
Adabas

Installation for z/VSE

Version 8.4.2

October 2017

This document applies to Adabas Version 8.4.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2017 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ADAMF-VSE-INSTALL-842-20210929

Table of Contents

1 About this Documentation .. 1
Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Installation for z/VSE .. 5
3 Supported Environments .. 7
4 Installation Procedure ... 9

Installation Checklist .. 10
Contents of the Release Tape .. 11
Preparing to Install Adabas .. 12
Initializing the Adabas Communication Environment ... 17
Installing the Adabas Database .. 23
Migrating an Existing Database ... 39
Logical Unit Requirements .. 39
Job Exit Utility .. 40
Acquiring Storage for the ID Table .. 44
Acquiring Storage for the IIBS Table .. 44
SVC Work Areas ... 45
Displaying Storage Allocation Totals ... 45
Calls from Other Partitions .. 45
Dummy Sequential Files .. 45
Backward Processing of Tapes and Cartridges .. 46
Applying Zaps (Fixes) .. 46
Adabas 8 Adalink Considerations ... 52
Setting Defaults in ADARUN .. 55

5 Installing Adabas with TP Monitors ... 57
Preparing Adabas Link Routines for z/VSE ... 58
General Considerations for Installing Adabas with CICS 62
Installing Adabas with CICS under Adabas 8 ... 64
Installing the CICS High-Performance Stub Routine for Adabas 8 79
Installing Adabas with Com-plete under Adabas 8 .. 95
Installing Adabas with Batch under Adabas 8 .. 97
Establishing Adabas SVC Routing by Adabas Database ID 99
Modifying Source Member Defaults (LGBLSET Macro) in Version 8 108

6 Enabling Universal Encoding Support (UES) for Your Adabas Nucleus 123
Installing UES Support for the Adabas Nucleus .. 125

7 Enabling Direct TCP/IP Access (ADATCP) to Your Adabas Nucleus 129
Installing TCP/IP Support for the Adabas Nucleus ... 130

8 Device and File Considerations ... 135
Supported z/VSE Device Types .. 136
FBA Devices ... 137
ECKD Devices .. 138
Adding New Devices ... 138

iii

User ZAPs to Change Logical Units ... 142
9 Installing The AOS Demo Version .. 147

AOS Demo Installation Procedure ... 148
Installing AOS with Natural Security .. 149
Setting the AOS Demo Version Defaults .. 150

10 Installing The Recovery Aid (ADARAI) .. 153
ADARAI Installation Overview ... 154
ADARAI Installation Procedure .. 154

11 Adabas Dump Formatting Tool (ADAFDP) .. 157
ADAFDP Function ... 158
ADAFDP Output .. 158

12 Maintaining A Separate Test Environment ... 165
13 Translation Tables .. 169

Adabas EBCDIC to ASCII and ASCII to EBCDIC .. 170
Entire Net-Work EBCDIC to ASCII and ASCII to EBCDIC 171

Index ... 173

Installation for z/VSEiv

Installation for z/VSE

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Installation for z/VSE2

About this Documentation

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,

discuss best practices, and learn how other customers are using Software AG technology.
■ Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Installation for z/VSE

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

4

2 Installation for z/VSE

This document is intended for those who plan or perform Adabas z/VSE installation, and for those
who manage or maintain an Adabas database system (such as database administrators and systems
programming personnel).

Supported Environments

Installation Procedure

Installing Adabas with TP Monitors

Enabling Universal Encoding Support (UES) for Your Adabas Nucleus

Enabling Direct TCP/IP Access (ADATCP) to Your Adabas Nucleus

Device and File Considerations

Installing the AOS Demo Version

Installing the Recovery Aid (ADARAI)

Adabas Dump Formatting Tool (ADAFDP)

Maintaining a Separate Test Environment

Translation Tables

Notation vrs, vr, or v: When used in this documentation, the notation vrs or vr stands for the
relevant version of a product. For further information on product versions, see version in the
Glossary.

5

6

3 Supported Environments

Adabas supports a variety of operating environments and can be used in distributed environments.
For information on the support platforms for this release of Adabas, read Supported Platforms, in
the Adabas Release Notes.

For general information regarding Software AG product compatibility with other platforms and
their requirements for Software AG products, visit Software AG'sHardware Supportedweb page;
for specific information regarding Software AG product compatibility with IBM platforms and
any IBM requirements for Software AG products, visit Software AG's Product Compatibility for
IBM Platforms web page.

7

http://www.softwareag.com/corporate/products/bis/platforms/default.asp
http://www.softwareag.com/Corporate/products/bis/platforms/ibm_availability.asp
http://www.softwareag.com/Corporate/products/bis/platforms/ibm_availability.asp

8

4 Installation Procedure

■ Installation Checklist .. 10
■ Contents of the Release Tape .. 11
■ Preparing to Install Adabas ... 12
■ Initializing the Adabas Communication Environment ... 17
■ Installing the Adabas Database .. 23
■ Migrating an Existing Database .. 39
■ Logical Unit Requirements .. 39
■ Job Exit Utility ... 40
■ Acquiring Storage for the ID Table .. 44
■ Acquiring Storage for the IIBS Table .. 44
■ SVC Work Areas ... 45
■ Displaying Storage Allocation Totals .. 45
■ Calls from Other Partitions .. 45
■ Dummy Sequential Files ... 45
■ Backward Processing of Tapes and Cartridges .. 46
■ Applying Zaps (Fixes) ... 46
■ Adabas 8 Adalink Considerations ... 52
■ Setting Defaults in ADARUN .. 55

9

This section describes the procedure for Adabas installation in z/VSE environments.

Installation Checklist

The following is an overview of the steps for installing Adabas on a z/VSE system.

Additional InformationDescriptionStep

The libraries are restored from the
installation media. Refer to the section
Disk Space Requirements for Libraries.

Allocate DASD space for the Adabas libraries.1

For better performance, distribute the
database files over multiple devices and

Allocate DASD space for the Adabas database.2

channels. Refer to the section Disk Space
Requirements for the Database.

Refer to the section Adabas Nucleus
Partition/Address Space Requirements.

Specify a z/VSE partition for running the Adabas nucleus.3

See section Defining the Library.Define the library before restoration.4

See section Installing the Adabas Release
Tape.

Restore the Adabas libraries.5

See section Initializing the Adabas
Communication Environment.

Install the Adabas SVC using the ADASIP program.6

See section Prepare the Installation
Sample JCS for Editing

Create the sample JCS job control for installing Adabas.7

See section Modify, Assemble, and Link
the Adabas Options Table

Customize and run job ADAIOOAL to link the Adabas
options table for installation customization.

8

See section Catalog Procedures for
Defining Libraries and the Database

Customize and catalog the two procedures ADAVvLIB and
ADAVvFIL before placing them back in the procedure
library. The following specific items must be customized:

9

■ file IDs for the database and libraries;
■ volumes for libraries and database files;
■ space allocation for database files

Steps 10-19 require changes to the setup
definitions as described in section
Database Installation Steps

Customize and run ADAFRM to allocate and format the
Adabas database.

10

Customize and run ADADEF to define global database
characteristics.

11

Customize and run ADALODE, ADALODV, and
ADALODM to load the demo files.

12

Install the product license file.13

Installation for z/VSE10

Installation Procedure

Additional InformationDescriptionStep

Customize and run ADANUC to start the Adabas nucleus
to test Adabas communications.

14

Customize and run ADAREP in MULTI mode with the
CPLISTparameter to test Adabas partition communication.

15

Customize and run ADAINPL to load the Adabas Online
System, if used.

16

Terminate the Adabas nucleus.17

Customize and run ADASAV to back up the database.18

Customize and run DEFAULTS to insert the ADARUN
defaults with the ZAP utility.

19

See section Installing Adabas With TP
Monitors.

Install the required TP link routines for Adabas20

Contents of the Release Tape

The following table describes most of the libraries included on the release (installation) medium.
Once you have unloaded the libraries from the medium, you can change these names as required
by your site, but the following lists the names that are delivered when you purchase Adabas for
z/VSE environments.

DescriptionLibrary Name

The Employees demo file, containing dummy employee data you can use for testing
Adabas. The vrs in the library name represents the version of Adabas.

ADAvrs.EMPL

Error messages for the Adabas Triggers and Stored Procedures Facility. These messages
can be viewed using the Natural SYSERR utility. The vrs in the library name represents
the version of Adabas.

ADAvrs.ERRN

The code for Adabas Online System, Adabas Caching Facility, Triggers and Stored
Procedures Facility, and various add-on demo products. The vrs in the library name
represents the version of Adabas.

ADAvrs.INPL

The Adabas library containing character encoding members to support various languages
and Unicode. The nn letters in the library name represents a number from "00" to "99",
assigned by Software AG. The vrs in the library name represents the version of Adabas.

ADAvrs.LCnn

The source and sample job library for Adabas. The vrs in the library name represent the
version of Adabas. Sample jobs (*.X members) are stored in the SAGLIB.ADAvrs
sublibrary.

For a complete list of the time zones supported by Adabas in any given release, refer to
the TZINFO member in this Adabas library.

ADAvrs.LIBR

The Miscellaneous demo file, containing dummy miscellaneous data you can use for
testing Adabas. The vrs in the library name represents the version of Adabas.

ADAvrs.MISC

11Installation for z/VSE

Installation Procedure

DescriptionLibrary Name

The Personnel demo file, containing uncompressed dummy personnel data you can use
for testing Adabas. This demo file includes fields that make use of the extended and

ADAvrs.PERC

expanded features of Adabas 8, include large object (LOB) fields. The vrs in the library
name represents the version of Adabas.

Note: The Personnel demo file must be installed on a UES-enabled database because it
includes wide-character format (W) fields.

The time zone library for Adabas. The vrs in the library name represents the version of
Adabas. Adabas bases its time zone library on the time zones defined in the public domain
tz database, also known as the zoneinfo or Olson database.

For a complete list of the time zones supported by Adabas in any given release, refer to
the TZINFO member in the Adabas source library (ADAvrs.LIBR).

ADAvrs.TZ00

The Vehicles demo file, containing dummy vehicle data you can use for testing Adabas.
The vrs in the library name represents the version of Adabas.

ADAvrs.VEHI

A Software AG internal library. The vrs in the library name represents the version of the
internal library code, which is not necessarily the same as the version of Adabas.

APSvrs.L018

A Software AG internal library. The vrs in the library name represents the version of the
internal library code, which is not necessarily the same as the version of Adabas.

APSvrs.LIBR

The sample job library for Software AG's common mainframe license check software.
The vrs in the library name represents the version of the license check software, which is
not necessarily the same as the version of Adabas.

MLCvrs.LIBJ

The load library for Software AG's common mainframe license check software. The vrs
in the library name represents the version of the license check software, which is not
necessarily the same as the version of Adabas.

MLCvrs.LIBR

The library for Adabas components shared by Adabas and other Software AG products,
such as Entire Net-Work. The vrs in the library name represents the version of Adabas.

WALvrs.LIBR

The load library for Entire Net-Work Administration, used by some of the Adabas add-on
products. The vrs in the library name represents the version of Entire Net-Work
Administration.

WCAvrs.LIBR

Preparing to Install Adabas

The major steps in preparing for Adabas installation are

■ checking for the correct prerequisite system configuration; and
■ allocating disk and storage space.

The following sections describe the nominal disk and storage space requirements, and how to al-
locate the space.

■ Disk Space Requirements for Libraries

Installation for z/VSE12

Installation Procedure

https://www.iana.org/time-zones

■ Disk Space Requirements for the Database
■ Data Sets Required for UES Support
■ Disk Space Requirements for Internal Product Data Sets
■ Adabas Nucleus Partition/Address Space Requirements
■ Defining the Library
■ Restoring the ADAvrs LIBR File
■ Using the ADAvrs LIBR File

Disk Space Requirements for Libraries

The Adabas library requires a minimum of 3390 disk space as shown below. A certain amount of
extra free space has been added to the requirements for library maintenance purposes.

3390 TracksLibrary

600Adabas Library

This space is needed for Adabas objects and phases as well as source and JCS samples.

Disk Space Requirements for the Database

The Adabas database size is based on user requirements. For more information, refer to Adabas
DBA Tasks. Suggested sizes for an initial Adabas database, allowing for limited loading of user
files and the installation of Natural, are as follows.

The minimum 3390 disk space requirements are:

3390 Tracks Required3390 Cylinders RequiredDatabase Component

30020ASSOR1 (Associator)

90060DATAR1 (Data Storage)

22515WORKR1 (Work space)

22515TEMPR1 (temporary work space)

22515SORTR1 (sort work space)

Data Sets Required for UES Support

The Software AG internal product libraries (APS - porting platform) are required if you intend to
enable a database for universal encoding service (UES) support. These libraries are now delivered
separately from the product libraries.

For UES support, the following libraries must be loaded and included in the LIBDEF concatenation:

13Installation for z/VSE

Installation Procedure

APSvrs.LIBR
APSvrs.L0nn

where vrs is the version of the library provided on the most recent installation medium for these
components and aa is LD, LC, or LS and nn is the load library level. If the library with a higher
level number is not a full replacement for the lower level load library(s), the library with the
higher level must precede those with lower numbers in the LIBDEF concatenation.

Also for UES support, the following library must be loaded and included in the session execution
JCL:

ADAvrsCS.LIBR

For information about setting up connections to UES-enabled databases, see section Enabling
Universal Encoding Support (UES) for Your Adabas Nucleus, elsewhere in this guide.

Disk Space Requirements for Internal Product Data Sets

The minimum disk space requirements on a 3390 disk for the internal product libraries delivered
with Adabas Version 8 are as follows:

3390 Tracks3390 CylindersLibrary

48032ADAvrsCS.LIBR

1208APSvrs.LIBR

755APSvrs.L0nn

Adabas Nucleus Partition/Address Space Requirements

The Adabas nucleus requires at least 900-1024 KB to operate. The size of the nucleus partition may
need to be larger, depending on the ADARUN parameter settings. Parameter settings are determ-
ined by the user.

Defining the Library

It is necessary to define the library before restoration. The following two examples show how
VSAM and non-VSAM libraries are defined.

Defining a VSAM Library

The following is a job for defining a VSAM library:

Installation for z/VSE14

Installation Procedure

// JOB DEFINE DEFINE VSAM V8 ADABAS LIBRARY
// OPTION LOG
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER -
(NAME(ADABAS.ADAvrs.LIBRARY) -
VOLUME(vvvvvv vvvvvv) -
NONINDEXED -
RECORDFORMAT(NOCIFORMAT) -
SHR(2) -
TRK(nnnnnn)) -
DATA (NAME(ADABAS.ADAvrs.LIBRARY.DATA))
/*
// OPTION STDLABEL=ADD
// DLBL SAGLIB,'ADABAS.ADAvrs.LIBRARY',,VSAM
// EXEC IESVCLUP,SIZE=AUTO
ADABAS.ADAvrs.LIBRARY
/*
// EXEC LIBR
DEFINE L=SAGLIB R=Y
DEFINE S=SAGLIB.ADAvrs REUSE=AUTO R=Y
LD L=SAGLIB OUTPUT=STATUS
/*
/&

—where
vvvvvv vvvvvv are the volumes for primary and secondary space.
nnnnnn is the number of tracks for primary and secondary space.
vrs is the Adabas version.

Notes:

1. For FBA devices the tracks (TRK...) operand is replaced by the blocks (BLOCKS...) operand.

2. SAGLIB is the name of the Adabas library. The name SAGLIB can be changed to suit user re-
quirements.

Defining a Non-VSAM Library

The following is a job for defining a non-VSAM library:

// JOB DEFINE DEFINE NON-VSAM V8 ADABAS LIBRARY
// OPTION LOG
// DLBL SAGLIB,'ADABAS.ADAvrs.LIBRARY',2099/365,SD
// EXTENT SYS010,vvvvvv,1,0,ssss,nnnn
// ASSGN SYS010,DISK,VOL=vvvvvv,SHR
// EXEC LIBR
DEFINE L=SAGLIB R=Y
DEFINE S=SAGLIB.ADAvrs REUSE=AUTO R=Y
LD L=SAGLIB OUTPUT=STATUS

15Installation for z/VSE

Installation Procedure

/*
/&

where:
SYS010 is the logical unit for Adabas library.
vvvvvv is the volume for Adabas library.
ssss is the starting track or block for specified library.
nnnn is the number of tracks or blocks for specified library.
vrs is the Adabas version.

Restoring the ADAvrs LIBR File

Restore the ADAvrsLIBR file into sublibrary SAGLIB.ADAvrs. See the next section for information
about preparing modules to run without the ESA option active.

Note: See the Software AG Product Delivery Report that accompanies the installation media
to position the media to the correct file.

If you have a license for one of the following Software AG products, restore the file into the appro-
priate sublibrary:

SublibraryFileProduct

SAGLIB.ACFvrsACFvrs.LIBRAdabas Caching Facility (ACF)

SAGLIB.AOSvrsAOSvrs.LIBRAdabas Online System (AOS)

SAGLIB.ASMvrsASMvrs.LIBRAdabas Parallel Services (ASM)

SAGLIB.ADEvrsADEvrs.LIBRAdabas Delta Save Facility Facility (ADE)

For information about installing these products, see the documentation for that product.

Using the ADAvrs LIBR File

Where applicable, modules for Adabas are shipped with AMODE=31 active.

Storage Above or Below the 16-MB Limit

Adabas can acquire storage above the 16-megabyte addressing limit. This capability allows Adabas
to acquire the buffer pool (LBP), work pool (LWP), format pool (LFP), and attached buffers (NAB)
above 16 MB.

Where applicable, modules for Adabas are shipped with AMODE=31 active. If you prefer to have
buffers placed below the 16-megabyte limit, ADARUN must be relinked with AMODE=24.

User Program Execution in AMODE=31 and RMODE=ANY

Programs that will execute AMODE=31 or RMODE=ANY must be relinked with the new ADAUSER
object module.

Installation for z/VSE16

Installation Procedure

In addition, because the IBM VSE LOAD macro cannot be issued in RMODE=ANY, the IBM VSE CD-
LOAD macro must be used. Therefore, the zap to change the ADAUSER CDLOAD to the LOAD
macro cannot be used.

Initializing the Adabas Communication Environment

Communication between the Adabas nucleus residing in a z/VSE partition and the user (either a
batch job or TP monitor such as Com-plete or CICS) in another partition is handled with an Adabas
SVC (supervisor call).

The program ADASIP is used to install the Adabas SVC. The system can run ADASIP to dynam-
ically install the SVC without an IPL. Special instructions apply when using z/VSE with the Turbo
Dispatcher as described in the next section below.

For information about messages or codes that occur during the installation, refer to the Adabas
Messages and Codes documentation.

■ Installing the Adabas SVC with Turbo Dispatcher Support
■ ADASIP Processing
■ Running ADASIP
■ Finding an Unused SVC
■ Loading a Secondary Adabas SVC
■ ADASIP Execution Parameters
■ ADASIP Runtime Display

Installing the Adabas SVC with Turbo Dispatcher Support

The Adabas SVC module supports the IBM z/VSE Turbo Dispatcher environment.

In a Turbo Dispatcher environment, the Adabas SVC runs in parallel mode when entered. Adabas
processes multiple SVC calls made by users in parallel.

ADASIP Processing

To enable Turbo support, ADASIP installs a z/VSE first-level interrupt handler (ADASTUB) that
screens all SVCs. When ADASTUB finds an Adabas SVC, it passes control directly to the Adabas
SVC.

If your system is capable of running the Turbo Dispatcher and you do not want to run a particular
SVC through the Turbo interface, you can set the UPSI flag V to 1 to exclude a particular SVC from
use through the Turbo interface. See the ADASIP UPSI statement.

17Installation for z/VSE

Installation Procedure

You can activate the ADABAS SVC with multiple CPUs active by specifying UPSI C. ADASIP will
dynamically de-activate and re-activate the CPUs if required. If multiple CPUs are active and the
UPSI C has not been specified, the following messages will be displayed:

ADASIP60 Only 1 CPU can be active during ADASIP
ADASIP79 Should we stop the CPUs? (yes/no)

Answering yes to this message will allow activation to occur; the CPUs will be dynamically de-
activated and re-activated. Answering no will terminate ADASIP.

The ADASTUB module is installed only once per IPL process. On the first run of a successful
ADASIP, the following set of messages are returned:

ADASIP63 ADASTUB Module Loaded at nnnnnnnn
ADASIP78 VSE Turbo Dispatcher Version nn
ADASIP69 Turbo Dispatcher Stub A C T I V E

When running ADASIP for subsequent Adabas SVC installations, the following message is dis-
played for information only:

ADASIP74 Info : Stub activated by previous ADASIP

When dynamically re-installing an Adabas SVC that was previously installed with Turbo Dispatcher
support, execute a SET SDL for the Adabas SVC only. Do not execute the SET SDL for ADANCHOR
a second time.

Note: Repeated re-installations of an Adabas SVC without an IPL may result in a shortage
of 24-bit GETVIS in the SVA.

Running ADASIP

ADASIP requires a prior SET SDL for the SVC, and therefore must run in the BG partition. To install
the Adabas SVC without an IPL, execute the following JCS in BG.

Notes:

1. When using the EPAT Tape Management System, EPAT must be initialized before running
ADASIP.

2. At execution time, the ADASIP program determines if a printer is assigned to system logical
unit SYSLST. If no printer is assigned, messages are written to SYSLOG instead of SYSLST.

For information about the ADASIP parameters, see the section ADASIP Execution.

To automatically install the Adabas SVC during each IPL, insert the following JCS (or its equivalent)
into the ASI BG JCS procedure immediately before the START of the POWER partition where

Installation for z/VSE18

Installation Procedure

is the number of IDT entriesnn

is the optional two-byte suffix for the z/VSE SVC name to be loaded by ADASIP. The previous
z/VSE SVC version must be linked with a different suffix.

suffix

is an available SVC number in your z/VSE system to be used as the Adabas SVC.svc

is the specified volume for the Adabas library.volume

is the Adabas versionvrs

Without Turbo Dispatcher Support

The following sample is available in member ADASIP.X:

// DLBL SAGLIB,'ADABAS.ADAvrs.LIBRARY'
// EXTENT SYS010,volume
// ASSGN SYS010,DISK,VOL=volume,SHR
// LIBDEF PHASE,SEARCH=SAGLIB.ADAvrs
SET SDL
ADASVCvr,SVA
/*
// OPTION SYSPARM='svc,suffix' SVC NUMBER
// UPSI 00000000 UPSI OPTIONS FOR ADASIP
// EXEC ADASIP,PARM='NRIDTES=nn'

With Turbo Dispatcher Support

The following sample is available in member ADASIPT.X:

// JOB ADASIPT INSTALL THE ADABAS SVC (TURBO)
// OPTION LOG,NOSYSDUMP
// DLBL SAGLIB,'ADABAS.ADAvrs.LIBRARY'
// EXTENT SYS010,volume
// ASSGN SYS010,DISK,VOL=volume,SHR
// LIBDEF PHASE,SEARCH=SAGLIB.ADAvrs
SET SDL
ADASVCvr,SVA
ADANCHOR,SVA
/*
// OPTION SYSPARM='svc,suffix' SVC NUMBER
// SETPFIX LIMIT=100K REQUIRED; SEE NOTE 2
// UPSI 00000000 UPSI OPTIONS FOR ADASIP
// EXEC ADASIP,PARM='NRIDTES=nn'

Notes:

1. A SETPFIX parameter is required with Turbo Dispatcher support to page fix ADASIP at certain
points in its processing. A value of 100K should be adequate.

19Installation for z/VSE

Installation Procedure

2. The SET SDL statement for ADANCHOR is required for Turbo Dispatcher support. This is in
addition to the SET SDL statement for ADASVCvr.

Finding an Unused SVC

Adabas requires an entry in the z/VSE SVC table. To find an unused SVC, use one of the following
methods:

Method 1

Set the S flag specified in the UPSI for ADASIP to create a list of used and unused SVCs in the
z/VSE SVC table.

Method 2

Obtain a listing of the supervisor being used.

Using the assembler cross-reference, locate the label SVCTAB; this is the beginning of the z/VSE
SVC table. The table contains a four-byte entry for each SVC between 0 and 150 (depending on
the z/VSE version).

Locate an entry between 31 and 150 having a value of ERR21. This value indicates an unused SVC
table entry. Use the entry number as input to ADASIP.

Loading a Secondary Adabas SVC

You can optionally specify a suffix to indicate the version of an SVC, as shown in the previous
JCS examples. This allows you to run two different versions of the SVC. Before specifying a suffix,
however, you must have previously linked the second version of the SVC. In addition, you must
have performed a SET SDL operation on the new SVC's name (for example, ADASVCxx).

To optionally specify a different Adabas SVC using ADASIP, specify the SVC suffix (the last two
bytes in the form, ADASVCxx), as follows, where xx is the two-byte suffix of the new SVC:

// OPTION SYSPARM='svc,xx'

Installation for z/VSE20

Installation Procedure

ADASIP Execution Parameters

This section describes the ADASIP execution parameters.

■ OPTION SYSPARM= Statement
■ UPSI Statement
■ NRIDTES PARM= Option
■ REPLACE PARM= Option
■ DMPDBID PARM= Option

Runtime Display

OPTION SYSPARM= Statement

An optional correction (zap) can be applied to the Adabas ADASIP program to insert the default
SVC so that no SYSPARM need be specified. See the section Applying Zaps.

The Adabas SVC number chosen must be unused by z/VSE or any other third party products (see
the section Finding an Unused SVC).

SVC

An optional two-byte value used to load a new version of the Adabas z/VSE SVC (see the section
Loading a Secondary Adabas SVC)..

SUFFIX

UPSI Statement

// UPSI DSxTVCGx

Setting the UPSI byte is the user's responsibility. If the UPSI byte is not set, the SVC installation
executes normally.

The UPSI byte is used to select the following options:

If option is set to 1Option

ADASIP dumps the Adabas SVC and ID table using PDUMP. This option should be used only after
the SVC is installed.

D

ADASIP dumps the z/VSE SVC table and indicates whether each SVC is used or unused. No SVC
number is required when using this function of ADASIP.

S

ADASIP dumps the z/VSE SVC table and the z/VSE SVC mode table.T

The SVC is excluded from use through the Turbo interface.V

Override the messages that ask if you wish to stop the processors when more than one processor is
active. If you choose to override, the processors will be automatically stopped during ADASIP
execution and restarted upon ADASIP termination.

C

ADASIP will display SYSTEM GETVIS allocation totals.G

21Installation for z/VSE

Installation Procedure

NRIDTES PARM= Option

The size of the ID table default supports up to 10 Adabas targets. However, the ADASIP program
will allow you to increase this number by using this new option of the PARM operand on the
EXEC card. To increase the size of the ID table to nn entries, specify the following when executing
ADASIP:

// EXEC ADASIP,PARM='NRIDTES=nn'

where nn is the number of databases to be supported. Refer to the section Acquiring Storage for
the ID Table for information about calculating the correct value for nn.

REPLACE PARM= Option

Specifying REPLACE=N or NO will cause warning messages ADASIP80 and ADASIP81 to appear
if the SVC has been previously installed. Specifying REPLACE=Y or YES replaces the current SVC
regardless of any active targets. The default value is REPLACE=NO. No abbreviation of the RE-
PLACE keyword is supported.

Caution: Setting the REPLACE parameter to YES should be done carefully. Replacing an
SVC while your targets are running can produce unpredictable results.

If both the NRIDTES and REPLACE keywords are specified, they must be separated by a comma.
For example:

//EXEC ADASIP,PARM='NRIDTES=10,REPLACE=YES'

DMPDBID PARM= Option

This ADASIP option allows snap dumps of the Adabas command queue for a specified database
ID (DBID). The dump is written to SYSLST. The OPTION SYSPARM statement must specify the
SVC number to perform the snap dump. For example, to perform a snap dump of the database 5
command queue, issue:

// OPTION SYSPARM='svc,suffix'
// EXEC ADASIP,PARM='DMPDBID=5'

Installation for z/VSE22

Installation Procedure

ADASIP Runtime Display

When ADASIP is run, the ADASIP00 message displays the current system level.

ADASIP00 ...ADABAS V8 VSE SIP STARTED
SIP IS RUNNING UNDER VSE/systype-mode
ADASIP00 ... (yyyy-mm-dd, SM=sm-level, ZAP=zap-level)
ADASIP00 ... SIP IS RUNNING UNDER OSYS LEVEL Vnnn
ADASIP00 ... SIP IS LOADING ADABAS SVC LEVEL Vnnn
ADASIP00 ... ADASIP IS LOADING ADABAS SVC AMODE=amode

Installing the Adabas Database

This section describes installation of the Adabas database for z/VSE systems. Note that all applicable
early warnings and other fixes must first be applied. For descriptions of any messages or codes
that occur, refer to the Adabas Messages and Codes documentation.

■ Installing the Release Tape
■ Prepare the Installation Sample JCS for Editing
■ Modify, Assemble, and Link the Adabas Options Table
■ Catalog Procedures for Defining Libraries and the Database
■ Database Installation Steps

Installing the Release Tape

Copy the data sets from the supplied installation medium to your disk before you perform the
individual installation procedure for each component to be installed.

The way you copy the data sets depends on the installation method and the medium used:

■ If you use System Maintenance Aid (SMA), refer to the copy job instructions provided in the
System Maintenance Aid documentation.

■ If you are not using SMA and want to copy the data sets from CD-ROM, refer to the
README.TXT file on the CD-ROM.

■ If you are not using SMA and want to copy the data sets from tape, follow the instructions in
this section.

This section explains how to copy the data sets .LIBJ, .LIBR and .LICS from tape to disk. All
other data sets can be installed directly from the tape.

■ Step 1: Copy Data Set COPYTAPE.JOB to Disk
■ Step 2: Modify COPYTAPE.JOB on Your Disk

23Installation for z/VSE

Installation Procedure

■ Step 3: Submit COPYTAPE.JOB

Step 1: Copy Data Set COPYTAPE.JOB to Disk

■ Modify the following sample job according to your requirements:

* $$ JOB JNM=LIBRCAT,CLASS=0, +
* $$ DISP=D,LDEST=(*,UID),SYSID=1
* $$ LST CLASS=A,DISP=D
// JOB LIBRCAT
* ***
* STORE COPYTAPE.JOB IN LIBRARY
* ***
// ASSGN SYS004,nnn
// MTC REW,SYS004
// MTC FSF,SYS004,4
ASSGN SYSIPT,SYS004
// TLBL IJSYSIN,'COPYTAPE.JOB'
// EXEC LIBR,PARM='MSHP; ACC S=lib.sublib'
/*
// MTC REW,SYS004
ASSGN SYSIPT,FEC
/*
/&
* $$ EOJ

where:

nnn is the tape address, and
lib.sublib is the library and sublibrary in which the data set COPYTAPE.JOB is to be stored.

■ Execute the job to copy the data set COPYTAPE.JOB to disk.

COPYTAPE.JOB contains the JCL required to copy the data sets .LIBJ, .LIBR and .LICS from tape
to disk.

Step 2: Modify COPYTAPE.JOB on Your Disk

■ Modify COPYTAPE.JOB according to your requirements and set the disk space parameters as
appropriate.

Installation for z/VSE24

Installation Procedure

Step 3: Submit COPYTAPE.JOB

■ Execute COPYTAPE.JOB to copy the data sets .LIBJ, .LIBR and .LICS to your disk.

Prepare the Installation Sample JCS for Editing

Note: This step is only necessary if the library cannot be edited directly.

The following sample installation job is available in member INSTALL.X.

Run the following job to load the installation samples:

* $$ JOB JNM=PUNINST,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* $$ PUN CLASS=p,DISP=D
// JOB PUNINST INSTALL SAMPLES FOR ADABAS
// OPTION LOG
// DLBL SAGLIB,'ADABAS.ADAvrs.LIBRARY'
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL=volume,SHR
// EXEC LIBR
ACCESS SUBLIB=SAGLIB.ADAvrs
PUNCH ADAPROC.X /* PROCS FOR FILE AND LIBRARY DEFINITIONS */
PUNCH ADAIOOAL.X /* ADABAS OPTIONS TABLE CUSTOMIZATION */
PUNCH ADASIP.X /* ADASIP JOB (NON-TURBO DISPATCHER) */
PUNCH ADASIPT.X /* ADASIP JOB (TURBO DISPATCHER) */
PUNCH ADAFRM.X /* SAMPLE ADAFRM JOB */
PUNCH ADADEF.X /* SAMPLE ADADEF JOB */
PUNCH ADALODE.X /* LOAD DEMO FILE EMPLOYEES */
PUNCH ADALODV.X /* LOAD DEMO FILE VEHICLES */
PUNCH ADALODM.X /* LOAD DEMO FILE MISC */
PUNCH ADALODP.X /* LOAD DEMO FILES PERSONNEL & LOB */
PUNCH ADANUC.X /* SAMPLE NUCLEUS STARTUP */
PUNCH ADAREP.X /* SAMPLE ADAREP JOB */
PUNCH ADAINPL.X /* SAMPLE NATINPL TO INSTALL AOS */
/*
/&
* $$ EOJ

where p is the output class for punch, volume is the specified volume for the Adabas library, and
vrs is the Adabas version.

Once the selected members in the INSTALL job are within the local editor facility, the customization
can begin.

25Installation for z/VSE

Installation Procedure

Modify, Assemble, and Link the Adabas Options Table

Customize and run job ADAIOOAL to assemble and link the Adabas options table for installation
customization.

The following describes the IORDOSO macro, which must be assembled and linked to the Adabas
sublibrary as PHASE ADAOPD. The member X.ADAIOOAL shipped with Adabas can be used
for this purpose.

■ IORDOSO Macro Overview
■ IORDOSO Macro Parameters

IORDOSO Macro Overview

The IORDOSO macro allows you to customize Adabas operation in the following areas:

■ Loading phases;
■ IDRC compaction support for 3480 and 3490 tape devices;
■ Interfaces to z/VSE disk space managers such as DYNAM/D;
■ Interfaces to z/VSE tape managers such as DYNAM/T
■ An option controlling how the system writes to fixed block addressing (FBA) devices;
■ An option to write printer (PRINT and DRUCK) files under either DTFPR or DTFDI control;
■ GETVIS message printing;
■ Optional job exit processing;
■ Options for controlling the creation of z/VSE JCS with the Adabas Recovery Aid utility ADARAI;
■ Sequential file processing under VSAM/SAM;
■ Input device control with SYS000 assignment;
■ Name of external sort program.

IORDOSO Macro Parameters

The following parameters can be set in using the IORDOSO macro.

Installation for z/VSE26

Installation Procedure

CDLOAD

DescriptionParameter

Determines whether Adabas uses the CDLOAD (SVC 65) or the LOAD SVC
(SVC 4) to load modules.

CDLOAD={ NO | YES }
 ↩

COMPACT

DescriptionParameter

If a sequential protection log (SIBA) is assigned to a 3480 or 3490 tape device,
COMPACT=YES writes the SIBA in IDRC compaction mode. The default is
COMPACT=NO (no compaction).

COMPACT={ NO | YES } ↩

DISKDEV

DescriptionParameter

Specifies the device type on which space for sequential files is to be allocated (see notes
1 and 2).

