
Architectural Changes
This chapter describes the architectural changes of Adabas 8. For a complete list of the enhancements and
other aspects of this release, read Adabas 8.1.1 Release Notes. 

Lifted Limits

Spanned Record Support

Large Object (LB) Field Support

Long Alpha (LA) Field Changes

FDT Changes

Lifted Limits
Logical Extent Limit

Physical Extent Limit

MU and PE Limit

Logical Extent Limit

The limit of five logical file extents for each Adabas file extent type has been lifted. The maximum
number of logical file extents that you can now define is derived from the block size of the first Associator
data set (DDASSOR1). The extent information is stored in a variable section of the FCB. New extents can
be added now until the used FCB size reaches the block size of the Associator data set. For example, on a
standard 3390 device type, a file could have more than 40 extents of each type (or there could be more of
one type if there are less for another). 

Physical Extent Limit

The Associator and Data Storage components of your Adabas database may now each contain more than
five physical extents. A new maximum of 99 physical extents is now set for each, however, your actual
real maximum could be less because, in the same manner as the logical file extent maximum, it is also
derived from the block size of the first Associator data set (ASSOR1). For example, on a standard 3390
device type, there could be more than 75 Associator, Data Storage, and DSST extents each (or there could
be more of one extent type if there are less for another). 

MU and PE Limit

The number of occurrences of each MU field or each PE group in a record has been increased from 191 to
65,534. However, the actual limit is derived from the maximum Data Storage record length (the
ADALOD MAXRECL parameter), which defaults to the size of the Data Storage block minus 4. 

Note:
The use of more than 191 MU or PE fields in a record must be explicitly allowed for a file (it is not
allowed by default). This is accomplished using the new ADADBS MUPEX function or the ADACMP

1

Architectural ChangesArchitectural Changes



COMPRESS MUPEX and MUPECOUNT parameters. 

All MU fields and PE groups and other fields must fit into one compressed record. If you are using
spanned records (introduced with Adabas 8), more MU fields and PE groups can be stored. 

If a file has been established with extended MU or PE limits, you should not read the occurrence count of
an MU field or PE group into a one-byte field in the record buffer. If you try, Adabas returns response
code 55 (ADARSP055), subcode 9. Therefore, any application program that reads the occurrence count
using an xxC element in the format buffer (for example, FB=’MUC.’ or FB=’MUC,1,B.’) must be
changed to read the occurrence count into a field with two or more bytes (for example, FB=’MUC,2,B.’ or
FB=’MUC,4,B.’). 

Spanned Record Support
This release of Adabas introduces the concept of spanned records. In the database, the logical record is
split into a number of physical records, each part fitting into a single Data Storage (DS) block. The
resulting physical records are each assigned individual ISNs. The first physical record is called the 
primary record and contains the beginning of the compressed record and is assigned a primary ISN. The
remaining physical records are called secondary records and contain the rest of the data of the logical
record. Secondary records are assigned secondary ISNs. These ISNs do not affect the user ISNs assigned
when using the N2 command or the ISNs used when using the I option of the L1 command. If spanned
records are used, a secondary address converter is used to map the secondary ISNs to the RABNs of the
Data Storage blocks where the secondary records are stored. 

A spanned record is comprised of one primary record and one or more secondary records. However, the
number of segments in a spanned record is limited. The Adabas nucleus allows up to five physical records
(one primary record and four secondary records) in a spanned record. 

Spanned records are not directly visible to application programs. Applications always address spanned
records via the ISNs of the primary records. 

Spanned records are also supported in expanded Adabas files and in multi-client files. 

Note:
Spanned record support must be explicitly allowed for a file. You can do this using the ADADBS 
RECORDSPANNING function or the SPAN parameter of ADACMP COMPRESS. 

This section covers the following topics: 

Spanned Record Structure

Identifying Spanned Records

Secondary Record Segmentation

Padding Factors

Spanned Record ISN Use

ADARUN Parameters Affected

2

Spanned Record SupportArchitectural Changes



Reporting on Spanned Records

Securing Spanned Records

Spanned Record Structure

A spanned record is comprised of one primary record and one or more secondary records. The primary
and secondary records in a spanned record are connected using their ISNs. The header of each physical
record contains the ISN of the current record, the ISN of the primary record, as well as the ISN of the next
secondary record. In addition, the header indicates whether the current record is the primary record or a
secondary record. 

The header of each physical record also provides the length of the record -- even if it is a segmented
record (in which case, it is the length of the segment). 

Identifying Spanned Records

Files can contain spanned records only if this has been explicitly requested via the SPAN parameter of
ADACMP COMPRESS, the RECORDSPANNING function of ADADBS or the equivalent Adabas
Online System function. The ADAREP database report and the Adabas Online System report functions
indicate whether or not a file has been defined to allow spanned records. 

