
Performance and Tuning
This chapter covers the following topics:

ADARUN Parameter Settings

Allocating Work Data Set Space

Using Close (CL) Commands

Deferred Publishing

Tuning Buffer Flushes

Optimizing Global Cache and Lock Areas

Minimizing Communication with Global Areas

Optimizing Block Sizes

ADARUN Parameter Settings
Software AG recommends that you use your existing Adabas ADARUN parameters (or the default values)
for each nucleus in an Adabas cluster, and then tune the values after analyzing the performance of the
cluster.

Session statistics can be used to determine the best settings for each parameter. The statistics can be
displayed using operator commands during the session; the statistics are also printed automatically at the
end of a session or in response to an ADADBS REFRESHSTATS command.

For parameters that allot processing resources to the cluster nuclei (such as NU, NH, LP, etc.), Software
AG recommends that you set them large enough that each individual cluster nucleus could handle the
entire load on the database if the other nuclei were to terminate abnormally.

Allocating Work Data Set Space
Each Adabas cluster nucleus requires its own Work data set to hold its temporary data.

The individual sizes of the different Work parts (1, 2, and 3) as specified by ADARUN parameters such as
LP and LWKP2 can be different among the nuclei; however, the overall size of each Work data set must
be the same, because the total Work size is stored in the Adabas general control block (GCB). Software
AG recommends that you use the same LP and LWKP2 values on each nucleus active for the same
database.

For each nucleus, you need to specify shared access to DD/WORKR1. During an offline or online
recovery, a nucleus may access the Work data sets belonging to other nuclei in the cluster.

1

Performance and TuningPerformance and Tuning

Using Close (CL) Commands
Users are assigned to a nucleus for their entire sessions and should therefore issue Adabas close (CL)
commands as appropriate. The close command ends the user’s session, making the user eligible for
reassignment to another nucleus when the user again issues an Adabas open (OP) command. This allows
Adabas Parallel Services to rebalance the workload over the participating nuclei.

Deferred Publishing
Publication of updated blocks to the global cache area is usually deferred until just before the end of the
associated transaction. Multiple updates to a block may produce only a single write of the block to the
cache rather than a cache write for each update.

The greater the number of database update in parallel transactions, the greater the expected improvement
in performance.

Note:
Deferred publishing creates an asymmetry between users on the update nucleus, who see uncommitted
updates (unless they read with hold), and users on other cluster nuclei, who may or may not see
uncommitted updates.

Redo Pool

ADARUN Parameter LRDP

Redo Pool

Since the write of updated blocks to the cache may fail due to conflicting updates to the same blocks by
other nuclei in the cluster, every cluster nucleus must be capable of redoing the updates it has not yet
written to the cache. The nucleus maintains information about these updates in the "redo pool".

ADARUN Parameter LRDP

The size of the redo pool is specified by the new ADARUN parameter LRDP. The LRDP parameter is
effective only in a cluster nucleus, that is, when a nonzero NUCID is specified.

If LRDP is not specified, the nucleus takes as default the value of the LFIOP parameter. If LRDP is
explicitly set to zero, the nucleus writes each update immediately to the cache.

Different nuclei in the same cluster can have different settings of LRDP. It is also possible, although not
recommended, to run one nucleus with LRDP=0 and a peer nucleus with LRDP>0.

Note:
If one nucleus runs with LRDP=0 and a peer nucleus runs with LRDP>0 and the different cluster nuclei
concurrently update the same Data Storage blocks, incorrect DSST entries may be produced. These are
reported by ADADCK. Such errors are harmless and do not affect the results of the application programs.

The nucleus reports on the use (high watermark) of the redo pool in a shutdown statistic and in the
response to the DRES command from the operator console or from ADADBS OPERCOM.

2

Using Close (CL) CommandsPerformance and Tuning

Tuning Buffer Flushes
When the update load on the database is so high that the buffer flush becomes the bottleneck, you can
improve performance by reducing the duration of buffer flushes.

Instead of starting one I/O per volume, a buffer flush can initially start a predetermined number of I/Os on
each volume and then start a new one when another I/O on the same volume finishes. This occurs
independently on each volume.

The ADARUN parameters LFIOP and FMXIO (see the Adabas Operations documentation for details) can
be used to control buffer flushes. The LFIOP parameter enables asynchronous buffer flush operation and
sets the I/O pool size. The FMXIO parameter sets the limit on the number of I/O operations that can be
started in parallel by LFIOP flush processing.

Effect of ASYTVS Parameter Setting

Dynamically Modifying the FMXIO Parameter Setting

Effect of ASYTVS Parameter Setting

The meaning of the FMXIO parameter is affected by the setting of the ASYTVS parameter:

When ASYTVS=YES (buffer flushes occur by volume), FMXIO specifies the number of I/Os to be
started in parallel on each volume. The minimum and default number is 1; the maximum number is 16. If
you specify a number greater than 16, it is reduced to 16 without returning a message.

When ASYTVS=NO (buffer flushes occur in ascending RABN sequence without regard to the
distribution of the blocks over volumes), the minimum, default, and maximum values continue to be 1, 60,
and 100, respectively.

Dynamically Modifying the FMXIO Parameter Setting

The setting of FMXIO can be modified dynamically using the FMXIO=nn command from the operator
console or the Modify Parameter function of Adabas Online System.

Optimizing Global Cache and Lock Areas
As a user, you must allocate and define sizes that are appropriate to your application needs for the global
cache and lock areas.

This section provides guidelines for determining optimal sizes for these areas based on current experience.

Note:
There may be sites for which these guidelines are not appropriate.

Global Cache Area Size

Global Lock Area Size

3

Performance and TuningTuning Buffer Flushes

Global Cache Area Size

The global cache area must be large enough to retain:

directory elements for all blocks that reside in all the buffer pools; and

enough data elements to keep the changed blocks between buffer flushes (cast-outs).

