
Installing Adabas With TP Monitors
This chapter provides information needed to install Adabas in batch mode and with its teleprocessing (TP)
monitors. It covers the following topics:

Preparing Adabas Link Routines for z/VSE

General Considerations for Installing Adabas with CICS

Installing Adabas with CICS under Adabas 8

Installing Adabas with Com-plete under Adabas 8

Installing Adabas with Batch under Adabas 8

Establishing Adabas SVC Routing by Adabas Database ID

Modifying Source Member Defaults (LGBLSET Macro) in Version 8

Preparing Adabas Link Routines for z/VSE
This section covers the following topics:

High-Level Assembler

Addressing Mode Assembly Directives

UES-Enabled Link Routines

Important:
If an ADALNK batch link routine has been modified to accommodate the needs of an Adabas product
extension (such as Adabas Review), it should not be used for the Adabas nucleus or Adabas utility jobs.

High-Level Assembler

IBM has dropped support for the old VSE assembler and Software AG supports assembling the Adabas
link components with the high-level assembler only.

Addressing Mode Assembly Directives

The Adabas link routines now have AMODE and RMODE assembly directives in the source. These allow
the linkage editor to produce warning messages when conflicting AMODE or RMODE linkage editor
control statements are encountered in the link JCS or EXECs.

These assembly directives also serve to document the preferred AMODE and RMODE for each link
routine. It is important to note that in and of themselves, these directives do not alter the actual addressing
mode of the link routine during execution.

The batch link routine ADALNK has the following AMODE and RMODE assembly directives:

1

Installing Adabas With TP MonitorsInstalling Adabas With TP Monitors

ADABAS AMODE 31
ADABAS RMODE 24

Software AG recommends RMODE 24 for the z/VSE non-reentrant batch link routine
(ADALNK.PHASE).

Modifying the Assembly Directives

These directives may be changed by modifying the linkage editor control statements. For example, to link
the batch ADALNK module with AMODE31 and an RMODE ANY, the following control statements
may be provided as input to the linkage editor:

PHASE ADALNK,*
MODE AMODE(31),RMODE(ANY)

The linkage editor control statements override the Assembler directives in the provided object module.

For more information about the AMODE and RMODE directives and their effects on the assembler,
linkage editor, and execution, consult IBM’s VSE Extended Addressability Guide.

Re-linking Adabas 8 Link Routines

When re-linking the Adabas 8 link routines with certain AMODE and RMODE combinations, a warning
message may be generated by the linkage editor. This may be safely ignored as long as it pertains to a
conflict of AMODE or RMODE in the ESD record of one or more of the load modules that comprise the link
routine, and as long as the resulting module has the proper AMODE and RMODE attributes for execution
with the intended calling application programs.

Care must be taken to ensure that AMODE(24) applications will operate properly when invoking the link
routine with the attributes chosen when it is re-linked. This is particularly important if the RMODE(ANY)
attribute is associated with a link routine that will be loaded dynamically but invoked by a program that is
AMODE(24). In this case, the link routine should be re-linked AMODE(31),RMODE(24) to avoid
addressing exception ABENDs because the AMODE(24) application cannot correctly invoke the link
routine if it resides above the 16-megabyte line.

The Adabas 8 link routines all run AMODE(31) after initialization, but they will return to the caller in the
caller’s AMODE.

Note:
Under CICS, the V8 links run AMODE(31), but the Dataloc RDO parameter governs the AMODE and
RMODE of the running CICS transaction.

The batch z/VSE link routine, ADALNK, has been assembled and link-edited AMODE(31,RMODE(24).
This provides the most flexible configuration for most z/VSE applications that will invoke it. It may be
re-linked AMODE(31),RMODE(ANY), but you must be certain that no AMODE(24) applications will
invoke it.

The reentrant batch link routine, ADALNKR, has been assembled AMODE(31),RMODE(24). It may be
re-linked AMODE(31),RMODE(ANY) if no AMODE(24) applications will invoke it.

The z/VSE Com-plete link routine, ADALCO, has been assembled and link-edited
AMODE(31),RMODE(24), and this is the required configuration for ADALCO under z/VSE Com-plete
because ADALCO still uses z/VSE macros and services which require it to reside below the 16-megabyte
line.

2

Addressing Mode Assembly DirectivesInstalling Adabas With TP Monitors

All of the Adabas 8 CICS link routine modules - ADACICS, ADACICT, and ADACIC0 - have been
assembled and link-edited AMODE(31),RMODE(ANY). CICS manages the loading of programs and their
invocation depending on the DATALOC values associated with their program and transaction definitions.

ADAUSER AMODE/RMODE Considerations

Software AG recommends that all batch applications invoke Adabas calls through the ADAUSER
module. This module is normally link-edited with the application program and it then loads the
appropriate link routine as well as ADARUN and ADAIOR/ADAIOS. The source member has the
AMODE and RMODE directives coded as AMODE 31, RMODE ANY. This is the most flexible configuration
for assembling and linking ADAUSER with the widest variety of application programs. However, if
ADAUSER is dynamically loaded, either the RMODE assembler directive should be changed to RMODE
24 before re-assembling it or the ADAUSER module should be re-linked AMODE(31),RMODE(24) to
ensure that AMODE 24 application programs may invoke it properly below the 16-megabyte line.

UES-Enabled Link Routines

For prior versions of Adabas, UES is enabled by default for only the batch and Com-plete link routines.
As of Adabas version 8, UES is enabled by default for all link routines, including the CICS link routines.
It is not necessary to disable UES support. Applications that do not require UES translation continue to
work properly even when the UES components are linked with the Adabas link routines. See the section
Enabling Universal Encoding Support (UES) for Your Adabas Nucleus for more information.

This section covers the following topics:

Default or Customized Translation Tables

By default, the load modules for all Adabas 8 link routines have been linked with LNKUES and the
default translation tables.

LNKUES converts data in the Adabas buffers and byte-swaps, if necessary, depending on the data
architecture of the caller.

The two standard translation tables are:

ASC2EBC: ASCII to EBCDIC translation; and

EBC2ASC: EBCDIC to ASCII translation.

The Adabas translation table pair is provided in the section Translation Tables.

You may use the load modules with the default translation tables linked in, or you may prepare your own
customized translation tables, re-assemble the tables, and link them with the LNKUES module that is
delivered.

Notes:

1. It should only be necessary to modify these translation tables in the rare case that some
country-specific character other than "A-Z a-z 0-9" must be used in the Additions 1 (user ID) or
Additions 3 field of the control block.

2. The load module LNKUESL delivered with earlier levels of Adabas Version 7 is no longer supplied
since the link jobs now specify the LNKUES or LNKUES7 module and the translation tables
separately.

3

Installing Adabas With TP MonitorsUES-Enabled Link Routines

3. The LNKUES module is functionally reentrant; however, they is not linked that way in the Adabas
load library.

4. When linking the LNKUES load module and the translation tables, the linkage editor may produce
warning messages concerning the reentrant or reusability status of the linked module. These warning
messages can be ignored.

5. If relinking an Adabas 8 link routine for UES support, the LNKUES module must be included. This
will ensure that your new Adabas 8 applications have support for Adabas 8 direct calls and control blocks.

Calling LNKUES

LNKUES is called only on Adabas link routine request (X’1C’) and reply (X’20’) calls if the first byte of
the communication ID contains X’01’ and the second byte does not have the EBCDIC (X’04’) bit set. In
Adabas 8 requests, LNKUES receives control before LUEXIT1. In Adabas 8 replies, LNKUES receives
control after LUEXIT2.

Adabas 8 Jobs for z/VSE Universal Encoding Support

The following lists the sample jobs provided to manage universal encoding support in Adabas link
routines in z/VSE environments:

Sample
Job

Description

ALNKCIC8.X Assembles and links the CICS globals table with LNKUES and the
default translation tables ASC2EBC and EBC2ASC.

ALNKLCO8.X Relinks the Com-plete link routine with the LCOGBL link globals
table, LNKUES, and the default translation tables ASC2EBC and
EBC2ASC.

ALNKLNK8.X Relinks the batch link routine with the LNKGBLS link globals table,
LNKUES, and the default translation tables ASC2EBC and
EBC2ASC.

ALNKLNR8.X Relinks the reentrant batch link routine with the LNKRGBL link
globals table, LNKUES, and the default translation tables ASC2EBC
and EBC2ASC.

Before you can use any of these jobs, they should be edited to prepare the job power statements, provide
the proper names for the procedures and libraries referenced, and all necessary extent and volume
information. Refer to the comments in the jobs themselves for more information.

Disabling UES Support for Adabas 8 Link Routines

This section describes how to disable UES support in the Adabas 8 Com-plete and batch link routines, if
for some reason you feel it is necessary.

 To disable UES support in link routines:

1. Edit the link globals table for the associated link routine. Set the UES parameter setting to NO.

4

UES-Enabled Link RoutinesInstalling Adabas With TP Monitors

2. Assemble the link globals table after making any other necessary modifications to any other keyword
directives in the source module as required by your installation.

3. Link the Adabas link routine with the newly assembled link globals table and do not include any of
the UES components (that is, LNKUES, ASC2EBC, or EBC2ASC).

For more information about the specific link routines, read Installing Adabas with Com-plete under
Adabas 8, and Installing Adabas with Batch under Adabas 8.

General Considerations for Installing Adabas with CICS
The Adabas command-level link routine supports the CICS transaction server (TS) 1.1 running under
z/VSE 2.4 and above.

How Adabas is installed on CICS-based systems depends on the level of CICS being run:

The command-level link from Adabas 8 cannot be used with CICS/VSE 2.3. Instead, you must use
the command-level link routine for Adabas Version 7.4.4 or the macro-level link routine provided in
source in the 7.4.4 VSE sublibrary with CICS/VSE 2.3 environments.

CICS TS 1.1 running under z/VSE 2.4 and above must run a current version of Adabas and use the
command-level link component.

Note:
The OPID option for the USERID field is not supported under CICS/VS 2.3 and above; therefore, it is not
provided with the command-level link routine.

This section covers the following topics:

CICS Release Support

CICS MRO Environment Requirements

Sample Resource Definitions

Requirement for CICS Command Resource Security

CICS Release Support

IBM has not announced a date for end of service for CICS/VSE 2.3. Consequently, Software AG will
continue to support the Adabas CICS 7.4.4 link routines, particularly the macro-level ADALNC routine
on systems running CICS/VSE 2.3 until IBM drops support for that level of CICS.

For CICS/TS 1.1 and above for VSE, the Adabas 8 CICS link components are supported and the Adabas
CICS 7.4 link routines will not be supported when general support for Adabas 7.4.4 is terminated by
Software AG.

CICS MRO Environment Requirements

If you run the Adabas CICS command-level link routine with the CICS multiple region option (MRO),
you must set the LGBLSET option MRO=YES and use the default value for the LGBLSET NETOPT
option.

5

Installing Adabas With TP MonitorsGeneral Considerations for Installing Adabas with CICS

You can use the LGBLSET NTGPID option to provide a 4-byte literal for the Adabas communication ID
to be used by the Adabas SVC when applications that call Adabas span multiple application regions.

Alternatively, you can create a link user exit 1 (LUEXIT1) for the link routine that

sets UBFLAG1 (byte X’29’ in the UB DSECT) to a value of X’08’ (UBF1IMSR); and

places a 4-byte alphanumeric value in the UB field UBIMSID.

The exit then allows the Adabas SVC to provide a proper Adabas communication ID in the Adabas
command queue element (CQE) even when transactions originate in multiple regions.

Sample Resource Definitions

Under CICS/TS 1.1 and above for z/VSE, the preferred method for defining and installing CICS programs
and transactions is RDO (resource definition online). The CICS documentation no longer recommends the
assembly of PPT and PCT entries to define resources.

Modify and use the sample DEFINE statements located in member DEFADAC as input to the IBM
DFHCSDUP utility to define the Adabas CICS command-level components. Consult the appropriate IBM
CICS documentation for information on the DFHCSDUP utility. The DEFADAC member can be found in
the Adabas 8 CICS command-level source library (ADAvrn.LIBR).

Requirement for CICS Command Resource Security

The Adabas CICS link routines require a command security level of "UPDATE" for the EXITPROGRAM
CICS command resource identifier. This allows the Adabas CICS application stub to issue the EXEC
CICS EXTRACT EXIT command without raising the NOTAUTH response from CICS and the security
software. The Adabas CICS application stub needs to issue the EXEC CICS EXTRACT EXIT to
determine that the given Adabas task-related user exit (TRUE) is installed and enabled, and to locate the
CICS global work area (GWA) associated with the given TRUE so that various data structures are made
available to the Adabas CICS application stub programs.

