified that an error condition exists.

MVC CCODE,=C'BT' BACKOUT TRANSACTION
CALL ADABAS,(CB) CALL ADABAS
CLC RC,=H'0' CHECK IF RESPONSE CODE 0
BE EX3H BRANCH IF 0

Backout Not Successful

When the backout is not successful, a message is issued indicating that result.

B EX3ERR BRANCH TO ERROR ROUTINE
EX3H EQU *

Backout Successful

When the backout is successful, a message is issued indicating that after an error was detected,
the transaction was backed out.

B EX3ERR BRANCH TO ERROR ROUTINE

Updates Successfully Executed : Issue ET Command with ET Data

When the updates have been successfully executed, an ET command with ET data is issued.

EX3I EQU *
MVC CCODE,=C'ET' END OF TRANSACTION COMMAND
MVI COPT2,C'E' ET DATA TO BE WRITTEN
MVC RB(8),INPUT ET DATA CONSISTS OF INPUT KEY OF THIS TRANSACTION
CALL ADABAS,(CB,FB,RB) CALL ADABAS
CLC RC,=H'0' CHECK RESPONSE CODE
BE EX3C IF RESPONSE CODE 0, RETURN TO RECEIVE INPUT FOR

* THE NEXT TRANSACTION
CLC RC,=H'9' CHECK IF CURRENT TRANSACTION HAS BEEN BACKED OUT

* BY ADABAS
BE EX3D IF CURRENT TRANSACTION HAS BEEN BACKED OUT,

* RETURN TO REISSUE TRANSACTION

Command Reference538

ACB Examples

Error Routine

EX3ERR EQU *
* . NONZERO RESPONSE CODE RECEIVED
* . DISPLAY ERROR MESSAGE
* . TERMINATE USER PROGRAM

. . .
INPUT DS CL8 KEY ENTERED FROM TERMINAL

ACB COBOL Examples

This section contains examples of using direct Adabas calls in COBOL. The previously defined
Adabas files are used in each example.

*
*** CONTROL BLOCK

01 CONTROL-BLOCK.
02 FILLER PIC X(2) VALUE SPACES.
02 COMMAND-CODE PIC X(2) VALUE SPACES.
02 COMMAND-ID PIC X(4) VALUE SPACES.
02 FILE-NUMBER PIC S9(4) COMP VALUE +0.
02 RESPONSE-CODE PIC S9(4) COMP VALUE +0.
02 ISN PIC S9(8) COMP VALUE +0.
02 ISN-LOWER-LIMIT PIC S9(8) COMP VALUE +0.
02 ISN-QUANTITY PIC S9(8) COMP VALUE +0.
02 FORMAT-BUFFER-LENGTH PIC S9(4) COMP VALUE +100.
02 RECORD-BUFFER-LENGTH PIC S9(4) COMP VALUE +250.
02 SEARCH-BUFFER-LENGTH PIC S9(4) COMP VALUE +50.
02 VALUE-BUFFER-LENGTH PIC S9(4) COMP VALUE +100.
02 ISN-BUFFER-LENGTH PIC S9(4) COMP VALUE +20.
02 COMMAND-OPTION-1 PIC X VALUE SPACE.
02 COMMAND-OPTION-2 PIC X VALUE SPACE.
02 ADDITIONS-1 PIC X(8) VALUE SPACES.
02 ADDITIONS-2 PIC X(4) VALUE SPACES.
02 ADDITIONS-3 PIC X(8) VALUE SPACES.
02 ADDITIONS-4 PIC X(8) VALUE SPACES.
02 ADDITIONS-5 PIC X(8) VALUE SPACES.
02 COMMAND-TIME PIC S9(8) COMP VALUE +0.
02 USER-AREA PIC X(4) VALUE SPACES.

*
*** USER BUFFER AREAS

01 FORMAT-BUFFER PIC X(100) VALUE SPACES.
01 RECORD-BUFFER PIC X(250) VALUE SPACES.
01 SEARCH-BUFFER PIC X(50) VALUE SPACES.
01 VALUE-BUFFER PIC X(100) VALUE SPACES.
01 ISN-BUFFER PIC X(20) VALUE SPACES.

*

539Command Reference

ACB Examples

*** ADDITIONAL FIELDS USED IN THE EXAMPLES
01 PROGRAM-WORK-AREA.

05 COMM-ID PIC X(4).
05 COMM-ID-X REDEFINES COMM-ID PIC S9(8) COMP.
05 INPUT-KEY PIC X(8).
05 RECORD-BUFFER-EX2.

10 RECORD-BUFFER-A PIC X(8).
10 RECORD-BUFFER-B PIC S9(3) COMP-3.

05 RECORD-BUFFER-EX3.
10 OPEN-RECORD-BUFFER.

15 OPEN-RECORD-BUFFER-X PIC X(8).
15 FILLER PIC S9(8) COMP.

10 FILLER PIC X(18).
10 UPDATED-XC PIC X(6).
10 LAST-XD PIC X(8).
10 FILLER PIC X(5).

05 USER-DATA.
10 RESTART-XD PIC X(8).
10 RESTART-ISN PIC S9(8) COMP.

05 SYNC-CHECK-SWITCH PIC 9 VALUE 0.
05 AB-VALUE PIC S9(4) COMP-3 VALUE +500.

*

This section provides the following examples:

■ Example 1
■ Example 2
■ Example 3 : User Session with ET Logic

Example 1

■ Find the set of records in file 2 with XB = 99.
■ Read each record selected using the GET NEXT option.

Issue Open Command

EXMP1.
MOVE 'OP' TO COMMAND-CODE.
MOVE 'ACC.' TO RECORD-BUFFER.
CALL 'ADABAS'

USING CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER.
IF RESPONSE-CODE NOT EQUAL TO 0 GO TO EX1ERR.

Command Reference540

ACB Examples

Issue Find Command

MOVE 'S1' TO COMMAND-CODE.
MOVE 'S101' TO COMMAND-ID.
MOVE 2 TO FILE-NUMBER.
MOVE 0 TO ISN-LOWER-LIMIT.
MOVE 0 TO ISN-BUFFER-LENGTH.
MOVE '.' TO FORMAT-BUFFER.
MOVE 'XB,3,U.' TO SEARCH-BUFFER.
MOVE '099' TO VALUE-BUFFER.
CALL 'ADABAS' USING CONTROL-BLOCK, FORMAT-BUFFER,

RECORD-BUFFER, SEARCH-BUFFER, VALUE-BUFFER.
IF RESPONSE-CODE NOT EQUAL TO 0 GO TO EX1ERR.

EX1A.
IF ISN-QUANTITY = 0 GO TO EX1EXIT.

Read Each Qualifying Record

EX1B.
MOVE 'L1' TO COMMAND-CODE.
MOVE 0 TO ISN.
MOVE 'N' TO COMMAND-OPTION-2.
MOVE 'RG.' TO FORMAT-BUFFER.

EX1C.
CALL 'ADABAS'

USING CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER.
IF RESPONSE-CODE = 0 GO TO EX1D.
IF RESPONSE-CODE = 3 GO TO EX1EXIT.

EX1D.
. . . PROCESS RECORD . . .
GO TO EX1C.

Error Routine

EX1ERR.
* .DISPLAY ERROR MESSAGE
* .TERMINATE USER PROGRAM

Issue Close Command

EX1EXIT.
MOVE 'CL' TO COMMAND-CODE.
CALL 'ADABAS' USING CONTROL-BLOCK.
IF RESPONSE-CODE NOT EQUAL TO 0 GO TO EX1ERR.

541Command Reference

ACB Examples

Example 2

■ All records in file 1 are to be read in physical sequential order.
■ Each record read is to be updated with the following values:

■ Field AA = ABCDEFGH
■ Field AB = 500

■ User is to have exclusive control of file 1.

Issue Open Command

EXMP2.
MOVE 'OP' TO COMMAND-CODE.
MOVE 'EXU=1.' TO RECORD-BUFFER.
CALL 'ADABAS' USING

CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER.
IF RESPONSE-CODE NOT EQUAL TO 0 GO TO EX2ERR.

Issue Read Physical Sequential Command

EX2A.
MOVE 'L201' TO COMMAND-ID.
MOVE 1 TO FILE-NUMBER.
MOVE 0 TO ISN.
MOVE 'GA.' TO FORMAT-BUFFER.

EX2B.
MOVE 'L2' TO COMMAND-CODE.
CALL 'ADABAS' USING

CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER.
IF RESPONSE-CODE = 0 GO TO EX2C.
IF RESPONSE-CODE = 3 GO TO EX2EXIT.
GO TO EX2ERR.

Update Record

■ The same fields are to be updated as were read.
■ The same CID and format buffer can be used for the update command.
■ The ISN of the record to be updated is already in the ISN field as a result of the L2 command.

