
Field Definition Statements
The field definitions provided as input to ADACMP are used to:

provide the length and format of each field contained in the input record. This enables ADACMP to
determine the correct field length and format during editing and compression.

create the Field Definition Table (FDT) for the file. This table is used by Adabas during the
execution of Adabas commands to determine the logical structure and characteristics of any given
field (or group) in the file.

The following syntax must be followed when entering field definitions. A minimum of one and a
maximum of 3214 definitions may be specified.

Statement Type Syntax

Field and Group

Periodic Group

Collation
descriptor

Hyperdescriptor

Phonetic
descriptor

Subdescriptor

Subfield

Superdescriptor

Superfield

User comments may be entered to the right of each definition. At least one blank must be present between
a definition and any user comments.

1

Field Definition Statements Field Definition Statements

Each of these definition types is described in this chapter.

FNDEF: Field and Group Definition

FNDEF: Periodic Group Definition

COLDE: Collation Descriptor Definition

HYPDE: Hyperdescriptor Definition

PHONDE: Phonetic Descriptor

SUBDE: Subdescriptor Definition

SUBFN: Subfield Definition

SUPDE: Superdescriptor Definition

SUPFN: Superfield Definition

FNDEF: Field and Group Definition
The FNDEF parameter can be used to specify an Adabas field or group definition. The syntax used in
constructing field and group definition entries is:

Level number and name are required. Any number of spaces may be inserted between definition entries.

Each FNDEF parameter is described in this section.

level

name

length

format

occurrences

field options

The MU parameter is documented in field options

level

The level number is a one- or two-digit number in the range 01-07 (the leading zero is optional) used in
conjunction with field grouping. Fields assigned a level number of 02 or greater are considered to be a
part of the immediately preceding group which has been assigned a lower level number.

2

FNDEF: Field and Group DefinitionField Definition Statements

The definition of a group enables reference to a series of fields (may also be only 1 field) by using the
group name. This provides a convenient and efficient method of referencing a series of consecutive fields.

Level numbers 01-06 may be used to define a group. A group may consist of other groups. When
assigning the level numbers for nested groups, no level numbers may be skipped.

In the following example, fields A1 and A2 are in group GA. Field B1 and group GC (consisting of fields
C1 and C2) are in group GB:

FNDEF=’01,GA’ group

FNDEF=’02,A1,...’ elementary or multiple-value field

FNDEF=’02,A2,...’ elementary or multiple-value field

FNDEF=’01,GB’ group

FNDEF=’02,B1,...’ elementary or multiple-value field

FNDEF=’02,GC’ group (nested)

FNDEF=’03,C1,...’ elementary or multiple-value field

FNDEF=’03,C2,...’ elementary or multiple-value field

name

The name to be assigned to the field (or group).

Names must be unique within a file. Names are case-sensitive and must be two characters long: the first
character must be alphabetic; the second character can be either alphabetic or numeric. No special
characters are permitted.

Note:
Lowercase fields will not display correctly (they will be converted to uppercase) if you use the ADARUN
parameter settings MSGCONSL=UPPER, MSGDRUCK=UPPER, or MSGPRINT=UPPER.

The values E0-E9 are reserved as edit masks and may not be used.

Valid Names Invalid Names

AA A (not two characters)

s3 E3 (edit mask)

S3 F* (special character)

wm 6M (first character not alphabetic)

wM

Wm

3

Field Definition Statementsname

length

The length of the field (expressed in bytes). The length value is used to

indicate to ADACMP the length of the field as it appears in each input record; and

define the standard (default) length to be used by Adabas during command processing.

The standard length specified is entered in the FDT and is used when the field is read/updated unless the
user specifies a length override.

The maximum field lengths that may be specified depend on the "format" value:

Format Maximum Length

Alphanumeric (A) 253 bytes

Binary (B) 126 bytes

Fixed Point (F) 8 bytes (always exactly 2, 4, or 8 bytes)

Floating Point (G) 8 bytes (always exactly 4 or 8 bytes)

Packed Decimal (P) 15 bytes

Unpacked Decimal
(U)

29 bytes

Wide-character (W) 253 bytes*

* Depending on the FWCODE attribute value, the maximum byte length of the W field may be less than
253. For example, if the default value of FWCODE is used (that is, Unicode), the maximum length is 252
(2 bytes per character).

Standard length may not be specified with a group name.

Standard length does not limit the size of any given field value unless the FI option is used - see FI: Fixed
Storage . A read or update command may override the standard field length, up to the maximum length
permitted for that format.

If standard length is zero for a field, the field is assumed to be a variable-length field. Variable-length
fields have no standard (default) length. A length override for fixed-point (F) fields can specify a length of
two or four bytes only; for floating-point (G) fields, the override can specify four or eight bytes only.

If a variable-length field is referenced without a length override during an Adabas command, the value in
the field will be returned preceded by a one-byte binary length field (including the length byte itself). This
length value must be specified when the field is updated, and also in the input records that are to be
processed by ADACMP. If the field is defined with the long alpha (LA) option, the value is preceded by a
two-byte binary length field (including the two length bytes).

format

The standard format of the field (expressed as a one-character code):

4

lengthField Definition Statements

A Alphanumeric (left-justified)

B Binary (right-justified, unsigned/positive)

F Fixed point (right-justified, signed, two’s complement notation)

G Floating point (normalized form, signed)

P Packed decimal (right-justified, signed)

U Unpacked decimal (right-justified, signed)

W Wide character (left-justified)

The standard format is used to

indicate to ADACMP the format of the field as it appears in each input record; and

define the standard (default) format to be used by Adabas during command processing. The standard
format specified is entered in the FDT and is used when the field is read/updated unless the user
specifies a format override.

Standard format must be specified for a field. It may not be specified with a group name. When the group
is read (written), the fields within the group are always returned (must be provided) according to the
standard format of each individual field. The format specified determines the type of compression to be
performed on the field.

A fixed-point field is either two, four, or eight bytes long. A positive value is in normal form, and a
negative value in two’s complement form.

A field defined with floating-point format may be either four bytes (single precision) or eight bytes
(double precision) long. Conversion of a value of a field defined as floating point to another format is
supported.

If a binary field is to be defined as a descriptor, and the field may contain both positive and negative
numbers, "F" format should be used instead of "B" format because "B" format assumes that all values are
unsigned (positive).

Like an alphanumeric field, a wide-character field may be a standard length in bytes defined in the FDT,
or variable length. Any non-variable format override for a wide-character field must be compatible with
the user encoding; for example, a user encoding in Unicode requires an even length. Format conversion
from numbers (U, P, B, F, G) to wide-character format is not allowed.

occurrences

The number of occurrences of MU fields that will occur in a record if the MUPEX option is specified.
This is an optional parameter.

field options

Options are specified by the two-character codes. More than one code may be specified (as applicable for
the field). They may be specified in any order, separated by a comma.

5

Field Definition Statementsoccurrences

The available options for field and group definitions are listed in the following table. For more
information about a specific option, click on its name in the table.

Note:
The PE option is another Adabas field option. However, it is available only if you are specifying a
periodic group. For more information, read FNDEF: Periodic Group Definition.

Field
Option

Description

CR The system field value should only be set when the record is inserted
into the Adabas file (it will not be modified when an update operation
occurs). This option can only be specified for a field that is defined
with the SY field option (system fields) and cannot be specified for a
field with the MU field option (multiple value fields).

DE The field is to be a descriptor (key).

DT A date-time edit mask is specified for the binary, fixed point, packed
decimal, or unpacked decimal field.

FI The field is to have a fixed storage length; values are stored without
an internal length byte, are not compressed, and cannot be longer than
the defined field length.

LA This A or W-format variable-length field may contain a value up to
16,381 bytes long.

LB An alphanumeric field may contain up to 2,147,483,643 (about 2 GB)
of data.

MU The field may contain up to about 65,534 values in a single record.

NB Trailing blanks should not be removed (compressed) from the LA or
LB fields.

NC Adabas includes two data definition options, NC and NN, to provide
SQL-compatible null representation for Software AG’s mainframe
Adabas SQL Gateway(ACE) and other Structured Query Language
(SQL) database query languages. For more information about these
options, read Representing SQL Null Value.

With the NC option, the field may contain a null value that satisfies
the SQL interpretation of a field having no value; that is, the field’s
value is not defined (not counted).

With the NN option, the field defined with the NC option must
always have a value defined; it cannot contain an SQL null (not null).

NN

NU Null values occurring in the field are to be suppressed.

NV This A or W-format field is to be processed in the record buffer
without being converted.

SY The field is a system field. This field option identifies the type of
system field.

6

field optionsField Definition Statements

Field
Option

Description

TZ The date-time field value is presented in the user’s local time and
stored in UTC time, allowing for differences in time zones.

UQ The field is to be a unique descriptor; that is, for each record in the
file, the descriptor must have a different value.

