
Processing and Performance
The Adabas trigger driver is executed as a part of the Adabas nucleus. It generally controls the whole
run-time processing of a trigger. It determines whether a trigger is to be fired, initiates the Natural trigger
driver, and interacts with it to ensure the correct and timely processing of the procedures.

This chapter covers the following topics:

Initialization

Checking for Procedures

Processing the Procedures

Processing the Results

Shutdown

Abnormal Termination

Command Logging

Initialization
When the Adabas nucleus starts, it determines whether the ADARUN parameter SPT=YES has been
specified; if so, it passes control to the Adabas trigger driver to allow it to initialize. During initialization,
the Adabas trigger driver performs the activities described in the following paragraphs.

Verifying the Adabas Triggers Profile

The Adabas trigger driver verifies the Adabas triggers profile on the trigger file and extracts the session
parameters to be used in processing triggers and stored procedures for the session. If no profile exists on
the trigger file, the initialization of the Adabas triggers and stored procedures facility in the nucleus is
terminated with an appropriate error message.

The Adabas trigger driver checks the "triggers status" and "stored proc. status" parameter settings in
the profile.

1

Processing and PerformanceProcessing and Performance

Triggers Stored Procedure Action

Inactive Inactive The Adabas triggers and stored procedures
facility is not allowed to start. To the Adabas
trigger driver, the "inactive" setting has the same
meaning as the ADARUN parameter setting
SPT=NO.

Active Inactive Triggers processing is started but any request to
run a stored procedure is rejected with a response
code 22 (ADARSP022).

Inactive Active Stored procedures processing is started but any
request to run a trigger is rejected with a
response code 22 (ADARSP022).

The Adabas trigger driver obtains information about the Natural subsystems from the profile:

The subsystem name, which must correspond to the name of the linked Natural nucleus that will
process the procedures; that is, the name given to the Natural nucleus during Part III of the
installation procedure.

The number of subsystems that must be started in order to handle the work load generated by the
triggers that will be fired.

Verifying the Presence of at Least One Trigger

The Adabas trigger driver verifies that the trigger file contains at least one trigger definition. If not, the
Adabas triggers and stored procedures facility is not initialized and an appropriate error message is given,
even if triggers status is set to "inactive".

Acquiring Storage

The total storage requirement for the Adabas triggers and stored procedures facility depends on

the size of the work areas required;

the buffer sizes required for the trigger table, pre- and post-trigger queues; and

the space needed for the Natural subsystems.

The amount of space needed for the Natural subsystems is determined by the size of the Natural nucleus
and the various buffers that the Natural environment needs; for example, ESIZE, DATSIZE, and FSIZE.

If the size of the overall region/address space for the Adabas nucleus is too small, the Natural subsystems
will not be able to run. The error message will normally indicate "insufficient storage" or an abend of the
subsystems (response code 40000109 or 40000008 may be returned). If this occurs, increase the size of
the region/address space or decrease the number of Natural subsystems used to execute the procedures.

2

Verifying the Presence of at Least One TriggerProcessing and Performance

Software AG recommends splitting the Natural nucleus to minimize nucleus storage requirements.

Creating the Trigger Table

At least one trigger must be defined on the trigger file; otherwise, processing cannot continue.

After the Adabas trigger driver determines the validity of the trigger file, trigger definitions are read and
entries are added to the trigger table. In a nucleus cluster environment, the trigger table is not reread for
each nucleus, but is obtained from a nucleus that is already active.

In order to maintain the integrity of the system, the trigger table is not updated with new, modified, or
deleted triggers unless a REFRESH command is issued from the Trigger Maintenance facility (see the
section Updating the Trigger Table).

The trigger table enhances performance. Instead of checking the trigger file itself for the existence of a
trigger every time a command is processed, the Adabas trigger driver simply checks the trigger table, i.e.,
the buffer in memory. The sequence of the table enables the trigger driver to rapidly determine whether a
trigger should be fired.