EX2C.
MOVE 'A1' TO COMMAND-CODE.
MOVE 'ABCDEFGH' TO RECORD-BUFFER-A.
MOVE AB-VALUE TO RECORD-BUFFER-B.
CALL 'ADABAS' USING

CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER-EX2.
IF RESPONSE-CODE NOT EQUAL TO 0 GO TO EX2ERR.
GO TO EX2B.

Command Reference542

ACB Examples

Error Routine

EX2ERR.
. DISPLAY ERROR MESSAGE
. TERMINATE USER PROGRAM

Close User Session

EX2EXIT.
MOVE 'CL' TO COMMAND-CODE.
CALL 'ADABAS' USING CONTROL-BLOCK.
IF RESPONSE-CODE NOT EQUAL TO 0 GO TO EX2ERR.

Example 3 : User Session with ET Logic

During user session initialization, the user program is to display information indicating the last
successfully processed transaction of the previous user session.

For each user transaction, the user program is to

■ accept from a terminal 8 characters of input to be used as the key for updating files 1 and 2; and
■ issue the Find command for file 1 to determine if a record exists with field AA = input key.

If no record is found, the user program is to issue a message. If a record is found, the user program
is to

■ delete the record from file 1; and
■ add a new record to file 2: Field RA = input key entered.

Other fields are to contain a null value.

If the record cannot be successfully added, the user program is to issue a BT command and display
an error message.

If both updates are successful, the user program is to issue an ET command.

Session Initialization

This section of the program is only executed during user session initialization.

■ The OP command is issued with ET data of the previous session being read.
■ A message is displayed on the terminal screen identifying the last successfully processed

transaction of the user's previous session.

543Command Reference

ACB Examples

EX3.
MOVE 'OP' TO COMMAND-CODE.
MOVE 'E' TO COMMAND-OPTION-2.
MOVE 'USER0002' TO ADDITIONS-1.
MOVE 'PASSWORD' TO ADDITIONS-3.
MOVE 'UPD=1,2.' TO RECORD-BUFFER.
CALL 'ADABAS' USING

CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER.
IF RESPONSE-CODE = 9 GO TO EX3.
IF RESPONSE-CODE NOT EQUAL TO 0

GO TO EX3ERR.
EX3A.

MOVE COMMAND-ID TO COMM-ID.
IF COMM-ID-X = +0

GO TO EX3B.
* Display ET data (contained in RECORD BUFFER) on screen to inform user of
* last successfully processed transaction of previous user session.

. . .DISPLAY ET DATA. . .
GO TO EX3C.

EX3B.
*** No ET data received.
* Display message that no transactions were successfully processed during
* the previous user session

. . .DISPLAY MESSAGE . . .
*** Transaction processing.
* This section is executed for each user transaction.

EX3C.
* . . .ACCEPT INPUT FROM TERMINAL. . .
* Issue Find command for file 1 to determine if record exists with field AA
* equal to input key entered.

EX3D.
MOVE 'S4' TO COMMAND-CODE.
MOVE SPACES TO COMMAND-ID.
MOVE 1 TO FILE-NUMBER.
MOVE 0 TO ISN-LOWER-LIMIT.
MOVE '.' TO FORMAT-BUFFER.
MOVE 'AA.' TO SEARCH-BUFFER.
MOVE INPUT-KEY TO VALUE-BUFFER.
CALL 'ADABAS' USING

CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER,
SEARCH-BUFFER, VALUE-BUFFER, ISN-BUFFER.

IF RESPONSE-CODE = 0
GO TO EX3E.

GO TO EX3ERR.
EX3E.

IF ISN-QUANTITY NOT EQUAL TO ZEROS
GO TO EX3F.

***No records found, issue message requesting correction.
. . .ISSUE MESSAGE . . .

GO TO EX3C.
*** Delete record from file 1.
* ISN of record to be deleted is already in ISN field and in hold

Command Reference544

ACB Examples

status
* as a result of the S4 command.

EX3F.
MOVE E3' TO COMMAND-CODE.
CALL 'ADABAS' USING CONTROL-BLOCK.
IF RESPONSE-CODE = 0

GO TO EX3G.
IF RESPONSE-CODE = 9

GO TO EX3D.
GO TO EX3ERR.

*** Add new record to file 2.
EX3G.

MOVE 'N1' TO COMMAND-CODE.
MOVE 2 TO FILE-NUMBER.
MOVE 'RA.' TO FORMAT-BUFFER.
MOVE INPUT-KEY TO RECORD-BUFFER.
CALL 'ADABAS' USING

CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER.
IF RESPONSE-CODE = 0

GO TO EX3I.
IF RESPONSE-CODE = 9

GO TO EX3D.
*** Attempt to add new record not successful.
* Backout transaction.
* Notify user that error condition exists.

MOVE 'BT' TO COMMAND-CODE.
CALL 'ADABAS' USING control-block.
IF RESPONSE-CODE = 0

GO TO EX3H.
*** Backout not successful.
* Issue message indicating that the backout was not successful

GO TO EX3ERR.
EX3H.

*** Backout successful.
* Issue message indicating the error condition detected while while
adding a
* new record

GO TO EX3ERR.
*** Updates successfully executed.
* Issue ET command with ET data.

EX3I.
MOVE 'ET' TO COMMAND-CODE.
MOVE 'E' TO COMMAND-OPTION-2.
MOVE INPUT-KEY TO RECORD-BUFFER.
CALL 'ADABAS' USING

CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER.
IF RESPONSE-CODE = 0

GO TO EX3C.
IF RESPONSE-CODE = 9

GO TO EX3D.
*** Error Routine

EX3ERR.

545Command Reference

ACB Examples

* . DISPLAY ERROR MESSAGE
* . TERMINATE USER PROGRAM

. . .

ACB PL/I Examples

This section contains examples of using direct Adabas calls in PL/I . The previously defined
Adabas files are used in each example.

/*** CONTROL BLOCK ***/
DCL 1 CONTROL_BLOCK,

02 FILLER1 CHAR (2) INIT (' '),
02 COMMAND_CODE CHAR (2) INIT (' '),
02 COMMAND_ID CHAR (4) INIT (' '),
02 FILE_NUMBER BIN FIXED (15) INIT (0),
02 RESPONSE_CODE BIN FIXED (15) INIT (0),
02 ISN BIN FIXED (31) INIT (0),
02 ISN_LOWER_LIMIT BIN FIXED (31) INIT (0),
02 ISN_QUANTITY BIN FIXED (31) INIT (0),
02 FORMAT_BUFFER_LENGTH BIN FIXED (15) INIT (100),
02 RECORD_BUFFER_LENGTH BIN FIXED (15) INIT (250),
02 SEARCH_BUFFER_LENGTH BIN FIXED (15) INIT (50),
02 VALUE_BUFFER_LENGTH BIN FIXED (15) INIT (100),
02 ISN_BUFFER_LENGTH BIN FIXED (15) INIT (20),
02 COMMAND_OPTION_1 CHAR(1) INIT (' '),
02 COMMAND_OPTION_2 CHAR(1) INIT (' '),
02 ADDITIONS_1 CHAR(8) INIT (' '),
02 ADDITIONS_2 CHAR(4) INIT (' '),
02 ADDITIONS_3 CHAR(8) INIT (' '),
02 ADDITIONS_4 CHAR(8) INIT (' '),
02 ADDITIONS_5 CHAR(8) INIT (' '),
02 COMMAND_TIME BIN FIXED (31) INIT (0),
02 USER_AREA CHAR(4) INIT (' ');

/*** USER BUFFER AREAS ***/
DCL FORMAT_BUFFER CHAR(100),

RECORD_BUFFER CHAR(250),
SEARCH_BUFFER CHAR(50),
VALUE_BUFFER CHAR(100),
ISN_BUFFER CHAR(20);

*
*

/*** ADDITIONAL FIELDS USED IN THE EXAMPLES ***/
DCL

COMM_ID_X BIN FIXED(31);
COMM_ID CHAR(4) BASED (ADDR(COMM_ID_X));

DCL INPUT_KEY CHAR(8);
DCL SYNC_CHECK_SWITCH CHAR(1) INIT('0');

Command Reference546

ACB Examples

DCL 1 RECORD_BUFFER_EX2,
2 RECORD_BUFFER_A CHAR(8),
2 RECORD_BUFFER_B DEC FIXED(3,0),
2 FILLER3 CHAR(240);

DCL 1 RECORD_BUFFER_EX3,
2 OPEN_RECORD_BUFFER,

3 OPEN_RECORD_BUFFER_X CHAR(8),
3 FILLER4 BIN FIXED(31),

2 FILLER5 CHAR(18),
2 UPDATED_XC CHAR(6),
2 LAST_XD CHAR(8),
2 FILLER6 CHAR(5),

1 USER_DATA,
2 RESTART_XD CHAR(8),
2 RESTART_ISN BIN FIXED(31);

DCL ADABAS ENTRY OPTIONS(ASM);

This section provides the following examples:

■ Example 1
■ Example 2
■ Example 3
■ PLIADA: Batch/TSO Example

Example 1

■ Find the set of records in file 2 with XB = 99.
■ Read each record selected using the GET NEXT option.

