User Exit 11 (General Processing) User Exit 11 (General Processing)

User Exit 11 (General Processing)

This user exit is given control by Adabas immediately after a command is received by the Adabas nucleus.
The command itself has yet to be processed except for the determination of the type of command (simple
access, complex access, update).

One of the most common applications of this user exit is to insert a security password or a cipher code into
the ACBX.

This user exit functionality largely matches that of the classic user exit 1, except for the fact that edited
copies of the CQX and ACBX data structures are used during user exit 11 processing, rather than the
actual structures used by user exit 1. In addition, support for user exit 1 is dropped in Adabas 8 (or later).

Only certain fields in the ACBX may be changed by the exit: ACBXFNR (file number), ACBXADD3
(Additions 3), ACBXADD4 (Additions 4), ACBXCOP1 through ACBXCOP8 (command options 1-8)

and ACBXUSER (user area). The nucleus will ignore changes in any other ACBX fields and all changes
to the CQX. DSECT EX11PARM maps the user exit 11 parameter list. In addition, a sample user exit 11
skeleton called UEX11 is provided. Both the DSECT and the user exit skeleton are provided in the
Adabas source library.

The call to the user exit is made using a standard BASSM R14,R15 assembler instruction. Register 1
contains the address of a parameter list. All registers must be saved when control is received and restored
immediately prior to returning control to Adabas, with the exception of Register 15 which contains the

return code. A non-zero value means that the command should not be executed and returns response code
22 (ADARSP022).

Notes:

1. All user exits must return the same program status word (PSW) fields to the calling program that
were active when the user exit was called. This applies in particular to the addressing mode
(AMODE), program mask, problem state flag, PSW key, and address space control setting. The
condition code need not be preserved. If any of these PSW fields is changed by the user exit, one way
to ensure that their previous values are returned is to envelope the code where the change is in effect
with a pair of thaBAKR . .. PRinstructions. IIBAKR ... PRinstructions are not necessary,
return usingBSM 0, R14 after restoring all registers except for R15.

2. The length of an Adabas buffer in any Adabas buffer description (ABD) used by the call cannot be
changed.

Input and Output Parameters

User Exit 11 (General Processing) Input and Output Parameters

EX11PARM Parameters

R1-—p+0 Ex11PUsr (&) User Fullword Address : > User Word !

+4 Ex11PLen (F) Parmiist length {in bﬁﬂm}i

+8 | Ex11PCOX (A) Address of readonly COX copy - [3 readonly COX copy 2
+12 | IE:H 1PACK (A) Address of ACBX copy - [3 ACEX copy
+16 I“E:'.HF'ACEI{.&}AddressanCB copy or zero " .. [3 madapryAGB copy
+20 | Ex11PNBD (&) Address of 4-byte number of ABDs I- B fullword number
+24 I“E:'.‘HPABD (A} Address of the first ABD A .'- - ABO1
T
ABDn

General Processing User Exit (1) Parameters

LUser Word: Before calling user exit 11, the fullword reserved for the user is set to zero. It is not altered
by Adabas between UEX11 invocations. It may be used for any purpose, typically to retain the address of
storage acquired for the exit's workarea.

2Parmlist length: The EX11PARM parameter list length is at least 28 bytes.

3 Address of ACB Copy: This address will be set to zero if the command originated using an ACBX direct
interface call.

4 Address of the first ABD: The Adabas buffer descriptions (ABDs) are in a contiguous array. For
complete information about locating ABDs in this array, reachting the Correct ABD, next in this
section.

Locating the Correct ABD

Internally, Adabas 8 only uses extended Adabas control blocks (ACBX) and Adabas buffer descriptions
(ABDs). Direct calls made using the classic Adabas control block (ACB) and buffer definitions have their
data structures converted to ACBX calls and ABDs by ADASVC before the nucleus sees the call. Thus,
the protocol for locating and accessing buffers in user exits, such as this one, has changed as of Adabas 8.

The Adabas buffer descriptions (ABDs) are now in a contiguous array. However, the internal
representation of the ABD may not have the same length as the base ABD, as defined by the value of the
ABDXQLL symbol in the ADABDX DSECT, although the first ABDXQLL bytes continue to be mapped

by ADABDX. This means that you should not use the ABDXQLL value in the ADABDX DSECT to

locate the next ABD in the ABD array. Instead, you should use the value of the two-byte ABDXLEN field
at offset+x’ 00’ of the ABD to determine the end of that ABD and the start of the next ABD in the

array. Do not assume that all internal ABD representations have the same length: each must be located in
turn by applying its predecessor's ABDXLEN value.

Input and Output Parameters User Exit 11 (General Processing)

In addition, the order of the ABDs is not defined and my change over time or from command to
command, although within the array all ABDs of a given type (format buffer, record buffer, etc.) are
contiguous. There will be an ABD for every buffer provided by the user that is documented as an input or
output buffer for the specific command. There may also be additional buffers created by other
components. When there are multiple instances of format, record and (optional) multifetch buffers, they
are related based on their position: the first format buffer is associated with the first record (and optional
multifetch) buffer, the second with the second, and so forth. If the caller provides an unequal number of
format, record and (optional) multifetch buffers, dummy descriptors with a zero buffer length are created
to bring about equal quantities. When multifetch is used with a classic ACB call, certain commands
(L1/2/3/4/9) will have their ISN buffer converted into a multifetch buffer. Here are some examples:

e |f a caller (using either an ACB or ACBX call) issues an OP command and provides a record buffer
and search buffer, the array of ABDs will have one record buffer ABD and one dummy format buffer
ABD (to satisfy the internal requirement that there be equal numbers of format and record buffers).
There is no ABD for the search buffer because that is not a documented input or output buffer for the
OP command.

e |f a caller uses an ACBX call to issue an L1 command and provides two format buffers and three
record buffers, the array of ABDs will have three record ABDs and three format ABDs, the last one
of which is a dummy format ABD. The first record buffer is associated with the first format buffer;
the second record buffer is associated with the second format buffer; and the third record buffer is
associated with the third (dummy) format buffer.

® Suppose a caller uses an ACB call to issue an L3 command with Command Option 1 set to "M"
(multifetch) and Command Option 2 set to "A" (ascending retrieval from a specified value). In
addition, the caller provides a format buffer, a record buffer, an ISN buffer, a search buffer and a
value buffer. In this case, the array of ABDs will have one format buffer ABD, one record buffer
ABD, one multifetch buffer ABD, one search buffer ABD, and one value buffer ABD. The caller’s
ISN buffer will have been converted to a multifetch buffer.

	 User Exit 11 (General Processing)
	Input and Output Parameters
	
	
	General Processing User Exit (1) Parameters

	Locating the Correct ABD

