
ADASEL Syntax
Unlike other Adabas utilities, ADASEL does not require the utility name at the beginning of each
parameter line. A selection request must include the following parts:

the keyword SELECT, followed by a selection option and either a file number or the keywords
FROM USER

one or more output instructions or IF statements

the keyword END.

Optional clauses and other parameters can be included that specify additional selection criteria or
processing. The following depicts an overview of the ADASEL syntax.

Each item in this syntax is now described in the following topics:

TEST Parameter

FDTINPUT Parameter

SET GLOBALS Parameter

1

ADASEL SyntaxADASEL Syntax

SELECT Parameter

TEST Parameter
The ADASEL utility now includes a syntax-checking-only mode. When the optional TEST parameter is
specified, the actual ADASEL utility syntax is checked, but not performed. The TEST parameter should
be specified before any other ADASEL parameters, such as any SELECT or SET GLOBALS parameters.

In the following example, the syntax of the SELECT and other parameters will be tested. No actual data
will be processed.

TEST
SELECT ALL RECORDS FROM FILE 1
 DISPLAY AA BB CC
END
SELECT BEFORE IMAGE FILE 2
 OUTPUT TO EXPA1
END

FDTINPUT Parameter
The optional FDTINPUT parameter can be used to indicate that the FDTs used for ADASEL processing
should come from an alternate FDT source. This alternate FDT source can be referenced for all selections
in an ADASEL run or for individual files or users selected in the ADASEL run. This functionality allows
you to handle data situations where the FDT has been modified in some way so it differs from the actual
data in the database. In these cases, an older or different FDT might be necessary for ADASEL to
accurately process the data in the database.

If FDTINPUT is not specified in an ADASEL run, the FDTs for the files in the database are used by
default.

If FDTINPUT is specified in an ADASEL run, a corresponding job statement (DD/SAVE or
DD/EBAND) must be specified in the ADASEL run to identify the alternate FDT source to be used, as
described in ADASEL Job Requirements for FDTINPUT, later in this section.

You can specify the FDTINPUT parameter in an ADASEL run in one of two ways:

1. You can specify it as a global parameter for the ADASEL run, in which case the alternate FDT
source identified by the DD/EBAND or DD/SAVE job control statement is used for all files selected
and processed in the ADASEL run. In the following example, where FDTINPUT is specified as a
global parameter, the FDTs in the alternate FDT source are used for files 20, 35, and 36:

2

TEST ParameterADASEL Syntax

FDTINPUT
SELECT ALL FROM FILE 20
 DISPLAY AA BB CC
END
SELECT ALL FROM FILE 35
 OUTPUT TO EXPA1
END
SELECT ALL FROM FILE 36
 DISPLAY ALL
END

In the following example, the FDTs in the alternate FDT source are used for all records in the
database for user ETID1.

FDTINPUT
SELECT ALL FROM USER
 WITH USERID=’ETID1’
 DISPLAY ALL
END

2. You can specify it separately for individual SELECT statements in an ADASEL run. In the following
example, where FDTINPUT is specified for two files, the usual FDT in the database is used for file
20, but the FDTs in the alternate FDT source are used for both files 35 and 36:

SELECT ALL FROM FILE 20
 DISPLAY AA BB CC
END
SELECT ALL FROM FILE 35 FDTINPUT
 OUTPUT TO EXPA1
END
SELECT ALL FROM FILE 36 FDTINPUT
 DISPLAY ALL
END

Likewise, in the following example, the FDTs in the alternate FDT source are used for all the records
in the database for user ETID1.

SELECT ALL FROM USER FDTINPUT
 WITH USERID=’ETID1’
 DISPLAY ALL
END

This section describes the following topics:

3

ADASEL SyntaxFDTINPUT Parameter

ADASEL Job Requirements for FDTINPUT

For ADASEL FDTINPUT processing to be successful, either (but not both) the DD/EBAND or
DD/SAVE ADASEL job statements must be specified in the ADASEL run to identify the alternate FDT
source that should be used in the run. If neither or both are specified, errors will result. If FDTINPUT is
not specified, but either DD/EBAND or DD/SAVE is, a warning message is issued and the job statements
are ignored.

If FDTINPUT is specified for only one file in an ADASEL run, either DD/EBAND or DD/SAVE
can be used to identify the alternate FDT source for the run.

If FDTINPUT is specified for multiple files in an ADASEL run (either on multiple SELECT
statements or as a global parameter) or for a SELECT FROM USER selection in an ADASEL run, a
DD/SAVE job statement must be used to identify the alternate FDT source for the run. Specifying a
DD/EBAND job statement in these instances will result in errors.

If the alternate FDT source for the ADASEL run is a save tape, the DD/SAVE job statement must be
used to identify the alternate FDT source. Specifying a DD/EBAND job statement in this instance
will result in errors.

Obtaining an FDT Source for Use with FDTINPUT

Prior to running an ADASEL job with the FDTINPUT parameter, an FDT source must be produced and
stored. This can be accomplished in one of two ways:

1. Run the ADAULD utility for a database file that uses the FDT you want to use in your ADASEL run
and specify NUMREC=0. This will only unload the FDT. For complete information, read ADAULD
Utility: Unload Files . FDTs obtained in this manner should be specified in the DDEBAND job
statement in the ADASEL job.