When reading the trigger file to determine entries for the trigger table, the Adabas trigger driver

ignores any entries for the trigger, checkpoint, or security files;

loads deactivated triggers, but ignores them until they have been activated from the Modify Trigger
function in the Trigger Maintenance facility. See the section Single Trigger Definition.

determines the maximum file number for the database (the highest file number used plus 10), and
ignores any trigger for a file number greater than the maximum.

Ignoring out-of-range file numbers may cause a problem when the REFRESH command is used. One
solution is to load a dummy file with a file number greater than the real maximum file number. You can
then add new files that have a file number greater than the real maximum but less than the dummy file
number. By having a fixed-size buffer established at nucleus initialization, storage requirements for this
buffer are minimized. With a two-byte file number, the total maximum size could be very large.

Starting Natural Subsystems

After the Adabas trigger driver is initialized, it starts the Natural subsystems that are responsible for the
actual execution of the procedures. The "maximum subsystems" parameter in the Adabas triggers profile
determines the number of subsystems (1-10) to be started.

Each subsystem is typically a minimally modified batch Natural nucleus that runs in the Adabas address
space. This affects the region size specified on the MPM startup JCL/JCS.

When a subsystem is started, the Adabas trigger driver keeps track of any change in subsystem status or
activity; hence, each subsystem can uniquely identify itself to either the Adabas trigger driver or any
procedure that the subsystem invokes. The user can monitor these activities by using the Subsystem
Activity function, which is part of the Trigger Maintenance facility.

When a Natural subsystem becomes active:

3

Processing and PerformanceCreating the Trigger Table

the Natural trigger driver gets control; and

the Adabas trigger driver is informed that the subsystem is ready to start processing any procedures
that may result from a stored procedure request or the firing of a trigger.

The subsystem queue contains an entry for each Natural subsystem that is waiting for work. When the
Adabas trigger driver needs a subsystem, it examines the subsystem queue to find one that is available.

Checking for Procedures
Once the Adabas nucleus is initialized, user processing continues normally. For each command that the
nucleus receives, the Adabas trigger driver determines whether a trigger needs to be fired. (Entries in the
trigger table that are marked "inactive" are ignored.)

For pre-command triggers, the Adabas trigger driver checks for triggers before the command is selected
for processing by the Adabas thread. This involves the READ, FIND, STORE, DELETE, and UPDATE
commands. For these commands, the Adabas trigger driver determines whether there are any triggers to be
fired; if not, command processing continues normally. Commands like end transaction (ET), close (CL),
release command ID (RC) are not checked but are given directly to the nucleus for normal processing. The
trigger check is, of course, not done for stored procedure requests.

Once a command has been processed successfully by Adabas and the response code is zero, the Adabas
trigger driver determines whether there are any post-command triggers to be fired. If not, the user is
informed in the usual manner. If pre- or post-command trigger checking does result in a trigger being
fired, the Adabas trigger driver can proceed with the trigger processing.

Scanning the Trigger Table

Once it has been determined that a command is eligible for the firing of a trigger, the trigger table is
scanned. For performance reasons, the order in which triggers are scanned is determined by the sequence
or priority assigned to the triggers by the user (see the section Multiple Trigger Definitions).

If two triggers exist for the same command class and have the same priority, they are scanned in the order
in which they are read from the trigger file (that is, the ISN sequence of the records on the file). It is
therefore important to specify the priority for each trigger correctly.

Triggers are scanned in the following general sequence:

Sequence Field Command

1 specific field specific command

2 any field specific command

3 specific field any command

4 any field any command

4

Checking for ProceduresProcessing and Performance

Creating Pre- and Post-Command Trigger Queue Entries

If a command results in a trigger being fired, or if the Adabas trigger driver determines that the command
is a stored procedure request, an entry is created in the

pre-command trigger queue if the command has not been executed; or the

post-command trigger queue if the command has been executed successfully.

The entry contains information obtained from both the command that caused the trigger to be fired and the
corresponding entry in the trigger table (for example, details about the procedure to be executed). The
entry also allows the Adabas trigger driver to keep track of the status of triggers that are fired.

If a Natural subsystem is waiting for work, it is given the trigger request immediately. Otherwise, the
trigger request remains in the pre- or post-command trigger queue until the next subsystem is available.