XI For this field, the index (occurrence) number is excluded from the
UQ option set for a PE.

CR: Insert-Only System Field

Use the CR option to indicate that the system field value should only be set when a record is inserted and
not when it is updated. The CR field option can only be specified for fields defined with the SY field
option, but cannot be specified for an MU field.

For complete information about system fields, read System Fields.

DE: Descriptor Field Option

DE indicates that the field is to be a descriptor (key). Entries will be made in the Associator inverted list
for the field, enabling the field to be used in a search expression, as a sort key in a FIND command, to
control logical sequential reading, or as the basis for file coupling.

The descriptor option should be used judiciously, particularly if the file is large and the field that is being
considered as a descriptor is updated frequently.

Although the definition of a descriptor field is independent of the record structure, note that if a descriptor
field is not ordered first in a record and logically falls past the end of the physical record, the inverted list
entry for that record is not generated for performance reasons. To generate the inverted list entry in this
case, it is necessary to unload short, decompress, and reload the file; or use an application program to
reorder the field first for each record of the file.

DT: Date-Time Edit Mask Field Option

DT assigns a date-time edit mask to a binary, fixed point, packed decimal, or unpacked decimal field. This
option cannot be specified for fields of other formats.

The syntax of the DT option is:

DT=E(edit-mask-name)

Valid values for edit-mask-name substitutions are described in the following table. It also shows the
required minimum field lengths for the different formats of fields that can specify the DT option; the
length of the field must be large enough to store the date-time values. Detailed discussions of each edit
mask is provided in Date-Time Edit Mask Reference.

Note:
In the table, "YYYY" represents the 4-digit year (1-9999), "MM" represents the 2-digit month (1-12),
"DD" represents the 2-digit day of the month (1-31), "HH" represents the 2-digit hour (0-23), "II"
represents the 2-digit minute within the hour (0-59), "SS" represents the 2-digit second within the minute
(0-59), and "XXXXXX" represents the 6-digit microsecond within the second.

7

Field Definition Statementsfield options

edit-mask-name Description Minimum
Field Length

for Field
Format

B F P U

DATE The date field is in the format Z’ YYYYMMDD’ . 4 4 5 8

TIME The time field is in the format Z’ HHIISS’ . 3 4 4 6

DATETIME The date and time field is in the format
Z’ YYYYMMDDHHIISS’

6 8 8 14

TIMESTAMP The date and time field is in the format
Z’ YYYYMMDDHHIISSXXXXXX’ , with
microsecond precision

-- -- 11 20

NATTIME The time field is in Natural T format (tenths of
seconds since year zero)

6 8 7 13

NATDATE The date field is in Natural D format (days since
year zero)

3 4 4 7

UNIXTIME The time field is in UNIX time_t type format
(seconds since January 1, 1970)

4 4 6 10

XTIMESTAMP The date and time field is in UNIX timestamp
format, with microsecond precision, since January
1, 1970 (UNIXTIME * 10**6 +
microseconds).

8 8 10 18

The following table contains some examples.

8

field optionsField Definition Statements

Example The field contains...

1,SD,8,U,DT=E(DATE) Numeric data in the form Z’YYYYMMDD’.

1,TI,6,U,DT=E(TIME) Numeric time in the form Z’HHIISSD’

1,DT,14,U,DT=E(DATETIME) A value composed of DATE and TIME

1,TS,20,U,DT=E(TIMESTAMP) A value composed of DATETIME plus
microseconds

1,TT,7,P,DT=E(NATTIME) Natural T-format data (tenths of seconds since the
year zero)

1,DD,4,P,DT=E(NATDATE) Natural D-format data (days since the year zero)

1,UU,4,F,DT=E(UNIXTIME) UNIX time_t-type data (seconds since January 1,
1970)

1,XS,8,F,DT=E(XTIMESTAMP) UNIX time data (microseconds since January 1,
1970)

1,DZ,14,U,TZ,DT=E(DATETIME) Data and time data stored internally in UTC
format; timezone of the user session (TZ)
determines user local time.

FI: Fixed Storage Field Option

FI indicates that the field is to have a fixed storage length. Values in the field are stored without an
internal length byte, are not compressed, and cannot be longer than the defined field length.

The FI option is recommended for fields with a length of one or two bytes that have a low probability of
containing a null value (personnel number, gender, etc.) and for fields containing values that cannot be
compressed.

The FI option is not recommended for multiple-value fields, or for fields within a periodic group. Any null
values for such fields are not suppressed (or compressed), which can waste disk storage space and
increase processing time.

The FI option cannot be specified for

U-format fields;

NC, NN, or NU option fields;

variable-length fields defined with a length of zero (0) in the FNDEF statement;

a descriptor within a periodic (PE) group.

A field defined with the FI option cannot be updated with a value that exceeds the standard length of the
field.

Example of FI usage:

9

Field Definition Statementsfield options

 Definition User Data Internal Representation

Without FI
Option

FNDEF=’01,AA,3,P’ 33104C
00003C

0433104F (4 bytes) 023F (2
bytes)

With FI Option FNDEF=’01,AA,3,P,FI’ 33104C
00003C

33104F (3 bytes) 00003F (3
bytes)

LA: Long Alpha Field Option

The LA (long alphanumeric) option can be specified for variable-length alphanumeric and wide format
fields; i.e., A or W format fields having a length of zero in the field definition (FNDEF). With the LA
option, such a field can contain a value up to 16,381 bytes long.

An alpha or wide field with the LA option is compressed in the same way as an alpha or wide field
without the option. The maximum length that a field with LA option can actually have is restricted by the
block size where the compressed record is stored.

When a field with LA option is updated or read, its value is either specified or returned in the record
buffer, preceded by a two-byte length value that is inclusive (field length, plus two).

A field with LA option:

can also have the NU, NC/NN, NV, or MU option;

can be a member of a PE group;

cannot have the FI option;

cannot be a descriptor field;

cannot be a parent of a sub-/superfield, sub-/superdescriptor, hyperdescriptor, or phonetic descriptor;
and

cannot be specified in the search buffer, or response code 61 (ADARSP061) occurs.

For more information, read Specifying Field Lengths of LA (Long Alpha) Fields in Format Buffers and
Specifying Field Lengths of LA (Long Alpha) Fields in Record Buffers .

Example of LA usage:

 Definition User Data Internal
Representation

Without LA
Option

FNDEF=’01,BA,0,A’ X’06’,C’HELLO’
--

X’06C8C5D3D3D6’
(1-byte length) --

With LA Option FNDEF=’01,BA,0,A,LA’ X’0007’,C’HELLO’

X’07D2’,C’ ...
(2000 data bytes)
...’

X’06C8C5D3D3D6’
(1-byte length)
X’87D2 ...
(2000 data bytes) ... ’

10

field optionsField Definition Statements

LB: Large Object Field Option

The large object (LB) option can be specified for some fields to identify them as large object fields. LB
fields can contain up to 2,147,483,643 bytes (about 2 GB) of data.

The format of an LB field must be "A" (alphanumeric) and its default field length must currently be
defined as zero.

LB fields cannot be:

Descriptors or parents of a special (phonetic, sub-, super-, or hyper-) descriptor.

Defined with the FI or LA options.

To assist you in determining whether to define a field as an LA or an LB field, read Comparing LA
and LB Fields.

Specified in a search buffer or in format selection criteria in a format buffer.

LB fields may be:

Defined with any of the following options: MU, NB, NC, NN, NU, or NV

Part of a simple group or a PE group.

The presence of the NB (no blank compression) field option in the LB field definition indicates whether
on not Adabas removes trailing blanks in LB fields containing characters.

LB fields containing both binary and character data are supported. An LB field defined with both the NV
and NB options can store binary large object data, as Adabas will not modify binary LB fields in any way.
The identical LB binary byte string that was stored is what is retrieved when the LB field is read. In
addition, because LB fields containing binary values are defined with the NV and the NB options, Adabas
will not convert LB field binary values according to some character code page nor will it cut off trailing
blanks in LB fields containing binary values.

Note:
LB fields containing binary values are not defined using format B, because format B can imply byte
swapping in some environments with different byte orders. Byte swapping does not apply to binary LB
fields.

The following table provides some valid example of FDT definitions for LB fields:

FDT Specification Description

1,L1,0,A,LB,NU Field L1 is a null-suppressed, character, large object
field

1,L2,0,A,LB,NV,NB,NU,MU Field L2 is a null-suppressed, multiple-value, binary,
large object field.

Commands dealing with LB fields must always be directed to the base file of a LOB file group. User
commands against LOB files are rejected.

11

Field Definition Statementsfield options

For information on getting started using LB fields, read Large Object (LB) Files and Fields.