DISKDEV=devtype
 ↩

Notes:

1. Adabas requires device type information when opening files. However, there may be situations
where the device cannot be determined before the open without additional operations; for ex-
ample, when a z/VSE Disk Space Manager or Tape Manager is active, or when using VSAM/SAM
sequential files. Adabas also determines the block size to be used for sequential I/O areas by
device type.

2. Valid disk device types are 3390, 9345 and FBA.

DISKMAN

DescriptionParameter

Indicates to Adabas that a z/VSE disk space manager such as DYNAM/D is
active. If DISKMAN=YES is specified, DISKDEV or DISKSYSmust also be specified.

DISKMAN={ NO | YES }

27Installation for z/VSE

Installation Procedure

DISKSYS

DescriptionParameter

When a disk space manager such as DYNAM/D is present, use the DISKSYS parameter
to specify the programmer logical unit (LUB). The specified value, which can be from

DISKSYS=sysnum
 ↩

000 to 255, determines the disk device type for the SAM or VSAM sequential file. There
is no default value.

DISKTYP

DescriptionParameter

This parameter is for information only, and is processed as a comment. The value text
can be up to 16 bytes long.

DISKTYP=text

DTFDI

DescriptionParameter

DTFDI=YES directs the PRINT (SYSLST) and DRUCK (SYS009) output to be
device-independent, causing all ADARUN, ADANUC, session, statistics, and

DTFDI={ NO | YES }
 ↩

utility output to be written to where SYSLST or SYS009 is assigned (printer, disk,
or tape). When you specify DTFDI=YES, the PRTDSYS and PRTRSYS parameters
are ignored. If you specify DTFDI=NO (the default), output is directed using DTFPR.

FBAVRF

DescriptionParameter

FBA users only: the FBAVRF parameter specifies whether Adabas does WRITE
VERIFY I/O commands, or normal WRITEs. If FBAVRF=YES is specified, WRITE
VERIFY I/Os are performed; the default is normal WRITE operation.

FBAVRF={ NO | YES }
 ↩

GETMMSG

DescriptionParameter

Determines whether or not z/VSE ADAIOR GETMAIN (GETVIS) messages
are printed. No printing is the default.

GETMMSG={ NO | YES }
 ↩

Installation for z/VSE28

Installation Procedure

JBXEMSG

DescriptionParameter

The z/VSE parameter JBXEMSG determines whether job exit utility error
messages are printed (JBXEMSG=PRT), displayed (JBXEMSG=YES, the
default), or not presented (JBXEMSG=NO).

JBXEMSG={ NO| YES | PRT }

JBXIMSG

DescriptionParameter

The z/VSE parameter JBXIMSG determines whether job exit utility
information messages are printed (JBXIMSG=PRT, the default), displayed
(JBXIMSG=YES), or not presented (JBXIMSG=NO).

JBXIMSG={ NO | YES | PRT }

JOBEXIT

DescriptionParameter

JOBEXIT=YES activates the Adabas job exit utility, allowing any * SAGUSER
job control statements to override the normal job input.

JOBEXIT={ NO | YES }

PFIXRIR

DescriptionParameter

Specifies whether or not ADAMPM is page fixed in storage during the nucleus
initialization process.

PFIXRIR={ NO | YES }

PRTDSYS

DescriptionParameter

Specifies the programmer logical unit (LUB), and may be any number 000 -
254. If specified, the sysnum value replaces the default where the ADARUN
messages are printed, which is SYSLST.

PRTDSYS={ sysnum ↩
| SYSLST } ↩

The value specified by sysnummust be assigned in the partition before running
the ADARUN program. For example:

29Installation for z/VSE

Installation Procedure

DescriptionParameter

PRTDSYS=050
.
// ASSGN SYS050,PRINTER

PRTRSYS

DescriptionParameter

Specifies the programmer logical unit (LUB). If specified, this sysnum
value replaces the default where the Adabas utility (DRUCK) messages
are printed, which is SYS009.

PRTRSYS={ sysnum | SYS009 } ↩

RAIDASG

DescriptionParameter

RAIDASG=YES specifies that the Adabas Recovery Aid (ADARAI) is to create
z/VSE disk ASSGN statements. Such statements are sometimes not needed
with a z/VSE disk manager facility.

RAIDASG={ NO | YES } ↩

RAITASG

DescriptionParameter

RAITASG=YES specifies that the Adabas Recovery Aid (ADARAI) is to create
z/VSE tape ASSGN statements. Such statements are sometimes not needed with
a z/VSE tape manager facility.

RAITASG={ NO | YES }

SORTPGM

DescriptionParameter

Specifies the name of the external sort program to be invoked during
execution of the Adabas changed-data capture utility ADACDC. The
default name is SORT.

SORTPGM={ sortpgm | SORT } ↩

Installation for z/VSE30

Installation Procedure

SYS000O

DescriptionParameter

If SYS000O=NO (the default) is specified, the ADARUN statements are read
normally. If SYS000O=YES is specified, Adabas determines the correct DTF for
opening, depending on where SYS000 is assigned, as follows:

SYS000O={ NO | YES }
 ↩

Medium - SYS000 DTF Type

Card DTFCD
Disk DTFSD
Tape DTFMT

TAPEDEV

DescriptionParameter

Specifies the tape device type on which sequential files are written (see notes 1 and 2).TAPEDEV=devtype
 ↩

Notes:

1. Adabas requires device type information when opening files. However, there may be situations
where the device cannot be determined before the open without additional operations; for ex-
ample, when a z/VSE Disk Space Manager or Tape Manager is active, or when using VSAM/SAM
sequential files. Adabas also determines the block size to be used for sequential I/O areas by
device type.

2. Valid tape device types are 2400, 3410, 3420, 3480 and 8809. For device types 3480, 3490, 3490E
or 3590, specify TAPEDEV=3480.

TAPEMAN

DescriptionParameter

Indicates that a z/VSE tape manager such as DYNAM/T is active. If TAPEMAN=YES
is specified, TAPEDEV or TAPESYS must also be specified.

TAPEMAN={ NO | YES }

31Installation for z/VSE

Installation Procedure

TAPESYS

DescriptionParameter

When a tape manager such as DYNAM/T is present, this parameter is used to specify
the programmer logical unit (LUB). The specified value, which can be any value from

TAPESYS=sysnum

000 to 255, determines the tape device type for the sequential file (see note). There is no
default value.

Note: Adabas requires device type information when opening files. However, there may
be situations where the device cannot be determined before the open without additional
operations; for example, when a z/VSE Disk Space Manager or Tape Manager is active, or
when using VSAM/SAM sequential files. Adabas also determines the block size to be used
for sequential I/O areas by device type.

TAPETYP

DescriptionParameter

This parameter is for information only, and is processed as a comment. The value text
can be up to 16 bytes long.

TAPETYP=text

VSAMDEV

DescriptionParameter

Specifies the disk device type on which VSAM/SAM space is to be allocated (see notes
1 and 2).

VSAMDEV=devtype

Notes:

1. Adabas requires device type information when opening files. However, there may be situations
where the device cannot be determined before the open without additional operations; for ex-
ample, when a z/VSE Disk Space Manager or Tape Manager is active, or when using VSAM/SAM
sequential files. Adabas also determines the block size to be used for sequential I/O areas by
device type.

2. Valid disk device types are 3390, 9345 and FBA.

Installation for z/VSE32

Installation Procedure

VSAMSEQ

DescriptionParameter

Specifies whether sequential files are to be under the control of VSAM/SAM
software. If VSAMSEQ=YES is specified, either VSAMDEV or VSAMSYS must also
be specified.

VSAMSEQ={ NO | YES }

VSAMSYS

DescriptionParameter

Specifies the programmer logical unit (LUB). The specified value, which can from 000
to 255, determines the device type for the sequential file written to VSAM/SAM space
(see note). There is no default value.

VSAMSYS=sysnum

Note: Adabas requires device type information when opening files. However, there may
be situations where the device cannot be determined before the open without additional
operations; for example, when a z/VSE Disk Space Manager or Tape Manager is active, or
when using VSAM/SAM sequential files. Adabas also determines the block size to be used
for sequential I/O areas by device type.

Additional Parameters Used for Internal Control Only

Three additional parameters are also available but are used only for internal control and should
not be changed from their default settings unless otherwise specified by your Software AG tech-
nical support representative:

IORTRAC={NO | YES}
IORTSIZ={3000 | tablesize}
IORTTYP=(1... 14)(, opt1 ... opt14).

Catalog Procedures for Defining Libraries and the Database

Note: Sample JCS is available in ADAPROC.X

The job ADAPROC is divided into two procedures:

■ ADAVvLIB defining the library or libraries; and
■ ADAVvFIL defining the database.

Customize and catalog the two procedures before placing them back in the procedure library. The
following specific items must be customized:

■ file IDs for the database and libraries;

33Installation for z/VSE

Installation Procedure

■ volumes for libraries and database files;
■ space allocation for database files.

The Adabas DEMO database files include ASSO, DATA, WORK, TEMP, SORT, CLOG, and PLOG.

Database Installation Steps

Follow the steps outlined below to install a new Adabas database under z/VSE.

■ Step 1. Allocate and format the DEMO database.
■ Step 2. Define the global database characteristics.
■ Step 3. Load the demonstration (demo) files.
■ Step 4. Install the product license file.
■ Step 5. Start the Adabas nucleus and test the Adabas communications.
■ Step 6. Test Adabas partition communications.
■ Step 7. Load the Adabas Online System, if used.
■ Step 8. Terminate the Adabas nucleus.
■ Step 9. Back up the database.
■ Step 10. Insert the ADARUN defaults.
■ Step 11. Install the required TP link routines for Adabas.

Notes:

1. For information about running ADADEF, ADAFRM ADALOD, ADAREP, and ADASAV in
steps 1-3, 5, and 8 below, see the Adabas Utilities documentation.

2. For information about customizing the nucleus job and about starting, monitoring, controlling,
and terminating the nucleus, see the Adabas Operations documentation.

Step 1. Allocate and format the DEMO database.

Note: Sample JCS is available in ADAFRM.X

Customize and run the ADAFRM utility job to format the DEMO database areas. The following
specific items must be customized:

■ the Adabas SVC number, the database ID, and database device type(s);
■ sizes of the data sets for each ADAFRM statement.

Installation for z/VSE34

Installation Procedure

Step 2. Define the global database characteristics.

Note: Sample JCS is available in ADADEF.X

Customize and run the ADADEF utility job to define the global definition of the database. The
following items must be customized:

■ the Adabas SVC number, the database ID, and database device type(s);
■ ADADEF parameters.

Step 3. Load the demonstration (demo) files.

Note: Sample JCS is available in ADALODE.X, ADALODV.X, ADALODM.X, and
ADALODP.X.

Customize and run the job

■ ADALODE to load the sample demo file EMPL;
■ ADALODV to load the sample demo file VEHI;
■ ADALODM to load the sample demo file MISC; and
■ ADALODP to compress and load the sample Personnel (PERC) demo file and its associated

LOB demo file.

Note: The Personnel demo file must be installed on a UES-enabled database because it
includes wide-character format (W) fields.

For each job, the following items must be customized:

■ the Adabas SVC number, the database ID, and database device type(s);
■ ADALOD parameters.

Step 4. Install the product license file.

The product license file is supplied on the individual customer installation media or separately
via an e-mail attachment. If the license file is provided with the installation media, you can follow
the instructions in this step to install the license file. If the license file is supplied via an e-mail at-
tachment, you must first transfer the license to z/VSE, as described in Transferring a License File
from PC to a z/VSE Host Using FTP, in Software AG Mainframe Product Licensing and then you can
install it, as described in this step.

Installing the license file.

In z/VSE environments, the product license file can be installed either as a load module or as a
library member.

35Installation for z/VSE

Installation Procedure

To install the product license file as a module, complete the following steps:

1 Verify that the license file is stored in an Adabas source library or sequential data set (with
RECFM=F or FB and LRECL=80), taking care to preserve its format as ASCII.

2 If you loaded your Adabas license file to a library, review and modify sample JCS job
ASMLICAL.X, adjusting the library and volume specifications as appropriate for your site.
If you loaded your Adabas license file to a data set, use sample ASMLICAV.X instead.

Note: In sample jobs ASMLICAL.X and ASMLICAV.X, the standard label area is as-
sumed to contain label information for library USERLIB. You can change this as appro-
priate for your library.

3 Submit modified sample job ASMLICAL.X or ASMLICAV.X.

These sample jobs generate your Adabas license in ADALIC.PHASE. They assume that
ADALIC.PHASE will be in a user sublibrary. If a user sublibrary is chosen for ADALIC.PHASE,
this sublibrary must be included in the LIBDEF search chain in your Adabas nucleus startup
JCS. You may find it more convenient to place ADALIC.PHASE directly into the Adabas
ADAvrs sublibrary, to avoid the need to define additional libraries. During initial testing,
Software AG recommends using a user sublibrary.

To install the product license file as a library member, complete the following steps:

1 Verify that the license file is stored in an Adabas source library (with RECFM=F or FB and
LRECL=80), taking care to preserve its format as ASCII.

2 Make sure any previously created ADALIC load module is inaccessible in the Adabas load
library being used by the nucleus jobs. Adabas first tries to load ADALIC and if unsuccessful
it reads from DDLIC.

3 Provide all Adabas nucleus startup jobs with a DLBL statement in the following format:

// DLBL DDLIC,'/libname/sublb/memname.memtype'

where libname is the Librarian name of the library, sublib is the name of the sublibrary,
memname is the license member name, and memtype is the license member type.

To install the product license file as a sequential data set, complete the following steps:

1 Verify that the license file is stored in a sequential file (with RECFM=F or FB and LRECL=80),
taking care to preserve its format as ASCII.

2 Make sure any previously created ADALIC load module is inaccessible in the Adabas load
library being used by the nucleus jobs. Adabas first tries to load ADALIC and, if unsuccessful,
it reads from DDLIC.

Installation for z/VSE36

Installation Procedure

3 Provide all Adabas nucleus startup jobs with DLBL, EXTENT and ASSGN statements in the
following format:

// DLBL DDLIC,'adabas.license.file'
// EXTENT SYSnnn
// ASSGN SYSnnn,DISK,VOL=volser,SHR

where adabas.license.file is the physical file name, nnn is an unused logical unit, and
volser is the volume serial on which the license file resides.

Step 5. Start the Adabas nucleus and test the Adabas communications.

Note: Sample JCS is available in ADANUC.X.

Customize and run the job ADANUC to start up the Adabas nucleus. The following items must
be customized:

■ The Adabas SVC number, the database ID, and device type(s);

Note: Be sure to include appropriate LIBDEF references for user sublibraries, especially
the library containing the ADALIC license file. The licensing component MLCvrs must
also be added to the LIBDEF SEARCH chain for load modules. These additional sublib-
raries can be added via the ADAVvFIL procedure, as required.

■ ADANUC parameters.

Step 6. Test Adabas partition communications.

Note: Sample JCS is available in ADAREP.X.

Customize and run the job ADAREP in MULTI mode with the CPLIST parameter to test Adabas
partition communications. The following items must be customized:

■ the Adabas SVC number, the database ID, and device type(s);
■ ADAREP parameters.

37Installation for z/VSE

Installation Procedure

Step 7. Load the Adabas Online System, if used.

Note: Sample JCS is available in ADAINPL.X. Read Installing the AOS Demo Version,
elsewhere in this guide, and, if necessary, the installation section of the Adabas Online
System documentation.

Customize and run the job ADAINPL to load the Adabas Online System into a Natural system
file. A Natural file must first be created, requiring an INPL input file (see the Natural installation
instructions). The following items must be customized:

■ the Adabas SVC number, the database ID, and device type(s);
■ the Natural INPL parameters and system file number.

Step 8. Terminate the Adabas nucleus.

Communicate with the Adabas nucleus (MSG Fn) to terminate the session by entering the Adabas
operator command ADAEND into the Adabas nucleus partition.

Step 9. Back up the database.

Customize and run the ADASAV utility job to back up the Version sample database. The following
items must be customized:

■ the Adabas SVC number, the database ID, and device type(s);
■ ADASAV parameters.

Step 10. Insert the ADARUN defaults.

Optionally customize and run the DEFAULTS job to set the ADARUN defaults using the MSHP
utility and to relink ADARUN. The following items may be customized:

■ SVC number;
■ database ID;
■ device type(s).

Installation for z/VSE38

Installation Procedure

Step 11. Install the required TP link routines for Adabas.

Refer to the section Installing Adabas With TP Monitors for the TP link routine procedure.

Migrating an Existing Database

Use the ADACNV utility to migrate existing databases to new releases of Adabas. See the Adabas
Utilities documentation for more information.

Logical Unit Requirements

This section describes the Adabas logical unit requirements.

ADARUN

Storage MediumFileLogical Unit

PrinterPRINTSYSLST

Tape / DiskCARDSYS000

ReaderCARDSYSRDR

Utility

Storage MediumFileLogical Unit

PrinterDRUCKSYS009

ReaderKARTESYSIPT

Nucleus

Storage MediumFileLogical Unit

PrinterPRINTSYSLST

ReaderCARDSYSRDR

The highest logical unit used is SYS038 for the ADASAV utility. The programmer logical units
default is described in the sectionDevice and File Considerations. The system programmer should
review these requirements to ensure that there are enough programmer logical units to run the
desired utilities in the desired partitions.

39Installation for z/VSE

Installation Procedure

Job Exit Utility

Adabas provides a job exit to perform two different functions:

■ Librarian input override processing

The exit scans a job stream for Librarian input override statements. These statements indicate
that card input (ADARUN CARD or utility KARTE statements) for a job step is to come from
Librarian members rather than from SYSRDR or SYSIPT.

■ ADARAI JCS capture processing

The exit captures JCS before it is modified by tape or disk management systems for later use by
ADARAI.

You can set the job exit to perform either function or both. By default, the job exit performs Librar-
ian input override processing.

This section covers the following topics:

■ Installation and Initialization
■ Librarian Input Override Processing
■ Activating Adabas Use of Job Exit Processing
■ Using the Job Exit Utility for ADARAI JCS Capture
■ Job Exit Storage Requirements
■ Optional Console or Printer Messages
■ Diagnostic Functions

Installation and Initialization

The job exit can be installed during ASI processing or at any time afterward. It is installed in two
steps:

to install the job exit:

1 Install programs SAGJBXT and SAGIPT in the SVA.

2 Run program SAGINST to initiate job exit processing.

You can include SAGJBXT in the $JOBEXIT list of eligible exits, but you must still place SAGIPT
in the SVA and run SAGINST to allocate the required table(s).

SAGIPT runs above the 16-megabyte line if an appropriate 31-bit PSIZE is available. In addition,
the table that stores information from input-override statements and/or the table that stores JCS
for ADARAI use is placed in 31-bit GETVIS, if available.

Installation for z/VSE40

Installation Procedure

SAGINST reads an input parameter that tells it whether to install the Librarian input override
processing, ADARAI JCS capture processing, or both. The following parameter values are valid:

PARM=ADALIB (the default) installs Librarian input override processing
PARM=ADARAI installs ADARAI JCS capture processing

The following sample job control initializes the job exit:

Note: Sample JCS to initialize the job exit is available in member JBXTINST.X.

* $$ JOB JNM=SAGEXIT,CLASS=0
* $$ LST CLASS=A,DISP=D
// JOB SAGEXIT
// LIBDEF *,SEARCH=SAGLIB.ADAvrs
// EXEC PROC=ADAVvLIB
SET SDL
SAGJBXT,SVA
SAGIPT,SVA
/*
// EXEC SAGINST,PARM=ADARAI,ADALIB
/&
* $$ EOJ

where vrs is the Adabas version.

Librarian Input Override Processing

If Librarian input override processing is specified, the job exit scans a job stream for input override
statements indicating that card input (ADARUN CARD or utility KARTE statements) for a job
step is to come from Librarian members rather than from SYSRDR or SYSIPT. By default, the exit
can store a maximum of 2000 input override cards simultaneously throughout the system. Adabas
uses this facility when processing CARD and KARTE parameters.

Enable Librarian input override processing by adding * SAGUSER control statements to the job
control stream between the // JOB and // EXEC statements.

A * SAGUSER statement can have three keyword parameters: FILE, LIBRARY, and MEMBER.

DescriptionKeyword Syntax

The file to be read from a Librarian member. Specify “CARD”
for ADARUN statements, or “KARTE” for utility statements.

FILE={ CARD | KARTE }

The library and sublibrary to be searched. If omitted, the current
libdef.source chain is used.

LIBRARY={ library.sublibrary ↩
| libdef.source }

41Installation for z/VSE

Installation Procedure

DescriptionKeyword Syntax

The member name and optionally the type to be read. If type
is omitted, “A” is assumed.

MEMBER=name [,{ type | A }]

The following is an example of a * SAGUSER control statement that specifies an alternate job exit
member:

* SAGUSER FILE=CARD,MEMBER=NUC151

In the example above, Adabas searches the current libdef.source chain for member NUC151
with type A. If NUC151 is found, Adabas uses its contents as the nucleus startup parameters instead
of SYSIPT.

To permit flexible startup processing, multiple SAGUSER statements may be specified for each
file. In the following example, Adabas reads the input parameters first in member NUC151, then
in member IGNDIB:

* SAGUSER FILE=CARD,MEMBER=NUC151
* SAGUSER FILE=CARD,MEMBER=IGNDIB

The following examples show the use of the LIBRARY parameter, and apply to z/VSE systems only:

* SAGUSER FILE=CARD,MEMBER=NUC151,LIBRARY=SAGULIB.TESTSRC

In the example above, Adabas searches sublibrary TESTSRC in the SAGULIB library for member
NUC151 with type A. If NUC151 is not found in sublibrary TESTSRC of library SAGULIB, no
further search is made. The DLBL and EXTENT information for the SAGULIB library must be
available.

* SAGUSER FILE=CARD,MEMBER=NUC151.ADARUN,LIBRARY=SAGULIB.TESTSRC

In the example above, Adabas searches sublibrary TESTSRC in the SAGULIB library at nucleus
initialization for member NUC151 with type ADARUN. The library member types PROC, OBJ,
PHASE, and DUMP are not permitted.

Activating Adabas Use of Job Exit Processing

Specify JOBEXIT=YES to allow Adabas to use SAGUSER statements in the job stream and recatalog
the Adabas options table (ADAOPD).

Installation for z/VSE42

Installation Procedure

Using the Job Exit Utility for ADARAI JCS Capture

Once the job exit utility has been installed for ADARAI, all utilities that write information to the
RLOG automatically obtain file information from the ADARAI table that the job exit maintains.
Manual intervention is not required.

Job Exit Storage Requirements

The job exit requires from 84 to 298 kilobytes (KB) of SVA storage, depending on whether the
Librarian input override interface and/or the ADARAI JCS interface is installed. Of that total,

■ 2 kilobytes are used for program storage (PSIZE);
■ 82-kilobyte GETVIS for Librarian input override storage; and
■ 214-kilobyte GETVIS for ADARAI JCS storage.

When running in z/VSE on z/VSE hardware, all of the GETVIS and 1 kilobyte of the PSIZE can be
run above the 16-megabyte line.

Optional Console or Printer Messages

You have the option of displaying, printing, or preventing these messages by specifying the JBXEMSG
and JBXIMSG parameters in the Adabas options table.

Diagnostic Functions

After the job exit is installed, you can produce dumps of the two tables for diagnostic purposes.
Executing SAGINST with the ADASIP UPSI statement:

■ UPSI 10000000 produces a dump of the Librarian input override table;
■ UPSI 01000000 produces a dump of the ADARAI JCS table.

If the size of these two tables needs to be changed for any reason, SAGIPT may be zapped before
being loaded into the SDL:

■ The Librarian input override table size may be changed from the default of X‘00014874' (84,084
bytes) to an appropriate value by zapping location X‘18'. When altering the SAGIPT.OBJ module,
ESDID=002 is required on the MSHP AFFECTS statement.

■ The ADARAI JCS table size may be changed from the default of X‘000355D6' to an appropriate
value by zapping location X‘0C'.

Each element in the Librarian input override table is 42 bytes in length. The default table size as-
sumes 10 SAGUSER statements per file name, 10 file names, and 20 partitions, plus two extra unused
entries. This number is an estimate of maximum concurrent residency; each statement is removed
from the table after it is used.

43Installation for z/VSE

Installation Procedure

Each element in the ADARAI JCS table is 91 bytes in length. The default table size accommodates
2400 entries with each DLBL, TLBL, or EXTENT statement requiring an entry in the table.
Whenever a JOB statement is encountered, all entries for that partition (task ID) are cleared from
the table.

Acquiring Storage for the ID Table

The SYSTEM GETVIS is used to acquire storage for the ID table (IDT). This storage is acquired
using the ADASIP at SVC installation time. The size of storage in the SYSTEM GETVIS depends
on the number of IDT entries specified using ADASIP. The default number of IDT entries (IDTEs)
is 10. The size can be calculated as follows:

SIZE (in bytes) =1024 (IDT prefix) + 96 (IDT header) + (32 x number of IDTEs)
= 1024 + 96 + (32 x 10)
= 1024 + 96 + 320
= 1440 bytes

Also, additional SYSTEM GETVIS storage is acquired. This storage permits users to communicate
from multiple address spaces when Adabas is not running in a shared partition. In this case, the
following formula is used to calculate SYSTEM GETVIS:

SIZE (in bytes) = 192 (CQ header) + (192 x NC value) + (4352 x NAB value)

It may be necessary to increase the SVA size to meet these requirements. To do so, change the SVA
operand in the appropriate $IPLxxx procedure, then re-IPL.

Note: By default, the SYSTEM GETVIS is acquired above the 16-megabyte line. To acquire
most of this space below the line, link-edit ADARUN AMODE 24.

Acquiring Storage for the IIBS Table

The 31-bit SYSTEM GETVIS is used to acquire storage for the IIBS table (IIBS). This storage is ac-
quired using the ADASIP at SVC installation time. The size of storage in the 31-bit SYSTEM GETVIS
is 128K.

Installation for z/VSE44

Installation Procedure

SVC Work Areas

For each Adabas SVC installed, a number of 384-byte work areas are reserved. The number of
work areas reserved is calculated as four times the number of IDTEs (4 x IDTE-count). The
maximum number of work areas allocated is 128; the minimum is 24. The SVC work areas therefore
occupy between 9K and 48K of storage. The default value of 10 IDTEs results in 15K of SYSTEM
GETVIS being allocated.

Displaying Storage Allocation Totals

Specifying // UPSI xxxxxxxGx during the ADASIP execution (see UPSI byte description in
ADASIP Execution Parameters, earlier in this guide,) will generate allocation messages on the
system console, showing the total 24-bit GETVIS and 31-bit GETVIS storage allocated by Adabas:

ADASIP85 GETVIS-24 storage allocated: nnnK
ADASIP85 GETVIS-31 storage allocated: nnnK

Calls from Other Partitions

In order for an Adabas nucleus to accept calls from other partitions, storage is acquired in the SVA
GETVIS area for any required attached buffers. The buffers hold data moved between the nucleus
and users in other partitions.

Dummy Sequential Files

If the file is not needed, it can be unassigned or assigned IGN such as the following:

// ASSGN SYS014,UA

or

45Installation for z/VSE

Installation Procedure

// ASSGN SYS014,IGN

Backward Processing of Tapes and Cartridges

To perform backward processing of tapes or cartridges, file positioning must occur before the file
is opened. This can only be done when an assignment is made for the file. When performing the
ADARES BACKOUT utility function, the // ASSGN ... for file BACK must be done explicitly.

No tape management system can be used, because such systems perform the assign operation
when the file is opened; the LUB and PUB remain unassigned until this occurs.

Applying Zaps (Fixes)

The jobs described in this section can be used to permanently change defaults and apply corrections
(zaps) to the libraries in the supported z/VSE systems.

Two methods are used in z/VSE for applying corrective fixes to Adabas:

■ the MSHP PATCH facility requires no definition of Adabas as a product/component on the
MSHP history file. This method only alters phases. If the phase is relinked, the zap is lost.

■ the MSHP CORRECT facility requires the definition of Adabas as a product/component using
MSHP ARCHIVE.

Software AG distributes Adabas zaps to z/VSE users in MSHP CORRECT format and therefore
recommends that you use MSHP CORRECT.

■ Applying Fixes Using MSHP PATCH
■ Applying Fixes Using MSHP CORRECT
■ Link Book Update Requirements for Secondary SVC
■ Link Book Update Requirements for Running AMODE 24

Applying Fixes Using MSHP PATCH

A sample job for applying a fix to Adabas using MSHP PATCH is as follows:

Note: This sample job is available in member MSHPPAT.X.

Installation for z/VSE46

Installation Procedure

// JOB PATCH APPLY PATCH TO ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
PATCH SUBLIB=saglib.ADAvrs
AFFECTS PHASE=phasenam
ALTER offset vvvv : rrrr
/*
/&

where
vrs is the Adabas version
saglib is the Adabas library name in procedure ADAVvFIL
phasenam is the Adabas phase to be zapped
offset is the hexadecimal offset into the phase
vvvv is the verify data for the zap
rrrr is the replace data for the zap

Applying Fixes Using MSHP CORRECT

■ MSHP ARCHIVE
■ MSHP CORRECT

MSHP ARCHIVE

For new users or users with no requirement to maintain multiple versions of Adabas, the following
sample job can be used to define Adabas to MSHP.

Note: This job uses the history file identified by the IJSYSHF label in the z/VSE standard
label area.

Note: This sample JCL is available in member MSHPARC.X.

// JOB ARCHIVE ARCHIVE ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
ARCHIVE ADAvrs
COMPRISES 9001-ADA-00
RESOLVES 'SOFTWARE AG - ADABAS Vv.r'
ARCHIVE 9001-ADA-00-vrs
RESIDENCE PRODUCT=ADAvrs -
PRODUCTION=saglib.ADAvrs -
GENERATION=saglib.ADAvrs
/*
/&

47Installation for z/VSE

Installation Procedure

—where
vrs is the Adabas version
saglib is the Adabas library name in procedure ADAVvFIL

A different MSHP history file must be used for each version and revision level of Adabas to which
maintenance is applied.

To preserve the MSHP environment of an older version level of Adabas during an upgrade to a
new version, it is necessary to create an additional MSHP history file for use by the new version.

The following sample MSHP job can be used to create an additional history file for a new version
of Adabas and define Adabas to it.

Note: This sample JCL is available in member MSHPDEF.X.

// JOB ARCHIVE DEFINE HISTORY AND ARCHIVE ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// ASSGN SYS020,DISK,VOL=volhis,SHR
// EXEC MSHP
CREATE HISTORY SYSTEM
DEFINE HISTORY SYSTEM EXTENT=start:numtrks -
UNIT=SYS020 -
ID='adabas.new.version.history.file'
ARCHIVE ADAvrs
COMPRISES 9001-ADA-00
RESOLVES 'SOFTWARE AG - ADABAS Vv.r'
ARCHIVE 9001-ADA-00-vrs
RESIDENCE PRODUCT=ADAvrs -
PRODUCTION=saglib.ADAvrs -
GENERATION=saglib.ADAvrs
/*
/&

—where
vrs is the Adabas version
volhis is the volume on which the Adabas Vvr history file resides
start is the start of the extent on which the Adabas Vvr history file resides
numtrks is the length of the extent on which the Adabas Vvr history file resides
adabas.new.version.history.file is the physical name of the Adabas Vvr history file
saglib is the Adabas library name in procedure ADAVvFIL

Once migration to the new version is complete, you can either

■ continue to use the new history file to apply subsequent fixes; or
■ delete the old version of Adabas from MSHP and merge the new version into the standard

MSHP history file.

Installation for z/VSE48

Installation Procedure

Caution: Before running any MSHP REMOVE or MERGE jobs, back up your MSHP envir-
onment by running MSHP BACKUP HISTORY jobs against all MSHP history files.

A sample MSHP job to remove an old version of Adabas is provided below.

Note: This sample JCL is available in member MSHPREM.X.

// JOB REMOVE REMOVE OLD ADABAS
// OPTION LOG
// PAUSE ENSURE MSHP HISTORY FILE BACKUP HAS BEEN TAKEN
// EXEC MSHP
REMOVE ADAvrs
REMOVE 9001-ADA-00-vrs
/*
/&

—where vrs is the old Adabas version

A sample MSHP job to merge an additional history file for Adabas into the standard MSHP history
file is provided below.

Note: This sample JCL is available in member MSHPMER.X.

// JOB MERGE MERGE SEPARATE ADABAS INTO STANDARD HISTORY
// OPTION LOG
// PAUSE ENSURE MSHP HISTORY FILE BACKUPS HAVE BEEN TAKEN
// ASSGN SYS020,DISK,VOL=volhis,SHR
// EXEC MSHP
MERGE HISTORY AUX SYSTEM
DEFINE HISTORY AUX EXTENT=start:numtrks -
UNIT=SYS020 -
ID='adabas.new.version.history.file'
/*
/&

—where
volhis is the volume on which the Adabas Vvr history file resides
start is the start of the extent on which the Adabas Vvr history file resides
numtrks is the length of the extent on which the Adabas Vvr history file resides
adabas.new.version.history.file is the physical name of the Adabas Vvr history file

49Installation for z/VSE

Installation Procedure

MSHP CORRECT

The MSHP CORRECT and UNDO jobs use the history file identified by label IJSYSHF in the z/VSE
standard label area. If Adabas is maintained from a different MSHP history file, include the fol-
lowing label information in the CORRECT or UNDO job:

// DLBL IJSYSHF,'adabas.new.version.history.file'
// EXTENT SYSnnn
// ASSGN SYSnnn,DISK,VOL=volhis,SHR

—where
volhis is the volume on which the Adabas Vvr history file resides
nnn is the user-defined SYS number
adabas.new.version.history.file is the physical name of the Adabas Vvr history file

A sample of the use of MSHP CORRECT to install a fix to Adabas is provided below.

Note: This sample JCL is available in member MSHPCOR.X.

// JOB CORRECT APPLY ADABAS FIX
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
CORRECT 9001-ADA-00-vrs : Axnnnnn
AFFECTS MODE=modname
ALTER offset vvvv : rrrr
INVOLVES LINK=lnkname
/*
/&

—where
vrs is the Adabas version
x is the Adabas component (for example, N for nucleus)
nnnnn is the Adabas fix number
modname is the Adabas object module to be zapped and then relinked
offset is the hexadecimal offset to the beginning of the zap
vvvv is the verify data for the zap
rrrr is the replace data for the zap
lnkname is the link book for the phase affected

The CORRECT job updates object and phase in a single job step using the link book feature of
MSHP. The INVOLVES LINK= statement automatically invokes the linkage editor after the object
module is updated.

For a zap applied with the INVOLVES LINK= statement, the following UNDO can be used to re-
move the fix from both object module and phase:

Installation for z/VSE50

Installation Procedure

Note: This sample JCL is available in member MSHPUND.X.

// EXEC MSHP
UNDO 9001-ADA-00-vrs : Axnnnnn
/*

where vrs is the Adabas version, x is the Adabas component (for example, N for nucleus), and
nnnnn is the Adabas fix number.

Adabas provides a link book containing parameters for invoking the linkage editor for each
Adabas phase. The name of each link book begins with "LNK" and the member type is "OBJ".