2. An old save tape can be used as input to ADASEL FDTINPUT processing. When ADASEL
processes the save tape, it reads it sequentially to determine the file numbers of the files on the tape.
In addition, if a SELECT FROM USER selection is requested in an ADASEL run, the entire save
tape is read in advance to obtain all of the FDTs and their associated file numbers in advance of
ADASEL processing.

To produce a new save tape, run the ADASAV or ADASAV FILES utility function for one or more
database files that use the FDTs you want to use in your ADASEL run. This will produce a save tape
that can be used as input to the ADASEL run.

In either case, the FDT source provided for FDTINPUT must match the version of the protection log
provided in the ADASEL job. In addition, only one alternate FDT source can be specified for FDTINPUT
processing in a single ADASEL run.

SET GLOBALS Parameter
ADASEL global parameters override default table and buffer sizes. Overrides are in effect only for the
ADASEL run in which the SET GLOBALS statement is specified.

4

SET GLOBALS ParameterADASEL Syntax

If used, the SET GLOBALS settings must be specified before the first ADASEL SELECT parameter.
Comment statements as well as the FDTINPUT and TEST parameters can precede the SET GLOBALS
settings. SET GLOBALS settings are specified in the following syntax:

No spaces are permitted between the parameter name, the equal sign, and the value. However, at least one
space must separate parameters. Special characters are not permitted as separators. If multiple lines are
used, the SET GLOBALS keyword must be repeated on each line. The first non-blank character string that
does not begin with a parameter name terminates the SET GLOBALS statement. Thus, trailing comments
are not permitted.

ADASEL provides the following global parameters. Default values are underscored.

Global Parameter Description

LPV={n | 0} Use this parameter to specify the length of the PE-value table used in
the evaluation of field values for a PE. Normally, ADASEL uses an
estimated number of PE occurrences to compute the table size. If the
table size is insufficient, a SEL047 error occurs; you can increase the
table size using the global LPV parameter as indicated on the screen.

LS={n | 80} Use this parameter to specify the line size parameter is used to alter
the number of printed columns. If an output line is longer than the line
size, the line is truncated at the nearest blank. The rest of the line is
continued on the next output line, beginning in Column 1. The
minimum line size is 1; the maximum is 132.

LST={len | 12000 } Use this parameter to specify the length of the statement table, which
is used to store the translated ADASEL statements. Depending on its
complexity, a statement is translated into one or more segments. Each
segment is 44 bytes plus a value length. For example: IF BA EQ
’SMITH’... requires 49 bytes: 44 bytes plus 5 bytes for "SMITH".
The default table size (12 ,000 bytes) handles approximately 200
segments. If the table size is exceeded, a SEL003 error occurs.

LWP={n | 1048576} Use this parameter to specify the size of the work pool used internally
by the ADASEL utility for spanned record processing. The default
value of LWP is 1048576 bytes (or 1MB). If the value specified for
LWP is appended with the letter "K", it is multiplied by 1024. Valid
values range from 100K - 1048576K (or 1 GB).

MAXLOGRECLEN={n | 1048576Use this parameter to specify the size of the uncompressed record
buffer allocated by the ADASEL utility for use in spanned record
processing. The default value of MAXLOGRECLEN is 1048576 bytes
(or 1MB). If the value specified for MAXLOGRECLEN is appended
with the letter "K", it is multiplied by 1024. The minimum value is
32768 bytes.

5

ADASEL SyntaxSET GLOBALS Parameter

Global Parameter Description

NCFLD={n | 10}

NCUPD={n | 10}

Use this parameter to specify the maximum count of "field-name
CHANGES" statements allowed in the selection query, and the
maximum number of parallel updates during the original session.
When a statement includes a CHANGES criterion, ADASEL uses a
change pool with NCFLD * NCUPD entries to track changed field
values. If this pool is too small, a SEL060 error occurs. In this case, it
is necessary to increase one or both of the parameters and then rerun
ADASEL.

NF={n | 20} Use this parameter to specify the maximum number of files that can be
processed during a single ADASEL run. NF is used to allocate space
for the FDT for each file processed. A SEL014 error occurs if the NF
value is exceeded. This value is not related to the maximum number of
output files (DDEXPAn/ EXPAn); although more than 20 files can be
processed during an ADASEL run, a maximum of 20 output files can
be written.

NIF={n | 20} Use this parameter to specify the number of nested IF levels permitted.

NOUSERABEND If specified, ADASEL terminates with condition code 20 instead of a
user abend 034 after an error is encountered.

NU={n | 20} Use this parameter to specify the maximum number of user values (or
ranges of user values) that can be processed during a single ADASEL
run. NU is used to allocate work storage for the user data requested via
a SELECT FROM USER specification in ADASEL. The default is 20
user values.

NV={n | 100} Use this parameter to specify the number of field values. NV is used to
allocate a table for the evaluation of field values. One entry is required
for every field specified in the statements (including duplications). For
example, the following statement requires two entries even though the
same Adabas field name is used:

IF BA =’SMITH’
 THEN OUTPUT TO EXPA1
ELSE IF BA =’SMYTH’
 THEN OUTPUT TO EXPA2

PS={n | 60} Use this parameter to specify the page size parameter is used to alter
the number of lines printed before a new page is started. The minimum
page size is 2; the maximum is 999.

Example

SET GLOBALS LST=15000 NF=15
SET GLOBALS LS=132

6

SET GLOBALS ParameterADASEL Syntax

SELECT Parameter
The syntax of the SELECT parameter is shown below. It begins with a SELECT keyword and ends with
the END keyword.

