
Adabas

User, Hyperdescriptor, Collation Descriptor, and SMF Exits

Version 8.5.2

April 2020

This document applies to Adabas Version 8.5.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ADAMF-EXITS-852-20230316

Table of Contents

Preface .. v
1 Conventions ... 1
2 About this Documentation .. 3

Document Conventions ... 4
Online Information and Support ... 4
Data Protection ... 5

3 User Exit 1 (General Processing) ... 7
4 User Exit 2 (Dual Log Processing) ... 9

User Exit 2 Calling Sequence ... 11
Input Parameters .. 13
Output Parameter ... 15

5 User Exit 3 (User-Defined Phonetic Processing) ... 17
Input Parameters .. 18

6 User Exit 4 (User-Generated Log Data) ... 19
Command Log Format ... 20
Invoking User Exit 4 ... 23
Accessing Adabas Buffers via CQX ... 24
Accessing Adabas Buffers via LORECX .. 25

7 User Exit 5 (Adabas Review Hub Event Handler) .. 27
Input Parameters .. 28
Output Parameters ... 29

8 User Exit 6 (User Processing Before Data Compression) .. 31
ADACMP Header Processing .. 34
Input Parameters .. 35
Output Parameters ... 35

9 User Exit 8 (Operator Interface) .. 37
Input Parameters .. 39

10 User Exit 9 (ADAULD) .. 41
Processing ... 42
User Exit 9 Sample ... 44

11 User Exit 11 (General Processing) ... 45
Input and Output Parameters .. 47

12 User Exit 12 (Multiple Data Set Log Processing) ... 49
User Exit 12 Calling Sequence .. 51
User Exit Interface .. 52
Output Parameter ... 55
Activating the Sample User Exit .. 55

13 Hyperdescriptor Exits 01 - 31 .. 57
Main Parameter Area ... 59
Input Parameter Area (Pointed to by Third Parameter Address) 60
Output Parameter Area .. 62
Null Value Option .. 63
Hyperdescriptor Exit Initialization Call ... 64

iii

Hyperdescriptor Exit Sample ... 64
Hyperdescriptor Exit Stub ... 64

14 Collation Descriptor Exits 01 - 08 .. 67
Collation Descriptor Exit Interface ... 68

15 SMF User Exit .. 71
Index ... 73

User, Hyperdescriptor, Collation Descriptor, and SMF Exitsiv

User, Hyperdescriptor, Collation Descriptor, and SMF Exits

Preface

This document refers to the user exits activated by the ADARUN parameters UEXn, HEXnn, and
CDXnn (see the Adabas Operations documentation for descriptions of the ADARUN parameters).

Caution: All supplied sample user exits are sample user programs and are not supported
under any maintenance contract agreement.

The user exits documented in this document are as follows:

UseADARUNUser Exit

Command processing (Adabas nucleus) -- being retiredUEX1User Exit 1

Dual log processingUEX2User Exit 2

User-defined phonetic processingUEX3User Exit 3

User-generated log dataUEX4User Exit 4

Adabas Review hub event handlerUEX5User Exit 5

Data compression (ADACMP)UEX6User Exit 6

Operator interfaceUEX8User Exit 8

Data unload (ADAULD)UEX9User Exit 9

Command processing (Adabas nucleus)UEX11User Exit 11

Multiple log processingUEX12User Exit 12

UseADARUNHyperdescriptor Exits

User-supplied algorithm to create hyperindex valuesHEX01 . . HEX311 . . 31

UseADARUNCollation Descriptor Exit

User-supplied algorithm to encode and decode values for the
corresponding collation descriptors

CDX01 . . CDX081 . . 8

UseADARUNSMF User Exit

User-supplied detail section to be included in the SMF recordUEXSMFSMF User Exit

Other Exits Supported by Adabas

Other user exits supported by Adabas include the following:

v

Caution: These user exits are sample user programs and are not supported under any
maintenance contract agreement.

UseEntry Name

Allows you to obtain control at strategic points during ADACDC utility processing. See the
Adabas Utilities documentation.

ADACDCUX

These CICS link routine task-related user exits (TRUEs) allow your site to tailor different
Adabas CICS execution options in the same CICS region. using a centralized installation
procedure and software. For more information, see the Adabas Installation documentation.

ADACICTn

Allows you to obtain control at strategic points during Adabas Caching Facility processing.
See the Adabas Caching Facility documentation.

ADACSHUX

Allows you to supply parameters to a PIN routine or examine a condition when it is
encountered before the PIN routine is invoked so that recovery actions other than those

ADASMXIT

provided by Adabas can be implemented. SeeAdabas Online SystemDemo Version in the DBA
Tasks documentation..

Automatically submits the necessary job to prevent overflow of the DLOG area. See the
Adabas Delta Save Facility Facility documentation.

DSFUEX1

Linked with Adalink for Adabas 8: receives control before a command is passed to a target
with the router 04 call. See LUEXIT1.

LUEXIT1

Linked with Adalink for Adabas 8: receives control after a command is processed by a target,
the router, or Adalink itself. See LUEXIT2.

LUEXIT2

A SAP exit to Adalink for Adabas 8.UEXASAP

Allows you to change automatically generated ADARAI RECOVER JCL before it is written
to DDJCLOUT. See the Adabas Utilities documentation.

UEXRAI

User, Hyperdescriptor, Collation Descriptor, and SMF Exitsvi

Preface

1 Conventions

Notation vrs, vr, or v: When used in this documentation, the notation vrs or vr stands for the
relevant version of a product. For further information on product versions, see version in the
Glossary.

1

2

2 About this Documentation

■ Document Conventions .. 4
■ Online Information and Support ... 4
■ Data Protection ... 5

3

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits4

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

5User, Hyperdescriptor, Collation Descriptor, and SMF Exits

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

6

3 User Exit 1 (General Processing)

With the introduction of user exit 11, support for user exit 1 is dropped. However, to ease the mi-
gration, a sample user exit, UEX11UX1, is supplied that you can insert in front of your existing
user exit 1 to have it invoked as user exit 11. This sample will only work for direct calls made using
the ACB direct call interface; it will not work for direct calls made using the Adabas 8 ACBX direct
call interface. The exit is still subject to exit 11 constraints, as described in User Exit 11, elsewhere
in this guide. In particular, changes are allowed only to the file number (CQXFNR), Additions 2
(ACBADD2), Additions 3 (ACBADD3), and user area (ACBUSER) fields. The nucleus will ignore
changes in any other ACB field and all other changes to the CQX. Please refer to comments in the
sample user exit for more details, including how to link it with an existing user exit 1. Adabas
nucleus support for this transition aid will be withdrawn in a future Adabas release.

Caution: UEX11UX1 is a sample user program and is not supported under any maintenance
contract agreement.

7

8

4 User Exit 2 (Dual Log Processing)

■ User Exit 2 Calling Sequence .. 11
■ Input Parameters ... 13
■ Output Parameter .. 15

9

This user exit is given control by the Adabas nucleus during a switch from one dual log to the al-
ternate dual log for the purpose of copying the log before it is reused by Adabas. This switch occurs
only if dual data protection logging or dual command logging is in effect for the session.

Note: UEX2 and UEX12 are mutually exclusive for an Adabas nucleus session: only one can
be specified.

The user exit routine must invoke a procedure whereby the appropriate function of the ADARES
utility (CLCOPY or PLCOPY) is executed.

User exit 2 is invoked:

■ during Adabas nucleus startup if a PLOG/CLOG has to be copied;
■ whenever a dual command or dual protection log switch occurs between two log data sets;
■ at the end of a PLCOPY or CLCOPY job if ADARES determines there are more copies needed;
■ during Adabas nucleus shutdown.

The user exit is provided with information about the status of the dual log data sets.

The user exit can decide which action is to be taken:

■ Ignore the call;
■ Submit a job to copy the log data set just filled up (ADARES utility);
■ Wait for completion of the copy job just submitted.