No link book is provided for module ADAOPD or for any other programs distributed in source
form. Programs distributed in source form continue to be modified using assembly and link jobs.

If you choose not to take advantage of the link book facility, remove the INVOLVES LINK=
statement from any zap before applying it. You can then run the linkage editor step to recreate
the phase separately, as before.

This may be done to link a temporary version of a phase into a separate sublibrary for testing
purposes. However, it is also possible to maintain a separate test version of Adabas modules by
defining an additional z/VSE system history file. See Maintaining a Separate Test Environment
in z/VSE.

Link Book Update Requirements for Secondary SVC

If you use the link book facility and require a non-standard SVC suffix (for example, if you relink
the Adabas 8 SVC to phase ADASVC11), you must remember to update the link book for the SVC
(LNKSVC.OBJ) to reflect the new phase name.

The link book provided for ADASVC81 is LNKSVC.OBJ. It contains the following:

PHASE ADASVC81,*,NOAUTO,SVA
MODE AMODE(31),RMODE(24)
INCLUDE SVCVSE
INCLUDE SVCCLU
ENTRY ADASVC

To set up an SVC with suffix -11, you would need to update the link book as follows:

51Installation for z/VSE

Installation Procedure

// DLBL SAGLIB,'adabas.Vvrs.library'
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL=volser,SHR
// EXEC LIBR
ACCESS SUBLIB=SAGLIB.ADAvrs
CATALOG LNKSVC.OBJ REPLACE=YES
PHASE ADASVC11,*,NOAUTO,SVA
MODE AMODE(31),RMODE(24)
INCLUDE SVCVSE
INCLUDE SVCCLU
ENTRY ADASVC
/+
/*

—where
vrs is the Adabas version
adabas.Vvrs.library is the physical name of the Adabas vrs library
volser is the volume on which the library resides

Link Book Update Requirements for Running AMODE 24

If you use the link book facility and require AMODE 24 versions of any modules linked by default
as AMODE 31 (ADARUN, ADASVC74), you must update the corresponding link book (LNK-
RUN.OBJ, LNKSVC.OBJ) to remove the MODE statement.

This link book update can be made using a method similar to that described in the previous section
for the SVC suffix update.

Adabas 8 Adalink Considerations

■ Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)
■ LNKUES for Data Conversion
■ ADAUSER Considerations

Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)

A pre-command user exit and a post-command user exit may be linked with an Adalink routine:

■ Link routine user exit 1, LUEXIT1, receives control before a command is passed to a target with
the router 04 call.

Note: Special commands emanating from utilities and from Adabas Online System are
marked as physical calls. These calls must be bypassed in user exits. These calls have
X‘04' in the first byte (TYPE field) of the command's Adabas control block (ACBX).
LUEXIT1 must check this byte and return if it is set to X‘04'. Be sure to reset R15 to zero
on return.

Installation for z/VSE52

Installation Procedure

■ Link routine user exit 2, LUEXIT2, receives control after a command has been completely pro-
cessed by a target, the router, or by the Adalink itself.

At entry to the exit(s), the registers contain the following:

ContentsRegister

Address of the UB.1

Address of an 18-word format 1 register save area2

For CICS, on entry to the link user exit, R13 points to the CICS DFHEISTG work area at xxxxxxxxx.

For batch/TSO, R13 points to the link routine's work area.

13

Return address14

Entry point address: LUEXIT1 or LUEXIT215

Any registers except register 15 that are modified by the user exits must be saved and restored;
the address of a save area for this purpose is in register 13.

If at return from LUEXIT1, register 15 contains a value other than zero (0), the command is not
sent to the target but is returned to the caller. The user exit should have set ACBXRSP to a non-
zero value to indicate to the calling program that it has suppressed the command: response code
216 (ADARSP216) is reserved for this purpose.

User buffers can be used to pass data between the link routine user exits 1 and 2 and Adabas
nucleus user exits 11 and 4. Refer to User Buffers for more information.

An Adalink routine can return the following non-zero response codes in ACBXRSP:

DescriptionResponse Code

No ID table213 (ADARSP213)

LUEXIT1 suppressed the command216 (ADARSP216)

No UB available218 (ADARSP218)

LNKUES for Data Conversion

The Adabas 8 standard batch ADALNK is delivered with UES (Universal Encoding Support). The
LNKUES module, as well as the modules ASC2EBC and EBC2ASC, are linked into the standard
batch ADALNK. LNKUES converts data in the Adabas buffers and byte-swaps, if necessary, de-
pending on the data architecture of the caller.

LNKUES is called only on ADALNK request (X'1C') and reply (X'20') calls if the first byte of the
communication ID contains X'01' and the second byte does not have the EBCDIC (X'04') bit set.

■ For requests, LNKUES receives control before LUEXIT1.
■ For replies, LNKUES receives control after LUEXIT2.

53Installation for z/VSE

Installation Procedure

By default, two translation tables are linked into LNKUES/ADALNK:

■ ASC2EBC: ASCII to EBCDIC translation; and
■ EBC2ASC: EBCDIC to ASCII translation.

Note: It should only be necessary to modify these translation tables in the rare case that
some country-specific character other than “A-Z a-z 0-9” must be used in the Additions 1
(user ID) or Additions 3 field of the control block.

If you prefer to use the same translation tables that are used in Entire Net-Work:

■ In ASC2EBC and EBC2ASC, change the COPY statements from UES2ASC and UES2EBC to
NW2ASC and NW2EBC, respectively.

■ Re-assemble the translation tables and re-link LNKUES/ADALNK.

Both the Adabas and Entire Net-Work translation table pairs are provided in the sectionTranslation
Tables. You may want to modify the translation tables or create your own translation table pair.
Be sure to (re)assemble the translation tables and (re)link LNKUES/ADALNK.

Refer to the member LNKLNK.OBJ for the current link-edit control statements for linking the
ADALNK.PHASE. The following is a sample job for (re)linking ADALNK with LNKUES and the
translation tables:

*
// JOB ...
// EXEC PROC=
// LIBDEF *,SEARCH=(search-chain-library.sublib ...)
// LIBDEF PHASE,CATALOG=(lib.sublib)
PHASE ADALNK,*
MODE AMODE(31),RMODE(24)
INCLUDE LNKVSE8
INCLUDE LINKIND
INCLUDE LNKGBLS
INCLUDE LNKUES
INCLUDE ASC2EBC
INCLUDE EBC2ASC
INCLUDE LNKDSL
INCLUDE RTRVSE
INCLUDE JNMVSE
ENTRY ADABAS

// EXEC LNKEDT

The (re)linked ADALNK must be made available to Entire Net-Work. If you are calling Adabas
8 and you do not have the correct LNKUES/ADALNK module, Adabas produces unexpected
results: response code 022 (ADARSP022), 253 (ADARSP253), etc.

Installation for z/VSE54

Installation Procedure

ADAUSER Considerations

ADAUSER is a program that links the user to Adabas. It is specific to an operating system and is
independent of release level and mode. It can be used in batch and in some TP environments.

ADAUSER contains the entry point ADABAS and should be linked with all user programs that
call Adabas. No other programs containing the CSECT or entry point name ADABAS can be linked
in these load phases.

On the first Adabas call, ADAUSER (CDLOAD) loads the latest version of ADARUN. This makes
the calling process release-independent. Subsequent Adabas calls bypass ADARUN.

ADARUN processes its control statements. For the ADARUN setting PROGRAM=USER (the default),
ADARUN loads the non-reentrant Adalink modules. To load a reentrant batch link routine, use
the ADARUN parameter PROGRAM=RENTUSER. This makes the calling process mode-independent.

Setting Defaults in ADARUN

The member DEFAULTS.X is available for setting the ADARUN defaults.

DEFAULTS.X uses MSHP CORRECT to install the fix.

The distributed source library contains member ZAPOPT which also contains a zap in MSHP
format to set the ADARUN defaults.

Current ValueDefault Name

3390Device type

45SVC number

1Database ID

55Installation for z/VSE

Installation Procedure

56

5 Installing Adabas with TP Monitors

■ Preparing Adabas Link Routines for z/VSE ... 58
■ General Considerations for Installing Adabas with CICS .. 62
■ Installing Adabas with CICS under Adabas 8 .. 64
■ Installing the CICS High-Performance Stub Routine for Adabas 8 ... 79
■ Installing Adabas with Com-plete under Adabas 8 .. 95
■ Installing Adabas with Batch under Adabas 8 .. 97
■ Establishing Adabas SVC Routing by Adabas Database ID .. 99
■ Modifying Source Member Defaults (LGBLSET Macro) in Version 8 ... 108

57

This chapter provides information needed to install Adabas in batch mode and with its telepro-
cessing (TP) monitors.

Preparing Adabas Link Routines for z/VSE

This section covers the following topics:

■ High-Level Assembler
■ Addressing Mode Assembly Directives
■ UES-Enabled Link Routines

Important: If an ADALNK batch link routine has been linked or modified by Software AG
product modules or user exits, it cannot be used in any application startups of Adabas
utility jobs or Adabas, Entire System Server, Adabas Review Hub, or Entire Net-Work
nuclei.

High-Level Assembler

IBM has dropped support for the old VSE assembler and Software AG supports assembling the
Adabas link components with the high-level assembler only.

Addressing Mode Assembly Directives

The Adabas link routines now have AMODE and RMODE assembly directives in the source. These allow
the linkage editor to produce warning messages when conflicting AMODE or RMODE linkage editor
control statements are encountered in the link JCS or EXECs.

These assembly directives also serve to document the preferred AMODE and RMODE for each link
routine. It is important to note that in and of themselves, these directives do not alter the actual
addressing mode of the link routine during execution.

The batch link routine ADALNK has the following AMODE and RMODE assembly directives:

ADABAS AMODE 31
ADABAS RMODE 24

Software AG recommends RMODE 24 for the z/VSE non-reentrant batch link routine
(ADALNK.PHASE).

Modifying the Assembly Directives

These directives may be changed by modifying the linkage editor control statements. For example,
to link the batch ADALNK module with AMODE31 and an RMODE ANY, the following control
statements may be provided as input to the linkage editor:

Installation for z/VSE58

Installing Adabas with TP Monitors

PHASE ADALNK,*
MODE AMODE(31),RMODE(ANY)

The linkage editor control statements override the Assembler directives in the provided object
module.

For more information about the AMODE and RMODE directives and their effects on the assembler,
linkage editor, and execution, consult IBM's VSE Extended Addressability Guide.

Re-linking Adabas 8 Link Routines

When re-linking the Adabas 8 link routines with certain AMODE and RMODE combinations, a warning
message may be generated by the linkage editor. This may be safely ignored as long as it pertains
to a conflict of AMODE or RMODE in the ESD record of one or more of the load modules that comprise
the link routine, and as long as the resulting module has the proper AMODE and RMODE attributes
for execution with the intended calling application programs.

Care must be taken to ensure that AMODE(24) applications will operate properly when invoking
the link routine with the attributes chosen when it is re-linked. This is particularly important if
the RMODE(ANY) attribute is associated with a link routine that will be loaded dynamically but in-
voked by a program that is AMODE(24). In this case, the link routine should be re-linked
AMODE(31),RMODE(24) to avoid addressing exception ABENDs because the AMODE(24) application
cannot correctly invoke the link routine if it resides above the 16-megabyte line.

The Adabas 8 link routines all run AMODE(31) after initialization, but they will return to the caller
in the caller's AMODE.

Note: Under CICS, the V8 links run AMODE(31), but the Dataloc RDO parameter governs
the AMODE and RMODE of the running CICS transaction.

The batch z/VSE link routine, ADALNK, has been assembled and link-edited AMODE(31,RMODE(24).
This provides the most flexible configuration for most z/VSE applications that will invoke it. It
may be re-linked AMODE(31),RMODE(ANY), but you must be certain that no AMODE(24) applications
will invoke it.

The reentrant batch link routine, ADALNKR, has been assembled AMODE(31),RMODE(24). It may be
re-linked AMODE(31),RMODE(ANY) if no AMODE(24) applications will invoke it.

The z/VSE Com-plete link routine, ADALCO, has been assembled and link-edited
AMODE(31),RMODE(24), and this is the required configuration for ADALCO under z/VSE Com-plete
because ADALCO still uses z/VSE macros and services which require it to reside below the 16-
megabyte line.

All of the Adabas 8 CICS link routine modules - ADACICS, ADACICT, and ADACIC0 - have been as-
sembled and link-edited AMODE(31),RMODE(ANY). CICS manages the loading of programs and their
invocation depending on the DATALOC values associated with their program and transaction
definitions.

59Installation for z/VSE

Installing Adabas with TP Monitors

ADAUSER AMODE/RMODE Considerations

Software AG recommends that all batch applications invoke Adabas calls through the ADAUSER
module. This module is normally link-edited with the application program and it then loads the
appropriate link routine as well as ADARUN and ADAIOR/ADAIOS. The source member has
the AMODE and RMODEdirectives coded as AMODE 31, RMODE ANY. This is the most flexible configuration
for assembling and linking ADAUSER with the widest variety of application programs. However,
if ADAUSER is dynamically loaded, either the RMODE assembler directive should be changed to
RMODE 24 before re-assembling it or the ADAUSER module should be re-linked
AMODE(31),RMODE(24) to ensure that AMODE 24 application programs may invoke it properly below
the 16-megabyte line.

UES-Enabled Link Routines

For prior versions of Adabas, UES is enabled by default for only the batch and Com-plete link
routines. As of Adabas version 8, UES is enabled by default for all link routines, including the
CICS link routines. It is not necessary to disable UES support. Applications that do not require
UES translation continue to work properly even when the UES components are linked with the
Adabas link routines. See the section EnablingUniversal Encoding Support (UES) for Your Adabas
Nucleus for more information.

This section covers the following topics:

Default or Customized Translation Tables

By default, the load modules for all Adabas 8 link routines have been linked with LNKUES and
the default translation tables.

LNKUES converts data in the Adabas buffers and byte-swaps, if necessary, depending on the data
architecture of the caller.

The two standard translation tables are:

■ ASC2EBC: ASCII to EBCDIC translation; and
■ EBC2ASC: EBCDIC to ASCII translation.

The Adabas translation table pair is provided in the section Translation Tables.

You may use the load modules with the default translation tables linked in, or you may prepare
your own customized translation tables, re-assemble the tables, and link them with the LNKUES
module that is delivered.

Notes:

Installation for z/VSE60

Installing Adabas with TP Monitors

1. It should only be necessary to modify these translation tables in the rare case that some country-
specific character other than “A-Z a-z 0-9” must be used in the Additions 1 (user ID) or Additions
3 field of the control block.

2. The load module LNKUESL delivered with earlier levels of Adabas Version 7 is no longer
supplied since the link jobs now specify the LNKUES or LNKUES7 module and the translation
tables separately.

3. The LNKUES module is functionally reentrant; however, they is not linked that way in the
Adabas load library.

4. When linking the LNKUES load module and the translation tables, the linkage editor may
produce warning messages concerning the reentrant or reusability status of the linked module.
These warning messages can be ignored.

5. If relinking an Adabas 8 link routine for UES support, the LNKUES module must be included.
This will ensure that your new Adabas 8 applications have support for Adabas 8 direct calls
and control blocks.

Calling LNKUES

LNKUES is called only on Adabas link routine request (X'1C') and reply (X'20') calls if the first
byte of the communication ID contains X'01' and the second byte does not have the EBCDIC (X'04')
bit set. In Adabas 8 requests, LNKUES receives control before LUEXIT1. In Adabas 8 replies,
LNKUES receives control after LUEXIT2.

Adabas 8 Jobs for z/VSE Universal Encoding Support

The following lists the sample jobs provided to manage universal encoding support in Adabas
link routines in z/VSE environments:

DescriptionSample Job

Assembles and links the CICS globals table with LNKUES and the default translation tables
ASC2EBC and EBC2ASC.

ALNKCIC8.X

Relinks the Com-plete link routine with the LCOGBL link globals table, LNKUES, and the
default translation tables ASC2EBC and EBC2ASC.

ALNKLCO8.X

Relinks the batch link routine with the LNKGBLS link globals table, LNKUES, and the
default translation tables ASC2EBC and EBC2ASC.

ALNKLNK8.X

Relinks the reentrant batch link routine with the LNKRGBL link globals table, LNKUES,
and the default translation tables ASC2EBC and EBC2ASC.

ALNKLNR8.X

Before you can use any of these jobs, they should be edited to prepare the job power statements,
provide the proper names for the procedures and libraries referenced, and all necessary extent
and volume information. Refer to the comments in the jobs themselves for more information.

61Installation for z/VSE

Installing Adabas with TP Monitors

Disabling UES Support for Adabas 8 Link Routines

This section describes how to disable UES support in the Adabas 8 Com-plete and batch link
routines, if for some reason you feel it is necessary.

To disable UES support in link routines:

1 Edit the link globals table for the associated link routine. Set the UES parameter setting to
NO.

2 Assemble the link globals table after making any other necessary modifications to any other
keyword directives in the source module as required by your installation.

3 Link the Adabas link routine with the newly assembled link globals table and do not include
any of the UES components (that is, LNKUES, ASC2EBC, or EBC2ASC).

For more information about the specific link routines, read Installing Adabas with Com-plete
under Adabas 8, and Installing Adabas with Batch under Adabas 8, elsewhere in this guide.

General Considerations for Installing Adabas with CICS

The Adabas command-level link routine supports the CICS transaction server (TS) 1.1 running
under z/VSE 2.4 and above. CICS TS 1.1 running under z/VSE 2.4 and above must run a current
version of Adabas and use the command-level link component.

Note: The OPID option for the USERID field is no longer supported; therefore, it is not
provided with the command-level link routine.

This section covers the following topics:

■ CICS Release Support
■ CICS MRO Environment Requirements
■ Sample Resource Definitions
■ Requirement for CICS Command Resource Security

CICS Release Support

The Adabas 8 CICS link components are supported for CICS/TS 1.1 and above for z/VSE.

Installation for z/VSE62

Installing Adabas with TP Monitors

CICS MRO Environment Requirements

If you run the Adabas CICS command-level link routine with the CICS multiple region option
(MRO), you must set the LGBLSET option MRO=YES and use the default value for the LGBLSET
NETOPT option.

You can use the LGBLSET NTGPID option to provide a 4-byte literal for the Adabas communication
ID to be used by the Adabas SVC when applications that call Adabas span multiple application
regions.

Alternatively, you can create a link user exit 1 (LUEXIT1) for the link routine that

■ sets UBFLAG1 (byte X'29' in the UB DSECT) to a value of X'08' (UBF1IMSR); and
■ places a 4-byte alphanumeric value in the UB field UBIMSID.

The exit then allows the Adabas SVC to provide a proper Adabas communication ID in the Adabas
command queue element (CQE) even when transactions originate in multiple regions.

Sample Resource Definitions

Under CICS/TS 1.1 and above for z/VSE, the preferred method for defining and installing CICS
programs and transactions is RDO (resource definition online). The CICS documentation no longer
recommends the assembly of PPT and PCT entries to define resources.

Modify and use the sample DEFINE statements located in member DEFADAC as input to the IBM
DFHCSDUP utility to define the Adabas CICS command-level components. Consult the appropriate
IBM CICS documentation for information on the DFHCSDUP utility. The DEFADAC member can
be found in the Adabas 8 CICS command-level source library (ADAvrn.LIBR).

Requirement for CICS Command Resource Security

The Adabas CICS link routines require a command security level of "UPDATE" for the EXITPRO-
GRAM CICS command resource identifier. This allows the Adabas CICS application stub to issue
the EXEC CICS EXTRACT EXIT command without raising the NOTAUTH response from CICS
and the security software. The Adabas CICS application stub needs to issue the EXEC CICS EX-
TRACT EXIT to determine that the given Adabas task-related user exit (TRUE) is installed and
enabled, and to locate the CICS global work area (GWA) associated with the given TRUE so that
various data structures are made available to the Adabas CICS application stub programs.

63Installation for z/VSE

Installing Adabas with TP Monitors

Installing Adabas with CICS under Adabas 8

A CICS application that uses Adabas services requires an Adabas CICS execution unit to function.

In Adabas versions prior to 8.2, the Adabas CICS execution unit was comprised of:

■ the Adabas CICS stub, ADACICS
■ the stub module's direct call interface ADADCI
■ the Adabas task-related user exit (TRUE), ADACICT
■ the globals table, named CICSGBL by default.

The stub module needs to know the name of the Adabas TRUE it is to invoke. In addition, the
Adabas TRUE needs to know the name of the globals table so that it can obtain run-time informa-
tion, such as the locations of callable exits and the settings of various operating parameters (such
as the length of user information).

Effective with Adabas 8.2 and later versions, the Adabas CICS execution unit is comprised of:

■ the Adabas CICS stub, ADACICS
■ an Adabas CICS names module, ACINAMES
■ one or more Adabas task-related user exits (TRUEs), ADACICT
■ a globals table associated with the stub module and the TRUE.

The names module (ACINAMES) is linked with the stub (ADACICS) to provide the name of the
associated TRUE and the globals table for a given CICS application. In addition, an Adabas CICS
installation options table (ACIOPT) is required and used by the Adabas CICS installation program,
ADACIC0, to load the Adabas globals tables required by the Adabas CICS execution units that
will be installed and activated in the CICS region.

This section covers the following topics:

■ The Adabas CICS Application Stub (ADACICS)
■ The Adabas CICS Names Module (ACINAMES)
■ The Adabas CICS Installation Options Table (ACIOPT)
■ The MACINS Macro
■ The MACIOPT Macro
■ Adabas Task-Related User Exits (TRUEs)
■ Supplied Modules

Installation for z/VSE64

Installing Adabas with TP Monitors

■ Installation Procedure Under Adabas 8

The Adabas CICS Application Stub (ADACICS)

The Adabas application stub is invoked via EXEC CICS LINK or via the direct-call interface from
a CICS application program that intends to use Adabas database services. The stub consists of the
ADACICS module, the ADADCI module, the CICS modules DFHEAI and DFHEAI0, and the
ACINAMES module. The resultant load module may be given any name that is specified in the
link globals ENTPT keyword for the Adabas execution unit. The new module name is most easily
created with the linkage editor.

The Adabas CICS Names Module (ACINAMES)

The Adabas CICS names module (ACINAMES) is a small stub containing the name of the TRUE
to be invoked from this stub and the name of the link globals table associated with the Adabas
CICS execution unit. The link globals table also contains the names of the stub and the TRUE, but
linking it with the stub has the following performance disadvantages:

■ The stub is functionally reentrant and the link globals table in CICS is modifiable during execution
■ Linking the globals table with the stub would also cause duplicate copies of the link globals

table to be kept in CICS storage at the same time, wasting space and possibly leading to problems
if the copy loaded by ADACIC0 differs from the copy linked with the Adabas stub

Using the ACINAMES module allows you to relink the Adabas CICS stub with any supported
load module name and gives that stub the ability to invoke the Adabas CICS TRUE with the name
provided in the ACINAMES module. The TRUE may also be relinked with any given valid load
module name. This permits the CICS region to execute different Adabas stubs and TRUEs built
out of the same load modules but tailored as required for different CICS applications. No changes
are needed in the CICS application programs themselves.

The Adabas CICS names module is built using the MACINS macro. The ACINAMES module
may be given any load module name, but the generated CSECT name (ordinarily generated by
the MACINS macro assembly job, ASMCINS.X) within the load module must be ACINAMES.

The Adabas CICS Installation Options Table (ACIOPT)

An additional component, an Adabas CICS installation options table (ACIOPT) is required and
used by the Adabas CICS installation program, ADACIC0, to load the Adabas globals tables re-
quired by the Adabas CICS execution units that will be installed and activated in the CICS region.

The Adabas CICS installation options table is built using theMACIOPTmacro (see the MACIOPT
macro assembly job, ASMCOPT.X).

65Installation for z/VSE

Installing Adabas with TP Monitors

The MACINS Macro

Use the MACINS macro to build theAdabasCICSnamesmodule, ACINAMES. The ACINAMES
module may be given any load module name, but the generated CSECT name (ordinarily generated
by the MACINS macro job) within the load module must be ACINAMES. In addition, the ACIN-
AMES module should be included when the Adabas CICS stub is relinked.

The MACINS macro is provided in the Adabas CICS z/VSE sublibrary.

The syntax of the MACINS macro is shown below:

All MACINS parameters are required and are described in the following table:

DefaultDescriptionParameter

There is no
default.

Specifies the name of the link globals table associated with this Adabas
CICS stub.

GTNAME

This parameter is required.

The name specified by the GTNAMES parameter must be the name of a
module that has been defined to CICS. It must also match the name of a
link globals table specified in the Adabas CICS Installation Options Table
(ACIOPT).

There is no
default.

Specifies the name of the Adabas CICS task-related user exit (TRUE) to
be invoked by this Adabas CICS stub.

TRUENAME

This parameter is required.

The name specified by the TRUENAME parameter must be the name
specified in the TRUENM parameter of the link globals table specified in
the corresponding GTNAME parameter

Example

In the following example, an ACINAMES module is prepared for an Adabas CICS stub named
ADABAS that will use an ADABAS CICS TRUE named ADATRUE and a link globals table named
CICSGBL. The source member to create the ACINAMES module might look like this:

Installation for z/VSE66

Installing Adabas with TP Monitors

* Sample "ACINAMES" for Adabas multiple-TRUE support.
MACINS TRUENAME=ADATRUE, X

GTNAME=CICSGBL

The MACIOPT Macro

Use the MACIOPT macro to build the Adabas CICS installation options table which may either
be linked with ADACIC0 or, if named ACIOPT (the default), is defined to CICS and loaded by
ADACIC0 when the Adabas CICS installation process is started.

The MACIOPT macro is located in the ADAvrs sublibrary as member MACIOPT.A on z/VSE
systems. A sample ACIOPT source member is provided in the ADAvrs sublibrary on z/VSE systems.

The syntax of the MACINS macro is shown below:

An ENTRY statement is required on every invocation of the MACIOPT macro. It designates the
ENTRY type, which in turn, determines which additional parameters are valid for the given entry.
The three types of ENTRY statement and their associated parameters are described in the rest of
this document.

■ The ENTRY=GLOBAL Statement
■ The ENTRY=GROUP Statement
■ The ENTRY=FINAL Statement

67Installation for z/VSE

Installing Adabas with TP Monitors

■ Example

The ENTRY=GLOBAL Statement

The ENTRY=GLOBAL statement is always the first entry for the ACIOPT source member. Only
one ENTRY=GLOBAL statement should be specified per source member and it should precede
all other MACIOPT statements.

The ENTRY=GLOBAL statement specifies global parameters to be used by the CICS installation
program. The parameters associated with ENTRY=GLOBAL are described in the table below:

DefaultDescriptionParameter

CSECTIndicates whether the ACIOPT CSECT or a mapping DSECT of the ACIOPT
module should be generated.

GEN

Valid values are CSECT or DSECT.

ACIOPTIdentifies the load module name to be generated when link-editing a module
directly with ADACIC0. Any module name can be specified, but ACIOPT is the
recommended name (and the default).

CNAME

An ENTRY ACIOPT statement is generated in the CSECT of the load module to
ensure that the V-CON in ADACIC0 will be satisfied when a module with a
different name is linked.

We recommend that you use the default load module name of ACIOPT, defining
ACIOPT to CICS and allowing ADACIC0 to load the ACIOPT module when the
program is executed to install the Adabas CICS components.

CONSOLEIdentifies the destination type for the installation progress and error messages
produced by ADACIC0: console, transient data queue, or both.

IMSGDEST

IMSGDEST=CONSOLE is the default and causes all installation messages to be
written to the console with EXEC CICS WRITE OPERATOR commands. This is
how messages for previous Adabas CICS components produced installation
messages.

IMSGDEST=TDQ causes ADACIC0 to determine if a named CICS transient data
queue is available and, if so, to write installation progress and error messages to
that queue. If IMSGDEST=TDQ is specified, the IMQNAME parameter must also
be specified to provide the name of the CICS transient data queue for the messages.
If the named transient data queue is not enabled and open, messages will be
written to the console. No error message is written to indicate that the transient
data queue could not be used. If the CICS transient data queue is open and enabled,
message ADAK001 is written to the console to indicate that all further messages
will be written to the CICS transient data queue. If, during ADACIC0 processing,
the transient data queue becomes unavailable, subsequent messages will be written
to the console.

Installation for z/VSE68

Installing Adabas with TP Monitors

DefaultDescriptionParameter

IMSGDEST=BOTH causes installation progress messages to be written both to the
console and to a named CICS transient data queue.

There is no
default.

Specifies the 4-character name of the CICS transient data queue where installation
progress and error messages should be written. If IMQNAME is specified then
the IMSGDEST parameter must be set to TDQ or BOTH.

IMQNAME

The named transient data queue must be defined to CICS as either an
extra-partition queue or as an indirect queue which references an extra-partition
data queue. The simplest way to set up such a data queue is to make it indirect
and refer to the CICS-supplied extra-partition data queue CSSL.

The queue may be defined using the CICS RDO facility (using the CEDA
transaction) or using the DFHDCT macro. On z/VSE systems, the transient data
queue must be defined using the DFHDCT macro. A sample member, DCTACI.A,
is provided in the z/VSE ADAvrs sublibrary. For more information, consult the
appropriate IBM CICS documentation.

Installation messages written to a CICS transient data queue are variable length
records with no printer control character in the first byte of the record. The records
will not exceed 132 bytes in length.

8Specifies a maximum value for the number of Adabas CICS execution units (and
thus globals tables) to be installed for this CICS or CICSplex.

MNTRUE

If this number is exceeded, a warning MNOTE and condition code of 4 is produced
by the assembler.

This parameter is provided as an option to place an upper limit on the number of
Adabas CICS execution units that may be installed. You might find this necessary
to limit the storage and resource constraints multiple Adabas CICS execution units
might place on your system. Although the setting for MNTRUE may be quite
high, the storage, resources and Adabas CICS components must be available to
be installed.

The ENTRY=GROUP Statement

ENTRY=GROUP statements define the names of the Adabas globals tables that should be loaded
and used to install the Adabas CICS execution units. More than one ENTRY=GROUP statement
can be specified in the ACIOPT source member; all ENTRY=GROUP statements must be specified
after the ENTRY=GLOBAL statement and before the ENTRY=FINAL statement.

Only one parameter can be specified for ENTRY=GROUP:

69Installation for z/VSE

Installing Adabas with TP Monitors

DefaultDescriptionParameter

There is no default.Specifies the name of the link globals table to be loaded and used to install
an Adabas CICS execution unit.

GTNAME

This parameter is required. Only one GTNAME parameter can be specified
on each ENTRY=GROUP statement.

The ENTRY=FINAL Statement

The ENTRY=FINAL statement must be the last MACIOPT statement in the source member. It
causes the actual ACIOPT CSECT statements to be generated. Only one ENTRY=FINAL statement
may be specified in the source member.

There are no parameters for the ENTRY=FINAL statement

Example

If assembled and link-edited, the following source member will produce the load module ACIOPT
and will install two Adabas CICS execution units. One will load a globals table named LNKCI02
and the other will load a globals table named CICSGBL. Installation messages will be written to
the CICS transient data queue named ACIQ, if that queue is available.

MACIOPT ENTRY=GLOBAL,IMSGDEST=TDQ,IMQNAME=ACIQ,MNTRUE=2
MACIOPT ENTRY=GROUP,GTNAME=LNKCI02
MACIOPT ENTRY=GROUP,GTNAME=CICSGBL
MACIOPT ENTRY=FINAL

Adabas Task-Related User Exits (TRUEs)

In a simple Adabas CICS transaction that uses the EXEC CICS LINK command to communicate
with Adabas, there should be one invocation of the Adabas Task Related User Exit (TRUE) for
each EXEC CICS LINK issued from the application.

If the Adabas CICS interface employs exits such as the Adabas Fastpath exit or other System Co-
ordinator facilities, there may be more than one invocation of the Adabas TRUE for each EXEC
CICS LINK issued by the application program. Other Software AG products that can have multiple
TRUE invocations for each LINK to Adabas are the Adabas Bridge for DL/I and Natural. If the
Adabas high-performance stub (BALR interface) is employed by applications, including Natural,
there will be multiple invocations of the Adabas TRUE for each EXEC CICS LINK to the Adabas
interface module.

Adabas supports the installation of multiple CICS task-related user exits (TRUEs) and Adabas
application stubs from a single execution of the ADACIC0 installation program. Multiple TRUEs
allow your site to tailor different Adabas CICS execution options in the same CICS region with a
centralized installation procedure and software.

Installation for z/VSE70

Installing Adabas with TP Monitors

The following diagram depicts the processing flow of the installation of multiple Adabas CICS
TRUE and application stub support.

The following diagram depicts the processing flow of the execution of this multiple Adabas CICS
TRUE and application stub support.

71Installation for z/VSE

Installing Adabas with TP Monitors

Supplied Modules

The following table lists the modules supplied in your Adabas installation to support the installation
of Adabas 8 with CICS TP monitors.

Note: The Adabas 8 installation supports Adabas 7 direct calls in addition to Adabas 8 calls;
however, an Adabas 7 installation does not support Adabas 8 direct calls.

DescriptionModule

CICS initialization program code object module.ADACIC0.OBJ

CICS initialization executable module.ADACIC0.PHASE

CICS TP monitor program code object module. This module is linked with ADADCI.OBJ
to produce ADACICS.PHASE.

ADACICS.OBJ

CICS TP monitor executable module.ADACICS.PHASE

CICS task-related user exit (TRUE) program code object module, dependent part. This
module is linked with LNKCIM.OBJ to produce ADACICT.PHASE.

ADACICT.OBJ

CICS TRUE executable module.ADACICT.PHASE

Direct call interface program code object module. This module is linked with
ADACICS.OBJ to produce ADACICS.PHASE.

ADADCI.OBJ

Sample link globals table. This module is modifiable. Once it is modified, you can use
the ALNKCIC8.X sample JCS to assemble the CICSGBL.A module, producing the

CICSGBL.A

CICSGBL.OBJ object module and then link-editing all relevant CICS program code
object modules to create the relevant CICS phases required for Adabas 8 support.

Link globals table object module.CICSGBL.OBJ

Installation for z/VSE72

Installing Adabas with TP Monitors

DescriptionModule

Link globals table executable module.CICSGBL.PHASE

CICS link book used when applying maintenance with MSHP to link-edit ADACIC0.OBJ
to produce ADACIC0.PHASE.

LNKCIC0.OBJ

CICS link book used when applying maintenance with MSHP to link-edit the
CICSGBL.OBJ globals table and produce CICSGBL.PHASE.

LNKCICG.OBJ

CICS link book used when applying maintenance with MSHP to link-edit ADADCI.OBJ
and ADACICS.OBJ to produce ADACICS.PHASE.

LNKCICS.OBJ

CICS link book used when applying maintenance with MSHP to link-edit ADACICT.OBJ
and LNKCIM.OBJ to produce ADACICT.PHASE.

LNKCICT.OBJ

CICS task-related user exit (TRUE) product code object module, independent part. This
module is linked with ADACICT.OBJ to produce ADACICT.PHASE.