Installing Adabas with CICS under Adabas 8
A CICS application that uses Adabas services requires an Adabas CICS execution unit to function.

In Adabas versions prior to 8.2, the Adabas CICS execution unit was comprised of:

the Adabas CICS stub, ADACICS

the stub module’s direct call interface ADADCI

the Adabas task-related user exit (TRUE), ADACICT

the globals table, named CICSGBL by default.

The stub module needs to know the name of the Adabas TRUE it is to invoke. In addition, the Adabas
TRUE needs to know the name of the globals table so that it can obtain run-time information, such as the
locations of callable exits and the settings of various operating parameters (such as the length of user
information).

6

Installing Adabas with CICS under Adabas 8Installing Adabas With TP Monitors

Effective with Adabas 8.2 and later versions, the Adabas CICS execution unit is comprised of:

the Adabas CICS stub, ADACICS

an Adabas CICS names module, ACINAMES

one or more Adabas task-related user exits (TRUEs), ADACICT

a globals table associated with the stub module and the TRUE.

The names module (ACINAMES) is linked with the stub (ADACICS) to provide the name of the
associated TRUE and the globals table for a given CICS application. In addition, an Adabas CICS
installation options table (ACIOPT) is required and used by the Adabas CICS installation program,
ADACIC0, to load the Adabas globals tables required by the Adabas CICS execution units that will be
installed and activated in the CICS region.

This section covers the following topics:

The Adabas CICS Application Stub (ADACICS)

The Adabas CICS Names Module (ACINAMES)

The Adabas CICS Installation Options Table (ACIOPT)

The MACINS Macro

The MACIOPT Macro

Adabas Task-Related User Exits (TRUEs)

Supplied Modules

Installation Procedure Under Adabas 8

The Adabas CICS Application Stub (ADACICS)

The Adabas application stub is invoked via EXEC CICS LINK or via the direct-call interface from a CICS
application program that intends to use Adabas database services. The stub consists of the ADACICS
module, the ADADCI module, the CICS modules DFHEAI and DFHEAI0, and the ACINAMES module.
The resultant load module may be given any name that is specified in the link globals ENTPT keyword for
the Adabas execution unit. The new module name is most easily created with the linkage editor.

The Adabas CICS Names Module (ACINAMES)

The Adabas CICS names module (ACINAMES) is a small stub containing the name of the TRUE to be
invoked from this stub and the name of the link globals table associated with the Adabas CICS execution
unit. The link globals table also contains the names of the stub and the TRUE, but linking it with the stub
has the following performance disadvantages:

The stub is functionally reentrant and the link globals table in CICS is modifiable during execution

7

Installing Adabas With TP MonitorsThe Adabas CICS Application Stub (ADACICS)

Linking the globals table with the stub would also cause duplicate copies of the link globals table to
be kept in CICS storage at the same time, wasting space and possibly leading to problems if the copy
loaded by ADACIC0 differs from the copy linked with the Adabas stub

Using the ACINAMES module allows you to relink the Adabas CICS stub with any supported load
module name and gives that stub the ability to invoke the Adabas CICS TRUE with the name provided in
the ACINAMES module. The TRUE may also be relinked with any given valid load module name. This
permits the CICS region to execute different Adabas stubs and TRUEs built out of the same load modules
but tailored as required for different CICS applications. No changes are needed in the CICS application
programs themselves.

The Adabas CICS names module is built using the MACINS macro. The ACINAMES module may be
given any load module name, but the generated CSECT name (ordinarily generated by the MACINS
macro assembly job, ASMCINS.X) within the load module must be ACINAMES.

The Adabas CICS Installation Options Table (ACIOPT)

An additional component, an Adabas CICS installation options table (ACIOPT) is required and used by
the Adabas CICS installation program, ADACIC0, to load the Adabas globals tables required by the
Adabas CICS execution units that will be installed and activated in the CICS region.

The Adabas CICS installation options table is built using the MACIOPT macro (see the MACIOPT macro
assembly job, ASMCOPT.X).

The MACINS Macro

Use the MACINS macro to build the Adabas CICS names module, ACINAMES. The ACINAMES
module may be given any load module name, but the generated CSECT name (ordinarily generated by the
MACINS macro job) within the load module must be ACINAMES. In addition, the ACINAMES module
should be included when the Adabas CICS stub is relinked.

The MACINS macro is provided in the Adabas CICS z/VSE sublibrary.

The syntax of the MACINS macro is shown below:

All MACINS parameters are required and are described in the following table:

8

The Adabas CICS Installation Options Table (ACIOPT) Installing Adabas With TP Monitors

Parameter Description Default

GTNAME Specifies the name of the link globals table associated with this
Adabas CICS stub.

This parameter is required.

The name specified by the GTNAMES parameter must be the
name of a module that has been defined to CICS. It must also
match the name of a link globals table specified in the Adabas
CICS Installation Options Table (ACIOPT).

There is no default.

TRUENAME Specifies the name of the Adabas CICS task-related user exit
(TRUE) to be invoked by this Adabas CICS stub.

This parameter is required.

The name specified by the TRUENAME parameter must be the
name specified in the TRUENM parameter of the link globals
table specified in the corresponding GTNAME parameter

There is no default.

Example

In the following example, an ACINAMES module is prepared for an Adabas CICS stub named ADABAS
that will use an ADABAS CICS TRUE named ADATRUE and a link globals table named CICSGBL. The
source member to create the ACINAMES module might look like this:

* Sample "ACINAMES" for Adabas 8.2 multiple-TRUE support.
 MACINS TRUENAME=ADATRUE, X
 GTNAME=CICSGBL

The MACIOPT Macro

Use the MACIOPT macro to build the Adabas CICS installation options table which may either be linked
with ADACIC0 or, if named ACIOPT (the default), is defined to CICS and loaded by ADACIC0 when
the Adabas CICS installation process is started.

The MACIOPT macro is located in the ADAvrs sublibrary as member MACIOPT.A on z/VSE systems. A
sample ACIOPT source member is provided in the ADAvrs sublibrary on z/VSE systems.

The syntax of the MACINS macro is shown below:

9

Installing Adabas With TP MonitorsThe MACIOPT Macro

An ENTRY statement is required on every invocation of the MACIOPT macro. It designates the ENTRY
type, which in turn, determines which additional parameters are valid for the given entry. The three types
of ENTRY statement and their associated parameters are described in the rest of this document.

The ENTRY=GLOBAL Statement
The ENTRY=GROUP Statement
The ENTRY=FINAL Statement
Example

The ENTRY=GLOBAL Statement

The ENTRY=GLOBAL statement is always the first entry for the ACIOPT source member. Only one
ENTRY=GLOBAL statement should be specified per source member and it should precede all other
MACIOPT statements.

The ENTRY=GLOBAL statement specifies global parameters to be used by the CICS installation
program. The parameters associated with ENTRY=GLOBAL are described in the table below:

Parameter Description Default

GEN Indicates whether the ACIOPT CSECT or a mapping DSECT
of the ACIOPT module should be generated.

Valid values are CSECT or DSECT.

CSECT

CNAME Identifies the load module name to be generated when
link-editing a module directly with ADACIC0. Any module
name can be specified, but ACIOPT is the recommended name
(and the default).

An ENTRY ACIOPT statement is generated in the CSECT of
the load module to ensure that the V-CON in ADACIC0 will be
satisfied when a module with a different name is linked.

We recommend that you use the default load module name of
ACIOPT, defining ACIOPT to CICS and allowing ADACIC0
to load the ACIOPT module when the program is executed to
install the Adabas CICS components.

ACIOPT

10

The MACIOPT MacroInstalling Adabas With TP Monitors

Parameter Description Default

IMSGDEST Identifies the destination type for the installation progress and
error messages produced by ADACIC0: console, transient data
queue, or both.

IMSGDEST=CONSOLE is the default and causes all
installation messages to be written to the console with EXEC
CICS WRITE OPERATOR commands. This is how messages
for previous Adabas CICS components produced installation
messages.

IMSGDEST=TDQ causes ADACIC0 to determine if a named
CICS transient data queue is available and, if so, to write
installation progress and error messages to that queue. If
IMSGDEST=TDQ is specified, the IMQNAME parameter must
also be specified to provide the name of the CICS transient data
queue for the messages. If the named transient data queue is not
enabled and open, messages will be written to the console. No
error message is written to indicate that the transient data queue
could not be used. If the CICS transient data queue is open and
enabled, message ADAK001 is written to the console to
indicate that all further messages will be written to the CICS
transient data queue. If, during ADACIC0 processing, the
transient data queue becomes unavailable, subsequent messages
will be written to the console.

IMSGDEST=BOTH causes installation progress messages to be
written both to the console and to a named CICS transient data
queue.

CONSOLE

11

Installing Adabas With TP MonitorsThe MACIOPT Macro

Parameter Description Default

IMQNAME Specifies the 4-character name of the CICS transient data queue
where installation progress and error messages should be
written. If IMQNAME is specified then the IMSGDEST
parameter must be set to TDQ or BOTH.

The named transient data queue must be defined to CICS as
either an extra-partition queue or as an indirect queue which
references an extra-partition data queue. The simplest way to set
up such a data queue is to make it indirect and refer to the
CICS-supplied extra-partition data queue CSSL.

The queue may be defined using the CICS RDO facility (using
the CEDA transaction) or using the DFHDCT macro. On z/VSE
systems, the transient data queue must be defined using the
DFHDCT macro. A sample member, DCTACI.A, is provided in
the z/VSE ADAvrs sublibrary. For more information, consult
the appropriate IBM CICS documentation.

Installation messages written to a CICS transient data queue are
variable length records with no printer control character in the
first byte of the record. The records will not exceed 132 bytes in
length.

There is no default.

MNTRUE Specifies a maximum value for the number of Adabas CICS
execution units (and thus globals tables) to be installed for this
CICS or CICSplex.

If this number is exceeded, a warning MNOTE and condition
code of 4 is produced by the assembler.

This parameter is provided as an option to place an upper limit
on the number of Adabas CICS execution units that may be
installed. You might find this necessary to limit the storage and
resource constraints multiple Adabas CICS execution units
might place on your system. Although the setting for MNTRUE
may be quite high, the storage, resources and Adabas CICS
components must be available to be installed.

8

The ENTRY=GROUP Statement

ENTRY=GROUP statements define the names of the Adabas globals tables that should be loaded and
used to install the Adabas CICS execution units. More than one ENTRY=GROUP statement can be
specified in the ACIOPT source member; all ENTRY=GROUP statements must be specified after the
ENTRY=GLOBAL statement and before the ENTRY=FINAL statement.

Only one parameter can be specified for ENTRY=GROUP:

12

The MACIOPT MacroInstalling Adabas With TP Monitors

Parameter Description Default

GTNAME Specifies the name of the link globals table to be loaded and
used to install an Adabas CICS execution unit.

This parameter is required. Only one GTNAME parameter can
be specified on each ENTRY=GROUP statement.

There is no default.

The ENTRY=FINAL Statement

The ENTRY=FINAL statement must be the last MACIOPT statement in the source member. It causes the
actual ACIOPT CSECT statements to be generated. Only one ENTRY=FINAL statement may be
specified in the source member.

There are no parameters for the ENTRY=FINAL statement

Example

If assembled and link-edited, the following source member will produce the load module ACIOPT and
will install two Adabas CICS execution units. One will load a globals table named LNKCI02 and the other
will load a globals table named CICSGBL. Installation messages will be written to the CICS transient data
queue named ACIQ, if that queue is available.

 MACIOPT ENTRY=GLOBAL,IMSGDEST=TDQ,IMQNAME=ACIQ,MNTRUE=2
 MACIOPT ENTRY=GROUP,GTNAME=LNKCI02
 MACIOPT ENTRY=GROUP,GTNAME=CICSGBL
 MACIOPT ENTRY=FINAL

Adabas Task-Related User Exits (TRUEs)

In a simple Adabas CICS transaction that uses the EXEC CICS LINK command to communicate with
Adabas, there should be one invocation of the Adabas Task Related User Exit (TRUE) for each EXEC
CICS LINK issued from the application.

If the Adabas CICS interface employs exits such as the Adabas Fastpath exit or other System Coordinator
facilities, there may be more than one invocation of the Adabas TRUE for each EXEC CICS LINK issued
by the application program. Other Software AG products that can have multiple TRUE invocations for
each LINK to Adabas are the Adabas Bridge for DL/I and Natural. If the Adabas high-performance stub
(BALR interface) is employed by applications, including Natural, there will be multiple invocations of the
Adabas TRUE for each EXEC CICS LINK to the Adabas interface module.