Note: If automated CLOG merge is being used in a cluster environment, it is critical that
the exit 2 is used in the suggested manner to copy the CLOGs in a timely fashion as illus-
trated in the sample exit. Invoking the CLCOPY process in a different manner can result
in time stamp inconsistencies between the CLOG datasets in a cluster environment
causing CLOG merge issues. The PLOG merge is always automatic and also requires that
the PLOGs are copied in a timely manner.

If the data set to be overwritten contains data, console message ADAN46 Function not executable
is issued.

An example of user exit 2 is supplied with the Adabas installation procedure. Refer to the Adabas
Installation documentation for more information.

The call to the user exit is made using a standard BASR 14,15 Assembler instruction. All registers
must be saved when control is received and restored immediately prior to returning control to
Adabas. Register 15 contains an action code as described in Output Parameter, elsewhere in this
chapter.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits10

User Exit 2 (Dual Log Processing)

User Exit 2 Calling Sequence

11User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 2 (Dual Log Processing)

Dual Log Processing Flow

User, Hyperdescriptor, Collation Descriptor, and SMF Exits12

User Exit 2 (Dual Log Processing)

Input Parameters

Dual Log Processing User Exit (2) Parameters

The input parameters for the address list are as follows:

A fullword address of . . .Parameter

the C/PLOG indicators and flag ½.0 (R1)

the four-byte timer 1 field.4 (R1)

the four-byte timer 2 field.8 (R1)

the current session's PLOG number, followed by the database ID.12 (R1)

a four-byte area where the first two bytes contain the number of PLOG1, and the second two
bytes hold the number of PLOG2.

16 (R1)

Other input parameters are explained in the following table:

13User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 2 (Dual Log Processing)

UsageParameter

Status flags for DD/PLOGR1 and DD/CLOGR1; andFlag 1

Flag 2 Status flags for DD/PLOGR2 and DD/CLOGR2:

Data set being written by nucleusB'1...' :

Data set has been completed by nucleusB'.1..' :

Being copied by ADARESB'.11.' :

Data set is empty (or copied) and reusable for the
nucleus.

B'0000 0000' :

All other flag ½ field values are reserved. For DD/CLOGR1/2 only: X`08' for
CLOGLAYOUT=5. Flag ½ bit settings can be combined (X`40' and X`20' as X`60', for
example).

If OPENOUT is specified, these flags are set after OPEN is issued for the output data set;
otherwise, the flags are set before the OPEN is issued.

Session Status Contains information about the status of the nucleus when the exit was called:

Called during nucleus session startup.X'S'

Called while terminating the nucleus session.X'T'

Called following a dual protection log switch.X'W'

Time-stamp (highest four bytes of a STCK instruction) for the time the first block of the log
data set has been written. TIMER1 for DD/PLOGR1 and DD/CLOGR1, and TIMER2 for
DD/PLOGR2 and DD/CLOGR2

TIMERn

Current session protection log number (two bytes). This value is set for PLOG only; the field
contains X`00' for CLOG.

PLOG

Database ID (two bytes).DBID

Two 2-byte PLOG numbers found on PLOG 1 and PLOG 2. If the previous nucleus session
ended abnormally, these four bytes contain that session`s PLOGNUM value, which can be

PLOG1/2

used in the initial user exit 2 call to copy that session's PLOG. During any subsequent session,
these bytes contain the current PLOGNUM value. If the preceding session ends abnormally,
these four bytes contain the ended session's PLOG numbers during the nucleus start phase.
This PLOG information is needed during the start phase to assign the correct PLOG numbers
to the PLOG areas to be copied. During subsequent exit calls, the current PLOG values are
in these fields.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits14

User Exit 2 (Dual Log Processing)

Output Parameter

UsageParameter

Nucleus continues processing.R15 = 0

R15 is treated as the number of seconds to wait before calling user exit 2 again. During this time,
the nucleus is in a "hard" wait. No commands are processed during the wait.

R15 > 0

15User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 2 (Dual Log Processing)

16

5 User Exit 3 (User-Defined Phonetic Processing)

■ Input Parameters ... 18

17

This user exit may be used to perform user-defined phonetic processing. It is given control by the
ADACMP utility or the Adabas nucleus whenever phonetic processing is required.

The user exit must develop a three-byte phonetic key using the value supplied. The address of
the resulting phonetic key must be placed at 8(R1) before control is returned.

Input Parameters

Register 1 contains the address of the following parameter list:

User-Defined Phonetization User Exit (3) Parameters

A fullword address of . . .Parameter

the four-byte length for the value to be phonetically processed.0(R1)

the address of the value to be phonetically processed.4(R1)

a three-byte location to contain the phonetic key. This address is set to zero before the user exit
and must be set to the actual address during the user exit.

8(R1)

The call to the user exit is made using a standard BASR 14,15 assembler instruction. All registers
must be saved when control is received and restored immediately prior to returning control to
Adabas. The content of R15 is ignored.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits18

User Exit 3 (User-Defined Phonetic Processing)

6 User Exit 4 (User-Generated Log Data)

■ Command Log Format .. 20
■ Invoking User Exit 4 ... 23
■ Accessing Adabas Buffers via CQX ... 24
■ Accessing Adabas Buffers via LORECX ... 25

19

User exit 4 is called immediately before an Adabas command log record is to be written. It may
be used to generate any required user log data (SMF records) special statistics, or to suppress
writing a log record.

Note: User exit 4 is still called even if ADARUN LOGGING=NO and REVIEW is specified.
User exit 4 will not be invoked if LOGGING=NO and REVIEW is not active. If REVIEW is
specified, the only way to disable user exit 4 is to remove the ADARUN UEX4 parameter
from the Adabas run.

Command Log Format

Adabas supports two different command log formats. The ADARUN CLOGLAYOUT parameter
determines which format is used:

■ CLOGLAYOUT=5 (the default) is supported only in Adabas versions 5.2 and above.
■ CLOGLAYOUT=8 specifies the new format, which is supported only in Adabas versions 8 and

above.

Both formats are described in Command Log Formats, in Adabas DBA Tasks Manual.

Ensure that your user exit and command log evaluation programs recognize the format in use
before switching to it.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits20

User Exit 4 (User-Generated Log Data)

User-Generated Log Data User Exit (4) Parameters

1Address of ACBCopy: This address should be set to zero if the command is using an ACBX interface
direct call.

2Address of the first ABD: The Adabas buffer descriptions (ABDs) are in a contiguous array. For
complete information about locating ABDs in this array, read Locating the Correct ABD, elsewhere
in this section.

21User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 4 (User-Generated Log Data)

Address of . . .Parameter

a byte containing a logging action code. This byte contains:0(R1)

■ +00 -- action code to log the record upon each call. If changed to a nonzero value, this record
will not be written to DDLOG.

■ +01 -- reserved for future use
■ +02 -- two-byte database ID.

the record to be logged. This address is zero if the exit is called at the end of the nucleus session.4(R1)

the end of the Adabas I/O area. This address is zero if the exit is called at the end of the nucleus
session.

8(R1)

the command queue element (CQX). This address is zero if the exit is called at the end of the
nucleus session.

12(R1)

The record to be logged may be modified by the user exit. The record's address in 4(R1) may also
be modified. The logging action code must always be specified before returning to the Adabas
nucleus.

Caution: When modifying the record, do not exceed the end address of the ADALOG I/O
area contained in 8(R1).

Locating the Correct ABD

Internally, Adabas 8 only uses extended Adabas control blocks (ACBX) and Adabas buffer descrip-
tions (ABDs). Direct calls made using the classic Adabas control block (ACB) and buffer definitions
have their data structures converted to ACBX calls and ABDs by ADASVC before the nucleus sees
the call. Thus, the protocol for locating and accessing buffers in user exits, such as this one, has
changed as of Adabas 8.

The Adabas buffer descriptions (ABDs) are now in a contiguous array. However, the internal
representation of the ABD may not have the same length as the base ABD, as defined by the value
of the ABDXQLL symbol in the ADABDX DSECT, although the first ABDXQLL bytes continue
to be mapped by ADABDX. This means that you should not use the ABDXQLL value in the AD-
ABDX DSECT to locate the next ABD in the ABD array. Instead, you should use the value of the
two-byte ABDXLEN field at offset +x'00' of the ABD to determine the end of that ABD and the
start of the next ABD in the array. Do not assume that all internal ABD representations have the
same length: each must be located in turn by applying its predecessor's ABDXLEN value.