The SPAN attribute of a file is retained in an ADAULD UNLOAD function. In other words, when a file is
unloaded, deleted, and reloaded, its support for spanned records remains unchanged. 

Similar rules hold for files that allow more than 191 MU or PE occurrences. For more information on
identifying MU and PE occurrences greater than 191 in a compressed record, read Identifying MU and PE
Occurrences Greater Than 191 in Compressed Records. 

Secondary Record Segmentation

Secondary records are segmented either by field or by byte. For performance reasons, segmentation is
done by field whenever possible. However, when any non-LB (large object) type field is larger than the
data storage block size, the record is split at the byte level. If a field is larger than the remaining space in
the data storage block, but smaller than the data storage block size, than the field is split at the field level
and not at the byte level. The header of each secondary record indicates which type of segment record it
is. 

Padding Factors

Padding factors are generally ignored for spanned records, in an attempt to fully use the block. So it is
frequently listed as zero on reports. The padding factor is only used in the last, short, segment of a
spanned record. 

Spanned Record ISN Use

Primary and secondary records are addressed by Adabas using address converters (AC). However, the
primary address converter maps only the ISNs of primary records to the RABNs of their corresponding
Data Storage blocks. If spanned records are used, a secondary address converter is used to map the
secondary ISNs to the RABNs of the Data Storage blocks where the secondary records are stored.
Therefore, spanned records have no affect on the index structure, since there is still only one index for
each record. 

3

Architectural ChangesSpanned Record Structure



Separate ISN ranges are maintained for primary and secondary ISNs. Wherever an ISN is stored or
handled, it distinguishes between whether the action is for a primary or a secondary ISN. 

All commands should be specified using the primary record’s ISN; secondary record ISNs are kept hidden
and cannot be used. Physical sequential commands will automatically skip the secondary records in Data
Storage. Read commands that specify secondary ISNs will receive an error (response code 113,
ADARSP113). 

The ISN of the primary records are included in TOPISN and MAXISN values. Secondary record ISNs are
not. Secondary ISNs are included in the MINSEC and MAXSEC values instead. A file containing
spanned records can be loaded by specifying an MINISN value, but the MINISN must refer only to a
primary record ISN (never a secondary record ISN). 

ADARUN Parameters Affected

The following ADARUN parameters may need to be increased to support files with spanned records. 

The number of ISNs in the hold queue per user (NISNHQ parameter) may need to be increased as the
number of spanned records to be updated also increases. 

The length of the Adabas work pool (LWP) may also need to be increased since space is needed to
store both the before and after image of the spanned record and to support several update threads
running in parallel. Space may also be needed to accommodate larger descriptor value tables (up to
65,534 occurrences of descriptors in PE groups are permitted). 

Reporting on Spanned Records

Maximum record length statistics have no relevance with spanned files. Utilities that report on the
maximum record length will now report that the statistics as "N/A" (not applicable). The FCB will contain
high values in the maximum record length field for a file that is using spanned records. 

Securing Spanned Records

Files containing spanned records can be ciphered and protected with security-by-value. If the primary
record’s ISN is referenced, all secondary segment records must be read, and therefore, processing is
time-sensitive. 

Large Object (LB) Field Support
Your Adabas files can now include large fields (known as large object (LB) fields) that can contain up to
2,147,483,643 bytes (about 2 GB) of data. I 

This section covers the following topics: 

Adabas 8 Handling of LB Fields

Defining Large Object (LB) Fields in the FDT

Format Buffer Support of LB Fields

4

Large Object (LB) Field SupportArchitectural Changes



Deciding Between Long Alpha and Large Object Fields

Adabas 8 Handling of LB Fields

Both binary and character LB fields are supported in Adabas 8. Adabas does not modify binary LB fields
in any way. The identical LB field binary byte string that was stored is what is retrieved when the LB field
is read. For more information about defining binary LB fields, read Defining Binary LB Fields. 

Adabas performs character code conversion on character large objects according to Universal Encoding
Support (UES)-related definitions for the database, file, and user. The presence of the new field option,
NB (no blank compression) in the LB field definition indicates whether on not Adabas removes trailing
blanks in character LB fields. 

Defining Large Object (LB) Fields in the FDT

LB fields must be defined in the Field Definition Table (FDT) using a new LB field option. The field
format must be "A" (alphanumeric). 

The default field length of an LB field must currently be defined as zero. Future releases of Adabas may
consider supporting nonzero default field lengths greater than 253 for long alpha (LA) and large object
(LB) fields. 

An LB field cannot be: 

A descriptor or parent of a special (phonetic, sub-, super-, or hyper-) descriptor. 