Processing the Procedures
When a trigger request is placed in the pre- or post-trigger queue and a subsystem accepts it, processing
continues under the control of the Natural trigger driver.

Only two triggers (one pre- and one post-command trigger) can be fired for any one command, regardless
of the results.

When a command results in a trigger being fired, the system checks whether the trigger is asynchronous or
synchronous.

Asynchronous Triggers

If the trigger is asynchronous, the command does not wait for the triggered procedure to complete. The
command is released and processing continues normally depending on whether the trigger is pre- or
post-command:

pre-command The command is made available for processing in the Adabas thread. The
triggered procedure may be processed after the command has executed or
simultaneously with command execution.

post-command The triggered procedure and the command are processed independently.
The user is informed when the trigger is fired, regardless of the results of
the procedure.

Synchronous Triggers

If the trigger is synchronous (participating or non-participating), the command is held until the Natural
trigger driver notifies the Adabas trigger driver that the execution of the procedure is complete.

If the return code is zero, the command is released to continue processing.

If the return code is non-zero, with user receives a response code 155 (ADARSP155) or 156
(ADARSP156) and the following information:

5

Processing and PerformanceProcessing the Procedures

the Additions 3 field contains the name of the procedure that was executed as a result of the trigger
being fired.

the first two bytes of the Additions 4 field contain the actual return code from the procedure.

the second two bytes of the Additions 4 field contain a subcode that indicates the type of trigger that
was fired:

subcode 15 indicates a pre-command trigger.

subcode 16 indicates a post-command trigger.

Processing the Results
After the procedure executes, the results are placed in the trigger request entry and the status is updated
appropriately. When the Adabas trigger driver detects this, it "finalizes" the trigger processing of the
command.

For both pre- and post-command triggers, the return code from the procedure determines how the results
are processed as described in the following sections.

Pre-Command Triggers

Return Code Action

zero the command is "released" so that it can be executed.

non-zero the command is not executed and the user receives response code 155
(ADARSP155) in the response code field of the Adabas control block.

Once the command has been executed by the Adabas thread, it may be selected again for any
post-command trigger processing.

Special Processing for Synchronous Pre-Command Triggers

For synchronous triggers, a return code of "1" indicates that the procedure completed processing
successfully. The response code field in the Adabas control block is set to zero to indicate the successful
result. However, the command is not "released" for execution by the nucleus; instead, the results of the
procedure are immediately returned to the user.

This special processing accommodates procedures that have read/write access to the record buffer and
require the command to be processed in a way that is similar to a stored procedure. See the section Using
the Format and Record Buffers.

It is possible for a procedure of a pre-command trigger to modify the contents of the record buffer before
the command is executed; this can be useful with update and store commands.

Post-Command Triggers

6

 Processing the ResultsProcessing and Performance

Return Code Action

zero the command is considered to be successful and the user is informed with
response code 0 (zero) in the Adabas control block.

non-zero response code 156 (ADARSP156) is returned in the Adabas control block.
Although the procedure returned a non-zero code, the actual command may
have been successful; the results of the command execution must be
interpreted by the application that issued the command.

Note:
When a post-command trigger is fired and the return code from the procedure is non-zero, the data in the
record buffer is not returned, even if the command was executed successfully.

Special Processing for Synchronous Post-Command Triggers

Whether it is successful or not, a post-command trigger that is synchronous and has read/write access to
the record buffer may have modified the record buffer.

In the case of participating triggers, the results of the trigger may have changed the result of the command.
For example, if a successfully executed UPDATE command fires a post-command trigger and the
procedure for the trigger does not complete successfully, it may or may not perform a BT command.
When the user is informed, response code 156 (ADARSP156) is given. The application that issued the
original command must determine whether the UPDATE command is still in effect, and perform the
appropriate action (ET or BT).

Shutdown
Shutdown may occur in the following situations:

The Adabas trigger driver keeps track of the subsystems that fail. If all subsystems fail, it determines
that no further processing of procedures is possible and terminates. Shut-down processing depends on
the "error action" value (see the table Error Action).

The nucleus receives the ADAEND or HALT operator command and instructs the Adabas trigger
driver to shut down as well:

HALT the Adabas trigger driver terminates immediately.