In addition, the order of the ABDs is not defined and my change over time or from command to
command, although within the array all ABDs of a given type (format buffer, record buffer, etc.)
are contiguous. There will be an ABD for every buffer provided by the user that is documented
as an input or output buffer for the specific command. There may also be additional buffers created
by other components. When there are multiple instances of format, record and (optional) multifetch
buffers, they are related based on their position: the first format buffer is associated with the first
record (and optional multifetch) buffer, the second with the second, and so forth. If the caller

User, Hyperdescriptor, Collation Descriptor, and SMF Exits22

User Exit 4 (User-Generated Log Data)

provides an unequal number of format, record and (optional) multifetch buffers, dummy descriptors
with a zero buffer length are created to bring about equal quantities. When multifetch is used with
a classic ACB call, certain commands (L1/2/3/4/9) will have their ISN buffer converted into a
multifetch buffer. Here are some examples:

■ If a caller (using either an ACB or ACBX call) issues an OP command and provides a record
buffer and search buffer, the array of ABDs will have one record buffer ABD and one dummy
format buffer ABD (to satisfy the internal requirement that there be equal numbers of format
and record buffers). There is no ABD for the search buffer because that is not a documented input
or output buffer for the OP command.

■ If a caller uses an ACBX call to issue an L1 command and provides two format buffers and three
record buffers, the array of ABDs will have three record ABDs and three format ABDs, the last
one of which is a dummy format ABD. The first record buffer is associated with the first format
buffer; the second record buffer is associated with the second format buffer; and the third record
buffer is associated with the third (dummy) format buffer.

■ Suppose a caller uses an ACB call to issue an L3 command with Command Option 1 set to "M"
(multifetch) and Command Option 2 set to "A" (ascending retrieval from a specified value). In
addition, the caller provides a format buffer, a record buffer, an ISN buffer, a search buffer and
a value buffer. In this case, the array of ABDs will have one format buffer ABD, one record
buffer ABD, one multifetch buffer ABD, one search buffer ABD, and one value buffer ABD. The
caller's ISN buffer will have been converted to a multifetch buffer.

Invoking User Exit 4

User exit 4 is invoked for every record which is written to the CLOG. The kind of record can be
determined by field LOXTYPE of structure LORECX (<R1> + 4 => LORECX).

The set of records written to CLOG depends on the Adabas command (valid buffer types) and the
corresponding ADARUN parameters (LOGGING, LOGABDX, LOGCB, LOGFB, LOGIB, etc. referred
to as LOGxxx later).

Sample

ADARUN LOGGING=YES,LOGCB=YES,LOGRB=YES,LOGSB=YES
OP command with RB="ACC=10."

Will result in invocations of UEX4 with:

1. Basic record including control block (LOXTYPE= x’0001’)

2. ABDX + record buffer (LOXTYPE = x’0008’)

23User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 4 (User-Generated Log Data)

Accessing Adabas Buffers via CQX

CQX structure (Command Queue Element info for Adabas user exits)<R1> + x’0C’

ACBX structureCQX + x’48’

number of ABDsCQX + x’50’

array of ABDs, length of array element is ABDXLEN (i.e. step forward to next array element
by adding its length ABDXLEN)

CQX + x’54’

Depending on the value of ADBXLOC, you get to the buffer itself. In this scenario the value of
ABDXLOC is ‘I’ and ABDXADR contains the address of the buffer. It points directly to the value;
there is no preceding length field.

The length of the buffer can be obtained from

■ ABDXSIZE the allocated length of the buffer
■ ABDXSEND the length of data send to Adabas
■ ABDXRECV the length of data received from Adabas

The simplest way is to use “LENGTH = max(ABDXSEND,ABDXRECV)” but make sure this does not
exceed ABDXSIZE.

Sample accessing Adabas buffers via CQX

Assuming the LOGxxx ADARUN parameters are set accordingly.

If LORECX.LOXTYPE eq LOXTBAS then /*? Adabas basic record
"process ACBX pointed by CQX.CQXACBX"
#n := pointed by CQX.CQXPNBD /* number ABDX
If #n gt 0 then /*? Any ABDX present

#s := pointed by CQX.CQXPABD /* address 1st ABDX
For #i := 1 to #n /* iterate for all ABDX
#l := max (#s.ABDXSEND, #s.ABDXRECV) /* l’data
If #l > 0

Then "process ABDX pointed by CQX.CQXPABD"
End-if
#s := #s + #s.ABDXLEN /* step to next ABDX

End-for
End-if

End-if

User, Hyperdescriptor, Collation Descriptor, and SMF Exits24

User Exit 4 (User-Generated Log Data)

Accessing Adabas Buffers via LORECX

When accessing the Adabas buffers via LORECX structure one has to “listen” for records with
LOXTYPE:

■ x'0001'
the basic record containing the ACBX (optional) and the fields LOX1TYP1 and LOX1TYP2 which
define and illustrate which "data records" (LOXTYPE= x'0008' and x'0009') will follow.

■ x'0008'
ABDX and buffer

■ x'0009'
buffer continued (in case the data overflows the record length)

25User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 4 (User-Generated Log Data)

26

7 User Exit 5 (Adabas Review Hub Event Handler)

■ Input Parameters ... 28
■ Output Parameters .. 29

27

User exit 5 is called by the Adabas nucleus when an event occurs with the Adabas Review hub.

An event is defined as

■ a connection made with the Adabas Review hub during Adabas session open;
■ a connection broken with the Adabas Review hub during Adabas session close; or
■ a non-zero return code received from the send operation for a command log record.

The exit is invoked with AMODE=31 and should return control in the same state.

The exit is required to process logging errors. It determines how the failure is handled. The record
that was not logged and the response code received from the Adabas Review hub logging request
are provided to assist in making the determination.

Input Parameters

On entry, the register 1 points to the following parameter list:

UsageParameter

0(R1) Exit call indication. The value of this byte can be:

connection with Adabas Review hub opened;O

connection with Adabas Review hub closed; orC

sending logging error to Adabas Review hub.L

1(R1) Action to handle a logging error (ignored for open and close). The exit must provide one of the
following values for this field in the parameter list for a logging error:

wait a specified time and then retry;W

retry logging operation immediately; orR

User, Hyperdescriptor, Collation Descriptor, and SMF Exits28

User Exit 5 (Adabas Review Hub Event Handler)

UsageParameter

ignore the logging failure and continue without
consequence.

I

Response code for logging errors. This response code is the same as the Adabas response code
found in the Adabas Messages and Codes.

2(R1)

Fullword where the exit must provide a wait time (in seconds) for the logging failures that are
to be retried after waiting.

4(R1)

Address of the command log record that the Adabas nucleus was attempting to send to the
Adabas Review hub.

8(R1)

Other Register Values at Entry

save area of calling Adabas nucleus routineR13

return address in Adabas nucleusR14

entry point address for exitR15

Output Parameters

■ For logging errors, the exit is required to set a value in the `operation' field. If the wait value
(W) is chosen, the exit is also required to provide a non-zero time value.

■ Register 15 should be set to zero. All other registers should be returned intact.

29User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 5 (Adabas Review Hub Event Handler)

30

8 User Exit 6 (User Processing Before Data Compression)

■ ADACMP Header Processing .. 34
■ Input Parameters ... 35
■ Output Parameters .. 35

31

This user exit can be used to perform user processing on a record before it is processed by the
ADACMP COMPRESS utility. It can also be used to control the sequence and contents of the de-
compressed records that are output from the ADACMP DECOMPRESS utility; when used in this
way, the user exit controls which decompressed records ADACMP writes to the DDAUSBA data
set.

Sample user exit 6 assembler language source is supplied in the Adabas source library in member
USEREX6A (Assembler). A sample job to assemble and link the user exit is supplied in member
ASMUEX6 of the Adabas sample job library.

Caution: Sample user exits and programs and are not supported under any maintenance
contract agreement.

The ADACMP utility job must specify ADARUN UEX6=program parameter, where program is the
name of the user program and parameter is a parameter passed to that program.