Directory elements are used to keep track of the cluster members that have a particular block in their
buffer pools so that the block can be invalidated should any member modify it.

If the number of directory elements is insufficient, Adabas Parallel Services reuses existing directory
elements and invalidates the blocks associated with those directory elements, because they can no longer
be tracked. These blocks must then be reread from the database and registered again the next time they are
referenced and validated, even though they did not change.

It is generally better to reassign storage for data elements to keep more ASSO and DATA blocks in the
global cache area than to define too many directory elements in the global cache area. More data elements
than necessary can be used to keep additional blocks to improve the local buffer efficiency.

The number of directory elements need not be greater than the sum of the sizes of all buffer pools divided
by the smallest block size in use for ASSO and DATA.

When connecting to the global cache area during startup, the ADAX57 message reports the number of
directory elements and data elements. The ADARUN parameters DIRRATIO and ELEMENTRATIO
determine the ratio between the number of directory and data elements.

Global Lock Area Size

All nuclei in a database cluster share the global lock area.

Locks are held for a variety of entities, for example unique descriptor values. These lock types tend to
occur with very different frequencies. The amount of lock activity during a session for each lock type is
displayed in the shutdown statistics.

It is often the case that ISN locks show the greatest activity. The sum of high-water marks for NH yields
an upper limit for the number of ISN locks that were held concurrently during the session.

The global lock manager uses a hash table to allocate and find a specific lock entry.

When the global lock manager receives a lock request (for example, to put an ISN of a file into hold
status), it allocates a specific lock entry unless another member of the cluster has already made a
conflicting allocation. A conflicting allocation produces lock contention because another member holds
the same lock. Depending on its type, the lock request is then rejected or remains pending, waiting for the
associated resource to become available.

The minimum lock structure size can be roughly estimated as:

(NU*3 + NH + NT + LDEUQP/16 + MAXFILES*6 + 50) * 400 + 1,000,000 bytes

where MAXFILES is the maximum number of files in the database (set in ADADEF or ADAORD) and
NU, NH, NT, and LDEUQP are the ADARUN parameters of the cluster nuclei. The formula in
parentheses (NU*3 + NH + NT + LDEUQP/16 + MAXFILES*6 + 50) is used to calculate the

4

Global Cache Area SizePerformance and Tuning

minimum number of lock records that the cluster nuclei expect to have available.

Minimizing Communication with Global Areas
Most of the additional processing required for Adabas Parallel Services environments compared to a
single Adabas nucleus involves communication with the global areas.

For this reason, optimizing the performance of an Adabas Parallel Services environment means
minimizing the need for communication with the global areas. It is also important to keep the time
required for each communication as short as possible.

Avoiding the Hold Option

Reducing Direct Interaction with the Global Cache Area

Avoiding the Hold Option

Lock requests usually depend on application requirements. Under data-sharing, the hold option is more
expensive and access with the hold option should be avoided unless records will in fact be updated or
must be protected from concurrent updates.

Reducing Direct Interaction with the Global Cache Area

Cache area requests occur when blocks:

that are referenced do not exist in the local buffer pool;

exist in the local buffer pool but have become invalid due to concurrent updates by other cluster
members or from directory reuse; or

are updated.

The first and second situation require registering and (re)reading the blocks from the global cache area.
This is more expensive than just validating blocks.

The first situation is related to the buffer efficiency in a noncluster environment. In a cluster environment,
buffer efficiency represents the combined effect of the local buffer pool and the global cache area. In order
to reduce the interaction with the global cache, the local buffer pool (LBP) should not be decreased from
what would be used in a noncluster nucleus. A large LBP parameter and the usage of forward index
compression are recommended to improve the buffer efficiency in the local buffer pool.

Optimizing Block Sizes
Although earlier versions of Adabas often worked well with large block sizes, the buffer pool manager
and forward index compression features introduced with Adabas version 7 make smaller block sizes more
attractive, especially in data-sharing mode.

Use the following guidelines when selecting an optimal block size for ASSO and DATA:

5

Performance and TuningMinimizing Communication with Global Areas

Note:
Only general recommendations can be given.

1. Avoid 4-byte RABNs

If the database is not extremely large, avoid 4-byte RABNs as this increases the number of AC
blocks by 33%. When growth considerations are taken into account, this may require larger block
sizes or limit reductions in block size. The same holds true for the maximum compressed record
length.

2. Use forward index compression

Forward index compression can significantly reduce the number of index blocks in a database. Apply
forward index compression to all frequently accessed files (or to all files, regardless of their
frequency of use). Choose the ASSO block size that is as small as possible but large enough to keep
the number of index levels down to 3 or 4.

3. Minimize frequently updated descriptors

When files are updated frequently, the number of blocks that are modified and need to be written to
the global cache area often depends on the number of descriptors that have been defined and
modified during update processing. Support for additional keys whose descriptor values are subject
to frequent modifications becomes even more expensive in a data-sharing environment.

6

Optimizing Block SizesPerformance and Tuning

	Performance and Tuning
	ADARUN Parameter Settings
	 Allocating Work Data Set Space
	Using Close (CL) Commands
	Deferred Publishing
	Redo Pool
	ADARUN Parameter LRDP

	Tuning Buffer Flushes
	Effect of ASYTVS Parameter Setting
	Dynamically Modifying the FMXIO Parameter Setting

	Optimizing Global Cache and Lock Areas
	Global Cache Area Size
	Global Lock Area Size

	Minimizing Communication with Global Areas
	Avoiding the Hold Option
	Reducing Direct Interaction with the Global Cache Area

	Optimizing Block Sizes