ADAEND the Adabas trigger driver terminates when all subtask activities are
at ET status. If a subtask is busy and is involved in ET logic, it is
allowed to finish if it is issuing commands to the current nucleus;
otherwise, a message is displayed at the console (see message
ADAN9M) and the subtask is terminated with the transaction
incomplete.

Shut-down Processing Steps

 Shut-down processing steps are as follows:

7

Processing and Performance Shutdown

1. The pre- and post-trigger queues are checked for any waiting triggers. Response code 148
(ADARSP148) is issued to all users who are waiting for a synchronous trigger to complete execution.

2. The user is informed in the normal manner for any completed post-command triggers.

3. Response code 148 (ADARSP148) is issued for completed pre-command triggers because they will
not be processed by the Adabas thread. If these commands are part of an ET transaction, the user
should issue a BT and ET command as appropriate.

4. Response code 157 (ADARSP157 - command is rejected) is issued for any post-command trigger
that is detected after the shutdown begins. The command was executed before shutdown began, but
the triggered procedure will not be executed.

5. Any subsystem that remains active after five seconds is forced to terminate, and a message is
displayed at the console. A subsystem is considered "active" if it contains a procedure that continues
to run; the Natural programs are in the buffer pool and the program may be issuing database calls to
another database or no database at all. In this situation, a "halt" issued to the current database may be
ineffective.

6. All subsystems shut down.

7. The total numbers of triggers and stored procedures are written to the console, and the triggers status
field in the Adabas triggers profile is set to "inactive". The nucleus continues shut-down processing
in the normal way.

Error Action

If the shutdown is requested by the Adabas trigger driver itself, shut-down processing depends on the
value assigned to the error action field in the Adabas triggers profile:

Action Shut-down Processing

Halt The nucleus must also be terminated. The ADAEND request originates
from the Adabas trigger driver itself. Any user application still processing in
the subsystem is terminated.

Ignore The Adabas triggers and stored procedures facility terminates in the Adabas
nucleus, but nucleus processing continues in the normal manner (as if the
ADARUN parameter SPT=NO were specified). No triggers will be fired to
perform any extended command processing, and certain integrity problems
may result.

Reject Any command that would normally result in a trigger being fired receives
response code 157 (ADARSP157). The Adabas triggers and stored
procedures facility remains active; however, all subsystems are shut down
and procedure processing is discontinued.

In a nucleus cluster environment, when one nucleus is set to Ignore or Reject status, all nuclei in the
cluster are also set to this status.

8

Error ActionProcessing and Performance

Abnormal Termination
See the section Shutdown for information about situations that shut down

the Adabas nucleus, the Adabas trigger driver, and all subsystems;

the Adabas trigger driver and all subsystems, but not the Adabas nucleus;

all subsystems, but not the Adabas triggers and stored procedures facility or the Adabas nucleus.

Natural ESTAE / STXIT Processing

If DU=OFF (the default; no memory dump is generated for an abend) is specified in the NATPARMs, the
Natural ESTAE / STXIT is active for the duration of the session.

If a program abend occurs within the Natural subsystem when the Natural ESTAE / STXIT is active, the
abend is trapped: the Natural ESTAE / STXIT exit acquires control, cleans up, notifies the Adabas trigger
driver, and restarts the Natural trigger driver.

Thus, the Natural session is restarted instead of terminated. This is an important performance
consideration.

If DU=ON is used, the ESTAE / STXIT is not activated and the subsystem will terminate abnormally.
Performance is slowed if the Adabas trigger driver must restart because it will terminate and restart the
subsystem as appropriate.

Natural Subsystem Abends

An executing procedure may exceed the time-out limit, or be canceled by the DBA before it completes
processing. (Time-out refers to elapsed time as opposed to CPU time usage.)

These two "abnormal" terminations of a procedure are similar, with the following exceptions:

A cancellation is done manually from the Trigger Maintenance facility.

A time-out occurs automatically based on the activity timeout setting in the Adabas triggers profile.