MU: Multiple-Value Field Option

The multiple-value field option, indicating that the field may contain more than one value in a single
record. If the MUPEX parameter is specified and the MUPECOUNT parameter is set to "2", the field may
contain up to 65,534 values in a single record. If these parameters are not set, the field may contain up to
191 values in a single record. At least one value (even if null) must be present in each record input to
ADACMP.

The values are stored according to the other options specified for the field. The first value is preceded by a
count field that indicates the number of values currently present for the field. The number of values that
are stored is equal to the number of values provided in the ADACMP input record, plus any values added
during later updating of the field, less any values suppressed (this applies only if the field is defined with
the NU option).

If the number of values contained in each record input to ADACMP is constant, the number can be
specified in the MU definition statement in the form MU(n), where n is the number of values present in
each input record. In the following example, three values of the multiple-value field AA are present in
each input record:

FNDEF=’01,AA,5,A,MU(3)’

Specifying a value of zero MU(0) indicates that no values are present for the multiple-value field in the
input record.

If the number of values is not constant for all input records, a one- or two-byte binary count field
(depending on the MUPECOUNT parameter setting) must precede the first value in each input record to
indicate the number of values present in that record (see also the section Input Data Requirements).

If the FDT is provided (see the FDT parameter description), the field count must be contained as a one- or
two-byte binary value in each input record (depending on the MUPECOUNT parameter setting).

If the input records were created using the DECOMPRESS function, all required count fields are already
contained in the input record. In this case, the count must not be specified in the field definition
statements.

All values provided during input or updating will be compressed (unless the FI option has also been
specified). Care should be taken when using the FI and MU options together since a large amount of disk
storage may be wasted if a large number of compressible values are present.

If the NU option is specified with the MU option, null values are both logically and physically suppressed.
The positional relationship of all values (including null values) is usually maintained in MU occurrences,
unless the occurrences are defined with the NU option. If a large number of null values are present in an
MU field group, the NU option can reduce the disk storage requirements for the field but should not be
used if the relative positions of the values must be maintained.

The NC (or NC/NN) option cannot be specified for an MU field.

12

field optionsField Definition Statements

For information on how to identify MU and PE occurrences greater than 191 in the compressed record,
read Identifying MU and PE Occurrences Greater Than 191 in Compressed Records.

Example of MU usage with NU:

FNDEF=’01,AA,5,A,MU,NU’

The original content where "L" is the length of the "value" is:

after file loading:

3 L value A L value B L value C

count AA1 AA2 AA3

after update of value B to null value:

2 L value A L value C

count AA1 AA2

Example of MU usage without NU:

FNDEF=’01,AA,5,A,MU’

The original content where "L" is the length of the "value" is

after file loading:

3 L value A L value B L value C

count AA1 AA2 AA3

after update of value B to null value:

3 L value A L value B L value C

count AA1 AA2 AA3

NB: Blank Compression Field Option

The NB option can be used with LA and LB fields to control blank compression. When specified, the NB
option indicates that Adabas should not remove trailing blanks for the field; when not specified, Adabas
removes trailing blanks when storing an alphanumeric or wide-character field value. If you specify the NB
option for a field, you must also specify the NU or NC option for the field; NB processing requires the use
of NC or NU as well.

13

Field Definition Statementsfield options

Note:
Fields specified without the NB option can lead to differences in the stored and retrieved lengths of the
fields. The retrieved length of a non-NB field is likely to be smaller than the length specified for the field
when it is stored due to blank compression. This may matter if the value is not really a character string,
but rather a binary value that happens to end with the character codes for a blank. Therefore, if you want
the stored and retrieved lengths of a field to be the same, use the NB option.

NU: Null Value Suppression Field Option

NU suppresses null values occurring in the field.

Normal compression (NU or FI not specified) represents a null value with two bytes (the first for the value
length, and the second for the value itself, in this case a null). Null value suppression represents an empty
field with a one-byte empty field indicator. The null value itself is not stored.

A series of consecutive fields containing null values and specifying the NU option is represented by a
one-byte empty field (binary 11nnnnnn) indicator, where nnnnnn is the number of the fields’ successive
bytes containing null values, up to a total of 63. For this reason, fields defined with the NU option should
be grouped together whenever possible.

If the NU option is specified for a descriptor, any null values for the descriptor are not stored in the
inverted list. Therefore, a find command in which this descriptor is used and for which a null value is used
as the search value will always result in no records selected, even though there may be records in Data
Storage that contain a null value for the descriptor. If a descriptor defined with the NU option is used to
control a logical sequence in a read logical sequence (L3/L6) command, those records that contain a null
value for the descriptor will not be read.

Descriptors to be used as a basis for file coupling and for which a large number of null values exist should
be specified with the NU option to reduce the total size of the coupling lists.

The NU option cannot be specified for fields defined with the combined NC/NN options or with the FI
option.

Example of NU usage:

 Definition User
Data

Internal
Representation

Normal
Compression

FNDEF=’01,AA,2,B’ 0000 0200 (2 bytes)

With FI Option FNDEF=’01,AA,2,B,FI’ 0000 0000 (2 bytes)

With NU Option FNDEF=’01,AA,2,B,NU’ 0000 C1 (1 byte)*

* C1 indicates 1 empty field.

NV: No Conversion Field Option

The "do not convert" option for alphanumeric (A) or wide-character (W) format fields specifies that the
field is to be processed in the record buffer without being converted.

14

field optionsField Definition Statements

Fields with the NV option are not converted to or from the user: the field has the characteristics of the file
encoding; that is, the default blank

for A fields, is always the EBCDIC blank (X’40’); and

for W fields, is always the blank in the file encoding for W format.

The NV option is used for fields containing data that cannot be converted meaningfully or should not be
converted because the application expects the data exactly as it is stored.

The field length for NV fields is byte-swapped if the user architecture is byte-swapped.

For NV fields, "A" format cannot be converted to "W" format and vice versa.

SY: System Field

Use the SY field option to identify a field as a system field and to specify the type of information stored in
the system field. A system field is a field in an Adabas file whose value is automatically set by the Adabas
nucleus when records are inserted or updated on the file. Optionally, you can specify that some system
field values only be set when records are inserted using the CR field option. A system field cannot be a PE
group field.

System fields containing the following types of information can currently be defined in an Adabas file:

Job name: The job name of the user inserting or updating a record.

ETID: The eight-byte user ID of the user inserting or updating a record. This is the user ID set in the
Additions 1 field of an OP (open) command for the user session.

Session ID: The 28-byte user ID of the user inserting or updating a record.

Session user: The last eight bytes of the 28-byte session ID or the user inserting or updating a record.

Time: The date or date and time at which a record is inserted or updated. The format of the stored
date and time is defined by the DT (date-time edit mask) field option.

Valid values are:

15

Field Definition Statementsfield options

Value The system field is ... Field
Format

Field
Length
(bytes)

JOBNAME A job name system field. Alphanumeric 8

OPUSER An ETID system field. Alphanumeric 8

SESSIONID A session ID system field. Alphanumeric 28

SESSIONUSERA session user system field. Alphanumeric 8

TIME A date or date and time system field. The
format of the stored date and time is
defined by the DT (date-time edit mask)
field option. A DT field option is required
in a system field definition if SY is set to
TIME.

varies, based
on the edit
mask

varies,
based on
the edit
mask

For complete information about system fields and the rules surrounding them, read System Fields.

TZ: Time Zone Field Option

The TZ field option identifies a date-time field that should be presented in the user’s local time and stored
in UTC time, allowing for differences in time zones. There is no specific syntax for the TZ field option as
there are no parameters; simply specifying TZ in the field definition of a date-time field provides time
zone support.

When TZ is specified, date-time values are converted and displayed in the user’s local time, but are stored
in coordinated universal (UTC) time. This allows users in different time zones to view the data in their
individual local times, but still share the same data. Storing values in standardized UTC time makes them
easily comparable.

Adabas uses the time zone data taken from the tz database, which is also called the zoneinfo or Olson
database. The specific list of time zone names that Adabas supports in any given release can be found in
the TZINFO member of the Adabas source library (ADAvrs.SRC in BS2000 environments,
ADAvrs.LIBR in VSE environments, and ADAvrs.SRCE in z/OS environments.). For more information
about the TZINFO member of the time zone library, read Supported Time Zones.

The TZ option can be specified in field definitions that use the following date-time edit masks:

DATETIME

TIMESTAMP

NATTIME

UNIXTIME

XTIMESTAMP

You cannot use the TZ option in field definitions that use the DATE, TIME, or NATDATE date-time edit
masks because the timezone offsets depend on the presence of both date and time values in the data.

16

field optionsField Definition Statements

http://www.twinsun.com/tz/tz-link.htm

Note that UNIXTIME and XTIMESTAMP fields are by definition based on the UTC; standard conversion
routines will perform time zone handling outside of Adabas. In other words, the TZ option has no effect
when reading or writing fields with the UNIXTIME or XTIMESTAMP edit mask.