Issue Open Command

/*** Issue Open Command ***/
EXMP1:

COMMAND_CODE = 'OP';
RECORD_BUFFER = 'ACC.';
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,RECORD_BUFFER);
IF RESPONSE_CODE > 0 THEN GOTO EX1ERR;

Issue Find Command

/*** Issue Find Command ***/
COMMAND_CODE = 'S1';
COMMAND_ID = 'S101';
FILE_NUMBER = 2;
ISN_LOWER_LIMIT = 0;
ISN_BUFFER_LENGTH = 0;
FORMAT_BUFFER = '.';
SEARCH_BUFFER = 'XB,3,U.';

547Command Reference

ACB Examples

VALUE_BUFFER = '099';
CALL ADABAS (CONTROL_BLOCK, FORMAT_BUFFER,

RECORD_BUFFER, SEARCH_BUFFER, VALUE_BUFFER);
IF RESPONSE_CODE > 0 THEN GOTO EX1ERR;

EX1A:
IF ISN_QUANTITY = 0 THEN GOTO EX1EXIT;

EX1B:
COMMAND_CODE = 'L1';
ISN = 0;
COMMAND_OPTION_1 = 'N';
FORMAT_BUFFER = 'RG.';

EX1C:
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,RECORD_BUFFER);
IF RESPONSE_CODE = 0 THEN

GOTO EX1D;
IF RESPONSE_CODE = 3 THEN

GOTO EX1EXIT;
EX1D:

. . .PROCESS RECORD . . .
GOTO EX1C;

Error Routine

/*** Error Routine ***/
EX1ERR:
/* . DISPLAY ERROR MESSAGE */
/* . TERMINATE USER PROGRAM */

Issue Close Command

/** Issue Close Command **/
EX1EXIT:

COMMAND_CODE = 'CL';
CALL ADABAS (CONTROL_BLOCK);
IF RESPONSE_CODE > 0 THEN

GOTO EX1ERR;

Example 2

■ All records in file 1 are to be read in physical sequential order.
■ Each record read is to be updated with the following values:

■ Field AA = ABCDEFGH
■ Field AB = 500

■ User is to have exclusive control of file 1.

Command Reference548

ACB Examples

Issue Open Command

/*** Issue Open Command ***/
EXMP2:

COMMAND_CODE = 'OP';
RECORD_BUFFER = 'EXU=1.';
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,RECORD_BUFFER);
IF RESPONSE_CODE > 0 THEN GOTO EX2ERR;

Issue Read Physical Sequence Command

/*** Issue Read Physical Seq. Command ***/
EX2A:

COMMAND_ID = 'L201';
FILE_NUMBER = 1;
ISN = 0;
FORMAT_BUFFER = 'GA.';

EX2B:
COMMAND_CODE = 'L2';
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,RECORD_BUFFER);
IF RESPONSE_CODE = 0 THEN GOTO EX2C;
IF RESPONSE_CODE = 3 THEN GOTO EX2EXIT;
GOTO EX2ERR;

Update Record

/*** Update record. ***/
/* Same fields are to be updated as were read. */
/* Same CID and FORMAT BUFFER can be used for update. */
/* ISN of record to be updated is already in ISN field as a result of */
/* the L2 command. */
EX2C:

COMMAND_CODE = 'A1';
RECORD_BUFFER_A = 'ABCDEFGH';
RECORD_BUFFER_B = 500;
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,

RECORD_BUFFER_EX2);
IF RESPONSE_CODE > 0 THEN GOTO EX2ERR;
GOTO EX2B;

Error Routine

/*** Error Routine ***/
EX2ERR:
/* . DISPLAY ERROR MESSAGE */
/* . TERMINATE USER PROGRAM */

549Command Reference

ACB Examples

Close User Session

/* Close User Session */
EX2EXIT:

COMMAND_CODE = 'CL';
CALL ADABAS (CONTROL_BLOCK);
IF RESPONSE_CODE > 0 THEN GOTO EX2ERR;

Example 3

This example illustrates a user session with ET logic. The user program is to perform the following
functions:

1. During user session initialization, display information indicating the last successfully processed
transaction of the previous user session.

2. For each user transaction:

■ Accept from a terminal 8 characters of input that is used as the key for updating files 1 and 2.
■ Issue a Find command for file 1 to determine if a record exists with field AA = input key.
■ If no record is found, issue a message.
■ If a record is found:

■ Delete the record from file 1;
■ Add a new record to file 2: Field RA = input key entered. Other fields to contain null value.
■ If the record cannot be successfully added, issue a BT command, display error message.
■ If both updates are successful, issue an ET command.

Session Initialization

This section of the program is only executed during user session initialization.

■ The OP command is issued with ET data of the previous session being read.
■ A message is displayed on the terminal screen identifying the last successfully processed

transaction of the user's previous session.

EX3:
COMMAND_CODE = 'OP';
COMMAND_OPTION_2 = 'E';
ADDITIONS_1 = 'USER0003';
ADDITIONS_3 = 'PASSWORD';
RECORD_BUFFER = 'UPD=1,2.';
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,RECORD_BUFFER);
IF RESPONSE_CODE = 9 THEN GOTO EX3;
IF RESPONSE_CODE > 0 THEN

GOTO EX3ERR;

Command Reference550

ACB Examples

EX3A:
COMM_ID = COMMAND_ID;
IF COMM_ID_X = 0 THEN

GOTO EX3B;
/* Display ET data (contained in RECORD BUFFER) on screen to inform user of

last successfully processed transaction of previous user session. */
. . .DISPLAY ET DATA. . .

GOTO EX3C;
EX3B:
/* */
/*** No ET data received. */
/* Display message that no transactions were successfully processed during

the previous user session. */
. . .DISPLAY MESSAGE . . .

/* */
/*** Transaction processing. ***/
/* This section is executed for each user transaction. */
EX3C:

. . .ACCEPT INPUT FROM TERMINAL. . .
/* */
/* Issue Find command for file 1 to determine if rec exists with field AA

equal to input key entered. */
EX3D:

COMMAND_CODE = 'S4';
COMMAND_ID = ' ';
FILE_NUMBER = 1;
ISN_LOWER_LIMIT = 0;
FORMAT_BUFFER = '.';
SEARCH_BUFFER = 'AA.';
VALUE_BUFFER = INPUT_KEY;
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,RECORD_BUFFER,

SEARCH_BUFFER,VALUE_BUFFER,ISN_BUFFER);
IF RESPONSE_CODE = 0 THEN

GOTO EX3E;
GOTO EX3ERR;

EX3E:
IF ISN_QUANTITY > 0 THEN

GOTO EX3F;
/* */
/* No record found, issue message requesting correction. */

. . .ISSUE MESSAGE . . .
GOTO EX3C;

/* */
/* Delete record from file 1. */
/* ISN of record to be deleted is already in ISN field and in hold
status

as a result of the S4 command. */
EX3F:

COMMAND_CODE = 'E4';
CALL ADABAS (CONTROL_BLOCK);
IF RESPONSE_CODE = 0 THEN

GOTO EX3G;

551Command Reference

ACB Examples

IF RESPONSE_CODE = 9 THEN
GOTO EX3D;

GOTO EX3ERR;
/***Add new record to file 2. */
EX3G:

COMMAND_CODE = 'N1';
FILE_NUMBER = 2;
FORMAT_BUFFER = 'RA.';
RECORD_BUFFER = INPUT_KEY;
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,RECORD_BUFFER);
IF RESPONSE_CODE = 0 THEN

GOTO EX3I;
IF RESPONSE_CODE = 9 THEN

GOTO EX3D;
/* */
/* Attempt to add new record not successful. Backout transaction and
notify

user that error condition exists. */
COMMAND_CODE = 'BT';
CALL ADABAS (CONTROL_BLOCK);
IF RESPONSE_CODE = 0 THEN

GOTO EX3H;
/* */
/* Backout not successful. */

. . .ISSUE MESSAGE INDICATING BACKOUT NOT SUCCESSFUL . .
GO TO EX3ERR.

/* */
EX3H:
/*** Backout successful. ***/
/* Issue message indicating error condition detected while adding new
record.*/

. . .ISSUE MESSAGE. . .
GOTO EX3ERR;

/* */
/*** Updates successfully executed. ***/
/* Issue ET command with ET data. */
EX3I:

COMMAND_CODE = 'ET';
COMMAND_OPTION_2 = 'E';
RECORD_BUFFER = INPUT_KEY;
CALL ADABAS (CONTROL_BLOCK,FORMAT_BUFFER,RECORD_BUFFER);
IF RESPONSE_CODE = 0 THEN

GOTO EX3C;
IF RESPONSE_CODE = 9 THEN

GOTO EX3D;
/* */
/*** Error Routine ***/
EX3ERR:
/* . DISPLAY ERROR MESSAGE */
/* . TERMINATE USER PROGRAM */

. . .