An executing procedure may need to be terminated at any stage, i.e., waiting, looping, or simply executing
longer than is expected. The only sure way to intercept processing is to terminate the subsystem itself.
(You can observe this termination by monitoring the subsystem from the Trigger Maintenance facility; see
the section Subsystem Activity.)

If the trigger is synchronous, the user must be informed that the subsystem has been terminated.
Depending on the trigger type (pre- or post-command), response code 155 (ADARSP155) or 156
(ADARSP156) is set, with subcode 9 to indicate the timeout. The user is always informed, whether the
subsystem timed out or was deliberately terminated, and additional information is provided in messages
that are written to the console.

When an abnormal termination occurs, ascertain the reason and correct the problem. If this happens
continuously, deactivate the trigger until the problem has been solved. Use the trigger activity logging
option on the profile to determine the reason more easily.

9

Processing and PerformanceAbnormal Termination

Natural Subsystem Restart

If Natural is unable to recover and a subsystem terminates, the Adabas trigger driver is notified of the
error and a message is written to the console.

After a Natural subsystem is terminated, it is restarted automatically.

If the restart is successful, the subsystem is reinitialized in the usual way. If there is not currently
work to be done, the subsystem is placed in a queue to wait until the Adabas trigger driver informs it
that a new trigger was fired and the procedure needs to be processed.

If the restart is unsuccessful, it is attempted two more times. The subsystem is permanently
deactivated if it fails to start after three consecutive restart attempts, and a message is displayed at the
console to inform the user. The subsystem cannot be reactivated until the nucleus is shut down and
restarted.

The restart routine responsible for restarting the Natural trigger driver is STP.

Users who are waiting for a synchronous trigger to finish processing are notified that the trigger did not
complete successfully. Response code 155 (ADARSP155) or 156 (ADARSP156) is returned, with
additional information in the Additions 4 field.

Command Logging
Because a triggered procedure may reject a command, it is possible when running Adabas triggers and
stored procedures that a command issued by the user is never run in an Adabas thread or even seen by the
nucleus supervisor.

It is therefore necessary for the Adabas triggers and stored procedures facility to log

a PC command (that is, a stored procedure request) when it is received;

a command when it is selected for a pre-command or post-command trigger;

a pre- or post-triggered command when it receives a non-zero response.

When processing a command log record, the log record types are

X’0005’ for pre-command triggers; and

X’0006’ for post-command triggers.

For the Adabas control block in the log record, the Additions 3 field contains the name of the procedure
being invoked and the Additions 4 field contains the following information about the procedure:

10

Command LoggingProcessing and Performance

Byte Contains...

1-2 the response code from the procedure.

3 "P" for pre-trigger; "R" for procedure call; or "S" for post-trigger.

4 "A" for asynchronous; "N" for non-participating; or "P" for participating.

5 "R" for read; "F" for find; "U" for update; "S" for store/add; "D" for delete;
or "P" for procedure call.

6 flag settings: "1" for no parameters; "2" for response code only; "4" for
control information; "8" for special stored procedure parameters; "10" for
record buffer access; or "80" for record buffer update.

7-8 the name of the field associated with the trigger.

Note:
No log is created for an asynchronous trigger that returns a non-zero response. The CQE address (4th
parameter) for an asynchronous trigger is set to zero if the command completes before the trigger is
processed.

11

Processing and PerformanceCommand Logging

	Processing and Performance
	Initialization
	Verifying the Adabas Triggers Profile
	Verifying the Presence of at Least One Trigger
	Acquiring Storage
	Creating the Trigger Table
	Starting Natural Subsystems

	Checking for Procedures
	Scanning the Trigger Table
	Creating Pre- and Post-Command Trigger Queue Entries

	Processing the Procedures
	Asynchronous Triggers
	Synchronous Triggers

	 Processing the Results
	Pre-Command Triggers
	Special Processing for Synchronous Pre-Command Triggers

	Post-Command Triggers
	Special Processing for Synchronous Post-Command Triggers

	 Shutdown
	Shut-down Processing Steps
	Error Action

	Abnormal Termination
	 Natural ESTAE / STXIT Processing
	Natural Subsystem Abends
	Natural Subsystem Restart

	Command Logging