The SELECT parameter requires the following minimal specifications:

the keyword SELECT, followed by a selection option and either a file number or the keywords
FROM USER

one or more output instructions or IF statements

the keyword END.

Optional clauses and other parameters can be included that specify additional selection criteria or
processing. The following depicts an overview of the ADASEL syntax.

This section describes both the required and optional elements of a SELECT parameter, in the order they
are shown in the syntax above.

The SELECT Keyword

Selection Options (ALL, BEFORE IMAGE, AFTER IMAGE, etc.)

RECORDS Keyword

7

ADASEL SyntaxSELECT Parameter

FROM and IN [FILE] file-number Clause

FROM USER Clause

FDTINPUT Parameter

STARTING FROM and ENDING AT date-time Clauses

WITH Clause

IF Statement

value-criterion

output-instruction

The END Keyword

Examples

The SELECT Keyword

The SELECT keyword is a required element of the SELECT parameter and must be specified first.

Selection Options (ALL, BEFORE IMAGE, AFTER IMAGE, etc.)

One of the selection options described in the following table is required in a SELECT parameter and must
be specified immediately after the SELECT keyword:

Selection Option Records Selected

ALL Before-images derived from A1 (update) and E1 (delete) commands;
after-images derived from A1 and N1 (add) commands.

BEFORE IMAGE | BI Before-images derived from A1 and E1 commands.

AFTER IMAGE | AI After-images derived from A1 and N1 commands.

NEW After-images derived from N1 commands.

DELETED Before-images derived from E1 commands.

NEWDEL After-images derived from N1 commands and before-images derived
from E1 commands.

UPDATED Before-images and after-images derived from A1 commands.

RECORDS Keyword

The RECORDS keyword is optional in the SELECT parameter. When specified, it should immediately
follow the selection option.

8

The SELECT KeywordADASEL Syntax

FROM and IN [FILE] file-number Clause

One of the FROM [FILE], IN [FILE} or the FROM USER clauses is required in a SELECT parameter.
Only one is required; if more than one is specified, errors will result. The FROM USER clause is
described in FROM USER.

Note:
A single ADASEL run cannot include both FROM [FILE] (or IN [FILE]) clauses and FROM USER
clauses. The FROM [FILE] (IN [FILE]) and FROM USER clauses are mutually exclusive in an ADASEL
run. An ADASEL run should either process protection log data by file (FROM [FILE] or IN [FILE]
clauses) or by user (FROM USER clause), but not both. Any attempt to process protection log data by file
and user in the same ADASEL run will cause errors.

The FROM [FILE] and IN [FILE] clauses are equivalent clauses. Both specify the number of the Adabas
file for which protection log data will be selected and processed in the ADASEL run. In both cases the
keyword FILE is optional. Valid file numbers range from 0-5000 or 0 through one less than the ASSO
block size, whichever is lower. To select user data written by a C5 command, specify the file number of
the checkpoint file.

FROM USER Clause

One of the FROM [FILE], IN [FILE} or the FROM USER clauses is required in a SELECT parameter.
Only one is required; if more than one is specified, errors will result. The FROM and IN [FILE] clauses
are described in FROM and IN [FILE] .

Note:
A single ADASEL run cannot include both FROM [FILE] (or IN [FILE]) clauses and FROM USER
clauses. The FROM [FILE] (IN [FILE]) and FROM USER clauses are mutually exclusive in an ADASEL
run. An ADASEL run should either process protection log data by file (FROM [FILE] or IN [FILE]
clauses) or by user (FROM USER clause), but not both. Any attempt to process protection log data by file
and user in the same ADASEL run will cause errors.

The FROM USER clause indicates that all records from all files that satisfy the selection criteria should be
selected and processed in the ADASEL run, regardless of file number.

To select records from a specific user or terminal ID, specify the actual user or terminal ID used for
selection using the WITH clause of the SELECT parameter. For example, the following SELECT
parameter selects all protection log data for user or terminal ID ETID1:

SELECT ALL FROM USER FDTINPUT
 WITH USERID=’ETID1’
 DISPLAY ALL
END

Be aware that FROM USER clauses can generate quite a bit of output for display, so be prepared to limit
the selection criteria in the SELECT parameter if necessary. In addition, you can use the NU global
parameter to limit the number of user or terminal IDs that can be processed by a SELECT parameter. If
this number is exceeded, errors result (the default is 20). For more information about the NU global
parameter, read SET GLOBALS Parameter.

9

ADASEL SyntaxFROM and IN [FILE] file-number Clause

Finally, when FROM USER is specified, records from different files may be encountered for the same
SELECT statement. For this reason, no field names can be specified in any associated value criteria or in
DISPLAY instructions. However, the DISPLAY ALL option can be used to display all fields of a selected
record, regardless of the file the record belongs to.

FDTINPUT Parameter

The optional FDTINPUT parameter can be used to indicate that a different FDT from the FDT on the
database should be used for specific files or users selected in the ADASEL run. This functionality allows
you to handle data situations where the FDT has been modified in some way so it differs from the actual
data in the database. In these cases, an older FDT might be necessary for ADASEL to accurately process
the data in the database. For more information, read FDTINPUT Parameter.

STARTING FROM and ENDING AT date-time Clauses

The optional STARTING FROM and ENDING AT clauses can be used to restrict selections to records
added, updated, or deleted within a time range. The following are valid formats for the date-time variable:

Format Description

yyyymmdd hhmmss date/time

J(yyyyddd hhmmss) Julian date/time

X ’ xxxxxxxx ’ store-clock (STCK) representation

Note:
The lowest valid value for yyyy is "1980".