Command Reference552

ACB Examples

PLIADA: Batch/TSO Example

PLIADA is a PL/I program you could run in a batch/TSO environment. Its source can be found in
the PLIADA member of the ADAvrs.MVSSRCE library. It is written to conform to the language
specification of Enterprise PL/I for z/OS V4.1.

This program will issue L1 commands to list from the sample Employees file provided with
Adabas. Refer to member ADALODE of the MVSJOBS dataset to load the file.

PLIXADA should be link-edited with the ADAUSER load module, in which case the CALL state-
ment should use the symbol ADABAS as the program being invoked.

The following table lists the PL/I sample components for ACB programs:

DescriptionMember

PL/I Sample ADACB main programPLIADA

PL/I ADACB structure declarationPADABAS

PL/I ADABAS entry with APL linkage declarationsPADACALL

The IBM cataloged procedures IBMZC, IBMZCB or IBMZCBG may be used to compile, compile
and bind (link) or compile, bind (link) and execute the PLIADAX program. Consult the appropriate
IBM documentation for information on compiling, linking and executing an Enterprise PL/I
module. Your installation may have standards for these procedures or different JCL procedures
for compiling, linking and executing an Enterprise PL/I module.

ACB Fortran Example

This section contains an example of using direct Adabas calls in FORTRAN. The previously
defined Adabas files are used in each example.

C *** CONTROL BLOCK ***
INTEGER*4 CB(20),CID,ISN,ISNL,ISNQ
INTEGER*4 ADD1(2),ADD2,ADD3(2),ADD4(2),ADD5(2)
INTEGER*4 CTIME,UAREA
INTEGER*2 CBI(40),CCODE,FNR,RC,FBL,RBL,SBL,VBL,IBL
LOGICAL*1 CBL(80),COPT1,COPT2
EQUIVALENCE (CB(1),CBI(1),CBL(1))
EQUIVALENCE (CID,CB(2)),(ISN,CB(4))
EQUIVALENCE (ISNL,CB(5)),(ISNQ,CB(6))
EQUIVALENCE (ADD1(1),CB(10)),(ADD2,CB(12)),(ADD3(1),CB(13))
EQUIVALENCE (ADD4(1),CB(15),(ADD5(1),CB(17))
EQUIVALENCE (CTIME,CB(19)),(UAREA,CB(20))
EQUIVALENCE (CCODE,CBI(2)),(FNR,CBI(5)),(RC,CBI(6))
EQUIVALENCE (FBL,CBI(13)),(RBL,CBI(14)),(SBL,CBI(15))
EQUIVALENCE (VBL,CBI(16)),(IBL,CBI(17))

553Command Reference

ACB Examples

EQUIVALENCE (COPT1,CBL(35)),(COPT2,CBL(36))

C *** USER BUFFER AREAS ***
INTEGER*4 FB(25),RB(50),SB(10),VB(10),IB(50)

*
*

C *** ADDITIONAL FIELDS USED IN THIS EXAMPLE ***
LOGICAL*1 BLANK/1H /,COPH/1HH/,PERIOD/1H./,COPN/1HN/
INTEGER*2 S1/2HS1/,L1/2HL1/,CL/2HCL/
INTEGER*4 CID1/4HS101/,FB1/4H. /,FB2/4HRG. /,SB1/4HXB,3/

INTEGER*4 SB2/4H,U. /,VB1/4H099 /

This section provides the following example:

■ Example 1

Example 1

■ Find the set of records in file 2 with XB = 99.
■ Read each record selected using the GET NEXT option.

Initialize Control Block

c*** Initialize Control Block
DO 5 I=1,80
CBL(I)=BLANK

5 CONTINUE
DO 10 I=3,6
CB(I)=0

10 CONTINUE
CBI(13)=100
CBI(14)=200
CBI(15)=40
CBI(16)=40
CBI(17)=200
CBI(19)=0

Issue Find Command

c***Issue FIND Command
CCODE=S1
CID=CID1
FNR=2
ISNL=0
COPT1=COPH
FB(1)=FB1
SB(1)=SB1
SB(2)=SB2
VB(1)=VB1

Command Reference554

ACB Examples

CALL ADABAS(CB,FB,RB,SB,VB,IB)
IF(RC.NE.0) GO TO 50
IF(ISNQ.EQ.0) GO TO 100

Read Each Record Selected

c***Read Each Record Selected
15 CONTINUE

CCODE=L1
ISN=0
COPT1=COPN
FB(1)=FB2
CALL ADABAS(CB,FB,RB)
IF(RC.EQ.0) GO TO 30
IF(RC.EQ.3) GO TO 100
PRINT 60,RC,CCODE

60 FORMAT(1H0,'ADABAS ERROR CODE',I4,' FROM '.A2,' COMMAND')
GO TO 50

30 CONTINUE
C ...PROCESS RECORD...

GO TO 15
50 CONTINUE

STOP
100 CONTINUE

...

555Command Reference

ACB Examples

556

46 ACBX Examples

■ COBADA8: Batch/TSO Example ... 558
■ COBACI8: CICS/TS Example ... 559
■ PLIADAX: Batch/TSO Example .. 559
■ PLIADAC: CICS/TS Example ... 560

557

Two sample COBOL programs are provided to illustrate how to make Adabas ACBX direct calls:

■ COBADA8 is a COBOL program you could run in a batch/TSO environment. Its source can be
found in the COBADA8 member of the ADAvrs.MVSSRCE library.

■ COBACI8 is a COBOL program you could run under CICS/TS. Its source can be found in the
COBACI8 member of the ACIvrs.MVSSRCE library.

The source modules for both programs should be compiled using the Enterprise COBOL compiler
Version 3 Release 3 or later.

Note: These programs are provided "as is" and will not be supported by Software AG.

This chapter describes examples of direct calls using the ACBX interface. The last two examples
are sample PL/I programs to illustrate ACBX calls.

COBADA8: Batch/TSO Example

COBADA8 is a COBOL program you could run in a batch/TSO environment. Its source can be
found in the COBADA8 member of the ADAvrs.MVSSRCE library.

Before compiling COBADA8, review the source, especially the comments so the proper database
ID and file number are used in the WORK-DBID and WORK-FNR fields defined in the WORKING-
STORAGE section of the program.

COBADA8 should be link-edited with the ADAUSER load module in which case the CALL
statement should use the literal "ADABAS" as the program being invoked.

If COBADA8 is compiled and link-edited as a reentrant module, use the LNK-NAME field in the
CALL statement and supply a value of "ADAUSER" on the LINK-NAME definition in WORKING-
STORAGE.

The IBM cataloged procedures IGYWC, IGYWCL or IGYWCLG may be used to compile, compile
and link or compile, link and execute the COBADA8 program. Consult the appropriate IBM doc-
umentation for information on compiling, linking and executing an Enterprise COBOL module.
Your installation may have standards for these procedures or different JCL procedures for compil-
ing, linking and executing an Enterprise COBOL module.

Command Reference558

ACBX Examples

COBACI8: CICS/TS Example

COBACI8 is a COBOL program you could run under CICS/TS. Its source can be found in the
COBACI8 member of the ACIvrs.MVSSRCE library.

Before compiling COBACI8, review the source member and provide the proper values for WORK-
DBID and WORK-FNR in the WORKING-STORAGE section. In addition, supply the proper value
for the LINK-NAME field to name the Adabas Version 8 CICS application stub that should be the
object of the EXEC CICS LINK command used to invoke Adabas CICS services. This name should
match the name provided in the Adabas CICS globals table, keyword ENTPT, used in the CICS
region where COBACI8 is to be executed.

The COBACI8 program is intended to be compiled with the built-in CICS pre-processor support
provided by the Enterprise COBOL compiler. After compiling and linking the source module with
the appropriate cataloged procedure or JCL, the module COBACI8 and a transaction to execute
it must be defined to CICS using RDO or the CEDA facility. The COBACI8 module uses the CICS
COMMAREA to communicate with the Adabas Version 8 CICS application stub. It is not necessary
to define a CICS TWA (Transaction Work Area) to execute the COBACI8 with a CICS transaction.

The following table lists the PL/I sample components for ACBX programs under CICS:

DescriptionMember

PL/I Sample ADACBX main programPLIADAC

PL/I ADACBX and ADABDX structure declarationsPADABASX

PL/I CICS CommArea for ADACBXPDACOMX

The IBM cataloged procedures IBMZC, IBMZCB or IBMZCBG may be used to compile, compile
and bind (link) or compile, bind (link) and execute the PLIADAX program. Consult the appropriate
IBM documentation for information on compiling, linking and executing an Enterprise PL/I
module. Your installation may have standards for these procedures or different JCL procedures
for compiling, linking and executing an Enterprise PL/I module.

PLIADAX: Batch/TSO Example

PLIADAX is a PL/I program you could run in a batch/TSO environment. Its source can be found
in the PLIADAX member of the ADAvrs.MVSSRCE library. It is written to conform to the language
specification of Enterprise PL/I for z/OS V4.1.