Adabas 8.2 introduces support for the installation of multiple CICS task-related user exits (TRUEs) and
Adabas application stubs from a single execution of the ADACIC0 installation program. Multiple TRUEs
allow your site to tailor different Adabas CICS execution options in the same CICS region with a
centralized installation procedure and software.

The following diagram depicts the processing flow of the installation of multiple Adabas CICS TRUE and
application stub support.

13

Installing Adabas With TP MonitorsAdabas Task-Related User Exits (TRUEs)

The following diagram depicts the processing flow of the execution of this multiple Adabas CICS TRUE
and application stub support.

14

Adabas Task-Related User Exits (TRUEs)Installing Adabas With TP Monitors

Supplied Modules

The following table lists the modules supplied in your Adabas installation to support the installation of
Adabas 8 with CICS TP monitors.

Note:
The Adabas 8 installation supports Adabas 7 direct calls in addition to Adabas 8 calls; however, an
Adabas 7 installation does not support Adabas 8 direct calls.

15

Installing Adabas With TP MonitorsSupplied Modules

Module Description

ADACIC0.OBJ CICS initialization program code object module.

ADACIC0.PHASE CICS initialization executable module.

ADACICS.OBJ CICS TP monitor program code object module. This module is
linked with ADADCI.OBJ to produce ADACICS.PHASE.

ADACICS.PHASE CICS TP monitor executable module.

ADACICT.OBJ CICS task-related user exit (TRUE) program code object module,
dependent part. This module is linked with LNKCIM.OBJ to
produce ADACICT.PHASE.

ADACICT.PHASE CICS TRUE executable module.

ADADCI.OBJ Direct call interface program code object module. This module is
linked with ADACICS.OBJ to produce ADACICS.PHASE.

CICSGBL.A Sample link globals table. This module is modifiable. Once it is
modified, you can use the ALNKCIC8.X sample JCS to assemble
the CICSGBL.A module, producing the CICSGBL.OBJ object
module and then link-editing all relevant CICS program code
object modules to create the relevant CICS phases required for
Adabas 8 support.

CICSGBL.OBJ Link globals table object module.

CICSGBL.PHASE Link globals table executable module.

LNKCIC0.OBJ CICS link book used when applying maintenance with MSHP to
link-edit ADACIC0.OBJ to produce ADACIC0.PHASE.

LNKCICG.OBJ CICS link book used when applying maintenance with MSHP to
link-edit the CICSGBL.OBJ globals table and produce
CICSGBL.PHASE.

LNKCICS.OBJ CICS link book used when applying maintenance with MSHP to
link-edit ADADCI.OBJ and ADACICS.OBJ to produce
ADACICS.PHASE.

LNKCICT.OBJ CICS link book used when applying maintenance with MSHP to
link-edit ADACICT.OBJ and LNKCIM.OBJ to produce
ADACICT.PHASE.

LNKCIM.OBJ CICS task-related user exit (TRUE) product code object module,
independent part. This module is linked with ADACICT.OBJ to
produce ADACICT.PHASE.

Installation Procedure Under Adabas 8

To install the Adabas 8 CICS link routine components, complete the following steps:

Step 1. Modify the CICS Startup JCS
Step 2. Prepare the Adabas CICS Installation Options Table
Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT
Step 4. Prepare the Adabas CICS Names Module -- ACINAMES

16

Installation Procedure Under Adabas 8Installing Adabas With TP Monitors

Step 5. Prepare the Adabas CICS Application Stub -- ADACICS
Step 6. Prepare the CICS Link Globals Table -- CICSGBL.A)
Step 7. Assemble and Link-edit the CICS Link Globals Table (ALNKCIC8.X)
Step 8. Modify CICS Installation Values (DEFADAC.A)
Step 9. Update the CICS CSD File (DFHCSDUP)
Step 10. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0
Step 11. Update, Assemble and Link-edit the Destination Control Table (DCTACI.A)
Step 12. Start the CICS

Step 1. Modify the CICS Startup JCS

Modify the CICS startup JCS to include the Adabas 8 sublibrary in the LIBDEF chain. This includes the
phases ADACIC0, ADACICS, ACACICT and any renamed versions of ADACICS or ADACICT.

Step 2. Prepare the Adabas CICS Installation Options Table

An Adabas CICS installation options table (ACIOPT) is required to identify all the Adabas globals tables
that will be needed for the proper execution of each Adabas CICS execution unit in the CICS region or
CICSplex. The installation program (ADACIC0) run in Step 12 will obtain information of a global nature
from the table such as the destination for writing of installation messages. It will also scan the table and
load each Adabas globals table named in the ACIOPT module. In turn, each loaded globals table serves as
the basis for installing each Adabas CICS execution unit.

The Adabas CICS installation options table is built by coding a series of MACIOPT macros into a source
member, then assembling and linking that source member into a library that will be available during CICS
execution. The load module may be linked:

With the ADACIC0 installation program, or

As a standalone module named "ACIOPT", which is then defined as a program of the same name to
CICS.

For best performance, Software AG recommends linking a standalone ACIOPT module, defining it to
CICS as program ACIOPT. This will allow ADACIC0 to load ACIOPT during the installation process. A
sample job, ASMCOPT.X , is provided.

 To prepare the Adabas CICS installation options table, complete the following steps:

1. Code a source member, preferably called ACIOPT that contains MACIOPT macro statements to be
loaded by the ADACIC0 program at execution time. The MACIOPT macro statements define each
globals table that will be needed by each Adabas CICS execution unit.

The ACIOPT source member will consist of one MACIOPT ENTRY=GLOBAL entry, multiple
MACIOPT ENTRY=GROUP entries and one MACIOPT ENTRY=FINAL entry.

The MACIOPT ENTRY=GLOBAL specification must be first specification in the source
member; only one MACIOPT ENTRY=GLOBAL specification can be made per ACIOPT
generation.

The MACIOPT ENTRY=FINAL specification must be the last entry for the ACIOPT
generation; only one MACIOPT ENTRY=FINAL specification can be made per ACIOPT
generation.

17

Installing Adabas With TP MonitorsInstallation Procedure Under Adabas 8

Multiple MACIOPT ENTRY=GROUP entries may be specified, but they must follow the
MACIOPT ENTRY=GLOBAL specification and precede the MACIOPT ENTRY=FINAL specification
in the source member.

The MACIOPT macro is located in the ADAvrs sublibrary as member MACIOPT.A on z/VSE
systems. For complete information on the MACIOPT macro, read The MACIOPT Macro, elsewhere
in this section.

2. Assemble and link the ACIOPT source module either as the standalone module named "ACIOPT" or
with any load module name linked with ADACIC0. If linked as a standalone module it must be
named "ACIOPT" and it must be defined as a program to CICS.

The ACIOPT module may be defined to CICS using the CEDA/RDO facility or the DFHCSDUP
utility. Sample DFHCSDUP statements are provided in the DEFADAC member in the ADAvrs
sublibrary on z/VSE systems.

Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT

An Adabas task-related user exit (TRUE) is created by relinking the Adabas ADACICT module with a
NAME statement, providing the desired TRUE name. One or more Adabas TRUEs can be created. A
sample job, LNKATRU.X , is provided.

Note:
The Adabas TRUE name is specified later in the TRUENM parameter in the link globals table (set Step 6)
and in the TRUENAME parameter when the ACINAMES module (see Step 4) is prepared.

 To prepare the Adabas CICS TRUE, complete the following steps:

1. Relink the ADACICT module with a PHASE statement giving a new name for each Adabas TRUE.

2. Define each named Adabas TRUE as a program to CICS.

Example

For example, the following link-edit control statements would create an Adabas TRUE called
"ADATRUE":

 PHASE ADATRUE,*
 MODE AMODE(31),RMODE(ANY)
 INCLUDE DFHEAI
 INCLUDE ADACICT
 INCLUDE LNKCIM
 INCLUDE LNKDSL
 INCLUDE RTRVSE
 ENTRY ADACICT
// EXEC LNKEDT ...

Step 4. Prepare the Adabas CICS Names Module -- ACINAMES

The ACINAMES module is a small stub containing the name of the TRUE to be invoked from this stub
and the name of the link globals table associated with the Adabas execution unit. After the ACINAMES
source member is coded, it should be provided as input to the assembler and either punched by the
assembler to a text library or directly link-edited as a load module. The subsequent text deck or load
module would then be made available to the linkage editor when the Adabas CICS stub is relinked to
change its name or to update the ACINAMES module it uses.

18

Installation Procedure Under Adabas 8Installing Adabas With TP Monitors

 To prepare the ACINAMES module, complete the following step:

Code the source for the ACINAMES module using the MACINS macro. For complete information,
read The MACINS Macro.

The MACINS macro is provided in the Adabas CICS z/VSE sublibrary.

Example

For example, the source member to create the ACINAMES module might look like this:

* Sample "ACINAMES" for Adabas 8.2 multiple-TRUE support.
 MACINS TRUENAME=ADATRUE, X
 GTNAME=CICSGBL

This ACINAMES module uses an ADABAS CICS TRUE named ADATRUE and a link globals table
named CICSGBL.

Step 5. Prepare the Adabas CICS Application Stub -- ADACICS

The Adabas application stub is invoked via EXEC CICS LINK or via the direct-call interface from a CICS
application program that intends to use Adabas database services. The application stub consists of the
ADACICS module, the ADADCI module, the CICS modules DFHEAI and DFHEAI0 and the
ACINAMES module. The resultant load module may be given any name that is specified in the link
globals ENTPT keyword for the Adabas execution unit. The new module name is most easily created with
the linkage editor.

A sample job, ASMCINS.X , is provided.

 To prepare the CICS application stub (ADACICS), complete the following step:

Relink the Adabas CICS application stub module, ADACICS, replacing ACINAMES in the module
with the name of the ACINAMES module created in the previous step (Step 4).

Example

For example, the link-edit control statements to create the Adabas module as the Adabas CICS stub might
be:

 PHASE ADABAS,*
 MODE AMODE(31),RMODE(ANY)
 INCLUDE DFHEAI
 INCLUDE ADACICS
 INCLUDE ADADCI
 INCLUDE ACINAMES
 ENTRY ADACICS
// EXEC LNKEDT ...

In this example, the prepared ACINAMES module is used for an Adabas CICS stub named ADABAS.

19

Installing Adabas With TP MonitorsInstallation Procedure Under Adabas 8

Step 6. Prepare the CICS Link Globals Table -- CICSGBL.A)

Link globals tables must be prepared to match the Adabas CICS execution units defined in the ACIOPT
module. These are built by editing or creating source members that use the LGBLSET macro and its
keywords.

Modify the sample CICSGBL.A member found in the Adabas 8 ADAvrs sublibrary. This member
contains sample default installation (LGBLSET) parameter settings. For more information about what to
modify in this member, read Modifying Source Member Defaults (LGBLSET Macro) in Version 8.

Notes:

1. Adabas 8.2 no longer supports the ADACIRQ module or the reading of an input CICS transient data
queue to obtain the name of the link globals table during installation. This was necessary to permit
the installation of multiple Adabas CICS execution units from the same installation program.

2. The setting for the OPSYS parameter must be set to "VSE".

 To prepare the link globals table, complete the following steps:

1. Code the link globals table using the LGBLSET macro as described in Modifying Source Member
Defaults (LGBLSET Macro) in Version 8.

The OPSYS parameter must be set to "VSE".

Be sure to code the ENTPT and TRUENM parameters on each LGBLSET macro so they match the
intended Adabas CICS stub name and Adabas CICS TRUE name to be used in a given Adabas CICS
execution unit. The Adabas CICS installation program attempts to load each globals table in turn and
uses the loaded table to provide the data required to install and activate the components of the
execution unit.

2. Save the modified CICSGBL.A member with a unique name in an appropriate user sublibrary.

Step 7. Assemble and Link-edit the CICS Link Globals Table (ALNKCIC8.X)

Using sample job ALNKCIC8.X, assemble and link-edit the member you saved in the previous step into a
sublibrary that will be made available to CICS in the LIBDEF concatenation. Note that any user or
Software AG link routine exits should be link-edited with this load module. (For information about
specific Software AG product exits, read the installation documentation for the product.)

Step 8. Modify CICS Installation Values (DEFADAC.A)

Modify the DEFADAC.A member to provide the correct name of the link routine globals default table
created in the previous step (Step 6). The default module name is CICSGBL. Tailor this member for any
other CICS installation values as required.