Examples:

Select all records from file 1 that were added, deleted, or updated on or before midnight of May 12, 1996
(Julian date 132):

SELECT ALL RECORDS FROM FILE 1
 ENDING AT J(1996132/240000)
 DISPLAY AA BB CC
END

Select all records from file 112 that were added, deleted, or updated on or between January 1 and
December 31, 1996:

SELECT ALL 112
 STARTING FROM 19960101/000000
 ENDING AT 19961231/240000
 OUTPUT TO EXPA1
END

10

FDTINPUT ParameterADASEL Syntax

WITH Clause

The optional WITH clause can be used to select records that satisfy the value-criteria specified. Multiple
conditions can be specified using the logical operators AND and OR.

If value-criteria are connected by the AND operator, all specified conditions must be satisfied in
order for the record to be selected.

If value-criteria are connected by the OR operator, the record is selected if any of the conditions is
satisfied.

The syntax of the value-criterion variable is described in section value-criterion.

Example:

The protection log contains before and after images for two updated records. The contents of the field BB
in the records are shown below:

Before-Image After-Image

BB = SMITH BB = ZINN

BB = SMITH BB = JONES

The SELECT statement includes a WITH clause that further qualifies the selection:

SELECT ALL RECORDS FROM FILE 1
 WITH BB =’SMITH’
 DISPLAY AA BB CC
END

In this example, despite the fact that the ALL option is used, only the two before-images are selected
(because the BB field contains "SMITH" in the before-images). ADASEL ignores all records (in this case,
the two after-images) in which the BB field has a value other than "SMITH". If the AFTER IMAGE
option were specified, no records would be selected.

IF Statement

The IF statement can be used to select records and execute output instructions on a conditional basis. An
IF statement is optional in a SELECT parameter, but can be used to specify conditional output instructions
for the SELECT parameter. At least one output instruction is required in a SELECT parameter, so if one
has not been specified outside an IF statement, an IF statement is necessary to supply the output
instruction information.

By default, ADASEL permits up to 20 nested IF statements. To change this, use the NIF ADASEL global
parameter. For further information about the NIF global parameter, read SET GLOBALS Parameter.

11

ADASEL SyntaxWITH Clause

The syntax of the value-criterion variable is described in section value-criterion . Output instructions are
described in section output-instruction.

The "field-name CHANGES" criterion selects records in which the value of a specified field changed
during an update. ADASEL detects the change between the before-image and the after-image. Thus, this
criterion is valid only for the A1 (UPDATE) command, which writes both a before-image and an
after-image to the protection log. The field-name must be the two-character Adabas name of an
elementary field in the FDT. It cannot refer to a group, periodic group (PE), superdescriptor,
subdescriptor, phonetic descriptor, or hyperdescriptor. However, it can refer to a multiple-value field
(MU) or a member field of a periodic group (PE); see the section value-criterion, particularly in the
subsection Indexes for MUs and PE Member Fields .

Note:
By default, only the after-image is reported for "IF field-name CHANGES" criterion. If you want to report
both the before-image and the after-images of a changed field using ADASEL, either specify the BOTH
option in the DISPLAY instruction or specify the LOGINFO, EXTENDED, or SPANREC options on the
OUTPUT instruction for the run. For more information, read DISPLAY Instruction or OUTPUT
Instruction.

The syntax for DO group is as follows:

A DO group is a sequence of output instructions (NEWPAGE, SKIP, DISPLAY, and OUTPUT). The
group must begin with the keyword DO and end with the keyword DOEND. A DO group cannot contain
nested IF statements and cannot be nested within another DO group.

IGNORE instructs ADASEL not to display or output an item. Neither the before-image (BI) or the
after-image (AI) is produced as output when an item is ignored. When specified in a THEN instruction,
IGNORE will not display or output the item if it meets the specified value-criterion or the CHANGES
criterion of the IF statement. When specified in an ELSE instruction, IGNORE will not display or output
the item if it does not meet the specified value-criterion or the CHANGES criterion of the IF statement.

12

IF StatementADASEL Syntax

Example:

SELECT ALL FROM FILE 77
 IF AA =’SMITH’ THEN
 IF BB CHANGES THEN DO
 DISPLAY ’Field BB changed:’ BB AA CC
 SKIP 1 LINE
 DOEND
 ELSE DISPLAY AA BB CC
 ELSE IGNORE
END

value-criterion

The value-criterion is used in a WITH clause or an IF statement to select records on the basis of a value or
values. It has the following syntax:

The BUT NOT clause excludes a value or subrange of values within the select records.

Object of the Comparison

ADASEL can compare a value or range of values to any of the following:

The contents of the specified field. The field-name must be the two-character Adabas name of
an elementary field in the FDT. It cannot refer to a group, periodic group (PE), superdescriptor,
subdescriptor, phonetic descriptor, or hyperdescriptor. However, it can refer to a multiple-value
field (MU) or a member field of a periodic group (PE); see Indexes for MUs and PE Member
Fields .

The ISN; that is, the Adabas internal sequence number of the record.

USERDATA; that is, the user data written by a C5 command.

USERID; that is, the user ID (ETID) of the user who added, deleted, or updated the record.

USERTID; that is, the terminal ID of the user who added, deleted, or updated the record.