User exit 6 is called by the ADACMP COMPRESS utility function immediately after one of the
following occurs so that it can append records to the input:

■ A record has been read from DDEBAND.
■ An end-of-file condition has occurred on DDEBAND.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits32

User Exit 6 (User Processing Before Data Compression)

33User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 6 (User Processing Before Data Compression)

ADACMP User Processing User Exit (6) Parameters

ADACMP Header Processing

When ADACMP is run with the parameter HEADER=YES, all input records for ADACMP
COMPRESS and output records for ADACMP DECOMPRESS are preceded by 32-byte ADAH
and ADAC headers that describe the grouping of physical records into logical records that may
be larger than 32 KB. DSECTs for the ADAH and ADAC headers can be found in members ADAH
and ADAC in the distributed Adabas 8 SRCE library. These headers identify how one logical record
containing uncompressed data is composed of one or more physical records.

When ADACMP is run with user exit 6 and HEADER=YES, ADACMP will pass each physical
record to user exit 6. The user exit application may need to use these headers to determine the re-
lationship between the physical and logical records.

For more information about the ADACMP headers and record segmenting, read Segmented Record
Considerations, in Adabas Utilities Manual.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits34

User Exit 6 (User Processing Before Data Compression)

Input Parameters

UsageParameter

Address of an input record. The length field preceding the variable record is skipped. The address
is of a fullword containing -1 (X`FFFF FFFF') if the user exit is called after ADACMP detects
end-of-file in DD/EBAND.

0 (R1)

Address of the field containing the input record length. For fixed records, this is a logical record
length. For variable records, this is the length of the actual data only (excluding the length field

4 (R1)

itself). The address points to a fullword containing minus 1 (X`FFFFFFFF') if the user exit is called
after ADACMP detects end-of-file in DD/EBAND.

Contains binary zeros on entry to the user exit (see Output Parameters).8 (R1)

Contains binary zeros on entry to the user exit (see Output Parameters).12 (R1)

Address of the FILE parameter value specified by the ADACMP COMPRESS utility job. The
address is in the rightmost/low-order two bytes. The location and content of this fullword must

16 (R1)

remain unchanged during the time of the user exit. If ADACMP COMPRESS did not specify the
FILE parameter, the fullword is X`00000000'.

Output Parameters

UsageParameter

Address of the user exit output record. This record will be used as input to the ADACMP
compression algorithm. The address of this record must be placed into 8 (R1) each time the user

8 (R1)

exit is called. If this field contains binary zeros on return, ADACMP will ignore the input record
and will continue processing.

Address of a 4-byte field containing the length of the returned record. The address of this field
must be placed into 12 (R1) each time the exit is called. If this field contains binary zeros on return,

12 (R1)

ADACMP will ignore the record and will continue processing. Though the length field pointed
to by 12 (R1) has a length of 4 bytes, only the low-order/rightmost halfword is used (bytes 3 and
4). If byte 2 contains a X`01' on return, the exit is recalled before the next record is read from
DDEBAND. This enables the user to return more than one record to ADACMP for each record
read from DD/EBAND.

35User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 6 (User Processing Before Data Compression)

36

9 User Exit 8 (Operator Interface)

■ Input Parameters ... 39

37

This user exit receives control from the Adabas nucleus whenever the nucleus starts or stops, or
whenever the nucleus or an Adabas utility receives a message from or sends a message to the
operator. User exit 8 can be used to provide specific instructions to the operator

■ when the nucleus starts and (normally) stops operation;
■ as added information when Adabas sends console messages to the operator;
■ to confirm commands entered by the operator.

User exit 8 is invoked:

■ (MODE=MULTI only) after Adabas startup, as soon as the nucleus is able to answer calls from
user programs. At this point, the nucleus is now active.

■ immediately after the Adabas nucleus or utility issues a console operator message. The user exit
call is in addition to the standard message processing; the message itself cannot be changed
during the user exit.

■ after the Adabas nucleus or utility receives an operator command. The exit is called before the
command is actually processed, and can reject or replace the command. The command cannot
be modified in its original area.

■ before a normal Adabas nucleus stop. At this point, the nucleus is no longer active; any more
nucleus calls result in response code 148 (ADARSP148). This exit is not called if the nucleus
ends abnormally.

Operator Interface User Exit (8) Parameters

User, Hyperdescriptor, Collation Descriptor, and SMF Exits38

User Exit 8 (Operator Interface)

Input Parameters

UsageParameter

0 (R1) Address of the byte containing the call type ("STOW") indicator:

called at nucleus startS

called at normal nucleus terminationT

called with an operator message to the nucleus/utilityO

called with a nucleus/utility message to the operatorW

Address of the fullword containing the database ID.4 (R1)

8 (R1) Address of variable-length message-related information for "O" and "W" type calls. The
information at this address has the following format: Call format:

The one-byte message length, followed by the alphanumeric message.
The length excludes the length byte itself. If the message is to be

O

changed, location 8(R1) must point to the new message on return.
This message is structured as described above. If the message is to be
suppressed, location 8(R1) must point to a two-byte field containing
X'0140'.

W 8(R1) points to the message, which has the
 following structure:
DC H'message-length+4'
DC H'0'
DC C'message-text' ↩

39User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 8 (Operator Interface)

40

10 User Exit 9 (ADAULD)

■ Processing ... 42
■ User Exit 9 Sample .. 44

41

User exit 9 is called by ADAULD whenever a compressed record is ready to be written. The user
exit decides whether a record is written to DD/OUT1, DD/OUT2, both, or neither.

Processing

ADAULD User Exit (9) Parameters

Notes:

1. DDOUT1 & 2 must have the same block size, or an ADAULD error occurs.

The compressed record pointed to by the third address has the following structure:

AL2 (L1) total length (inclusive)
AL2 (L2) record length (inclusive)
AL4 (ISN)
XL (L2 - 8) '...compressed fields...'
XL (L1 - L2 - 2) '...DVT entries...'

User, Hyperdescriptor, Collation Descriptor, and SMF Exits42

User Exit 9 (ADAULD)

User Exit 9 Output Control Flow

The call to the user exit is made via a standard BASR 14,15 assembler instruction. All registers
must be saved when control is received and restored immediately prior to returning control to
ADAULD. The content of R15 is ignored.

43User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 9 (ADAULD)

User Exit 9 Sample

Sample user exit 9 source is supplied in the Adabas source library in member USEREX9. A sample
job to assemble and link the user exit is supplied in member ASMUEX9 of the Adabas sample job
library.

Caution: Sample user exits and programs and are not supported under any maintenance
contract agreement.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits44

User Exit 9 (ADAULD)

11 User Exit 11 (General Processing)

■ Input and Output Parameters ... 47

45

This user exit is given control by Adabas immediately after a command is received by the Adabas
nucleus. The command itself has yet to be processed except for the determination of the type of
command (simple access, complex access, update).

One of the most common applications of this user exit is to insert a security password or a cipher
code into the ACBX.

This user exit functionality largely matches that of the classic user exit 1, except for the fact that
edited copies of the CQX and ACBX data structures are used during user exit 11 processing, rather
than the actual structures used by user exit 1. In addition, support for user exit 1 is dropped in
Adabas 8 (or later).

Only certain fields in the ACBX may be changed by the exit: ACBXFNR (file number), ACBXADD3
(Additions 3), ACBXADD4 (Additions 4), ACBXCOP1 through ACBXCOP8 (command options
1-8) and ACBXUSER (user area). The nucleus will ignore changes in any other ACBX fields and
all changes to the CQX. DSECT EX11PARM maps the user exit 11 parameter list. In addition, a
sample user exit 11 skeleton called UEX11 is provided. Both the DSECT and the user exit skeleton
are provided in the Adabas source library.

Caution: UEX11 is a sample user program and is not supported under any maintenance
contract agreement.