LNKCIM.OBJ

Installation Procedure Under Adabas 8

To install the Adabas 8 CICS link routine components, complete the following steps:

■ Step 1. Modify the CICS Startup JCS
■ Step 2. Prepare the Adabas CICS Installation Options Table
■ Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT
■ Step 4. Prepare the Adabas CICS Names Module -- ACINAMES
■ Step 5. Prepare the Adabas CICS Application Stub -- ADACICS
■ Step 6. Prepare the CICS Link Globals Table -- CICSGBL.A)
■ Step 7. Assemble and Link-edit the CICS Link Globals Table (ALNKCIC8.X)
■ Step 8. Modify CICS Installation Values (DEFADAC.A)
■ Step 9. Update the CICS CSD File (DFHCSDUP)
■ Step 10. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0
■ Step 11. Update, Assemble and Link-edit the Destination Control Table (DCTACI.A)
■ Step 12. Start the CICS

Step 1. Modify the CICS Startup JCS

Modify the CICS startup JCS to include the Adabas 8 sublibrary in the LIBDEF chain. This includes
the phases ADACIC0, ADACICS, ACACICT and any renamed versions of ADACICS or ADACICT.

73Installation for z/VSE

Installing Adabas with TP Monitors

Step 2. Prepare the Adabas CICS Installation Options Table

An Adabas CICS installation options table (ACIOPT) is required to identify all the Adabas globals
tables that will be needed for the proper execution of each Adabas CICS execution unit in the CICS
region or CICSplex. The installation program (ADACIC0) run in Step 12 will obtain information
of a global nature from the table such as the destination for writing of installation messages. It
will also scan the table and load each Adabas globals table named in the ACIOPT module. In turn,
each loaded globals table serves as the basis for installing each Adabas CICS execution unit.

The Adabas CICS installation options table is built by coding a series of MACIOPT macros into
a source member, then assembling and linking that source member into a library that will be
available during CICS execution. The load module may be linked:

■ With the ADACIC0 installation program, or
■ As a standalone module named "ACIOPT", which is then defined as a program of the same

name to CICS.

For best performance, Software AG recommends linking a standalone ACIOPT module, defining
it to CICS as program ACIOPT. This will allow ADACIC0 to load ACIOPT during the installation
process. A sample job, ASMCOPT.X , is provided.

To prepare the Adabas CICS installation options table, complete the following steps:

1 Code a source member, preferably called ACIOPT that contains MACIOPT macro statements
to be loaded by the ADACIC0 program at execution time. The MACIOPT macro statements
define each globals table that will be needed by each Adabas CICS execution unit.

The ACIOPT source member will consist of one MACIOPT ENTRY=GLOBAL entry, multiple
MACIOPT ENTRY=GROUP entries and one MACIOPT ENTRY=FINAL entry.

■ The MACIOPT ENTRY=GLOBAL specification must be first specification in the source
member; only one MACIOPT ENTRY=GLOBAL specification can be made per ACIOPT
generation.

■ The MACIOPT ENTRY=FINAL specification must be the last entry for the ACIOPT gener-
ation; only one MACIOPT ENTRY=FINAL specification can be made per ACIOPT generation.

■ Multiple MACIOPT ENTRY=GROUP entries may be specified, but they must follow the
MACIOPT ENTRY=GLOBAL specification and precede the MACIOPT ENTRY=FINAL
specification in the source member.

The MACIOPT macro is located in the ADAvrs sublibrary as member MACIOPT.A on z/VSE
systems. For complete information on the MACIOPT macro, read The MACIOPT Macro,
elsewhere in this section.

2 Assemble and link the ACIOPT source module either as the standalone module named
"ACIOPT" or with any load module name linked with ADACIC0. If linked as a standalone
module it must be named "ACIOPT" and it must be defined as a program to CICS.

Installation for z/VSE74

Installing Adabas with TP Monitors

The ACIOPT module may be defined to CICS using the CEDA/RDO facility or the DFHCSDUP
utility. Sample DFHCSDUP statements are provided in the DEFADAC member in the ADAvrs
sublibrary on z/VSE systems.

Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT

An Adabas task-related user exit (TRUE) is created by relinking the Adabas ADACICT module
with a NAME statement, providing the desired TRUE name. One or more Adabas TRUEs can be
created. A sample job, LNKATRU.X , is provided.

Note: The Adabas TRUE name is specified later in the TRUENM parameter in the link
globals table (set Step 6) and in the TRUENAME parameter when the ACINAMES module
(see Step 4) is prepared.

To prepare the Adabas CICS TRUE, complete the following steps:

1 Relink the ADACICT module with a PHASE statement giving a new name for each Adabas
TRUE.

2 Define each named Adabas TRUE as a program to CICS.

Example

For example, the following link-edit control statements would create an Adabas TRUE called
"ADATRUE":

PHASE ADATRUE,*
MODE AMODE(31),RMODE(ANY)
INCLUDE DFHEAI
INCLUDE ADACICT
INCLUDE LNKCIM
INCLUDE LNKDSL
INCLUDE RTRVSE
ENTRY ADACICT

// EXEC LNKEDT ...

Step 4. Prepare the Adabas CICS Names Module -- ACINAMES

The ACINAMES module is a small stub containing the name of the TRUE to be invoked from this
stub and the name of the link globals table associated with the Adabas execution unit. After the
ACINAMES source member is coded, it should be provided as input to the assembler and either
punched by the assembler to a text library or directly link-edited as a load module. The subsequent
text deck or load module would then be made available to the linkage editor when the Adabas
CICS stub is relinked to change its name or to update the ACINAMES module it uses.

75Installation for z/VSE

Installing Adabas with TP Monitors

To prepare the ACINAMES module, complete the following step:

■ Code the source for the ACINAMES module using the MACINS macro. For complete inform-
ation, read The MACINS Macro, elsewhere in this section.

The MACINS macro is provided in the Adabas CICS z/VSE sublibrary.

Example

For example, the source member to create the ACINAMES module might look like this:

* Sample "ACINAMES" for Adabas multiple-TRUE support.
MACINS TRUENAME=ADATRUE, X

GTNAME=CICSGBL

This ACINAMES module uses an ADABAS CICS TRUE named ADATRUE and a link globals
table named CICSGBL.

Step 5. Prepare the Adabas CICS Application Stub -- ADACICS

The Adabas application stub is invoked via EXEC CICS LINK or via the direct-call interface from
a CICS application program that intends to use Adabas database services. The application stub
consists of the ADACICS module, the ADADCI module, the CICS modules DFHEAI and DFHEAI0
and the ACINAMES module. The resultant load module may be given any name that is specified
in the link globals ENTPT keyword for the Adabas execution unit. The new module name is most
easily created with the linkage editor.

A sample job, ASMCINS.X , is provided.

To prepare the CICS application stub (ADACICS), complete the following step:

■ Relink the Adabas CICS application stub module, ADACICS, replacing ACINAMES in the
module with the name of the ACINAMES module created in the previous step (Step 4).

Example

For example, the link-edit control statements to create the Adabas module as the Adabas CICS
stub might be:

PHASE ADABAS,*
MODE AMODE(31),RMODE(ANY)
INCLUDE DFHEAI
INCLUDE ADACICS
INCLUDE ADADCI
INCLUDE ACINAMES
ENTRY ADACICS

// EXEC LNKEDT ...

Installation for z/VSE76

Installing Adabas with TP Monitors

In this example, the prepared ACINAMES module is used for an Adabas CICS stub named
ADABAS.

Step 6. Prepare the CICS Link Globals Table -- CICSGBL.A)

Link globals tables must be prepared to match the Adabas CICS execution units defined in the
ACIOPT module. These are built by editing or creating source members that use the LGBLSET
macro and its keywords.

Modify the sample CICSGBL.A member found in the Adabas 8 ADAvrs sublibrary. This member
contains sample default installation (LGBLSET) parameter settings. For more information about
what to modify in this member, read Modifying Source Member Defaults (LGBLSET Macro) in
Version 8, elsewhere in this section.

Notes:

1. Adabas no longer supports the ADACIRQ module or the reading of an input CICS transient
data queue to obtain the name of the link globals table during installation. This was necessary
to permit the installation of multiple Adabas CICS execution units from the same installation
program.

2. The setting for the OPSYS parameter must be set to "VSE".

To prepare the link globals table, complete the following steps:

1 Code the link globals table using the LGBLSET macro as described in Modifying Source
Member Defaults (LGBLSET Macro) in Version 8, elsewhere in this section.

The OPSYS parameter must be set to "VSE".

Be sure to code the ENTPT and TRUENM parameters on each LGBLSET macro so they match
the intended Adabas CICS stub name and Adabas CICS TRUE name to be used in a given
Adabas CICS execution unit. The Adabas CICS installation program attempts to load each
globals table in turn and uses the loaded table to provide the data required to install and ac-
tivate the components of the execution unit.

2 Save the modified CICSGBL.A member with a unique name in an appropriate user sublibrary.

77Installation for z/VSE

Installing Adabas with TP Monitors

Step 7. Assemble and Link-edit the CICS Link Globals Table (ALNKCIC8.X)

Using sample job ALNKCIC8.X, assemble and link-edit the member you saved in the previous
step into a sublibrary that will be made available to CICS in the LIBDEF concatenation. Note that
any user or Software AG link routine exits should be link-edited with this load module. (For in-
formation about specific Software AG product exits, read the installation documentation for the
product.)

Step 8. Modify CICS Installation Values (DEFADAC.A)

Modify the DEFADAC.A member to provide the correct name of the link routine globals default
table created in the previous step (Step 6). The default module name is CICSGBL. Tailor this
member for any other CICS installation values as required.

Step 9. Update the CICS CSD File (DFHCSDUP)

Run the IBM DFHCSDUP utility to update the CICS CSD file for the desired CICS using the
modified DEFADAC.A member as input.

Step 10. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0

Modify the CICS PLTPI table to add an entry for the CICS installation program ADACIC0. The
ADACIC0 installation program will start the TRUEs once CICS is started. Use member ADAPLTXX
from the Adabas 8 ADAvrn.LIBR library as a sample for enabling and starting a legacy Adabas
TRUE and the new Version 8 TRUE in the second phase of the PLT.

Once the PLTPI table is modified, assemble and link the modified PLTPI table into a library that
will be available to the desired CICS region.

Assemble and link the modified PLTPI table into a library that will be available to the desired
CICS region.

Step 11. Update, Assemble and Link-edit the Destination Control Table (DCTACI.A)

Update a Destination Control Table (DCT) to include the entries found in member DCTACI.A in
the Adabas 8 sublibrary. Assemble and link-edit this table with a unique suffix into a sublibrary
that will be made available to CICS. Modify the CICS SIT parameters to reference the updated
DCT.

Installation for z/VSE78

Installing Adabas with TP Monitors

Step 12. Start the CICS

Start the CICS and note any messages relating to the installation of the Adabas TRUE modules
that appear on the console. When CICS starts, it will call ADACIC0 (because it is in the PLTPI
table), which will install the Adabas CICS TRUEs.

Installing the CICS High-Performance Stub Routine for Adabas 8

This section describes installation of the CICS high-performance stub routine with Adabas. The
modules and installation described here are provided so your existing Adabas applications can
continue to function as usual.

The Adabas high-performance stub routine extends the direct call interface (DCI) facility that is
available with the Adabas CICS command-level link component to applications written in languages
other than Software AG’s Natural (for example, Assembler, COBOL, PL/I).

Note: The stub routine must be used with the Adabas CICS command-level link component.
The stub routine will not function properly with the Adabas CICS/VSE macro-level link
component.

The DCI enables a CICS/TS application to call Adabas through the Adabas command-level link
routine. The overhead incurred when the EXEC CICS LINK and EXEC CICS RETURN command
set is used to transfer program control is thus avoided. Once the proper environment has been
established with the initial call (IC) command from the high-performance stub or Natural, the DCI
permits a BALR interface to be used.

The high-performance stub routine is written in Assembler language. When linked with the ap-
plication program, it serves as an interface between the application and the Adabas CICS command-
level link component. The application program can then issue CALL statements to access the stub
routine when executing an Adabas command.

A CICS/TS application derives the following advantages from the high-performance stub:

■ improved performance and throughput when issuing Adabas commands due to the reduced
use of CICS services related to the CICS LINK and RETURN program control mechanism.

■ a call mechanism for Adabas requests which is simpler than the methods normally employed
to pass control with information from one program to another in the CICS environment.

This section covers the following topics:

■ Restrictions and Requirements
■ Stub Components
■ Installation Overview
■ Performance Using LNCSTUB

79Installation for z/VSE

Installing Adabas with TP Monitors

■ Modifying Source Member Defaults (ADAGSET Macro)

Restrictions and Requirements

The following restrictions and requirements apply to the high-performance stub routine:

1. The Adabas high-performance stub routine is available for all supported versions of CICS/TS.

A CICS transaction work area (TWA) of at least 24 bytes or a CICS COMMAREA of at least 32
bytes must be provided to the application for the proper execution of the high-performance
stub routine. The Adabas LNCSTUB module and the Adabas installation verification programs
(IVPs) now use the CICS COMMAREA instead of the CICS TWA to pass data between the IVP
programs, LNCSTUB, and the CICS link routines. The use of the CICS COMMAREA has the
following advantages over the use of the CICS TWA:
■ The size of the COMMAREA can be set on a call-by-call basis by the application program,

while the TWA size is set when the CICS transaction is defined.
■ Applications using the CICS COMMAREA may run in stages II or III of CICS PLTPI pro-

cessing. The CICS TWA is not available during PLTPI processing.
■ The dynamic sizing of the CICS COMMAREA is better suited to the unbounded format of

the Adabas ACBX direct call, ACBX control block, and Adabas Buffer Descriptions (ABDs).
For more information on the Adabas direct call interface and the data structures it uses, read
the Adabas Command Reference Guide.

2. CICS Command-Level Link Required

The application program must be written using the CICS command-level interface and instruc-
tions, and may not issue any CICS macro level commands.

3. Supported Programming Languages

The application program may be written in ALC (Assembler language), VS/COBOL, COBOL
II, COBOL/LE, PL/I, or C. Installation verification programs (IVPs) are provided in ALC and
COBOL in the ACIvrs.SRCE library.

Additional requirements for specific programming languages are discussed later in the sections
relating to each language.

Installation for z/VSE80

Installing Adabas with TP Monitors

Stub Components

DescriptionMemberType

Source macro required for assembling LNCSTUB and ALCSIVPADAGSET
source for the ALC install verificationALCSIVP
source for the COBOL install verificationCOBSIVP
source for the high-performance stubLNCSTUB

Job control sample JCL for ALC install verificationJCLALCI
sample JCL for COBOL install verificationJCLCOBI
sample JCL for LNCSTUB (high-performance stub)JCLLNCS

Installation Overview

Use the following procedure to install the Adabas CICS high-performance stub routine:

1. Edit, preprocess, assemble and link the LNCSTUB module.

2. Define the application programs, optional IVPs and CICS link components to CICS using RDO
or the DFHCSDUP utility.

3. (Optional) Modify, preprocess, compile or assemble, link, and execute the desired installation
verification program (IVP).

4. Modify, preprocess, compile or assemble, link, and execute the application programs.

This procedure is described in the following steps:

■ Step 1: Install the LNCSTUB Module
■ Step 2: (Optional) Install and Execute an IVP
■ Step 3: Link and Execute the Application Program

Step 1: Install the LNCSTUB Module

The Adabas CICS high-performance stub routine is an Assembler language source module,
provided in member LNCSTUB in the ACIvrs.SRCE library.

Step 1 has the following substeps:

■ Edit the ADAGSET Macro
■ (Optional) Set the LNCSTUB Entry-Point Alias
■ Modify Member JCLLNCS
■ Preprocess, Assemble, and Link the LNCSTUB Module

81Installation for z/VSE

Installing Adabas with TP Monitors

■ Make the LNCSTUB Available to Application Programs

Edit the ADAGSET Macro

Note: For information about editing the ADAGSET macro, refer to the section Modifying
Source Member Defaults (ADAGSET Macro), elsewhere in this section.

Edit the ADAGSET macro in a library that will be available in the SYSLIB concatenation when
LNCSTUB is assembled.

Both the LNCSTUB and the ALCSIVP IVP modules now take values from the following ADAGSET
keywords:

■ LOGID, which identifies the database ID
■ PARMTYP, which determines whether the TWA or COMMAREA is used by the LNCSTUB and

the ALCSIVP programs to pass data
■ ENTPT, which specifies the name of the CICS link routine or CICS stub to be invoked by the

LNCSTUB and ALCSIVP programs. If your Adabas CICS command-level link component pro-
gram has been linked with a name other than ADACICS, change the value of the ENTPT keyword
in the ADAGSET macro. The value in this field is used in the priming EXEC CICS LINK com-
mand issued by LNCSTUB.

(Optional) Set the LNCSTUB Entry-Point Alias

The Adabas 8 LNCSTUB module provides an assembler GBLC variable (&STBNAME) that sets
an entry-point alias that can be used by calling programs. Modify the SETC statement near the
top of the LNCSTUB source member to set an alias if desired. The application program can then
either issue its call using "LNCSTUB" or the entry-point alias coded in this SETC statement.

Modify Member JCLLNCS

Member JCLLNCS (in the ADAvrs.JOBS library) is used to preprocess, assemble, and link the
LNCSTUB module. To modify this JCL to meet your site requirements, change the JOB card in
the member and the symbolic values as indicated in the following table:

DescriptionValue

Suffix value used for the CICS translator. The default value is “1$”.&SUFFIX

Assembler program used to assemble the LNCSTUB source (ASMA90).&ASMBLR

Member name to be processed; code LNCSTUB or ALCSIVP.&M

A load library to contain the LNCSTUB load module. This library should be available to
application programs when they are linked.

&STUBLIB

High-level qualifier for the CICS macro library used in the SYSLIB DD statement for the
assembler.

&INDEX

Installation for z/VSE82

Installing Adabas with TP Monitors

DescriptionValue

High-level qualifier for the CICS load library to use for the translator STEPLIB DD statement,
and for the SYSLIB in the link step.

&INDEX2

Adabas command-level source library containing the ADACB, ADAGDEF, ADAGSET, and
LNCDS copy code and macros.

&ADACOML

Adabas source library used for additional copy code or macro expansion.&ADASRCE

Source library containing the distributed Adabas CICS high-performance stub LNCSTUB.&STBSRCE

Primary system macro library, usually SYS1.MACLIB.&MAC1

Output class for messages, SYSPRINT, SYSOUT.&OUTC

Step region size.®

Value for the linkage editor NCAL parameter. The recommended value is NCAL.&NCAL

Primary and secondary table sizes used by the linkage editor.&LSIZE

DASD device type to use for temporary and utility data sets.&WORK

Preprocess, Assemble, and Link the LNCSTUB Module

Because of the use of 31-bit instructions, the high-level assembler (ASMA90) should be used to
assemble the LNCSTUB module after CICS preprocessing.

Note: The LNCSTUB module can be linked reentrant or reusable. If it is linked reentrant, it
is automatically reusable; if it is linked reusable, it is not automatically reentrant.

In addition to the CICS macro library, the Adabas CICS command-level source library and
standard Adabas source library must be provided to the SYSLIB DD statement in the assembly
step:

■ Do not concatenate any CICS load libraries in the SYSLIB DD statement when linking the
LNCSTUB load module.

■ In the SYSLIN data stream after the LNCSTUB object deck, use just the control statement

NAME LNCSTUB(R)

■ Do not include the CICS stub modules DFHEAI0 & DFHEAI1 with the LNCSTUB load module.
As a result, however, the following occurs:
■ The linkage editor issues IEW462 or similar messages indicating that DFHEAI1 is an unresolved

external reference;
■ The LNCSTUB module may be marked NOT EXECUTABLE by the linkage editor;
■ A condition code of 8 may be set in the link step.

When the application program is linked with LNCSTUB, all the external references are resolved.
Use of the link-edit parameters LET and NCAL are recommended so the missing CICS stub
pieces result in a condition code of '04' from the link-edit of LNCSTUB.

83Installation for z/VSE

Installing Adabas with TP Monitors

Make the LNCSTUB Available to Application Programs

The LNCSTUB module has an entry name of ADABAS, which can be used by the application
program as the object of a CALL statement to pass control to LNCSTUB with a list of parameters.
The language-specific calling conventions for LNCSTUB are discussed later in this section.

The LNCSTUB module has either an entry name of LNCSTUB or the alias entry name as coded
in the SETC statement to set the value of &STBNAME. Either value may be used by the application
program as the object of a CALL statement to pass control to LNCSTUB with a list of parameters.
The language-specific calling conventions for LNCSTUB are discussed later in this section.

The LNCSTUB load module must be available to the link step of the application program that is
to use the DCI facility.

Note: In the same step, the CICS load library should be available; otherwise, the external
references to the CICS stub modules will not be resolved.

Place the LNCSTUB load module in a library available to your application language assembler or
compiler so that it will be included when the application programs are linked.

Step 2: (Optional) Install and Execute an IVP

Two installation verification programs (IVPs) are provided in source form: one for Assembler
language, and one for COBOL/VS. These programs are samples for implementing the Adabas
high-performance stub routine in your applications. They also provide a way of verifying the
proper installation of the LNCSTUB module.

This section describes each of these IVPs:

■ Install and Execute the Assembler IVP: ALCSIVP
■ Install and Execute the COBOL IVP: COBSIVP

Note: The two installation verification programs ALCSIVP and COBSIVP only use fields
AA and AE from the Software AG-provided demonstration EMPLOYEES file. For more
information about the Software AG-provided demonstration files, read Load the Demon-
stration Files in the z/OS installation instructions, provided elsewhere in this guide.

Installation for z/VSE84

Installing Adabas with TP Monitors

Install and Execute the Assembler IVP: ALCSIVP

The source member ALCSIVP is provided to demonstrate and verify the use of the Adabas DCI
using the LNCSTUB module. This program issues a series of Adabas commands using the conven-
tional CICS LINK/RETURN mechanism, produces a partial screen of output data, then reexecutes
the same call sequence using the Adabas DCI and the LNCSTUB subprogram.

To install and execute the Assembler IVP, ALCSIVP:

1 Modify the source member ALCSIVP in ACIvrs.SRCE:

■ Edit the file number field DBFNR to be sure it matches the value needed to access the EM-
PLOYEES file on the Software AG-provided demonstration database you intend to use.
For more information about the Software AG-provided demonstration files, read Load the
Demonstration Files in the z/OS installation instructions, provided elsewhere in this guide.

The ALCSIVP program will take the database-id from the LOGID keyword specified in the
ADAGSET macro.

■ Check the fields FBUFF, SBUFF and VBUFF for values consistent with your EMPLOYEES
file’s FDT and data content.

■ Check the name used in the EXEC CICS LINK statement to be sure it matches the name of
your Adabas CICS command-level link component program. The field LNCNAME is now
used and it derives its value from the ENTPT keyword of the ADAGSET macro.

The entry-point alias of the LNCSTUB module can be tested in ALCSIVP by changing the
SETC statement for the field &STUBNM to match the entry-point name coded in the
LNCSTUB source module using its SETC fieldname &STBNAME.

Note: The ALCSIVP program will use the value of the ADAGSET keyword PARMTYP
to determine whether to use the CICS TWA or CICS COMMAREA to pass data
between itself and the Adabas CICS link routine during the first part of its processing
when it uses the CICS LINK command to invoke the Adabas CICS link routine. If
PARMTYP=TWA is coded in the ADAGSET macro used when ALCSIVP is assembled
the CICS TWA is used, otherwise the CICS COMMAREA is used on the EXEC CICS
LINK commands.

2 Modify the sample job stream, JCLALCI in ADAvrs.JOBS:

■ Member JCLALCI is used to preprocess, assemble, and link the installation verification
program ALCSIVP. Place the load module in your CICS DFHRPL library concatenation..

■ To modify this JCL to meet your site requirements, change the JOB card in the member and
the symbolic values as indicated in the table used in step 1 (see Step 1, Modify Member
JCLLNCS).

85Installation for z/VSE

Installing Adabas with TP Monitors

The JCLALCI member uses one additional symbolic parameter: &CICSLIB. This is the name
of your CICS RPL library.

3 Using the modified sample JCLALCI member, preprocess, assemble, and link ALCSIVP.

4 Add the following RDO entries to your CICS system, or use the RDO facility to add the STB1
transaction to run the ALCSIVP program:

DEFINE PROGRAM(ALCSIVP) GROUP(ADABAS)
DESCRIPTION(ADABAS s ASSEMBLER IVP FOR HIGH-PERFORMANCE STUB)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(USER) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(STB1) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO EXECUTE THE ASSEMBLER IVP FOR HIGH-PERFORMANCE STUB)
PROGRAM(ALCSIVP) TWASIZE(32) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

5 Run the STB1 transaction to execute ALCSIVP. Executing ALCSIVP verifies the LNCSTUB
module.

Install and Execute the COBOL IVP: COBSIVP

Member COBSIVP illustrates the use of the Adabas DCI with a COBOL program. COBIVP produces
a screen showing output lines produced by a series of Adabas calls executed by the CICS
LINK/RETURN facility, followed by the reexecution of these Adabas commands using the DCI.

To install and execute the COBOL IVP, COBSIVP:

1 Modify the source member, COBSIVP in ACIvrs.SRCE:

■ Edit the fields WORK-DBID and WORK-FNR to place the desired database ID and file
number in the VALUE clauses to access the EMPLOYEES file on the Software AG-provided
demonstration database you intend to use. For more information about the Software AG-
provided demonstration files, read Load the Demonstration Files in the z/OS installation
instructions, provided elsewhere in this guide.

■ Ensure that the value in the field LINK-NAME matches the name used in your Adabas
CICS command-level link component program.

■ Ensure that the values (literals in the PROCEDURE DIVISION) in the following fields are
consistent with the requirements of the EMPLOYEES file FDT and data content you are
using:

Installation for z/VSE86

Installing Adabas with TP Monitors

ADABAS-FORMAT-BUFFER,
ADABAS-SEARCH-BUFFER, and
ADABAS-VALUE-BUFFER

2 Modify the sample job stream, JCLCOBI in ADAvrs.JOBS:

■ Member JCLCOBI is used to preprocess, compile, and link the COBSIVP installation veri-
fication program. To modify the JCLCOBI example to meet site requirements, change the
JOB card in the member and provide values for the symbolic procedure variables as de-
scribed in the following table:

DescriptionValue

Adabas load library used to provide the ADASTWA load module for the linkage editor.&ADALIB

Member name to be processed; in this case, COBSIVP.&MEM

CICS RPL library where the COBSIVP load module is placed for execution under CICS.&CICSLIB

COBOL compiler STEPLIB.&COBLIB

High-level qualifier for the CICS macro library used in the SYSLIB DD statement for
the compiler.

&INDEX

High-level qualifier for the CICS load library to use for the translator STEPLIB DD
statement, and for the SYSLIB in the link step.

&INDEX2

COBOL LINKLIB.&LINKLIB

Source library containing the distributed Adabas CICS high-performance stub
LNCSTUB.

&STBSRCE

A load library to contain the LNCSTUB load module. This library should be available
to your application programs when they are linked.

&STUBLIB

Output class for translator messages.&SYSMSG

Output class for SYSOUT and SYSPRINT messages.&SYSOUT

DASD device type to use for temporary and utility data sets.&WORK

3 Preprocess, compile, and link COBSIVP:

■ Use the modified JCLCOBI job to preprocess, compile, and link the COBSIVP program.
Assemble ADASTWA into a library available to COBOL programs when they are linked.
Include the ADASTWA load module in the link of COBSIVP.

Use the modified JCLCOBI job to preprocess, compile, and link the COBSIVP program.
COBSIVP now uses the CICS COMMAREA to pass data to the Adabas CICS link routine,
so it is not necessary to link the ADASTWA program with COBSIVP for Version 8.

87Installation for z/VSE

Installing Adabas with TP Monitors

The LNCSTUB subroutine does not use ADASTWA because it places the passed Adabas
parameters in the TWA. Thus, the ADASTWA routine is not required when linking COBOL
applications that utilize the Adabas DCI through the LNCSTUB module.

■ Link the COBSIVP program with the LNCSTUB load module and make the LNCSTUB load
module available to the linkage editor to be included with the COBSIVP load module.

Note: The IBM CICS stub modules are also resolved in the link step.

4 Add the following RDO entries to your CICS system, or use the RDO facility to add the STB2
transaction to run the COBSIVP program:

DEFINE PROGRAM(COBSIVP) GROUP(ADABAS)
DESCRIPTION(ADABAS s COBOL IVP FOR HIGH-PERFORMANCE STUB)
LANGUAGE(COBOL) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(USER) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(STB2) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO EXECUTE THE COBOL IVP FOR HIGH-PERFORMANCE STUB)
PROGRAM(COBSIVP) TWASIZE(32) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

5 Run the STB2 transaction to execute COBSIVP. Executing COBSIVP verifies the LNCSTUB
module.

Step 3: Link and Execute the Application Program

Once the IVP programs have been successfully executed, the Adabas DCI is ready to be used with
real application programs. In step 3, the application program interface (API) is coded to utilize
the LNCSTUB subprogram.

Step 3 has the following substeps:

■ Modify the application programs that will utilize the Adabas CICS high-performance stub
routine in accordance with the guidelines described in the following section.

■ Preprocess, compile or assemble, and link the application programs to include the LNCSTUB
module.

■ Execute the application programs using the Adabas CICS high-performance stub.

Installation for z/VSE88

Installing Adabas with TP Monitors

Guidelines for Modifying the Application Program

The LNCSTUB load module must be linked with your application program. The application pro-
gram invokes the DCI interface using a standard batch-like call mechanism. The LNCSTUB module
makes any additional CICS requests required to pass data to the Adabas CICS command-level
link component.

■ Programming Languages Supported by LNCSTUB

The LNCSTUB program functions with application programs written in Assembler language,
VS/COBOL, COBOL II, COBOL/LE PL/I, and C.

■ Use of the CICS Transaction Work Area

A transaction that uses the Adabas DCI or the Adabas CICS command-level link component
may provide a transaction work area (TWA) at least 28 bytes long. Failure to provide an adequate
TWA will result in an abend U636 (abnormal termination of the task).

■ Use of the CICS COMMAREA

With the Adabas Version 8 CICS link routines and the Adabas 8 LNCSTUB module, use of a
CICS COMMAREA to pass data on EXEC CICS LINK commands is strongly recommended.
The CICS COMMAREA must be at least 32 bytes in length and the first 8 bytes of the COM-
MAREA must contain the string "ADABAS52" or "ADABAS8X". The string "ADABAS8X" is for
applications that exclusively use the new Adabas Version 8 ACBX direct call interface and its
parameter list.

■ Reentrant Requirement

The application program may or may not be reentrant. The LNCSTUB module has been written
to be reentrant, but using linkage editor parameters to mark the LNCSTUB load module as
reentrant is not recommended unless the application program will also be marked as reentrant.

■ CICS Requests Issued by LNCSTUB

The LNCSTUB module issues the following command-level CICS requests whenever it is invoked:

EXEC CICS ADDRESS EIB
EXEC CICS LINK

If the TWA is used to pass data to the Adabas command-level link:

EXEC CICS ADDRESS TWA
EXEC CICS ASSIGN TWALENG

■ DCI Entry Point Address

An EXEC CICS LINK command is issued by LNCSTUB at least once to acquire the DCI entry
point from the Adabas CICS command-level link component program. This address is then
used for BALR access on all subsequent Adabas calls for a transaction. Thus, the calling applic-

89Installation for z/VSE

Installing Adabas with TP Monitors

ation program must provide a fullword (4-byte) field to hold the DCI entry point address obtained
by LNCSTUB. This 4-byte field is the first parameter passed to the LNCSTUB module by the
call mechanism. The remaining parameters comprise the Adabas parameter list needed to execute
an Adabas request. (Either a version 7 or verion 8 parameter list may be used)

■ DCI Parameter List

The Adabas DCI parameter list expected by the LNCSTUB program is composed of a pointer
to the DCI entry point in the Adabas CICS command-level link component followed by the six
pointers to the Adabas control block and buffers: format, record, search, value, and ISN.

For information on coding the standard Adabas control block and buffers, refer to the Adabas
Command Reference.

The Adabas parameter list offsets are summarized in the table below (note that an ACB call is
used):

Pointer to the ...Offset

DCI entry point in the Adabas command-level link component0

Adabas control block4

Adabas format buffer8

Adabas record buffer12

Adabas search buffer16

Adabas value buffer20

Adabas ISN buffer24

All of the parameters except the first (the DCI entry point) are built and maintained by the ap-
plication program in accordance with the requirements of an Adabas call.

The DCI entry point parameter should be set to binary zeros at the beginning of a task, and
should not be modified by the application program thereafter. Software AG strongly recommends
that the fields comprising the parameter list be placed in CICS storage (WORKING-STORAGE
for COBOL and the DFHEISTG user storage area for Assembler) to maintain pseudo-reentrab-
ility.

The following is a sample parameter list for an assembler language program:

DFHEISTG DSECT
.
PARMLIST DS 0F
DS A(DCIPTR)
DS A(ADACB)
DS A(ADAFB)
DS A(ADARB)
DS A(ADASB)

Installation for z/VSE90

Installing Adabas with TP Monitors

DS A(ADAVB)
DS A(ADAIB)
.
DCIPTR DS F
ADACB DS CL80
ADAFB DS CL50
ADARB DS CL250
ADASB DS CL50
ADAVB DS CL50
ADAIB DS CL200
.
DFHEIENT CODEREG=(R12),EIBREG=(R10),DATAREG=(R13)
.
LA R1,PARMLIST
L R15,=V(LNCSTUB)
BALR R14,R15
.
END

Note: The DFHEIENT macro in the Assembler example uses a DATAREG parameter of
register 13. This is a strict requirement of the LNCSTUB program. When the LNCSTUB
program is invoked, register 13 should point to the standard CICS save area (DFHEISA)
and register 1 should point to the parameter list. The best way to ensure this standard is
to code the Assembler application with a DFHEIENT macro like the one in the example.

The following is a sample parameter list for a COBOL language program:

WORKING-STORAGE SECTION.
.
01 STUB-DCI-PTR PIC S9(8) COMP VALUE ZERO.
01 ADACB PIC X(80).
01 ADAFB PIC X(50).
01 ADARB PIC X(250).
01 ADASB PIC X(50).
01 ADAVB PIC X(50).
01 ADAIB PIC X(200).
.
PROCEDURE DIVISION.
.
CALL ’LNCSTUB’ USING STUB-DCI-PTR,
ADACB,
ADAFB,
ADARB,
ADASB,
ADAVB,
ADAIB.
.
EXEC CICS RETURN END-EXEC.
.
GOBACK.

91Installation for z/VSE

Installing Adabas with TP Monitors

■ Restrictions on Application Program Coding

In all other respects, the application program should be coded like a standard CICS command-
level routine. As long as the DCI parameter list is correct when LNCSTUB is called, there are
no restrictions on the CICS commands that an application can issue.

■ Standard Batch Call Mechanism Used

As shown in the Assembler and COBOL language program parameter list examples above, the
call to the LNCSTUB entry point is accomplished like a batch application. Likewise, calls for
the other supported languages should be coded with their standard batch call mechanisms.

