
Installation Procedure
This section describes the procedure for Adabas installation in z/VSE environments.

Installation Checklist

Contents of the Release Tape

Preparing to Install Adabas

Initializing the Adabas Communication Environment

Installing the Adabas Database

Migrating an Existing Database

Logical Unit Requirements

Job Exit Utility

Acquiring Storage for the ID Table

Acquiring Storage for the IIBS Table

SVC Work Areas

Displaying Storage Allocation Totals

Calls from Other Partitions

Dummy Sequential Files

Backward Processing of Tapes and Cartridges

Applying Zaps (Fixes)

Adabas 8 Adalink Considerations

Setting Defaults in ADARUN

Installation Checklist
The following is an overview of the steps for installing Adabas on a z/VSE system.

Step Description Additional Information

1 Allocate DASD space for the Adabas
libraries.

The libraries are restored from the
installation tape. Refer to the
section Disk Space Requirements
for Libraries.

1

Installation ProcedureInstallation Procedure

Step Description Additional Information

2 Allocate DASD space for the Adabas
database.

For better performance, distribute
the database files over multiple
devices and channels. Refer to the
section Disk Space Requirements
for the Database.

3 Specify a z/VSE partition for running
the Adabas nucleus.

Refer to the section Adabas
Nucleus Partition/Address Space
Requirements.

4 Define the library before restoration.See section Defining the Library.

5 Restore the Adabas libraries. See section Installing the Adabas
Release Tape.

6 Install the Adabas SVC using the
ADASIP program.

See section Initializing the Adabas
Communication Environment.

7 Create the sample JCS job control for
installing Adabas.

See section Prepare the Installation
Sample JCS for Editing

8 Customize and run job ADAIOOAL
to link the Adabas options table for
installation customization.

See section Modify, Assemble, and
Link the Adabas Options Table

9 Customize and catalog the two
procedures ADAVvLIB and
ADAV vFIL before placing them back
in the procedure library. The
following specific items must be
customized:

file IDs for the database and
libraries;

volumes for libraries and
database files;

space allocation for database
files

See section Catalog Procedures for
Defining Libraries and the
Database

2

Installation ChecklistInstallation Procedure

Step Description Additional Information

10 Customize and run ADAFRM to
allocate and format the Adabas
database.

Steps 10-19 require changes to the
setup definitions as described in
section Database Installation Steps

11 Customize and run ADADEF to
define global database characteristics.

12 Customize and run ADALODE,
ADALODV, and ADALODM to load
the demo files.

13 Install the product license file.

14 Customize and run ADANUC to start
the Adabas nucleus to test Adabas
communications.

15 Customize and run ADAREP in
MULTI mode with the CPLIST
parameter to test Adabas partition
communication.

16 Customize and run ADAINPL to load
the Adabas Online System, if used.

17 Terminate the Adabas nucleus.

18 Customize and run ADASAV to back
up the database.

19 Customize and run DEFAULTS to
insert the ADARUN defaults with the
ZAP utility.

20 Install the required TP link routines
for Adabas

See section Installing Adabas With
TP Monitors.

Contents of the Release Tape
The following table describes most of the libraries included on the release tape. Once you have unloaded
the libraries from the tape, you can change these names as required by your site, but the following lists the
names that are delivered when you purchase Adabas for z/VSE environments.

Library
Name

Description

ADAvrs.EMPL The Employees demo file, containing dummy employee data you can
use for testing Adabas. The vrs in the library name represents the
version of Adabas.

ADAvrs.ERRN Error messages for the Adabas Triggers and Stored Procedures
Facility. These messages can be viewed using the Natural SYSERR
utility. The vrs in the library name represents the version of Adabas.

3

Installation ProcedureContents of the Release Tape

Library
Name

Description

ADAvrs.INPL The code for Adabas Online System, Adabas Caching Facility,
Triggers and Stored Procedures Facility, and various add-on demo
products. The vrs in the library name represents the version of
Adabas.

ADAvrs.LCnn The Adabas library containing character encoding members to
support various languages and Unicode. The nn letters in the library
name represents a number from "00" to "99", assigned by Software
AG. The vrs in the library name represents the version of Adabas.

ADAvrs.LIBR The source and sample job library for Adabas. The vrs in the library
name represent the version of Adabas. Sample jobs (*.X members)
are stored in the SAGLIB.ADAvrs sublibrary.

For a complete list of the time zones supported by Adabas in any
given release, refer to the TZINFO member in this Adabas library.

ADAvrs.MISC The Miscellaneous demo file, containing dummy miscellaneous data
you can use for testing Adabas. The vrs in the library name represents
the version of Adabas.

ADAvrs.PERL The LOB demo file storing the LOB data referenced by the Personnel
demo file. The vrs in the library name represent the version of
Adabas.

ADAvrs.PERS The Personnel demo file, containing dummy personnel data you can
use for testing Adabas. This demo file includes fields that make use of
the extended and expanded features of Adabas 8, include large object
(LOB) fields. The vrs in the library name represents the version of
Adabas.

Note:
The Personnel demo file must be installed on a UES-enabled database
because it includes wide-character format (W) fields.

ADAvrs.TZ00 The time zone library for Adabas. The vrs in the library name
represents the version of Adabas. Adabas bases its time zone library
on the time zones defined in the public domain tz database, also
known as the zoneinfo or Olson database.

For a complete list of the time zones supported by Adabas in any
given release, refer to the TZINFO member in the Adabas source
library (ADAvrs.LIBR).

ADAvrs.VEHI The Vehicles demo file, containing dummy vehicle data you can use
for testing Adabas. The vrs in the library name represents the version
of Adabas.

APSvrs.L018 A Software AG internal library. The vrs in the library name
represents the version of the internal library code, which is not
necessarily the same as the version of Adabas.

4

Contents of the Release TapeInstallation Procedure

http://www.twinsun.com/tz/tz-link.htm

Library
Name

Description

APSvrs.LIBR A Software AG internal library. The vrs in the library name
represents the version of the internal library code, which is not
necessarily the same as the version of Adabas.

MLCvrs.LIBJ The sample job library for Software AG’s common mainframe license
check software. The vrs in the library name represents the version of
the license check software, which is not necessarily the same as the
version of Adabas.

MLCvrs.LIBR The load library for Software AG’s common mainframe license check
software. The vrs in the library name represents the version of the
license check software, which is not necessarily the same as the
version of Adabas.

WALvrs.LIBR The library for Adabas components shared by Adabas and other
Software AG products, such as Entire Net-Work. The vrs in the
library name represents the version of Adabas.

Preparing to Install Adabas
The major steps in preparing for Adabas installation are

checking for the correct prerequisite system configuration; and

allocating disk and storage space.

The following sections describe the nominal disk and storage space requirements, and how to allocate the
space.

Disk Space Requirements for Libraries

Disk Space Requirements for the Database

Data Sets Required for UES Support

Disk Space Requirements for Internal Product Data Sets

Adabas Nucleus Partition/Address Space Requirements

Defining the Library

Restoring the ADAvrs LIBR File

Using the ADAvrs LIBR File

Disk Space Requirements for Libraries

The Adabas library requires a minimum of 3390 disk space as shown below. A certain amount of extra
free space has been added to the requirements for library maintenance purposes.

5

Installation ProcedurePreparing to Install Adabas

Library 3390 Tracks

Adabas Library 600

This space is needed for Adabas objects and phases as well as source and JCS samples.

Disk Space Requirements for the Database

The Adabas database size is based on user requirements. For more information, refer to Adabas DBA
Tasks. Suggested sizes for an initial Adabas database, allowing for limited loading of user files and the
installation of Natural, are as follows.

The minimum 3390 disk space requirements are:

Database
Component

3390 Cylinders
Required

3390 Tracks Required

ASSOR1
(Associator)

20 300

DATAR1 (Data
Storage)

60 900

WORKR1 (Work
space)

15 225

TEMPR1
(temporary work
space)

15 225

SORTR1 (sort work
space)

15 225

Data Sets Required for UES Support

The Software AG internal product libraries (APS - porting platform) are required if you intend to enable a
database for universal encoding service (UES) support. These libraries are now delivered separately from
the product libraries.

For UES support, the following libraries must be loaded and included in the LIBDEF concatenation:

APSvrs.LIBR
APSvrs.L0nn

where vrs is the version of the library provided on the most recent tape for these components and aa is
LD, LC, or LS and nn is the load library level. If the library with a higher level number is not a full
replacement for the lower level load library(s), the library with the higher level must precede those with
lower numbers in the LIBDEF concatenation.

Also for UES support, the following library must be loaded and included in the session execution JCL:

ADAvrsCS.LIBR

6

Disk Space Requirements for the DatabaseInstallation Procedure

For information about setting up connections to UES-enabled databases, see section Enabling Universal
Encoding Support (UES) for Your Adabas Nucleus.

Disk Space Requirements for Internal Product Data Sets

The minimum disk space requirements on a 3390 disk for the internal product libraries delivered with
Adabas Version 8 are as follows:

Library 3390 Cylinders 3390 Tracks

ADAvrsCS.LIBR 32 480

APSvrs.LIBR 8 120

APSvrs.L0nn 5 75

Adabas Nucleus Partition/Address Space Requirements

The Adabas nucleus requires at least 900-1024 KB to operate. The size of the nucleus partition may need
to be larger, depending on the ADARUN parameter settings. Parameter settings are determined by the
user.

Defining the Library

It is necessary to define the library before restoration. The following two examples show how VSAM and
non-VSAM libraries are defined.