This program will issue L1 commands to list from the sample Employees file provided with
Adabas. Refer to member ADALODE of the MVSJOBS dataset to load the file.

559Command Reference

ACBX Examples

Before compiling PLIADAX review the source, especially the comments, so the proper file number
is used.

PLIXADAX should be link-edited with the ADAUSER load module, in which case the CALL
statement should use the symbol ADABAS as the program being invoked.

The following table lists the PL/I sample components for ACBX programs:

DescriptionMember

PL/I Sample ADACBX main programPLIADAX

PL/I ADACBX and ADABDX structure declarationsPADABASX

PL/I ADABAS entry with APLX linkage declarationsPADACALX

The IBM cataloged procedures IBMZC, IBMZCB or IBMZCBG may be used to compile, compile
and bind (link) or compile, bind (link) and execute the PLIADAX program. Consult the appropriate
IBM documentation for information on compiling, linking and executing an Enterprise PL/I
module. Your installation may have standards for these procedures or different JCL procedures
for compiling, linking and executing an Enterprise PL/I module.

PLIADAC: CICS/TS Example

PLIADAC is a PL/I program you could run under CICS/TS. Its source can be found in the PLIADAC
member of the ACIvrs.MVSSRCE library. It is written to conform to the language specification of
Enterprise PL/I for z/OS V4.1.

This program will issue L1 commands to list from the sample Employees file provided with
Adabas. Refer to member ADALODE of the MVSJOBS dataset to load the file.

Before compiling PLIADAC review the source, especially the comments, so the proper file number
is used. In addition, supply the proper value for the variable ADALnkName to specify the name
of the Adabas Version 8 CICS application stub that should be the object of the EXEC CICS LINK
command used to invoke Adabas CICS services. This name should match the name provided in
the Adabas CICS globals table, keyword ENTPT, used in the CICS region where PLIADAC is to
be executed.

The PLIADAC program is intended to be compiled with the built-in CICS pre-processor support
provided by the Enterprise PL/I compiler. After compiling and linking/binding the source module
using a appropriate cataloged procedure or JCL, the module PLIADAC and a transaction to execute
it must be defined to CICS using RDO or the CEDA facility. The PLIADAC module uses the CICS
COMMAREA to communicate with the Adabas Version 8 CICS application stub. It is not necessary
to define a CICS TWA (Transaction Work Area) to execute PLIADAC with a CICS transaction.

Command Reference560

ACBX Examples

DescriptionMember

PL/I Sample ADACBX main programPLIADAC

PL/I ADACBX and ADABDX structure declarationsPADABASX

PL/I CICS CommArea for ADACBXPDACOMX

The IBM cataloged procedures IBMZC, IBMZCB or IBMZCBG may be used to compile, compile
and bind (link) or compile, bind (link) and execute the PLIADAX program. Consult the appropriate
IBM documentation for information on compiling, linking and executing an Enterprise PL/I
module. Your installation may have standards for these procedures or different JCL procedures
for compiling, linking and executing an Enterprise PL/I module.

561Command Reference

ACBX Examples

562

Index

A
A1 command, 205

ACB examples, 210
ACB field descriptions, 208
ACB layout, 207
ACBX field descriptions, 213
ACBX layout, 212
additional considerations, 217
buffer descriptions, 216
function and use, 206

ABD (see Adabas buffer descriptions (ABDs))
ACB (see Adabas control block (ACB))
ACBX (see extended Adabas control block)
ACBX examples

COBOL in batch/TSO, 558
COBOL in CICS/TS, 559

Adabas
control block structures, 71

Adabas buffer descriptions (ABDs)
description, 97

Adabas buffer descriptions(ABDs)
DSECT, 103
fields, 100
format, 99

Adabas control block (ACB)
compared to ACBX, 89
description, 71-72
DSECT, 79
examples, 79
fields, 74
format, 73

Adabas user ID, 23
autobackout

use with ET command, 21

B
backing out transactions, 221
bold, 1
braces ({}), 1
brackets ([]), 1
BT command, 221

ACB examples, 225
ACB field descriptions, 224
ACB layout, 223
ACBX field descriptions, 228
ACBX layout, 227
description, 20

function and use, 222
ISN buffer requirements, 230
multifetch processing, 57

C
C indicator, 123
C1 command, 231

ACB example, 234
ACB field descriptions, 234
ACB layout, 233
ACBX field descriptions, 236
ACBX layout, 235
function and use, 232

C3 command, 239
ACB example, 242
ACB field descriptions, 241
ACB layout, 240
ACBX field descriptions, 244
ACBX layout, 243
function and use, 240
record buffer requirements, 245

C5 command, 247
ACB example, 250
ACB field descriptions, 249
ACB layout, 248
ACBX field descriptions, 252
ACBX layout, 251
function and use, 248
record buffer requirements, 253

changing field values, 205
checkpoints

writing, 231
writing SYNX-03, 239

choices in syntax, 1
CL command, 255

ACB examples, 259
ACB field descriptions

description of fields, 258
ACB layout, 257
ACBX field descriptions

description of fields, 261
ACBX layout, 260
function and use, 256
record buffer requirements, 263

closing user session, 255
COBACI8 sample program, 559
COBADA8 sample program, 558
command ID

automatic generation, 46

563

definition of, 42
examples of use, 47
for read sequential commands, 44
for read, update, and find commands, 44
internal identification, 47
release, 47
used with ISN lists, 46
using with separate format ID, 45

command IDs
releasing, 439

competitive updating, 23
compressed format

specifying fields to be read in, 118
connecting operators, 169
control blocks

description, 71
logging, 94

D
D indicator, 124
daylight savings indicator (D), 124
deadlock

controlling resource, 25
detecting potential, 26

deleting
records, 265

descriptors
determining value range, 356

direct calls
ABD DSECT, 103
ABD fields, 100
ABD format, 99
ACB DSECT, 79
ACB examples, 79
ACB fields, 74
ACB format, 73
ACBX description, 79
ACBX DSECT, 89
ACBX fields, 81
ACBX format, 80
Adabas buffer descriptions (ABDs), 97
Adabas control block (ACB), 72
Assembler ACB examples, 531
Associator read commands, 14
calling procedure, 63
COBOL ACB examples, 539
COBOL ACBX examples, 558-559
control block structures, 71
Data Storage read commands, 12
database modification commands, 14
database query commands, 10
FORTRAN ACB example, 553
logging control blocks, 94
logical transaction control commands, 15
overview, 9, 107
PL/I ACB examples, 546
programming considerations, 41
special commands, 16
types of, 10

DSECTs
ABD, 103
ACB, 79
ACBX, 89

E
E1 command, 265

ACB examples, 269
ACB field descriptions, 268
ACB layout, 267
ACBX field descriptions, 271
ACBX layout, 270
function and use, 266

ellipsis (...), 2
ending

transactions, 275
ET command, 275

ACB examples, 280
ACB field descriptions, 278
ACB layout, 277
ACBX field descriptions, 282
ACBX layout, 281
buffer requirements, 284
description, 21
function and use, 276

exclusive file control
updating with, 37

extended Adabas control block (ACBX)
compared to ACB, 89
description, 71, 79
DSECT, 89
fields, 81
format, 80

F
fields

changing value of, 206
reading, 375

files
controlling access to, 436
reading in logical sequential order by descriptor, 329
refreshing, 265

format buffer
alpha field with large object (LB) option, 143
alpha field with long alpha (LA) option, 142
asterisk length notation, 138
count indicator (C), 123
daylight savings indicator (D), 124
description, 113
edit mask notation, 139
examples, 151
field length and data format, 136
field name specifications, 117
field series notation, 140
field syntax, 117
field types, 118
format selection criterion syntax, 115
highest occurrence / value indicator (N), 131
index or range notation, 118
length indicator (L), 127
multiple-value field references, 120
multiple-value field references within a periodic group, 121
performance considerations, 143
periodic group references, 119
record format specifications, 116
space notation (nX), 141
SQL significance indicator (S), 133

Command Reference564

Index

syntax, 114
text insertion notation, 142

format ID
definition, 42
for read, update, and find commands, 44
global, 42
using global, 45
using with separate command ID, 45

G
global format IDs

releasing, 439

H
HI command, 287

ACB example, 290
ACB field descriptions, 289
ACB layout

layout, 288
ACBX field descriptions, 291
ACBX layout

layout, 290
function and use, 288

hold facility
commands, 24
record/ISN, 24
release from hold status, 25
updating with, 24

holding
records, 293
records for update, 287

I
indentation, 2
ISN buffer

description, 193
ISN lists

command to process, 501
processing, 48
processing examples, 50
retrieving from Work, 49
sorting, 513
storing on Work, 49

italic, 1

L
L indicator, 127
L1 and L4 commands, 293

ACB examples, 300
ACB field descriptions, 296
ACB layout

layout, 295
ACBX field descriptions, 306
ACBX layout

layout, 305
buffer requirements, 310
format buffer requirements, 310
function and use, 294
ISN buffer requirements, 311
multifetch buffer requirements, 311

record buffer requirements, 311
L2 and L5 commands, 313

ACB examples, 318
ACB field descriptions, 316
ACB layout, 315
ACBX field descriptions, 322
ACBX layout, 320
additional considerations, 326
buffer requirements, 325
function and use, 314