However, when the DATETIME, NATTIME, and TIMESTAMP edit masks are set, the TZ option will
convert the times to local time; otherwise they will be converted and stored as UTC times.

For example, if a date-time field is stored in UTC format is February 14, 2009, 16:00 hours, user A in time
zone America/New_York will see the field displayed as February 14, 2009, 11:00 hours or 10:00 (UTC
time minus 5 or 6 hours, depending on the differences in daylight savings time). Alternately, user G in
time zone Europe/Berlin will see the field as February 14, 2009, 17:00 hours (UTC time plus 1).

For information on the conversions between date-time fields defined with the TZ option, read Conversions
Between Date-Time Representations for Fields with the TZ option.

UQ: Unique Descriptor Field Option

UQ indicates that the field is to be a unique descriptor. A unique descriptor must contain a different value
for each record in the file. In FNDEF statements, the UQ option can only be specified if the DE option is
also specified. The UQ option can also be used in SUBDE, SUPDE, and HYPDE statements.

The UQ option must be specified if the field is to be used as an ADAM descriptor (see the ADAMER
utility).

ADACMP does not check for unique values; this is done by the ADALOD utility, or by the ADAINV
utility when executing the INVERT function. If a non-unique value is detected during file loading,
ADALOD terminates with an error message.

Because ADAINV and ADALOD must execute separately for each file in an expanded file chain, they
cannot check for uniqueness across the chain.

However, Adabas does checks the value of unique descriptors across an expanded file chain. If the value
being added (N1/N2) or updated (A1) is not unique across all files within the chain, response code 198
(ADARSP198) is returned.

XI: Exclude Instance Number Field Option

By default, the occurrence number of fields within periodic groups (PE) defined as unique descriptors
(UQ) is included as part of the descriptor value. This means that the same field value can occur in
different periodic group occurrences in different records.

The XI option is used to exclude the occurrence number from the descriptor value for the purpose of
determining the value’s uniqueness. If the XI option is set, any field value can occur at most once over all
occurrences of the PE field in all records.

Representing SQL Null Value

Adabas includes two data definition options, NC and NN, to provide SQL-compatible null representation
for Software AG’s mainframe Adabas SQL Gateway (ACE) and other Structured Query Language (SQL)
database query languages.

17

Field Definition Statementsfield options

The NC and NN options cannot be applied to fields defined

with Adabas null suppression (NU)

with fixed-point data type (FI)

with multiple-values (MU)

within a periodic group (PE)

as group fields

In addition, the NN option can only be specified for a field that specifies the NC option.

A parent field for sub-/superfields or sub-/superdescriptors can specify the NC option. However, parent
fields for a single superfield or descriptor cannot use a mix of NU and NC fields. If any parent field is NC,
no other parent field can be an NU field, and vice versa.

Examples:

A correct ADACMP COMPRESS FNDEF statement for defining the field AA and assigning the NC and
NN option:

ADACMP FNDEF=’01,AA,4,A,NN,NC,DE’

Incorrect uses of the NC/NN option that would result in an ADACMP utility ERROR-127:

Incorrect Example Reason

ADACMP
FNDEF=’01,AA,4,A,NC,NU’

NU and NC options are not compatible

ADACMP FNDEF=’01,AB,4,A,NC,FI’ NC and FI options are not compatible

ADACMP FNDEF=’01,PG,PE’
ADACMP FNDEF=’02,P1,4,A,NC’

NC option within a PE group is not
allowed

This section covers the following topics:

NC: SQL Null Value Option
Null Indicator Value
NN: SQL Not Null Option

NC: SQL Null Value Option

Without the NC (not counted) option, a null value is either zero or blank depending on the field’s format.

With the NC option, zeros or blanks specified in the record buffer are interpreted according to the null
indicator value: either as true zeros or blanks (that is, as significant nulls) or as undefined values (that is,
as true SQL or insignificant nulls).

18

field optionsField Definition Statements

If the field defined with the NC option has no value specified in the record buffer, the field value is always
treated as an SQL null.

When interpreted as a true SQL null, the null value satisfies the SQL interpretation of a field having no
value. This means that no field value has been entered; that is, the field’s value is not defined.

The null indicator value is thus responsible for the internal Adabas representation of the null. For more
information, read the next section, Null Indicator Value , and read Search Buffers.

The following rules apply when compressing or decompressing records containing NC fields:

1. If the FORMAT parameter is specified, ADACMP behaves in the same way the nucleus does for
update-type commands. See the Adabas Command Reference Guide documentation.

2. If the FORMAT parameter is not specified:

For compression:

Only the value of the NC field is placed in the input record; the two null value indicator bytes
must be omitted. The value is compressed as if the null value indicator bytes were set to zero. It
is not possible to assign a null value to an NC field using this method.

Example:

Field Definition Table
(FDT) definition FNDEF=’01,AA,4,A,NC’

Input record contents:
MIKE

For decompression:

If the value of an NC field is not significant, the record is written to DDFEHL (or FEHL) with
response code 55 (ADARSP055).

If the value of an NC field is significant, the value is decompressed as usual. There are no null
indicator bytes.

Example:

Field Definition Table
(FDT) definition FNDEF=’01,AA,4,A,NC’

Output record contents
MIKE

19

Field Definition Statementsfield options

Null Indicator Value

The null indicator value is always two bytes long and has fixed-point format, regardless of the data
format. It is specified in the record buffer when a field value is added or changed; it is returned in the
record buffer when the field value is read.

For an update (Ax) or add (Nx) command, the null indicator value must be set in the record buffer position
that corresponds to the field’s designation in the format buffer. The setting must be one of the following:

Hex Value Indicates that . . .

FFFF the field’s value is set to "undefined", an insignificant null; the
differences between no value, binary zeros, or blanks for the field
in the record buffer are ignored; all are interpreted equally as "no
value".

0000 no value, binary zeros, or blanks for the field in the record buffer
are interpreted as significant null values.

For a read (Lx) or find with read (Sx with format buffer entry) command, your program must examine the
null indicator value (if any) returned in the record buffer position corresponding to the field’s position in
the format buffer. The null indicator value is one of the following values, indicating the meaning of the
actual value that the selected field contains:

Hex Value Indicates that . . .

FFFF a zero or blank in the field is not significant.

0000 a zero or blank in the field is a significant value; that is, a true zero
or blank.

xxxx the field is truncated. The null indicator value contains the length
(xxxx) of the entire value as stored in the database record if the
length is less than 32,768.

0001 the field is significant and the value is truncated, and the length of
the value does not fit into the S element because it is greater than
32, 767.

Example:

The field definition of a null represented in a two-byte Adabas binary field AA defined with the NC
option is:

01,AA,2,B,NC

20

field optionsField Definition Statements

 Null Indicator
Value
(Record Buffer)

 Adabas Internal
Representation

non-zero value 0 (binary value is
significant)

0005 0205

blank 0 (binary null is
significant)

0000 (zero) 0200

null FFFF (binary null
is not significant)

(not relevant) C1

NN: SQL Not Null Option

The NN (not null or null value not allowed) option may only be specified when the NC option is also
specified for a data field. The NN option indicates that an NC field must always have a value (including
zero or blank) defined; it cannot contain "no value".

The NN option ensures that the field will not be left undefined when a record is added or updated; a
significant value must always be set in the field. Otherwise, Adabas returns a response code 52
(ADARSP052).

The following example shows how an insignificant null would be handled in a two-byte Adabas
alphanumeric field AA when defined with and without the NN option:

Example

An insignificant null handled in a two-byte Adabas alphanumeric field AA when defined with and without
the NN option is as following:

Option Field
Definition

Null Indicator
Value

Adabas Internal Representation

With NN 01,AA,2,A,NC,NN FFFF
(insignificant null)

none; response code 52
(ADARSP052) occurs

Without
NN

01,AA,2,A,NC FFFF
(insignificant null)

C1

FNDEF: Periodic Group Definition
The syntax used in constructing periodic group definition entries is:

Level number and name are required. Any number of spaces may be inserted between definition entries.

Each FNDEF parameter in these definitions is described in this section.

21

Field Definition StatementsFNDEF: Periodic Group Definition

level

name

PE: Periodic Group

occurrences

level

The level number is a one- or two-digit number in the range 01-07 (the leading zero is optional) used in
conjunction with field grouping. Fields assigned a level number of 02 or greater are considered to be a
part of the immediately preceding group which has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only 1 field) by using the
group name. This provides a convenient and efficient method of referencing a series of consecutive fields.

Level numbers 01-06 may be used to define a group. A group may consist of other groups. When
assigning the level numbers for nested groups, no level numbers may be skipped.