Defining a VSAM Library

The following is a job for defining a VSAM library:

// JOB DEFINE DEFINE VSAM V8 ADABAS LIBRARY
// OPTION LOG
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER -
(NAME(ADABAS.ADAvrs.LIBRARY) -
VOLUME(vvvvvv vvvvvv) -
NONINDEXED -
RECORDFORMAT(NOCIFORMAT) -
SHR(2) -
TRK(nnnnnn)) -
DATA (NAME(ADABAS.ADAvrs.LIBRARY.DATA))
/*
// OPTION STDLABEL=ADD
// DLBL SAGLIB,’ADABAS.ADA vrs.LIBRARY’,,VSAM
// EXEC IESVCLUP,SIZE=AUTO
ADABAS.ADAvrs.LIBRARY
/*
// EXEC LIBR
DEFINE L=SAGLIB R=Y
DEFINE S=SAGLIB.ADA vrs REUSE=AUTO R=Y
LD L=SAGLIB OUTPUT=STATUS
/*
/&

7

Installation ProcedureDisk Space Requirements for Internal Product Data Sets

—where
vvvvvv vvvvvv are the volumes for primary and secondary space.
nnnnnn is the number of tracks for primary and secondary space.
vrs is the Adabas version.

Notes:

1. For FBA devices the tracks (TRK...) operand is replaced by the blocks (BLOCKS...) operand.
2. SAGLIB is the name of the Adabas library. The name SAGLIB can be changed to suit user

requirements.

Defining a Non-VSAM Library

The following is a job for defining a non-VSAM library:

// JOB DEFINE DEFINE NON-VSAM V8 ADABAS LIBRARY
// OPTION LOG
// DLBL SAGLIB,’ADABAS.ADA vrs.LIBRARY’,2099/365,SD
// EXTENT SYS010 ,vvvvvv,1,0, ssss,nnnn
// ASSGN SYS010,DISK,VOL= vvvvvv,SHR
// EXEC LIBR
DEFINE L=SAGLIB R=Y
DEFINE S=SAGLIB.ADA vrs REUSE=AUTO R=Y
LD L=SAGLIB OUTPUT=STATUS
/*
/&

where:
SYS010 is the logical unit for Adabas library.
vvvvvv is the volume for Adabas library.
ssss is the starting track or block for specified library.
nnnn is the number of tracks or blocks for specified library.
vrs is the Adabas version.

Restoring the ADAvrs LIBR File

Restore the ADAvrs LIBR file into sublibrary SAGLIB.ADAvrs. See the next section for information
about preparing modules to run without the ESA option active.

Note:
See the Report of Tape Creation that accompanies the tape to position the tape to the correct file.

If you have a license for one of the following Software AG products, restore the file into the appropriate
sublibrary:

Product File Sublibrary

Adabas Caching Facility (ACF) ACFvrs.LIBR SAGLIB.ACFvrs

Adabas Online System (AOS) AOSvrs.LIBR SAGLIB.AOSvrs

Adabas Parallel Services (ASM) ASMvrs.LIBR SAGLIB.ASMvrs

Adabas Delta Save Facility Facility (ADE) ADEvrs.LIBR SAGLIB.ADEvrs

8

Restoring the ADAvrs LIBR FileInstallation Procedure

For information about installing these products, see the documentation for that product.

Using the ADAvrs LIBR File

Where applicable, modules for Adabas are shipped with AMODE=31 active.

Storage Above or Below the 16-MB Limit

Adabas can acquire storage above the 16-megabyte addressing limit. This capability allows Adabas to
acquire the buffer pool (LBP), work pool (LWP), format pool (LFP), and attached buffers (NAB) above 16
MB.

Where applicable, modules for Adabas are shipped with AMODE=31 active. If you prefer to have buffers
placed below the 16-megabyte limit, ADARUN must be relinked with AMODE=24.

User Program Execution in AMODE=31 and RMODE=ANY

Programs that will execute AMODE=31 or RMODE=ANY must be relinked with the new ADAUSER
object module.

In addition, because the IBM VSE LOAD macro cannot be issued in RMODE=ANY, the IBM VSE
CDLOAD macro must be used. Therefore, the zap to change the ADAUSER CDLOAD to the LOAD
macro cannot be used.

Initializing the Adabas Communication Environment
Communication between the Adabas nucleus residing in a z/VSE partition and the user (either a batch job
or TP monitor such as Com-plete or CICS) in another partition is handled with an Adabas SVC
(supervisor call).

The program ADASIP is used to install the Adabas SVC. The system can run ADASIP to dynamically
install the SVC without an IPL. Special instructions apply when using z/VSE with the Turbo Dispatcher
as described in the next section below.

For information about messages or codes that occur during the installation, refer to the Adabas Messages
and Codes documentation.

Installing the Adabas SVC with Turbo Dispatcher Support

ADASIP Processing

Running ADASIP

Finding an Unused SVC

Loading a Secondary Adabas SVC

ADASIP Execution Parameters

ADASIP Runtime Display

9

Installation ProcedureInitializing the Adabas Communication Environment

Installing the Adabas SVC with Turbo Dispatcher Support

The Adabas SVC module supports the IBM z/VSE Turbo Dispatcher environment.

In a Turbo Dispatcher environment, the Adabas SVC runs in parallel mode when entered. Adabas
processes multiple SVC calls made by users in parallel.

ADASIP Processing

To enable Turbo support, ADASIP installs a z/VSE first-level interrupt handler (ADASTUB) that screens
all SVCs. When ADASTUB finds an Adabas SVC, it passes control directly to the Adabas SVC.

If your system is capable of running the Turbo Dispatcher and you do not want to run a particular SVC
through the Turbo interface, you can set the UPSI flag V to 1 to exclude a particular SVC from use
through the Turbo interface. See the ADASIP UPSI statement.

You can activate the ADABAS SVC with multiple CPUs active by specifying UPSI C. ADASIP will
dynamically de-activate and re-activate the CPUs if required. If multiple CPUs are active and the UPSI C
has not been specified, the following messages will be displayed:

ADASIP60 Only 1 CPU can be active during ADASIP
ADASIP79 Should we stop the CPUs? (yes/no)

Answering yes to this message will allow activation to occur; the CPUs will be dynamically de-activated
and re-activated. Answering no will terminate ADASIP.

The ADASTUB module is installed only once per IPL process. On the first run of a successful ADASIP,
the following set of messages are returned:

ADASIP63 ADASTUB Module Loaded at nnnnnnnn
ADASIP78 VSE Turbo Dispatcher Version nn
ADASIP69 Turbo Dispatcher Stub A C T I V E

When running ADASIP for subsequent Adabas SVC installations, the following message is displayed for
information only:

ADASIP74 Info : Stub activated by previous ADASIP

When dynamically re-installing an Adabas SVC that was previously installed with Turbo Dispatcher
support, execute a SET SDL for the Adabas SVC only. Do not execute the SET SDL for ADANCHOR a
second time.

Note:
Repeated re-installations of an Adabas SVC without an IPL may result in a shortage of 24-bit GETVIS in
the SVA.

Running ADASIP

ADASIP requires a prior SET SDL for the SVC, and therefore must run in the BG partition. To install the
Adabas SVC without an IPL, execute the following JCS in BG.

Notes:

10

Installing the Adabas SVC with Turbo Dispatcher SupportInstallation Procedure

1. When using the EPAT Tape Management System, EPAT must be initialized before running
ADASIP.

2. At execution time, the ADASIP program determines if a printer is assigned to system logical unit
SYSLST. If no printer is assigned, messages are written to SYSLOG instead of SYSLST.

For information about the ADASIP parameters, see the section ADASIP Execution.

To automatically install the Adabas SVC during each IPL, insert the following JCS (or its equivalent) into
the ASI BG JCS procedure immediately before the START of the POWER partition where

nn is the number of IDT entries

suffix is the optional two-byte suffix for the z/VSE SVC name to
be loaded by ADASIP. The previous z/VSE SVC version
must be linked with a different suffix.

svc is an available SVC number in your z/VSE system to be
used as the Adabas SVC.

volume is the specified volume for the Adabas library.

vrs is the Adabas version

Without Turbo Dispatcher Support

The following sample is available in member ADASIP.X:

// DLBL SAGLIB,’ADABAS.ADA vrs.LIBRARY’
// EXTENT SYS010, volume
// ASSGN SYS010,DISK,VOL= volume,SHR
// LIBDEF PHASE,SEARCH=SAGLIB.ADA vrs
SET SDL
ADASVCvr,SVA
/*
// OPTION SYSPARM=’ svc,suffix’ SVC NUMBER
// UPSI 00000000 UPSI OPTIONS FOR ADASIP
// EXEC ADASIP,PARM=’NRIDTES= nn’

With Turbo Dispatcher Support

The following sample is available in member ADASIPT.X:

// JOB ADASIPT INSTALL THE ADABAS SVC (TURBO)
// OPTION LOG,NOSYSDUMP
// DLBL SAGLIB,’ADABAS.ADA vrs.LIBRARY’
// EXTENT SYS010, volume
// ASSGN SYS010,DISK,VOL= volume,SHR
// LIBDEF PHASE,SEARCH=SAGLIB.ADA vrs
SET SDL
ADASVCvr,SVA
ADANCHOR,SVA
/*
// OPTION SYSPARM=’ svc,suffix’ SVC NUMBER
// SETPFIX LIMIT=100K REQUIRED; SEE NOTE 2
// UPSI 00000000 UPSI OPTIONS FOR ADASIP
// EXEC ADASIP,PARM=’NRIDTES= nn’

11

Installation ProcedureRunning ADASIP

Notes:

1. A SETPFIX parameter is required with Turbo Dispatcher support to page fix ADASIP at certain
points in its processing. A value of 100K should be adequate.

2. The SET SDL statement for ADANCHOR is required for Turbo Dispatcher support. This is in
addition to the SET SDL statement for ADASVCvr.

Finding an Unused SVC

Adabas requires an entry in the z/VSE SVC table. To find an unused SVC, use one of the following
methods:

Method 1

Set the S flag specified in the UPSI for ADASIP to create a list of used and unused SVCs in the z/VSE
SVC table.