L2 commands
special use with response 145, 326

L3 and L6 commands, 329
ACB examples, 338
ACB field descriptions, 333
ACB layout, 332
ACBX field descriptions, 343
ACBX layout, 341
additional considerations, 353
control block

description of buffers, 348
function and use, 330

L9 command, 355
ACB examples, 361
ACB field descriptions, 358
ACB layout, 357
ACBX field descriptions, 365
ACBX layout, 364
additional considerations, 373
control block

description of buffers, 369
function and use, 356

length indicator (L), 127
in read commands, 129
in update commands, 131
with MU and PE fields, 127
with read operations and no blank compression (NB) option,
129

LF command, 375
ACB example, 379
ACB field descriptions, 377
ACB layout, 376
ACBX field descriptions, 380
ACBX layout, 379
format buffer requirements, 383
function and use, 376
record buffer information for command option not set, 398
record buffer information with command option 2 set to F
or X, 389
record buffer information with command option 2 set to I,
397
record buffer information with command option 2 set to S,
383

LOB segment notation, 135
logical transaction, 19
lowercase, 1

M
MU fields

using length indicator (L) with, 127
Multiclient files

owner ID
specify using direct call command, 431

565Command Reference

Index

multiclient files
owner ID

specify using direct call command, 424
multifetch

compared with prefetch, 54
ET/BT command processing, 57
invoking, 54
purpose of, 53
read command processing, 56

multifetch buffer
description, 161

N
N indicator, 131
N1 and N2 commands, 401

ACB examples, 406
ACB field descriptions, 404
ACB layout, 403
ACBX field descriptions, 409
ACBX layout, 408
buffer requirements, 411
function and use, 402

no blank compression (NB) option
in read operations with length indicators (L), 129

non-activity time limit, 39
normal font, 1

O
OP command, 415

ACB examples, 425
ACB field descriptions, 422
ACB layout, 421
ACBX field descriptions, 429
ACBX layout, 428
buffers, 433
control block

values returned in fields, 436
exceeding time limits, 436
format buffer requirements, 433
function and use, 416
record buffer requirements, 433
user queue elements, 435
user types, 417

opening
user session, 415

optional syntax elements, 1

P
PE fields

using length indicator (L) with, 127
performance

format buffer considerations, 143
performance buffer

description, 201
PLOG (see protection log (PLOG))
prefetch

compared with multifetch, 54
excluding files and commands from, 58
invoking, 54
invoking with command option P, 59
programming considerations, 59

purpose of, 53
when to use, 58

prefetch buffer
description, 159

protection log (PLOG)
writing user data to, 247

punctuation and symbols in syntax, 2

R
RC command, 439

ACB examples, 443
ACB field descriptions, 442
ACB layout, 441
ACBX field descriptions, 447
ACBX layout, 446
function and use, 440

RE command, 449
ACB examples, 454
ACB field descriptions, 452
ACB layout, 451
ACBX field descriptions, 456
ACBX layout, 455
buffers, 458
format buffer, 458
function and use, 450
record buffer, 459

read commands
multifetch processing, 56
using length indicator (L) with, 129

read operations
with length indicators (L) and no blank compression (NB)
option, 129

reading
records, 293

record buffer
alpha field with long alpha (LA) option, 149
description, 145
examples, 151
SQL null indicator, 147

Records
find

using direct call command, 469
release

using direct call command, 461
records

adding, 401
deleting, 265
find coupled, 492
holding for update, 287
reading, 293
reading and holding, 293
reading in physical sequential order, 313

refreshing files, 265
releasing

command IDs, 439
global format IDs, 439

repeated syntax elements, 2
required syntax elements, 1
resource deadlock

avoiding, 25
response 145

special L2 command, 326
RI command, 461

Command Reference566

Index

ACB examples, 464
ACB field descriptions, 463
ACB layout, 463
ACBX field descriptions, 466
ACBX layout, 465
function and use, 462

S
S indicator, 133
S1, S2, and S4 commands, 469

ACB examples, 476
S1, S2, S4 commands

ACB field descriptions, 472
ACB layout block, 471
ACBX field descriptions, 484
ACBX layout block, 483
buffer descriptions, 488
function and use, 470

S5 command, 491
ACB example, 495
ACB field descriptions, 493
ACB layout, 492
ACBX field descriptions, 497
ACBX layout, 496
buffers, 499
format buffer, 500
function and use, 492
ISN buffer, 500
record buffer, 500
search buffer, 500
value buffer, 500

S8 command, 501
ACB example, 506
ACB field descriptions, 504
ACB layout, 503
ACBX field descriptions, 508
ACBX layout, 507
format buffer, 510
function and use, 502
ISN buffer, 511
record buffer, 511
search buffer, 511
value buffer, 511

S9 command, 513
ACB example, 519
ACB field descriptions, 516
ACB layout, 514
ACBX field descriptions, 522
ACBX layout, 520
buffer descriptions, 525
format buffer, 525
function and use, 514
ISN buffer, 526
record buffer, 525
search buffer, 525
value buffer, 525

search buffer
daylight savings time indicator, 166
description, 163
examples, 179
search expression, 165
search expression and occurrence index, 166
search expression and significance and null indicators, 167

search expression connecting operators, 169
search expression field formats, 168
search expression field lengths, 168
search expression value operators, 168
search expressions and field types, 165
syntax, 165
using physically coupled files, 172
using soft coupling, 173

sessions
opening user session, 415

shared hold status
updating with, 27

sorting ISN lists, 513
subparameter syntax, 2
superdescriptor

as a single-file search argument, 166
Syntax conventions

indentation, 2
syntax conventions

bold, 1
braces ({}), 1
brackets ([]), 1
ellipsis (...), 2
italic, 1
lowercase, 1
mutually exclusive choices, 1
normal font, 1
optional elements, 1
punctuation and symbols, 2
repeated elements, 2
required elements, 1
subparameters, 2
uppercase, 1
vertical bars (|), 1

SYNX-03 checkpoint, 239

T
timeout control

action taken when user exceeds non-activity limit, 39
non-activity limit, 39
transaction limit, 20

transaction
autobackout routine, 21
command to back out, 20
command to end, 21
definition of logical, 19
sequence number, 20
time limit for ET logic programs, 20

transactions
backing out, 221
ending, 275

U
update commands

with length indicators (L), 131
updating

competitive, 23
exclusive control, 37
field value using A1 command, 205
shared hold status, 27
using the hold option, 24

updating records

567Command Reference

Index

holding for update, 287
uppercase, 1
user buffer

description, 195
User data

read
using direct call command, 449

user data
direct call command to read, 22
direct call command to store, 22
function of, 22
writing to protection log, 247

user session
closing, 255

user sessions
opening, 415

V
V* commands, 204
value buffer

description, 175
examples, 179
handling signs, 177
SQL null values and indicators, 176

vertical bars (|), 1

W
writing checkpoints, 231
writing SYNX-03 checkpoint, 239

Y
Y* commands, 204

Command Reference568

Index

	Command Reference
	Table of Contents
	Command Reference
	1 Syntax Conventions
	2 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Overview
	3 About Adabas Commands
	Command Types
	Database Query Commands (Sx)
	S1/S4
	S2
	S5
	S8
	S9

	Data Storage Read Commands (L1-L6)
	L1/L4
	L2/L5
	L3/L6

	Associator Read Commands (L9, LF)
	L9
	LF

	Database Modification Commands (A1, E1, N1/N2)
	A1
	E1
	N1/N2

	Logical Transaction Control Commands (ET/BT)
	BT
	ET

	Special Commands
	CL
	C1
	C3
	C5
	HI
	OP
	RC
	RE
	RI

	Transactions and ET Logic
	What Is A Logical Transaction?
	Transaction Sequence Number
	ET Transaction Time Limit
	Back Out Transaction (BT) Command
	Autobackout
	End Transaction (ET) Command
	User (ET) Data
	Adabas User ID

	Competitive Updating
	ET User Record Hold and Release
	Record Hold Commands
	Record Update Using the Hold Option
	Record Release

	Avoiding Resource Deadlock
	Shared Hold Status
	Duration (Lifetimes) of Shared Hold Status
	Rules
	Processing

	Exclusive Control Updating

	Non-Activity Time Limit
	For an ET Logic User
	For an Exclusive File Control User (EXF)
	For an Access Only User