In the following example, fields A1 and A2 are in group GA. Field B1 and group GC (consisting of fields
C1 and C2) are in group GB:

FNDEF=’01,GA’ group

FNDEF=’02,A1,...’ elementary or multiple-value field

FNDEF=’02,A2,...’ elementary or multiple-value field

FNDEF=’01,GB’ group

FNDEF=’02,B1,...’ elementary or multiple-value field

FNDEF=’02,GC’ group (nested)

FNDEF=’03,C1,...’ elementary or multiple-value field

FNDEF=’03,C2,...’ elementary or multiple-value field

name

The name to be assigned to the field (or group).

Names must be unique within a file. Names are case-sensitive and must be two characters long: the first
character must be alphabetic; the second character can be either alphabetic or numeric. No special
characters are permitted.

Note:
Lowercase fields will not display correctly (they will be converted to uppercase) if you use the ADARUN
parameter settings MSGCONSL=UPPER, MSGDRUCK=UPPER, or MSGPRINT=UPPER.

The values E0-E9 are reserved as edit masks and may not be used.

22

levelField Definition Statements

Valid Names Invalid Names

AA A (not two characters)

B4 E3 (edit mask)

S3 F* (special character)

wm 6M (first character not alphabetic)

wM

Wm

PE: Periodic Group

The periodic group field option, indicating that the group field is to be followed by a periodic group
definition that may occur multiple times in a given record. If the MUPEX parameter is specified and the
MUPECOUNT parameter is set to "2", the periodic group may occur up to 65,534 times in a single record.
If these parameters are not set, the periodic group may occur up to 191 times in a single record. At least
one occurrence (even if it contains all null values) must be present in each ADACMP input record.

A periodic group:

May comprise one or more fields. A maximum of 254 elementary fields may be specified.
Descriptors and/or multiple value fields and other groups may be specified, but a periodic group may
not contain another periodic group.

If the MUPEX parameter is specified and the MUPECOUNT parameter is set to "2", a periodic group
may occur from 0 to 65,534 times within a given record, although at least one occurrence (even if it
contains all null values) must be present in each ADACMP input record. If these parameters are not
set, the periodic group may occur from 0 to 191 times within a given record.

Must be defined at the 01 level. All fields in the periodic group must immediately follow and must be
defined at level 02 or higher (in increments of 1 to a maximum of 7). The next 01 level definition
indicates the end of the current periodic group.

May only be specified with a group name. Length and format parameters may not be specified with
the group name.

For information on how to identify MU and PE occurrences greater than 191 in the compressed record,
read Identifying MU and PE Occurrences Greater Than 191 in Compressed Records.

The following are two examples of period group definitions:

Periodic Group GA:

FNDEF=’01,GA,PE’
FNDEF=’02,A1,6,A,NU’
FNDEF=’02,A2,2,B,NU’
FNDEF=’02,A3,4,P,NU’

23

Field Definition Statements PE: Periodic Group

In this example, periodic group GA consists of fields A1, A2, and A3. The number of occurrences of the
periodic group in a record is defined as a one- or two-byte binary value before each occurrence group in
every record (depending on the setting of the MUPECOUNT parameter).

Periodic Group GB:

FNDEF=’01,GB,PE(3)’
FNDEF=’02,B1,4,A,DE,NU’
FNDEF=’02,B2,5,A,MU(2),NU’
FNDEF=’02,B3’
FNDEF=’03,B4,20,A,NU’
FNDEF=’03,B5,7,U,NU’

In this example, periodic group GB consists of fields B1, B2, and group B3 (which includes fields B4 and
B5). Three (3) occurrences of the periodic group can occur in a record.

occurrences

The number of occurrences of PE fields that will occur in a record if the MUPEX option is specified. This
is an optional parameter.

COLDE: Collation Descriptor Definition
The collation descriptor option enables descriptor values to be sorted (collated) based on a user-supplied
algorithm.

The values are based on algorithms coded in special collation descriptor user exits (CDX01 through
CDX08). Each collation descriptor must be assigned to a user exit, and a single user exit may handle
multiple collation descriptors.

Example:

The Collation Exit functions are called on the following events:

INITIALIZE function

nucleus session start

utility initialization when collation exits have been defined (ADARUN parameters)

24

 COLDE: Collation Descriptor DefinitionField Definition Statements

ENCODE function

update/insert/delete of the parent’s value (Nucleus)

Search specifying the collation descriptor with the search value (Nucleus)

compression of a record (ADACMP)

DECODE function

Read Index (L9) by Collation DE, only if the exit supports the DECODE function (Nucleus)

Input parameters supplied to the user exit are described in Collation Descriptor Exits 01 - 08. They
include the:

address and length of input string

address and size of output area

address of fullword for the returned output string length.

The user exit sets the length of the returned output string.

Read CDXnn : Collation Descriptor User Exit for more information.

Notes:

1. A collation descriptor can be defined for an alphanumeric (A) or wide character (W) parent field. The
format, length, and options (except UQ and XI) are taken from the parent field defined in the
COLDE parameter. The unique descriptor (UQ) and exclude index (XI) options are separately
defined for the collation descriptor itself.

2. A search using a collation descriptor value is performed in the same manner as for standard
descriptors.

3. The user is responsible for creating correct collation descriptor values. There is no standard way to
check the values of a collation descriptor for completeness against the Data Storage. The
maintenance utility ADAICK only checks the structure of an index, not the contents. The user must
set the rules for each value definition and check the value for correctness.

4. If a file contains more than one collation descriptor, the assigned exits are called in the alphabetical
order of the collation descriptor names.

Collation Descriptor Syntax

A collation descriptor is defined using the following syntax:

where:

25

Field Definition Statements COLDE: Collation Descriptor Definition

number is the user exit number to be assigned to the collation descriptor. The
Adabas nucleus uses this number to determine the collation descriptor
user exit to be called.

name is the name to be used for the collation descriptor. The naming
conventions for collation descriptors are identical to those for Adabas
field names.

UQ indicates that the unique descriptor option is to be assigned to the
collation descriptor.

XI indicates that the uniqueness of the collation descriptor is to be
determined with the index (occurrence) number excluded.

parent-field is the name of an elementary A or W field. A collation descriptor can
have one parent field. The field name and address is passed to the user
exit. A parent field cannot be a long alphanumeric LA or large object
(LOB) field.

MU, NU, and PE options are taken from the parent field and are implicitly set in the collation descriptor.

If a parent field with the NU option is specified, no entries are made in the collation descriptor’s inverted
list for those records containing a null value for the field. This is true regardless of the presence or absence
of values for other collation descriptor elements.

If a parent field is not initialized and logically falls past the end of the physical record, the inverted list
entry for that record is not generated, for performance reasons. To generate the inverted list entry in this
case, it is necessary to unload short, decompress, and reload the file; or use an application program to
initialize the field for each record of the file.

Collation Descriptor Definition Example:

Field definition:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name

Collation descriptor definition:

COLDE=’1,Y2=LN’

Collation descriptor user exit 1 (CDX01) is assigned to this collation descriptor, and the name is Y2.

The collation descriptor length and format are taken from the parent field: 20 and alphanumeric,
respectively. The collation descriptor is a multiple value (MU) field with null suppression (NU).

The values for the collation descriptor are to be derived from the parent field LN.

26

 COLDE: Collation Descriptor DefinitionField Definition Statements

HYPDE: Hyperdescriptor Definition
The hyperdescriptor option enables descriptor values to be generated, based on a user-supplied algorithm.

The values are based on algorithms coded in special hyperdescriptor user exits (HEX01 through HEX31).
Each hyperdescriptor must be assigned to a user exit, and a single user exit may handle multiple
hyperdescriptors.

Example:

The exit is called whenever a hyperdescriptor value is to be generated by the Adabas nucleus or by the
ADACMP utility.

Input parameters supplied to the user exit are:

hyperdescriptor name

file number

addresses of fields taken from the Data Storage record, together with field name and PE index (if
applicable). These addresses point to the compressed values of the fields. The names of these fields
must be defined using the HYPDE parameter of ADACMP or ADAINV.

The user exit must return the descriptor value(s) (DVT) in compressed format. No value, or one or more
values may be returned depending on the options (PE, MU) assigned to the hyperdescriptor.

The original ISN assigned to the input value(s) may be changed.

For complete information about hyperdescriptor user exits, read Hyperdescriptor Exits 01 - 31.

Notes:

1. The format, the length, and the options of a hyperdescriptor are user-defined. They are not taken
from the parent fields defined in the HYPDE parameter.

2. A search using a hyperdescriptor value is performed in the same manner as for standard descriptors.
3. The user is responsible for creating correct hyperdescriptor values. There is no standard way to check

the values of a hyperdescriptor for completeness against the Data Storage. The maintenance utility
ADAICK only checks the structure of an index, not the contents. The user must set the rules for each
value definition and check the value for correctness.

4. If a hyperdescriptor is defined as packed or unpacked format, Adabas checks the returned values for
validity. The sign half-byte for packed values can contain A, C, E, F (positive) or B, D (negative).
Adabas converts the sign to F or D.