Defined with the FI or LA options.

Specified in a search buffer or in its format selection criteria.

An LB field may be:

Defined with any of the following options: MU, NB (a new no blank compression option), NC, NN,
NU, or NV 

Part of a simple group or a PE group.

This section covers the following topics: 

NV Option with LB Fields 
New NB Option 
Defining Binary LB Fields 
LB Field Examples 

NV Option with LB Fields

When specified, the NV (no conversion) option indicates that no conversion should occur when a field
value is provided by or returned to a machine with a different architecture than the Adabas server. 

5

Architectural ChangesAdabas 8 Handling of LB Fields



New NB Option

A new NB option can be used with LA and LB fields to control blank compression. When specified, the
NB option indicates that Adabas should not remove trailing blanks for the field. If you specify the NB
option for a field, you must also specify the NU or NC option for the field; NB processing requires the use
of NC or NU as well. Future releases of Adabas may consider allowing the NB option for regular
alphanumeric or wide-character fields. 

Defining Binary LB Fields

A binary LB field is defined by specifying both the NV and the NB options, indicating that Adabas will
not modify the field values in any way during storage. 

Note:
Binary LB fields are not defined using format B, because format B can imply byte swapping in some
environments with different byte orders. Byte swapping does not apply to binary LB fields. 

LB Field Examples

The following table provides some valid example of FDT definitions for LB fields: 

FDT Specification Description 

1,L1,0,A,LB,NU Field L1 is a null-suppressed character LB field 

1,L2,0,A,LB,NV,NB,NU,MU Field L2 is a multiple-value, null-suppressed, binary
LB field. 

Format Buffer Support of LB Fields

In general, LB fields can be specified in format buffers in much the same way as regular fields are
specified. This section describes the exceptions and special features of specifying LB fields in format
buffers: 

Range Notation 
Occurrence Index 
Specifying LB Field Formats 
Specifying the Lengths of LB Fields 

Range Notation

For multiple-value LB fields and LB fields within periodic groups, you can use the range notification to
specify a fixed number of occurrences of a field. For example, the following format buffer specification
will select the first 10 values of LB field L2: 

FB=’L21-10.’

However, you cannot specify the open-ended 1-N notation to select all occurrences of the field. For
example, the following format buffer is not valid: 

FB=’L21-N.’

6

Format Buffer Support of LB FieldsArchitectural Changes



The 1-N notation is not supported for LB fields.

Occurrence Index

For multiple value LB fields and LB fields within periodic groups, you must specify a specific occurrence
of the field. In the following example, the first value of multiple-value LB field L2 is selected: 

FB=’L21.’

Likewise, in the following example, the fifth value of LB field L3 in its second PE-group instance is
selected: 

FB=’L32(5).’

However, you cannot specify the base field without an occurrence index. For example, the following
format buffer specification is not valid if L2 is a multiple-value field: 

FB=’L2.’

Specifying LB Field Formats

You can specify A (alphanumeric) in the format buffer of an LB field. If no format is specified, the format
defined for the LB field in the FDT is used. 

Specifying the Lengths of LB Fields

There are three methods you can use in a format buffer specification to set the length of an LB field in the
corresponding record buffer: 

Explicit Length Specification 
Zero Length Specification 
Asterisk (*) Length Notation 

Note:
If no length is specified for an LB field in its format buffer specification, the default length (zero) from the
FDT is used. In this case the rules for zero length specification are used, as described elsewhere in this
section. 

Explicit Length Specification

You can explicitly specify the length in the format buffer. If a nonzero length is specified in the format
element for the LB field, the length specifies the amount of space allotted for the LB value in the record
buffer. The maximum valid length that can be specified is 2,147,483,647. 

In the following example, 50,000 bytes are allotted for LB field L1 in the record buffer and 10 bytes are
allotted for field AA: 

FB=’L1,50000,AA,10,A.’

The record buffer must provide sufficient space for the entire field if its format element includes an
explicit length setting. If sufficient space is not provided, errors (response code 53, ADARSP053) will
result. 

7

Architectural ChangesFormat Buffer Support of LB Fields



Zero Length Specification

If a zero length is specified in the format element, the amount of space available for the LB field values in
the record buffer is variable and depends on the actual LB value. In this case, the first four bytes of the LB
value in the record buffer are used to store the actual length of the LB field, including the four-byte length
itself (the LB value length plus four). The maximum valid inclusive length is 2,147,483,647. In the case of
LA fields, only a two-byte length is stored in the record buffer. 

In the following example, the record buffer for LB field L1 will first contain the four-byte length of the L1
field, followed by the actual value of the L1 field. In addition, 10 bytes are allotted for field AA, the value
of which immediately follows the value of the L1 field. 