Method 2

Obtain a listing of the supervisor being used.

Using the assembler cross-reference, locate the label SVCTAB; this is the beginning of the z/VSE SVC
table. The table contains a four-byte entry for each SVC between 0 and 150 (depending on the z/VSE
version).

Locate an entry between 31 and 150 having a value of ERR21. This value indicates an unused SVC table
entry. Use the entry number as input to ADASIP.

Loading a Secondary Adabas SVC

You can optionally specify a suffix to indicate the version of an SVC, as shown in the previous JCS
examples. This allows you to run two different versions of the SVC. Before specifying a suffix, however,
you must have previously linked the second version of the SVC. In addition, you must have performed a
SET SDL operation on the new SVC’s name (for example, ADASVCxx).

To optionally specify a different Adabas SVC using ADASIP, specify the SVC suffix (the last two bytes
in the form, ADASVCxx), as follows, where xx is the two-byte suffix of the new SVC:

// OPTION SYSPARM=’ svc,xx’

ADASIP Execution Parameters

This section describes the ADASIP execution parameters.

OPTION SYSPARM= Statement
UPSI Statement
NRIDTES PARM= Option
REPLACE PARM= Option
DMPDBID PARM= Option

12

Finding an Unused SVCInstallation Procedure

Runtime Display

OPTION SYSPARM= Statement

An optional correction (zap) can be applied to the Adabas ADASIP program to insert the default SVC so
that no SYSPARM need be specified. See the section Applying Zaps.

SVC The Adabas SVC number chosen must be unused by z/VSE or any other third party
products (see the section Finding an Unused SVC).

SUFFIX An optional two-byte value used to load a new version of the Adabas z/VSE SVC
(see the section Loading a Secondary Adabas SVC)..

UPSI Statement

// UPSI DSxTVCGx

Setting the UPSI byte is the user’s responsibility. If the UPSI byte is not set, the SVC installation executes
normally.

The UPSI byte is used to select the following options:

Option If option is set to 1

D ADASIP dumps the Adabas SVC and ID table using PDUMP. This
option should be used only after the SVC is installed.

S ADASIP dumps the z/VSE SVC table and indicates whether each SVC
is used or unused. No SVC number is required when using this
function of ADASIP.

T ADASIP dumps the z/VSE SVC table and the z/VSE SVC mode table.

V The SVC is excluded from use through the Turbo interface.

C Override the messages that ask if you wish to stop the processors when
more than one processor is active. If you choose to override, the
processors will be automatically stopped during ADASIP execution
and restarted upon ADASIP termination.

G ADASIP will display SYSTEM GETVIS allocation totals.

NRIDTES PARM= Option

The size of the ID table default supports up to 10 Adabas targets. However, the ADASIP program will
allow you to increase this number by using this new option of the PARM operand on the EXEC card. To
increase the size of the ID table to nn entries, specify the following when executing ADASIP:

// EXEC ADASIP,PARM=’NRIDTES= nn’

where nn is the number of databases to be supported. Refer to the section Acquiring Storage for the ID
Table for information about calculating the correct value for nn.

13

Installation ProcedureADASIP Execution Parameters

REPLACE PARM= Option

Specifying REPLACE=N or NO will cause warning messages ADASIP80 and ADASIP81 to appear if the
SVC has been previously installed. Specifying REPLACE=Y or YES replaces the current SVC regardless
of any active targets. The default value is REPLACE=NO. No abbreviation of the REPLACE keyword is
supported.

Warning:
Setting the REPLACE parameter to YES should be done carefully.
Replacing an SVC while your targets are running can produce
unpredictable results.

If both the NRIDTES and REPLACE keywords are specified, they must be separated by a comma. For
example:

//EXEC ADASIP,PARM=’NRIDTES=10,REPLACE=YES’

DMPDBID PARM= Option

This ADASIP option allows snap dumps of the Adabas command queue for a specified database ID
(DBID). The dump is written to SYSLST. The OPTION SYSPARM statement must specify the SVC
number to perform the snap dump. For example, to perform a snap dump of the database 5 command
queue, issue:

// OPTION SYSPARM=’ svc,suffix’
// EXEC ADASIP,PARM=’DMPDBID=5’

ADASIP Runtime Display

When ADASIP is run, the ADASIP00 message displays the current system level.

ADASIP00 ...ADABAS V8 VSE SIP STARTED
SIP IS RUNNING UNDER VSE/systype-mode
ADASIP00 ... (yyyy-mm-dd, SM= sm-level, ZAP= zap-level)
ADASIP00 ... SIP IS RUNNING UNDER OSYS LEVEL V nnn
ADASIP00 ... SIP IS LOADING ADABAS SVC LEVEL V nnn
ADASIP00 ... ADASIP IS LOADING ADABAS SVC AMODE= amode

Installing the Adabas Database
This section describes installation of the Adabas database for z/VSE systems. Note that all applicable
early warnings and other fixes must first be applied. For descriptions of any messages or codes that occur,
refer to the Adabas Messages and Codes documentation.

Installing the Release Tape

Prepare the Installation Sample JCS for Editing

Modify, Assemble, and Link the Adabas Options Table

Catalog Procedures for Defining Libraries and the Database

14

Installing the Adabas DatabaseInstallation Procedure

Database Installation Steps

Installing the Release Tape

Note:
If you are using System Maintenance Aid (SMA), refer to the System Maintenance Aid documentation. If
you are not using SMA, follow the instructions below.

This section explains how to copy the data sets .LIBJ , .LIBR and .LICS from tape to disk. All other
data sets can be installed directly from the tape.

You will then need to perform the individual installation procedure for each component to be installed.

Step 1: Copy Data Set COPYTAPE.JOB from Tape to Disk
Step 2: Modify COPYTAPE.JOB
Step 3: Submit COPYTAPE.JOB

Step 1: Copy Data Set COPYTAPE.JOB from Tape to Disk

The data set COPYTAPE.JOB contains the JCL required to copy the data sets .LIBJ , .LIBR and
.LICS from tape to disk. Copy COPYTAPE.JOB to your disk by using the following sample JCL:

* $$ JOB JNM=LIBRCAT,CLASS=0, +
* $$ DISP=D,LDEST=(*,UID),SYSID=1
* $$ LST CLASS=A,DISP=D
// JOB LIBRCAT
* ***
* STORE COPYTAPE.JOB IN LIBRARY
* ***
// ASSGN SYS004, nnn
// MTC REW,SYS004
// MTC FSF,SYS004,4
ASSGN SYSIPT,SYS004
// TLBL IJSYSIN,’COPYTAPE.JOB’
// EXEC LIBR,PARM=’MSHP; ACC S= lib.sublib’
/*
// MTC REW,SYS004
ASSGN SYSIPT,FEC
/*
/&
* $$ EOJ

where:

nnn is the tape address
lib.sublib is the library and sublibrary in which COPYTAPE.JOB is to be stored

Step 2: Modify COPYTAPE.JOB

Modify COPYTAPE.JOB according to your local naming conventions and set the disk space parameters.

15

Installation ProcedureInstalling the Release Tape

Step 3: Submit COPYTAPE.JOB

Submit COPYTAPE.JOB to copy the data sets .LIBJ , .LIBR and .LICS from tape to your disk.

Prepare the Installation Sample JCS for Editing

Note:
This step is only necessary if the library cannot be edited directly.

The following sample installation job is available in member INSTALL.X.

Run the following job to load the installation samples:

* $$ JOB JNM=PUNINST,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* $$ PUN CLASS= p,DISP=D
// JOB PUNINST INSTALL SAMPLES FOR ADABAS
// OPTION LOG
// DLBL SAGLIB,’ADABAS.ADA vrs.LIBRARY’
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL= volume,SHR
// EXEC LIBR
ACCESS SUBLIB=SAGLIB.ADAvrs
PUNCH ADAPROC.X /* PROCS FOR FILE AND LIBRARY DEFINITIONS */
PUNCH ADAIOOAL.X /* ADABAS OPTIONS TABLE CUSTOMIZATION */
PUNCH ADASIP.X /* ADASIP JOB (NON-TURBO DISPATCHER) */
PUNCH ADASIPT.X /* ADASIP JOB (TURBO DISPATCHER) */
PUNCH ADAFRM.X /* SAMPLE ADAFRM JOB */
PUNCH ADADEF.X /* SAMPLE ADADEF JOB */
PUNCH ADALODE.X /* LOAD DEMO FILE EMPLOYEES */
PUNCH ADALODV.X /* LOAD DEMO FILE VEHICLES */
PUNCH ADALODM.X /* LOAD DEMO FILE MISC */
PUNCH ADALODP.X /* LOAD DEMO FILES PERSONNEL & LOB */
PUNCH ADANUC.X /* SAMPLE NUCLEUS STARTUP */
PUNCH ADAREP.X /* SAMPLE ADAREP JOB */
PUNCH ADAINPL.X /* SAMPLE NATINPL TO INSTALL AOS */
/*
/&
* $$ EOJ

where p is the output class for punch, volume is the specified volume for the Adabas library, and vrs is the
Adabas version.

Once the selected members in the INSTALL job are within the local editor facility, the customization can
begin.

Modify, Assemble, and Link the Adabas Options Table

Customize and run job ADAIOOAL to assemble and link the Adabas options table for installation
customization.

The following describes the IORDOSO macro, which must be assembled and linked to the Adabas
sublibrary as PHASE ADAOPD. The member X.ADAIOOAL shipped with Adabas can be used for this
purpose.