Link the Application Programs to Include the LNCSTUBModule

To properly link the LNCSTUB module with application programs, link the application program
to include the LNCSTUB module and the IBM CICS stub modules. The method for doing this
varies with the programming language used for the application:

■ Assembler language programs should include the DFHEAI and DFHEAI0 CICS modules;
■ COBOL applications should include DFHECI and DFHEAI0.

To avoid a double reference to the DFHEAI0 module, code the linkage editor REPLACE DFHEAI0
control statement at the beginning of the SYSLIN data deck.

For linking Assembler language programs:

■ For an Assembler program, the SYSLIN input is similar to:

INCLUDE DFHEAI

The Assembler object input is similar to:

REPLACE DFHEAI0
INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAI0)
NAME ALCSIVP(R)

When examining the cross-reference from the linkage editor, the symbol “entry-name” must
have the same starting location as the LNCSTUB module in the link map.

For linking COBOL language programs:

■ For a COBOL program, the SYSLIN input is similar to:

Installation for z/VSE92

Installing Adabas with TP Monitors

REPLACE DFHEAI0
INCLUDE SYSLIB(DFHECI)

The COBOL object input is similar to:

INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAI0)
NAME COBSIVP(R)

When examining the cross-reference from the linkage editor, the symbol “entry-name” must
have the same starting location as the LNCSTUB module in the link map.

For linking PL/I and C language programs:

■ Refer to the IBM manual CICS System Definition Guide for information about linking PL/I and
C applications under CICS.

Performance Using LNCSTUB

To obtain the best performance from applications using the Adabas direct call interface (DCI),
examine how the DCI interface functions at the logical level.

A CICS application using the standard LINK/RETURN mechanism to access the Adabas link
routines invokes the CICS program control service for every Adabas request made to the link
routine. The LNCSTUB module permits a BALR interface to be used. A BALR interface can sub-
stantially reduce the CICS overhead required to pass control from the application program to the
Adabas CICS command-level link component.

The LNCSTUB module accomplishes this by using the standard EXEC CICS LINK/RETURN
mechanism to make an Initial Call (IC) to the Adabas CICS command-level link routine. The link
routine recognizes this call, and returns the entry point address of the DCI subroutine to LNCSTUB.
LNCSTUB must then save this address in a location that can be assured of existence throughout
the duration of the invoking task. This is why the calling program must provide the 4-byte field
to hold the DCI entry point address. After the DCI address has been obtained, and for as long as
LNCSTUB receives this address as the first parameter passed to it on subsequent Adabas calls,
LNCSTUB utilizes the BALR interface to pass control to the Adabas CICS command-level link
component program.

As a consequence of this logic, the more Adabas requests made between ICs, the more efficient
the application in terms of passing data to and from Adabas under CICS. In fact, pseudo-conver-
sational applications that issue one Adabas call each time a task is invoked should not be coded
to use the DCI because there will be an IC request for each Adabas command issued by the calling
program.

93Installation for z/VSE

Installing Adabas with TP Monitors

An additional performance improvement can be realized by taking advantage of the fact that the
Adabas CICS command-level link component program must be defined as resident in CICS. This
fact should allow the DCI entry point to be stored across CICS tasks, making it possible for different
programs to call the LNCSTUB module with a valid DCI entry point. The IC at each program
startup is thus avoided. When this procedure is used, however, any change to the CICS environment
that invalidates the entry point address (such as a NEWCOPY) will lead to unpredictable and
possibly disastrous results.

It is imperative that at least one IC be made to the Adabas CICS command-level link component
program using CICS services. This call is used to trigger the acquisition of shared storage for the
Adabas user block (UB) and an array of register save areas. If no IC request is made, Adabas calls
will not execute due to a lack of working storage, and to the fact that critical control blocks used
by the link routines and the Adabas SVC are not built.

Modifying Source Member Defaults (ADAGSET Macro)

Caution: The ADAGSET macro found in the Adabas ACIvrn.SRCE library, should only be
used for generating default values for the Adabas CICS high-performance stub routine.

To facilitate the assembly of the Adabas CICS high-performance stub routine, Software AG recom-
mends that you program the ADAGSET macro with site-specific default values and put it in a
source library that is available in the SYSLIB concatenation during assembly.

The applicable ADAGSET parameter options, with their default values (underlined), are described
below (all other ADAGSET parameters are obsolete and will be removed in a future version):

■ ENTPT: Name of the Adabas CICS Command-Level Link Routine
■ LOGID: Default Logical Database ID
■ PARMTYP: Area for Adabas Parameter List

ENTPT: Name of the Adabas CICS Command-Level Link Routine

SyntaxDescriptionParameter

ENTPT={'ADACICS' | 'name'}The name of the Adabas CICS Command-Level link routine
used in the priming EXEC CICS LINK command issued by
LNCSTUB.

ENTPT

Installation for z/VSE94

Installing Adabas with TP Monitors

LOGID: Default Logical Database ID

SyntaxDescriptionParameter

LOGID= nnnThe database ID used by the (optional) Assembler IVP, ALCSIVP..

Valid ID numbers are 1-65535.

LOGID

PARMTYP: Area for Adabas Parameter List

SyntaxDescriptionParameter

PARMTYP={ ALL | COM ↩
| TWA }

The area which is to contain the Adabas parameter list. If
PARMTYP=TWA is specified the CICS TWA is used, otherwise the
CICS COMMAREA is used.

PARMTYP

This value should match that specified for the LGBLSET parameter
of the same name in use by the Adabas CICS Command-level link
routine.

Installing Adabas with Com-plete under Adabas 8

The following table lists the modules supplied in your Adabas installation to support the installation
of Adabas with Com-plete TP monitors.

Note: The Adabas 8 installation supports Adabas 7 direct calls in addition to Adabas 8 calls;
however, an Adabas 7 installation does not support Adabas 8 direct calls.

DescriptionSupplied Module

Com-plete TP monitor executable module.ADALCO.PHASE

Link globals table source module. This module is modifiable. Once it is modified, you
can use sample job ALNKLCO8.X to assemble an LCOGBL.OBJ module . This sample

LCOGBL.A

job also link-edits the LCOGBL.OBJ module with LCOVSE8.OBJ to produce
ADALCO.PHASE.

Link globals table object module assembled from LCOGBL.A.LCOGBL.OBJ

Com-plete TP monitor program code object module.LCOVSE8.OBJ

Com-plete link book containing link-edit control cards used when applying maintenance
with MSHP to link-edit LCOGBL.OBJ and LCOVSE8.OBJ to produce ADALCO.PHASE.

LNKLCO.OBJ

Certain Adabas parameters are required by Com-plete, Software AG's TP monitor, when installing
Adabas. For more information, see the Com-plete System Programmer's manual.

Software AG's TP monitor, Com-plete, requires an Adabas link routine if it is to communicate
with Adabas databases, use Software AG's Entire Net-Work product, or use products like Entire

95Installation for z/VSE

Installing Adabas with TP Monitors

System Server running under Com-plete. At this time, Com-plete does not support a mixed Adabas
7 and Adabas 8 link routine environment; thus Com-plete must be run with either an Adabas 7
link routine or an Adabas 8 link routine.

The Adabas Version 8 link routine is delivered in member ADALCO of the Adabas 8 sublibrary.
This member must be linked with a link globals module you prepare and with any link routine
exits you require to create the final ADALCO load module that is loaded by Com-plete when
Com-plete is initialized. The final ADALCO load module and any exits linked with it must be
reentrant.

To prepare the Adabas 8 link routine:

1 Edit the LCOGBL.A member in the Adabas 8 distribution sublibrary. LCOGBL.A is a module
containing LGBLSET parameters that are used to create default settings for Com-plete link
components. A complete description of LGBLSET parameters can be found in Modifying
Source Member Defaults (LGBLSET Macro) in Version 8, elsewhere in this guide.

Note: The OPSYS parameter must be set to "VSE".

2 Modify and run the ALNKLCO8.X member to assemble and link-edit the link globals table
you updated in the previous step.

The ALNKLCO8.X member will assemble and catalog the link globals table for Com-plete
and link it with the Com-plete link routine, LCOVSE8.OBJ and any required exits. The
ALNKLCO8.X member provides link-edit control cards for the inclusion of the Adabas 8
LNKUES module with the ASC2EBC and EBC2ASC translation tables.

3 Place the final phase, ADALCO, in a library that will be part of the Com-plete LIBDEF search
chain.

Note: The defaults set in the link globals table for Com-plete are primarily for docu-
mentation purposes. The Adabas/Com-plete interface module, TLOPADAB, sets values
for Adabas target ID and SVC number on each Adabas call. However, it is necessary
to include the link globals table object module and any necessary exits, including user
exits when linking the Adabas 8 ADALCO.PHASE. If user exits are to be linked with
ADALCO, be certain to code the LGBLSET keywords accordingly.

The Adabas 8 link routine is prepared.

Installation for z/VSE96

Installing Adabas with TP Monitors

Installing Adabas with Batch under Adabas 8

ADALNK is the standard Adalink for running Adabas in batch. ADALNKR (LNKVSER) is supplied
as a reentrant batch link routine.

Batch applications should be linked with the ADAUSER module to provide the greatest degree
of application calling isolation when invoking the Adabas batch link routines. The ADAUSER
module will provide code to load the appropriate link routine and the supporting ADARUN and
ADAIOR modules. ADARUN, in turn, loads other modules. To start a user program linked with
ADAUSER, the following modules must be available in the LIBDEF search chain: ADAIOR,
ADAIOS, ADALNK, ADAMLF, ADAOPD, ADAPRF, and ADARUN. In addition, ADAUSER
reads DDCARD input from SYSIPT or DISK to allow jobstep setting of the database ID, Adabas
SVC number, and other parameters.

For non-reentrant operation, the DDCARD input should provide the keyword PROG=USER. This
causes ADARUN to load ADALNK for non-reentrant batch operations.

If you want to use reentrant batch operations, the ADAUSER module can still be linked with the
application program, but the PROG=RENTUSER keyword must be coded on the DDCARD input.
ADAUSER is, however, non-reentrant. For full reentrant batch applications, it will either need to
be loaded (CDLOAD) separately, or the ADALNKR.PHASE must be loaded without using the
ADAUSER module. In this case, the default values for DBID, SVC number, length of user inform-
ation, and which exits are to be used is provided by the linked link globals table, as modified (read
Installing the Reentrant Batch z/VSE Adabas 8 Link Routine, elsewhere in this section. It is also
possible to zap the ADALNKR.PHASE or LNKVSER8.OBJ module with these defaults, but Software
AG recommends coding and linking the link globals table instead. Additional information on using
a reentrant batch link routine is also provided in Required Application Reentrancy Properties in
&adamf_op;.

This section covers the following topics:

■ Supplied Modules
■ Installing the Batch z/VSE Adabas 8 Link Routine
■ Installing the Reentrant Batch z/VSE Adabas 8 Link Routine

Important: If an ADALNK batch link routine has been linked or modified by Software AG
product modules or user exits, it cannot be used in any application startups of Adabas
utility jobs or Adabas, Entire System Server, Adabas Review Hub, or Entire Net-Work
nuclei.

97Installation for z/VSE

Installing Adabas with TP Monitors

Supplied Modules

The following table lists the modules supplied in your Adabas installation to support the installation
of Adabas 8 with batch.

Note: The Adabas 8 installation supports Adabas 7 direct calls in addition to Adabas 8 calls;
however, an Adabas 7 installation does not support Adabas 8 direct calls.

DescriptionModule

Batch executable module.ADALNK.PHASE

Batch reentrant executable module.ADALNKR.PHASE

Batch link globals table. This module is modifiable. Once it is modified, you can use
the LNKLNK.OBJ sample JCS to assemble the LNKGBLS.A module, producing the

LNKGBLS.A

LNKGBLS.OBJ module and then link-editing the LNKGBLS.OBJ module with the
LNKVSE8.OBJ module to create the ADALNK.PHASE.

Batch link globals table object module assembled from LNKGBLS.A.LNKGBLS.OBJ

Batch reentrant link globals table. This module is modifiable. Once it is modified, you
can use the ALNKLNR8.X sample JCS to assemble the LNKRGBL.A module, producing

LNKRGBL.A

the LNKRGBL.OBJ module and then link-editing the LNKRGBL.OBJ module with
the LNKVSER8.OBJ module to create the ADALNKR.PHASE.

Batch reentrant link globals table object module assembled from LNKRGBL.A.LNKRGBL.OBJ

Batch link book containing link-edit control cards used when applying maintenance
with MSHP to link-edit LNKGBLS.OBJ and LNKVSE8.OBJ modules to produce
ADALNK.PHASE.

LNKLNK.OBJ

Batch link book containing link-edit control cards used when applying maintenance
with MSHP to link-edit reentrant LNKRGBL.OBJ and LNKVSER8.OBJ modules to
produce ADALNKR.PHASE.

LNKLNKR.OBJ

Batch program code object module.LNKVSE8.OBJ

Batch reentrant program code object module.LNKVSER8.OBJ

Installing the Batch z/VSE Adabas 8 Link Routine

To install the Adabas 8 non-reentrant link routine for z/VSE batch, complete the following steps:

1 Edit member LNKGBLS.A in the Adabas distribution sublibrary. Provide values for the LOGID,
SVC, GBLNAME, and other keywords to suit your installation requirements. This module
contains LGBLSET parameters used to create default settings for link components. A complete
description of LGBLSET parameters can be found in Modifying Source Member Defaults
(LGBLSET Macro) in Version 8, elsewhere in this guide.

Note: The OPSYS parameter must be set to "VSE".

Installation for z/VSE98

Installing Adabas with TP Monitors

2 Edit the ALNKLNK8.X member found in the Adabas 8 sublibrary. This member will assemble
and catalog the LNKGBLS.A module and link it and any desired exits with the LNKVSE8.OBJ
module to create the ADALNK.PHASE member for Adabas 8. The ALNKLNK8.X member
includes sample link-edit control cards to support UES by including the LNKUES.OBJ. module
with the ASC2EBC and EBC2ASC translation tables. Modify the link-edit control cards to in-
clude any additional Software AG exit or user exit, as specified in the updated LNKGBLS.A
member.

3 Provide the ADALNK.PHASE member in the LIBDEF search chain for the jobstep that will
require Adabas database access or Software AG services.

Installing the Reentrant Batch z/VSE Adabas 8 Link Routine

To install the Adabas 8 reentrant link routine for z/VSE batch, complete the following steps:

1 Edit member LNKRGBL.A in the Adabas distribution sublibrary. Provide values for the LOGID,
SVC, GBLNAME, and other keywords to suit your installation requirements. This module
contains LGBLSET parameters used to create default settings for link components. A complete
description of LGBLSET parameters can be found in Modifying Source Member Defaults
(LGBLSET Macro) in Version 8, elsewhere in this guide.

Note: The OPSYS parameter must be set to "VSE".

2 Edit the ALNKLNR8.X member found in the Adabas 8 sublibrary. This member will assemble
and catalog the LNKRGBL.A module and link it and any desired exits with the LNKVSER8.OBJ
module to create the ADALNKR.PHASE member for Adabas 8. The ALNKLNR8.X member
includes sample link-edit control cards to support UES by including the LNKUES.OBJ. module
with the ASC2EBC and EBC2ASC translation tables. Modify the link-edit control cards to in-
clude any additional Software AG exit or user exit, as specified in the updated LNKRGBL.A
member.

3 Provide the ADALNKR.PHASE member in the LIBDEF search chain for the jobstep that will
require Adabas database access or Software AG services.

Establishing Adabas SVC Routing by Adabas Database ID

Your application programs that use Adabas link routines in z/OS and VSE environments can route
database calls through specific Adabas SVCs, based on the database ID used in the call. SVC
routing is managed through the use of a DBID/SVC routing table you supply. Up to 1000 database
IDs may be specified in the table and associated with any number of valid SVC numbers installed
in the z/OS or VSE system. The DBID/SVC routing table is created using the MDBSVC macro.

Duplicate database IDs are not allowed in the DBID/SVC routing table as there is no reliable way
for the link routine to determine which SVC should be used for a database ID if it is listed more

99Installation for z/VSE

Installing Adabas with TP Monitors

than once. If duplicate database IDs are found while the table is being assembled, they are flagged
with an assembler MNOTE and a return code of 16 is returned for the assembly attempt.

Notes:

1. Adabas client-based add-ons, such as Adabas Transaction Manager, are not compatible with
this feature since for client-based functionality to work, it must be channeled through only a
single router for any given session, not across routers. To avoid problems if the dynamic SVC
by DBID routing feature in enabled for these products, error messages are issued, the assembly
step of the globals table will receive return code 16, and the globals table load module will not
be generated.

2. ADALNK linked with the ADASVCTB should only be used by application programs and should
not be made available to the Adabas nucleus or to Entire Net-Work.

Caution: This feature should be used with caution. Transactional integrity is not guaranteed.
If an application makes calls to multiple databases that are routed to more than one Adabas
SVC, it becomes possible to issue ET, BT, OP, CL, RC, or other Adabas commands that may
affect the transaction on one database, but not on the other databases running on different
Adabas SVCs that were accessed previously. It therefore is the responsibility of the applic-
ation program to ensure that all necessary logic is included to ensure transactional integrity
across multiple databases where multiple Adabas SVCs are employed.

This section covers the following topics:

■ Installing the Adabas DBID/SVC Routing Feature
■ General Operation
■ Using the MDBSVC Macro

Installing the Adabas DBID/SVC Routing Feature

The general steps for installing the Adabas DBID/SVC routing feature are:

1. Define the DBID/SVC routing table in a library member using MDBSVC macro statements. For
more information about the DBID/SVC routing table and the MDBSVC macro, read Using the
MDBSVC Macro, elsewhere in this section.

2. Assemble and link-edit the DBID/SVC routing table member to create a load module or PHASE
that will be made available to the operating environment where the SVC routing feature will
be used.

3. Modify a link globals table for the operating environment, specifying the LGBLSET keywords
DYNDBSVC=YES and DBSVCTN=name, where name is the name of the DBID/SVC routing table
load module that should be used by the link routine. Assemble and link-edit the updated link
globals table as required for the operating environment. For more information about the link
globals table and the LGBLSET macro, read Modifying Source Member Defaults (LGBLSET
Macro) in Version 8 , elsewhere in this guide. For information on assembling and link-editing

Installation for z/VSE100

Installing Adabas with TP Monitors

the link globals table once the table is updated, refer to the instructions for each z/OS or VSE
TP monitoring environment, provided elsewhere in this section.

4. Make the prepared DBID/SVC routing table available in a load library that is accessible by the
application program's job step, so it can be loaded by the link routine when it runs.

5. Except for CICS systems, you will need to relink ADALNK or ADALNKR making sure that
the INCLUDE statements for the LNKDSL and DEPRTR (or RTRVSE on VSE) modules are in-
cluded in the job.

This section covers the following topics:

■ Installing DBID/SVC Routing under z/VSE Batch
■ Installing DBID/SVC Routing under CICS

Installing DBID/SVC Routing under z/VSE Batch

To install the Adabas DBID/SVC routing feature under z/VSE batch, complete the following steps:

1 Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a
library member. Sample member ADASVCTB.A is provided in the sublibrary SAGLIB.ADAvrs
as a template for preparing this member. For more information about using the MDBSVC
macro, read Using the MDBSVC Macro, elsewhere in this section.

2 Assemble and link-edit the DBID/SVC routing table member to create the table as a PHASE
that you can make available to the application execution job step. The PHASE should be linked
non-reusable and non-reentrant because the link routine subprogram LNKDSL will need to
store the addresses of the Adabas SVC IDT headers in the DBID/SVC module to reduce the
operating overhead on multiple commands accessing the same Adabas SVC.

3 Define or modify a link globals table for the execution environment. The following LGBLSET
keywords are required to support the Adabas SVC routing feature:

DescriptionLGBLSET Keyword Setting

This keyword and setting indicate that Adabas SVC routing is active for this
job step.

DYNDBSVC=YES

This keyword specifies the name of the DBID/SVC table for this job step. This
name must match the name of the PHASE created to ensure the proper table
is loaded when the link routine runs.

DBSVCTN=name

4 Assemble and link-edit the updated link globals table, as described for the appropriate TP
monitor. For batch/TSO, read Installing Adabas with Batch under Adabas 8, in the Adabas Install-
ation for z/VSE.

5 Relink ADALNK.PHASE or ADALNKR.PHASE, making sure that the INCLUDE statements
for the LNKDSL and RTRVSE object modules are included in the job. Samples of the jobs used
to relink ADALNK and ADALNKR are listed in the following table:

101Installation for z/VSE

Installing Adabas with TP Monitors

Sample JobLink Routine

ALNKLNK8.XADALNK.PHASE

ALNKLNR8.XADALNKR.PHASE

Installing DBID/SVC Routing under CICS

To install the Adabas DBID/SVC routing feature under CICS, complete the following steps:

1 Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a
library member. Sample member ADASVCTB is provided in the ADAvrs.SRCE library as a
template for preparing this member. For more information about using the MDBSVC macro,
read Using the MDBSVC Macro, elsewhere in this section.

2 Assemble and link-edit the DBID/SVC routing table member to create the table as a load
module and place it in a library that will be part of the CICS DFHRPL concatenation. The
load module should be linked non-reusable and non-reentrant because the link routine sub-
program LNKDSL will need to store the addresses of the Adabas SVC IDT headers in the
DBID/SVC module to reduce the operating overhead on multiple commands accessing the
same Adabas SVC.

3 Define the load module as a program to CICS using RDO, or the DFHCSDUP utility. See
member DEFADAC in the ACIvrs.SRCE libarary for sample DFHCSDUP definition statements.
The program attributes should be Reload(No), Resident(Yes), Dataloc(Any), and Execkey(CICS).

4 Define or modify a link globals table for the execution environment. The following LGBLSET
keywords are required to support the Adabas SVC routing feature:

DescriptionLGBLSET Keyword Setting

This keyword and setting indicate that Adabas SVC routing is active for this
job step.

DYNDBSVC=YES

This keyword specifies the name of the DBID/SVC table for this job step. This
name must match the name of the load module created to ensure the proper
table is loaded when the link routine runs.

DBSVCTN=name

5 Assemble and link-edit the updated link globals table, as described in Installing Adabas with
CICS under Adabas 8 for z/VSE installations.

Installation for z/VSE102

Installing Adabas with TP Monitors

General Operation

When the Adabas SVC routing feature is installed, as described earlier in this section, it is loaded
as described below:

■ In batch, TSO, or IMS environments, the DBID/SVC routing table is loaded when the link routine
initializes if the LGBLSET DYNDBSVC parameter is set to YES in the link globals table. The
address of the routing table is kept in the link routine work area for use by all subsequent calls.

■ In CICS environments, the Adabas 8 initialization module ADACIC0, normally run during
PLTPI processing, loads and validates the DBID/SVC routing table, if the LGBLSET DYNDBSVC
parameter was set to YES in the link globals table for the CICS region. The address of the routing
table is kept in the global work area associated with the Adabas 8 task-related user exit (TRUE)
module, ADACICT, and is made available on each application call to the TRUE by the Adabas
command-level module ADACICS/ADADCI.

When an application call is made, the DBID/SVC routing table is searched by the LNKDSL sub-
routine which is linked with the appropriate link routine for each operating environment. LNKDSL
is called after any LUEXIT1 (link routine user exit 1) is invoked, in case the pre-Adabas call user
exit modifies the command's database ID for subsequent processing. The call to LNKDSL is made
before any monitoring or Adabas Fastpath exits are called, so the monitoring product, such as
Adabas Review, Adabas Fastpath, or Adabas Transaction Manager, will perform their processing
based on the appropriate Adabas SVC found in the DBID/SVC routing table.

If the database ID associated with a particular call is not found in the DBID/SVC routing table, the
default value for the Adabas SVC as specified by the MDBSVC macro's TYPE=INIT parameter is
used. If the SVC located is not an Adabas SVC, or if it is not installed on the z/OS system, an
Adabas response code of 213 with subcode 16 or 20 is returned to the application. If the calling
database is not active for an SVC number, an Adabas response code of 148 (ADARSP148) is returned
to the application.

Duplicate database IDs are not allowed in the DBID/SVC routing table as there is no reliable way
for the link routine to determine which SVC should be used for a database ID if it is listed more
than once. If duplicate database IDs are found while the table is being assembled, they are flagged
with an assembler MNOTE and a return code of 16 is returned for the assembly attempt.

Using the MDBSVC Macro

Use the MDBSVC macro to define various aspects of the Adabas DBID/SVC routing table. Several
MDBSVC macros are coded together using TYPE=INIT, TYPE=GEN, and TYPE=FINAL keywords
to comprise a source module or member. This source module or member is then assembled and
link-edited to build the DBID/SVC routing table load module. Sample member ADASVCTB in
ADAvrs.SRCE can be used as a template for creating site-specific versions of the DBID/SVC
routing table source module. Here is a sample DBID/SVC routing table source member that uses
the CSECT name TESTDBT; when the table is assembled, its load module name will be TESTDBT:

103Installation for z/VSE

Installing Adabas with TP Monitors

TESTDBT CSECT
MDBSVC TYPE=INIT,SVC=249,DBID=001
MDBSVC TYPE=GEN,SVC=237,DBID=(2,10,21,33,175,1149), X

DBID2=(100,101,102,13500)
MDBSVC TYPE=GEN,SVC=231,DBID=(226,899)
MDBSVC TYPE=GEN,SVC=206,DBID=(15,16,69,99,500,12144)
MDBSVC TYPE=GEN,SVC=248,DBID=(14,54,111,177,1213,5775)
MDBSVC TYPE=GEN,SVC=249,DBID=(17,19,25,35,42,44,61,76)
MDBSVC TYPE=FINAL
END

When coding keyword values of MDBSVC macro statements, the assembler rules for continuing
lines, identifying lists, and providing keyword values must be followed or assembly errors will
result. Keywords and values with lists coded as objects of keywords must be separated by commas.
There are no positional parameters used with the MDBSVC macro.

The MDBSVC macro can include the following four types of statements, as described in the fol-
lowing table:

NumberAllowedDescriptionMDBSVCStatement
Type

1Only one MDBSVC TYPE=INIT statement can be included in the
DBID/SVC routing table source member and it must be the first MDBSVC

TYPE=INIT

statement in the member. This statement identifies the beginning of the
DBID/SVC routing table. The MDBSVC TYPE=INIT statement also
provides the default database ID and Adabas SVC number used for an
Adabas call.

any number,
as needed.

Any number of MDBSVC TYPE=GEN statements can be included in the
DBID/SVC routing table source member. These statements specify the

TYPE=GEN

lists of Adabas database IDs associated with specific valid Adabas SVC
numbers.

1Only one MDBSVC TYPE=FINAL statement can be included in the
DBID/SVC routing table source member and it must be the last MDBSVC

TYPE=FINAL

statement in the member before the assembler END statement. This
statement identifies the end of the DBID/SVC routing table.

The MDBSVC TYPE=INIT statement can be preceded by a named CSECT statement and named
AMODE and RMODE statements. If the CSECT, AMODE, or RMODE statements are included,
the name used in them must agree with the name for the DBID/SVC routing table, as coded in the
TABNAME parameter on the MDBSVC TYPE=INIT statement and as specified in the DBSVCTN
keyword of the LGBLSET macro used for creating the link globals table.

This section covers the following topics:

■ MDBSVC TYPE=INIT Syntax
■ MDBSVC TYPE=GEN Syntax
■ MDBSVC TYPE=FINAL Syntax

Installation for z/VSE104

Installing Adabas with TP Monitors

■ MDBSVC Parameters

MDBSVC TYPE=INIT Syntax

The syntax for the MDBSVC TYPE=INIT statement is:

MDBSVC TYPE=INIT,SVC=svcno,DBID=dbid[,TABNAME={name|ADBSVCT}][,OPSYS={ZOS|VSE}]

The parameters you can code on the MDBSVC TYPE=INIT statement are described in MDBSVC
Parameters, elsewhere in this section.

MDBSVC TYPE=GEN Syntax

The syntax for the MDBSVC TYPE=GEN statement is:

MDBSVC TYPE=GEN,SVC=svcno,DBID={id | (id1,id2[,idn]...) }[,DBID2={id | ↩
(id1,id2[,idn]...) }]

The parameters you can code on the MDBSVC TYPE=GEN statement are described in MDBSVC
Parameters, elsewhere in this section.

MDBSVC TYPE=FINAL Syntax

The syntax for the MDBSVC TYPE=FINAL statement is:

MDBSVC TYPE=FINAL

No parameters are valid on the MDBSVC TYPE=FINAL statement.

MDBSVC Parameters

The parameters that can be specified on various MDBSVC statements are as follows:

DBID
The DBID parameter is required on both the MDBSVC TYPE=INIT and MDBSVC TYPE=GEN
statements.
■ When specified on the MDBSVC TYPE=INIT statement, it lists the default database ID asso-

ciated with the SVC specified in the SVC parameter. In this case, only one database ID can
be listed in the DBID parameter on a TYPE=INIT statement.

■ When specified on a MDBSVC TYPE=GEN statement, it lists the database IDs associated
with the SVC specified in the SVC parameter. If more than one database ID is listed, they
should be enclosed in parentheses and separated by commas.

Database IDs listed in the DBID parameter must be numeric and must correspond to the IDs
of installed Adabas databases. In z/OS environments, database IDs must range from 1 to 65535.
The same database ID cannot be specified on multiple MDBSVC statements; they must be
unique across all of the DBID and DBID2 statements in the DBID/SVC routing table. Duplicate

105Installation for z/VSE

Installing Adabas with TP Monitors

values are flagged with an MNOTE, which causes the assembly of the DBID/SVC routing table
to stop with return code 16.

The following is an example of some DBID parameters on various MDBSVC statements. Note
that two MDBSVC statements list database IDs associated with SVC 237. This allows more
database IDs to be coded for the same SVC number. Compare the way this is coded to the way
the same example is coded for the DBID2 parameter. Both codings produce the same end result.

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=242,DBID=(3,18)
MDBSVC TYPE=FINAL
END

DBID2
The DBID2 parameter can be coded only on MDBSVC TYPE=GEN statements. It lists additional
database IDs to be associated with an Adabas SVC specified in the SVC parameter. The DBID2
parameter is optional, but when it is specified, it must follow a DBID parameter.

Database IDs listed in the DBID2 parameter must be numeric and must correspond to the IDs
of installed Adabas databases. In z/OS environments, database IDs must range from 1 to 65535.
The same database ID cannot be specified on multiple MDBSVC statements; they must be
unique across all of the DBID and DBID2 statements in the DBID/SVC routing table. Duplicate
values are flagged with an MNOTE, which causes the assembly of the DBID/SVC routing table
to stop with return code 16.

The following is an example of some MDBSVC statements that includes a DBID2 parameter.
Compare the way this example is coded to the way the same example is coded for the DBID
parameter. Both codings produce the same end result.

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33), X

DBID2=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=242,DBID=(3,18)
MDBSVC TYPE=FINAL
END

OPSYS
The OPSYS parameter is an optional parameter that can be coded only on the MDBSVC
TYPE=INIT statement. This parameter identifies the operating system where the DBID/SVC
routing table is assembled. Valid values for the OPSYS parameter are "ZOS" and "VSE"; the
default is "ZOS".

PREFIX
The PREFIX parameter can only be coded only on the MDBSVC TYPE=DSECT statement,
which is reserved for internal use by Software AG. Do not use this parameter.

Installation for z/VSE106

Installing Adabas with TP Monitors

SVC
The SVC parameter is required on both the MDBSVC TYPE=INIT and MDBSVC TYPE=GEN
statements.
■ When specified on the MDBSVC TYPE=INIT statement, it specifies the default Adabas SVC

number to be used when the calling application provides a database ID that is not found in
the DBID/SVC routing table.

■ When specified on a MDBSVC TYPE=GEN statement, it specifies the Adabas SVC number
to be associated with the Adabas databases identified by the DBID and DBID2 parameters.

The SVC number listed in the SVC parameter must be numeric and must correspond to the
SVC number of an installed Adabas SVC. In z/OS environments, the SVC number must range
from 200 to 255. Duplicate SVC values can be coded on multiple MDBSVC statements; this
allows you to code long lists of database IDs and associate them with the same Adabas SVC.

In the following example, notice that there are two MDBSVC statements for SVC 249. It is the
default SVC for the link routine and is also used for database 1, 3, and 18. There are also two
MDBSVC statements for SVC 237; the two statements are used to list nine databases associated
with SVC 237 (2, 4, 10, 16, 21, 33, 175, 1149, and 1221).

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=249,DBID=(3,18)
MDBSVC TYPE=FINAL
END

TABNAME
The TABNAME parameter is an optional parameter that can be coded only on the MDBSVC
TYPE=INIT statement. This parameter specifies the name of the DBID/SVC routing table when
the source member does not include a separate (and previously coded) CSECT statement. In
this case, the name you specify on the TABNAME parameter is used to generate a named
CSECT statement and named AMODE and RMODE directives.

The DBID/SVC routing table name that you specify should be between 1 and 8 alphanumeric
characters long. In the following example, a DBID/SVC routing table with the name TESTDBT
is coded.

MDBSVC TYPE=INIT,SVC=249,DBID=1,TABNAME=TESTDBT
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=249,DBID=(3,18)
MDBSVC TYPE=FINAL
END

107Installation for z/VSE

Installing Adabas with TP Monitors

Modifying Source Member Defaults (LGBLSET Macro) in Version 8

The Adabas 8 LGBLSET macro is used to set default installation values for the Adabas link routines.
It is used to prepare an object module which may either be link-edited with the Adabas 8 link
routines or provided to the link routines in the job step where they are run. Your Adabas libraries
include sample members provided to support the various teleprocessing (TP) monitors in each
environment. Each of these sample members may be copied to an appropriate library and modified
to provide the necessary customization required for the link routine that is intended to run in a
given environment.

The LGBLSET parameter options with their default values (underlined) are described in the rest
of this section:

■ ADL: Adabas Bridge for DL/I Support
■ AVB: Adabas Bridge for VSAM Support
■ CITSNM: Adabas CICS TS Queue Name
■ COR: SYSCOR Exit Support
■ DBSVCTN: DBID/SVC Routing Table
■ DYNDBSVC: DBID/SVC Routing Table
■ ENTPT: Name of the Adabas CICS Command-Level Link Routine
■ GBLNAME: Name of Link Globals Module
■ GEN: Generate CSECT or DSECT
■ IDTNAME: BS2000 IDT Common Memory Name
■ IDTUGRP: BS2000 Memory Pool User Bound
■ LOGID: Default Logical Database ID
■ LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2
■ LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2
■ LX1NAME: User Exit 1 Module Name
■ LX2NAME: User Exit 2 Module Name
■ MRO: Multiple Region Option
■ NETOPT: Method Used to Create User ID
■ NTGPID: Natural Group ID
■ NUBS: Number of User Blocks Created By CICS Link Routine
■ OPSYS: Operating System
■ PARMTYP: Area for Adabas Parameter List
■ PRE: DSECT Data Prefix
■ PURGE: Purge Transaction
■ RENT: Reentrant Module Flag
■ RETRYX: Retry Command Exit Flag
■ REVHID: Adabas Review Hub ID Support
■ REVIEW: Adabas Review Support
■ REVREL: Adabas Review Release
■ RMI: Resource Manager Interface
■ RTXNAME: Command Retry Exit Name

Installation for z/VSE108

Installing Adabas with TP Monitors

■ RVCLNT: Adabas Review Client Reporting Allowance Setting
■ SAF: Adabas Security Interface Flag
■ SAP: SAP Application Support
■ SAPSTR: SAP ID String
■ SVCNO: Adabas SVC number
■ TPMON: Operating Environment
■ TRUENM: CICS TRUE Name
■ UBPLOC: User Block Pool Allocation
■ UBSTIME: User Block Scan Time
■ UBTYPE: User Block Type
■ UES: Universal Encoding Support
■ USERX1: User Exit 1 Flag
■ USERX2: User Exit 2 Flag
■ XWAIT: XWAIT Setting for CICS

ADL: Adabas Bridge for DL/I Support

SyntaxDescriptionParameter

ADL={NO|YES}Indicates whether or not the Consistency Interface of Software AG’s Adabas
Bridge for DL/I is to be supported by this command-level link routine.