Step 9. Update the CICS CSD File (DFHCSDUP)

Run the IBM DFHCSDUP utility to update the CICS CSD file for the desired CICS using the modified
DEFADAC.A member as input.

20

Installation Procedure Under Adabas 8Installing Adabas With TP Monitors

Step 10. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0

Modify the CICS PLTPI table to add an entry for the CICS installation program ADACIC0. The
ADACIC0 installation program will start the TRUEs once CICS is started. Use member ADAPLTXX
from the Adabas 8 ADAvrn.LIBR library as a sample for enabling and starting a legacy Adabas TRUE
and the new Version 8 TRUE in the second phase of the PLT.

Once the PLTPI table is modified, assemble and link the modified PLTPI table into a library that will be
available to the desired CICS region.

Assemble and link the modified PLTPI table into a library that will be available to the desired CICS
region.

Step 11. Update, Assemble and Link-edit the Destination Control Table (DCTACI.A)

Update a Destination Control Table (DCT) to include the entries found in member DCTACI.A in the
Adabas 8 sublibrary. Assemble and link-edit this table with a unique suffix into a sublibrary that will be
made available to CICS. Modify the CICS SIT parameters to reference the updated DCT.

Step 12. Start the CICS

Start the CICS and note any messages relating to the installation of the Adabas TRUE modules that appear
on the console. When CICS starts, it will call ADACIC0 (because it is in the PLTPI table), which will
install the Adabas CICS TRUEs.

Installing Adabas with Com-plete under Adabas 8
The following table lists the modules supplied in your Adabas installation to support the installation of
Adabas with Com-plete TP monitors.

Note:
The Adabas 8 installation supports Adabas 7 direct calls in addition to Adabas 8 calls; however, an
Adabas 7 installation does not support Adabas 8 direct calls.

Supplied Module Description

ADALCO.PHASE Com-plete TP monitor executable module.

LCOGBL.A Link globals table source module. This module is modifiable.
Once it is modified, you can use sample job ALNKLCO8.X to
assemble an LCOGBL.OBJ module . This sample job also
link-edits the LCOGBL.OBJ module with LCOVSE8.OBJ to
produce ADALCO.PHASE.

LCOGBL.OBJ Link globals table object module assembled from LCOGBL.A.

LCOVSE8.OBJ Com-plete TP monitor program code object module.

LNKLCO.OBJ Com-plete link book containing link-edit control cards used when
applying maintenance with MSHP to link-edit LCOGBL.OBJ and
LCOVSE8.OBJ to produce ADALCO.PHASE.

21

Installing Adabas With TP MonitorsInstalling Adabas with Com-plete under Adabas 8

Certain Adabas parameters are required by Com-plete, Software AG’s TP monitor, when installing
Adabas. For more information, see the Com-plete System Programmer’s manual.

Software AG’s TP monitor, Com-plete, requires an Adabas link routine if it is to communicate with
Adabas databases, use Software AG’s Entire Net-Work product, or use products like Entire System Server
running under Com-plete. At this time, Com-plete does not support a mixed Adabas 7 and Adabas 8 link
routine environment; thus Com-plete must be run with either an Adabas 7 link routine or an Adabas 8 link
routine.

The Adabas Version 8 link routine is delivered in member ADALCO of the Adabas 8 sublibrary. This
member must be linked with a link globals module you prepare and with any link routine exits you require
to create the final ADALCO load module that is loaded by Com-plete when Com-plete is initialized. The
final ADALCO load module and any exits linked with it must be reentrant.

 To prepare the Adabas 8 link routine:

1. Edit the LCOGBL.A member in the Adabas 8 distribution sublibrary. LCOGBL.A is a module
containing LGBLSET parameters that are used to create default settings for Com-plete link
components. A complete description of LGBLSET parameters can be found in Modifying Source
Member Defaults (LGBLSET Macro) in Version 8.

Note:
The OPSYS parameter must be set to "VSE".

2. Modify and run the ALNKLCO8.X member to assemble and link-edit the link globals table you
updated in the previous step.

The ALNKLCO8.X member will assemble and catalog the link globals table for Com-plete and link
it with the Com-plete link routine, LCOVSE8.OBJ and any required exits. The ALNKLCO8.X
member provides link-edit control cards for the inclusion of the Adabas 8 LNKUES module with the
ASC2EBC and EBC2ASC translation tables.

3. Place the final phase, ADALCO, in a library that will be part of the Com-plete LIBDEF search chain.

Note:
The defaults set in the link globals table for Com-plete are primarily for documentation purposes.
The Adabas/Com-plete interface module, TLOPADAB, sets values for Adabas target ID and SVC
number on each Adabas call. However, it is necessary to include the link globals table object module
and any necessary exits, including user exits when linking the Adabas 8 ADALCO.PHASE. If user
exits are to be linked with ADALCO, be certain to code the LGBLSET keywords accordingly.

The Adabas 8 link routine is prepared.

Installing Adabas with Batch under Adabas 8
ADALNK is the standard Adalink for running Adabas in batch. ADALNKR (LNKVSER) is supplied as a
reentrant batch link routine.

Batch applications should be linked with the ADAUSER module to provide the greatest degree of
application calling isolation when invoking the Adabas batch link routines. The ADAUSER module will
provide code to load the appropriate link routine and the supporting ADARUN and ADAIOR modules.
ADARUN, in turn, loads other modules. To start a user program linked with ADAUSER, the following

22

Installing Adabas with Batch under Adabas 8Installing Adabas With TP Monitors

modules must be available in the LIBDEF search chain: ADAIOR, ADAIOS, ADALNK, ADAMLF,
ADAOPD, ADAPRF, and ADARUN. In addition, ADAUSER reads DDCARD input from SYSIPT or
DISK to allow jobstep setting of the database ID, Adabas SVC number, and other parameters.

For non-reentrant operation, the DDCARD input should provide the keyword PROG=USER. This causes
ADARUN to load ADALNK for non-reentrant batch operations.

If you want to use reentrant batch operations, the ADAUSER module can still be linked with the
application program, but the PROG=RENTUSER keyword must be coded on the DDCARD input.
ADAUSER is, however, non-reentrant. For full reentrant batch applications, it will either need to be
loaded (CDLOAD) separately, or the ADALNKR.PHASE must be loaded without using the ADAUSER
module. In this case, the default values for DBID, SVC number, length of user information, and which
exits are to be used is provided by the linked link globals table, as modified (read Installing the Reentrant
Batch z/VSE Adabas 8 Link Routine. It is also possible to zap the ADALNKR.PHASE or
LNKVSER8.OBJ module with these defaults, but Software AG recommends coding and linking the link
globals table instead. Additional information on using a reentrant batch link routine is also provided in
Required Application Reentrancy Properties.

This section covers the following topics:

Supplied Modules

Installing the Batch z/VSE Adabas 8 Link Routine

Installing the Reentrant Batch z/VSE Adabas 8 Link Routine

Important:
If an ADALNK batch link routine has been modified to accommodate the needs of an Adabas product
extension (such as Adabas Review), it should not be used for the Adabas nucleus or Adabas utility jobs.

Supplied Modules

The following table lists the modules supplied in your Adabas installation to support the installation of
Adabas 8 with batch.

Note:
The Adabas 8 installation supports Adabas 7 direct calls in addition to Adabas 8 calls; however, an
Adabas 7 installation does not support Adabas 8 direct calls.

23

Installing Adabas With TP MonitorsSupplied Modules

Module Description

ADALNK.PHASE Batch executable module.

ADALNKR.PHASE Batch reentrant executable module.

LNKGBLS.A Batch link globals table. This module is modifiable. Once it is
modified, you can use the LNKLNK.OBJ sample JCS to assemble
the LNKGBLS.A module, producing the LNKGBLS.OBJ module
and then link-editing the LNKGBLS.OBJ module with the
LNKVSE8.OBJ module to create the ADALNK.PHASE.

LNKGBLS.OBJ Batch link globals table object module assembled from
LNKGBLS.A.

LNKRGBL.A Batch reentrant link globals table. This module is modifiable.
Once it is modified, you can use the ALNKLNR8.X sample JCS
to assemble the LNKRGBL.A module, producing the
LNKRGBL.OBJ module and then link-editing the
LNKRGBL.OBJ module with the LNKVSER8.OBJ module to
create the ADALNKR.PHASE.

LNKRGBL.OBJ Batch reentrant link globals table object module assembled from
LNKRGBL.A.

LNKLNK.OBJ Batch link book containing link-edit control cards used when
applying maintenance with MSHP to link-edit LNKGBLS.OBJ
and LNKVSE8.OBJ modules to produce ADALNK.PHASE.

LNKLNKR.OBJ Batch link book containing link-edit control cards used when
applying maintenance with MSHP to link-edit reentrant
LNKRGBL.OBJ and LNKVSER8.OBJ modules to produce
ADALNKR.PHASE.

LNKVSE8.OBJ Batch program code object module.

LNKVSER8.OBJ Batch reentrant program code object module.

Installing the Batch z/VSE Adabas 8 Link Routine

 To install the Adabas 8 non-reentrant link routine for z/VSE batch, complete the following steps:

1. Edit member LNKGBLS.A in the Adabas distribution sublibrary. Provide values for the LOGID,
SVC, GBLNAME, and other keywords to suit your installation requirements. This module contains
LGBLSET parameters used to create default settings for link components. A complete description of
LGBLSET parameters can be found in Modifying Source Member Defaults (LGBLSET Macro) in
Version 8.

Note:
The OPSYS parameter must be set to "VSE".

2. Edit the ALNKLNK8.X member found in the Adabas 8 sublibrary. This member will assemble and
catalog the LNKGBLS.A module and link it and any desired exits with the LNKVSE8.OBJ module
to create the ADALNK.PHASE member for Adabas 8. The ALNKLNK8.X member includes sample
link-edit control cards to support UES by including the LNKUES.OBJ. module with the ASC2EBC
and EBC2ASC translation tables. Modify the link-edit control cards to include any additional

24

Installing the Batch z/VSE Adabas 8 Link RoutineInstalling Adabas With TP Monitors

Software AG exit or user exit, as specified in the updated LNKGBLS.A member.

3. Provide the ADALNK.PHASE member in the LIBDEF search chain for the jobstep that will require
Adabas database access or Software AG services.

Installing the Reentrant Batch z/VSE Adabas 8 Link Routine

 To install the Adabas 8 reentrant link routine for z/VSE batch, complete the following steps:

1. Edit member LNKRGBL.A in the Adabas distribution sublibrary. Provide values for the LOGID,
SVC, GBLNAME, and other keywords to suit your installation requirements. This module contains
LGBLSET parameters used to create default settings for link components. A complete description of
LGBLSET parameters can be found in Modifying Source Member Defaults (LGBLSET Macro) in
Version 8.

Note:
The OPSYS parameter must be set to "VSE".

2. Edit the ALNKLNR8.X member found in the Adabas 8 sublibrary. This member will assemble and
catalog the LNKRGBL.A module and link it and any desired exits with the LNKVSER8.OBJ module
to create the ADALNKR.PHASE member for Adabas 8. The ALNKLNR8.X member includes
sample link-edit control cards to support UES by including the LNKUES.OBJ. module with the
ASC2EBC and EBC2ASC translation tables. Modify the link-edit control cards to include any
additional Software AG exit or user exit, as specified in the updated LNKRGBL.A member.

3. Provide the ADALNKR.PHASE member in the LIBDEF search chain for the jobstep that will
require Adabas database access or Software AG services.

Establishing Adabas SVC Routing by Adabas Database ID
Your application programs that use Adabas link routines in z/OS and VSE environments can route
database calls through specific Adabas SVCs, based on the database ID used in the call. SVC routing is
managed through the use of a DBID/SVC routing table you supply. Up to 1000 database IDs may be
specified in the table and associated with any number of valid SVC numbers installed in the z/OS or VSE
system. The DBID/SVC routing table is created using the MDBSVC macro.

Duplicate database IDs are not allowed in the DBID/SVC routing table as there is no reliable way for the
link routine to determine which SVC should be used for a database ID if it is listed more than once. If
duplicate database IDs are found while the table is being assembled, they are flagged with an assembler
MNOTE and a return code of 16 is returned for the assembly attempt.

Notes:

1. Adabas client-based add-ons, such as Adabas Transaction Manager, are not compatible with this
feature since for client-based functionality to work, it must be channeled through only a single router
for any given session, not across routers. To avoid problems if the dynamic SVC by DBID routing
feature in enabled for these products, error messages are issued, the assembly step of the globals table
will receive return code 16, and the globals table load module will not be generated.

