
TCP/IP Protocol Stack
As shown in the following diagram, the TCP/IP protocol stack contains four layers: 

Physical layer

Internet Protocol (IP) layer

Transport layer, comprising

Transmission Control Protocol (TCP); and

User Datagram Protocol (UDP)

Applications layer

This chapter covers the following topics: 

Physical Layer

Internet Protocol (IP) Layer

Transport Layer

Applications Layer

Physical Layer
At the bottom of the stack is the physical layer, which deals with the actual transmission of data over
physical media such as serial lines, Ethernet, token rings, FDDI rings, and hyperchannels. Messages can
also be sent and received over other, non-physical access methods such as VTAM/SNA. 

1

TCP/IP Protocol StackTCP/IP Protocol Stack



Internet Protocol (IP) Layer
Above the physical layer is the Internet Protocol (IP) layer, which deals with the routing of packets from
one computer to another. The IP layer 

determines which lower level protocol to use when multiple interfaces exist. 

determines whether to send a packet directly to the host or indirectly to a relay host known as a
router. 

When a packet is larger than the size supported by the physical medium, the IP layer breaks the
packet into smaller packets, a process referred to as "fragmentation and reassembly". 

provides some control services for packets, and ensures that they are not sent from router to router
indefinitely. 

However, the IP layer does not keep track of a packet after it is sent, nor does it guarantee that the packet
will be delivered. 

Transport Layer
Above the IP layer is the transport layer, which contains the Transmission Control Protocol (TCP) and the
User Datagram Protocol (UDP). 

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) guarantees that data sent by higher levels is delivered in order
and without corruption. To accomplish this level of service, the TCP implementation on one computer
establishes a session or connection with the TCP implementation on another computer. This process is
referred to as Connection Oriented Transport Service (COTS). 

After a session is established, data is sent and received as a stream of contiguous bytes; each byte can be
referenced by an exact sequence number. When data is received by the remote TCP, it sends an
acknowledgment back to the local TCP advising it of the sequence number of the last byte of data
received. If an acknowledgment is not received, or if an acknowledgment for previously sent data is
received twice, the local TCP retransmits the data until it is all acknowledged. The remote TCP discards
any bytes that are received more than once. 

All data sent and received by TCP is validated for corruption using checksums. Whenever a checksum is
incorrect, the bad data is discarded by TCP, and the correct data is retransmitted until it is accurately
received. 

User Datagram Protocol (UDP) 

Unlike the TCP, the User Datagram Protocol (UDP) transmits and receives data in packets (datagrams),
and delivery is not guaranteed. The contents of the data can be sent with or without a checksum. The use
of checksums varies widely from one implementation to another. 

2

Internet Protocol (IP) LayerTCP/IP Protocol Stack



Applications Layer
Above the transport layer is the applications layer, which contains both general applications and function
libraries for use by applications. 

Some general applications that run over TCP include

File Transfer Protocol (FTP);

remote terminal emulation (TELNET in line mode, TN3270 in full screen); 

Electronic Mail (SMTP); and

Entire Net-Work.

Some general applications that run over UDP are

Network File Server (NFS); and

Domain Name Server (DNS).

Interface with TCP and UDP

Function libraries provide routines to simplify the interface between applications and TCP/UDP of the
Transport layer: 

The most common function library is known as Sockets, which allows an application written in C to
access TCP as if it were just another stream input/output device. 

Another function library that is less commonly used is Remote Procedure Call (RPC), which allows
applications to make calls to functions that are located in another application on a different computer. 

The environment in which an application runs often dictates the interface used between it and TCP or
UDP: 

Most UNIX, OS/2, and Windows applications are written in C and utilize a direct socket interface. 

On IBM mainframes and other systems based on the same architecture such as Fujitsu Technology
Solutions, applications are often written in S/390 assembler, and use either a pseudo-socket interface
or an application program interface (API) to gain access to the TCP/IP protocol stack. 

Ports

The interface that exists between an application and TCP is referred to as a port. Ports are classified as
server ports and client ports: 

Server ports are generally ports on which the application "listens" for incoming connections to be
made. 

Client ports are generally ports on which the application "connects" outwardly to a server port. 

3

TCP/IP Protocol StackApplications Layer



An application may control multiple client ports and server ports simultaneously. 

Each port is identified by a port number, which ranges from 1 to 65535. 

The port number used by client ports usually has no significance and is often assigned by TCP. 

Server port numbers, however, are usually required to be "well known"; that is, the client must know
which port the server is listening on when it attempts to connect. Server port numbers usually are specified
by the server application. 

4

PortsTCP/IP Protocol Stack


	TCP/IP Protocol Stack
	Physical Layer
	Internet Protocol (IP) Layer
	Transport Layer
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)

	Applications Layer
	Interface with TCP and UDP
	Ports