ADL

■ ADL=YES: Adabas Bridge for DL/I Consistency Interface is to be supported.
■ ADL=NO: Adabas Bridge for DL/I Consistency Interface is not to be supported.

AVB: Adabas Bridge for VSAM Support

SyntaxDescriptionParameter

AVB={NO|YES}Indicates whether or not Software AG’s Adabas Bridge for VSAM is to be
supported by this command-level link routine.

AVB

■ AVB=YES: Adabas Bridge for VSAM is to be supported.
■ AVB=NO: Adabas Bridge for VSAM is not to be supported.

109Installation for z/VSE

Installing Adabas with TP Monitors

CITSNM: Adabas CICS TS Queue Name

SyntaxDescriptionParameter

CITSNM={ADACICS|qname}Specifies the 16-byte string that represents the CICS TS queue name
for Adabas. The default is "ADACICS".

CITSNM

COR: SYSCOR Exit Support

SyntaxDescriptionParameter

COR={NO|YES}Indicates whether or not the Adabas System Coordinator (COR) exit is installed
and active (as required by Adabas Fastpath, Adabas Vista, and Adabas
Transaction Manager).

COR

■ COR=YES: The COR exit is installed and active.
■ COR=NO: The COR exit is not installed and active.

DBSVCTN: DBID/SVC Routing Table

SyntaxDescriptionParameter

DBSVCTN={name|ADASVCTB}Provides the name of the DBID/SVC routing table that should be
used by the link routine during its execution, if any.

DBSVCTN

The routing table name must conform to names for z/OS standard
load modules. It is used by a z/OS LOAD macro/SVC during batch,
TSO, or IMS operation or by an EXEC CICS LOAD PROGRAM
command during CICS operation.

If the load module listed is not found, or if it is found to contain
invalid header information, user abend U657 is issued in batch,
TSO, or IMS environments.

If the load module is not defined to CICS or not found in the CICS
DFHRPL concatenation, the Adabas CICS link routine
environment is not initialized.

Note: If the DYNDBSVC parameter is set to NO, this parameter
setting is ignored.

For more information about SVC routing by database ID in z/OS
environments, read Establishing Adabas SVC Routing by Adabas
Database ID, in the Adabas z/OS Installation Guide documentation.

Note: Adabas client-based add-ons, such as Adabas Transaction
Manager, are not compatible with this feature since for client-based
functionality to work, it must be channeled through only a single

Installation for z/VSE110

Installing Adabas with TP Monitors

SyntaxDescriptionParameter

router for any given session, not across routers. To avoid problems
if the dynamic SVC by DBID routing feature in enabled for these
products, error messages are issued, the assembly step of the
globals table will receive return code 16, and the globals table load
module will not be generated.

DYNDBSVC: DBID/SVC Routing Table

SyntaxDescriptionParameter

DYNDBSVC={YES|NO}Indicates whether Adabas SVC routing by database ID should be enabled
for the link routine. DYNDBSVC=YES enables Adabas SVC routing by
database ID; DYNDBSVC disables it. The default is NO.

DYNDBSVC

For more information about SVC routing by database ID in z/OS
environments, read Establishing Adabas SVC Routing by Adabas Database
ID, in the Adabas z/OS Installation Guide documentation.

ENTPT: Name of the Adabas CICS Command-Level Link Routine

SyntaxDescriptionParameter

ENTPT={ADACICS|name}The name given to the Adabas CICS command-level link routine. This
name is used in EXEC CICS LINK commands to invoke Adabas
services from CICS application programs.

ENTPT

See also notes 1 and 2 in the installation procedure.

GBLNAME: Name of Link Globals Module

SyntaxDescriptionParameter

GBLNAME={LNKGBLS|name}The name of the link globals module.GBLNAME

GEN: Generate CSECT or DSECT

SyntaxDescriptionParameter

GEN={CSECT|DSECT}Indicates whether a CSECT or DSECT is generated.GEN

111Installation for z/VSE

Installing Adabas with TP Monitors

IDTNAME: BS2000 IDT Common Memory Name

SyntaxDescriptionParameter

IDTNAME=nameThe common memory pool name of the BS2000 IDT.IDTNAME

IDTUGRP: BS2000 Memory Pool User Bound

SyntaxDescriptionParameter

IDTUGRP={NO|YES}Indicates whether the common memory pool is user bound (BS2000)IDTUGRP

LOGID: Default Logical Database ID

SyntaxDescriptionParameter

LOGID={nnn |
1}

The value of the default target database ID. Valid ID numbers are 1-65535. The
default is "1".

LOGID

LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2

SyntaxDescriptionParameter

LUINFO={0|length}The length of the user data to be passed to target user exit 4. Valid values
are numbers from zero (0) through 32,767.

LUINFO

If LUINFO is not specified, the default is zero (no user data is passed).

LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2

SyntaxDescriptionParameter

LUSAVE={72|size}The size of the user save area to be used by Adabas user exits LUEXIT1
and LUEXIT2. Valid values range from zero (0) through 256. The default
is "72".

LUSAVE

If LUSAVE is not specified, the default is zero (no user save area is passed).

Installation for z/VSE112

Installing Adabas with TP Monitors

LX1NAME: User Exit 1 Module Name

SyntaxDescriptionParameter

LX1NAME={LUEXIT1|name}The name of the link user exit 1 moduleLX1NAME

LX2NAME: User Exit 2 Module Name

SyntaxDescriptionParameter

LX2NAME={LUEXIT2|name}The name of the link user exit 2 moduleLX2NAME

MRO: Multiple Region Option

SyntaxDescriptionParameter

MRO={NO|YES}Indicates whether or not the CICS multiple region option (MRO) support is
required.

MRO

If you run the CICS command-level link with the CICS MRO, set this to MRO=YES;
otherwise, use the default value MRO=NO.

If MRO=YES, NETOPT must be set to NETOPT=NO (the default) to prevent
non-unique LU names from multiple application regions.

If NETOPT=YES and MRO=YES are specified, an assembler MNOTE and a return
code of 16 are produced from the assembly step.

NETOPT: Method Used to Create User ID

SyntaxDescriptionParameter

NETOPT={NO|YES}If NETOPT=YES is specified, an 8-byte user ID will be constructed from the
VTAM LU name. If NETOPT=NO is specified, the user ID is created from the

NETOPT

constant "CICS" plus the four-byte CICS terminal ID (TCTTETI) for terminal
tasks. For non-terminal tasks, the user ID comprises the constant "C" plus
the CICS task number, in zoned decimal format, including leading zeroes.

If you run with the CICS multiple region option (MRO), you must use the
default value for this option. If NETOPT=YES and MRO=YES are specified, an
assembler MNOTE and a return code of 16 are produced from the assembly
step.

113Installation for z/VSE

Installing Adabas with TP Monitors

NTGPID: Natural Group ID

SyntaxDescriptionParameter

NTGPID=4-byte-valueSpecifies a four-byte Natural group ID as required for unique Adabas
user ID generation in the CICS sysplex environment with Natural

NTGPID

Version 2.2 SP8 and above. The value is associated with all users who
call the Adabas command-level link routine assembled with the
specified value.

There is no default value. If no value is specified, the Adabas internal
user ID is built in the conventional manner.

Any four-byte alphanumeric value may be specified, but it must be
unique for each Adabas command-level link routine running in a CICS
sysplex, or z/OS image. If more than one NTGPID is required (for
example, both test and production Natural 2.2 SP8), more than one
Adabas command-level link routine with associated TRUE must be
generated.

If you run with the CICS multiple region option (MRO), you may use
NTGPID to provide a 4-byte literal for the Adabas communication ID
to be used by the Adabas SVC when multiple application regions call
Adabas.

NUBS: Number of User Blocks Created By CICS Link Routine

SyntaxDescriptionParameter

NUBS={100|blocks}The number of user blocks (UBs) to be created in the user block pool by
the CICS link routine. The number of blocks must be large enough to
handle the maximum possible number of concurrent Adabas requests.

NUBS

Note: The Adabas 6.2 and above command-level link routine obtains
storage for the user blocks (the UB pool) above the 16-megabyte line.

OPSYS: Operating System

SyntaxDescriptionParameter

OPSYS={ZOS|VSE|BS2}The operating system in use.OPSYS

Installation for z/VSE114

Installing Adabas with TP Monitors

PARMTYP: Area for Adabas Parameter List

SyntaxDescriptionParameter

PARMTYP={ALL|COM ↩
|TWA}

The CICS area which is to contain the Adabas parameter list. "TWA" picks
up the parameter list in the first six fullwords of the transaction work area
(TWA).

PARMTYP

When PARMTYP=COM, the Adabas parameters are supplied in the CICS
COMMAREA provided by the calling program with the EXEC CICS LINK
command. The COMMAREA list for an ACB call must be at least 32 bytes
long and begin with the label "ADABAS52". The COMMAREA list for an
ACBX call must be at least 24 bytes long and begin with the label
"ADABAS8X". In addition, the last ABD in the COMMAREA list for an
ACBX call must be indicated by setting the VL-bit -- in other words, the
high bit in the address must be on (X'80').

PARMTYP=ALL (the default) uses both the COMMAREA and TWA to pass
the Adabas parameters; in this case, the COMMAREA is checked first.

We do not recommend that you attempt to map the CICS TWA to the
Adabas 8 ACBX direct call. This is because the TWA is of finite size per
transaction and because the TWA in not available at CICS startup. We
therefore recommend that CICS programs using the Adabas 8 CICS link
routines use the COMMAREA only for passing data.

PRE: DSECT Data Prefix

SyntaxDescriptionParameter

PRE={LG|prefix}The two-byte string to be used as the DSECT data prefix. The default is "LG".PRE

PURGE: Purge Transaction

SyntaxDescriptionParameter

PURGE={NO|YES}The PURGE parameter is used when assembling with CICS 3.2 or above. If
PURGE=YES is specified, the CICS WAIT EXTERNAL will contain PURGEABLE

PURGE

as one of its parameters, allowing the transaction to be purged by CICS if the
DTIMOUT value is exceeded and PURGE is specified.

If PURGE=NO (the default) is specified, the NONPURGEABLE option is generated.

115Installation for z/VSE

Installing Adabas with TP Monitors

RENT: Reentrant Module Flag

SyntaxDescriptionParameter

RENT={NO|YES}Indicates whether the globals module is reentrant.RENT

RETRYX: Retry Command Exit Flag

SyntaxDescriptionParameter

RETRYX={NO|YES}Indicates whether the retry command exit is active.RETRYX

REVHID: Adabas Review Hub ID Support

SyntaxDescriptionParameter

REVHID=hubidSpecifies the preferred Adabas Review hub ID. This value can be checked during
the Adabas TP monitoring installation or during the monitor activate process.

If REVHID is set to zero (0), the preferred Adabas Review hub ID is dynamic.
When the hub ID is dynamic, it cannot be checked during the Adabas TP

REVHID

monitoring installation and the call to turn on client reporting must supply the
correct Adabas Review hub ID to use.

If REVHID is specified, REVIEW=YES must also be specified. If REVHID is
specified and REVIEW=NO is also specified, the assembly of the globals table
will abort with condition code 16 and the following message is given:

REVHID requires
REVIEW=YES

This parameter is not valid in VSE environments. The parameter exists in VSE
environments, but should be set to "0".

REVIEW: Adabas Review Support

SyntaxDescriptionParameter

REVIEW={NO|YES}Indicates whether or not Software AG’s Adabas Review performance monitor
is installed and active.

REVIEW

Installation for z/VSE116

Installing Adabas with TP Monitors

REVREL: Adabas Review Release

SyntaxDescriptionParameter

REVREL={}This parameter is redundant and will be dropped in a future Adabas version. Please
remove any use of this parameter from your LGBLSET input.

REVREL

Continued use of this parameter will result in the following informational MNOTE
message:

REVREL= is redundant and is no longer required.

The assembly of the globals table is unaffected.

RMI: Resource Manager Interface

SyntaxDescriptionParameter

RMI={NO|YES}The RMIparameter is used to indicate whether or not the CICS Resource Manager
Interface is in use.

RMI

If RMI=YES is specified, the Adabas task-related user exit (TRUE) will be executed
as a resource manager (RM) using the CICS Resource Manager Interface (RMI).

RMI=YES is valid only when the Adabas Transaction Manager is installed,
enabled, and available to users executing in the CICS environment. Consult the
Adabas Transaction Manager documentation for additional instructions related
to the installation and use of the CICS Resource Manager Interface.

RTXNAME: Command Retry Exit Name

SyntaxDescriptionParameter

RTXNAME={LUEXRTR|name}The name of the command retry exit module.RTXNAME

RVCLNT: Adabas Review Client Reporting Allowance Setting

SyntaxDescriptionParameter

RVCLNT={NO|YES}This parameter is not valid in VSE environments. The parameter exists in
VSE environments, but should be set to "NO".

RVCLNT

117Installation for z/VSE

Installing Adabas with TP Monitors

SAF: Adabas Security Interface Flag

SyntaxDescriptionParameter

SAF={NO|YES}Indicates whether Software AG's Adabas SAF Security support is required.

In CICS environments only, if you want your security system user IDs to be
stored in Adabas user queue elements (making them available for display and

SAF

review as well as preventing response code 200, ADARSP200, subcode 21 when
ADARUN SECUID=REQUIRE is in effect for Adabas), you must code the SAF
parameter as YES. This is only required in CICS environments; in other
environments, the security system user IDs are automatically stored.

SAP: SAP Application Support

SyntaxDescriptionParameter

SAP={NO|YES}Indicates whether or not SAP user ID generation is supported.

If SAP=YES is specified, the program will detect a SAP initialization call and set
the user ID for SAP applications from the constant provided on the initialization
call, plus the field ACBADD2.

SAP

For more information, refer to the supplementary information provided to
customers using the SAP application system.

SAPSTR: SAP ID String

SyntaxDescriptionParameter

SAPSTR={'SAP*'|string}The four-byte SAP ID string to use.SAPSTR

SVCNO: Adabas SVC number

SyntaxDescriptionParameter

SVCNO=nnnThe value of the Adabas SVC number.

On z/OS systems, valid values range from 200-255 and the default is "249".

SVCNO

On z/VSE systems, valid values range from 32-128 and the default is "45".

Installation for z/VSE118

Installing Adabas with TP Monitors

TPMON: Operating Environment

SyntaxDescriptionParameter

TPMON={BAT|CICS|COM|IMS}The TP monitor operating environment. Valid values should be
specified as follows:

TPMON

■ Specify "BAT" to use batch.
■ Specify "CICS" to use CICS.
■ Specify "COM" to use Com-plete.
■ Specify "IMS" to use IMS.
■ Specify "TSO" to use TSO.
■ Specify "UTM" to use UTM.

Caution: Be sure to specify a TP monitor operating environment
that is supported on the operating system you selected in the
OPSYS parameter. In addition, if OPSYS=CMS is specified, the
TPMON parameter should not be specified.

TRUENM: CICS TRUE Name

SyntaxDescriptionParameter

TRUENM={ADACICT|name}Specifies the module name of the Adabas CICS task-related user exit
(TRUE). The default is ADACICT.

TRUENM

UBPLOC: User Block Pool Allocation

SyntaxDescriptionParameter

UBPLOC={ABOVE|BELOW}Specifies whether the user block (UB) pool is to be obtained above
(the default) or below the 16-megabyte line in CICS.

UBPLOC

The ECB used by the EXEC CICS WAIT WAITCICS or the EXEC CICS
WAIT EXTERNAL is included in the UB pool.

The UBPLOC=BELOW setting supports versions of CICS that do not
allow ECBs above the 16-megabyte line; that is, CICS/ESA 3.2 or below.

Refer to the IBM manual CICS Application Programming Reference for
more information.

119Installation for z/VSE

Installing Adabas with TP Monitors

UBSTIME: User Block Scan Time

SyntaxDescriptionParameter

UBSTIME={seconds|1800}Specifies the user block (UB) scan time in fat seconds. A fat second is
the interval required to change bit-31 of the doubleword set by an
STCK instruction. The default is 1800 seconds.

UBSTIME

This parameter sets the minimum interval at which the Adabas
task-related user exit (TRUE) will decide that a user block entry in
the user block pool is eligible for release, if (for some reason) the
user block entry was not released by normal Adabas CICS
processing. Thus, UBSTIME=1800 indicates that a locked user block
entry will be released by the Adabas TRUE if more than 1800 fat
seconds have elapsed since the user block entry was locked for an
Adabas call.

The value of UBSTIME should be set higher than the Adabas CT
(transaction time) ADARUN parameter. An ADAM93 message
indicating either a post failure or a missing 16 call is likely to occur
around the time the user block entry is released or prior to the user
block entry's release if the Adabas CT timeout value has been
exceeded.

Note: The Adabas TRUE will not release a user block entry even if
the UBSTIME has elapsed if the ECB associated with the locked
user block has not been posted. This is to prevent accidental posting
of the wrong CICS task by the Adabas SVC.

UBTYPE: User Block Type

SyntaxDescriptionParameter

UBTYPE={POOL|TASK}Identifies the kind of user block (UB) storage the Adabas CICS installation
program and Adabas task-related user exit (TRUE) should obtain and
use.

UBTYPE

Valid values are TASK and POOL. POOL is the default. UBTYPE=POOL
causes the installation program to obtain a pool of user blocks in CICS
storage. This is the classic mechanism used by Adabas CICS link routines.

UBTYPE=TASK changes the behavior of the Adabas CICS installation
program and Adabas TRUE so they obtain a single user block element,
including any required extensions for user data and Software AG
products, for each CICS task that invokes the Adabas TRUE. The user
block is obtained in CICS shared storage in user-key. It is released when
the Adabas TRUE is driven by CICS at the end of the CICS task. The
advantage of UBTYPE=TASK is that there is no scan time required to
locate and lock a given UB pool element on each Adabas call. The
disadvantages of using UBTYPE=TASK are that a CICS GETMAIN must

Installation for z/VSE120

Installing Adabas with TP Monitors

SyntaxDescriptionParameter

be issued for each CICS task the first time the Adabas TRUE is invoked
for the task and that a CICS FREEMAIN must be issued to release the
user block storage at the end of the CICS task.

UBTYPE=POOL should be used if any of the following are true:

■ The majority of Adabas CICS transactions are short running tasks
issuing a relatively small number of Adabas calls per CICS task.

■ The CICS system is subject to CICS storage fragmentation.
■ Applications running the zIIP Enabler for Natural are present in this

CICS system.

Otherwise, UBTYPE=TASK may be considered if:

■ The majority of Adabas CICS transactions are long running tasks
issuing a relatively large number of Adabas calls per CICS task.

■ CICS tasks frequently trip CPU limits set by CICS execution monitoring
programs such as those from Omegamon.

UES: Universal Encoding Support

SyntaxDescriptionParameter

UES={NO|YES}Indicates whether or not Universal Encoding Support (UES) is required.UES

USERX1: User Exit 1 Flag

SyntaxDescriptionParameter

USERX1={NO|YES}Indicates whether or not user exit 1 is active.USERX1

USERX2: User Exit 2 Flag

SyntaxDescriptionParameter

USERX2={NO|YES}Indicates whether or not user exit 2 is active.USERX2

121Installation for z/VSE

Installing Adabas with TP Monitors

XWAIT: XWAIT Setting for CICS

SyntaxDescriptionParameter

XWAIT={NO|YES}Indicates whether a standard EXEC CICS WAITCICS (XWAIT=NO) or a WAIT
EVENTS EXTERNAL (XWAIT=YES) will be executed by the Adabas task-related
user exit (TRUE). XWAIT=YES is the default.

XWAIT

The CICS WAIT EVENTS EXTERNAL (XWAIT=YES) is the recommended
interface for all supported versions of CICS/TS.

The CICS WAITCICS statement (XWAIT=NO) is provided but may result in
poor CICS transaction performance or unpredictable transaction results in
busy CICS environments.

Notes:

1. If XWAIT=NO is specified, the ADACICT (Adabas TRUE) module issues an EXEC CICS WAITCICS
command instead of the EXEC CICS WAIT EVENT command. XWAIT=YES conforms with recom-
mended IBM usage of the WAIT and ECB lists in a high-transaction volume CICS system.

2. All EXEC CICS commands are processed by the CICS preprocessor; the LGBLSET parameters
cause the subsequent assembly step to skip some of the statements.

XWAIT Posting Mechanisms

CICS WAITCICS (XWAIT=NO) can support a soft post of the specified ECB. This has the disadvantage
of becoming a low priority dispatchable unit of work in a CICS environment, since the hand-
postable work is not processed by CICS on every work cycle.

EXEC CICS WAIT EXTERNAL (XWAIT=YES), on the other hand, allows CICS to make use of its
special post exit code, and will always be checked and processed (if posted) on every CICS work
cycle.

For more details on the differences between the various CICS WAIT commands and their relation-
ship to hard and soft posting mechanisms, consult the IBMCICSApplication Programming Reference
and the texts accompanying IBM APAR PN39579 or “Item RTA000043874” on the IBM InfoLink
service.

XWAIT and the Adabas SVC / Router

The Adabas SVC is fully compatible with the XWAIT=YES setting. The SVC performs the necessary
hard post for Adabas callers under CICS using the Adabas command-level link routine. The same
SVC performs a soft post for batch callers where the hard post is not required.

Installation for z/VSE122

Installing Adabas with TP Monitors

6 EnablingUniversal EncodingSupport (UES) for Your Adabas

Nucleus
■ Installing UES Support for the Adabas Nucleus .. 125

123

Prior to Adabas Version 7, Entire Net-Work converted all data for mainframe Adabas when neces-
sary from ASCII to EBCDIC. Starting with Version 7, Adabas is delivered with its own data con-
version capability called universal encoding support (UES). Entire Net-Work detects when it is con-
nected to a target database that converts data and passes the data through to Adabas without
converting it.

To ensure UES processing is handled properly, perform the following steps.

1. The Adabas database must include the correct libraries and have appropriate zaps applied.

For information about UES, read Universal Encoding Support (UES) in Adabas DBA Tasks Manual
as well as ADADEF Utility: Define a Database and ADACMP Utility: Compress-Decompress Data
in Adabas Utilities Manual.

A sample startup job for a UES-enabled nucleus is provided in member ADANUCU of the
ADAvrs.JOBS data set. For more information, read JCL Required for UES Support (z/VSE), in the
Adabas Operations Manual.

2. Ensure that UES support has been activated in the Adabas link routines. Verify that the load
modules for all Adabas 8 link routines have been linked with LNKUES and the default (or up-
dated) translation tables and that the LGBLSET SVCNO parameter has been set. For Adabas
8, UES is enabled by default for all link routines. For information on altering UES enablement
in the link routines read appropriate sections of Installing AdabasWith TPMonitors, elsewhere
in this guide, starting with the section UES-Enabled Link Routines.

UES-enabled databases can be connected to machines with different architectures through Com-
plete, Software AG internal product software (APS), or through Entire Net-Work (WCP). Con-
nections through Com-plete or Software AG internal product software (APS) use the Adabas
Com-plete link routines; connections through Entire Net-Work use the Adabas batch link
routines.

Effective with Adabas Version 8.3, only APS version 3.3.1 fix pack 19 and above are supported
on z/VSE. Users should note that, with APS version 3.3.1 fix pack 19, a new system parameter
TCPIP has been introduced. Users should add parameter TCPIP=NO to the APS reader files in
use for all UES-enabled Adabas nucleus jobs.

Note: The use of UES-enabled link routines and a UES-enabled nucleus is transparent to
applications, including applications that do not require universal encoding translation
support. Therefore, it is not necessary to disable UES if it is already enabled.

Installation for z/VSE124

Enabling Universal Encoding Support (UES) for Your Adabas Nucleus

Installing UES Support for the Adabas Nucleus

The following LIBR sublibraries are distributed with Adabas for UES support:

SAGLIB.ADAvrsCS

SAGLIB.APSvrsnn
SAGLIB.APSvrs

To install these libraries:

1 Create a z/VSE sublibrary for the code pages.

* $$ JOB JNM=CRUESL,CLASS=0,DISP=D,LDEST=(,xxxxxx)
* $$ LST CLASS=A,DISP=D
// JOB LIBRDEF
// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL DDECSOJ,'SAG.ADABAS.LIB',2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt
// EXEC LIBR
DEFINE L=DDECSOJ R=Y
/*
/&
* $$ EOJ

2 Create a z/VSE sublibrary for APS.

* $$ JOB JNM=CRUAPS,CLASS=0,DISP=D,LDEST=(,xxxxxx)
* $$ LST CLASS=A,DISP=D
// JOB LIBRDEF
// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL DDECSOJ,'SAG.APS.LIB',2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt
// EXEC LIBR
DEFINE L=APSvrsnn R=Y
DEFINE L=APSvrs R=Y
/*
/&
* $$ EOJ ↩

3 Restore the UES code pages sublibrary to this file. Refer to the Software AG Product Delivery
Report for the file positions on the distribution tape.

125Installation for z/VSE

Enabling Universal Encoding Support (UES) for Your Adabas Nucleus

* $$ JOB JNM=RESTECS,DISP=D,CLASS=0,LDEST=(,xxxxxx)
* $$ LST DISP=D,CLASS=A
// JOB RESTECS
// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL ADALIB,'SAG.ADABAS.LIB',2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt
// ASSGN SYS006,cuu
// MTC REW,SYS006
// EXEC LIBR,PARM='MSHP'
RESTORE SUBLIB=SAGLIB.ADAvrsCS:ADALIB.DDECSOJ -
TAPE=SYS006 -
LIST=YES -
REPLACE=YES
/*
// MTC REW,SYS006
// ASSGN SYS006,UA
/&
* $$ EOJ

4 Restore the APS sublibraries. Refer to the Software AG Product Delivery Report for the file pos-
itions on the distribution tape.

* $$ JOB JNM=RESTAPS,DISP=D,CLASS=0,LDEST=(,xxxxxx)
* $$ LST DISP=D,CLASS=A
// JOB RESTAPS
// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL APSLIB,'SAG.APS.LIB',2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt
// ASSGN SYS006,cuu
// MTC REW,SYS006
// EXEC LIBR,PARM='MSHP'
RESTORE SUBLIB=SAGLIB.APSvrsnn:ADALIB.APSvrsnn -

 TAPE=SYS006 -
 LIST=YES -
 REPLACE=YES
 /*
 // MTC REW,SYS006
 // ASSGN SYS006,UA
 /&
 * $$ EOJ ↩

5 Repeat the previous step for SAGLIB.APSvrs.

6 Modify the Adabas startup JCL, adding the UES environment section after the ADARUN
parameters:

Installation for z/VSE126

Enabling Universal Encoding Support (UES) for Your Adabas Nucleus

ADARUN
ADARUN
/*
TCPIP=NO
ENVIRONMENT_VARIABLES=/DDECSOJ/ADAvrs/ENVVARS.P
/*
/&
* $$ EOJ

Note: TCPIP=NO must always be specified in the APS parameter list, regardless of the
ADARUN TCPIP parameter setting.

Reference the library where the libraries were restored in your Adabas startup procedure:

// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL DDECSOJ,SAG.ADABAS.LIB,2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt

And add the libraries to the LIBDEF chain:(be sure SAGLIB.APSvrsnn is referenced before
SAGLIB.APSvrs):

// DLBL APSLIB,SAG.APS.LIB,2099/365,SD
// EXTENT SYS006,vvvvvv,1,0,ssss,tttt
// LIBDEF PHASE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs,...X
DDECSOJ.DDECSOJ, X
APSLIB.APSvrsnn,APSLIB.APSvrs)
// LIBDEF OBJ,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs, X
DDECSOJ.APSvrsnn,DDECSOJ.APSvrs)
// LIBDEF SOURCE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs,... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs, X
APSLIB.APSvrsnn,APSLIB.APSvrs)
// LIBDEF PHASE,CATALOG=SAGLIB.USRLIB

If you are running UES with TCP/IP support, set up the LIBDEF chain as follows (setup of
the WCPvrs and WTCvrs libraries referenced in this chain is described in your Entire Net-
Work documentation):

// DLBL APSLIB,SAG.APS.LIB,2099/365,SD
// EXTENT SYS006,vvvvvv,1,0,ssss,tttt
// LIBDEF PHASE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs,...X
SAGLIB.WCPvrs,SAGLIB.WTCvrs,... X
DDECSOJ.DDECSOJ, X
APSLIB.APSvrsnn,APSLIB.APSvrs)
// LIBDEF OBJ,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs, X
SAGLIB.WCPvrs,SAGLIB.WTCvrs,... X

127Installation for z/VSE

Enabling Universal Encoding Support (UES) for Your Adabas Nucleus

DDECSOJ.APSvrsnn,DDECSOJ.APSvrs)
// LIBDEF SOURCE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs,... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs, X
APSLIB.APSvrsnn,APSLIB.APSvrs)

7 Modify the ENVVARS.P file, adding the following line in the APSvrs library:

* This member contains Environment Variables used by APS and
* APS-based applications.
*
ECSOBJDIR=FILE://DDECSOJ/DDECSOJ

8 Run the ADADEF utility setting UES=YES:

* $$ JOB JNM=ADADEF,CLASS=0,DISP=D,LDEST=(,xxxxxx)
* $$ LST CLASS=A,DISP=D
// JOB ADADEF EXECUTE THE ADABAS VERSION 7 UTILITY ***DEF***
// OPTION LOG,PARTDUMP
*
// EXEC PROC=ADALIB
*
// EXEC PROC=ADAFIL
*
// EXEC ADARUN,SIZE=ADARUN
*
ADARUN PROG=ADADEF,MODE=SINGLE,SVC=svc,DEVICE=dddd,DBID=nnnn
/*
ADADEF MODIFY UES=YES
/*
/&
* $$ EOJ

9 Start the database.

You should see the following message:

ENTIRE CONVERSION SERVICES INITIALIZED

Installation for z/VSE128

Enabling Universal Encoding Support (UES) for Your Adabas Nucleus

7 Enabling Direct TCP/IP Access (ADATCP) to Your Adabas

Nucleus
■ Installing TCP/IP Support for the Adabas Nucleus .. 130

129

TCP/IP access to the database is performed using Entire Net-Work components. The Entire Net-
Work sublibraries must be made accessible in the LIBDEF PHASE,SEARCH declaration.

Installing TCP/IP Support for the Adabas Nucleus

The following Entire Net-Work LIBR sublibraries are distributed to provide TCP/IP support:

SAGLIB.WCPvrs
SAGLIB.WTCvrs

To install these libraries:

1 Create a z/VSE sublibrary for the Entire Net-Work components.

* $$ JOB JNM=CRUWCP,CLASS=0,DISP=D,LDEST=(,xxxxxx)
* $$ LST CLASS=A,DISP=D
// JOB LIBRDEF
// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL SAGLIB,'SAG.ADABAS.LIB',2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt
// EXEC LIBR
DEFINE L=WCPvrs R=Y
DEFINE L=WTCvrs R=Y
/*
/&
* $$ EOJ

Check that the SVC used by ADALNK in this example is correct. It can be set up by modifying
the LNKGBLS source. After this, it may be necessary to modify the translation tables. For
more information, read LNKUES for Data Conversion, elsewhere in this section. These can
be assembled and linked using the LNKLNK8 sample job.

2 Create a z/VSE sublibrary for APS.

* $$ JOB JNM=CRUAPS,CLASS=0,DISP=D,LDEST=(,xxxxxx)
* $$ LST CLASS=A,DISP=D
// JOB LIBRDEF
// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL DDECSOJ,'SAG.APS.LIB',2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt
// EXEC LIBR
DEFINE L=APSvrsnn R=Y
DEFINE L=APSvrs R=Y
/*
/&
* $$ EOJ ↩

Installation for z/VSE130

Enabling Direct TCP/IP Access (ADATCP) to Your Adabas Nucleus

3 Restore the UES code pages sublibrary to this file. Refer to the Software AG Product Delivery
Report for the file positions on the distribution tape.

* $$ JOB JNM=RESTECS,DISP=D,CLASS=0,LDEST=(,xxxxxx)
* $$ LST DISP=D,CLASS=A
// JOB RESTECS
// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL ADALIB,'SAG.ADABAS.LIB',2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt
// ASSGN SYS006,cuu
// MTC REW,SYS006
// EXEC LIBR,PARM='MSHP'
RESTORE SUBLIB=SAGLIB.ADAvrsCS:ADALIB.DDECSOJ -
TAPE=SYS006 -
LIST=YES -
REPLACE=YES
/*
// MTC REW,SYS006
// ASSGN SYS006,UA
/&
* $$ EOJ

4 Restore the APS sublibraries. Refer to the Software AG Product Delivery Report for the file pos-
itions on the distribution tape.

* $$ JOB JNM=RESTAPS,DISP=D,CLASS=0,LDEST=(,xxxxxx)
* $$ LST DISP=D,CLASS=A
// JOB RESTAPS
// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL APSLIB,'SAG.APS.LIB',2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt
// ASSGN SYS006,cuu
// MTC REW,SYS006
// EXEC LIBR,PARM='MSHP'
RESTORE SUBLIB=SAGLIB.APSvrsnn:ADALIB.APSvrsnn -

 TAPE=SYS006 -
 LIST=YES -
 REPLACE=YES
 /*
 // MTC REW,SYS006
 // ASSGN SYS006,UA
 /&
 * $$ EOJ ↩

5 Repeat the previous step for SAGLIB.APSvrs, SAGLIB.WCPvrs and SAGLIB.WTCvrs.

6 Modify the Adabas startup JCL, adding the APS environment parameter list for UES after
the ADARUN parameters:

131Installation for z/VSE

Enabling Direct TCP/IP Access (ADATCP) to Your Adabas Nucleus

ADARUN
ADARUN
/*
TCPIP=NO
ENVIRONMENT_VARIABLES=/DDECSOJ/ADAvrs/ENVVARS.P
/*
/&
* $$ EOJ

Note: TCPIP=NO must always be specified in the APS parameter list, regardless of the
ADARUN TCPIP parameter setting.