2. ADALNK linked with the ADASVCTB should only be used by application programs and should not
be made available to the Adabas nucleus or to Entire Net-Work.

25

Installing Adabas With TP MonitorsEstablishing Adabas SVC Routing by Adabas Database ID

Caution:
This feature should be used with caution. Transactional integrity is not guaranteed. If an application
makes calls to multiple databases that are routed to more than one Adabas SVC, it becomes possible to
issue ET, BT, OP, CL, RC, or other Adabas commands that may affect the transaction on one database,
but not on the other databases running on different Adabas SVCs that were accessed previously. It
therefore is the responsibility of the application program to ensure that all necessary logic is included to
ensure transactional integrity across multiple databases where multiple Adabas SVCs are employed.

This section covers the following topics:

Installing the Adabas DBID/SVC Routing Feature

General Operation

Using the MDBSVC Macro

Installing the Adabas DBID/SVC Routing Feature

The general steps for installing the Adabas DBID/SVC routing feature are:

1. Define the DBID/SVC routing table in a library member using MDBSVC macro statements. For
more information about the DBID/SVC routing table and the MDBSVC macro, read Using the
MDBSVC Macro.

2. Assemble and link-edit the DBID/SVC routing table member to create a load module or PHASE that
will be made available to the operating environment where the SVC routing feature will be used.

3. Modify a link globals table for the operating environment, specifying the LGBLSET keywords
DYNDBSVC=YES and DBSVCTN=name, where name is the name of the DBID/SVC routing table
load module that should be used by the link routine. Assemble and link-edit the updated link globals
table as required for the operating environment. For more information about the link globals table
and the LGBLSET macro, read Modifying Source Member Defaults (LGBLSET Macro) in Version 8 .
For information on assembling and link-editing the link globals table once the table is updated, refer
to the instructions for each z/OS or VSE TP monitoring environment, provided elsewhere in this
section.

4. Make the prepared DBID/SVC routing table available in a load library that is accessible by the
application program’s job step, so it can be loaded by the link routine when it runs.

5. Except for CICS systems, you will need to relink ADALNK or ADALNKR making sure that the
INCLUDE statements for the LNKDSL and DEPRTR (or RTRVSE on VSE) modules are included
in the job.

This section covers the following topics:

Installing DBID/SVC Routing under z/OS Batch, TSO and IMS
Installing DBID/SVC Routing under z/VSE Batch
Installing DBID/SVC Routing under CICS

26

Installing the Adabas DBID/SVC Routing FeatureInstalling Adabas With TP Monitors

Installing DBID/SVC Routing under z/OS Batch, TSO and IMS

The installation steps for the Adabas SVC routing feature under z/OS batch, TSO, and IMS are the same.

 To install the Adabas DBID/SVC routing feature under z/OS batch, TSO, or IMS, complete the
following steps:

1. Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a library
member. Sample member ADASVCTB is provided in the ADAvrs.SRCE library as a template for
preparing this member. For more information about using the MDBSVC macro, read Using the
MDBSVC Macro.

2. Assemble and link-edit the DBID/SVC routing table member to create the table as a load module that
you can make available to the application execution job step. The load module should be linked
non-reusable and non-reentrant because the link routine subprogram LNKDSL will need to store the
addresses of the Adabas SVC IDT headers in the DBID/SVC module to reduce the operating
overhead on multiple commands accessing the same Adabas SVC.

3. Define or modify a link globals table for the execution environment. The following LGBLSET
keywords are required to support the Adabas SVC routing feature:

LGBLSET Keyword
Setting

Description

DYNDBSVC=YES This keyword and setting indicate that Adabas SVC
routing is active for this job step.

DBSVCTN=name This keyword specifies the name of the DBID/SVC
table for this job step. This name must match the
name of the load module created to ensure the
proper table is loaded when the link routine runs.

4. Assemble and link-edit the updated link globals table, as described for the appropriate TP monitor.
For batch/TSO, read Installing Adabas with Batch/TSO under Adabas 8; for IMS, read Installing
Adabas with IMS TM under Adabas 8 .

5. Relink ADALNK or ADALNKR, making sure that the INCLUDE statements for the LNKDSL and
DEPRTR modules are included in the job. Samples of the jobs used to relink ADALNK and
ADALNKR are listed in the following table:

Link Routine Sample Job

z/OS batch TSO IMS

ADALNK LNKLNK8 LNKLNK8 ---

ADALNKR LNKLNKR8 LNKLNKR8 ---

ADALNI8 --- --- LNKLNI8

27

Installing Adabas With TP MonitorsInstalling the Adabas DBID/SVC Routing Feature

Installing DBID/SVC Routing under z/VSE Batch

 To install the Adabas DBID/SVC routing feature under z/VSE batch, complete the following
steps:

1. Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a library
member. Sample member ADASVCTB.A is provided in the sublibrary SAGLIB.ADAvrs as a
template for preparing this member. For more information about using the MDBSVC macro, read
Using the MDBSVC Macro.

2. Assemble and link-edit the DBID/SVC routing table member to create the table as a PHASE that you
can make available to the application execution job step. The PHASE should be linked non-reusable
and non-reentrant because the link routine subprogram LNKDSL will need to store the addresses of
the Adabas SVC IDT headers in the DBID/SVC module to reduce the operating overhead on
multiple commands accessing the same Adabas SVC.

3. Define or modify a link globals table for the execution environment. The following LGBLSET
keywords are required to support the Adabas SVC routing feature:

LGBLSET Keyword
Setting

Description

DYNDBSVC=YES This keyword and setting indicate that Adabas SVC
routing is active for this job step.

DBSVCTN=name This keyword specifies the name of the DBID/SVC
table for this job step. This name must match the
name of the PHASE created to ensure the proper
table is loaded when the link routine runs.

4. Assemble and link-edit the updated link globals table, as described for the appropriate TP monitor.
For batch/TSO, read Installing Adabas with Batch under Adabas 8.

5. Relink ADALNK.PHASE or ADALNKR.PHASE, making sure that the INCLUDE statements for
the LNKDSL and RTRVSE object modules are included in the job. Samples of the jobs used to
relink ADALNK and ADALNKR are listed in the following table:

Link Routine Sample Job

ADALNK.PHASE ALNKLNK8.X

ADALNKR.PHASE ALNKLNR8.X

Installing DBID/SVC Routing under CICS

 To install the Adabas DBID/SVC routing feature under CICS, complete the following steps:

1. Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a library
member. Sample member ADASVCTB is provided in the ADAvrs.SRCE library as a template for
preparing this member. For more information about using the MDBSVC macro, read Using the
MDBSVC Macro.

28

Installing the Adabas DBID/SVC Routing FeatureInstalling Adabas With TP Monitors

2. Assemble and link-edit the DBID/SVC routing table member to create the table as a load module and
place it in a library that will be part of the CICS DFHRPL concatenation. The load module should be
linked non-reusable and non-reentrant because the link routine subprogram LNKDSL will need to store
the addresses of the Adabas SVC IDT headers in the DBID/SVC module to reduce the operating overhead
on multiple commands accessing the same Adabas SVC.

3. Define the load module as a program to CICS using RDO, or the DFHCSDUP utility. See member
DEFADAC in the ACIvrs.SRCE libarary for sample DFHCSDUP definition statements. The
program attributes should be Reload(No), Resident(Yes), Dataloc(Any), and Execkey(CICS).

4. Define or modify a link globals table for the execution environment. The following LGBLSET
keywords are required to support the Adabas SVC routing feature:

LGBLSET Keyword
Setting

Description

DYNDBSVC=YES This keyword and setting indicate that Adabas SVC
routing is active for this job step.

DBSVCTN=name This keyword specifies the name of the DBID/SVC
table for this job step. This name must match the
name of the load module created to ensure the
proper table is loaded when the link routine runs.

5. Assemble and link-edit the updated link globals table, as described in Installing Adabas with CICS
under Adabas 8 for z/OS installationsInstalling Adabas with CICS under Adabas 8 for z/VSE
installations.

General Operation

When the Adabas SVC routing feature is installed, as described earlier in this section, it is loaded as
described below:

In batch, TSO, or IMS environments, the DBID/SVC routing table is loaded when the link routine
initializes if the LGBLSET DYNDBSVC parameter is set to YES in the link globals table. The
address of the routing table is kept in the link routine work area for use by all subsequent calls.

In CICS environments, the Adabas 8 initialization module ADACIC0, normally run during PLTPI
processing, loads and validates the DBID/SVC routing table, if the LGBLSET DYNDBSVC
parameter was set to YES in the link globals table for the CICS region. The address of the routing
table is kept in the global work area associated with the Adabas 8 task-related user exit (TRUE)
module, ADACICT, and is made available on each application call to the TRUE by the Adabas
command-level module ADACICS/ADADCI.

When an application call is made, the DBID/SVC routing table is searched by the LNKDSL subroutine
which is linked with the appropriate link routine for each operating environment. LNKDSL is called after
any LUEXIT1 (link routine user exit 1) is invoked, in case the pre-Adabas call user exit modifies the
command’s database ID for subsequent processing. The call to LNKDSL is made before any monitoring
or Adabas Fastpath exits are called, so the monitoring product, such as Adabas Review, Adabas Fastpath,
or Adabas Transaction Manager, will perform their processing based on the appropriate Adabas SVC
found in the DBID/SVC routing table.

29

Installing Adabas With TP MonitorsGeneral Operation

If the database ID associated with a particular call is not found in the DBID/SVC routing table, the default
value for the Adabas SVC as specified by the MDBSVC macro’s TYPE=INIT parameter is used. If the
SVC located is not an Adabas SVC, or if it is not installed on the z/OS system, an Adabas response code
of 213 with subcode 16 or 20 is returned to the application. If the calling database is not active for an SVC
number, an Adabas response code of 148 (ADARSP148) is returned to the application.

Duplicate database IDs are not allowed in the DBID/SVC routing table as there is no reliable way for the
link routine to determine which SVC should be used for a database ID if it is listed more than once. If
duplicate database IDs are found while the table is being assembled, they are flagged with an assembler
MNOTE and a return code of 16 is returned for the assembly attempt.

Using the MDBSVC Macro

Use the MDBSVC macro to define various aspects of the Adabas DBID/SVC routing table. Several
MDBSVC macros are coded together using TYPE=INIT, TYPE=GEN, and TYPE=FINAL keywords to
comprise a source module or member. This source module or member is then assembled and link-edited to
build the DBID/SVC routing table load module. Sample member ADASVCTB in ADAvrs.SRCE can be
used as a template for creating site-specific versions of the DBID/SVC routing table source module. Here
is a sample DBID/SVC routing table source member that uses the CSECT name TESTDBT; when the
table is assembled, its load module name will be TESTDBT:

TESTDBT CSECT
 MDBSVC TYPE=INIT,SVC=249,DBID=001
 MDBSVC TYPE=GEN,SVC=237,DBID=(2,10,21,33,175,1149), X
 DBID2=(100,101,102,13500)
 MDBSVC TYPE=GEN,SVC=231,DBID=(226,899)
 MDBSVC TYPE=GEN,SVC=206,DBID=(15,16,69,99,500,12144)
 MDBSVC TYPE=GEN,SVC=248,DBID=(14,54,111,177,1213,5775)
 MDBSVC TYPE=GEN,SVC=249,DBID=(17,19,25,35,42,44,61,76)
 MDBSVC TYPE=FINAL
 END

When coding keyword values of MDBSVC macro statements, the assembler rules for continuing lines,
identifying lists, and providing keyword values must be followed or assembly errors will result. Keywords
and values with lists coded as objects of keywords must be separated by commas. There are no positional
parameters used with the MDBSVC macro.

The MDBSVC macro can include the following four types of statements, as described in the following
table:

30

Using the MDBSVC MacroInstalling Adabas With TP Monitors

MDBSVC
Statement Type

Description Number
Allowed

TYPE=INIT Only one MDBSVC TYPE=INIT statement can be included in
the DBID/SVC routing table source member and it must be the
first MDBSVC statement in the member. This statement
identifies the beginning of the DBID/SVC routing table. The
MDBSVC TYPE=INIT statement may also provide the default
database ID and Adabas SVC number used for a call.

1

TYPE=GEN Any number of MDBSVC TYPE=GEN statements can be
included in the DBID/SVC routing table source member. These
statements specify the lists of Adabas database IDs associated
with specific valid Adabas SVC numbers.

any number,
as needed.