	4 General Programming Considerations
	Command, Format, and Global Format IDs
	Specifying Command, Format, and Global Format IDs
	Command IDs for Read Sequential Commands
	Command and Format IDs for Read, Update, and Find Commands
	Using Separate Command ID and Format IDs
	Using a Global Format ID
	Command IDs Used with ISN Lists
	Automatic Command ID Generation
	Releasing Command IDs
	Internal Identification of Command IDs
	Examples of Command ID Use
	Example 1 : Find / Read Processing
	Example 2 : Find / Read Using the GET NEXT Option
	Example 3 : Read / Update Processing
	Example 4 : Read / Find Processing

	ISN List Processing
	Storage of ISN Lists
	Retrieval of ISN Lists
	Save-ISN-List Option Specified
	Save-ISN-List Option Not Specified
	Using the ISN Quantity Field of the Control Block

	ISN List Processing Examples
	Example 1 : Using Sx Command with L1/L4 Commands with GET NEXT Option
	Example 2 : Using the Save-ISN-List Option
	Example 3 : With ISN Overflow Handling
	Example 4 : Without ISN Overflow Handling

	Using the Multifetch/Prefetch Feature
	Multifetching Versus Prefetching
	Invoking Multifetch/Prefetch
	Multifetch Operation Processing
	READ (Lx) Multifetch Processing
	BT / ET Multifetch Processing

	Prefetch Operation Processing
	Invoking Prefetch Operation with Command Option P
	Additional Prefetch Programming Considerations

	The Effects of ISN Changes on Prefetched or Multifetched Records

	II Calling Adabas
	5 Calling Adabas
	How Adabas Distinguishes Between ACB and ACBX Direct Calls
	Specifying an ACB Interface Direct Call
	Specifying an ACBX Interface Direct Call
	Specifying an ACBX Interface Direct Call in Mainframe Applications
	Specifying an ACBX Interface Direct Call in Open System Applications

	Mixing ACB and ACBX Direct Calls

	III Adabas Control Block Structures (ACB and ACBX)
	6 Adabas Control Block Structures (ACB and ACBX)
	Adabas Control Block (ACB)
	ACB Format
	ACB Fields
	Call Type (ACBTYPE)
	Command Code (ACBCMD)
	Command ID (ACBCID)
	File Number (ACBFNR)
	Response Code (ACBRSP)
	ISN (ACBISN)
	ISN Lower Limit (ACBISL)
	ISN Quantity (ACBISQ)
	Buffer Length: Format, Record, Search, Value, and ISN (ACBFBL, ACBRBL, ACBSBL, ACBVBL, and ACBIBL)
	Command Option 1 and Command Option 2 (ACBCOP1 and ACBCOP2)
	Additions 1 (ACBADD1)
	Additions 2 (ACBADD2)
	Additions 3 (ACBADD3)
	Additions 4 (ACBADD4)
	Additions 5 (ACBADD5)
	Command Time (ACBCMDT)
	User Area (ACBUSER)

	ACB DSECT
	ACB Examples

	Extended Adabas Control Block (ACBX)
	ACBX Format
	ACBX Fields
	Call Type (ACBXTYP)
	Reserved 1 (ACBXRSV1)
	Version Indicator (ACBXVER)
	ACBX Length (ACBXLEN)
	Command Code (ACBXCMD)
	Reserved 2 (ACBXRSV2)
	Response Code (ACBXRSP)
	Command ID (ACBXCID)
	Database ID (ACBXDBID)
	File Number (ACBXFNR)
	ISN (ACBXISNG/ACBXISN)
	ISN Lower Limit (ACBXISLG/ACBXISL)
	ISN Quantity (ACBXISQG/ACBXISQ)
	Command Options 1 through 8 (ACBXCOP1 through ACBXCOP8)
	Additions 1 (ACBXADD1)
	Additions 2 (ACBXADD2)
	Additions 3 (ACBXADD3)
	Additions 4 (ACBXADD4)
	Additions 5 (ACBXADD5)
	Additions 6 (ACBXADD6)
	Reserved 3 (ACBXRSV3)
	Error Offset in Buffer (64-bit) (ACBXERRG)
	Error Offset in Buffer (32-bit) (ACBXERRA)
	Error Character Field (ACBXERRB)
	Error Subcode (ACBXERRC)
	Error Buffer ID (ACBXERRD)
	Reserved (ACBXERRE)
	Error Buffer Sequence Number (ACBXERRF)
	Subcomponent Response Code (ACBXSUBR)
	Subcomponent Response Subcode (ACBXSUBS)
	Subcomponent Error Text (ACBXSUBT)
	Compressed Record Length (ACBXLCMP)
	Decompressed Record Length (ACBXLDEC)
	Command Time (ACBXCMDT)
	User Area (ACBXUSER)
	Reserved 4 (ACBXRSV4)

	ACBX DSECT

	Differences between the ACB and the ACBX
	Control Block Length
	Buffer Length Fields
	Command Options, Additions, and Reserved Fields
	Unit Differences
	Field Length Differences
	Additional Fields in ACBX
	ACB Dual Purpose Field Changes
	Structure and Offset Differences

	Logging the Control Blocks

	IV Adabas Buffer Descriptions (ABDs)
	7 Adabas Buffer Descriptions (ABDs)
	Available ABD Types
	ABD Structure
	ABD Field Descriptions
	ABD Length (ABDXLEN)
	Version Indicator (ABDXVER)
	Buffer Type ID (ABDXID)
	Reserved 1 (ABDXRSV1)
	Buffer Location Flag (ABDXLOC)
	Reserved 2 (ABDXRSV2)
	Reserved 3 (ABDXRSV3)
	ALET (ABDXALET)
	Buffer Size (ABDXSIZE)
	Data Length to Send (ABDXSEND)
	Data Length Received (ABDXRECV)
	64-Bit Indirect Address Pointer (ABDXADRG)
	31-Bit Indirect Address Pointer (ABDXADR)
	Actual Buffer

	ABD DSECT
	ABD Lists

	V
	8 Defining Buffers
	9 Understanding the Different Buffer Types
	10 Format Buffers
	Format Buffer Syntax
	Field Selection Criteria
	Record Format Specifications
	field Syntax
	field-name Specifications
	Index or Range Notation (i [-j] Notation)
	Periodic Group References
	Multiple-Value Fields
	Multiple-Value Fields within Periodic Groups
	Summary of Valid MU and PE Index Specifications in Format and Search Buffers
	Count Indicator (C)
	Daylight Savings Indicator (D)
	MU and PE Index Specifications in Daylight Savings Indicator Syntax
	Daylight Savings Indicator Rules
	Daylight Savings Indicator Example

	Length Indicator (L)
	Using the Length Indicator with MU/PE Fields
	Using the Length Indicator in Read Commands
	Using the Length Indicator in Update Commands

	Highest Occurrence/Value Indicator (N)
	SQL Significance Indicator (S)
	Selecting LOB Values or LOB Value Segments

	Length and Data Format
	Asterisk (*) Length Notation
	Edit Mask Notation (Read Operations Only)
	Examples

	Field Series Notation
	Space Notation (nX)
	Text Insertion Notation

	Specifying Field Lengths of LA (Long Alpha) Fields in Format Buffers
	Specifying Field Lengths of LOB (Large Object) Fields in Format Buffers
	Format Buffer Performance Considerations

	11 Record Buffers
	Specifying and Reading the SQL Null Indicator in Record Buffers
	Specifying Field Lengths of LA (Long Alpha) Fields in Record Buffers
	Specifying Field Lengths of LOB (Large Object) Fields in Record Buffers
	Specifying the Daylight Savings Time Offset in Record Buffers

	12 Format and Record Buffer Examples
	Example 1: Using Elementary Fields (Standard Length and Format)
	Example 2: Using Elementary Fields (Length and Format Override)
	Example 3: A Reference to a Periodic Group
	Example 4: The First Two Occurrences of Periodic Group GB
	Example 5: The Sixth Value of the Multiple-Value Field MF
	Example 6: The First Two Values of the Multiple-Value Field MF
	Example 7: The Highest Occurrence Number of a Periodic Group GC and the Existing Number of Values for the Multiple-Value Field MF

	13 Prefetch Buffers
	14 Multifetch Buffers
	15 Search Buffers
	Search Buffer Syntax
	Search Expression
	Connecting Search Expressions
	Searching One File
	Searching Multiple, Physically Coupled Files
	Searching One or More Files Using Soft Coupling
	Physically Coupled Files
	Soft Coupling

	16 Value Buffers
	Value Buffer Syntax
	SQL Null Values and Indicators
	Sign Handling
	Fixed Value Signs
	Unpacked Value Signs
	Packed Value Signs