Reference the library where the libraries were restored in your Adabas startup procedure:

// ASSGN SYS005,DISK,VOL=vvvvvv,SHR
// DLBL DDECSOJ,SAG.ADABAS.LIB,2099/365,SD
// EXTENT SYS005,vvvvvv,1,0,ssss,tttt

And add the libraries to the LIBDEF chain:(be sure SAGLIB.APSvrsnn is referenced before
SAGLIB.APSvrs):

// DLBL APSLIB,SAG.APS.LIB,2099/365,SD
// EXTENT SYS006,vvvvvv,1,0,ssss,tttt
// LIBDEF PHASE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs,...X
DDECSOJ.DDECSOJ, X
APSLIB.APSvrsnn,APSLIB.APSvrs)
// LIBDEF OBJ,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs, X
DDECSOJ.APSvrsnn,DDECSOJ.APSvrs)
// LIBDEF SOURCE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs,... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs, X
APSLIB.APSvrsnn,APSLIB.APSvrs)
// LIBDEF PHASE,CATALOG=SAGLIB.USRLIB// LIBDEF ↩
PHASE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs,...X
SAGLIB.WCPvrs,SAGLIB.WTCvrs,... X
DDECSOJ.DDECSOJ,... X
APSLIB.APSvrsnn,APSLIB.APSvrs)

If you are running UES with TCP/IP support, set up the LIBDEF chain as follows (setup of
the WCPvrs and WTCvrs libraries referenced in this chain is described in your Entire Net-
Work documentation):

Installation for z/VSE132

Enabling Direct TCP/IP Access (ADATCP) to Your Adabas Nucleus

// DLBL APSLIB,SAG.APS.LIB,2099/365,SD
// EXTENT SYS006,vvvvvv,1,0,ssss,tttt
// LIBDEF PHASE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs,...X
SAGLIB.WCPvrs,SAGLIB.WTCvrs,... X
DDECSOJ.DDECSOJ, X
APSLIB.APSvrsnn,APSLIB.APSvrs)
// LIBDEF OBJ,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs, X
SAGLIB.WCPvrs,SAGLIB.WTCvrs,... X
DDECSOJ.APSvrsnn,DDECSOJ.APSvrs)
// LIBDEF SOURCE,SEARCH=(SAGLIB.USRLIB,SAGLIB.ADAvrs,... X
SAGLIB.AOSvrs,SAGLIB.ADEvrs,SAGLIB.ACFvrs, X
APSLIB.APSvrsnn,APSLIB.APSvrs)

7 Modify the ENVVARS.P file, adding the following line in the APSvrs library:

* This member contains Environment Variables used by APS and
* APS-based applications.
*
ECSOBJDIR=FILE://DDECSOJ/DDECSOJ

8 Run the ADADEF utility setting UES=YES:

* $$ JOB JNM=ADADEF,CLASS=0,DISP=D,LDEST=(,xxxxxx)
* $$ LST CLASS=A,DISP=D
// JOB ADADEF EXECUTE THE ADABAS VERSION 7 UTILITY ***DEF***
// OPTION LOG,PARTDUMP
*
// EXEC PROC=ADALIB
*
// EXEC PROC=ADAFIL
*
// EXEC ADARUN,SIZE=ADARUN
*
ADARUN PROG=ADADEF,MODE=SINGLE,SVC=svc,DEVICE=dddd,DBID=nnnn
/*
ADADEF MODIFY UES=YES
/*
/&
* $$ EOJ

9 Activate UES support in the Adabas nucleus. This is accomplished by ensuring that the fol-
lowing parameters have been set:

■ The ADARUN TCPIP parameter has been set to "YES".
■ The ADARUN TCPURL parameter specifies an appropriate URL for the appropriate TCP/IP

application programming interface (API).

133Installation for z/VSE

Enabling Direct TCP/IP Access (ADATCP) to Your Adabas Nucleus

Additional information is provided in Installing UES Support for the Adabas Nucleus, else-
where in this section.

An example job for the nucleus can be found in the supplied library element ADANUCT(X).

10 Start the database.

You should see the following message:

ENTIRE CONVERSION SERVICES INITIALIZED

Installation for z/VSE134

Enabling Direct TCP/IP Access (ADATCP) to Your Adabas Nucleus

8 Device and File Considerations

■ Supported z/VSE Device Types .. 136
■ FBA Devices ... 137
■ ECKD Devices .. 138
■ Adding New Devices .. 138
■ User ZAPs to Change Logical Units ... 142

135

This section provides information regarding device- and system file-related topics, such as:

■ installing on fixed-block addressing (FBA) devices;
■ defining new devices; and
■ changing defaults for sequential files.

Supported z/VSE Device Types

The standard characteristics of the device types supported by Adabas are summarized in the fol-
lowing table. The Adabas block sizes and RABNs per track are provided for each component for
each device type.

NotesTEMP/SORT/DSIMCLOGPLOG/RLOGWORKDATAASSOTrks/CylDevice

18944:3718944:3718944:3718944:3718944:371536:3771512

8608:44096:84096:84096:84092:82016:15123375

27476:64820:95492:85492:84820:92004:19153380

28904:65064:105724:95724:95064:102544:18153390

4096:84096:84096:84096:84096:82048:16155121

8192:48192:48192:48192:48192:44096:8155122

16384:216384:216384:216384:216384:24096:8155123

22920:222920:222920:222920:222780:24092:10158345

19076:59076:59076:59076:56356:73476:12158380

19076:59076:511476:411476:49076:53476:12158381

123468:223468:223468:223468:223292:24092:10158385

18904:68904:610706:510706:56518:83440:14158390

118452:38904:613682:413682:410796:54136:12158391

118452:318452:318452:318452:312796:44092:12158392

127990:227990:227990:227990:227644:24092:12158393

222920:222920:211148:411148:47164:64092:10159345

Notes:

1. The 8350, 838n, and 839n are pseudo-device types physically contained on a 3350, 3380, and
3390 device, respectively, but for which some or all of the standard block sizes are larger.

2. The IBM RAMAC 9394 emulates devices 3390 Model 3, 3380 Model K, or 9345 Model 2.

Installation for z/VSE136

Device and File Considerations

FBA Devices

All device definitions for Adabas control statements for FBA disks should specify one of the fol-
lowing devices types:

■ FBA SCSI devices: Specify a device type of 1512.
■ Virtual FBA devices: Specify device types of 5121, 5122, or 5123.

Note: Virtual FBA devices are not permanent and are, therefore, only suitable for holding
temporary or work data sets.

Choose a device type based on the block sizes given in the following tables:

SCSI Device Types:

CLOG blkszPLOG blkszSort blkszTemp blkszWork blkszData blkszAsso blkszDev Type

18944189441894418944189441894415361512

Virtual FBA Device Types:

CLOG blkszPLOG blkszSort blkszTemp blkszWork blkszData blkszAsso blkszDev Type

40964096409640964096409620485121

81928192819281928192819240965122

16384163841638416384163841638440965123

The pseudo-cylinder for each of these devices has a different number of blocks as described below:

■ 1512 cylinder = FBA blocks/777
■ 5121 cylinder = FBA blocks/960
■ 5122 cylinder = FBA blocks/960
■ 5123 cylinder = FBA blocks/960

The size definitions for FBA devices on Adabas control statements can specify the number of
pseudo-cylinders or the number of Adabas blocks (RABNs).

Make sure that the starting block and the number of FBA blocks on the z/VSE EXTENT statement
are on an FBA pseudo-cylinder boundary, which is based on the device as specified above for each
Adabas file comprising the database:

■ An SCSI pseudo-cylinder (device type 1512) comprises 777 elements of 512 bytes each, or 388K
per pseudo-cylinder. For example, an EXTENT entry for a ten cylinder SCSI device might consist
of:

137Installation for z/VSE

Device and File Considerations

// EXTENT SYS123,,,,777,7770

■ A virtual FBA pseudo-cylinder comprises 960 elements of 512 bytes each, or 480K per pseudo-
cylinder. For example, an EXTENT entry for a ten cylinder virtual FBA device might consist of:

// EXTENT SYS123,,,,512,5120

ECKD Devices

Adabas supports ECKD DASD devices such as the IBM 3390 with the 3990 controller and ESCON
channels.

During an open operation, ADAIOR determines which DASD device types are being used for the
ASSO, DATA, WORK, SORT, and TEMP data sets. At that time, Adabas issues an informational
message for each Adabas database component, where type is the component:

ADA164 ... FILE DDtype HAS BEEN OPENED IN ckd/eckd MODE - RABN SIZE rabn-size

Note: Software AG strongly recommends that you avoid mixing ECKD and CKD extents
within a file, because the file will be opened only in CKD mode. Mixing extents could degrade
performance when file I/O operations are performed.

Adding New Devices

Support for new device types that include user-defined block sizes can be implemented in ADAIOR
by modifying one of the table of device-constant entries (TDCEs) reserved for this purpose.

A TDCE is X'40' bytes long and the first free TDCE can be identified by X'0000' in its first two bytes
(TDCDT).

For Adabas Version 8, TDCE entries are in the ADAIOS CSECT TDCON, which corresponds to
ESDID 1EC in object module IOSVSE.OBJ. The first TDCE entry is at offset X‘19398' into
IOSVSE.OBJ; the first free TDCE entry is at offset X‘19898'.

This information is valuable when adding an additional TDCE entry, and when zapping the object
module and relinking ADAIOS under z/VSE.

The z/VSE MSHP control statements to add a TDCE entry at the first free entry thus take the form:

Installation for z/VSE138

Device and File Considerations

// EXEC MSHP
CORRECT 9001-ADA-00-vrs :AD99998
AFFECTS MODULE=IOSVSE,ESDID=1EC
ALTER 19898 0000 : nnnn
ALTER 1989A 0000 : nnnn
.
. (etc.)
.
INVOLVES LINK=LNKIOS
/*

■ Information to be Zapped into the First Free ADAIOR TDCE
■ General Rules for Defining Device Block Sizes
■ Using 3480/3490 Tape Cartridge Compression (IDRC)

Information to be Zapped into the First Free ADAIOR TDCE

The information in the following tables must be zapped into the first free TDCE. The rules described
in the section General Rules for Defining Device Block Sizes must be followed when changing the
TDCE.

ContentsOffsetLabel

Device type in unsigned decimal (X'3385'), must be numeric, and unique among all
TDCEs.

00TDCDT

Constant set number: must be uniquely chosen from the values X'2B' or X'2E'.02TDCKSN

The flag bit must be set—TDCFCKD (X'40') for CKD devices, TDCFECKD (X'60') for
ECKD devices or TDCFECKD (X'61') for ECKD, not user defined devices.

03TDCF

(see note)04TDCDT1

(see note)05TDCDT2

(see note)06TDCDT3

(see note)07TDCDT4

Refer to the TDCMSBS default table in Maximum Sequential Block Size in the Adabas
z/OS installation instructions for more system- and device-related information.

08TDCMSBS

Number of tracks per cylinder.0ATDCTPC

Number of FBA blocks or PAM pages per track (if TDCFFBA is set).0CTDCCIPT

Number of bytes per FBA block or PAM page (2048 if TDCFFBA is set).0ETDCBPCI

Number of Associator blocks per track.10TDCABPT

Associator block size.12TDCABS

Number of FBA blocks or PAM pages per Associator block (if TDCFFBA is set).14TDCACPB

Number of Data Storage blocks per track.16TDCDBPT

Data Storage block size.18TDCDBS

Number of FBA blocks or PAM pages per Data Storage block (if TDCFFBA is set).1ATDCDCPB

Number of Work blocks per track.1CTDCWBPT

139Installation for z/VSE

Device and File Considerations

ContentsOffsetLabel

Work block size.1ETDCWBS

Number of FBA blocks or PAM pages per Work block (if TDCFFBA is set).20TDCWCPB

Number of TEMP or SORT blocks per track22TDCTSBPT

TEMP or SORT block size.24TDCTSBS

Number of FBA blocks or PAM pages per TEMP or SORT block (if TDCFFBA is set).26TDCTSCPB

Number of PLOG blocks per track.28TDCPBPT

PLOG block size.2ATDCPBS

Number of FBA blocks or PAM pages per PLOG block (if TDCFFBA is set).2CTDCPCPB

Number of CLOG blocks per track.2ETDCCBPT

CLOG block size.30TDCCBS

Number of FBA blocks or PAM pages per CLOG block (if TDCFFBA is set).32TDCCCPB

Note: One or more z/VSE codes for identifying the device type: PUB device type from
PUBDEVTY (refer to the IBM MAPDEVTY macro).

General Rules for Defining Device Block Sizes

The following general rules must be followed when defining Adabas device block sizes:

■ All block sizes must be multiples of 4.
■ A single block cannot be split between tracks (that is, the block size must be less than or equal

to the track size).

Block Rules for ASSO/DATA

The following rules are applicable for Associator and Data Storage:

■ Associator block size must be greater than one-fourth the size of the largest FDT, and should
be large enough to accept definitions in the various administrative blocks (RABN 1 - 30) and in
the FCB;

■ The block sizes for Associator and Data Storage should be a multiple of 256, less four bytes (for
example, 1020) to save Adabas buffer pool space.

■ The Associator and Data Storage block sizes must be at least 32 less than the sequential block
size.

■ Data Storage block size must be greater than: (maximum compressed record length + 10 + padding
bytes).

Block Rule for WORK

The following rule is applicable for Work::

Installation for z/VSE140

Device and File Considerations

■ The Work block size must be greater than either (maximum compressed record length + 110)
or (Associator block size + 110), whichever is greater.

Block Rules for TEMP/SORT

The following rules are applicable for TEMP and SORT:

■ Block sizes for TEMP and SORT must be greater than the block sizes for Data Storage.
■ If ADAM direct addressing is used:

size > (maximum compressed record length + ADAM record length + 24);
size > 277 (maximum descriptor length + 24)

TEMP and SORT are generally read and written sequentially; therefore, the larger the TEMP/SORT
block size, the better.

Block Rule for PLOG or SIBA

The following rules are applicable for PLOG and SIBA:

■ The PLOG or SIBA block size must be greater than either (maximum compressed record length
+ 110) or (Associator block size + 110), whichever is greater.

■ It is also recommended that PLOG/SIBA be defined larger than the largest Data Storage block
size. This avoids increased I/O caused by splitting Data Storage blocks during online ADASAV
operations.

The block size (BLKSIZE) of a sequential file is determined as follows:

if PTTF(JCL) then BLKSIZE is taken from file assignment statement or label;
if PTTMBS > 0 then BLKSIZE = PTTMBS;
if PTTMBS = 0 then
if tape then BLKSIZE = 32760;
else BLKSIZE = TDCMSBS;
else if BLKSIZE in file assignment statement or label then use it;
if PTTF(OUT) then
if QBLKSIZE > 0 then BLKSIZE = QBLKSIZE;
if tape then BLKSIZE = 32760;
else BLKSIZE = TDCMSBS;
else error.

Note: QBLKSIZE is an ADARUN parameter.

141Installation for z/VSE

Device and File Considerations

Using 3480/3490 Tape Cartridge Compression (IDRC)

The use of hardware compression (IDRC) is not recommended for protection log files. The ADARES
BACKOUT function will run much longer when processing compressed data. Also, the BACKOUT
function is not supported for compressed data.

User ZAPs to Change Logical Units

The specified zaps should be added to the module IOSVSE / phase ADAIOS, not to the specified
utility.

PTT entries are in the ADAIOS CSECT I_PTT. The first PTT entry is at offset 0 into CSECT I_PTT.

When zapping the object module and relinking ADAIOS, note that the ADAIOS CSECT I_PTT
corresponds to ESDID 000D in object module IOSVSE.OBJ. The offset of CSECT I_PTT into
IOSVSE.OBJ is X'1000'.

REPVERPTT OffsetDefault SYS NumberFileUtility

1Axx1A0A6B8SYS010SIINADACDC

82xx820C008SYS012AUSBAADACMP

82xx8215018SYS021AUSB1

82xx8216028SYS022AUSB2

82xx8217038SYS023AUSB3

82xx8218048SYS024AUSB4

82xx8219058SYS025AUSB5

82xx821A068SYS026AUSB6

82xx821B078SYS027AUSB7

82xx821C088SYS028AUSB8

82xx821D098SYS029AUSB9

18xx180A0A8SYS010EBAND

82xx820E0B8SYS014FEHL

82xx820A698SYS010FILEA (OUTPUT)ADACNV

12xx120A6A8SYS010FILEA (INPUT)

82xx820C0D8SYS012FILEA (OUTPUT)ADALOD

02xx020C0E8SYS012FILEA (INPUT)

1Axx1A0A0F8SYS010EBAND

1Axx1A10108SYS016ISN

82xx8211118SYS017LOB (OUTPUT)

1Axx1A11128SYS017LOB (INPUT)

Installation for z/VSE142

Device and File Considerations

REPVERPTT OffsetDefault SYS NumberFileUtility

82xx820E138SYS014OLD

1Axx1A0A148SYS010EBANDADAMER

82xx820C158SYS012LOGADANUC

C2xxC20E168SYS014SIBA

82xx820A178SYS010FILEA (OUTPUT)ADAORD

12xx120A188SYS010FILEA (INPUT)

1Axx1A0E198SYS014PLOGADAPLP

80xx800A6C8SYS010OUTADARAI

1Axx1A0A1A8SYS010SAVEADAREP

1Axx1A0B1B8SYS011PLOG

1Axx1A141C8SYS020SIINADARES

2Cxx2C141D8SYS020BACK

82xx82151E8SYS021SIAUS1

82xx82161F8SYS022SIAUS2

82xx820B208SYS011SAVE1ADASAV

82xx820C218SYS012SAVE2

82xx820D228SYS013SAVE3

82xx820E238SYS014SAVE4

82xx820F248SYS015SAVE5

82xx8210258SYS016SAVE6

82xx8211268SYS017SAVE7

82xx8212278SYS018SAVE8

82xx8215288SYS021DUAL1

82xx8216298SYS022DUAL2

82xx82172A8SYS023DUAL3

82xx82182B8SYS024DUAL4

82xx82192C8SYS025DUAL5

82xx821A2D8SYS026DUAL6

82xx821B2E8SYS027DUAL7

82xx821C2F8SYS028DUAL8

1Axx1A0B308SYS011REST1

12xx120C318SYS012REST2

12xx120D328SYS013REST3

12xx120E338SYS014REST4

12xx120F348SYS015REST5

12xx1210358SYS016REST6

143Installation for z/VSE

Device and File Considerations

REPVERPTT OffsetDefault SYS NumberFileUtility

12xx1211368SYS017REST7

12xx1212378SYS018REST8

1Axx1A1E388SYS030FULL

1Axx1A1F398SYS031DEL1

1Axx1A203A8SYS032DEL2

1Axx1A213B8SYS033DEL3

1Axx1A223C8SYS034DEL4

1Axx1A233D8SYS035DEL5

1Axx1A243E8SYS036DEL6

1Axx1A253F8SYS037DEL7

1Axx1A26408SYS038DEL8

1Axx1A0A418SYS010PLOG

82xx820B428SYS011EXPA1ADASEL

82xx820C438SYS012EXPA2

82xx820D448SYS013EXPA3

82xx820E458SYS014EXPA4

82xx820F468SYS015EXPA5

82xx8210478SYS016EXPA6

82xx8211488SYS017EXPA7

82xx8212498SYS018EXPA8

82xx82134A8SYS019EXPA9

82xx82144B8SYS020EXPA10

82xx82154C8SYS021EXPA11

82xx82164D8SYS022EXPA12

82xx82174E8SYS023EXPA13

82xx82184F8SYS024EXPA14

82xx8219508SYS025EXPA15

82xx821A518SYS026EXPA16

82xx821B528SYS027EXPA17

82xx821C538SYS028EXPA18

82xx821D548SYS029EXPA19

82xx821E558SYS030EXPA20

1Axx1A0A568SYS010SIIN

82xx820A578SYS019TRAADATRA

820xx820A588SYS010OUT1ADAULD

820xx820B598SYS011OUT2

Installation for z/VSE144

Device and File Considerations

REPVERPTT OffsetDefault SYS NumberFileUtility

820xx820C5A8SYS012ISN

1Axx1A0D5B8SYS013SAVE

1Axx1A0E5C8SYS014PLOG

1Axx1A1E5D8SYS030FULL

1Axx1A1F5E8SYS031DEL1

1Axx1A205F8SYS032DEL2

1Axx1A21608SYS033DEL3

1Axx1A22618SYS034DEL4

1Axx1A23628SYS035DEL5

1Axx1A24638SYS036DEL6

1Axx1A25648SYS037DEL7

1Axx1A26658SYS038DEL8

820xx820E668SYS014FEHLADAVAL

145Installation for z/VSE

Device and File Considerations

146

9 Installing The AOS Demo Version

■ AOS Demo Installation Procedure ... 148
■ Installing AOS with Natural Security .. 149
■ Setting the AOS Demo Version Defaults ... 150

147

This section describes how to install the Adabas Online System (AOS) demo version. To install
AOS on systems that use Software AG's System Maintenance Aid (SMA), refer to the section of
this document describing installation of Adabas in your operating environment. For information
about SMA, see the System Maintenance Aid documentation.

The AOS demo version requires the same Natural version as the corresponding release of Adabas
Online System. Please refer to the appropriate Adabas Online System documentation to determine
its Natural requirements.

Note: To install the full version of Adabas Online System (AOS), read the Adabas Online
System documentation.

AOS Demo Installation Procedure

To install the AOS demo version without the System Maintenance Aid

1 For a Com-plete or CICS environment, link the correct object module with the Natural TP
nucleus.

If a split Natural nucleus is to be installed, the AOSASM module must be linked to the shared
portion of the nucleus and not to the thread portion.

2 Optionally, set the AOS defaults. Parameters that control the operation of AOS can be set at
installation time by changing the defaults in the Natural program AOSEX1 found in library
SYSAOSU. For complete information about these parameters, read Setting the AOS Demo
Version Defaults, elsewhere in this guide.

3 After setting the AOS defaults in the previous step, copy the AOSEX1 member and its com-
panion member P-AOSEX1 from the SYSAOSU library to the SYSAOS library. The programs
for AOS are stored in library SYSAOS, and these members and the correct AOSEX1 parameters
for your environment must be present in SYSAOS for AOS to run.

The SYSAOSU library is provided to ensure that AOS settings (including the AOSEX1 settings)
in your running AOS installation are not overwritten when you upgrade or apply maintenance
to your AOS code. Whenever you upgrade or apply maintenance, you must ensure that the
AOSEX1 member in the SYSAOSU library is updated appropriately and copied (with P-AO-
SEX1) to the SYSAOS library.

4 Perform a Natural INPL.

The medium containing the AOS demo version contains an INPL-formatted data set in Nat-
ural. The programs for the AOS demo version are stored in library SYSAOS.

The distributed INPL jobs (both the sample jobs and the SMA-generated jobs) that you use
to load the Adabas INPL library load it in a date-sensitive manner. In other words, the load
process will now check the dates of your existing INPL library and will not allow older

Installation for z/VSE148

Installing The AOS Demo Version

members to overwrite members with newer dates. However, if you use your own Natural
batch jobs to load the Adabas INPL library, you will need to modify them to be date-sensitive.
To do this, specify the following CMSYNIN primary command input in your job (this setting
assumes the Natural input parameters in the job are specified in comma-delimited mode, or
IM=D):

B,,,,,,,Y

The "B" setting indicates that the INPL action should load everything; the next six fields
(comma-delimited) are defaults, the eighth field is specified as "Y" to indicate that dates in
the INPL library should be checked, and the ninth field is not included in the specification
because the default for that field will be used. For more information about Natural CMSYNIN
input, refer to your Natural documentation.

5 Load the ADA error messages using the Natural utility ERRLODUS.

The error messages are stored in an ERRN-formatted data set included on the installation
medium.

See the Natural Utilities documentation for information about the ERRLODUS utility.

6 Execute the AOS demo version by logging on to the application library SYSAOS and entering
the command MENU.

Installing AOS with Natural Security

Natural Security must be installed before implementing Adabas Online System Security. See the
Adabas Security Manual for more information. For information about installing Natural Security
for use with AOS Security, see the Natural Security Manual.

Natural Security includes the ability to automatically close all open databases when the Natural
command mode's LOGON function of the AOS demo version is invoked.

Use the following procedure if Natural Security is installed in your environment.

1 Define at least the library SYSAOS to Natural Security

Software AG recommends you define this library and any others you may define as protected.

2 Specify the startup program for SYSAOS as MENU

Do not specify a startup program name for the other libraries.

149Installation for z/VSE

Installing The AOS Demo Version

Setting the AOS Demo Version Defaults

Parameters that control the operation of Adabas Online System can be set at installation time by
changing the defaults in the Natural program AOSEX1. Once you have altered the parameters as
needed for your installation, copy the AOSEX1 and P-AOSEX1 members from the SYSAOSU library
to the SYSAOS library.

The table below lists the parameters and possible values.

DescriptionDefaultValid ValuesParameter

Administration level: Allows access to certain functions
that can cause error conditions in the ADABAS

60-9ADMIN-LEVEL

environment. When set to 8 or higher, it allows the
"CATCH RSP-CODE" direct command to occur, and when
set to 9, it allows the "ZAP" function to be issued.

Display AOS end-of-session message?YYes (Y) or No (N)AOS-END-MSG

Display AOS logo?NYes (Y) or No (N)AOS-LOGO

Batch job cond code: When AOS is executing from a batch
job and has an error condition, and if BATCH-ERROR is

NYes (Y) or No (N)BATCH-ERROR

set to "Y", AOS will terminate with a condition code of
8. This function will be fully implemented over time, as
all AOS programs must be modified for this.

Space control by block or cylinderBCylinder (C) or
Block (B)

BLK-CYL

Pass-through control for invalid AOS
commands:
"N" passes invalid commands to Natural;
"A" displays an error message for invalid
commands.

ANatural (N) or AOS
(A)

CMD-INT

Display extended checkpoint list? A value of "N" displays
the normal list; a value of "Y" displays the extended list.

NNo (N) or Yes (Y)CPEXLIST

Reserved for future use.------EX1-A1

Reserved for future use.------EX1-N3

UTI or EXF file lock exception. A value of E specifies an
EXF exception; a value of U specifies a UTI exception.

UE or UEXF-UTI

AC read converter block threshold value1500-999999MAX-AC-IOS

Maximum displayed user queue elements1001-99999999MAXANZ

Critical extent threshold for listing file. This parameter
applies to Adabas 7.4 (or earlier) installations.

41-5NR-EXT

Critical extent threshold for listing file. This parameter
applies to Adabas 8 (or later) installations.

501-99NR-EXT2

Installation for z/VSE150

Installing The AOS Demo Version

DescriptionDefaultValid ValuesParameter

Report function: NR-PERCENT is a threshold value for
the display of critical files concerning the percentage full

891-99NR-PERCENT

of the extents reached in AC/UI/NI/DS table type. A value
greater than NR-PERCENT will be highlighted.

Remove user queue element?NYes (Y) or No (N)PURGE-UQE

Keep deleted file's FDT?NYes (Y) or No (N)SAVEFDT

Statistics-gathering interval, in seconds601-9999 secondsSTATINTV

Control display for TID in "display user queue" function:
"B" = binary TID display;
"A" = alpha TID display;
"I" = alpha for A-Z/0-9, otherwise binary.

IB, A, ITID-DISPLAY

Display user queue elements with activity during the last
"n" seconds.

0 (no
limitations)

0-99999999 secondsTIMELA

Display either job name or time-in in "display command
queue" function. A value of "T" indicates that time-in

JT or JTIN-JOBN

should be displayed; a value of "J" indicates that the job
name should be displayed.

To change the defaults, you must edit the Natural AOSEX1 program and make the changes directly
within the program listing in the defaults area, which looks as follows:

 .
 .
 .
DEFINE DATA PARAMETER USING P-AOSEX1
END-DEFINE
*
* SET THE DEFAULTS
*
ADMIN-LEVEL = '6' (Allows access to certain functions that can cause error ↩
conditions in the ADABAS environment)
AOS-END-MSG = 'Y' (Display end-of-session message)
AOS-LOGO = 'Y' (Adabas Online System logo display-set to 'N' for no logo ↩
display)
BATCH-ERROR = 'N' (If BATCH-ERROR is set to "Y", AOS will terminate with a ↩
condition code of 8 if an error occurs.)
BLK-CYL = 'B' (Space allocation default-set to 'C' for cylinders)
CMD-INT = 'A' (Pass invalid Adabas commands to (N)atural, or intercept (A))
CPEXLIST = 'N' (Checkpoint list control-set to 'Y' for extended checkpoint list)
NR-EXT2 = '50' (ADA V8 critical extent threshold. Range: 1-99)
EXF-UTI = 'U' (File locking exception-set to 'E' to except files in EXF status)
MAXANZ = 100 (Maximum user queue elements displayed. range: 1 - 99,999,999 ↩
elements)
NR-EXT = 4 (ADA V7 critical extent threshold. Range: 1, 2, 3, 4, or 5)
NR-PERCENT = '89' (NR-PERCENT is a threshold value for the display of critical ↩
files)

151Installation for z/VSE

Installing The AOS Demo Version

MAX-AC-IOS = 150 (AC read converter block threshold)
PURGE-UQE = 'N' (Remove element from user queue. Pre-5.1 default is "Y")
SAVEFDT = 'N' (Keep old FDT for SAVE operation-set to 'Y' to save FDTs)
STATINTV = 60 (Statistic-gathering time. range: 1 - 9999)
TID-DISPLAY = 'I' (TID display control: B=binary, A=alpha, I=normally alpha, ↩
special characters as binary)
TIMELA = 0 (Include activity in last 'n' seconds. range: "all" (0) -last ↩
99,999,999 seconds)
TIN-JOBN = 'J' (Command queue display-"J" for job name, "T" for "time in ↩
queue")
*
END

Installation for z/VSE152

Installing The AOS Demo Version

10 Installing The Recovery Aid (ADARAI)

■ ADARAI Installation Overview .. 154
■ ADARAI Installation Procedure ... 154

153

This section describes how to install the Adabas Recovery Aid (ADARAI).

ADARAI Installation Overview

To install the Adabas Recovery Aid, it is necessary to:

■ allocate the recovery log;
■ customize the skeleton job streams for your installation (see theAdabasOperationsdocumentation

for more detailed information);
■ update the necessary nucleus run/utility job control to include the Recovery Aid data definition

statements;
■ install the Adabas/ADARAI utility configuration; and
■ run ADARAI PREPARE and a save operation to begin a logging generation.

ADARAI Installation Procedure

Except for customizing the skeleton job stream, the specific installation steps are as follows:

To install the Adabas Recovery Aid:

1 Allocate the recovery logs

Define and format the RLOGR1 file.

Use the ADAFRM RLOGFRM function to format the RLOGs.

2 Add data definition statements

Add an RLOGR1 DLBL statement to the nucleus job stream and to any utilities that update
or save the database and thus write to the RLOG files.

Whenever these utilities are executed while ADARAI is active in the database (that is, after
the PREPARE function has been executed), the RLOGR1 DLBL statement must be included.

The following utilities update the database and therefore write to the RLOG:

Installation for z/VSE154

Installing The Recovery Aid (ADARAI)

ADAORD (all STORE and REORDER functions)
ADALOD (all functions)
ADAINV (all functions)
ADARES REGENERATE/BACKOUT database
ADASAV RESTORE (all functions) and RESTPLOG
ADADEF NEWWORK

The following utilities save the database and therefore write to the RLOG:

ADASAV SAVE (all functions)
ADAORD RESTRUCTURE
ADAULD

The following utility functions have an impact on recovery and therefore write to the RLOG:

ADARES PLCOPY/COPY
ADASAV MERGE

Additionally, the Adabas nucleus writes to the RLOG during startup and termination. The
nucleus also writes checkpoint information to the RLOG when ADADBS or Adabas Online
System functions are processed, ensuring these events are known to ADARAI for recovery
processing.

3 Install ADARAI on the database.

Execute the ADARAI PREPARE function. ADARAI PREPARE updates the ASSO GCBs to
indicate that ADARAI is installed. It also creates a control record on the RLOG file with ne-
cessary ADARAI information (number of generations, RLOG size, etc.).

4 Create the first ADARAI generation.

Execute ADASAV SAVE (database) to start the logging of RLOG information. See the Adabas
Utilities documentation for more information.

Once ADARAI is active in the database, protection logging must always be used.

155Installation for z/VSE

Installing The Recovery Aid (ADARAI)

156

11 Adabas Dump Formatting Tool (ADAFDP)

■ ADAFDP Function ... 158
■ ADAFDP Output .. 158

157

This section describes the use of the Adabas dump formatting tool ADAFDP.

ADAFDP Function

ADAFDP is the address space dump formatting module. During abnormal shutdown of the
Adabas nucleus, this module receives control to format and display information that should help
you analyze the reason for the error.

During a nucleus shutdown, ADAMPM determines the shutdown reason. If the reason is abnormal
termination, ADAMPM loads the ADAFDP module into the address space prior to the 20 call to
the Adabas SVC. ADAFDP subsequently receives control to format nucleus information.

If ADAFDP cannot be loaded, message ADAF03 is written to the console and abnormal shutdown
continues.

ADAFDP Output

Much of the information formatted by ADAFDP is self-explanatory. However, because the type
and amount of information depends on the shutdown situation, a summary of ADAFDP output
is provided in this section.

■ ADAFDP Messages
■ Pool Abbreviations
■ User Threads
■ Command Information
■ RABN Information

ADAFDP Messages

DescriptionMessage

The message is displayed on the console and written to DDPRINT at the
point where the format begins and terminates.

ADAH51 / ADAH52

If an Abend code and program status word (PSW) were saved in
ADAMPM by the Adabas ESTAE, ADAFDP displays these. In addition,

ADAMPM ABEND CODE and
PSW

ADAFDP determines the module whose entry point best fits the PSW and
calculates the offset within that module. If the ADAMPM abend code and
PSW are zero, ADAFDP does not format this information.

ADAFDP formats and displays the location of each of the Adabas nucleus
modules resident in the address space.

ADABAS MODULE
LOCATIONS

ADAFDP formats and displays the location of any user exit loaded with
the Adabas nucleus.

ADDRESS LOCATIONS FOR
USER EXITS

Installation for z/VSE158

Adabas Dump Formatting Tool (ADAFDP)

DescriptionMessage

ADAFDP formats and displays the location of any hyperdescriptor exit
loaded with the Adabas nucleus. Hyperdescriptor exits 10-31 are displayed
as A-U, respectively.

ADDRESS LOCATIONS FOR
HYPEREXITS

Registers 0-7/8-F, which are saved in ADANC0. ADAFDP determines if
any of these registers contains an address that points at a nucleus pool in

ADANC0 STANDARD
REGISTER SAVE AREA

storage. If yes, ADAFDP indicates which pool and snaps storage at that
address. If the register is 12 and it points to a user thread, ADAFDP snaps
the entire thread.

Registers 0-7/8-F, which are saved in ADANC0 as a result of a user abend.
ADAFDP determines if any of these saved registers contains an address

ADANC0 ABEND SAVE
REGISTERS

that points at a nucleus pool in storage. If yes, ADAFDP indicates which
pool and snaps storage at that location. If the saved register is 12 and it
points to a user thread, ADAFDP snaps the entire thread.

Registers 0-7/8-F, which were saved in ADAMPM by the Adabas ESTAE.
These are the same registers displayed with the ADAM99 message.