16

Prepare the Installation Sample JCS for EditingInstallation Procedure

IORDOSO Macro Overview
IORDOSO Macro Parameters

IORDOSO Macro Overview

The IORDOSO macro allows you to customize Adabas operation in the following areas:

Loading phases;

IDRC compaction support for 3480 and 3490 tape devices;

Interfaces to z/VSE disk space managers such as DYNAM/D;

Interfaces to z/VSE tape managers such as DYNAM/T

An option controlling how the system writes to fixed block addressing (FBA) devices;

An option to write printer (PRINT and DRUCK) files under either DTFPR or DTFDI control;

GETVIS message printing;

Optional job exit processing;

Options for controlling the creation of z/VSE JCS with the Adabas Recovery Aid utility ADARAI;

Sequential file processing under VSAM/SAM;

Input device control with SYS000 assignment;

Name of external sort program.

IORDOSO Macro Parameters

The following parameters can be set in using the IORDOSO macro.

CDLOAD

Parameter Description

CDLOAD={ NO | YES }

Determines whether Adabas uses the CDLOAD (SVC 65) or the LOAD
SVC (SVC 4) to load modules.

COMPACT

Parameter Description

COMPACT={ NO | YES }
If a sequential protection log (SIBA) is assigned to a 3480 or 3490 tape
device, COMPACT=YES writes the SIBA in IDRC compaction mode.
The default is COMPACT=NO (no compaction).

17

Installation ProcedureModify, Assemble, and Link the Adabas Options Table

DISKDEV

Parameter Description

DISKDEV=devtype

Specifies the device type on which space for sequential files is to be allocated
(see notes 1 and 2).

Notes:

1. Adabas requires device type information when opening files. However, there may be situations
where the device cannot be determined before the open without additional operations; for example,
when a z/VSE Disk Space Manager or Tape Manager is active, or when using VSAM/SAM
sequential files. Adabas also determines the block size to be used for sequential I/O areas by device
type.

2. Valid disk device types are 3390, 9345 and FBA.

DISKMAN

Parameter Description

DISKMAN={ NO | YES }
Indicates to Adabas that a z/VSE disk space manager such as
DYNAM/D is active. If DISKMAN=YES is specified, DISKDEV or
DISKSYS must also be specified.

DISKSYS

Parameter Description

DISKSYS=sysnum

When a disk space manager such as DYNAM/D is present, use the DISKSYS
parameter to specify the programmer logical unit (LUB). The specified value,
which can be from 000 to 255, determines the disk device type for the SAM or
VSAM sequential file. There is no default value.

DISKTYP

Parameter Description

DISKTYP=text
This parameter is for information only, and is processed as a comment. The
value text can be up to 16 bytes long.

DTFDI

18

Modify, Assemble, and Link the Adabas Options TableInstallation Procedure

Parameter Description

DTFDI={ NO | YES }

DTFDI=YES directs the PRINT (SYSLST) and DRUCK (SYS009)
output to be device-independent, causing all ADARUN, ADANUC,
session, statistics, and utility output to be written to where SYSLST or
SYS009 is assigned (printer, disk, or tape). When you specify
DTFDI=YES, the PRTDSYS and PRTRSYS parameters are ignored. If
you specify DTFDI=NO (the default), output is directed using DTFPR.

FBAVRF

Parameter Description

FBAVRF={ NO | YES }

FBA users only: the FBAVRF parameter specifies whether Adabas does
WRITE VERIFY I/O commands, or normal WRITEs. If FBAVRF=YES
is specified, WRITE VERIFY I/Os are performed; the default is normal
WRITE operation.

GETMMSG

Parameter Description

GETMMSG={ NO | YES }

Determines whether or not z/VSE ADAIOR GETMAIN (GETVIS)
messages are printed. No printing is the default.

JBXEMSG

Parameter Description

JBXEMSG={ NO| YES | PRT }
The z/VSE parameter JBXEMSG determines whether job exit
utility error messages are printed (JBXEMSG=PRT), displayed
(JBXEMSG=YES, the default), or not presented
(JBXEMSG=NO).

JBXIMSG

Parameter Description

JBXIMSG={ NO | YES | PRT }
The z/VSE parameter JBXIMSG determines whether job exit
utility information messages are printed (JBXIMSG=PRT, the
default), displayed (JBXIMSG=YES), or not presented
(JBXIMSG=NO).

JOBEXIT

19

Installation ProcedureModify, Assemble, and Link the Adabas Options Table

Parameter Description

JOBEXIT={ NO | YES }
JOBEXIT=YES activates the Adabas job exit utility, allowing any *
SAGUSER job control statements to override the normal job input.

PFIXRIR

Parameter Description

PFIXRIR={ NO | YES }
Specifies whether or not ADAMPM is page fixed in storage during the
nucleus initialization process.

PRTDSYS

Parameter Description

PRTDSYS={ sysnum | SYSLST }
Specifies the programmer logical unit (LUB), and may be any
number 000 - 254. If specified, the sysnum value replaces the
default where the ADARUN messages are printed, which is
SYSLST.

The value specified by sysnum must be assigned in the
partition before running the ADARUN program. For example:

PRTDSYS=050
.
// ASSGN SYS050,PRINTER

PRTRSYS

Parameter Description

PRTRSYS={ sysnum | SYS009 }
Specifies the programmer logical unit (LUB). If specified, this
sysnum value replaces the default where the Adabas utility
(DRUCK) messages are printed, which is SYS009.

RAIDASG

Parameter Description

RAIDASG={ NO | YES }
RAIDASG=YES specifies that the Adabas Recovery Aid (ADARAI) is
to create z/VSE disk ASSGN statements. Such statements are
sometimes not needed with a z/VSE disk manager facility.

RAITASG

20

Modify, Assemble, and Link the Adabas Options TableInstallation Procedure

Parameter Description

RAITASG={ NO | YES }
RAITASG=YES specifies that the Adabas Recovery Aid (ADARAI) is
to create z/VSE tape ASSGN statements. Such statements are
sometimes not needed with a z/VSE tape manager facility.

SORTPGM

Parameter Description

SORTPGM={ sortpgm | SORT }
Specifies the name of the external sort program to be invoked
during execution of the Adabas changed-data capture utility
ADACDC. The default name is SORT.

SYS000O

Parameter Description

SYS000O={ NO | YES }

If SYS000O=NO (the default) is specified, the ADARUN statements
are read normally. If SYS000O=YES is specified, Adabas determines
the correct DTF for opening, depending on where SYS000 is assigned,
as follows:

Medium - SYS000 DTF Type

Card DTFCD
Disk DTFSD
Tape DTFMT

TAPEDEV

Parameter Description

TAPEDEV=devtype

Specifies the tape device type on which sequential files are written (see notes
1 and 2).

Notes:

1. Adabas requires device type information when opening files. However, there may be situations
where the device cannot be determined before the open without additional operations; for example,
when a z/VSE Disk Space Manager or Tape Manager is active, or when using VSAM/SAM
sequential files. Adabas also determines the block size to be used for sequential I/O areas by device
type.

2. Valid tape device types are 2400, 3410, 3420, 3480 and 8809. For device types 3480, 3490, 3490E or
3590, specify TAPEDEV=3480.

21

Installation ProcedureModify, Assemble, and Link the Adabas Options Table

TAPEMAN

Parameter Description

TAPEMAN={ NO | YES }
Indicates that a z/VSE tape manager such as DYNAM/T is active. If
TAPEMAN=YES is specified, TAPEDEV or TAPESYS must also be
specified.

TAPESYS

Parameter Description

TAPESYS=sysnum
When a tape manager such as DYNAM/T is present, this parameter is used to
specify the programmer logical unit (LUB). The specified value, which can be
any value from 000 to 255, determines the tape device type for the sequential
file (see note). There is no default value.

Note:
Adabas requires device type information when opening files. However, there may be situations where the
device cannot be determined before the open without additional operations; for example, when a z/VSE
Disk Space Manager or Tape Manager is active, or when using VSAM/SAM sequential files. Adabas also
determines the block size to be used for sequential I/O areas by device type.

TAPETYP

Parameter Description

TAPETYP=text
This parameter is for information only, and is processed as a comment. The
value text can be up to 16 bytes long.

VSAMDEV

Parameter Description

VSAMDEV=devtype
Specifies the disk device type on which VSAM/SAM space is to be allocated
(see notes 1 and 2).

Notes:

1. Adabas requires device type information when opening files. However, there may be situations
where the device cannot be determined before the open without additional operations; for example,
when a z/VSE Disk Space Manager or Tape Manager is active, or when using VSAM/SAM
sequential files. Adabas also determines the block size to be used for sequential I/O areas by device
type.

2. Valid disk device types are 3390, 9345 and FBA.

22

Modify, Assemble, and Link the Adabas Options TableInstallation Procedure

VSAMSEQ

Parameter Description

VSAMSEQ={ NO | YES }
Specifies whether sequential files are to be under the control of
VSAM/SAM software. If VSAMSEQ=YES is specified, either
VSAMDEV or VSAMSYS must also be specified.

VSAMSYS

Parameter Description

VSAMSYS=sysnum
Specifies the programmer logical unit (LUB). The specified value, which can
from 000 to 255, determines the device type for the sequential file written to
VSAM/SAM space (see note). There is no default value.

Note:
Adabas requires device type information when opening files. However, there may be situations where the
device cannot be determined before the open without additional operations; for example, when a z/VSE
Disk Space Manager or Tape Manager is active, or when using VSAM/SAM sequential files. Adabas also
determines the block size to be used for sequential I/O areas by device type.

Additional Parameters Used for Internal Control Only

Three additional parameters are also available but are used only for internal control and should not be
changed from their default settings unless otherwise specified by your Software AG technical support
representative:

IORTRAC={NO | YES}
IORTSIZ={3000 | tablesize}
IORTTYP=(1... 14)(, opt1 ... opt14).

Catalog Procedures for Defining Libraries and the Database

Note:
Sample JCS is available in ADAPROC.X

The job ADAPROC is divided into two procedures:

ADAV vLIB defining the library or libraries; and

ADAV vFIL defining the database.