5. If a file contains more than one hyperdescriptor, the assigned exits are called in the alphabetical order
of the hyperdescriptor names.

27

Field Definition Statements HYPDE: Hyperdescriptor Definition

Hyperdescriptor Syntax

A hyperdescriptor is defined using the following syntax:

where

28

 HYPDE: Hyperdescriptor DefinitionField Definition Statements

number is the user exit number to be assigned to the hyperdescriptor. The Adabas
nucleus uses this number to determine the hyperdescriptor user exit to be
called.

name is the name to be used for the hyperdescriptor. The naming conventions
for hyperdescriptors are identical to those for Adabas field names.

length is the default length of the hyperdescriptor.

format is the format of the hyperdescriptor:

Format Maximum Length

Alphanumeric (A) 253 bytes

Binary (B) 126 bytes

Fixed Point (F) 4 bytes (always 4 bytes)

Floating Point (G) 8 bytes (always 4 or 8 bytes)

Packed Decimal (P) 15 bytes

Unpacked Decimal
(U)

29 bytes

Note:
Wide-character (W) format is not valid for a hyperdescriptor.

option is an option to be assigned to the hyperdescriptor. The following options
may be used together with a hyperdescriptor:

MU (multiple-value field)

NU (null-value suppression)

PE (field of a periodic group)

UQ (unique descriptor

The parent field of a hyperdescriptor cannot be a long alphanumeric
(LA) field.

parent-field is the name of an elementary field. A hyperdescriptor can have 1-20
parent fields. The field names and addresses are passed to the user exit.
A parent field cannot be a long alphanumeric LA or large object (LOB)
field.

Note:
A hyperdescriptor parent-field may not have W (wide-character) format.

If a parent field with the NU option is specified, no entries are made in the hyperdescriptor’s inverted list
for those records containing a null value for the field. This is true regardless of the presence or absence of
values for other hyperdescriptor elements.

29

Field Definition Statements HYPDE: Hyperdescriptor Definition

If a parent field is not initialized and logically falls past the end of the physical record, the inverted list
entry for that record is not generated, for performance reasons. To generate the inverted list entry in this
case, it is necessary to unload short, decompress, and reload the file; or use an application program to
initialize the field for each record of the file.

Hyperdescriptor Definition Example:

Field definitions:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Hyperdescriptor definition:

HYPDE=’2,HN,60,A,MU,NU=LN,FN,FR’

Hyperdescriptor user exit 2 is assigned to this hyperdescriptor, and the name is HN.

The hyperdescriptor length is 60, the format is alphanumeric, and is a multiple-value (MU) field with
null suppression (NU).

The values for the hyperdescriptor are to be derived from fields LN, FN and FR.

The ADACMP HYPDE= statement may be continued on another line, as shown in the following example.
To do so, first specify a minus (-) after a whole argument and before the closing apostrophe on the first
line. Then enter the remaining positional arguments, beginning after the statement name (ADACMP)
enclosed in apostrophes on the following line:

ADACMP HYPDE=’1,HY,20,A=AA,BB,CC,-’
ADACMP ’DD,EE,FF’

PHONDE: Phonetic Descriptor
The use of a phonetic descriptor in a FIND command results in the return of all the records that contain
similar phonetic values. The phonetic value of a descriptor is based on the first 20 bytes of the field value.
Only alphabetic values are considered; numeric values, special characters, and blanks are ignored. Lower-
and uppercase alphanumeric characters are internally identical.

30

 PHONDE: Phonetic DescriptorField Definition Statements

A phonetic descriptor is defined using the following syntax:

where

name is the name to be used for the phonetic descriptor. The naming
conventions for phonetic descriptors are identical to those for Adabas
field names.

field is the name of the field to be used for the phonetic descriptor.

The field must be

an elementary or a multiple value field; and

defined with alphanumeric format.

The field can be a descriptor.

The field cannot be

a subdescriptor, superdescriptor, or hyperdescriptor;

contained within a periodic group;

used as the source field for more than one phonetic descriptor.

format W (wide-character)

The parent field of a phonetic descriptor cannot be a long alphanumeric (LA) or large object (LOB) field.

If the field is defined with the NU option, no entries are made in the phonetic descriptor’s inverted list for
those records that contain a null value (within the byte positions specified) for the field. The format is the
same as for the field.

If the field is not initialized and logically falls past the end of the physical record, the inverted list entry
for that record is not generated for performance reasons. To generate the inverted list entry in this case, it
is necessary to unload short, decompress, and reload the file; or use an application program to initialize
the field for each record of the file.

Phonetic Descriptor Definition Example:

Field definition:

FNDEF=’01,AA,20,A,DE,NU’

31

Field Definition Statements PHONDE: Phonetic Descriptor

Phonetic definition:

PHONDE=’PA(AA)’

SUBDE: Subdescriptor Definition
A subdescriptor is a descriptor created from a portion of an elementary field. The elementary field may or
may not be a descriptor itself. A subdescriptor can also be used as a subfield; that is, it can be specified in
the format buffer to control the record’s output format.

A subdescriptor definition is entered using the following syntax:

where

name is the subdescriptor name. The naming conventions for a subdescriptor
are identical to those for Adabas field names.

UQ indicates that the subdescriptor is to be defined as unique (see the
definition of option UQ).

XI indicates that the uniqueness of the subdescriptor is to be determined
with the index (occurrence) number excluded (see the definition of
option XI).

parent-field is the name of the field from which the subdescriptor is to be derived. A
parent field cannot be a long alphanumeric LA or large object (LOB)
field.

begin is the relative byte position within the parent field where the
subdescriptor definition is to begin.

end is the relative byte position within the parent field where the
subdescriptor definition is to end.

* Counting is from left to right beginning with 1 for alphanumeric or wide-character fields, and from right
to left beginning with 1 for numeric or binary fields. If the parent field is defined with P format, the sign of
the resulting subdescriptor value is taken from the 4 low-order bits of the low-order byte (that is, byte 1).

A parent field of a subdescriptor can be

a descriptor

an elementary field

a multiple-value field (but not a particular occurrence of a multiple-value field)

32

 SUBDE: Subdescriptor DefinitionField Definition Statements

contained within a periodic group (but not a particular occurrence of a periodic group)

A parent field or a subdescriptor cannot be

a sub/super field, subdescriptor, superdescriptor, or phonetic descriptor

format G (floating point)

a long alphanumeric (LA) field.

If the parent field is defined with the NU option, no entries are made in the subdescriptor’s inverted list for
those records that contain a null value (within the byte positions specified) for the field. The format is the
same as for the parent field.

If a parent field is not initialized and logically falls past the end of the physical record, the inverted list
entry for that record is not generated for performance reasons. To generate the inverted list entry in this
case, it is necessary to unload short, decompress, and reload the file; or use an application program to
initialize the field for each record of the file.

Subdescriptor Definition Example 1:

Parent-field definition:

FNDEF=’01,AR,10,A,NU’

Subdescriptor definition:

SUBDE=’SB=AR(1,5)’

The values for subdescriptor SB are derived from the first five bytes (counting from left to right) of all the
values for the parent field AR. All values are shown in character format.

AR Values SB Values

DAVENPORT DAVEN

FORD FORD

WILSON WILSO

Subdescriptor Definition Example 2:

Parent-field definition:

FNDEF=’02,PF,6,P’

33

Field Definition Statements SUBDE: Subdescriptor Definition

Subdescriptor definition:

SUBDE=’PS=PF(4,6)’

The values for subdescriptor PS are derived from bytes 4 to 6 (counting from right to left) of all the values
for the parent field PF. All values are shown in hexadecimal.

PF Values PS Values

00243182655F 02431F

00000000186F 0F (see note)

78426281448D 0784262D

Note:
If the NU option had been specified for parent field PF, no value would have been created for PS for this
value.

Subdescriptor Definition Example 3:

Source-field definition:

FNDEF=’02,PF,6,P’

Subdescriptor definition:

SUBDE=’PT=PF(1,3)’

The values for PT are derived from bytes 1 to 3 (counting from right to left) of all the values for PF. All
values are shown in hexadecimal.

PF Values PT Values

00243182655F 82655F

00000000186F 186F

78426281448D 81448D

SUBFN: Subfield Definition
A subfield:

is a portion of an elementary field that can be read using an Adabas read command;

34

 SUBFN: Subfield DefinitionField Definition Statements

cannot be updated;

can be changed to a subdescriptor using ADAINV INVERT SUBDE=... .

A subfield definition is entered using the following syntax:

where

name is the subfield name. The naming conventions for a subfield are
identical to those for Adabas field names.

parent-field is the name of the field from which the subfield is to be
derived. A parent field cannot be a long alphanumeric LA or
large object (LOB) field.

begin* is the relative byte position within the parent field where the
subfield definition is to begin.

end* is the relative byte position within the parent field where the
subfield definition is to end.