The call to the user exit is made using a standard BASSM R14,R15 assembler instruction. Register
1 contains the address of a parameter list. All registers must be saved when control is received
and restored immediately prior to returning control to Adabas, with the exception of Register 15
which contains the return code. A non-zero value means that the command should not be executed
and returns response code 22 (ADARSP022) subcode 6. However, the exit may set a response code
in the user-defined range 231-239 in field ACBXRSP of the exit’s ADACBX copy. When that is the
case the response code is taken from ACBXRSP and the subcode from ACBXErrC.

Notes:

1. All user exits must return the same program status word (PSW) fields to the calling program
that were active when the user exit was called. This applies in particular to the addressing mode
(AMODE), program mask, problem state flag, PSW key, and address space control setting. The
condition code need not be preserved. If any of these PSW fields is changed by the user exit,
one way to ensure that their previous values are returned is to envelope the code where the
change is in effect with a pair of the BAKR ... PR instructions. If BAKR ... PR instructions are
not necessary, return using BSM 0,R14 after restoring all registers except for R15.

2. The length of an Adabas buffer in any Adabas buffer description (ABD) used by the call cannot
be changed.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits46

User Exit 11 (General Processing)

Input and Output Parameters

General Processing User Exit (1) Parameters

1User Word: Before calling user exit 11, the fullword reserved for the user is set to zero. It is not
altered by Adabas between UEX11 invocations. It may be used for any purpose, typically to retain
the address of storage acquired for the exit's workarea.

2Parmlist length: The EX11PARM parameter list length is at least 28 bytes.

3Address of ACB Copy: This address will be set to zero if the command originated using an ACBX
direct interface call.

4Address of the first ABD: The Adabas buffer descriptions (ABDs) are in a contiguous array. For
complete information about locating ABDs in this array, read Locating the Correct ABD, next in this
section.

5Readonly CQX copy: For a more detailed diagram of the readonly CQX copy, see the diagram for
user exit 4 in User Exit 4 (User-Generated Log Data), elsewhere in this guide.

Locating the Correct ABD

Internally, Adabas 8 only uses extended Adabas control blocks (ACBX) and Adabas buffer descrip-
tions (ABDs). Direct calls made using the classic Adabas control block (ACB) and buffer definitions
have their data structures converted to ACBX calls and ABDs by ADASVC before the nucleus sees

47User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 11 (General Processing)

the call. Thus, the protocol for locating and accessing buffers in user exits, such as this one, has
changed as of Adabas 8.

The Adabas buffer descriptions (ABDs) are now in a contiguous array. However, the internal
representation of the ABD may not have the same length as the base ABD, as defined by the value
of the ABDXQLL symbol in the ADABDX DSECT, although the first ABDXQLL bytes continue
to be mapped by ADABDX. This means that you should not use the ABDXQLL value in the AD-
ABDX DSECT to locate the next ABD in the ABD array. Instead, you should use the value of the
two-byte ABDXLEN field at offset +x'00' of the ABD to determine the end of that ABD and the
start of the next ABD in the array. Do not assume that all internal ABD representations have the
same length: each must be located in turn by applying its predecessor's ABDXLEN value.

In addition, the order of the ABDs is not defined and my change over time or from command to
command, although within the array all ABDs of a given type (format buffer, record buffer, etc.)
are contiguous. There will be an ABD for every buffer provided by the user that is documented
as an input or output buffer for the specific command. There may also be additional buffers created
by other components. When there are multiple instances of format, record and (optional) multifetch
buffers, they are related based on their position: the first format buffer is associated with the first
record (and optional multifetch) buffer, the second with the second, and so forth. If the caller
provides an unequal number of format, record and (optional) multifetch buffers, dummy descriptors
with a zero buffer length are created to bring about equal quantities. When multifetch is used with
a classic ACB call, certain commands (L1/2/3/4/9) will have their ISN buffer converted into a
multifetch buffer. Here are some examples:

■ If a caller (using either an ACB or ACBX call) issues an OP command and provides a record
buffer and search buffer, the array of ABDs will have one record buffer ABD and one dummy
format buffer ABD (to satisfy the internal requirement that there be equal numbers of format
and record buffers). There is no ABD for the search buffer because that is not a documented input
or output buffer for the OP command.

■ If a caller uses an ACBX call to issue an L1 command and provides two format buffers and three
record buffers, the array of ABDs will have three record ABDs and three format ABDs, the last
one of which is a dummy format ABD. The first record buffer is associated with the first format
buffer; the second record buffer is associated with the second format buffer; and the third record
buffer is associated with the third (dummy) format buffer.

■ Suppose a caller uses an ACB call to issue an L3 command with Command Option 1 set to "M"
(multifetch) and Command Option 2 set to "A" (ascending retrieval from a specified value). In
addition, the caller provides a format buffer, a record buffer, an ISN buffer, a search buffer and
a value buffer. In this case, the array of ABDs will have one format buffer ABD, one record
buffer ABD, one multifetch buffer ABD, one search buffer ABD, and one value buffer ABD. The
caller's ISN buffer will have been converted to a multifetch buffer.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits48

User Exit 11 (General Processing)

12 User Exit 12 (Multiple Data Set Log Processing)

■ User Exit 12 Calling Sequence ... 51
■ User Exit Interface ... 52
■ Output Parameter .. 55
■ Activating the Sample User Exit ... 55

49

Note: UEX2 and UEX12 are mutually exclusive for an Adabas nucleus session: only one can
be specified.

This user exit is given control by the Adabas nucleus during a switch from one multiple log data
set to another for the purpose of copying the log data set before it is reused by Adabas. This switch
occurs only if multiple data set data protection logging and/or multiple data set command logging
is in effect for the session.

The user exit routine is designed to invoke a procedure that will execute the appropriate function
(CLCOPY or PLCOPY) of the ADARES utility.

User exit 12 is invoked

■ during Adabas nucleus startup if a multiple PLOG/CLOG data set has to be copied;
■ whenever a switch to another log data set occurs;
■ at the end of a PLCOPY or CLCOPY job if ADARES determines there are more copies needed;
■ during Adabas nucleus shutdown.

The user exit is provided with information about the type of log (PLOG or CLOG) and the status
of the multiple log data sets.

The user exit can decide which action is to be taken:

■ Ignore the call and allow Adabas to proceed;
■ Submit a job to copy and mark as empty the log data set just filled (ADARES utility);
■ Direct Adabas to wait for a specified interval, then call the user exit again with updated

PLOG/CLOG data set status information. During the wait interval, no commands that may
produce log records for the log type being processed are allowed to proceed.

Note: If automated CLOG merge is being used in a cluster environment, it is critical that
the exit 12 is used in the suggested manner to copy the CLOGs in a timely fashion as il-
lustrated in the sample exit. Invoking the CLCOPY process in a different manner can
result in time stamp inconsistencies between the CLOG datasets in a cluster environment
causing CLOG merge issues. The PLOG merge is always automatic and also requires that
the PLOGs are copied in a timely manner.

An example of user exit 12 is supplied with the Adabas installation procedure. Refer to the Adabas
Installation documentation for more information.

The call to the user exit is made using a standard BASSM R14,R15 Assembler instruction. All re-
gisters must be saved when control is received and restored immediately prior to returning control
to Adabas. Register 15 contains an action code as described in the user exit 2 section Output
Parameter, elsewhere in this guide.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits50

User Exit 12 (Multiple Data Set Log Processing)

Note: User exit 12 must return the same AMODE value to the calling program that was
active when user exit 12 was called. The recommended Assembler instruction to return is
BSM 0,R14.

User Exit 12 Calling Sequence

Multiple Log Processing Flow

51User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 12 (Multiple Data Set Log Processing)

User Exit Interface

Optionally, the user exit may initialize its operation. It may store any value in field EX12USER of
the EX12PARM parameter block to keep track of its resources. This field is considered as "owned"
by the user exit and is supplied again for all subsequent executions of the exit. It is set to zero
when the exit is first called and is not modified by Adabas thereafter.

