
Using Stored Procedures and Triggers
Note:
Most if not all these considerations apply to normal SPaTs usage without Adabas Vista too!

General Adabas usage

Transactional usage

General Adabas usage
Commands issued by participating triggers affect the same Adabas client session as the originating client.
It is the responsibility of the designer/programmer (of the originating client and participating trigger) to
make sure Adabas usage does not collide in any way.

For example, it is possible for the originating client program and the participating trigger program to use
the same partitioned, translated or ordinary Adabas file – but this means Adabas Vista will issue
competing OP (or other) for the same session which will impact one or both programs causing
unpredictable and error results.

The programmer must make sure all Adabas activity for these two peers of one session do not interfere
with each other. Adabas Vista goes some way to help with this by making sure collisions do not occur
within the database where the trigger fires ("the home database"), but Vista is unable to help with any
other database access.

Transactional usage
As already explained commands issued by participating triggers (and the original client) act as the same
Adabas session and may affect databases other than the home database. If these involve transactional
commands then this means either or both of the two peers may have transactions in databases beyond the
scope of the home database.

In industry terms this is a distributed transaction. This presents a problem in that only one of the two peers
can control the completion of the transaction (commit or backout) which means the default action is that
all the additional databases modified by the peer that does not control transaction completion are ignored
causing unpredictable and error results – including data integrity issues.

Adabas Vista helps in some way by making sure the distributed parts of the transaction in the peer where
the completion is issued are taken care of, in a serial way (multiple ET or multiple BT commands in
series) but that does not take care of the problem on the other peer side.

The way to address this problem completely is to adopt usage of Adabas Transaction Manager because it
is able to make sure all parts of the distributed transaction caused by both peers are completed safely.
Please refer to the Triggers section of the Programmers’ Guide in the Adabas Transaction Manager
documentation for more information.

It is the responsibility of the designer/programmer to make sure the appropriate processing takes place.
Some possibilities would be:

1

Using Stored Procedures and TriggersUsing Stored Procedures and Triggers

1. Deploy Adabas Transaction Manager so that distributed transactions can be freely used.

2. Make sure only the home database is modified even if Vista translation and partitioning is used by
either or both of the peers.

3. Make sure only one of the peers modifies databases beyond the home database – and at least make
sure Adabas Vista is there to propagate serial ET/BT commands automatically. This does not provide
full data integrity (only Adabas Transaction Manager can accomplish this) but at least most of the
time it will be okay because Adabas is so reliable.

2

Transactional usageUsing Stored Procedures and Triggers

	Using Stored Procedures and Triggers
	General Adabas usage
	Transactional usage