13

ADASEL Syntaxvalue-criterion

Logical Operator

You can express logical operators for equalities and inequalities in words, abbreviations, or symbols
as shown in the following table:

Comparison Words Abbreviation Symbol

Equals EQUAL EQ =

Greater than GREATER THAN GT >

Greater than or equal to GREATER EQUAL GE > =

Less than or equal to LESS EQUAL LE < =

Less than LESS THAN LT <

Not equal to NOTEQUAL NE ¬=

Note:
The hexadecimal representation of the ¬= symbol is X’5F7E’.

Format of the Value

The format of the criterion value depends on the default format of the item that is the object of the
comparison.

The default format of an Adabas field (field-name) is the format specified in the FDT. The following
table shows the maximum length (in bytes) and valid formats for expressing the criterion value:

Criterion Value Max. Bytes Max. Digits

Field Format in FDT Valid Formats

Alphanumeric Alphanumeric 253

 Hexadecimal 253 506

Decimal (Packed or
Unpacked)

Decimal digits
(0-9)

29 *

Binary Decimal 4 * 10

 Hexadecimal 126 252

Floating-Point Hexadecimal 8 16

Fixed-Point Hexadecimal 4 8

Wide-character Hexadecimal 253 506

* Excluding minus sign

The default formats and maximum lengths (in bytes) for other items are as follows:

14

value-criterionADASEL Syntax

Item Default Format Criterion Value

Valid Formats Max.
Length

ISN Binary Decimal, hexadecimal 4

USERDATA Alphanumeric Alphanumeric,
hexadecimal

30

USERID Binary,
alphanumeric

Decimal, hexadecimal 8

USERTID Binary,
alphanumeric

Decimal, hexadecimal 8

Value Format Example 1:

If the default format is alphanumeric, the value can be expressed in alphanumeric or hexadecimal
format.

BA EQ ’SMITH’ or BA EQ X’E2D4C9E3C8’

Value Format Example 2:

If the default format is packed or unpacked decimal, the value is expressed in decimal digits (0-9). A
leading minus sign indicates a negative value. Up to 29 digits (excluding the minus sign) are
permitted. Other special characters ($, decimal points, commas, etc.) are not permitted.

NU = 123456789
NU = -987654321

Value Format Example 3:

If the default format is binary, the value can be expressed in hexadecimal or numeric format.

Up to 252 hexadecimal digits (126 bytes) are permitted for a binary Adabas field.

In numeric format, up to 10 decimal digits (4 binary bytes) are permitted. Thus, a binary value
expressed in decimal digits can range from -2,147,483,648 through 2,147,483,647.

BB = 2147483647 or BB = X’80000000’
BB = -2147483648 or BB = X’7FFFFFFF’

Alphanumeric Values

Enclose an alphanumeric value in apostrophes:

15

ADASEL Syntaxvalue-criterion

AA =’SMITH’

To indicate an apostrophe within an alphanumeric string, use two successive apostrophes with no
intervening space or character:

JJ =’Smith’’s Market’

Hexadecimal Values

Begin a hexadecimal value with an "X" and enclose the value in apostrophes:

AA = X’E2D4C9E3C8’

A hexadecimal value must have an even number of hexadecimal characters:

JJ = X’04D2’

Continuation Lines

ADASEL treats columns 1-72 as the input line. To continue an alphanumeric or hexadecimal value
on additional lines, place the closing apostrophe only at the end of the entire string. The value is
concatenated until the closing apostrophe is found.

In an alphanumeric string, ADASEL includes leading and trailing spaces within apostrophes as part
of the string; it ignores them in a hexadecimal string.

Example 1: Alphanumeric String

 7
1..2

 AA =’THIS IS AN EXAMPLE OF HOW TO CONTINUE AN ALPHANUMERIC VALU
E. KEY THROUGH COLUMN 72 AND CONTINUE IN COLUMN 1 OF THE NEXT
LINE.’

 7
1..2

 AA =’DO NOT CONTINUE AN ALPHA VALUE THIS WAY. LEADING AND
 TRAILING SPACES IN COLUMNS 1-72 ARE INCLUDED.’

ADASEL treats the second value above as follows:

’DO NOT CONTINUE AN ALPHA VALUE THIS WAY. LEADING AND TRAILING BLANKS
IN COLUMNS 1-72 ARE INCLUDED.’

16

value-criterionADASEL Syntax

Example 2: Hexadecimal String

 7
1..2

 XX = X’C1C2C3C4C5C6C7C8C9
 D1D2D3D4D5D6D7D8D9’

ADASEL treats the hexadecimal value above as follows:
X’C1C2C3C4C5C6C7C8C9D1D2D3D4D5D6D7D8D9’

Indexes for MUs and PE Member Fields

MU Field or a Member Field of a PE

If the field-name refers to an multiple-value field (MU) or to a member field of a periodic group
(PE), you must include the index (occurrence number) immediately after the name:

AAi where "AA" is the field name of an MU and i is the
index

BBk where "BB" is a member field of a PE and k is the index
of the PE

Valid values for i and k range from "1" through "65,534" if you have Adabas 8 or later installed and
if extended MU and PE counts are requested; otherwise the valid values range from "1" through
"191".

Note:
The use of more than 191 MU fields or PE groups in a file must be explicitly allowed for a file (it is
not allowed by default). This is accomplished using the ADADBS MUPEX function or the
ADACMP COMPRESS MUPEX and MUPECOUNT parameters.