TYPE=FINAL Only one MDBSVC TYPE=FINAL statement can be included
in the DBID/SVC routing table source member and it must be
the last MDBSVC statement in the member before the
assembler END statement. This statement identifies the end of
the DBID/SVC routing table.

1

TYPE=DSECT This statement type is reserved for Software AG internal use
only. Do not use this statement type.

0

The MDBSVC TYPE=INIT statement can be preceded by a named CSECT statement and named
AMODE and RMODE statements. If the CSECT, AMODE, or RMODE statements are included, the
name used in them must agree with the name for the DBID/SVC routing table, as coded in the
TABNAME parameter on the MDBSVC TYPE=INIT statement and as specified in the DBSVCTN
keyword of the LGBLSET macro used for creating the link globals table.

This section covers the following topics:

MDBSVC TYPE=INIT Syntax
MDBSVC TYPE=GEN Syntax
MDBSVC TYPE=FINAL Syntax
MDBSVC Parameters

MDBSVC TYPE=INIT Syntax

The syntax for the MDBSVC TYPE=INIT statement is:

MDBSVC TYPE=INIT [,SVC=svcno] [,DBID=dbid] [,TABNAME={name|ADBSVCT}] [,OPSYS={ZOS|VSE}]

The parameters you can code on the MDBSVC TYPE=INIT statement are described in MDBSVC
Parameters.

MDBSVC TYPE=GEN Syntax

The syntax for the MDBSVC TYPE=GEN statement is:

31

Installing Adabas With TP MonitorsUsing the MDBSVC Macro

MDBSVC TYPE=GEN [,SVC=svcno] [,DBID=id[, id]...][,DBID2=id[, id]...]

The parameters you can code on the MDBSVC TYPE=GEN statement are described in MDBSVC
Parameters.

MDBSVC TYPE=FINAL Syntax

The syntax for the MDBSVC TYPE=FINAL statement is:

MDBSVC TYPE=FINAL

No parameters are valid on the MDBSVC TYPE=FINAL statement.

MDBSVC Parameters

The parameters that can be specified on various MDBSVC statements are as follows:

DBID

The DBID parameter can be coded on both the MDBSVC TYPE=INIT and MDBSVC TYPE=GEN
statements.

When specified on the MDBSVC TYPE=INIT statement, it lists the default database ID
associated with the SVC specified in the SVC parameter. In this case, only one database ID can
be listed in the DBID parameter on a TYPE=INIT statement.

When specified on a MDBSVC TYPE=GEN statement, it lists the database IDs associated with
the SVC specified in the SVC parameter. If more than one database ID is listed, they should be
enclosed in parentheses and separated by commas.

Database IDs listed in the DBID parameter must be numeric and must correspond to the IDs of
installed Adabas databases. In z/OS environments, database IDs must range from 1 to 65535. The
same database ID cannot be specified on multiple MDBSVC statements; they must be unique across
all of the DBID and DBID2 statements in the DBID/SVC routing table. Duplicate values are flagged
with an MNOTE, which causes the assembly of the DBID/SVC routing table to stop with return code
16.

The following is an example of some DBID parameters on various MDBSVC statements. Note that
two MDBSVC statements list database IDs associated with SVC 237. This allows more database IDs
to be coded for the same SVC number. Compare the way this is coded to the way the same example
is coded for the DBID2 parameter. Both codings produce the same end result.

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=242,DBID=(3,18)
MDBSVC TYPE=FINAL
END

32

Using the MDBSVC MacroInstalling Adabas With TP Monitors

DBID2

The DBID2 parameter can be coded only on MDBSVC TYPE=GEN statements. It lists additional
database IDs to be associated with an Adabas SVC specified in the SVC parameter. The DBID2
parameter is optional, but when it is specified, it must follow a DBID parameter.

Database IDs listed in the DBID2 parameter must be numeric and must correspond to the IDs of
installed Adabas databases. In z/OS environments, database IDs must range from 1 to 65535. The
same database ID cannot be specified on multiple MDBSVC statements; they must be unique across
all of the DBID and DBID2 statements in the DBID/SVC routing table. Duplicate values are flagged
with an MNOTE, which causes the assembly of the DBID/SVC routing table to stop with return code
16.

The following is an example of some MDBSVC statements that includes a DBID2 parameter.
Compare the way this example is coded to the way the same example is coded for the DBID
parameter. Both codings produce the same end result.

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33), X
 DBID2=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=242,DBID=(3,18)
MDBSVC TYPE=FINAL
END

OPSYS

The OPSYS parameter is an optional parameter that can be coded only on the MDBSVC
TYPE=INIT statement. This parameter identifies the operating system where the DBID/SVC routing
table is assembled. Valid values for the OPSYS parameter are "ZOS" and "VSE"; the default is
"ZOS".

PREFIX

The PREFIX parameter can only be coded only on the MDBSVC TYPE=DSECT statement, which is
reserved for internal use by Software AG. Do not use this parameter.

SVC

The SVC parameter can be coded on both the MDBSVC TYPE=INIT and MDBSVC TYPE=GEN
statements.

When specified on the MDBSVC TYPE=INIT statement, it specifies the default Adabas SVC
number to be used when the calling application provides a database ID that is not found in the
DBID/SVC routing table.

When specified on a MDBSVC TYPE=GEN statement, it specifies the Adabas SVC number to
be associated with the Adabas databases identified by the DBID and DBID2 parameters.

The SVC number listed in the SVC parameter must be numeric and must correspond to the SVC
number of an installed Adabas SVC. In z/OS environments, the SVC number must range from 200 to
255. Duplicate SVC values can be coded on multiple MDBSVC statements; this allows you to code
long lists of database IDs and associate them with the same Adabas SVC.

33

Installing Adabas With TP MonitorsUsing the MDBSVC Macro

In the following example, notice that there are two MDBSVC statements for SVC 249. It is the
default SVC for the link routine and is also used for database 1, 3, and 18. There are also two MDBSVC
statements for SVC 237; the two statements are used to list nine databases associated with SVC 237 (2, 4,
10, 16, 21, 33, 175, 1149, and 1221).

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=249,DBID=(3,18)
MDBSVC TYPE=FINAL
END

TABNAME

The TABNAME parameter is an optional parameter that can be coded only on the MDBSVC
TYPE=INIT statement. This parameter specifies the name of the DBID/SVC routing table when the
source member does not include a separate (and previously coded) CSECT statement. In this case,
the name you specify on the TABNAME parameter is used to generate a named CSECT statement
and named AMODE and RMODE directives.

The DBID/SVC routing table name that you specify should be between 1 and 8 alphanumeric
characters long. In the following example, a DBID/SVC routing table with the name TESTDBT is
coded.

MDBSVC TYPE=INIT,SVC=249,DBID=1,TABNAME=TESTDBT
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=249,DBID=(3,18)
MDBSVC TYPE=FINAL
END

Modifying Source Member Defaults (LGBLSET Macro) in
Version 8
The Adabas 8 LGBLSET macro is used to set default installation values for the Adabas link routines. It is
used to prepare an object module which may either be link-edited with the Adabas 8 link routines or
provided to the link routines in the job step where they are run. Your Adabas libraries include sample
members provided to support the various teleprocessing (TP) monitors in each environment. Each of these
sample members may be copied to an appropriate library and modified to provide the necessary
customization required for the link routine that is intended to run in a given environment.

The LGBLSET parameter options with their default values (underlined) are described in the rest of this
section:

ADL: Adabas Bridge for DL/I Support

AVB: Adabas Bridge for VSAM Support

CITSNM: Adabas CICS TS Queue Name

COR: SYSCOR Exit Support

34

Modifying Source Member Defaults (LGBLSET Macro) in Version 8Installing Adabas With TP Monitors

DBSVCTN: DBID/SVC Routing Table

DYNDBSVC: DBID/SVC Routing Table

ENTPT: Name of the Adabas CICS Command-Level Link Routine

GBLNAME: Name of Link Globals Module

GEN: Generate CSECT or DSECT

IDTNAME: BS2000 IDT Common Memory Name

IDTUGRP: BS2000 Memory Pool User Bound

LOGID: Default Logical Database ID

LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2

LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2

LX1NAME: User Exit 1 Module Name

LX2NAME: User Exit 2 Module Name

MRO: Multiple Region Option

NETOPT: Method Used to Create User ID

NTGPID: Natural Group ID

NUBS: Number of User Blocks Created By CICS Link Routine

OPSYS: Operating System

PARMTYP: Area for Adabas Parameter List

PRE: DSECT Data Prefix

PURGE: Purge Transaction

RENT: Reentrant Module Flag

RETRYX: Retry Command Exit Flag

REVHID: Adabas Review Hub ID Support

REVIEW: Adabas Review Support

REVREL: Adabas Review Release

RMI: Resource Manager Interface

RTXNAME: Command Retry Exit Name

35

Installing Adabas With TP MonitorsModifying Source Member Defaults (LGBLSET Macro) in Version 8

RVCLNT: Adabas Review Client Reporting Activation Setting

SAF: Adabas Security Interface Flag

SAP: SAP Application Support

SAPSTR: SAP ID String

SVCNO: Adabas SVC number

TPMON: Operating Environment

TRUENM: CICS TRUE Name

UBPLOC: User Block Pool Allocation

UBSTIME: User Block Scan Time

UBTYPE: User Block Type

UES: Universal Encoding Support

USERX1: User Exit 1 Flag

USERX2: User Exit 2 Flag

XWAIT: XWAIT Setting for CICS

ADL: Adabas Bridge for DL/I Support

Parameter Description Syntax

ADL Indicates whether or not the Consistency Interface of
Software AG’s Adabas Bridge for DL/I is to be supported
by this command-level link routine.

ADL=YES: Adabas Bridge for DL/I Consistency
Interface is to be supported.

ADL=NO: Adabas Bridge for DL/I Consistency
Interface is not to be supported.

ADL={NO|YES}

AVB: Adabas Bridge for VSAM Support

36

ADL: Adabas Bridge for DL/I SupportInstalling Adabas With TP Monitors

Parameter Description Syntax

AVB Indicates whether or not Software AG’s Adabas Bridge for
VSAM is to be supported by this command-level link
routine.

AVB=YES: Adabas Bridge for VSAM is to be
supported.

AVB=NO: Adabas Bridge for VSAM is not to be
supported.

AVB={NO|YES}

CITSNM: Adabas CICS TS Queue Name

Parameter Description Syntax

CITSNM Specifies the 16-byte string that represents the
CICS TS queue name for Adabas. The default is
"ADACICS".

CITSNM={ADACICS| qname}

COR: SYSCOR Exit Support

Parameter Description Syntax

COR Indicates whether or not Adabas System Coordinator
(SYSCOR), Adabas Transaction Manager, and Adabas
Fastpath exits are installed and active.

COR=YES: The exits are installed and active.

COR=NO: The exits are not installed and active.

COR={NO|YES}

DBSVCTN: DBID/SVC Routing Table

37

Installing Adabas With TP MonitorsCITSNM: Adabas CICS TS Queue Name

Parameter Description Syntax

DBSVCTN Provides the name of the DBID/SVC routing
table that should be used by the link routine
during its execution, if any.

The routing table name must conform to names
for z/OS standard load modules. It is used by a
z/OS LOAD macro/SVC during batch, TSO, or
IMS operation or by an EXEC CICS LOAD
PROGRAM command during CICS operation.

If the load module listed is not found, or if it is
found to contain invalid header information, user
abend U657 is issued in batch, TSO, or IMS
environments.

If the load module is not defined to CICS or not
found in the CICS DFHRPL concatenation, the
Adabas CICS link routine environment is not
initialized.

Note:
If the DYNDBSVC parameter is set to NO, this
parameter setting is ignored.

For more information about SVC routing by
database ID in z/OS environments, read
Establishing Adabas SVC Routing by Adabas
Database ID.

Note:
Adabas client-based add-ons, such as Adabas
Transaction Manager, are not compatible with
this feature since for client-based functionality to
work, it must be channeled through only a single
router for any given session, not across routers.
To avoid problems if the dynamic SVC by DBID
routing feature in enabled for these products,
error messages are issued, the assembly step of
the globals table will receive return code 16, and
the globals table load module will not be
generated.

DBSVCTN={name| ADASVCTB}

DYNDBSVC: DBID/SVC Routing Table

38

DYNDBSVC: DBID/SVC Routing TableInstalling Adabas With TP Monitors

Parameter Description Syntax

DYNDBSVC Indicates whether Adabas SVC routing by database
ID should be enabled for the link routine.
DYNDBSVC=YES enables Adabas SVC routing by
database ID; DYNDBSVC disables it. The default is
NO.

