
Using extreme files
This section details specific programming consideration when dealing with extreme partitioned files.

General Restrictions

Extreme file capacity

Well-formed application logic

Application logic that is not well-formed

Field style extreme files

ISN style extreme files

General Restrictions
CONVISN is not supported against extreme partitioned files.

Where ISN lists are returned these will not be in ascending ISN sequence across partition because the
partition identity is no longer part of the 4-byte ISN value for extreme files

Extreme file capacity
The mathematical maximum records that can be held for an extreme file (across all the partitions) is
determined by the maximum number of partitions multiplied by the maximum number of ISNs per
partition.

1. The maximum number of partitions is 65535.

2. The maximum number of ISNs per partition is 4,294,967,295.

Well-formed application logic
Good programming practices generally result in well-formed application logic. For the purposes of Vista,
here are examples of well-formed application logic.

A typical nested access connecting records of two files:

READ file-one BY abc FROM ‘ 1001’
 Some processing on the *ISN(file-one)
 FIND file-two WITH def = def(file-one)
 Some processing on the *ISN(file-two) and perhaps also *ISN(file-one)
 END-FIND
END-READ

Add a modification into this (no END TRANSACTION is used to simplify the illustration):

1

Using extreme filesUsing extreme files

READ file-one BY abc FROM ‘ 1001’
 Some processing on the *ISN(file-one)
 FIND file-two WITH def = def(file-one)
 Some processing on the *ISN(file-two) and perhaps also *ISN(file-one)
 UPDATE (or DELETE) *ISN(file-two)
 END-FIND
 UPDATE (or DELETE) *ISN(file-one)
END-READ

For the purposes of Vista extreme files, this logic is well-formed because the iterations deal with one
record at a time, the current record. In Natural programming this is typified by *ISN. Most application
logic is programmed in this way, for no other reason than it makes sense because sensible application
logic is cost-efficient to maintain. Vista supports this logic transparently without regard for the style of
extreme partition in use. This is possible because Vista remembers in memory the partition details for the
current record, and doesn’t therefore have to use the special field (or 8-byte ISN) in these cases.

Application logic that is not well-formed
In modern applications it is quite difficult to produce poorly-formed logic simply because the language
syntax used today are themselves well-formed. Natural is an excellent example of that. However there are
special cases where this may be necessary or there may be very old applications (usually 3GL) that are
called where the logic is not so well-formed. These situations give rise to exceptions, which means you
may have to adjust the logic to accommodate extreme files (and perhaps even standard partitioned files).

One classic example is where an application makes use of USERISN for a file. In this situation the
application can use an ISN on a command that it has previously stored, in a file or in memory, meaning
the command bears no relationship to any concept of current record. USERISN is not the only situation
this arises by it is a classic case; and it is not recommended – a clear indication of not being well-formed.
There are many other situations where an ISN-based command is used that otherwise conflicts with what
would otherwise be considered current record.

All is not lost, Vista supports these situations, but in order to do so you need to make small changes to the
application in these usually relatively few areas. You can modify the application logic to instruct Vista
about the partition information of the command that is about to be issued using an API called PARTID.
See the section API function overview for more information.

Field style extreme files
Field style extreme partitioned files are defined as Source Type "F" and require that the FDT is adjusted to
have a new field with a) length 4 b) format packed and c) null suppressed. The 2-character name of this
field can be any valid name. See Source Type in the Adabas Vista Parameters documentation for more
information.

Note:
For Natural: the new field must be defined as "P 7" in the DDM(s).

The application [or Natural] must be sure to name this field at the front of all Format Buffers (DDMs)
when anything other than well-formed application logic (or the PARTID API) is not used. See the section
API function overview for more information.

2

Application logic that is not well-formedUsing extreme files

Notes:

1. ET/BT options M/P not currently supported.
2. Multi-fetch requires all format buffers to use the extreme-field.
3. S2 commands are only supported with ISN buffer length less than or equal to 4.
4. S9 commands sorting a supplied ISN list in the ISN buffer MUST be preceded by a PARTID NEXT

API call to set the partition-ids of the ISNs in the list. An error will occur if a partition-id list is
detected from a previous PARTID NEXT call, but the current command does not require one.

ISN style extreme files
ISN style partitioned files are defined as Source Type "I". See Source Type in the Adabas Vista
Parameters documentation for more information.

These files require use of ACBX commands only.

Use of the PARTID API is also supported.

Where ISN lists are returned (Sx commands, L9 option I), the buffer to contain the ISNs should be
doubled in size. This is because the contents will go from a list of 4 byte ISNs to 8 byte. Similarly,
multi-fetch will return an enhanced multi-fetch buffer with increased ISN related fields:

ISN or Multifetch Buffer: RDE count{ RDE1 }...

A record descriptor element (RDE) has the structure shown in the following table.

Format Length Content

All fields unsigned integer,
right aligned

4 bytes Length of this record in record buffer. Records may have
different lengths.

4 bytes Adabas response for this record. If a nonzero response is given,
no record is stored in the record buffer.

8 bytes Partition ID(4 bytes)+ ISN for this record (4 bytes)

8 bytes Rightmost 4 bytes: (L9 only) ISN quantity: value count for this
descriptor.

Notes:

1. Command must be ACBX format.
2. ET/BT options M/P not currently supported.
3. L9 option I only supported for single segment calls.

3

Using extreme filesISN style extreme files

	Using extreme files
	General Restrictions
	Extreme file capacity
	Well-formed application logic
	Application logic that is not well-formed
	Field style extreme files
	ISN style extreme files