* Counting is from left to right beginning with 1 for alphanumeric or wide-character fields, and from right
to left beginning with 1 for numeric or binary fields. If the parent field is defined with "P" format, the sign
of the resulting subfield value is taken from the 4 low-order bits of the low-order byte (that is, byte 1).

The parent field for a subfield can be:

a multiple-value field

within a periodic group

The parent field for a subfield cannot:

have format "G" (floating point)

be a long alphanumeric (LA) field.

Subfield Definition Example:

SUBFN=’X1=AA(1,2)’

SUPDE: Superdescriptor Definition
A superdescriptor is a descriptor created from several fields, portions of fields, or a combination thereof.

35

Field Definition Statements SUPDE: Superdescriptor Definition

Each source field (or portion of a field) used to define a superdescriptor is called a parent. From 2 to 20
parent fields or field portions may be used to define a superdescriptor. The total size must be less than or
equal to 253.

Note:
Mainframe Adabas databases do not allow fields in floating point format (format G) to be used as
superdescriptor parent fields; open systems Adabas databases do allow fields in floating point format to be
used as superdescriptor parent fields.

A superdescriptor may be defined as a unique descriptor.

A superdescriptor can be used as a superfield; that is, it can be specified in the format buffer to determine
the record’s output format.

This section covers the following topics:

SUPDE Syntax

Superdescriptor Interfaces with Adabas Commands

Format Conversions of Superdescriptors

SUPDE Examples

SUPDE Syntax

A superdescriptor definition has the following syntax:

where

36

SUPDE SyntaxField Definition Statements

name is the superdescriptor name. The naming conventions for
superdescriptors are identical to those for Adabas names.

UQ indicates that the superdescriptor is to be defined as unique (see
the definition option UQ).

XI indicates that the uniqueness of the superdescriptor is to be
determined with the index (occurrence) number excluded (see the
definition option XI).

parent-field is the name of a parent field from which a superdescriptor element
is to be derived; up to 20 parent fields can be specified. A parent
field cannot be a long alphanumeric LA or large object (LOB)
field.

Note:
Mainframe Adabas databases do not allow fields in floating point
format (format G) to be used as superdescriptor parent fields; open
systems Adabas databases do allow fields in floating point format
to be used as superdescriptor parent fields.

begin* is the relative byte position within the field where the
superdescriptor element begins.

end* is the relative byte position within the field where the
superdescriptor element is to end.

* Counting is from left to right beginning with 1 for fields defined with alphanumeric or wide-character
format, and from right to left beginning with 1 for fields defined with numeric or binary format. For any
parent field except those defined as "FI", any begin and end values within the range permitted for the
parent field’s data type are valid.

A parent field of a superdescriptor can be:

an elementary field

a maximum of one MU field (but not a specific MU field value)

within a periodic group (but not a specific occurrence)

a descriptor.

A parent field of a superdescriptor cannot be

a super-, sub-, or phonetic descriptor;

format G (floating point);

an NC option field if another parent field is an NU option field;

a long alphanumeric (LA) field.

If a parent field with the NC or NU option is specified, no entries are made in the superdescriptor’s
inverted list for those records containing a null value for the field. In other words, no value is created if the
parent value is empty and the NC/NU option has been specified. This is true regardless of the presence or

37

Field Definition StatementsSUPDE Syntax

absence of values for other superdescriptor elements.

If a parent field is not initialized and logically falls past the end of the physical record, the inverted list
entry for that record is not generated for performance reasons. To generate the inverted list entry in this
case, it is necessary to unload short, decompress, and reload the file; or use an application program to
initialize the field for each record of the file.

The total length of any superdescriptor value may not exceed 253 bytes (alphanumeric) or 126 bytes
(binary).

The superdescriptor format is B (binary) if no element of the superdescriptor is derived from an A
(alphanumeric) or W (wide-character) parent field; if any element of the superdescriptor is derived from
an A or W parent field, the format of the superdescriptor reflects the last occurring A or W element; for
example, if the last occurring A or W element is W, the format of the superdescriptor is W.

All binary format superdescriptor values are treated as unsigned numbers.

The ADACMP SUPDE= statement may be continued on another line by specifying a minus (-) after an
argument just before the closing apostrophe on the first line. Then enter the remaining positional
arguments enclosed in apostrophes on the following line beginning after the statement name (ADACMP).
For example:

ADACMP SUPDE=’SI=AA(10,20),BB(20,21),-’
ADACMP ’CC(12,13),DD(14,15)’

Superdescriptor Interfaces with Adabas Commands

The following commands can interface with superdescriptors.

Adabas Command Superdescriptor values can be...

N1 or A1 implicitly built with given fields at insert and update, when
parent fields force the creation of superdescriptors

Sx or L3 specified in the value buffer of search expressions and logical
reads.

L9 returned in the record buffer.

Format Conversions of Superdescriptors

Superdescriptors have a final superdescriptor format which is calculated as follows:

Superdescriptor Format Used if:

A (alphabetic) At least one parent field has format A.

B (binary) All other superdescriptor fields.

This section covers the following topics:

38

Superdescriptor Interfaces with Adabas CommandsField Definition Statements

Format Conversions During Updates
Format Conversions In Value Buffers
Format Conversions For Output (L9 Command)

Note:
Conversions are only performed if a parent field has not been set with the NV option.

Format Conversions During Updates

Superdescriptors should be built so that they have the same collating sequence in all environments.
However, problems exist for some combinations, as described in this section:

Alphanumeric (Format A) Values in IBM (EBCDIC) and UNIX (ASCII) Environments
Numeric Values (Format U) in IBM (EBCDIC) and UNIX (ASCII) Environments
Binary Values (Formats B, F, G) with Big-endian and Little-endian Storage Formats
Different Packed Value Signs (Format P)

Alphanumeric (Format A) Values in IBM (EBCDIC) and UNIX (ASCII) Environments

All alphabetic field values will be converted from EBCDIC to ASCII if an insert or update call comes
from an IBM mainframe environment to a UNIX database. Consequently, the superdescriptor parent
values are automatically converted to ASCII. In this case, an application might fail if it expects a specific
sort sequence (for example using uppercase and lowercase characters). In EBCDIC formats, lowercase
characters come prior to uppercase characters; in ASCII formats, this sequence is reversed (uppercase
characters come prior to lowercase characters).

One of two methods can be used to resolve this problem:

Use the NV option on parent fields with EBCDIC-ASCII conflicts. This will disable the
EBCDIC-ASCII conversion.

Use a hyperdescriptor instead of a superdescriptor.

Numeric Values (Format U) in IBM (EBCDIC) and UNIX (ASCII) Environments

All numeric field values will be converted from EBCDIC to ASCII if an insert or update call comes from
an IBM mainframe environment to a UNIX database. Consequently, the superdescriptor parent values are
automatically converted to ASCII, even if the final superdescriptor requests formats of A (alphabetic) or B
(binary).

Binary Values (Formats B, F, G) with Big-endian and Little-endian Storage Formats

Some platforms store binary byte sequences in big-endian format; others store them in little-endian
format. For example, IBM and HP-UX processors use big-endian format (the byte significance runs from
right to left), while Intel processors use little-endian sequence (the byte significance runs from left to
right).

Adabas performs conversions on superdescriptors containing binary values in swapped architectures
(little-endian binary values with significance running from left to right) to get them into a standard sort
sequence before storing them in the index.

39

Field Definition StatementsFormat Conversions of Superdescriptors

For alphabetic superdescriptors containing at least one binary field with parent lengths greater than
one, the binary parent values will be swapped.

For binary superdescriptors, the order of the parent entries will be swapped and the non-binary parent
values will be swapped.

Different Packed Value Signs (Format P)

Sign information of packed values is represented differently on different platforms. Adabas on open
systems converts positive values (A, C, or F) to C and negative values (B or D) to D. Adabas for
mainframes uses F to represent positive values. Consequently, collating sequence problems arise if packed
values are used in superdescriptors because the packed value signs lose their meaning; they become
normal bit patterns. When this happens, positive packed values can be sorted as negative packed values.

In addition, when combined in a superdescriptor in Adabas for mainframes, negative packed values are
sorted before positive packed values, while on Adabas for open systems, positive packed values are sorted
before negative packed values.

To resolve these problems, we recommend that you use a hyperdescriptor instead of a superdescriptor.

Format Conversions In Value Buffers

When superdescriptors are specified in a value buffer, they are converted so they can be matched to an
associated index entry.

Format Conversions For Output (L9 Command)

Superdescriptor values retrieved by L9 commands must be converted before they are returned in the
record buffer. Alphabetic fields are converted from ASCII to EBCDIC, if required. In addition, binary
parts of the superdescriptor are swapped if necessary. The packed signs of packed value parts of the
superdescriptor are not converted.