For more information about SVC routing by database
ID in z/OS environments, read Establishing Adabas
SVC Routing by Adabas Database ID.

DYNDBSVC={YES|NO}

ENTPT: Name of the Adabas CICS Command-Level Link Routine

Parameter Description Syntax

ENTPT The name given to the Adabas CICS command-level
link routine. This name is used in EXEC CICS
LINK commands to invoke Adabas services from
CICS application programs.

See also notes 1 and 2 in the installation procedure.

ENTPT={ADACICS|name}

GBLNAME: Name of Link Globals Module

Parameter Description Syntax

GBLNAME The name of the link globals module.GBLNAME={LNKGBLS|name}

GEN: Generate CSECT or DSECT

Parameter Description Syntax

GEN Indicates whether a CSECT or DSECT is
generated.

GEN={CSECT|DSECT}

IDTNAME: BS2000 IDT Common Memory Name

Parameter Description Syntax

IDTNAME The common memory pool name of the BS2000 IDT.IDTNAME=name

IDTUGRP: BS2000 Memory Pool User Bound

Parameter Description Syntax

IDTUGRP Indicates whether the common memory pool is user
bound (BS2000)

IDTUGRP={NO|YES}

39

Installing Adabas With TP MonitorsENTPT: Name of the Adabas CICS Command-Level Link Routine

LOGID: Default Logical Database ID

Parameter Description Syntax

LOGID The value of the default target database ID. Valid ID
numbers are 1-65535. The default is "1".

LOGID={nnn | 1}

LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2

Parameter Description Syntax

LUINFO The length of the user data to be passed to target user
exit 4. Valid values are numbers from zero (0) through
32,767.

If LUINFO is not specified, the default is zero (no user
data is passed).

LUINFO={ 0| length}

LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2

Parameter Description Syntax

LUSAVE The size of the user save area to be used by Adabas user
exits LUEXIT1 and LUEXIT2. Valid values range from
zero (0) through 256. The default is "72".

If LUSAVE is not specified, the default is zero (no user
save area is passed).

LUSAVE={72| size}

LX1NAME: User Exit 1 Module Name

Parameter Description Syntax

LX1NAME The name of the link user exit 1 moduleLX1NAME={LUEXIT1| name}

LX2NAME: User Exit 2 Module Name

Parameter Description Syntax

LX2NAME The name of the link user exit 2 moduleLX2NAME={LUEXIT2| name}

MRO: Multiple Region Option

40

LOGID: Default Logical Database ID Installing Adabas With TP Monitors

Parameter Description Syntax

MRO Indicates whether or not the CICS multiple region option
(MRO) support is required.

If you run the CICS command-level link with the CICS
MRO, set this to MRO=YES; otherwise, use the default
value MRO=NO.

If MRO=YES, NETOPT must be set to NETOPT=NO (the
default) to prevent non-unique LU names from multiple
application regions.

If NETOPT=YES and MRO=YES are specified, an
assembler MNOTE and a return code of 16 are produced
from the assembly step.

MRO={NO|YES}

NETOPT: Method Used to Create User ID

Parameter Description Syntax

NETOPT If NETOPT=YES is specified, an 8-byte user ID will be
constructed from the VTAM LU name. If NETOPT=NO
is specified, the user ID is created from the constant
CICS plus the four-byte CICS terminal ID (TCTTETI)
for terminal tasks. For non-terminal tasks, the user ID
comprises the constant CICS plus the CICS task number.

If you run with the CICS multiple region option (MRO),
you must use the default value for this option. If
NETOPT=YES and MRO=YES are specified, an
assembler MNOTE and a return code of 16 are produced
from the assembly step.

NETOPT={NO|YES}

NTGPID: Natural Group ID

41

Installing Adabas With TP MonitorsNETOPT: Method Used to Create User ID

Parameter Description Syntax

NTGPID Specifies a four-byte Natural group ID as required for
unique Adabas user ID generation in the CICS
sysplex environment with Natural Version 2.2.8 and
above. The value is associated with all users who call
the Adabas command-level link routine assembled
with the specified value.

There is no default value. If no value is specified, the
Adabas internal user ID is built in the conventional
manner.

Any four-byte alphanumeric value may be specified,
but it must be unique for each Adabas
command-level link routine running in a CICS
sysplex, or z/OS image. If more than one NTGPID is
required (for example, both test and production
Natural 2.2.8), more than one Adabas command-level
link routine with associated TRUE must be
generated.

If you run with the CICS multiple region option
(MRO), you may use NTGPID to provide a 4-byte
literal for the Adabas communication ID to be used
by the Adabas SVC when multiple application
regions call Adabas.

NTGPID=4-byte-value

NUBS: Number of User Blocks Created By CICS Link Routine

Parameter Description Syntax

NUBS The number of user blocks (UBs) to be created in the
user block pool by the CICS link routine. The number
of blocks must be large enough to handle the maximum
possible number of concurrent Adabas requests.

Note:
The Adabas 6.2 and above command-level link routine
obtains storage for the user blocks (the UB pool) above
the 16-megabyte line.

NUBS={100| blocks}

OPSYS: Operating System

Parameter Description Syntax

OPSYS The operating system in use. OPSYS={ZOS|VSE|CMS|BS2}

42

NUBS: Number of User Blocks Created By CICS Link RoutineInstalling Adabas With TP Monitors

PARMTYP: Area for Adabas Parameter List

Parameter Description Syntax

PARMTYP The CICS area which is to contain the Adabas
parameter list. "TWA" picks up the parameter list
in the first six fullwords of the transaction work
area (TWA).

When PARMTYP=COM, the Adabas parameters
are supplied in the CICS COMMAREA provided
by the calling program with the EXEC CICS
LINK command. The COMMAREA list for an
ACB call must be at least 32 bytes long and begin
with the label "ADABAS52". The COMMAREA
list for an ACBX call must be at least 24 bytes
long and begin with the label "ADABAS8X". In
addition, the last ABD in the COMMAREA list
for an ACBX call must be indicated by setting the
VL-bit -- in other words, the high bit in the
address must be on (X’80’).

PARMTYP=ALL (the default) uses both the
COMMAREA and TWA to pass the Adabas
parameters; in this case, the COMMAREA is
checked first.

We do not recommend that you attempt to map
the CICS TWA to the Adabas 8 ACBX direct call.
This is because the TWA is of finite size per
transaction and because the TWA in not available
at CICS startup. We therefore recommend that
CICS programs using the Adabas 8 CICS link
routines use the COMMAREA only for passing
data.

PARMTYP={ALL|COM |TWA}

PRE: DSECT Data Prefix

Parameter Description Syntax

PRE The two-byte string to be used as the DSECT data prefix.
The default is "LG".

PRE={LG| prefix}

PURGE: Purge Transaction

43

Installing Adabas With TP MonitorsPARMTYP: Area for Adabas Parameter List

Parameter Description Syntax

PURGE The PURGE parameter is used when assembling with
CICS 3.2 or above. If PURGE=YES is specified, the CICS
WAIT EXTERNAL will contain PURGEABLE as one of
its parameters, allowing the transaction to be purged by
CICS if the DTIMOUT value is exceeded and PURGE is
specified.

If PURGE=NO (the default) is specified, the
NONPURGEABLE option is generated.

PURGE={NO|YES}

RENT: Reentrant Module Flag

Parameter Description Syntax

RENT Indicates whether the globals module is reentrant.RENT={NO|YES}

RETRYX: Retry Command Exit Flag

Parameter Description Syntax

RETRYX Indicates whether the retry command exit is active.RETRYX={NO|YES}

REVHID: Adabas Review Hub ID Support

Parameter Description Syntax

REVHID Specifies the preferred Adabas Review hub ID. This value
can be checked during the Adabas TP monitoring
installation or during the monitor activate process.

If REVHID is set to zero (0), the preferred Adabas Review
hub ID is dynamic. When the hub ID is dynamic, it cannot
be checked during the Adabas TP monitoring installation
and the call to turn on client reporting must supply the
correct Adabas Review hub ID to use.

If REVHID is specified, REVIEW=YES must also be
specified. If REVHID is specified and REVIEW=NO is also
specified, the assembly of the globals table will abort with
condition code 16 and the following message is given:

REVHID requires REVIEW=YES

This parameter is not valid in VSE environments. The
parameter exists in VSE environments, but should be set to
"0".

REVHID=hubid

44

RENT: Reentrant Module FlagInstalling Adabas With TP Monitors

REVIEW: Adabas Review Support

Parameter Description Syntax

REVIEW Indicates whether or not Software AG’s Adabas Review
performance monitor is installed and active.

REVIEW={NO|YES}

REVREL: Adabas Review Release

Parameter Description Syntax

REVREL Specifies the level of Adabas Review support to be
generated in the link globals table module. This is
necessary because Review 4.6 and later releases have
changed the Review pre-call exit name from
"REVEXITB" to "REVEXIT1". Valid values are "45" or
"46" (without the quotes). If other values are given the
assembly of the globals table will fail with condition code
16 and MNOTE messages from the assembler.

When REVREL=45 is specified, it indicates that support
for Adabas Review release 4.5 and earlier should be used.
The Adabas Review REVEXITB exit name is used and an
associated external reference statement is generated when
the globals table is assembled. When REVREL=45 is
specified, the RVCLNT keyword must be set to NO. If
RVCLNT=YES and REVREL=45 are both specified, the
assembly of the globals table will fail with condition code
16 and MNOTE messages from the assembler.

When REVREL=46 is specified it indicates that support
for Adabas Review release 4.6 and later should be used.
The Adabas Review REVEXIT1 exit name is used and an
associated external reference statement is generated when
the globals table is assembled.

Note:
Use of the REVREL keyword alone does not provide
support for Adabas Review. To provide support for
Adabas Review, the REVIEW keyword must also be set to
YES.

REVREL={45|46}

RMI: Resource Manager Interface

45

Installing Adabas With TP MonitorsREVIEW: Adabas Review Support

Parameter Description Syntax

RMI The RMI parameter is used to indicate whether or not the
CICS Resource Manager Interface is in use.

If RMI=YES is specified, the Adabas task-related user exit
(TRUE) will be executed as a resource manager (RM) using
the CICS Resource Manager Interface (RMI).

RMI=YES is valid only when the Adabas Transaction
Manager is installed, enabled, and available to users
executing in the CICS environment. Consult the Adabas
Transaction Manager documentation for additional
instructions related to the installation of the Adabas TRUE.

RMI={ NO|YES}

RTXNAME: Command Retry Exit Name

Parameter Description Syntax

RTXNAME The name of the command retry exit
module.

RTXNAME={LUEXRTR|name}

RVCLNT: Adabas Review Client Reporting Activation Setting

Parameter Description Syntax

RVCLNT Indicates whether the Adabas Review client reporting
exit should be active. The default is NO.

If RVCLNT=YES is specified, REVIEW=YES must also
be specified. If RVCLNT=YES is specified and
REVIEW=NO is also specified, the assembly of the
globals table will abort with condition code 16 and the
following message is given:

RVCLNT=YES requires REVIEW=YES

This parameter is not valid in VSE environments. The
parameter exists in VSE environments, but should be set
to zero "NO".

RVCLNT={YES|NO}

SAF: Adabas Security Interface Flag

Parameter Description Syntax

SAF Indicates whether Software AG’s Adabas SAF Security
support is required.

SAF={NO|YES}

46

RTXNAME: Command Retry Exit NameInstalling Adabas With TP Monitors

SAP: SAP Application Support

Parameter Description Syntax

SAP Indicates whether or not SAP user ID generation is
supported.

If SAP=YES is specified, the program will detect a SAP
initialization call and set the user ID for SAP applications
from the constant provided on the initialization call, plus the
field ACBADD2.

For more information, refer to the supplementary
information provided to customers using the SAP
application system.

SAP={NO|YES}

SAPSTR: SAP ID String

Parameter Description Syntax

SAPSTR The four-byte SAP ID string to use. SAPSTR={’SAP*’| string}

SVCNO: Adabas SVC number

Parameter Description Syntax

SVCNO The value of the Adabas SVC number.

On z/OS systems, valid values range from 200-255 and the
default is "249".

On z/VSE systems, valid values range from 32-128 and the
default is "45".

SVCNO=nnn

TPMON: Operating Environment

47

Installing Adabas With TP MonitorsSAP: SAP Application Support

Parameter Description Syntax

TPMON The TP monitor operating environment. Valid
values should be specified as follows:

Specify "BAT" to use batch.