Examples:

In file 12, the field JT is an MU. The following statement selects all before-images where the second
occurrence of JT is "Programmer":

SELECT BI FROM FILE 12
 WITH JT2 = ’Programmer’
 DISPLAY NA
END

The field SA is a member of a PE. The following statement selects all records where SA in the third
occurrence of the periodic group is greater than or equal to 35000:

SELECT ALL FROM 12
 WITH SA3 >= 35000
 DISPLAY NA SA3
END

17

ADASEL Syntaxvalue-criterion

MU Contained Within a PE

If an MU is contained within a PE, both indexes (PE and MU) must be specified:

ABk(i) where "AB" is the name of an MU, i is the occurrence
of AB, and k is the occurrence of the PE to which AB
belongs

Example:

In file 211, the multiple-value field ST is a member of a PE. The following statement selects all
records in which the third occurrence of ST in the second occurrence of the periodic group is "PAST
DUE":

SELECT ALL FROM FILE 211
 WITH ST2(3) =’PAST DUE’
 DISPLAY AA BB ST2(3)
END

output-instruction

ADASEL output instructions include DISPLAY, OUTPUT, SKIP, and NEWPAGE. At least one output
instruction is required, either separately or within an IF statement. Multiple output instructions can be
specified. The syntax is shown below:

This section describes each of these output instructions.

DISPLAY Instruction
OUTPUT Instruction
NEWPAGE Instruction
SKIP Instruction

18

output-instructionADASEL Syntax

DISPLAY Instruction

DISPLAY writes the output report to DDDRUCK/ DRUCK. The syntax specifies one or more output
types. When specifying multiple output types, they are separated by at least one space:

where

field-name displays the contents of the specified field. The field-name
must be the two-character Adabas field name of an
elementary field in the FDT. field-name cannot refer to a
group, periodic group (PE), superdescriptor, subdescriptor,
phonetic descriptor, or hyperdescriptor. However, it can
refer to a multiple-value field (MU) or a member field of a
PE; indexes for MUs and PE member fields are discussed
in section MU or PE Fields.

ALL displays all fields of each selected record, including MU
and PE group fields and their occurrence counts. For an
FDT with many fields, you may need to increase the LST
global parameter in a SET GLOBALS statement to provide
sufficient space for the large number of records. This
option is available for both SELECT FROM USER and
SELECT FROM FILE (IN FILE) clauses in a SELECT
parameter.

BEFORE indicates that only before image of protection log data
should be output. This option is valid only within IF
statements containing one or more CHANGES
specifications. This option is optional and is mutually
exclusive with the BOTH option. If neither BOTH nor
BEFORE is specified, only the after image of protection
log data is output.

19

ADASEL Syntaxoutput-instruction

BOTH indicates that both before and after images of protection
log data should be output. This option is valid only within
IF statements containing one or more CHANGES
specifications. This option is optional and is mutually
exclusive with the BEFORE option. f neither BOTH nor
BEFORE is specified, only the after image of protection
log data is output.

COUNT displays the number of occurrences in the selected data of
the MU field or PE group field specified after the COUNT
option. If one or more values of the MU or PE field are to
be displayed as well, they must be specified separately.

option displays the hexadecimal value corresponding to the type
of output. HEX is especially useful if the output contains
unprintable characters. Leave at least one space between
the type of output and the following HEX keyword.

ISNv displays the ISN of each selected record.

USERDATA displays records written to the protection log with a C5
command. The file number of the checkpoint file must be
specified in the SELECT statement.

USERID displays the user ID of the user who added, deleted, or
updated the record.

USERTID displays the TID of the user who added, deleted, or
updated the record.

NOHEADER suppresses the header.

’ text’ displays the text string.

Examples:

Select records that have been modified. Display the text string "The following records were modified:".
Then display the fields AA and CC in hexadecimal format and BB in the format defined in the FDT:

SELECT UPDATED RECORDS FROM FILE 117
 DISPLAY ’The following records were modified:’
 DISPLAY AA HEX BB CC HEX
END

Display the field AA of each new record, along with the user ID and terminal ID of the user who added
the record; suppress the header:

SELECT NEW RECORDS FROM FILE 211
 DISPLAY AA USERID USERTID NOHEADER
END

20

output-instructionADASEL Syntax

Select records that have been modified and display the occurrence count, followed by the hexadecimal
values of the seventh through twelfth occurrences of the MU field XX:

SELECT UPDATED RECORDS FROM FILE 32
 DISPLAY COUNT XX XX7-12 HEX
END

Select records that have been modified and display the occurrence count for PE group field XX, followed
by the numbers of the YY values in the first through last XX PE group occurrence, followed by all YY
values in each XX PE group occurrence (in this example YY is an MU field within the XX PE group):

SELECT UPDATED RECORDS FROM FILE 32
 DISPLAY COUNT XX COUNT YY1-N YY1-N(1-N)
END

Default Formats

A field is displayed according to its default format:

Alphanumeric is displayed as entered, with unprintable characters
converted to blanks.

Binary is displayed in unsigned decimal digits (0-9) if the value is
less than X’80000000’; otherwise, the value is displayed in
hexadecimal notation.

Packed/unpacked is displayed in decimal digits (0-9), with a leading minus
sign if the value is negative.