The user exit is called again during termination to do any necessary finishing or 'cleanup' work.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits52

User Exit 12 (Multiple Data Set Log Processing)

Parameters

User Exit 12 Parameters

DSECT of the EX12PARM Parameter Block

MACRO
EX12PARM

.**

.* *

.* Name Ex12Parm *

.* *

.* Component ADABAS User Exit *

.* *

.* Function Parameter list for User Exit 12 *

.* (replacement for User Exit 2 for use when there are *

.* more than 2 PLOGs or CLOGs) *

.* *

.* Parameters None *

.* *

.* Restrictions None *

.* *

.* Notes None *

.* *

.**

.*
EX12PARM DSECT , User Exit 12 Parameter List
*
EX12HDR DS 0F Common header section
*
EX12USER DS F Reserved for the user. This field +

is initialized to zero before the +
exit is called the first time, and +
will not be altered by ADABAS after +
that. It can be used to maintain +
information across invocations.

*
EX12LOGT DS X Log type
EX12PLOG EQU C'P' PLOG
EX12CLOG EQU C'C' CLOG
*

53User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 12 (Multiple Data Set Log Processing)

EX12TYPE DS X Call type
EX12TBEG EQU C'S' Nucleus start
EX12TSW EQU C'W' Log switch
EX12TEND EQU C'T' Nucleus termination
EX12TFRC EQU C'F' Forced switch

DS XL2 Reserved
*
EX12NLOG DS F Number of logs
EX12DBID DS F Database ID
EX12NUCI DS F Nucleus ID
*
EX12PLGN DS F Current session PLOG number +

(zero for CLOGs)
EX12NCMP DS F Log just completed +

(zero during initialization and +
for forced CLOG switch)

EX12STAT DS X Flags of next log in sequence
EX12WNUC EQU X'80' Being written by the nucleus
EX12FULL EQU X'40' Completed by the nucleus
EX12RES EQU X'20' Being copied by ADARES
EX12CL5 EQU X'08' CLOGLAYOUT=5
EX12NMRG EQU X'04' Log not merged (cluster)
EX12PMRG EQU X'02' Log partially merged (cluster)
EX12UNUS EQU X'00' Unused and/or copied

DS XL3 Reserved
DS 4F Reserved

*
EX12HDRL EQU *-EX12HDR Length of header section
*
EX12ENT DSECT ,
EX12LOG DS 0F Start of individual log dataset +

entries. This section is repeated +
for the number of logs specified in +
field EX12NLOG

*
EX12LTIM DS XL8 Time stamp of write to log dataset
EX12LNUM DS F Number of log dataset
EX12LFLG DS X Flags (mapped as in EX12STAT)

DS XL3 Reserved
DS 4F Reserved

*
EX12LOGL EQU *-EX12LOG Length of a log dataset entry
*
*

MEND

User, Hyperdescriptor, Collation Descriptor, and SMF Exits54

User Exit 12 (Multiple Data Set Log Processing)

Output Parameter

UsageParameter

Nucleus continues processing.R15 = 0

R15 is treated as the number of seconds to wait before calling user exit 12 again with updated
status for all log data sets. During this time, no commands that may create log entries are
processed.

R15 > 0

Activating the Sample User Exit

The sample user exit is written in Assembler language. It performs the following functions:

■ Issues a message identifying the reason and the type of log for which it was called.
■ Issues a message with the status and timestamp of all log data sets that are not empty.
■ If any log data set is full and at least one log data set has a status that is different from the last

time the exit was called, the exit reads 80-byte records from an input file and writes them to an
output file. It replaces all occurrences of the character "?" with either "P" or "C", depending on
whether the exit was invoked to process a PLOG or CLOG event, respectively. This allows the
input file to accommodate an event for either log type. Normally, the input file contains job
control statements and the output file is directed to a job execution queue.

■ If at least one log data set is not full, the exit returns to the caller with R15 zero, which allows
Adabas to proceed.

■ If all log data sets are full, the exit returns to the caller with R15 nonzero, which directs Adabas
to wait for the number of seconds in R15, then call the exit again with an updated status of all
log data sets. The default delay time is 30 seconds.

Caution: Sample user exits and programs and are not supported under any maintenance
contract agreement.

55User, Hyperdescriptor, Collation Descriptor, and SMF Exits

User Exit 12 (Multiple Data Set Log Processing)

■ Activating in z/OS

Activating in z/OS

The sample user exit UX12SAMP is delivered on z/OS as source and as a load module that can be
used without change or reassembly.

The source and load forms of the user exit are delivered in the Adabas source and load libraries,
respectively. The job to assemble the user exit UX12ASML is located in the Adabas jobs library.
The jobs library also contains a sample job UX12CJOB to be customized and submitted by the user
exit that invokes the ADARES utility PLCOPY or CLCOPY function.

Activate the sample user exit as follows:

1. In addition to ADARUN NxLOG={2-8}, specify ADARUN UEX12=UX12SAMP for the Adabas
nucleus.

2. Supply the job control model that the user exit is supposed to submit under the DDNAME
COPYJOB.

Provide the following DD statement:

//INTRDR2 DD SYSOUT=(*,INTRDR)

Note: The same DD statement is used by the sample user exit 2 or 12 for submitting PLCOPY
or CLCOPY jobs.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits56

User Exit 12 (Multiple Data Set Log Processing)

13 Hyperdescriptor Exits 01 - 31

■ Main Parameter Area ... 59
■ Input Parameter Area (Pointed to by Third Parameter Address) .. 60
■ Output Parameter Area ... 62
■ Null Value Option .. 63
■ Hyperdescriptor Exit Initialization Call .. 64
■ Hyperdescriptor Exit Sample ... 64
■ Hyperdescriptor Exit Stub .. 64

57

The hyperdescriptor exits 1 through 31 (HEX01...HEX31) are required to define the algorithm for
user-supplied descriptor values (see theAdabasUtilitiesManualdocumentation). A hyperdescriptor
exit is called by the ADACMP utility, ADACHK utility or the Adabas nucleus whenever a hyper-
descriptor value is to be generated. ADACMP and ADACHK always use the hyperdescriptor exit
specified in its own HEXnn ADARUN statement. When the ADAINV utility specifies a hyper-
descriptor exit, the exit used is the one specified in the Adabas nucleus' ADARUN statement.

Hyperdescriptor Exit Parameters

Notes:

1. Hyperdescriptor exits must return the same AMODE value to the calling program that was
active when the hyperdescriptor exit was called.

2. If Adabas 8 (or later) is installed and your hyperdescriptor exit has not been updated to use the
new parameter list, the Hyperdescriptor Exit Stub can be linked to your hyperdescriptor exit
to provide the necessary parameter list changes and input parameter conversion. The Hyper-
descriptor Exit Stub does not provide extended MU or PE support. For more information, read
Hyperdescriptor Exit Stub, elsewhere in this chapter.

3. An initialization call is made to each loaded hyperdescriptor exit during Adabas nucleus or
ADACMP startup. For more details, read Hyperdescriptor Exit Initialization Call, elsewhere
in this chapter.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits58

Hyperdescriptor Exits 01 - 31

Main Parameter Area

ContentParameter

Reserved (must not be changed)0 (R1)

Fullword of zeros (must not be changed)4 (R1)

Address of the beginning of the input parameter area.8 (R1)

Address of the beginning of the output parameter area. This address must be inserted by the
user-written program. An output parameter area must always be returned by the user

12 (R1)

hyperdescriptor exit. If no values are to be returned, the address will point to a Header Element
with a total length that indicates no Value Elements exist.

59User, Hyperdescriptor, Collation Descriptor, and SMF Exits

Hyperdescriptor Exits 01 - 31

Input Parameter Area (Pointed to by Third Parameter Address)

Header Element Fields

Total length of the input parameter area, including this length fieldLL

File numberFNR

ISN assigned to the recordISN

Name of the hyperdescriptorHN

Flag byte:F

■ X'02' indicates file with extended MU or PE fields
■ X'80' indicates initialization call

Parent Element Fields

Name of the parent fieldFN

Length of the value pointed to by VALADDR if the parent field is defined with the FI option.L

Four-byte periodic group index of the parent field. If the parent field is not part of a PE group,
these bytes contain zeros.

I

Address of the value of the parent field. The format of the value depends on the options of the
fields. If the parent field is defined with the NU (null value suppression) option and the value
for this field is suppressed, no input parameter element is created.