Customize and catalog the two procedures before placing them back in the procedure library. The
following specific items must be customized:

file IDs for the database and libraries;

volumes for libraries and database files;

space allocation for database files.

23

Installation ProcedureCatalog Procedures for Defining Libraries and the Database

The Adabas DEMO database files include ASSO, DATA, WORK, TEMP, SORT, CLOG, and PLOG.

Database Installation Steps

Follow the steps outlined below to install a new Adabas database under z/VSE.

Step 1. Allocate and format the DEMO database.
Step 2. Define the global database characteristics.
Step 3. Load the demonstration (demo) files.
Step 4. Install the product license file.
Step 5. Start the Adabas nucleus and test the Adabas communications.
Step 6. Test Adabas partition communications.
Step 7. Load the Adabas Online System, if used.
Step 8. Terminate the Adabas nucleus.
Step 9. Back up the database.
Step 10. Insert the ADARUN defaults.
Step 11. Install the required TP link routines for Adabas.

Notes:

1. For information about running ADADEF, ADAFRM ADALOD, ADAREP, and ADASAV in steps
1-3, 5, and 8 below, see the Adabas Utilities documentation.

2. For information about customizing the nucleus job and about starting, monitoring, controlling, and
terminating the nucleus, see the Adabas Operations documentation.

Step 1. Allocate and format the DEMO database.

Note:
Sample JCS is available in ADAFRM.X

Customize and run the ADAFRM utility job to format the DEMO database areas. The following specific
items must be customized:

the Adabas SVC number, the database ID, and database device type(s);

sizes of the data sets for each ADAFRM statement.

Step 2. Define the global database characteristics.

Note:
Sample JCS is available in ADADEF.X

Customize and run the ADADEF utility job to define the global definition of the database. The following
items must be customized:

the Adabas SVC number, the database ID, and database device type(s);

ADADEF parameters.

24

Database Installation StepsInstallation Procedure

Step 3. Load the demonstration (demo) files.

Note:
Sample JCS is available in ADALODE.X, ADALODV.X, ADALODM.X, and ADALODP.X.

Customize and run the job

ADALODE to load the sample demo file EMPL;

ADALODV to load the sample demo file VEHI;

ADALODM to load the sample demo file MISC; and

ADALODP to load the sample demo file PERS and its associated LOB demo file, PERL.

Note:
The Personnel demo file must be installed on a UES-enabled database because it includes
wide-character format (W) fields.

For each job, the following items must be customized:

the Adabas SVC number, the database ID, and database device type(s);

ADALOD parameters.

Step 4. Install the product license file.

The product license file is supplied on the individual customer installation tape or separately via an e-mail
attachment. If the license file is provided on an installation tape, you can follow the instructions in this
step to install the license file. If the license file is supplied via an e-mail attachment, you must first transfer
the license to z/VSE, as described in Transferring a License File from PC to a z/VSE Host Using FTP and
then you can install it, as described in this step.

Installing the license file.

In z/VSE environments, the product license file can be installed either as a load module or as a library
member.

 To install the product license file as a module, complete the following steps:

1. Verify that the license file is stored in an Adabas source library or sequential data set (with
RECFM=F or FB and LRECL=80), taking care to preserve its format as ASCII.

2. If you loaded your Adabas license file to a library, review and modify sample JCS job
ASMLICAL.X, adjusting the library and volume specifications as appropriate for your site. If you
loaded your Adabas license file to a data set, use sample ASMLICAV.X instead.

Note:
In sample jobs ASMLICAL.X and ASMLICAV.X, the standard label area is assumed to contain
label information for library USERLIB. You can change this as appropriate for your library.

25

Installation ProcedureDatabase Installation Steps

3. Submit modified sample job ASMLICAL.X or ASMLICAV.X.

These sample jobs generate your Adabas license in ADALIC.PHASE. They assume that
ADALIC.PHASE will be in a user sublibrary. If a user sublibrary is chosen for ADALIC.PHASE, this
sublibrary must be included in the LIBDEF search chain in your Adabas nucleus startup JCS. You may
find it more convenient to place ADALIC.PHASE directly into the Adabas ADAvrs sublibrary, to
avoid the need to define additional libraries. During initial testing, Software AG recommends using a user
sublibrary.

 To install the product license file as a library member, complete the following steps:

1. Verify that the license file is stored in an Adabas source library (with RECFM=F or FB and
LRECL=80), taking care to preserve its format as ASCII.

2. Make sure any previously created ADALIC load module is inaccessible in the Adabas load library
being used by the nucleus jobs. Adabas first tries to load ADALIC and if unsuccessful it reads from
DDLIC.

3. Provide all Adabas nucleus startup jobs with a DLBL statement in the following format:

// DLBL DDLIC,’/ libname/ sublb/ memname. memtype’

where libname is the Librarian name of the library, sublib is the name of the sublibrary, memname is
the license member name, and memtype is the license member type.

 To install the product license file as a sequential data set, complete the following steps:

1. Verify that the license file is stored in a sequential file (with RECFM=F or FB and LRECL=80),
taking care to preserve its format as ASCII.

2. Make sure any previously created ADALIC load module is inaccessible in the Adabas load library
being used by the nucleus jobs. Adabas first tries to load ADALIC and, if unsuccessful, it reads from
DDLIC.

3. Provide all Adabas nucleus startup jobs with DLBL, EXTENT and ASSGN statements in the
following format:

// DLBL DDLIC,’ adabas.license.file’
// EXTENT SYS nnn
// ASSGN SYS nnn,DISK,VOL= volser,SHR

where adabas.license.file is the physical file name, nnn is an unused logical unit, and volser is the
volume serial on which the license file resides.

Step 5. Start the Adabas nucleus and test the Adabas communications.

Note:
Sample JCS is available in ADANUC.X.

Customize and run the job ADANUC to start up the Adabas nucleus. The following items must be
customized:

26

Database Installation StepsInstallation Procedure

The Adabas SVC number, the database ID, and device type(s);

Note:
Be sure to include appropriate LIBDEF references for user sublibraries, especially the library
containing the ADALIC license file. The licensing component MLCvrs must also be added to the
LIBDEF SEARCH chain for load modules. These additional sublibraries can be added via the
ADAV vFIL procedure, as required.

ADANUC parameters.

Step 6. Test Adabas partition communications.

Note:
Sample JCS is available in ADAREP.X.

Customize and run the job ADAREP in MULTI mode with the CPLIST parameter to test Adabas partition
communications. The following items must be customized:

the Adabas SVC number, the database ID, and device type(s);

ADAREP parameters.

Step 7. Load the Adabas Online System, if used.

Note:
Sample JCS is available in ADAINPL.X. Read Installing the AOS Demo Version and, if necessary, the
installation section of the Adabas Online System documentation.

Customize and run the job ADAINPL to load the Adabas Online System into a Natural system file. A
Natural file must first be created, requiring an INPL input file (see the Natural installation instructions).
The following items must be customized:

the Adabas SVC number, the database ID, and device type(s);

the Natural INPL parameters and system file number.

Step 8. Terminate the Adabas nucleus.

Communicate with the Adabas nucleus (MSG Fn) to terminate the session by entering the Adabas
operator command ADAEND into the Adabas nucleus partition.

Step 9. Back up the database.

Customize and run the ADASAV utility job to back up the Version sample database. The following items
must be customized:

the Adabas SVC number, the database ID, and device type(s);

ADASAV parameters.

27

Installation ProcedureDatabase Installation Steps

Step 10. Insert the ADARUN defaults.

Optionally customize and run the DEFAULTS job to set the ADARUN defaults using the MSHP utility
and to relink ADARUN. The following items may be customized:

SVC number;

database ID;

device type(s).

Step 11. Install the required TP link routines for Adabas.

Refer to the section Installing Adabas With TP Monitors for the TP link routine procedure.

Migrating an Existing Database
Use the ADACNV utility to migrate existing databases to new releases of Adabas. See the Adabas
Utilities documentation for more information.

Logical Unit Requirements
This section describes the Adabas logical unit requirements.

ADARUN

Logical Unit File Storage Medium

SYSLST PRINT Printer

SYS000 CARD Tape / Disk

SYSRDR CARD Reader

Utility

Logical Unit File Storage Medium

SYS009 DRUCK Printer

SYSIPT KARTE Reader

Nucleus

Logical Unit File Storage Medium

SYSLST PRINT Printer

SYSRDR CARD Reader

28

Migrating an Existing DatabaseInstallation Procedure

The highest logical unit used is SYS038 for the ADASAV utility. The programmer logical units default is
described in the section Device and File Considerations. The system programmer should review these
requirements to ensure that there are enough programmer logical units to run the desired utilities in the
desired partitions.

Job Exit Utility
Adabas provides a job exit to perform two different functions:

Librarian input override processing

The exit scans a job stream for Librarian input override statements. These statements indicate that
card input (ADARUN CARD or utility KARTE statements) for a job step is to come from Librarian
members rather than from SYSRDR or SYSIPT.

ADARAI JCS capture processing

The exit captures JCS before it is modified by tape or disk management systems for later use by
ADARAI.

You can set the job exit to perform either function or both. By default, the job exit performs Librarian
input override processing.

This section covers the following topics:

Installation and Initialization

Librarian Input Override Processing

Activating Adabas Use of Job Exit Processing

Using the Job Exit Utility for ADARAI JCS Capture

Job Exit Storage Requirements

Optional Console or Printer Messages

Diagnostic Functions

Installation and Initialization

The job exit can be installed during ASI processing or at any time afterward. It is installed in two steps:

 to install the job exit:

1. Install programs SAGJBXT and SAGIPT in the SVA.

2. Run program SAGINST to initiate job exit processing.

You can include SAGJBXT in the $JOBEXIT list of eligible exits, but you must still place SAGIPT in the
SVA and run SAGINST to allocate the required table(s).