MU or PE Fields

If field-name refers to an MU or a member field of a PE, you can display a single occurrence or a range of
occurrences by specifying the index as part of the field name:

DISPLAY AA5

If you have Adabas 8 or later installed and if extended MU and PE counts are turned on for a file, valid
index values range from "1" through "65534"; otherwise the valid index values range from "1" through
"191". In addition, if you specify "N" as the upper limit of an index range, ADASEL displays all
occurrences, beginning with the first occurrence in the range.

Note:
The use of more than 191 MU fields or PE groups in a file must be explicitly allowed for a file (it is not
allowed by default). This is accomplished using the ADADBS MUPEX function or the ADACMP
COMPRESS MUPEX and MUPECOUNT parameters.

21

ADASEL Syntaxoutput-instruction

You cannot specify the PE name in a DISPLAY statement. To display the entire periodic group, you must
specify the name of each field in the group.

If an MU is contained within a PE, both indexes (PE and MU) must be specified. In the index formats
shown below, i and j are the MU indexes; k and l are the PE indexes. AB refers to a member field of a PE;
MB refers to an MU that is a member field of a PE.

Index Displays . . .

MUi occurrence i of the MU

MUi-j occurrences i through j of the MU

MUi-N all occurrences of the MU, starting with occurrence i

ABk field AB in occurrence k of the PE to which the field
belongs

ABk-l field AB in occurrences k through l of the PE

ABk-N field AB in all occurrences of the PE, starting with
occurrence k

MBk(i) occurrence i of MB in occurrence k of the PE to which MB
belongs

MBk - l(i) occurrence i of MB in occurrences k through l of the PE

MBk - l(i-j) occurrences i through j of MB in occurrences k through l of
the PE

MBk - l(i-N) all occurrences of MB (starting with occurrence i) in
occurrences k through l of the PE

MBk-N(i - j) occurrences i through j of MB in all occurrences of the PE
(starting with occurrence k of the PE)

MBk-N(i-N) all occurrences of MB (starting with occurrence i) in all
occurrences of the PE (starting with occurrence k of the
PE)

Example:

File 12 contains the following PE:

Level Name Descriptive Name Format Length Options Occ

1 JT JOB TITLE A 16 DE,MU 12

1 PA INCOME PE 12

2 SA SALARY P 6 DE,MU 7

2 BO BONUS P 5

The following are valid DISPLAY statements for file 12:

22

output-instructionADASEL Syntax

SELECT NEW FROM FILE 12
 DISPLAY JT1
END

SELECT ALL FROM FILE 12
 DISPLAY JT1-5 SA1-5(1-N) BO1-5
END

SELECT ALL FROM FILE 12
 WITH JT3 =’Programmer’ THRU ’Systems Analyst’
 DISPLAY JT3 SA3(1-N) BO3
END

SELECT UPDATED FROM FILE 12
 DISPLAY JT2-N SA2-N(1-N)
END

OUTPUT Instruction

The OUTPUT instruction is used to write the decompressed records from the protection log to an output
data set.

Up to 20 output data sets are permitted. The output data set is specified in the EXPAn parameter and the
DDEXPAn/ EXPAn job control statement.

Example:

Write the before-images of all updated or deleted records to data set DDEXPA1/ EXPA1:

SELECT BEFORE IMAGE FILE 2
 OUTPUT TO EXPA1
END

23

ADASEL Syntaxoutput-instruction

Output Record Format

The format of the output record depends on whether the SPANREC, LOGINFO, or EXTENDED
parameter is specified. LOGINFO and EXTENDED are used to display additional information. The
SPANREC parameter indicates that alternate headers should be used to handle spanned records.

Fields common to all output records are shown below. Values in parentheses are field locations when
LOGINFO (bytes 32-38) or EXTENDED (bytes 64-70) are specified.

Bytes Description

0-1 protection log record length (binary)

2-3 set to zeros (X’0000’)

4-5 record image type:

C’BI’ before-image

C’AI’ after-image

C’C5’ user data

6-7 Adabas file number (binary)

8-9 (32-33, 64-65) decompressed record length (including this length field and
the ISN)

10-13 (34-37, 66-69) ISN (binary) or user data from a C5 command

14 (38, 70) beginning of the decompressed protection log data

Note:
The first record in each block is preceded by the two-byte block length and two bytes of nulls or blanks.

The fields of the protection log record are provided in the order, length, and format in which they are
defined in the file’s FDT. Alphanumeric fields that are longer than the length defined in the FDT are
truncated. Numeric fields that are longer than the length defined in the FDT cause ADASEL to end
abnormally.

MUs and PEs are preceded by a one-byte binary field containing the number of occurrences.

Variable-length fields have a default length of zero and are preceded by a one-byte field containing the
length of the value (including the length field).

If a field defined with the NC suppression option contains a null value, the null value is decompressed by
ADASEL to an empty value (blanks or zeros, depending on the field’s format). This type of NC field null
processing applies only to ADASEL.

24

output-instructionADASEL Syntax

SPANREC

When SPANREC is specified, the new spanned record SELH and SELC output headers are used for all
EXPAn output. DSECTs for the SELH and SELC headers can be found in the Adabas source library.
These new spanned record headers are used when any decompressed logical record from the PLOG
exceeds the EXPAn physical record limitation. In this case, the SELH header will prefix every logical
record written to EXPAn; subsequent physical records belonging to the same logical record will be
prefixed by the SELC header.