VALADDR

User, Hyperdescriptor, Collation Descriptor, and SMF Exits60

Hyperdescriptor Exits 01 - 31

The following examples show formats for the value pointed to by VALADDR for parent fields
with combinations of the FI (fixed storage) and MU (multiple-value) options:

where:

61User, Hyperdescriptor, Collation Descriptor, and SMF Exits

Hyperdescriptor Exits 01 - 31

A one-byte value representing the MU count. If the MY value is for a file defined with extended MU or
PE fields, an extended count may be present. For more details on the extended count, read Identifying

C

MU and PE Occurrences Greater Than 191 in Compressed Records , found in the ADACMP documentation
in Adabas Utilities Manual.

A hexadecimal value length, including this one- or two-byte length value. For lengths from 1 through
127, only a single byte is required. For lengths ranging 128 to 255, two bytes are needed: the first byte
is set to X`80', and the second byte is set to the actual length value (see the following example table):

*L

Byte 2Byte 1Length

(x`80')x`7F'L=127:

x`80'x`80'L=128:

x`FF'x`80'L=255:

Output Parameter Area

This area must be allocated and filled within the hyperdescriptor user exit. The address of this
area must be placed into the second position of the main parameter area.

This area consists of a 8-byte header followed by the generated hyperdescriptor values in com-
pressed format.

Header Element

Total length of the output parameter area, including this length field. If no values are returned, the
total length is set to the length of the Header Element.

LL

Reserved space. This must be set to zeros.00

Return code. The hyperdescriptor exit may set a non-zero value here to indicate the call is rejected; a
value of "16" is recommended. If this field is non-zero, the call will fail with response code 79
(ADARSP079).

RC

User, Hyperdescriptor, Collation Descriptor, and SMF Exits62

Hyperdescriptor Exits 01 - 31

The ISN to be assigned to the descriptor values. If the original ISN is to be changed, the new ISN must
be inserted here. If these four bytes contain zero on return to the Adabas nucleus, the original ISN is
used. This is a four-byte binary value.

ISN

Note: If the hyperdescriptor exit returns an ISN in the ISN field of the header element, the
file must be defined with USERISN=YES to prevent ISN reassignment when the file is later
reloaded.

Value Elements

Length of the following value, including this length byte. The maximum length depends on the
format in use for the hyperdescriptor.

L

The descriptor value to be inserted into the index. The value must follow the rules in effect for the
format assigned to this hyperdescriptor. If the hyperdescriptor is defined with the PE option, one

Value

byte containing the one-byte PE index must immediately follow the value and be included in length
L. If the hyperdescriptor defined with the PE option is for a file defined with extended MU or PE
fields, two bytes containing the two-byte PE index must immediately follow the value and be included
in length L. The nucleus checks values of packed or numeric format for validity. Valid signs for
packed fields are A,C,E,F (positive) and B,D (negative). The nucleus changes all signs to F or D.

Examples:

NotesValueL

R E D04

where X'02' is a PE indexB L U E0206

packed 123123F03

packed 123 in PE group with index 1123F0104

where X'0002' is a PE index for a file defined with extended MU or PE fieldsB L U E000207

packed 123 in extended PE group with index 266123F010A05

Null Value Option

The NU (null value) option is possible for the hyperdescriptor or parent fields. The possible com-
binations are as follows:

■ The hyperdescriptor is not NU:
■ The parent field is not NU and the value is null, the hyperdescriptor exit is called and the null

value is passed.
■ The parent field is NU and the value is null, the hyperdescriptor exit is called and no input

parameter element is created for this parent field.

63User, Hyperdescriptor, Collation Descriptor, and SMF Exits

Hyperdescriptor Exits 01 - 31

■ All parent fields are NU and all values are null, the hyperdescriptor exit is called and no input
parameter element is created for any parent field.

■ The hyperdescriptor is NU:
■ The parent field is not NU and the value is null, the hyperdescriptor exit is called and the null

value is passed.
■ The parent field is NU and its value is null, the hyperdescriptor exit is called and no input

parameter element is created for this parent field.
■ All parent fields are NU and all values are null, the hyperdescriptor exit is not called.

Hyperdescriptor Exit Initialization Call

During Adabas nucleus or ADACMP startup, each loaded hyperdescriptor exit is called with an
initialization call. The main parameter area must be used as documented. The third parameter
address will point to an input parameter area with a header length indicating that no values follow.
The flag byte will be set to x'80' to indicate the initialization call. Upon return, the hyperdescriptor
exit must set the fourth parameter address to an output parameter area with a header length in-
dicating that no values are returned.

Hyperdescriptor Exit Sample

Sample hyperdescriptor exit source is supplied in the Adabas source library in member USERHX03.
A sample job to assemble and link the hyperdescriptor exit is supplied in member ASMUHX03
of the sample job library in z/OS environments.

Caution: Sample user exits and programs and are not supported under any maintenance
contract agreement.

Hyperdescriptor Exit Stub

The Hyperdescriptor Exit Stub is provided to allow earlier hyperdescriptor exits to use the Adabas
8 parameter list without change. The Hyperdescriptor Exit Stub is intended as a temporary solution
for those customers who do not wish to immediately update their hyperdescriptor exits to use the
new parameter areas. The Hyperdescriptor Exit Stub will not function for files that are defined
with extended MU or PE fields; a response code will be given when the Hyperdescriptor Exit Stub
is called for such files. Hyperdescriptor exits linked with the Hyperdescriptor Exit Stub may be
used with earlier versions of Adabas, however, the Hyperdescriptor Exit Stub must not be used
with hyperdescriptor exits that use the Adabas 8 parameters.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits64

Hyperdescriptor Exits 01 - 31

Sample job LNKHEX8 in the JOBS data set provides an example for linking the Hyperdescriptor
Exit Stub to your hyperdescriptor exit.

65User, Hyperdescriptor, Collation Descriptor, and SMF Exits

Hyperdescriptor Exits 01 - 31

66

14 Collation Descriptor Exits 01 - 08

■ Collation Descriptor Exit Interface ... 68

67

The collation descriptor exits 1 through 8 (CDX01 through CDX08) are used for encoding and de-
coding values for the corresponding collation descriptors.

A collation descriptor may be defined for a field with alphanumeric or wide format. Its values are
stored in the index, not in the record itself. The number of the collation descriptor exit used to
derive the values is associated with the collation descriptor.

A sample collation descriptor exit CDXE2A is provided in the Adabas source data set. It converts
EBCDIC to ASCII for the encoding function and the reverse (ASCII to EBCDIC) for the decoding
function.

The Collation Exit implements three function entry points which are called on the following events:

INITIALIZE function

■ nucleus session start
■ utility initialization when collation exits have been defined (ADARUN parameters)

ENCODE function

■ update/insert/delete of the parent's value (Nucleus)
■ Search specifying the collation descriptor with the search value (Nucleus)
■ compression of a record (ADACMP)

DECODE function

■ Read Index (L9) by Collation DE, only if the exit supports the DECODE function (Nucleus)

Collation Descriptor Exit Interface

The collation descriptor exit interface is defined in the CDXPARM DSECT in the Adabas source
data set. The interface has three functions:

■ initialization
■ encoding
■ decoding (optional)

User, Hyperdescriptor, Collation Descriptor, and SMF Exits68

Collation Descriptor Exits 01 - 08

Initialization Parameters

R1 points to a list of addresses that point to five storage areas of the caller. The collation descriptor
exit must set the five areas as follows:

default space character; a maximum of 4 bytesCDXSPC

fullword containing the size of the space characterCDXSPCL

address of encoding functionCDXENC

address of decoding function If the returned address is zero, decoding is not supported. The
collation descriptor cannot then be used for L9 processing.

CDXDEC

address of zero-byte delimited version stringCDXVER

Encoding/Decoding Parameters

R1 points to a list of five fullword-sized parameters:

address of the input stringCDXIA

length of the input stringCDXIL

address of the output stringCDXOA

size of the output areaCDXOL

address of the length of the returned output stringCDXARL

The collation descriptor exit stores

■ the output string in the area at the address specified by CDXOA; and
■ the input string length in the fullword at the address specified by CDXARL.