29

Installation ProcedureJob Exit Utility

SAGIPT runs above the 16-megabyte line if an appropriate 31-bit PSIZE is available. In addition, the
table that stores information from input-override statements and/or the table that stores JCS for ADARAI
use is placed in 31-bit GETVIS, if available.

SAGINST reads an input parameter that tells it whether to install the Librarian input override processing,
ADARAI JCS capture processing, or both. The following parameter values are valid:

PARM=ADALIB (the default) installs Librarian input override processing
PARM=ADARAI installs ADARAI JCS capture processing

The following sample job control initializes the job exit:

Note:
Sample JCS to initialize the job exit is available in member JBXTINST.X.

* $$ JOB JNM=SAGEXIT,CLASS=0
* $$ LST CLASS=A,DISP=D
// JOB SAGEXIT
// LIBDEF *,SEARCH=SAGLIB.ADA vrs
// EXEC PROC=ADAVvLIB
SET SDL
SAGJBXT,SVA
SAGIPT,SVA
/*
// EXEC SAGINST,PARM=ADARAI,ADALIB
/&
* $$ EOJ

where vrs is the Adabas version.

Librarian Input Override Processing

If Librarian input override processing is specified, the job exit scans a job stream for input override
statements indicating that card input (ADARUN CARD or utility KARTE statements) for a job step is to
come from Librarian members rather than from SYSRDR or SYSIPT. By default, the exit can store a
maximum of 2000 input override cards simultaneously throughout the system. Adabas uses this facility
when processing CARD and KARTE parameters.

Enable Librarian input override processing by adding * SAGUSER control statements to the job control
stream between the // JOB and // EXEC statements.

A * SAGUSER statement can have three keyword parameters: FILE, LIBRARY, and MEMBER.

30

Librarian Input Override ProcessingInstallation Procedure

Keyword Syntax Description

FILE={ CARD | KARTE }
The file to be read from a
Librarian member. Specify
“CARD” for ADARUN
statements, or “KARTE” for
utility statements.

LIBRARY={ library.sublibrary | libdef.source }
The library and sublibrary to be
searched. If omitted, the current
libdef.source chain is used.

MEMBER=name [,{ type | A }]
The member name and
optionally the type to be read. If
type is omitted, “A” is assumed.

The following is an example of a * SAGUSER control statement that specifies an alternate job exit
member:

* SAGUSER FILE=CARD,MEMBER=NUC151

In the example above, Adabas searches the current libdef.source chain for member NUC151 with type A.
If NUC151 is found, Adabas uses its contents as the nucleus startup parameters instead of SYSIPT.

To permit flexible startup processing, multiple SAGUSER statements may be specified for each file. In
the following example, Adabas reads the input parameters first in member NUC151, then in member
IGNDIB:

* SAGUSER FILE=CARD,MEMBER=NUC151
* SAGUSER FILE=CARD,MEMBER=IGNDIB

The following examples show the use of the LIBRARY parameter, and apply to z/VSE systems only:

* SAGUSER FILE=CARD,MEMBER=NUC151,LIBRARY=SAGULIB.TESTSRC

In the example above, Adabas searches sublibrary TESTSRC in the SAGULIB library for member
NUC151 with type A. If NUC151 is not found in sublibrary TESTSRC of library SAGULIB, no further
search is made. The DLBL and EXTENT information for the SAGULIB library must be available.

* SAGUSER FILE=CARD,MEMBER=NUC151.ADARUN,LIBRARY=SAGULIB.TESTSRC

In the example above, Adabas searches sublibrary TESTSRC in the SAGULIB library at nucleus
initialization for member NUC151 with type ADARUN. The library member types PROC, OBJ, PHASE,
and DUMP are not permitted.

Activating Adabas Use of Job Exit Processing

Specify JOBEXIT=YES to allow Adabas to use SAGUSER statements in the job stream and recatalog the
Adabas options table (ADAOPD).

31

Installation ProcedureActivating Adabas Use of Job Exit Processing

Using the Job Exit Utility for ADARAI JCS Capture

Once the job exit utility has been installed for ADARAI, all utilities that write information to the RLOG
automatically obtain file information from the ADARAI table that the job exit maintains. Manual
intervention is not required.

Job Exit Storage Requirements

The job exit requires from 84 to 298 kilobytes (KB) of SVA storage, depending on whether the Librarian
input override interface and/or the ADARAI JCS interface is installed. Of that total,

2 kilobytes are used for program storage (PSIZE);

82-kilobyte GETVIS for Librarian input override storage; and

214-kilobyte GETVIS for ADARAI JCS storage.

When running in z/VSE on z/VSE hardware, all of the GETVIS and 1 kilobyte of the PSIZE can be run
above the 16-megabyte line.

Optional Console or Printer Messages

You have the option of displaying, printing, or preventing these messages by specifying the JBXEMSG
and JBXIMSG parameters in the Adabas options table.

Diagnostic Functions

After the job exit is installed, you can produce dumps of the two tables for diagnostic purposes. Executing
SAGINST with the ADASIP UPSI statement:

UPSI 10000000 produces a dump of the Librarian input override table;

UPSI 01000000 produces a dump of the ADARAI JCS table.

If the size of these two tables needs to be changed for any reason, SAGIPT may be zapped before being
loaded into the SDL:

The Librarian input override table size may be changed from the default of X‘00014874’ (84,084
bytes) to an appropriate value by zapping location X‘18’. When altering the SAGIPT.OBJ module,
ESDID=002 is required on the MSHP AFFECTS statement.

The ADARAI JCS table size may be changed from the default of X‘000355D6’ to an appropriate
value by zapping location X‘0C’.

Each element in the Librarian input override table is 42 bytes in length. The default table size assumes 10
SAGUSER statements per file name, 10 file names, and 20 partitions, plus two extra unused entries. This
number is an estimate of maximum concurrent residency; each statement is removed from the table after it
is used.

Each element in the ADARAI JCS table is 91 bytes in length. The default table size accommodates 2400
entries with each DLBL, TLBL, or EXTENT statement requiring an entry in the table. Whenever a JOB
statement is encountered, all entries for that partition (task ID) are cleared from the table.

32

Using the Job Exit Utility for ADARAI JCS CaptureInstallation Procedure

Acquiring Storage for the ID Table
The SYSTEM GETVIS is used to acquire storage for the ID table (IDT). This storage is acquired using
the ADASIP at SVC installation time. The size of storage in the SYSTEM GETVIS depends on the
number of IDT entries specified using ADASIP. The default number of IDT entries (IDTEs) is 10. The
size can be calculated as follows:

SIZE (in bytes) =1024 (IDT prefix) + 96 (IDT header) + (32 x number of IDTEs)
= 1024 + 96 + (32 x 10)
= 1024 + 96 + 320
= 1440 bytes

Also, additional SYSTEM GETVIS storage is acquired. This storage permits users to communicate from
multiple address spaces when Adabas is not running in a shared partition. In this case, the following
formula is used to calculate SYSTEM GETVIS:

SIZE (in bytes) = 192 (CQ header) + (192 x NC value) + (4352 x NAB value)

It may be necessary to increase the SVA size to meet these requirements. To do so, change the SVA
operand in the appropriate $IPLxxx procedure, then re-IPL.

Note:
By default, the SYSTEM GETVIS is acquired above the 16-megabyte line. To acquire most of this space
below the line, link-edit ADARUN AMODE 24.

Acquiring Storage for the IIBS Table
The 31-bit SYSTEM GETVIS is used to acquire storage for the IIBS table (IIBS). This storage is acquired
using the ADASIP at SVC installation time. The size of storage in the 31-bit SYSTEM GETVIS is 128K.

SVC Work Areas
For each Adabas SVC installed, a number of 384-byte work areas are reserved. The number of work areas
reserved is calculated as four times the number of IDTEs (4 x IDTE-count). The maximum number
of work areas allocated is 128; the minimum is 24. The SVC work areas therefore occupy between 9K and
48K of storage. The default value of 10 IDTEs results in 15K of SYSTEM GETVIS being allocated.

Displaying Storage Allocation Totals
Specifying // UPSI xxxxxxxGx during the ADASIP execution (see UPSI byte description in ADASIP
Execution Parameters, earlier in this guide,) will generate allocation messages on the system console,
showing the total 24-bit GETVIS and 31-bit GETVIS storage allocated by Adabas:

ADASIP85 GETVIS-24 storage allocated: nnnK
ADASIP85 GETVIS-31 storage allocated: nnnK

33

Installation ProcedureAcquiring Storage for the ID Table

Calls from Other Partitions
In order for an Adabas nucleus to accept calls from other partitions, storage is acquired in the SVA
GETVIS area for any required attached buffers. The buffers hold data moved between the nucleus and
users in other partitions.

Dummy Sequential Files
If the file is not needed, it can be unassigned or assigned IGN such as the following:

// ASSGN SYS014,UA

or

// ASSGN SYS014,IGN

Backward Processing of Tapes and Cartridges
To perform backward processing of tapes or cartridges, file positioning must occur before the file is
opened. This can only be done when an assignment is made for the file. When performing the ADARES
BACKOUT utility function, the // ASSGN ... for file BACK must be done explicitly.

No tape management system can be used, because such systems perform the assign operation when the
file is opened; the LUB and PUB remain unassigned until this occurs.

Applying Zaps (Fixes)
The jobs described in this section can be used to permanently change defaults and apply corrections (zaps)
to the libraries in the supported z/VSE systems.

Two methods are used in z/VSE for applying corrective fixes to Adabas:

the MSHP PATCH facility requires no definition of Adabas as a product/component on the MSHP
history file. This method only alters phases. If the phase is relinked, the zap is lost.

the MSHP CORRECT facility requires the definition of Adabas as a product/component using
MSHP ARCHIVE.