LOGINFO

When LOGINFO is specified, the following additional information is included in each record:

Bytes Description

8-15 ID of the user who added, deleted, or updated the record

16-19 low-order four bytes of the TID of the user who added,
deleted, or updated the record (from the communications
ID; TP monitor users only)

20-23 Data Storage RABN where the record was stored (binary)

24-27 data protection block number for the record (binary)

28-31 timestamp of update (binary; high-order four store-clock
(STCK) bytes)

EXTENDED

When EXTENDED is specified, the following additional information is included in each record:

25

ADASEL Syntaxoutput-instruction

Bytes Description

8-15 ID of the user (ETID) who added, deleted, or updated the
record

16-23 low-order eight bytes of the terminal ID of the user who
added, deleted, or updated the record (from the
communications ID; TP monitor users only)

24-27 Data Storage RABN where the record was stored (binary)

28-31 data protection block number for the record (binary)

32-35 timestamp of update (binary; high-order four store-clock
(STCK) bytes)

36 backout indicator:

C’B’ record is a result of a backout

C’ ’ normal record

37 reserved

38-41 transaction number

42-63 reserved

Output Data Set Designation

The EXPAn parameter identifies the output data set. The value of n must match the value in the
DDEXPAn/ EXPAn JCL statement. Valid output data set numbers are 1-20 with no leading zeros:

Valid statement
OUTPUT TO EXPA3

Invalid statement
OUTPUT TO EXPA03

The same rule applies to the DD/EXPAn JCL statement.

Example:

Select all records for file 1. Write decompressed records in which the BA field contains "SMITH" or
"SMYTH" to DDEXPA1/ EXPA1. Write all others to DDEXPA2/ EXPA2:

SELECT ALL RECORDS FROM FILE 1
IF BA =’SMITH’ OR BA =’SMYTH’
 THEN OUTPUT TO EXPA1
ELSE
 OUTPUT TO EXPA2
END

26

output-instructionADASEL Syntax

NEWPAGE Instruction

The NEWPAGE instruction and SKIP instructions control page formatting. The NEWPAGE instruction
forces a page eject before displaying the next line of data. In the following example, a page eject occurs
every time the value of the BA field changes:

SELECT ALL RECORDS FROM FILE 1
 WITH BA EQUAL ’SMITH’ THRU ’SMYTH’
IF BA CHANGES THEN DO
 NEWPAGE
 DISPLAY ’NEW NAME’ BA BB BC
 DOEND
END

SKIP Instruction

The NEWPAGE instruction and SKIP instructions control page formatting. The SKIP instruction prints
the specified number of blank lines before displaying the next line of data. In the following example, two
blank lines are printed every time the value of the BA field changes.

SELECT ALL RECORDS FROM FILE 1
 WITH BA EQUAL ’SMITH’ THRU ’SMYTH’
IF BA CHANGES THEN DO
 SKIP 2 LINES
 DISPLAY ’NEW NAME’ BA BB BC
 DOEND
END

The END Keyword

The END keyword is a required element of the SELECT parameter and must be specified last.

Examples

This section provides several examples of SELECT parameters.

The following SELECT parameter will output to data set DD/EXPA1 all new data records inserted by user
ETID1 for November 1st, 2008:

SELECT NEW RECORDS FROM USER
 STARTING FROM 20081101/000000
 ENDING AT 20081101/240000
 WITH USERID=’ETID1’
 OUTPUT TO EXPA1
END

The following SELECT parameter will output to data set DD/EXPA2 the after images of all data records
updated by any users working from terminals CICS1000 through CICS9999 prior to the end of November
1st, 2008. The output will include extended LOGINFO data:

27

ADASEL SyntaxThe END Keyword

SET GLOBALS NU=50
SELECT NEW RECORDS FROM USER
 ENDING AT 20081101/240000
 WITH USERTID EQ ’CICS1000’ THRU ’CICS9999’
 OUTPUT EXTENDED TO EXPA2
END

The following SELECT parameter will display fields AA and AB of all data records from file 200 that
were inserted, updated, or deleted by user ETID1:

SELECT ALL RECORDS FROM FILE 200
 WITH USERID EQ ’ETID1’
 DISPLAY AA AB
END

Finally, the following SELECT parameter will display user IDs for all users who updated the data base:

SELECT UPDATED RECORDS FROM USER
 DISPLAY USERID
END

28

ExamplesADASEL Syntax

	ADASEL Syntax
	TEST Parameter
	FDTINPUT Parameter
	ADASEL Job Requirements for FDTINPUT
	Obtaining an FDT Source for Use with FDTINPUT

	SET GLOBALS Parameter
	
	Example

	SELECT Parameter
	The SELECT Keyword
	Selection Options (ALL, BEFORE IMAGE, AFTER IMAGE, etc.)
	RECORDS Keyword
	FROM and IN [FILE] file-number Clause
	FROM USER Clause
	FDTINPUT Parameter
	STARTING FROM and ENDING AT date-time Clauses
	Examples:

	WITH Clause
	Example:

	IF Statement
	Example:

	value-criterion
	Alphanumeric Values
	Hexadecimal Values
	Continuation Lines
	MU Field or a Member Field of a PE
	MU Contained Within a PE

	output-instruction
	DISPLAY Instruction
	Examples:
	Default Formats
	MU or PE Fields
	OUTPUT Instruction
	Example:
	Output Record Format
	SPANREC
	LOGINFO
	EXTENDED
	Output Data Set Designation
	NEWPAGE Instruction
	SKIP Instruction

	The END Keyword
	Examples