ADAMPM SAVE REGISTERS

ADAFDP determines if any of these saved registers contains an address
that points within a nucleus pool in storage. If yes, ADAFDP indicates
which pool and snaps storage at that location.

ADAFDP determines begin/ending address locations for pools and tables
for the Adabas nucleus. These addresses are presented for easy location
in the actual dump. See Pool Abbreviations for more information.

BEGIN / ENDING ADDRESSES
OF POOLS / TABLES

ADAFDP formats the physical threads including threads 0, -1, and -2. The
number of lines depends on the value of NT. The thread that was active

ADABAS THREADS

at the time of the abnormal termination (if any) is marked by a pointer “-
->”.

For any of the threads -2 to NT that had assigned work to perform,
ADAFDP formats and displays information about the status of that thread.
See User Threads for more information:

USER THREADS

ADAFDP scans the command queue and formats information for any
command found in the queue. See Command Information for more
information.

FOLLOWING COMMANDS
WERE FOUND IN THE CMD
QUEUE

ADAFDP check the integrity of several pools within the Adabas nucleus
address space. If an error is detected within that pool, ADAFDP indicates

POOL INTEGRITY CHECK

which pool and what type of error was encountered. In addition, ADAFDP
snaps storage at the location where the error was detected.

ADAFDP scans the buffer pool header for RABNs that were active or
being updated. See RABN Information for more information.

FOLLOWING RABNS / FILES
ACTIVE IN BUFFER POOL

Registers 0-7/8-F found saved in ADAIOR at this offset. If ADAFDP
determines that any of these register values is pointing within an Adabas
pool, it snaps storage at that location.

ADAIOR REGS FOUND AT
OFFSET X'080'

Registers 0-7/8-F found saved in ADAIOR at this offset. If ADAFDP
determines that any of these register values is pointing within an Adabas
pool, it snaps storage at that location.

ADAIOR REGS FOUND AT
OFFSET X'0C0'

159Installation for z/VSE

Adabas Dump Formatting Tool (ADAFDP)

DescriptionMessage

The ICCB address to which this offset in ADAIOR points.ICCB POINTED FROM X'A0' IN
IOR

Format of ADAIOR trace table; same as that found with the ADAM99
message.

ADAI22 ADAIOR TRACE
TABLE

Pool Abbreviations

DescriptionPool Abbreviation

Log areaLOG

Adabas nucleus operator command processing areaOPR

Address of the command queue, which is formatted later by ADAFDPCQ

Internal command queueICQ

Thread tableTT

Software AG internal area 1IA1

Session file tableSFT

File usage tableFU

File update tableFUP

I/O table for asynchronous buffer flushingIOT

PLOG area for asynchronous buffer flushingPL2

Table of posted ETsPET

TpostTPT

TplatzTPL

Unique descriptor poolUQP

Upper hold queueUHQ

Hold queueHQ

Upper user queueUUQ

User queueUQ

Format poolFP

File HILF elementFHF

Protection areaPA

Table of ISNsTBI

Table of sequential searchesTBQ

Work part 3 space allocation tableWK3

Software AG internal area 2IA2

Work part 2 space allocation tableWK2

VOLSER tableVOL

Work block I/O areaWIO

Installation for z/VSE160

Adabas Dump Formatting Tool (ADAFDP)

DescriptionPool Abbreviation

Free space table work areaFST

User threadsUT

Work poolWP

Work block asynchronous I/O areaAW2

I/O pool related to asynchronous buffer flushIOP

Buffer pool importance header upper 2IU2

Buffer pool importance header upper 1IU1

Buffer pool upper header 2BU2

Buffer pool upper header 1BU1

Address location of the buffer pool header, information from the buffer pool header is
formatted later by ADAFDP

BH

Address location of the physical start of the buffer poolBP

User Threads

DescriptionInformation

-2 to NTThread Number

Indicates the current status of the thread:Status

■ *Active*: the currently active thread
■ In Use: thread has been assigned work
■ Waiting For I/O: waiting for a block not in buffer pool
■ Waiting For RABN: waiting for a RABN already in use
■ Waiting For Work-2 Area Block: similar to waiting for I/O
■ Waiting Workpool Space: provides number of bytes in decimal
■ Ready To Run: waiting to be selected for execution

The Adabas command being executedCMD

Response code (if any)Response Code

File number for this commandFile Number

Internal sequence number for this commandISN

Subroutine response code (if any)Sub. Rsp

Last RABN required by command processing, in decimalLast RABN for I/O

Last RABN type (A - ASSO, D - DATA)Type

Command queue element address for this commandCQE Addr

Job name for user who executed this commandUser Jobname

Internal Adabas ID for user who executed this commandITID

161Installation for z/VSE

Adabas Dump Formatting Tool (ADAFDP)

DescriptionInformation

User ID for user who executed this commandUser

28-byte ID for user who owns this commandUnique global ID

buffer addresses for: control block, format buffer, search buffer, value buffer, ISN bufferBuffer Addresses

Buffer Lengths FL: format buffer length
RL: record buffer length
SL: search buffer length
VL: value buffer length
IL: ISN buffer length

The first 144 bytes of the user thread are snappedSnap Thread

Command Information

DescriptionInformation

The address location of this CQECQE Address

Command queue flag bytes:F

■ First Byte: General Purpose Flag
■ X'80': User buffers in service partition, region, address space
■ X'40': ET command waiting for 12 call
■ X'20': Waiting for 16 call
■ X'10': 16 call required
■ X'08': Attached buffer
■ X'04': Attached buffer required
■ X'02': X-memory lock held (z/OS only)

■ Second Byte: Selection Flag
■ X'80': In process
■ X'40': Ready to be selected
■ X'20': Search for UQE done
■ X'10': UQE found
■ X'08': Not selectable during BSS=x'80' status
■ X'04': Not selectable during ET-SYNC
■ X'02': Waiting for space
■ X'01': Waiting for ISN in HQ

The command typeCMD

The file number for this commandFile Number

Job name for the userJob Name

UQE Address of users UQE, if searched for and foundAddr User

Installation for z/VSE162

Adabas Dump Formatting Tool (ADAFDP)

DescriptionInformation

Address location of user's ASCBAddr User ASCB

Address location of user's ECB (in user's address space)Addr ECB

Address of users UB (in user's address space)Addr User UB

Address location of user's parameter address listAddr User PAL

ACA field of CQE.CQE ACA

RQST field of CQECQE RQST

Address of the attached buffer/parameter address list (PAL) for CMDAbuf/Pal

28-byte unique user ID for this commandComm Id

RABN Information

DescriptionInformation

The RABN number in decimalRABN Number

Type of block (A - ASSO, D - DATA)Type

BP header element flag byte:Flag

■ AKZ X'40': Active indicator
■ UKZ X'20': Update indicator
■ RKZ X'10': Read indicator
■ XKZ X'04': Access is waiting for block
■ YKZ X'02': Update is waiting for

block
■ SKZ X'01': Write indicator

File number that owns this blockFile

Address location of block in storage.Address

163Installation for z/VSE

Adabas Dump Formatting Tool (ADAFDP)

164

12 Maintaining A Separate Test Environment

This section describes a method to set up a temporary test copy of phases updated by a program
fix. The method described is intended as an example. Its relevance depends on the installation
standards you use for library maintenance.

The example scenario uses MSHP in a single z/VSE machine to control both the standard production
Adabas library and an additional testing library or sublibrary used to validate recently applied
program fixes.

After restoring the standard Adabas library and defining it to MSHP, an additional test library or
sublibrary can be defined.

Object modules can then be copied from the standard library as required, and controlled with
MSHP using a different z/VSE system history file. Using the same component ID as for the
standard environment (9001-ADA-00-vrs) ensures that the ZAP source remains common to both
environments.

The test version of a phase is then invoked by placing the test library or sublibrary at the head of
the LIBDEF PHASE search chain.

The setup jobs required to implement this environment are described in detail below. Note that
the first three steps form part of the standard installation process.

to setup the separate test environment:

1 Define standard Adabas library.

For a sample job, see the section Installing the Adabas Release Tape.

2 Restore standard Adabas library.

For a sample job, see the section Installing the Adabas Release Tape.

3 Define standard Adabas to MSHP.

165

Note: This job uses the history file identified by the IJSYSHF label in the z/VSE standard
label area.

// EXEC MSHP
ARCHIVE ADAvrs
COMPRISES 9001-ADA-00
RESOLVES 'SOFTWARE AG - ADABAS.ADAvrs'
ARCHIVE 9001-ADA-00-vrs
RESIDENCE PRODUCT=ADAvrs -
PRODUCTION=SAGLIB.adannn -
GENERATION=SAGLIB.adannn
/*

where vrs is the Adabas version, revision, and system maintenance (SM) level and adannn is
the sublibrary name for standard Adabas.

4 Create test sublibrary and copy object modules to it.

// DLBL SAGLIB,'adabas.adannn.library'
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL=volser,SHR
// EXEC LIBR
DEFINE SUBLIB=SAGLIB.adatst
CONNECT SAGLIB.adannn:SAGLIB.adatst
COPY *.OBJ LIST=Y REPLACE=Y
/*

where adabas.adannn.library is the physical name of the standard Adabas library, volser
is the volume on which library resides, adannn is the sublibrary name for standard Adabas,
and adatst is the sublibrary name for testing Adabas.

5 Create additional system history file for test environment and define test Adabas to it.

// ASSGN SYS020,DISK,VOL=volhis,SHR
// EXEC MSHP
CREATE HISTORY SYSTEM
DEFINE HISTORY SYSTEM EXTENT=start:numtrks -
UNIT=SYS020 -
ID='sag.test.system.history.file'
ARCHIVE ADAvrs
COMPRISES 9001-ADA-00
RESOLVES 'SOFTWARE AG - ADABAS Vvrs'
ARCHIVE 9001-ADA-00-vrs
RESIDENCE PRODUCT=ADAvrs -
PRODUCTION=SAGLIB.adatst -
GENERATION=SAGLIB.adatst
/*

Installation for z/VSE166

Maintaining A Separate Test Environment

where volhis is the volume on which test system history file resides, start is the start of extent
on which test system history file resides, numtrks is the length of extent on which test system
history file resides, sag.test.system.history.file is the physical name of test system history
file, vrs is the Adabas version, and adatst is the sublibrary name for testing Adabas.

6 Apply zap to test environment.

// DLBL IJSYSHF,'sag.test.system.history.file'
// EXTENT SYS020,,,,start,numtrks
// ASSGN SYS020,DISK,VOL=volhis,SHR
// DLBL SAGLIB,'adabas.adannn.library'
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL=volser,SHR
// EXEC MSHP
CORRECT 9001-ADA-00-vrs : ADnnnnn
AFFECTS MODULE=modname
ALTER offset hexold : hexnew
INVOLVES LINK=lnkname
/*

where sag.test.system.history.file is the physical name of test system history file, start
is the start of extent on which test system history file resides, numtrks is the length of extent
on which test system history file resides, volhis is the volume on which test system history
file resides, adabas.adannn.library is the physical name of the standard Adabas library,
volser is the volume on which library resides, vrs is the Adabas version, nnnnn is the Adabas
fix number, modname is the Adabas object module to be zapped and then relinked, offset is
the hexadecimal offset to the beginning of the zap, hexold is the verify data for the zap, hexnew
is the replace data for the zap, and lnkname is the link book for the phase affected.

7 Invoke updated test phase.

// DLBL SAGLIB,'adabas.adannn.library'
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL=volser,SHR
// LIBDEF PHASE,SEARCH=(SAGLIB.adatst,SAGLIB.adannn,...)
...

where adabas.adannn.library is the physical name of the standard Adabas library, volser
is the volume on which library resides, adatst is the sublibrary name for testing Adabas, and
adannn is the sublibrary name for standard Adabas.

8 Apply zap to standard environment.

Note: This job uses the history file identified by the IJSYSHF label in the z/VSE standard
label area.

167Installation for z/VSE

Maintaining A Separate Test Environment

// DLBL SAGLIB,'adabas.adannn.library'
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL=volser,SHR
// EXEC MSHP
CORRECT 9001-ADA-00-vrs : ADnnnnn
AFFECTS MODULE=modname
ALTER offset hexold : hexnew
INVOLVES LINK=lnkname
/*

where adabas.adannn.library is the physical name of the standard Adabas library, volser
is the volume on which library resides, vrs is the Adabas version, nnnnn is the Adabas fix
number, modname is the Adabas object module to be zapped and then relinked, offset is the
hexadecimal offset to the beginning of the zap, hexold is the verify data for the zap, hexnew
is the replace data for the zap, and lnkname is the link book for the phase affected.

9 Invoke standard phase.

// DLBL SAGLIB,'adabas.adannn.library'
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL=volser,SHR
// LIBDEF PHASE,SEARCH=(SAGLIB.adannn,...)
...

where adabas.adannn.library is the physical name of the standard Adabas library, volser
is the volume on which library resides, and adannn is the sublibrary name for standard Adabas.

Installation for z/VSE168

Maintaining A Separate Test Environment

13 Translation Tables

■ Adabas EBCDIC to ASCII and ASCII to EBCDIC ... 170
■ Entire Net-Work EBCDIC to ASCII and ASCII to EBCDIC .. 171

169

This section describes the translation tables which are supplied by Adabas.

Adabas EBCDIC to ASCII and ASCII to EBCDIC

cUES2ASC DS 0F
c* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
c DC x'000102033F093F7F3F3F3F0B0C0D0E0F' 0.
c DC x'101112133F3F083F18193F3F3F1D3F1F' 1.
c DC x'3F3F1C3F3F0A171B3F3F3F3F3F050607' 2.
c DC x'3F3F163F3F1E3F043F3F3F3F14153F1A' 3.
c DC x'203F3F3F3F3F3F3F3F3F3F2E3C282B3F' 4.
c DC x'263F3F3F3F3F3F3F3F3F21242A293B5E' 5.
c DC x'2D2F3F3F3F3F3F3F3F3F7C2C255F3E3F' 6.
c DC x'3F3F3F3F3F3F3F3F3F603A2340273D22' 7.
c DC x'3F6162636465666768693F3F3F3F3F3F' 8.
c DC x'3F6A6B6C6D6E6F7071723F3F3F3F3F3F' 9.
c DC x'3F7E737475767778797A3F3F3F5B3F3F' A.
c DC x'3F3F3F3F3F3F3F3F3F3F3F3F3F5D3F3F' B.
c DC x'7B4142434445464748493F3F3F3F3F3F' C.
c DC x'7D4A4B4C4D4E4F5051523F3F3F3F3F3F' D.
c DC x'5C3F535455565758595A3F3F3F3F3F3F' E.
c DC x'303132333435363738393F3F3F3F3F3F' F.
c* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
END

cUES2EBC DS 0F
c* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
c DC x'00010203372D2E2F1605250B0C0D0E0F' 0.
c DC x'101112133C3D322618193F27221D351F' 1.
c DC x'405A7F7B5B6C507D4D5D5C4E6B604B61' 2.
c DC x'F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F' 3.
c DC x'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6' 4.
c DC x'D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D' 5.
c DC x'79818283848586878889919293949596' 6.
c DC x'979899A2A3A4A5A6A7A8A9C06AD0A107' 7.
c DC x'6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F' 8.
c DC x'6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F' 9.
c DC x'6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F' A.
c DC x'6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F' B.
c DC x'6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F' C.
c DC x'6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F' D.
c DC x'6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F' E.
c DC x'6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F6F' F.
c* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
END

Installation for z/VSE170

Translation Tables

Entire Net-Work EBCDIC to ASCII and ASCII to EBCDIC

NW2ASC DS 0F
* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
DC X'000102030405060708090A0B0C0D0E0F' 0.
DC X'101112131415161718191A1B1C1D1E1F' 1.
DC X'00000000000000000000000000000000' 2.
DC X'00000000000000000000000000000000' 3.
DC X'200000000000000000005B2E3C282B5D' 4.
DC X'2600000000000000000021242A293B5E' 5.
DC X'2D2F00000000000000007C2C255F3E3F' 6.
DC X'000000000000000000603A2340273D22' 7.
DC X'00616263646566676869000000000000' 8.
DC X'006A6B6C6D6E6F707172000000000000' 9.
DC X'007E737475767778797A00005B000000' A.
DC X'000000000000000000000000005D0000' B.
DC X'7B414243444546474849000000000000' C.
DC X'7D4A4B4C4D4E4F505152000000000000' D.
DC X'5C7E535455565758595A000000000000' E.
DC X'303132333435363738397C00000000FF' F.
* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F

NW2EBC DS 0F
* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
DC X'000102030405060708090A0B0C0D0E0F' 0.
DC X'101112131415161718191A1B1C1D1E1F' 1.
DC X'405A7F7B5B6C507D4D5D5C4E6B604B61' 2.
DC X'F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F' 3.
DC X'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6' 4.
DC X'D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D' 5.
DC X'79818283848586878889919293949596' 6.
DC X'979899A2A3A4A5A6A7A8A9C06AD0A100' 7.
DC X'00000000000000000000000000000000' 8.
DC X'00000000000000000000000000000000' 9.
DC X'00000000000000000000000000000000' A.
DC X'00000000000000000000000000000000' B.
DC X'00000000000000000000000000000000' C.
DC X'00000000000000000000000000000000' D.
DC X'00000000000000000000000000000000' E.
DC X'000000000000000000000000000000FF' F.
* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
END

171Installation for z/VSE

Translation Tables

172

Index

A
ACINAMES module, 65, 75
ACIOPT table, 65
Adabas

CICS execution unit, 64
installation for z/VSE, 5

Adabas Bridge for DL/I support, 109
Adabas Bridge for VSAM support, 109
Adabas CICS task-related user exit (TRUE)

module name, 119
Adabas Online System (AOS)

AOSEX1 program parameters, 150
modify default parameter values, 150
setting defaults, 150

Adabas Review hub ID support, 116
Adabas Review release, 117
Adabas Review support, 116
Adabas security interface parameter, 118
Adabas SVC number parameter, 118
Adabas Transaction Manager and Adabas Fastpath exit support,
110
ADACICS module, 65, 76
ADACICT module, 75
ADADCI module, 65
ADATCP support

enabling in z/VSE, 129
ADL parameter, 109
ADMIN-LEVEL parameter, 150
AOS-END-MSG parameter, 150
AOS-LOGO parameter, 150
AOSEX1 user exit, 150

setting defaults, 150
AVB parameter, 109

B
BATCH-ERROR parameter, 150
BLS-CYL parameter, 150
BS2000 IDT common memory pool name, 112
BS2000 memory pool user bound setting, 112

C
CICS application stub, 65, 76
CICS command-level link routine name, 111
CICS execution unit, 64
CICS installation options table, ACIOPT, 65, 74

CICS multiple region option, 113
CICS names module, ACINAMES, 65, 75
CICS purge transaction parameter, 115
CICS Resource Manager Interface parameter, 117
CICS user ID creation method, 113
CICS XWAIT setting, 122
CITSNM parameter, 110
CMD-INT parameter, 150
CNAME parameter, 68
command retry exit name, 117
COR parameter, 110
CPEXLIST parameter, 150
CSECT or DSECT generation, 111

D
DBID parameter, 105
DBID/SVC routing table, 110-111

source code, 103
DBID2 parameter, 106
DBSVCTN parameter, 110
default target database ID, 112
defaults, 150
DSECT data prefix parameter, 115
DYNDBSVC parameter, 111

E
ENTPT parameter, 77, 111
ENTRY=FINAL statement, 70
ENTRY=GLOBAL statement, 68
ENTRY=GROUP statement, 69
EX1-A1 parameter, 150
EX1-N3 parameter, 150
EXF-UTI parameter, 150

G
GBLNAME parameter, 111
GEN parameter, 68, 111
GTNAME parameter, 66, 70

I
IDTNAME parameter, 112
IDTUGRP parameter, 112
IMQNAME parameter, 69
IMSGDEST parameter, 68
installation

173

for z/VSE, 5

L
length of user data passed to user exit 4, 112
LGBLSET macro

ADL parameter, 109
AVB parameter, 109
CITSNM parameter, 110
COR parameter, 110
DBSVCTN parameter, 110
DYNDBSVC parameter, 111
ENTPT parameter, 111
GBLNAME parameter, 111
GEN parameter, 111
IDTNAME parameter, 112
IDTUGRP parameter, 112
LOGID parameter, 112
LUINFO parameter, 112
LUSAVE parameter, 112
LX1NAME parameter, 113
LX2NAME parameter, 113
modifying, 108
MRO parameter, 113
NETOPT parameter, 113
NTGPID parameter, 114
NUBS parameter, 114
OPSYS parameter, 114
PARMTYP parameter, 115
PRE parameter, 115
PURGE parameter, 115
RENT parameter, 116
RETRYX parameter, 116
REVHID parameter, 116
REVIEW parameter, 116
REVREL parameter, 117
RMI parameter, 117
RTXNAME parameter, 117
RVCLNT parameter, 117
SAF parameter, 118
SAP parameter, 118
SAPSTR parameter, 118
SVCNO parameter, 118
TPMON parameter, 119
TRUENM parameter, 119
UBPLOC parameter, 119
UBSTIME parameter, 120
UBTYPE parameter, 120
UES parameter, 121
USERX1 parameter, 121
USERX2 parameter, 121
XWAIT parameter, 122

link globals module name, 111
link globals table, 77
LOGID parameter, 112
LUINFO parameter, 112
LUSAVE parameter, 112
LX1NAME parameter, 113
LX2NAME parameter, 113

M
MACINS macro

description, 66

example, 66
syntax, 66

MACIOPT macro
ENTRY=FINAL statement, 70
ENTRY=GLOBAL statement, 68
ENTRY=GROUP statement, 69
example, 70
syntax, 67

macros
MACINS, 66

MAX-AC-IOS parameter, 150
MAXANZ parameter, 150
MDBSVC macro

parameters, 105
statement types, 104
TYPE=FINAL statement syntax, 105
TYPE=GEN statement syntax, 105
TYPE=INIT statement syntax, 105
using, 103

MNTRUE parameter, 69
MRO parameter, 113
multiple CICS TRUE support

overview, 64

N
Natural group ID, 114
NETOPT parameter, 113
NR-EXT parameter, 150
NR-PERCENT parameter, 151
NR1-N3 parameter, 150
NTGPID parameter, 114
NUBS parameter, 114

O
operating system parameter, 114
OPSYS parameter, 106, 114

P
parameter list area, 115
PARMTYP parameter, 115
PRE parameter, 115
PREFIX parameter, 106
PURGE parameter, 115
PURGE-UQE parameter, 151

R
reentrant globals module flag, 116
RENT parameter, 116
retry command exit flag, 116
RETRYX parameter, 116
REVHID parameter, 116
REVIEW parameter, 116
REVREL parameter, 117
RMI parameter, 117
routing Adabas calls, 99
RTXNAME parameter, 117
RVCLNT parameter, 117

Installation for z/VSE174

Index

S
SAF parameter, 118
SAP ID string parameter, 118
SAP parameter, 118
SAP user ID generation support parameter, 118
SAPSTR parameter, 118
SAVEFDT parameter, 151
setting AOS defaults, 150
STATINTV parameter, 151
SVC parameter, 107
SVC routing

by database ID, 99
SVCNO parameter, 118

T
TABNAME parameter, 107
target database ID

default, 112
task-related user exit (TRUE), 75
TCP/IP access (ADATCP)

enabling in z/VSE, 129
TID-DISPLAY parameter, 151
TIMELA parameter, 151
TIN-JOBN parameter, 151
TP monitors

CICS application stub, 65
CICS execution unit, 64
CICS installation options table, ACIOPT, 65
CICS names module, ACINAMES, 65
MACINS macro, 66

TP operating environment parameter, 119
TPMON parameter, 119
TRUENAME parameter, 66
TRUENM parameter, 75, 77, 119
TYPE=FINAL statement

MDBSVC macro, 104
syntax, 105

TYPE=GEN statement
MDBSVC macro, 104
syntax, 105

TYPE=INIT statement
MDBSVC macro, 104
syntax, 105

U
UBPLOC parameter, 119
UBSTIME parameter, 120
UBTYPE parameter, 120
UES parameter, 121
Universal Encoding Support (UES)

enabling in z/VSE, 123
universal encoding support parameter, 121
user block

pool allocation parameter, 119
scan time parameter, 120
type parameter, 120

user blocks created by CICS link routine, 114
user exit 1 flag, 121
user exit 1 module name, 113
user exit 2 flag, 121
user exit 2 module name, 113

user exit 4
length of user data passed, 112

user exits
AOSEX1, 150

user save area for LUEXIT1 and LUEXIT2, 112
USERX1 parameter, 121
USERX2 parameter, 121

X
XWAIT parameter, 122

Z
z/VSE

changing logical units, 142
enabling direct TCP/IP (ADATCP) access, 129
enabling UES support, 123

zaps
for changing z/VSE logical units, 142

175Installation for z/VSE

Index

176

	Installation for z/VSE
	Table of Contents
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Installation for z/VSE
	3 Supported Environments
	4 Installation Procedure
	Installation Checklist
	Contents of the Release Tape
	Preparing to Install Adabas
	Disk Space Requirements for Libraries
	Disk Space Requirements for the Database
	Data Sets Required for UES Support
	Disk Space Requirements for Internal Product Data Sets
	Adabas Nucleus Partition/Address Space Requirements
	Defining the Library
	Restoring the ADAvrs LIBR File
	Using the ADAvrs LIBR File

	Initializing the Adabas Communication Environment
	Installing the Adabas SVC with Turbo Dispatcher Support
	ADASIP Processing
	Running ADASIP
	Finding an Unused SVC
	Loading a Secondary Adabas SVC
	ADASIP Execution Parameters
	OPTION SYSPARM= Statement
	UPSI Statement
	NRIDTES PARM= Option
	REPLACE PARM= Option
	DMPDBID PARM= Option

	ADASIP Runtime Display

	Installing the Adabas Database
	Installing the Release Tape
	Step 1: Copy Data Set COPYTAPE.JOB to Disk
	Step 2: Modify COPYTAPE.JOB on Your Disk
	Step 3: Submit COPYTAPE.JOB

	Prepare the Installation Sample JCS for Editing
	Modify, Assemble, and Link the Adabas Options Table
	IORDOSO Macro Overview
	IORDOSO Macro Parameters
	CDLOAD
	COMPACT
	DISKDEV
	DISKMAN
	DISKSYS
	DISKTYP
	DTFDI
	FBAVRF
	GETMMSG
	JBXEMSG
	JBXIMSG
	JOBEXIT
	PFIXRIR
	PRTDSYS
	PRTRSYS
	RAIDASG
	RAITASG
	SORTPGM
	SYS000O
	TAPEDEV
	TAPEMAN
	TAPESYS
	TAPETYP
	VSAMDEV
	VSAMSEQ
	VSAMSYS
	Additional Parameters Used for Internal Control Only

	Catalog Procedures for Defining Libraries and the Database
	Database Installation Steps
	Step 1. Allocate and format the DEMO database.
	Step 2. Define the global database characteristics.
	Step 3. Load the demonstration (demo) files.
	Step 4. Install the product license file.
	Step 5. Start the Adabas nucleus and test the Adabas communications.
	Step 6. Test Adabas partition communications.
	Step 7. Load the Adabas Online System, if used.
	Step 8. Terminate the Adabas nucleus.
	Step 9. Back up the database.
	Step 10. Insert the ADARUN defaults.
	Step 11. Install the required TP link routines for Adabas.

	Migrating an Existing Database
	Logical Unit Requirements
	Job Exit Utility
	Installation and Initialization
	Librarian Input Override Processing
	Activating Adabas Use of Job Exit Processing
	Using the Job Exit Utility for ADARAI JCS Capture
	Job Exit Storage Requirements
	Optional Console or Printer Messages
	Diagnostic Functions

	Acquiring Storage for the ID Table
	Acquiring Storage for the IIBS Table
	SVC Work Areas
	Displaying Storage Allocation Totals
	Calls from Other Partitions
	Dummy Sequential Files
	Backward Processing of Tapes and Cartridges
	Applying Zaps (Fixes)
	Applying Fixes Using MSHP PATCH
	Applying Fixes Using MSHP CORRECT
	MSHP ARCHIVE
	MSHP CORRECT

	Link Book Update Requirements for Secondary SVC
	Link Book Update Requirements for Running AMODE 24

	Adabas 8 Adalink Considerations
	Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)
	LNKUES for Data Conversion
	ADAUSER Considerations

	Setting Defaults in ADARUN

	5 Installing Adabas with TP Monitors
	Preparing Adabas Link Routines for z/VSE
	High-Level Assembler
	Addressing Mode Assembly Directives
	UES-Enabled Link Routines
	Default or Customized Translation Tables
	Calling LNKUES
	Adabas 8 Jobs for z/VSE Universal Encoding Support
	Disabling UES Support for Adabas 8 Link Routines

	General Considerations for Installing Adabas with CICS
	CICS Release Support
	CICS MRO Environment Requirements
	Sample Resource Definitions
	Requirement for CICS Command Resource Security

	Installing Adabas with CICS under Adabas 8
	The Adabas CICS Application Stub (ADACICS)
	The Adabas CICS Names Module (ACINAMES)
	The Adabas CICS Installation Options Table (ACIOPT)
	The MACINS Macro
	The MACIOPT Macro
	The ENTRY=GLOBAL Statement
	The ENTRY=GROUP Statement
	The ENTRY=FINAL Statement
	Example

	Adabas Task-Related User Exits (TRUEs)
	Supplied Modules
	Installation Procedure Under Adabas 8
	Step 1. Modify the CICS Startup JCS
	Step 2. Prepare the Adabas CICS Installation Options Table
	Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT
	Step 4. Prepare the Adabas CICS Names Module -- ACINAMES
	Step 5. Prepare the Adabas CICS Application Stub -- ADACICS
	Step 6. Prepare the CICS Link Globals Table -- CICSGBL.A)
	Step 7. Assemble and Link-edit the CICS Link Globals Table (ALNKCIC8.X)
	Step 8. Modify CICS Installation Values (DEFADAC.A)
	Step 9. Update the CICS CSD File (DFHCSDUP)
	Step 10. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0
	Step 11. Update, Assemble and Link-edit the Destination Control Table (DCTACI.A)
	Step 12. Start the CICS

	Installing the CICS High-Performance Stub Routine for Adabas 8
	Restrictions and Requirements
	Stub Components
	Installation Overview
	Step 1: Install the LNCSTUB Module
	Edit the ADAGSET Macro
	(Optional) Set the LNCSTUB Entry-Point Alias
	Modify Member JCLLNCS
	Preprocess, Assemble, and Link the LNCSTUB Module
	Make the LNCSTUB Available to Application Programs

	Step 2: (Optional) Install and Execute an IVP
	Install and Execute the Assembler IVP: ALCSIVP
	Install and Execute the COBOL IVP: COBSIVP

	Step 3: Link and Execute the Application Program

	Performance Using LNCSTUB
	Modifying Source Member Defaults (ADAGSET Macro)
	ENTPT: Name of the Adabas CICS Command-Level Link Routine
	LOGID: Default Logical Database ID
	PARMTYP: Area for Adabas Parameter List

	Installing Adabas with Com-plete under Adabas 8
	Installing Adabas with Batch under Adabas 8
	Supplied Modules
	Installing the Batch z/VSE Adabas 8 Link Routine
	Installing the Reentrant Batch z/VSE Adabas 8 Link Routine

	Establishing Adabas SVC Routing by Adabas Database ID
	Installing the Adabas DBID/SVC Routing Feature
	Installing DBID/SVC Routing under z/VSE Batch
	Installing DBID/SVC Routing under CICS

	General Operation
	Using the MDBSVC Macro
	MDBSVC TYPE=INIT Syntax
	MDBSVC TYPE=GEN Syntax
	MDBSVC TYPE=FINAL Syntax
	MDBSVC Parameters

	Modifying Source Member Defaults (LGBLSET Macro) in Version 8
	ADL: Adabas Bridge for DL/I Support
	AVB: Adabas Bridge for VSAM Support
	CITSNM: Adabas CICS TS Queue Name
	COR: SYSCOR Exit Support
	DBSVCTN: DBID/SVC Routing Table
	DYNDBSVC: DBID/SVC Routing Table
	ENTPT: Name of the Adabas CICS Command-Level Link Routine
	GBLNAME: Name of Link Globals Module
	GEN: Generate CSECT or DSECT
	IDTNAME: BS2000 IDT Common Memory Name
	IDTUGRP: BS2000 Memory Pool User Bound
	LOGID: Default Logical Database ID
	LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2
	LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2
	LX1NAME: User Exit 1 Module Name
	LX2NAME: User Exit 2 Module Name
	MRO: Multiple Region Option
	NETOPT: Method Used to Create User ID
	NTGPID: Natural Group ID
	NUBS: Number of User Blocks Created By CICS Link Routine
	OPSYS: Operating System
	PARMTYP: Area for Adabas Parameter List
	PRE: DSECT Data Prefix
	PURGE: Purge Transaction
	RENT: Reentrant Module Flag
	RETRYX: Retry Command Exit Flag
	REVHID: Adabas Review Hub ID Support
	REVIEW: Adabas Review Support
	REVREL: Adabas Review Release
	RMI: Resource Manager Interface
	RTXNAME: Command Retry Exit Name
	RVCLNT: Adabas Review Client Reporting Allowance Setting
	SAF: Adabas Security Interface Flag
	SAP: SAP Application Support
	SAPSTR: SAP ID String
	SVCNO: Adabas SVC number
	TPMON: Operating Environment
	TRUENM: CICS TRUE Name
	UBPLOC: User Block Pool Allocation
	UBSTIME: User Block Scan Time
	UBTYPE: User Block Type
	UES: Universal Encoding Support
	USERX1: User Exit 1 Flag
	USERX2: User Exit 2 Flag
	XWAIT: XWAIT Setting for CICS

	6 Enabling Universal Encoding Support (UES) for Your Adabas Nucleus
	Installing UES Support for the Adabas Nucleus

	7 Enabling Direct TCP/IP Access (ADATCP) to Your Adabas Nucleus
	Installing TCP/IP Support for the Adabas Nucleus

	8 Device and File Considerations
	Supported z/VSE Device Types
	FBA Devices
	ECKD Devices
	Adding New Devices
	Information to be Zapped into the First Free ADAIOR TDCE
	General Rules for Defining Device Block Sizes
	Using 3480/3490 Tape Cartridge Compression (IDRC)

	User ZAPs to Change Logical Units

	9 Installing The AOS Demo Version
	AOS Demo Installation Procedure
	Installing AOS with Natural Security
	Setting the AOS Demo Version Defaults

	10 Installing The Recovery Aid (ADARAI)
	ADARAI Installation Overview
	ADARAI Installation Procedure

	11 Adabas Dump Formatting Tool (ADAFDP)
	ADAFDP Function
	ADAFDP Output
	ADAFDP Messages
	Pool Abbreviations
	User Threads
	Command Information
	RABN Information

	12 Maintaining A Separate Test Environment
	13 Translation Tables
	Adabas EBCDIC to ASCII and ASCII to EBCDIC
	Entire Net-Work EBCDIC to ASCII and ASCII to EBCDIC

	Index