SUPDE Examples

Superdescriptor Definition Example 1

Field definitions:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Superdescriptor definition:

40

SUPDE ExamplesField Definition Statements

SUPDE=’SD=LN(1,4),ID(3,4),AG(2,3)’

Superdescriptor SD is to be created. The values for the superdescriptor are to be derived from bytes 1 to 4
of field LN (counting from left to right), bytes 3 to 4 of field ID (counting from right to left), and bytes 2
to 3 of field AG (counting from right to left). All values are shown in hexadecimal.

LN ID AG SD

C6D3C5D4C9D5C7 00862143 F0F4F3 C6D3C5D40086F0F4

D4D6D9D9C9E2 02461866 F0F3F8 D4D6D9D90246F0F3

D7C1D9D2C5D9 00000000 F0F3F6 No value is stored (because of ID)

404040404040 00432144 F0F0F0 No value is stored (because of LN)

C1C1C1C1C1C1 00000144 F1F1F1 C1C1C1C10000F1F1

C1C1C1C1C1C1 00860000 F0F0F0 C1C1C1C10086F0F0

The format for SD is alphanumeric since at least one element is derived from a parent field defined with
alphanumeric format.

Superdescriptor Definition Example 2

Field definitions:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Superdescriptor definition:

SUPDE=’SY=LN(1,4),FN(1,1)’

Superdescriptor SY is to be created from fields LN and FN (which is a multiple-value field). All values
are shown in character format.

41

Field Definition StatementsSUPDE Examples

LN FN SY

FLEMING DAVID FLEMD

MORRIS RONALD RON MORRR MORRR

WILSON JOHN SONNY WILSJ WILSS

The format of SY is alphanumeric since at least one element is derived from a parent field defined with
alphanumeric format.

Superdescriptor Definition Example 3

Field definitions:

FNDEF=’01,PN,6,U,NU’
FNDEF=’01,NA,20,A,DE,NU’
FNDEF=’01,DP,1,B,FI ’

Superdescriptor definition:

SUPDE=’SZ=PN(3,6),DP(1,1)’

Superdescriptor SZ is to be created. The values for the superdescriptor are to be derived from bytes 3 to 6
of field PN (counting from right to left), and byte 1 of field DP. All values are shown in hexadecimal.

PN DP SZ

F0F2F4F6F7F2 04 F0F2F4F604

F8F4F0F3F9F8 00 F8F4F0F300

F0F0F0F0F1F1 06 F0F0F0F006

F0F0F0F0F0F1 00 F0F0F0F000

F0F0F0F0F0F0 00 no value is stored (because of PN)

F0F0F0F0F0F0 01 no value is stored (because of PN)

The format of SZ is binary since no element is derived from a parent field defined with alphanumeric
format. A null value is not stored for the last two values shown because the superdescriptor option is NU
(from the PN field) and the PN field value contains unpacked zeros (X’F0’), the null value.

Superdescriptor Definition Example 4

Field definitions:

FNDEF=’01,PF,4,P,NU’
FNDEF=’01,PN,2,P,NU’

42

SUPDE ExamplesField Definition Statements

Superdescriptor definition:

SUPDE=’SP=PF(3,4),PN(1,2)’

Superdescriptor SP is to be created. The values for the superdescriptor are to be derived from bytes 3 to 4
of field PF (counting from right to left), and bytes 1 to 2 of field PN (counting from right to left). All
values are shown in hexadecimal.

PF PN SP

0002463F 003F 0002003F

0000045F 043F 0000043F

0032464F 000F No value is stored (because of PN)

0038000F 044F 0038044F

The format of SP is binary since no element is derived from a parent field defined with alphanumeric
format.

Superdescriptor Definition Example 5

Field definitions:

FNDEF=’01,AD,PE’
FNDEF=’02,CI,4,A,NU’
FNDEF=’02,ST,5,A,NU’

Superdescriptor definition:

SUPDE=’XY=CI(1,4),ST(1,5)’

Superdescriptor XY is to be created from fields CI and ST. All values are shown in character format.

CI ST XY

(1st occ.) BALT (1st occ.) MAIN BALTMAIN

(2nd occ.) CHI (2nd occ.) SPRUCE CHI SPRUC

(3rd occ.) WASH (3rd occ.) 11TH WASH11TH

(4th occ.) DENV (4th occ.) bbbbb No value stored (because of ST)

The format of XY is alphanumeric since at least 1 element is derived from a parent field which is defined
with alphanumeric format.

43

Field Definition StatementsSUPDE Examples

SUPFN: Superfield Definition
A superfield is a field composed of several fields, portions of fields, or combinations thereof, which may
be read using an Adabas read command. A superfield cannot

be updated;

comprise fields defined with the NC option if another parent field has the NU option;

be used as a descriptor.

A superfield can be changed to a superdescriptor using the ADAINV utility function INVERT
SUPDE=....

A superfield is defined using the following syntax:

where

name superfield name. The naming conventions for superfields are
identical to those for Adabas names.

parent-field name of the field from which a superfield element is to be derived.
A parent field cannot be a long alphanumeric LA or large object
(LOB) field.

begin* relative byte position within the field where the superfield element
is to begin.

end* relative byte position within the field where the superfield element
is to end.

* Counting is from left to right beginning with 1 for fields defined with alphanumeric or wide-character
format, and from right to left beginning with 1 for fields defined with numeric or binary format.

A parent field of a superfield can be:

a multiple-value field

contained within a periodic group

A parent field of a superfield cannot:

have format "G" (floating point)

be a long alphanumeric (LA) field.

The total length of any superfield value may not exceed 253 bytes (alphanumeric) or 126 bytes (binary).

44

 SUPFN: Superfield DefinitionField Definition Statements

The superfield format is B (binary) if no element of the superfield is derived from an A (alphanumeric) or
W (wide-character) parent field; if any element of the superfield is derived from an A or W parent field,
the format of the superfield reflects the last occurring A or W element; for example, if the last occurring A
or W element is W, the format of the superfield is W.

Superfield Definition Example:

SUPFN=’X2=AA(1,2),AB(1,4),AC(1,1)’

45

Field Definition Statements SUPFN: Superfield Definition

	 Field Definition Statements
	FNDEF: Field and Group Definition
	level
	name
	length
	format
	occurrences
	field options
	 CR: Insert-Only System Field
	 DE: Descriptor Field Option
	DT: Date-Time Edit Mask Field Option
	 FI: Fixed Storage Field Option
	 LA: Long Alpha Field Option
	 LB: Large Object Field Option
	 MU: Multiple-Value Field Option
	Example of MU usage with NU:
	Example of MU usage without NU:
	 NB: Blank Compression Field Option
	 NU: Null Value Suppression Field Option
	 NV: No Conversion Field Option
	 SY: System Field
	TZ: Time Zone Field Option
	 UQ: Unique Descriptor Field Option
	 XI: Exclude Instance Number Field Option
	Representing SQL Null Value
	Examples:
	 NC: SQL Null Value Option
	 Null Indicator Value
	Example:
	 NN: SQL Not Null Option
	Example

	FNDEF: Periodic Group Definition
	level
	name
	 PE: Periodic Group
	Periodic Group GA:
	Periodic Group GB:

	occurrences

	 COLDE: Collation Descriptor Definition
	
	Example:
	INITIALIZE function
	ENCODE function
	DECODE function
	Collation Descriptor Syntax
	Collation Descriptor Definition Example:

	 HYPDE: Hyperdescriptor Definition
	
	Example:
	Hyperdescriptor Syntax
	Hyperdescriptor Definition Example:

	 PHONDE: Phonetic Descriptor
	
	Phonetic Descriptor Definition Example:

	 SUBDE: Subdescriptor Definition
	
	Subdescriptor Definition Example 1:
	Subdescriptor Definition Example 2:
	Subdescriptor Definition Example 3:

	 SUBFN: Subfield Definition
	
	Subfield Definition Example:

	 SUPDE: Superdescriptor Definition
	SUPDE Syntax
	Superdescriptor Interfaces with Adabas Commands
	Format Conversions of Superdescriptors
	Format Conversions During Updates
	Alphanumeric (Format A) Values in IBM (EBCDIC) and UNIX (ASCII) Environments
	Numeric Values (Format U) in IBM (EBCDIC) and UNIX (ASCII) Environments
	Binary Values (Formats B, F, G) with Big-endian and Little-endian Storage Formats
	Different Packed Value Signs (Format P)

	Format Conversions In Value Buffers
	Format Conversions For Output (L9 Command)

	SUPDE Examples
	Superdescriptor Definition Example 1
	Superdescriptor Definition Example 2
	Superdescriptor Definition Example 3
	Superdescriptor Definition Example 4
	Superdescriptor Definition Example 5

	 SUPFN: Superfield Definition
	
	Superfield Definition Example:

