
Processing 
This chapter describes ADACMP utility processing.

Segmented Record Considerations

Logically Deleted Fields

Data Verification

Data Compression

Representation of LOB Values and Value References in Uncompressed Data

Identifying MU and PE Occurrences Greater Than 191 in Compressed Records

Restart Considerations

User Exit 6

Segmented Record Considerations
If a decompressed record from ADACMP is too long to fit into the longest record length allowed for a
sequential data set (32KB or less), ADACMP can segment it into multiple physical records. A single
logical decompressed record can span one or more physical decompressed records. 

In addition, the ADACMP utility allows you to create special headers, ADAH and ADAC, in the
decompressed output. These special headers are used only with ADACMP processing. They identify the
position of the payload data in the logical record as well as the relation between the physical record and
the other physical records in the same logical record. When created, an ADAH header is used for the first
physical record of a logical record; ADAC headers are used for the second and subsequent physical
records that comprise the logical record. If a decompressed logical record does not need to be segmented
(if it fits into one physical record), only an ADAH header is created; there is no need for ADAC headers. 

Do not confuse the record segmentation that occurs with ADACMP decompression logic and record 
spanning. Spanned records also consist of multiple physical records (one primary record and multiple
secondary records), but they are compressed records. In addition, each spanned record is automatically
assigned a standard spanned record header that is not the same as the ADAH and ADAC headers you can
create for decompressed records using ADACMP; segmented records produced by ADACMP do not
contain the standard spanned record header. For complete information about spanned records, read 
Spanned Records. 

This section covers the following topics:

Creating and Supporting ADACMP Headers

ADAH and ADAC Header Descriptions

1

ProcessingProcessing



Creating and Supporting ADACMP Headers

The HEADER parameter of ADACMP DECOMPRESS controls whether the decompression logic
produces the headers in its output. The HEADER parameter of ADACMP COMPRESS controls whether
the compression logic will accept the ADACMP headers as part of the uncompressed input. 

ADAH and ADAC Header Descriptions

This section covers the following topics: 

ADAH Headers 
ADAC Headers 
Example 

ADAH Headers

When ADACMP headers are used, the first physical record of a logical record begins with an ADAH
header containing the following information: 

The characters "ADAH".

The length of the ADAH header.

A continuation indicator that indicates whether this is the last physical record in the logical record or
whether another physical record for the same logical record will follow this one. 

The total length of the record (with the headers). The value may be zero if the total record length is
not known when the first physical record is written. 

The length of the payload data (a segment of the logical record) in this physical record. This refers to
the length of the payload data; it does not include the length of the ADAH header. The length must
be less than or equal to the length of the physical record minus the length of the header. If it is less
than this value, any extra data in the physical record (not covered by the payload data length) is
ignored. 

The payload data follows the ADAH header.

The ADAH DSECT can be found in the ADAH member of the distributed Adabas 8 SRCE library. 

ADAC Headers

When ADACMP decompressed record segmenting occurs and when ADACMP headers are requested, the
second and every subsequent physical record for a logical record begins with an ADAC header containing
the following information: 

The characters "ADAC".

The length of the ADAC header.

A continuation indicator that indicates whether this is the last physical record in the logical record or
whether another physical record for the same logical record will follow this one. 

2

Creating and Supporting ADACMP HeadersProcessing



The sequence number of this secondary record in the logical record. The second physical record of a
logical record is the first secondary record and therefore has a sequence number of "1". The sequence
numbers are in ascending order, without gaps. 

The offset within the logical record of the payload data (segment) contained in this physical record.
This offset is the sum of the payload data lengths of each prior physical record in the logical record. 

The length of the payload data (segment) in this physical record. This refers to the length of the
payload data; it does not include the length of the ADAC header. The length must be less than or equal to
the length of the physical record minus the length of the header. If it is less than this value, any extra data
in the physical record (not covered by the payload data length) is ignored. 

The payload data follows the ADAC header.

The ADAC DSECT can be found in the ADAC member of the distributed Adabas 8 SRCE library. 

Example

The following table depicts three logical records spanning seven physical records of uncompressed data. 

Note:
DSECTs for the ADAH and ADAC headers can be found in members ADAH and ADAC in the
distributed Adabas 8 SRCE library. 

Logical
Record 

Physical
Record 
Headers

Header Fields Description 

Field Value 

1 ADAH ADAHEYE ADAH ADAH header eyecatcher 

ADAHLEN 32 ADAH header length 

ADAHIND C Continuation indicator. Valid values are: 

C: Continuation record segment to follow
E: End of logical record (last segment) 

Reserved 0 Must contain binary zeros. 

ADAHTLEN 50000 Total length of logical record. This value
may be zero if the total length is not
known when the first segment is written. 

Reserved 0 Reserved 

ADAHSLEN 27962 Length of this segment (length of the
payload data). The sum of the values of
ADAHLEN and ADAHSLEN is the
minimum length of the physical record.
The physical record can be longer than
this; in this case, the excess data has no
meaning and is ignored. 

ADAHDATA ’Record
1 -
payload
data part 
1’

Payload data 

ADAC ADACEYE ADAC ADAC header eyecatcher 

ADACLEN 32 ADAC header length 

ADACIND E Continuation indicator. Valid values are: 

C: Continuation record segment to follow
E: End of logical record (last segment) 

Reserved 0 Reserved 

ADACSEQ 1 Continuation record sequence number
within the logical record (the first ADAC
record has a sequence number of "1"). 

ADACOFFS 27962 Segment offset within the logical record
(the first payload data byte is at offset
"0"). 

Reserved 0 Reserved 

ADACSLEN 22038 Length of this segment (length of the
payload data). The sum of the values of
ADACLEN and ADACSLEN is the
minimum length of the physical record.
The physical record can be longer than
this; in this case, the excess data has no
meaning and is ignored. 

ADACDATA ’Record
1 -
payload
data part 
2’

Continuation record payload data 

3

ProcessingADAH and ADAC Header Descriptions



Logical
Record 

Physical
Record 
Headers

Header Fields Description 

Field Value 

2 ADAH ADAHEYE ADAH ADAH header eyecatcher 

ADAHLEN 32 ADAH header length 

ADAHIND E Continuation indicator. Valid values are: 

C: Continuation record segment to follow
E: End of logical record (last segment) 

Reserved 0 Must contain binary zeros. 

ADAHTLEN 25000 Total length of logical record. This value
may be zero if the total length is not
known when the first segment is written. 

Reserved 0 Reserved 

ADAHSLEN 25000 Length of this segment (length of the
payload data). The sum of the values of
ADAHLEN and ADAHSLEN is the
minimum length of the physical record.
The physical record can be longer than
this; in this case, the excess data has no
meaning and is ignored. 

ADAHDATA ’Record
2 -
payload 
data’

Payload data 

4

ADAH and ADAC Header DescriptionsProcessing



Logical
Record 

Physical
Record 
Headers

Header Fields Description 

Field Value 

3 ADAH ADAHEYE ADAH ADAH header eyecatcher 

ADAHLEN 32 ADAH header length 

ADAHIND C Continuation indicator. Valid values are: 

C: Continuation record segment to follow
E: End of logical record (last segment) 

Reserved 0 Must contain binary zeros. 

ADAHTLEN 0 Total length of logical record. This value
may be zero if the total length is not
known when the first segment is written
(as is the case for logical record 3). 

Reserved 0 Reserved 

ADAHSLEN 27962 Length of this segment (length of the
payload data). The sum of the values of
ADAHLEN and ADAHSLEN is the
minimum length of the physical record.
The physical record can be longer than
this; in this case, the excess data has no
meaning and is ignored. 

ADAHDATA ’Record
3 -
payload
data part 
1’

Payload data 

ADAC ADACEYE ADAC ADAC header eyecatcher 

ADACLEN 32 ADAC header length 

ADACIND C Continuation indicator. Valid values are: 

C: Continuation record segment to follow
E: End of logical record (last segment) 

Reserved 0 Reserved 

ADACSEQ 1 Continuation record sequence number
within the logical record (the first ADAC
record has a sequence number of "1"). 

ADACOFFS 27962 Segment offset within the logical record
(the first payload data byte is at offset
"0"). 

Reserved 0 Reserved 

ADACSLEN 27962 Length of this segment (length of the
payload data). The sum of the values of
ADACLEN and ADACSLEN is the
minimum length of the physical record.
The physical record can be longer than
this; in this case, the excess data has no
meaning and is ignored. 

ADACDATA ’Record
3 -
payload
data part 
2’

Continuation record payload data 

ADAC ADACEYE ADAC ADAC header eyecatcher 

ADACLEN 32 ADAC header length 

ADACIND C Continuation indicator. Valid values are: 

C: Continuation record segment to follow
E: End of logical record (last segment) 

Reserved 0 Reserved 

ADACSEQ 2 Continuation record sequence number
within the logical record (the first ADAC
record has a sequence number of "1"). 

ADACOFFS 55924 Segment offset within the logical record
(the first payload data byte is at offset
"0"). 

Reserved 0 Reserved 

ADACSLEN 27962 Length of this segment (length of the
payload data). The sum of the values of
ADACLEN and ADACSLEN is the
minimum length of the physical record.
The physical record can be longer than
this; in this case, the excess data has no
meaning and is ignored. 

ADACDATA ’Record
3 -
payload
data part 
3’

Continuation record payload data 

ADAC ADACEYE ADAC ADAC header eyecatcher 

ADACLEN 32 ADAC header length 

ADACIND E Continuation indicator. Valid values are: 

C: Continuation record segment to follow
E: End of logical record (last segment) 

Reserved 0 Reserved 

ADACSEQ 3 Continuation record sequence number
within the logical record (the first ADAC
record has a sequence number of "1"). 

ADACOFFS 83886 Segment offset within the logical record
(the first payload data byte is at offset
"0"). 

Reserved 0 Reserved 

ADACSLEN 16114 Length of this segment (length of the
payload data). The sum of the values of
ADACLEN and ADACSLEN is the
minimum length of the physical record.
The physical record can be longer than
this; in this case, the excess data has no
meaning and is ignored. 

ADACDATA ’Record
3 -
payload
data part 
4’

Continuation record payload data 

5

ProcessingADAH and ADAC Header Descriptions



Logically Deleted Fields
ADACMP COMPRESS utility runs that specify an FDT (via the FDT parameter) but do not specify a
FORMAT parameter and that run against a file with logically deleted fields (see the ADADBS DELFN
utility function) require that the data include the values for the logically deleted fields. Failure to include
these values could lead to incorrectly compressed records. 

Data Verification 
ADACMP checks each field defined with format P (packed) or U (unpacked) to ensure that the field value
is numeric and in the correct format. If a value is empty, the null characters must correspond to the format
specified for the field (see Representing SQL Null Values in the Field Definition Statements section. 

Alphanumeric (A) blanks (hex ’40’) 

Binary (B) binary zeros (hex ’00’) 

Fixed (F) binary zeros (hex ’00’) 

Floating Point (G) binary zeros (hex ’00’) 

Packed (P) decimal packed zeros with sign (hex ’00’ followed by ’0F’, ’0C’, or ’0D’ in
the rightmost, low-order byte) 

Unpacked (U) decimal unpacked zeros with sign (hex ’F0’ followed by ’C0’ or ’D0’ in the
rightmost, low-order byte) 

Any record that contains invalid data is written to the ADACMP error (DDFEHL) data set and is not
written to the compressed data set. 

Data Compression 
The value for each field is compressed (unless the FI option is specified) as follows: 

Trailing blanks are removed for fields defined with A format.

Leading zeros are removed for numeric fields (fields defined with B, F, P or U format). 

If the field is defined with U (unpacked) format, the value is converted to packed (P) format. 

Trailing zeros in floating-point (G format) fields are removed.

If the field is defined with the NU option and the value is a null value, a one-byte indicator is stored.
Hexadecimal ’C1’ indicates one empty field follows, ’C2’ indicates that two empty fields follow, and
so on, up to a maximum of 63 before the indicator byte is repeated. For SQL null value (NC option
field) compression, see Representing SQL Null Values in the Field Definition Statements section. 

Empty fields located at the end of the record are not stored, and therefore not compressed. 

6

Logically Deleted FieldsProcessing



Example of Data Compression

ADACMP Compression

The graphic shows how the following field definitions and corresponding values would be processed by
ADACMP: 

FNDEF=’01,ID,4,B,DE’
FNDEF=’01,BD,6,U,DE,NU’
FNDEF=’01,SA,5,P’
FNDEF=’01,DI,2,P,NU’
FNDEF=’01,FN,9,A,NU’
FNDEF=’01,LN,10,A,NU’
FNDEF=’01,SE,1,A,FI’
FNDEF=’01,HO,7,A,NU’

7

ProcessingExample of Data Compression



Representation of LOB Values and Value References in
Uncompressed Data 
This section describes how large object (LB) field values, LB field value references, and logical records
that are longer than 32 KB must be represented in the input data set for the ADACMP COMPRESS
function and how these items are represented in the output data set of the ADACMP DECOMPRESS
function. 

Large Object (LB) Field Values

Large Object (LB) Field Value References

Large Object (LB) Field Values

If ADACMP is run without the FORMAT parameter, each large object (LB) field value in the
uncompressed data is preceded by a 4-byte length field. The length value includes the length of the LB
field value proper plus four bytes for the length field itself. An empty LB field value for a field defined 
without the NB option consists of the length field with a value of 5 and a single blank; for a field defined 
with the NB option, an empty LB field value consists only of the length field with a value of 4. 

If ADACMP COMPRESS is used to define an FDT with LB fields, each LB field value in the
uncompressed input must be less than or equal to 253 bytes. 

Large Object (LB) Field Value References

When the ADACMP DECOMPRESS function is run with LOBVALUES=NO to decompress only the
records from the base file of a LOB file group, omitting all LB field values stored in the associated LOB 
file, each reference in a base file record to a LB field value in the LOB file is represented in the
uncompressed output as follows: 

The four-byte length field for the LB field value contains X’FFFFFFFF’ (high value) to indicate the
presence of the reference to an LB field value. 

The indicator is followed by a two-byte inclusive length field for the LB field value reference. The
length value includes the length of the LB field value reference proper plus two bytes for the length
field itself. 

The length field is followed by the LB field value reference proper. 

The same structure is expected by the ADACMP COMPRESS function with LOBVALUES=NO in the
place of an LB field value that is stored in the LOB file associated with the base file that is being
compressed. 

LB field value references that are input to ADACMP COMPRESS must originate from ADACMP
DECOMPRESS. There is no sensible way to introduce new LB field value references using COMPRESS,
as they would not properly refer to existing LB field values in a LOB file. 

8

Representation of LOB Values and Value References in Uncompressed DataProcessing



Identifying MU and PE Occurrences Greater Than 191 in
Compressed Records 
MU and PE occurrences greater than 191 are indicated in compressed records by a x’C0’ byte at the
beginning of the occurrence count. This byte is set by the ADACMP utility or the nucleus when the
records are compressed. The x’C0’ indicator byte is followed by a byte indicating the number of count
bytes used for the MU or PE occurrence count that follows. For example, consider the following indicator: 

X’C0020204’

In this example, x’C0’ indicates this is an extended count; x’02’ indicates that there are two count bytes,
and x’0204’ indicates that there are 516 occurrences of the field. 

Restart Considerations 
ADACMP has no restart capability. An interrupted ADACMP execution must be reexecuted from the
beginning. 

User Exit 6 
A user-written routine called user exit 6 can be used for editing during ADACMP COMPRESS
processing. The routine may be written in Assembler or COBOL. It must be assembled or compiled and
then linked into the Adabas load library (or any library concatenated with it). 

User exit 6 is invoked by specifying:

ADARUN UEX6=program

where program is the routine name in the load library. 

For specific information about the user exit 6 structure and parameters, read User Exits and
Hyperdescriptor Exits. 

9

ProcessingIdentifying MU and PE Occurrences Greater Than 191 in Compressed Records


	Processing
	Segmented Record Considerations
	Creating and Supporting ADACMP Headers
	ADAH and ADAC Header Descriptions
	ADAH Headers
	ADAC Headers
	Example


	Logically Deleted Fields
	Data Verification
	 Data Compression
	Example of Data Compression
	
	ADACMP Compression



	Representation of LOB Values and Value References in Uncompressed Data
	Large Object (LB) Field Values
	Large Object (LB) Field Value References

	Identifying MU and PE Occurrences Greater Than 191 in Compressed Records
	Restart Considerations
	 User Exit 6