69User, Hyperdescriptor, Collation Descriptor, and SMF Exits

Collation Descriptor Exits 01 - 08

User, Hyperdescriptor, Collation Descriptor, and SMF Exits70

Collation Descriptor Exits 01 - 08

15 SMF User Exit

The SMF user exit can be used to add a user-define detail section to the Adabas SMF record. The
user exit is a separate load module whose name is provided by the ADARUN UEXSMF parameter.

The SMF user exit may not incur any TCB waits, for example, from I/O and WTORs. A wait will
delay all nucleus activity.

The exit is invoked in AMODE 31 and Primary ASC mode using BASR R14,R15 and must return
in the same addressing and ASC mode with registers R2-R13 unaltered. The user exit should have
these registers set on entry:

■ R13 - Standard Format-1 Savearea
■ R14 - Return address
■ R15 - Entry address
■ R1 - The address of a parameter list mapped by macro SMFEXPL.

Adabas expects the following registers to be set on the return from the user exit:

■ R15 - The address of a detail secton of one or more instances to be included in the SMF record
if R0 is not equal to zero.

■ R0 - The number of instances of the detail section whose address is in R15. A value of zerio will
inhibit adding a detail section.

■ R1 - The length of each instance of the detail section whose address is in R15, if R0 is not equal
to zero.

The parameter list is mapped by macro SMFEXPL. Here is the DSECT of the SMF user exit para-
meter list:

71

SMFEXPL DSect ,
SMFEXPLA DS A Address of 1-byte Action code
SMFEXPAI Equ c'I' Initialize environment
SMFEXPAT Equ c'T' Terminate environment
SMFEXPAG Equ c'G' Generate detail section
SMFEXPLD DS A Address of 4-byte detail section

mnemonic (c’USER’)
SMFEXPLB DS A Address of Build Area buffer
SMFEXPLS DS A Address of 4-byte buffer length
SMFEXPLC DS A Address of a read-only copy of

SMF record base header, SDS and
ID sections

SMFEXPLU DS A Address of doubleword for use by the exit
Zero on first call, never
altered by Adabas

SMFEXPLL Equ *- SMFEXPL Length of SMFEXPL

The action code in SMFEXPLA specifies why the exit was entered. Code I (Initialize Environment)
occurs once during nucleus initialization and before any SMF records have been written. The exit
may wish to allocate a workarea for its own use. Code T (Terminate Environment) occurs once
during nucleus termination, after all SMF records have been written. The exit may wish to free
any storage it acquired. Code G (Generate SMF Record) occurs once each time an SMF record is
generated.

The user exit is given a doubleword in which it can pass information from one invocation to an-
other. It is initialized to zeros and never altered by ADASMF. This is a good place to convey in-
formation between invocations such as the address of a workarea.

The user exit is given a read-only copy of the basic SMF record with header, self-defining and
product ID sections. When the action code is G (Generate), the exit can determine from the subtype
in the header section whether it is invoked for an initialization, interval, or termination record.

The user exit is given an area that it may use to build its detail section. The initial contents on each
invocation are undefined. The length of the buffer is specified by SMFEXPLS. It is 128KB in the
current release but is subject to change in future releases. Check the buffer length parameter before
using it. If detail section instances are built in this area, return its address in R15.

The maximum size of a single user detail section instance is that which fits into a single SMF record.
The maximum length of an SMF record is fixed by z/OS as 32,756. The space available for a single
instance is 32,756 less the sizes of the header, self-defining, and product ID sections as specified
in the ASMFREC macro DSECTs. In this release, the SMF record allows 32,434 bytes maximum
for any detail section instance, but this is subject to change in future releases.

You may wish to pass information between the SMF user exit and other exits running in the nuc-
leus or other programs running in the same system. The z/OS name/token services are a good way
to exchange information such as the address of a common data area. Refer to z/OS MVS Program-
ming: Assembler Services Guide, IBM document number SA22-7605 for more information.

User, Hyperdescriptor, Collation Descriptor, and SMF Exits72

SMF User Exit

Index

A
Adabas Review

hub event handler user exit 5, 27
ADAULD utility

user exit 9 processing, 41

C
cipher code

program to insert in ACBX, 46
collation descriptor exits

description, 67
encoding/decoding parameters, 69
initialization parameters, 69
interface, 68

command log
dual data set user exit, 10

command log (CLOG)
format, 20
multiple data set user exit, 49
user exit 4 processing, 19

command processing user exit, 7, 45

D
data compression

user exit 6 processing before, 31
dual log processing, 9

E
exit 1, 7
exit 11

input and output parameters, 47
processing, 45

exit 12
activating the sample, 55
calling sequence, 51
exit interface, 52
output parameter, 55
processing, 49
sample user exit, 55

exit 2
calling sequence, 11
input parameters, 13
output parameter, 15
processing, 9

exit 3
input parameters, 18
processing, 17

exit 4, 19
exit 5

input parameters, 28
other registry values at entry, 29
output parameters, 29
processing, 27

exit 6
ADACMP Header processing, 34
input parameters, 35
output parameters, 35
processing, 31
samples, 32

exit 8
input parameters, 39
processing, 37

exit 9
processing, 41
sample, 44

H
hyperdescriptor

user exit, 57
description, v

hyperdescriptor exit, 57
initialization call, 64
input parameter area (pointed to by a third parameter ad-
dress), 60
main parameter area, 59
null value option, 63
output parameter area, 62
sample, 64
stub, 64

L
logs

dual data set user exit 2 processing, 9
multiple data set user exit, 49

O
operator

program to provide instructions to, 38
operator interface user exit, 37

73

P
password

program to insert in ACBX, 46
phonetic processing

processing with user exit 3, 17
protection log

dual data set user exit, 10
protection log (PLOG)

multiple data set user exit, 49

S
SMF user exit, 71

U
user

log data processing, 20
user exit

exit 12, 52
user exits

collation descriptor exits, 67
descriptions, v
exit 1, 7
exit 11, 45
exit 12, 49
exit 2, 9
exit 3, 17
exit 4, 19
exit 5, 27
exit 6, 31
exit 8, 37
exit 9, 41
overview, v
SMF user exit, 71

User, Hyperdescriptor, Collation Descriptor, and SMF Exits74

Index

	User, Hyperdescriptor, Collation Descriptor, and SMF Exits
	Table of Contents
	Preface
	1 Conventions
	2 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	3 User Exit 1 (General Processing)
	4 User Exit 2 (Dual Log Processing)
	User Exit 2 Calling Sequence
	Input Parameters
	Output Parameter

	5 User Exit 3 (User-Defined Phonetic Processing)
	Input Parameters

	6 User Exit 4 (User-Generated Log Data)
	Command Log Format
	Invoking User Exit 4
	Accessing Adabas Buffers via CQX
	Accessing Adabas Buffers via LORECX

	7 User Exit 5 (Adabas Review Hub Event Handler)
	Input Parameters
	Other Register Values at Entry

	Output Parameters

	8 User Exit 6 (User Processing Before Data Compression)
	ADACMP Header Processing
	Input Parameters
	Output Parameters

	9 User Exit 8 (Operator Interface)
	Input Parameters

	10 User Exit 9 (ADAULD)
	Processing
	User Exit 9 Sample

	11 User Exit 11 (General Processing)
	Input and Output Parameters

	12 User Exit 12 (Multiple Data Set Log Processing)
	User Exit 12 Calling Sequence
	User Exit Interface
	Parameters
	DSECT of the EX12PARM Parameter Block

	Output Parameter
	Activating the Sample User Exit
	Activating in z/OS

	13 Hyperdescriptor Exits 01 - 31
	Main Parameter Area
	Input Parameter Area (Pointed to by Third Parameter Address)
	Header Element Fields
	Parent Element Fields

	Output Parameter Area
	Header Element
	Value Elements

	Null Value Option
	Hyperdescriptor Exit Initialization Call
	Hyperdescriptor Exit Sample
	Hyperdescriptor Exit Stub

	14 Collation Descriptor Exits 01 - 08
	Collation Descriptor Exit Interface
	Initialization Parameters
	Encoding/Decoding Parameters

	15 SMF User Exit
	Index