Software AG distributes Adabas zaps to z/VSE users in MSHP CORRECT format and therefore
recommends that you use MSHP CORRECT.

Applying Fixes Using MSHP PATCH

Applying Fixes Using MSHP CORRECT

Link Book Update Requirements for Secondary SVC

Link Book Update Requirements for Running AMODE 24

34

Calls from Other PartitionsInstallation Procedure

Applying Fixes Using MSHP PATCH

A sample job for applying a fix to Adabas using MSHP PATCH is as follows:

Note:
This sample job is available in member MSHPPAT.X.

// JOB PATCH APPLY PATCH TO ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
PATCH SUBLIB=saglib.ADAvrs
AFFECTS PHASE=phasenam
ALTER offset vvvv : rrrr
/*
/&

where
vrs is the Adabas version
saglib is the Adabas library name in procedure ADAV vFIL
phasenam is the Adabas phase to be zapped
offset is the hexadecimal offset into the phase
vvvv is the verify data for the zap
rrrr is the replace data for the zap

Applying Fixes Using MSHP CORRECT

MSHP ARCHIVE

For new users or users with no requirement to maintain multiple versions of Adabas, the following sample
job can be used to define Adabas to MSHP.

Note:
This job uses the history file identified by the IJSYSHF label in the z/VSE standard label area.

Note:
This sample JCL is available in member MSHPARC.X.

// JOB ARCHIVE ARCHIVE ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
ARCHIVE ADAvrs
COMPRISES 9001-ADA-00
RESOLVES ’SOFTWARE AG - ADABAS Vv.r’
ARCHIVE 9001-ADA-00- vrs
RESIDENCE PRODUCT=ADAvrs -
PRODUCTION=saglib.ADAvrs -
GENERATION=saglib.ADAvrs
/*
/&

—where
vrs is the Adabas version
saglib is the Adabas library name in procedure ADAV vFIL

35

Installation ProcedureApplying Fixes Using MSHP PATCH

A different MSHP history file must be used for each version and revision level of Adabas to which
maintenance is applied.

To preserve the MSHP environment of an older version level of Adabas during an upgrade to a new
version, it is necessary to create an additional MSHP history file for use by the new version.

The following sample MSHP job can be used to create an additional history file for a new version of
Adabas and define Adabas to it.

Note:
This sample JCL is available in member MSHPDEF.X.

// JOB ARCHIVE DEFINE HISTORY AND ARCHIVE ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// ASSGN SYS020,DISK,VOL= volhis,SHR
// EXEC MSHP
CREATE HISTORY SYSTEM
DEFINE HISTORY SYSTEM EXTENT=start:numtrks -
UNIT=SYS020 -
ID=’ adabas.new.version.history.file’
ARCHIVE ADAvrs
COMPRISES 9001-ADA-00
RESOLVES ’SOFTWARE AG - ADABAS Vv.r’
ARCHIVE 9001-ADA-00- vrs
RESIDENCE PRODUCT=ADAvrs -
PRODUCTION=saglib.ADAvrs -
GENERATION=saglib.ADAvrs
/*
/&

—where
vrs is the Adabas version
volhis is the volume on which the Adabas V vr history file resides
start is the start of the extent on which the Adabas Vvr history file resides
numtrks is the length of the extent on which the Adabas V vr history file resides
adabas.new.version.history.file is the physical name of the Adabas V vr history file
saglib is the Adabas library name in procedure ADAV vFIL

Once migration to the new version is complete, you can either

continue to use the new history file to apply subsequent fixes; or

delete the old version of Adabas from MSHP and merge the new version into the standard MSHP
history file.

Caution:
Before running any MSHP REMOVE or MERGE jobs, back up your MSHP environment by running
MSHP BACKUP HISTORY jobs against all MSHP history files.

A sample MSHP job to remove an old version of Adabas is provided below.

Note:
This sample JCL is available in member MSHPREM.X.

36

Applying Fixes Using MSHP CORRECTInstallation Procedure

// JOB REMOVE REMOVE OLD ADABAS
// OPTION LOG
// PAUSE ENSURE MSHP HISTORY FILE BACKUP HAS BEEN TAKEN
// EXEC MSHP
REMOVE ADAvrs
REMOVE 9001-ADA-00- vrs
/*
/&

—where vrs is the old Adabas version

A sample MSHP job to merge an additional history file for Adabas into the standard MSHP history file is
provided below.

Note:
This sample JCL is available in member MSHPMER.X.

// JOB MERGE MERGE SEPARATE ADABAS INTO STANDARD HISTORY
// OPTION LOG
// PAUSE ENSURE MSHP HISTORY FILE BACKUPS HAVE BEEN TAKEN
// ASSGN SYS020,DISK,VOL= volhis,SHR
// EXEC MSHP
MERGE HISTORY AUX SYSTEM
DEFINE HISTORY AUX EXTENT=start:numtrks -
UNIT=SYS020 -
ID=’ adabas.new.version.history.file’
/*
/&

—where
volhis is the volume on which the Adabas Vvr history file resides
start is the start of the extent on which the Adabas V vr history file resides
numtrks is the length of the extent on which the Adabas V vr history file resides
adabas.new.version.history.file is the physical name of the Adabas V vr history file

MSHP CORRECT

The MSHP CORRECT and UNDO jobs use the history file identified by label IJSYSHF in the z/VSE
standard label area. If Adabas is maintained from a different MSHP history file, include the following
label information in the CORRECT or UNDO job:

// DLBL IJSYSHF,’ adabas.new.version.history.file’
// EXTENT SYS nnn
// ASSGN SYS nnn,DISK,VOL= volhis,SHR

—where
volhis is the volume on which the Adabas V vr history file resides
nnn is the user-defined SYS number
adabas.new.version.history.file is the physical name of the Adabas V vr history file

A sample of the use of MSHP CORRECT to install a fix to Adabas is provided below.

Note:
This sample JCL is available in member MSHPCOR.X.

// JOB CORRECT APPLY ADABAS FIX
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
CORRECT 9001-ADA-00- vrs : A xnnnnn

37

Installation ProcedureApplying Fixes Using MSHP CORRECT

AFFECTS MODE=modname
ALTER offset vvvv : rrrr
INVOLVES LINK= lnkname
/*
/&

—where
vrs is the Adabas version
x is the Adabas component (for example, N for nucleus)
nnnnn is the Adabas fix number
modname is the Adabas object module to be zapped and then relinked
offset is the hexadecimal offset to the beginning of the zap
vvvv is the verify data for the zap
rrrr is the replace data for the zap
lnkname is the link book for the phase affected

The CORRECT job updates object and phase in a single job step using the link book feature of MSHP.
The INVOLVES LINK= statement automatically invokes the linkage editor after the object module is
updated.

For a zap applied with the INVOLVES LINK= statement, the following UNDO can be used to remove the
fix from both object module and phase:

Note:
This sample JCL is available in member MSHPUND.X.

// EXEC MSHP
UNDO 9001-ADA-00- vrs : A xnnnnn
/*

where vrs is the Adabas version, x is the Adabas component (for example, N for nucleus), and nnnnn is
the Adabas fix number.

Adabas provides a link book containing parameters for invoking the linkage editor for each Adabas phase.
The name of each link book begins with "LNK" and the member type is "OBJ".

No link book is provided for module ADAOPD or for any other programs distributed in source form.
Programs distributed in source form continue to be modified using assembly and link jobs.

If you choose not to take advantage of the link book facility, remove the INVOLVES LINK= statement
from any zap before applying it. You can then run the linkage editor step to recreate the phase separately,
as before.

This may be done to link a temporary version of a phase into a separate sublibrary for testing purposes.
However, it is also possible to maintain a separate test version of Adabas modules by defining an
additional z/VSE system history file. See Maintaining a Separate Test Environment in z/VSE.

Link Book Update Requirements for Secondary SVC

If you use the link book facility and require a non-standard SVC suffix (for example, if you relink the
Adabas 8 SVC to phase ADASVC11), you must remember to update the link book for the SVC
(LNKSVC.OBJ) to reflect the new phase name.

The link book provided for ADASVC81 is LNKSVC.OBJ. It contains the following:

38

Link Book Update Requirements for Secondary SVCInstallation Procedure

PHASE ADASVC81,*,NOAUTO,SVA
MODE AMODE(31),RMODE(24)
INCLUDE SVCVSE
INCLUDE SVCCLU
ENTRY ADASVC

To set up an SVC with suffix -11, you would need to update the link book as follows:

// DLBL SAGLIB,’ adabas.V vrs. library’
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL= volser,SHR
// EXEC LIBR
ACCESS SUBLIB=SAGLIB.ADAvrs
CATALOG LNKSVC.OBJ REPLACE=YES
PHASE ADASVC11,*,NOAUTO,SVA
MODE AMODE(31),RMODE(24)
INCLUDE SVCVSE
INCLUDE SVCCLU
ENTRY ADASVC
/+
/*

—where
vrs is the Adabas version
adabas.V vrs. library is the physical name of the Adabas vrs library
volser is the volume on which the library resides

Link Book Update Requirements for Running AMODE 24

If you use the link book facility and require AMODE 24 versions of any modules linked by default as
AMODE 31 (ADARUN, ADASVC74), you must update the corresponding link book (LNKRUN.OBJ,
LNKSVC.OBJ) to remove the MODE statement.

This link book update can be made using a method similar to that described in the previous section for the
SVC suffix update.

Adabas 8 Adalink Considerations
Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)

LNKUES for Data Conversion

ADAUSER Considerations

Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)

A pre-command user exit and a post-command user exit may be linked with an Adalink routine:

Link routine user exit 1, LUEXIT1, receives control before a command is passed to a target with the
router 04 call.