	17 Search and Value Buffer Examples
	Example 1: Using a Single Search Expression
	Example 2: Using Search Expressions Connected by AND
	Example 3: Using Search Expressions Connected by OR
	Example 4: Using Search Expressions Connected by FROM-TO
	Example 5: Using Search Expression with BUT-NOT
	Example 6: Using a Multiple-Value Descriptor
	Example 7: Using a Descriptor Within a Periodic Group
	Example 8: Using a Subdescriptor
	Example 9: Using a Superdescriptor with Alphanumeric Format
	Example 10: Using a Superdescriptor with Binary Format
	Example 11: Using Previously Created ISN Lists
	Example 12: Using a Value Operator
	Example 13: Using Both Value and Connecting Operators
	Example 14: Using Physically Coupled Files
	Example 15: Using Single Soft Coupling Criterion and Single Search Criterion
	Example 16: Using Single Soft Coupling Criterion and Multiple Search Criteria
	Example 17: Using Multiple Soft Coupling Criteria and Multiple Search Criteria
	Example 18: Using Multiple Soft Coupling Criteria and Multiple Search Criteria with Physical Coupling

	18 Date-Time Edit Mask Processing in Format and Search Buffers
	19 ISN Buffers
	20 User Buffers
	Differentiating Between the ACB and the ACBX
	Using the User Buffer with ADALNK User Exits 1 and 2
	Using the User Buffer with Adabas Nucleus Exits 4 and 11
	User Buffer Format for ACB Calls
	User Buffer Format for ACBX Calls
	Example

	21 Performance Buffers

	VI Commands
	22 A1 Command: Update Record
	Function and Use
	ACB Interface Direct Call: A1 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2

	ACBX Interface Direct Call: A1 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer

	Additional Considerations

	23 BT Command: Back Out Transaction
	Function and Use
	ACB Interface Direct Call: BT Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2
	Example 3

	ACBX Interface Direct Call: BT Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	ISN Buffer

	24 C1 Command: Write a Checkpoint
	Function and Use
	ACB Interface Direct Call: C1 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Example

	ACBX Interface Direct Call: C1 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	25 C3 Command: Write Checkpoint
	Function and Use
	ACB Interface Direct Call: C3 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Example

	ACBX Interface Direct Call: C3 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer

	26 C5 Command: Write User Data to Protection Log
	Function and Use
	ACB Interface Direct Call: C5 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Example

	ACBX Interface Direct Call: C5 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer

	27 CL Command: Close User Session
	Function and Use
	ACB Interface Direct Call: CL Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2

	ACBX Interface Direct Call: CL Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer

	28 E1 Command: Delete Record / Refresh File
	Function and Use
	ACB Interface Direct Call: E1 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2

	ACBX Interface Direct Call: E1 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	29 ET Command: End Transaction
	Function and Use
	ACB Interface Direct Call: ET Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1: ET without User Data
	Example 2: ET with User Data
	Example 3: ET with Hold ISN Option

	ACBX Interface Direct Call: ET Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	ISN Buffer

	30 HI Command: Hold Record
	Function and Use
	ACB Interface Direct Call: HI Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Example

	ACBX Interface Direct Call: HI Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	31 L1 and L4 Commands: Read / Read and Hold Record
	Function and Use
	ACB Interface Direct Call: L1 and L4 Commands
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1: Reading a Single Record
	Example 2: Reading a Set of Records
	Example 3: Reading a Set of Records Using the GET NEXT Option
	Example 4: Read with Hold
	Example 5: Read Using the Read ISN Sequence Option
	Example 6: Reading Multiple-Value Fields and Periodic Groups

	ACBX Interface Direct Call: L1 and L4 Commands
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	ISN Buffer
	Multifetch Buffer

	32 L2 and L5 Commands: Read Physical Sequential
	Function and Use
	ACB Interface Direct Call: L2 and L5 Commands
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2

	ACBX Interface Direct Call: L2 and L5 Commands
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	ISN Buffer
	Multifetch Buffer

	Additional Considerations
	Special L2 Command Call for Response 145

	33 L3 and L6 Commands: Read Logical Sequential
	Function and Use
	Repositioning to a Particular Value
	Changing the Direction of the Read

	ACB Interface Direct Call: L3 and L6 Commands
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2: Read Logical Sequential with Record Hold
	Example 3: ASCENDING Option
	Example 4: DESCENDING Option with Repositioning

	ACBX Interface Direct Call: L3 and L6 Commands
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	Search and Value Buffer Examples
	Example 1: Ascending Option with Optional Search and Value Buffer
	Example 2: Descending Option with Optional Search and Value Buffer
	Example 3: Overview of Sequence Options

	ISN Buffer
	Multifetch Buffer

	Additional Considerations

	34 L9 Command: Read Descriptor Values
	Function and Use
	ACB Interface Direct Call: L9 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2
	Example 3: Overview of Sequence Options

	ACBX Interface Direct Call: L9 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	ISN Buffer
	Data Format for the Multifetch Option (M)
	Data Format for the Prefetch Option (P)

	Multifetch Buffer

	Additional Considerations

	35 LF Command: Read Field Definitions
	Function and Use
	ACB Interface Direct Call: LF Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Example

	ACBX Interface Direct Call: LF Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer When Command Option 2=S
	FDT Field Entries
	SDT Field Definitions
	Collation Descriptor Entries
	Hyperdescriptor Entries
	Phonetic Descriptor Entries
	Subfield/Subdescriptor Entries
	Superdescriptor/Superfield Entries

	Record Buffer When Command Option 2=F or X
	FDT Field Entries
	SDT Field Entries
	Collation Descriptor Entries
	Hyperdescriptor Entries
	Phonetic Descriptor Entries
	Subfield/Subdescriptor Entries
	Superdescriptor/Superfield Entries

	Record Buffer When Command Option 2=I
	Record Buffer When Command Option 2 Not Set

	36 N1 and N2 Commands: Adding Records
	Function and Use
	ACB Interface Direct Call: N1 and N2 Commands
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2

	ACBX Interface Direct Call: N1 and N2 Commands
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer

	37 OP Command: Open User Session
	Function and Use
	User Types
	Access-Only Users
	Exclusive Control Users
	ET Logic Users

	ACB Interface Direct Call: OP Command
	Control Block and Buffer Information
	Control Block Field Descriptions
	ACB Examples
	Example 1: Access-Only User
	Example 2: ET Logic User
	Example 3: Exclusive Control User Without ET Logic
	Example 4: Exclusive Control User with ET Logic
	Example 5: Special Encoding for Wide-Character Fields

	ACBX Interface Direct Call: OP Command
	Control Block and Buffer Information
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer

	User Queue Element
	User Type and File Lists
	Special Encoding Information

	Exceeding Time Limits
	Values Returned in Control Block Fields

	38 RC Command: Release Command ID or Global Format ID
	Function and Use
	ACB Interface Direct Call: RC Command
	Control Block and Buffer Information
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	ACBX Interface Direct Call: RC Command
	Control Block and Buffer Information
	Control Block Field Descriptions

	39 RE Command: Read ET User Data
	Function and Use
	ACB Interface Direct Call: RE Command
	Control Block and Buffer Information
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2
	Example 3

	ACBX Interface Direct Call: RE Command
	Control Block and Buffer Information
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer

	40 RI Command: Release Record
	Function and Use
	ACB Interface Direct Call: RI Command
	Control Block and Buffer Information
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2

	ACBX Interface Direct Call: RI Command
	Control Block and Buffer Information
	Control Block Field Descriptions

	41 S1, S2, and S4 Commands: Find Records
	Function and Use
	ACB Interface Direct Call: S1, S2, and S4 Commands
	Control Block and Buffer Information
	Control Block Field Descriptions
	ACB Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	ACBX Interface Direct Call: S1, S2, and S4 Commands
	Control Block and Buffer Information
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	Search and Value Buffers
	ISN Buffer

	42 S5 Command: Find Coupled ISNs
	Function and Use
	ACB Interface Direct Call: S5 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions
	ACB Example

	ACBX Interface Direct Call: S5 Command
	Control Block and Buffer Overview
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	ISN Buffer

	43 S8 Command: Process ISN Lists
	Function and Use
	ACB Interface Direct Call: S8 Command
	Control Block and Buffer Information
	Control Block Field Descriptions
	ACB Example

	ACBX Interface Direct Call: S8 Command
	Control Block and Buffer Information
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	ISN Buffer

	44 S9 Command: Sort ISN Lists
	Function and Use
	ACB Interface Direct Call: S9 Command
	Control Block and Buffer Information
	Control Block
	ACB Example
	Example 1
	Example 2

	ACBX Interface Direct Call: S9 Command
	Control Block and Buffer Information
	Control Block Field Descriptions

	Buffers
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	ISN Buffer

	VII Programming Examples
	45 ACB Examples
	File Definitions Used in ACB Examples
	ACB Assembler Examples
	Example 1
	Example 2
	Example 3 : User Session with ET Logic
	Session Initialization
	Transaction Processing

	ACB COBOL Examples
	Example 1
	Example 2
	Example 3 : User Session with ET Logic

	ACB PL/I Examples
	Example 1
	Example 2
	Example 3
	PLIADA: Batch/TSO Example

	ACB Fortran Example
	Example 1

	46 ACBX Examples
	COBADA8: Batch/TSO Example
	COBACI8: CICS/TS Example
	PLIADAX: Batch/TSO Example
	PLIADAC: CICS/TS Example

	Index