Specify "CICS" to use CICS.

Specify "COM" to use Com-plete.

Specify "IMS" to use IMS.

Specify "TSO" to use TSO.

Specify "UTM" to use UTM.

Warning:
Be sure to specify a TP
monitor operating
environment that is
supported on the
operating system you
selected in the OPSYS
parameter. In addition, if
OPSYS=CMS is specified,
the TPMON parameter
should not be specified.

TPMON={BAT|CICS|COM|IMS}

TRUENM: CICS TRUE Name

Parameter Description Syntax

TRUENM Specifies the module name of the Adabas CICS
task-related user exit (TRUE). The default is
ADACICT.

TRUENM={ADACICT|name}

UBPLOC: User Block Pool Allocation

48

TRUENM: CICS TRUE NameInstalling Adabas With TP Monitors

Parameter Description Syntax

UBPLOC Specifies whether the user block (UB) pool is to be
obtained above (the default) or below the
16-megabyte line in CICS.

The ECB used by the EXEC CICS WAIT
WAITCICS or the EXEC CICS WAIT EXTERNAL
is included in the UB pool.

The UBPLOC=BELOW setting supports versions of
CICS that do not allow ECBs above the
16-megabyte line; that is, CICS/ESA 3.2 or below.

Refer to the IBM manual CICS Application
Programming Reference for more information.

UBPLOC={ABOVE|BELOW}

UBSTIME: User Block Scan Time

49

Installing Adabas With TP MonitorsUBSTIME: User Block Scan Time

Parameter Description Syntax

UBSTIME Specifies the user block (UB) scan time in fat
seconds. A fat second is the interval required to
change bit-31 of the doubleword set by an STCK
instruction. The default is 1800 seconds.

This parameter sets the minimum interval at which
the Adabas task-related user exit (TRUE) will
decide that a user block entry in the user block
pool is eligible for release, if (for some reason) the
user block entry was not released by normal
Adabas CICS processing. Thus, UBSTIME=1800
indicates that a locked user block entry will be
released by the Adabas TRUE if more than 1800
fat seconds have elapsed since the user block entry
was locked for an Adabas call.

The value of UBSTIME should be set higher than
the Adabas CT (transaction time) ADARUN
parameter. An ADAM93 message indicating either
a post failure or a missing 16 call is likely to occur
around the time the user block entry is released or
prior to the user block entry’s release if the Adabas
CT timeout value has been exceeded.

Note:
The Adabas TRUE will not release a user block
entry even if the UBSTIME has elapsed if the
ECB associated with the locked user block has not
been posted. This is to prevent accidental posting
of the wrong CICS task by the Adabas SVC.

UBSTIME={seconds| 1800}

UBTYPE: User Block Type

50

UBTYPE: User Block TypeInstalling Adabas With TP Monitors

Parameter Description Syntax

UBTYPE Identifies the kind of user block (UB) storage the
Adabas CICS installation program and Adabas
task-related user exit (TRUE) should obtain and use.

Valid values are TASK and POOL. POOL is the
default. UBTYPE=POOL causes the installation
program to obtain a pool of user blocks in CICS
storage. This is the classic mechanism used by Adabas
CICS link routines.

UBTYPE=TASK changes the behavior of the Adabas
CICS installation program and Adabas TRUE so they
obtain a single user block element, including any
required extensions for user data and Software AG
products, for each CICS task that invokes the Adabas
TRUE. The user block is obtained in CICS shared
storage in user-key. It is released when the Adabas
TRUE is driven by CICS at the end of the CICS task.
The advantage of UBTYPE=TASK is that there is no
scan time required to locate and lock a given UB pool
element on each Adabas call. The disadvantages of
using UBTYPE=TASK are that a CICS GETMAIN
must be issued for each CICS task the first time the
Adabas TRUE is invoked for the task and that a CICS
FREEMAIN must be issued to release the user block
storage at the end of the CICS task.

The decision to use UBTYPE=TASK should be based
on whether your answers to the following questions
are "Yes":

1. Do the majority if CICS tasks that use this CICS
execution unit run for long periods, issuing many
Adabas calls within each task?

2. Do the CICS tasks often trip CPU limits set by
CICS execution monitoring programs such as
those from Omegamon?

UBTYPE=POOL should be used if there are problems
with CICS storage fragmentation of when most of the
Adabas CICS transactions issues a relatively small
number of Adabas calls per CICS task.

Software AG encourages you to experiment with
values for UBTYPE because it is not possible to
reliably predict the mix of transactions used at each
site or how they call Adabas.

UBTYPE={POOL|TASK}

51

Installing Adabas With TP MonitorsUBTYPE: User Block Type

UES: Universal Encoding Support

Parameter Description Syntax

UES Indicates whether or not Universal Encoding Support
(UES) is required.

UES={NO|YES}

USERX1: User Exit 1 Flag

Parameter Description Syntax

USERX1 Indicates whether or not user exit 1 is active. USERX1={NO|YES}

USERX2: User Exit 2 Flag

Parameter Description Syntax

USERX2 Indicates whether or not user exit 2 is active. USERX2={NO|YES}

XWAIT: XWAIT Setting for CICS

Parameter Description Syntax

XWAIT Indicates whether a standard EXEC CICS WAITCICS
(XWAIT=NO) or a WAIT EVENTS EXTERNAL
(XWAIT=YES) will be executed by the Adabas 8
task-related user exit (TRUE). XWAIT=YES is the
default.

The CICS WAIT EVENTS EXTERNAL (XWAIT=YES)
is the recommended interface for CICS/TS 1.1 and above.

The CICS WAITCICS statement (XWAIT=NO) is
provided for use with CICS/MVS 2.1.2 and for CICS/VSE
2.1 through 2.3. It may also be used for CICS/TS 1.1 and
above, but may result in poor CICS transaction
performance or unpredictable transaction results in busy
CICS environments.

Note:
If XWAIT=NO is specified for use under CICS/ESA 3.3,
IBM APAR PN39579 must be applied to the CICS/ESA
3.3 system. For CICS/TS 1.1 and above, this APAR is not
required.

XWAIT={NO| YES}

Notes:

1. If XWAIT=NO is specified, the ADACICT (Adabas 8 TRUE) module issues an EXEC CICS
WAITCICS command instead of the EXEC CICS WAIT EVENT command. XWAIT=YES
conforms with recommended IBM usage of the WAIT and ECB lists in a high-transaction volume
CICS system with CICS/TS Version 1.1 and above.

52

UES: Universal Encoding SupportInstalling Adabas With TP Monitors

2. All EXEC CICS commands are processed by the CICS preprocessor; the LGBLSET parameters
cause the subsequent assembly step to skip some of the statements.

XWAIT Posting Mechanisms

CICS WAITCICS (XWAIT=NO) can support a soft post of the specified ECB. This has the disadvantage
of becoming a low priority dispatchable unit of work in a CICS environment, since the hand-postable
work is not processed by CICS on every work cycle.

EXEC CICS WAIT EXTERNAL (XWAIT=YES), on the other hand, allows CICS to make use of its
special post exit code, and will always be checked and processed (if posted) on every CICS work cycle.

For more details on the differences between the various CICS WAIT commands and their relationship to
hard and soft posting mechanisms, consult the IBM CICS Application Programming Reference and the
texts accompanying IBM APAR PN39579 or “Item RTA000043874” on the IBM InfoLink service.

XWAIT and the Adabas SVC / Router

The Adabas SVC is fully compatible with the XWAIT=YES setting. The SVC performs the necessary
hard post for Adabas callers under CICS using the Adabas command-level link routine. The same SVC
performs a soft post for batch callers where the hard post is not required.

53

Installing Adabas With TP MonitorsXWAIT: XWAIT Setting for CICS

	Installing Adabas With TP Monitors
	Preparing Adabas Link Routines for z/VSE
	High-Level Assembler
	Addressing Mode Assembly Directives
	Modifying the Assembly Directives
	Re-linking Adabas 8 Link Routines
	ADAUSER AMODE/RMODE Considerations

	UES-Enabled Link Routines
	Default or Customized Translation Tables
	Calling LNKUES
	Adabas 8 Jobs for z/VSE Universal Encoding Support
	Disabling UES Support for Adabas 8 Link Routines

	General Considerations for Installing Adabas with CICS
	CICS Release Support
	CICS MRO Environment Requirements
	Sample Resource Definitions
	Requirement for CICS Command Resource Security

	Installing Adabas with CICS under Adabas 8
	The Adabas CICS Application Stub (ADACICS)
	The Adabas CICS Names Module (ACINAMES)
	The Adabas CICS Installation Options Table (ACIOPT)
	The MACINS Macro
	Example

	The MACIOPT Macro
	The ENTRY=GLOBAL Statement
	The ENTRY=GROUP Statement
	The ENTRY=FINAL Statement
	Example

	Adabas Task-Related User Exits (TRUEs)
	Supplied Modules
	Installation Procedure Under Adabas 8
	Step 1. Modify the CICS Startup JCS
	Step 2. Prepare the Adabas CICS Installation Options Table
	Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT
	Example
	Step 4. Prepare the Adabas CICS Names Module -- ACINAMES
	Example
	Step 5. Prepare the Adabas CICS Application Stub -- ADACICS
	Example
	Step 6. Prepare the CICS Link Globals Table -- CICSGBL.A)
	Step 7. Assemble and Link-edit the CICS Link Globals Table (ALNKCIC8.X)
	Step 8. Modify CICS Installation Values (DEFADAC.A)
	Step 9. Update the CICS CSD File (DFHCSDUP)
	Step 10. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0
	Step 11. Update, Assemble and Link-edit the Destination Control Table (DCTACI.A)
	Step 12. Start the CICS

	Installing Adabas with Com-plete under Adabas 8
	Installing Adabas with Batch under Adabas 8
	Supplied Modules
	Installing the Batch z/VSE Adabas 8 Link Routine
	Installing the Reentrant Batch z/VSE Adabas 8 Link Routine

	Establishing Adabas SVC Routing by Adabas Database ID
	Installing the Adabas DBID/SVC Routing Feature
	Installing DBID/SVC Routing under z/OS Batch, TSO and IMS
	Installing DBID/SVC Routing under z/VSE Batch
	Installing DBID/SVC Routing under CICS

	General Operation
	Using the MDBSVC Macro
	MDBSVC TYPE=INIT Syntax
	MDBSVC TYPE=GEN Syntax
	MDBSVC TYPE=FINAL Syntax
	MDBSVC Parameters

	Modifying Source Member Defaults (LGBLSET Macro) in Version 8
	ADL: Adabas Bridge for DL/I Support
	AVB: Adabas Bridge for VSAM Support
	CITSNM: Adabas CICS TS Queue Name
	COR: SYSCOR Exit Support
	DBSVCTN: DBID/SVC Routing Table
	DYNDBSVC: DBID/SVC Routing Table
	ENTPT: Name of the Adabas CICS Command-Level Link Routine
	GBLNAME: Name of Link Globals Module
	GEN: Generate CSECT or DSECT
	IDTNAME: BS2000 IDT Common Memory Name
	IDTUGRP: BS2000 Memory Pool User Bound
	LOGID: Default Logical Database ID
	LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2
	LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2
	LX1NAME: User Exit 1 Module Name
	LX2NAME: User Exit 2 Module Name
	MRO: Multiple Region Option
	NETOPT: Method Used to Create User ID
	NTGPID: Natural Group ID
	NUBS: Number of User Blocks Created By CICS Link Routine
	OPSYS: Operating System
	PARMTYP: Area for Adabas Parameter List
	PRE: DSECT Data Prefix
	PURGE: Purge Transaction
	RENT: Reentrant Module Flag
	RETRYX: Retry Command Exit Flag
	REVHID: Adabas Review Hub ID Support
	REVIEW: Adabas Review Support
	REVREL: Adabas Review Release
	RMI: Resource Manager Interface
	RTXNAME: Command Retry Exit Name
	RVCLNT: Adabas Review Client Reporting Activation Setting
	SAF: Adabas Security Interface Flag
	SAP: SAP Application Support
	SAPSTR: SAP ID String
	SVCNO: Adabas SVC number
	TPMON: Operating Environment
	TRUENM: CICS TRUE Name
	UBPLOC: User Block Pool Allocation
	UBSTIME: User Block Scan Time
	UBTYPE: User Block Type
	UES: Universal Encoding Support
	USERX1: User Exit 1 Flag
	USERX2: User Exit 2 Flag
	XWAIT: XWAIT Setting for CICS
	XWAIT Posting Mechanisms
	XWAIT and the Adabas SVC / Router