Note:
Special commands emanating from utilities and from Adabas Online System are marked as physical
calls. These calls must be bypassed in user exits. These calls have X‘04’ in the first byte (TYPE
field) of the command’s Adabas control block (ACBX). LUEXIT1 must check this byte and return if
it is set to X‘04’. Be sure to reset R15 to zero on return.

39

Installation ProcedureAdabas 8 Adalink Considerations

Link routine user exit 2, LUEXIT2, receives control after a command has been completely processed
by a target, the router, or by the Adalink itself.

At entry to the exit(s), the registers contain the following:

Register Contents

1 Address of the UB.

If the flag bit UBFINUB is reset, the contents of the halfword at
Adabas + X’86’ have been moved to UBLUINFO. If those
contents are greater than zero, the two bytes starting at UBINFO
(UB+X’40’) have been set to zero.

If UBFINUB is set, no changes can be made to the UB or ACB
(except for ACBRSP).

2 Address of an 18-word format 1 register save area

13 For CICS, on entry to the link user exit, R13 points to the CICS
DFHEISTG work area at xxxxxxxxx.

For batch/TSO, R13 points to the link routine’s work area.

14 Return address

15 Entry point address: LUEXIT1 or LUEXIT2

Any registers except register 15 that are modified by the user exits must be saved and restored; the address
of a save area for this purpose is in register 13.

If at return from LUEXIT1, register 15 contains a value other than zero (0), the command is not sent to the
target but is returned to the caller. The user exit should have set ACBXRSP to a non-zero value to indicate
to the calling program that it has suppressed the command: response code 216 (ADARSP216) is reserved
for this purpose.

The LUEXIT1 exit may set the UB field UBLUINFO to any lesser value, including zero; an abend occurs
if the user exit sets UBLUINFO to a greater value. The UBLUINFO length cannot be changed when any
other exit is used.

The user information received by a LUEXIT2 exit may have been modified; this modification may
include decreasing its length, possibly to zero, by any of the Adalink user exits.

An Adalink routine can return the following non-zero response codes in ACBXRSP:

Response Code Description

213 (ADARSP213) No ID table

216 (ADARSP216) LUEXIT1 suppressed the command

218 (ADARSP218) No UB available

40

Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)Installation Procedure

LNKUES for Data Conversion

The Adabas 8 standard batch ADALNK is delivered with UES (Universal Encoding Support). The
LNKUES module, as well as the modules ASC2EBC and EBC2ASC, are linked into the standard batch
ADALNK. LNKUES converts data in the Adabas buffers and byte-swaps, if necessary, depending on the
data architecture of the caller.

LNKUES is called only on ADALNK request (X’1C’) and reply (X’20’) calls if the first byte of the
communication ID contains X’01’ and the second byte does not have the EBCDIC (X’04’) bit set.

For requests, LNKUES receives control before LUEXIT1.

For replies, LNKUES receives control after LUEXIT2.

By default, two translation tables are linked into LNKUES/ADALNK:

ASC2EBC: ASCII to EBCDIC translation; and

EBC2ASC: EBCDIC to ASCII translation.

Note:
It should only be necessary to modify these translation tables in the rare case that some country-specific
character other than "A-Z a-z 0-9" must be used in the Additions 1 (user ID) or Additions 3 field of the
control block.

If you prefer to use the same translation tables that are used in Entire Net-Work:

In ASC2EBC and EBC2ASC, change the COPY statements from UES2ASC and UES2EBC to
NW2ASC and NW2EBC, respectively.

Re-assemble the translation tables and re-link LNKUES/ADALNK.

Both the Adabas and Entire Net-Work translation table pairs are provided in the section Translation
Tables. You may want to modify the translation tables or create your own translation table pair. Be sure to
(re)assemble the translation tables and (re)link LNKUES/ADALNK.

Refer to the member LNKLNK.OBJ for the current link-edit control statements for linking the
ADALNK.PHASE. The following is a sample job for (re)linking ADALNK with LNKUES and the
translation tables:

*
// JOB ...
// EXEC PROC=
// LIBDEF *,SEARCH=(search-chain-library.sublib ...)
// LIBDEF PHASE,CATALOG=(lib.sublib)
 PHASE ADALNK,*
 MODE AMODE(31),RMODE(24)
 INCLUDE LNKVSE8
 INCLUDE LINKIND
 INCLUDE LNKGBLS
 INCLUDE LNKUES
 INCLUDE ASC2EBC
 INCLUDE EBC2ASC
 INCLUDE LNKDSL

41

Installation ProcedureLNKUES for Data Conversion

 INCLUDE RTRVSE
 INCLUDE JNMVSEF
 ENTRY ADABAS
// EXEC LNKEDT

The (re)linked ADALNK must be made available to Entire Net-Work. If you are calling Adabas 8 and you
do not have the correct LNKUES/ADALNK module, Adabas produces unexpected results: response code
022 (ADARSP022), 253 (ADARSP253), etc.

ADAUSER Considerations

ADAUSER is a program that links the user to Adabas. It is specific to an operating system and is
independent of release level and mode. It can be used in batch and in some TP environments.

ADAUSER contains the entry point ADABAS and should be linked with all user programs that call
Adabas. No other programs containing the CSECT or entry point name ADABAS can be linked in these
load phases.

On the first Adabas call, ADAUSER (CDLOAD) loads the latest version of ADARUN. This makes the
calling process release-independent. Subsequent Adabas calls bypass ADARUN.

ADARUN processes its control statements. For the ADARUN setting PROGRAM=USER (the default),
ADARUN loads the non-reentrant Adalink modules. To load a reentrant batch link routine, use the
ADARUN parameter PROGRAM=RENTUSER. This makes the calling process mode-independent.

Setting Defaults in ADARUN
The member DEFAULTS.X is available for setting the ADARUN defaults.

DEFAULTS.X uses MSHP CORRECT to install the fix.

Default Name Current Value

Device type 3390

SVC number 45

Database ID 1

42

Setting Defaults in ADARUNInstallation Procedure

	Installation Procedure
	Installation Checklist
	Contents of the Release Tape
	Preparing to Install Adabas
	Disk Space Requirements for Libraries
	Disk Space Requirements for the Database
	Data Sets Required for UES Support
	Disk Space Requirements for Internal Product Data Sets
	Adabas Nucleus Partition/Address Space Requirements
	Defining the Library
	Defining a VSAM Library
	Defining a Non-VSAM Library

	Restoring the ADAvrs LIBR File
	Using the ADAvrs LIBR File
	Storage Above or Below the 16-MB Limit
	User Program Execution in AMODE=31 and RMODE=ANY

	Initializing the Adabas Communication Environment
	Installing the Adabas SVC with Turbo Dispatcher Support
	ADASIP Processing
	Running ADASIP
	Without Turbo Dispatcher Support
	With Turbo Dispatcher Support

	Finding an Unused SVC
	Method 1
	Method 2

	Loading a Secondary Adabas SVC
	ADASIP Execution Parameters
	Runtime Display
	OPTION SYSPARM= Statement
	UPSI Statement
	NRIDTES PARM= Option
	REPLACE PARM= Option
	DMPDBID PARM= Option

	ADASIP Runtime Display

	Installing the Adabas Database
	Installing the Release Tape
	Step 1: Copy Data Set COPYTAPE.JOB from Tape to Disk
	Step 2: Modify COPYTAPE.JOB
	Step 3: Submit COPYTAPE.JOB

	Prepare the Installation Sample JCS for Editing
	Modify, Assemble, and Link the Adabas Options Table
	IORDOSO Macro Overview
	IORDOSO Macro Parameters
	CDLOAD
	COMPACT
	DISKDEV
	DISKMAN
	DISKSYS
	DISKTYP
	DTFDI
	FBAVRF
	GETMMSG
	JBXEMSG
	JBXIMSG
	JOBEXIT
	PFIXRIR
	PRTDSYS
	PRTRSYS
	RAIDASG
	RAITASG
	SORTPGM
	SYS000O
	TAPEDEV
	TAPEMAN
	TAPESYS
	TAPETYP
	VSAMDEV
	VSAMSEQ
	VSAMSYS
	Additional Parameters Used for Internal Control Only

	Catalog Procedures for Defining Libraries and the Database
	Database Installation Steps
	Step 1. Allocate and format the DEMO database.
	Step 2. Define the global database characteristics.
	Step 3. Load the demonstration (demo) files.
	Step 4. Install the product license file.
	Installing the license file.
	Step 5. Start the Adabas nucleus and test the Adabas communications.
	Step 6. Test Adabas partition communications.
	Step 7. Load the Adabas Online System, if used.
	Step 8. Terminate the Adabas nucleus.
	Step 9. Back up the database.
	Step 10. Insert the ADARUN defaults.
	Step 11. Install the required TP link routines for Adabas.

	Migrating an Existing Database
	Logical Unit Requirements
	
	ADARUN
	Utility
	Nucleus

	Job Exit Utility
	Installation and Initialization
	Librarian Input Override Processing
	Activating Adabas Use of Job Exit Processing
	Using the Job Exit Utility for ADARAI JCS Capture
	Job Exit Storage Requirements
	Optional Console or Printer Messages
	Diagnostic Functions

	Acquiring Storage for the ID Table
	Acquiring Storage for the IIBS Table
	SVC Work Areas
	Displaying Storage Allocation Totals
	Calls from Other Partitions
	Dummy Sequential Files
	Backward Processing of Tapes and Cartridges
	Applying Zaps (Fixes)
	Applying Fixes Using MSHP PATCH
	Applying Fixes Using MSHP CORRECT
	MSHP ARCHIVE
	MSHP CORRECT

	Link Book Update Requirements for Secondary SVC
	Link Book Update Requirements for Running AMODE 24

	Adabas 8 Adalink Considerations
	Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)
	LNKUES for Data Conversion
	ADAUSER Considerations

	Setting Defaults in ADARUN