FB=’L1,0,AA,10,A.’

The record buffer must provide sufficient space for the entire field if its format element includes a zero
length setting. If sufficient space is not provided, errors (response code 53, ADARSP053) will result. 

Asterisk (*) Length Notation

For LA and LB fields only, you can specify an asterisk (*) instead of a length in the format element. This
indicates that the amount of space available for the LB field value in the record buffer is variable and
depends on the actual value of the LB field. However, unlike the zero length specification setting, no
four-byte length field precedes the LB field value in the record buffer; the record buffer area
corresponding to the LB format element only contains the value of the LB field. The actual LB field value
length should be retrieved for read commands and must be specified for update commands using the new
format buffer length indicator, L. For more information about the length indicator, read Length Indicator 
(L), elsewhere in this guide. 

In the following example, the record buffer for LB field L1 contains only the value of the L1 field,
followed by the value of the AA field for which 10 bytes have been allotted. 

FB=’L1,*,AA,10,A.’

In the following example, the record buffer for LB multi-value field L2 contains the first ten values of L2. 

FB=’L21-10,*.’

The record buffer is not necessarily required to provide sufficient space for the entire field if its format
element includes an asterisk length setting. However, in read command processing, the field value can be
truncated if both of the following conditions are met: 

The record buffer space available is insufficient for the field value. 

A field with asterisk notation is specified at the end of the format buffer. 

In these conditions, no error is returned. If this were the case in the second example above 
(FB=’L21-10,*.’ ), Adabas would truncate the ten values to be read down to the length of the
corresponding record buffer segment. (The truncation occurs from right to left; that is, the last value is
truncated first; if the remaining space is still insufficient, the second-to-last value is truncated, and so on.)
In extreme cases, if no space is available at all for the field value, the value is truncated down to zero
bytes. 

8

Format Buffer Support of LB FieldsArchitectural Changes



In the first example above (FB=’L1,*,AA,10,A.’ ), if the record buffer segment is too short, no
truncation occurs because this is not allowed for fields specified with a fixed length or length of zero (0).
Rather, the nucleus returns response code 53 (ADARSP053 - record buffer too small). 

Only read commands executed by the Adabas nucleus may truncate values specified with the asterisk
notation; no truncation occurs in update commands. In addition, the ADACMP utility does not truncate
values specified with the asterisk notation. 

Deciding Between Long Alpha and Large Object Fields

The following table comparing pertinent LA and LB field features may help you decide which to use
when defining fields for your database. 

Feature LA Field Behavior LB Field Behavior 

Zero field length
specification in
format buffers 

Two bytes in the
corresponding record buffer
area are used to store the
actual length of the LA field. 

Four bytes in the
corresponding record buffer
area are used to store the
actual length of the LB field. 

Data record storageAlphanumeric and
wide-character fields are
stored within the compressed
record. 

All long values must fit into
the same compressed record.
The maximum length of
simple or spanned data
records limits the number and
lengths of long values that can
be stored. This can be a
problem if multiple long
values are contained in a
record. 

Some LB field values (those
larger than 253 bytes) are
stored offline in a separate
large object file (the LOB file)
and only references to the LB
field values in the LOB file
are included in the data
record. This allows for storing
more long objects for a single
data record than using normal
or LA fields. However, the
performance overhead at
runtime and for file
maintenance is increased for
LB fields because of this
behavior. 

Smaller LB field values (up to
253 bytes) are stored directly
in the compressed record.
This improves performance
for small values, but also
limits the number of small LB
field occurrences that can be
stored in the same compressed
record. 

Asterisk (*) field
length notation in
format buffers 

Supported for LA fields of
any length. 

Supported for LB fields of
any length. 

9

Architectural ChangesDeciding Between Long Alpha and Large Object Fields



Feature LA Field Behavior LB Field Behavior 

Maximum length of
any stored object
does not exceed
16,381 bytes 

Alphanumeric or
wide-character LA field can
be used. This avoids the
overhead of LB fields, but
limits the number of such
fields that can be stored in a
single record. 

Alphanumeric LB field can be
used. 

Maximum length of
any stored object
exceeds 16,381
bytes 

Not supported. Supports objects with sizes
larger than 16,381 bytes. 

So many large
objects that they
will not fit in a
single simple or
spanned data record 

Not supported. Supports multiple large
objects. 

Long Alpha (LA) Field Changes
The following updates have been made to long alpha (LA) fields in this release: 

FDT definitions of LA fields can now specify the new NB option to control blank suppression for the
field. For more information about the NB option, read FDT Changes. 

LA fields can now specify fixed field lengths greater than 253 in format buffers. For more
information, read Format Buffer Changes. 

The new asterisk (*) field length specification is supported for LA fields in format buffers. For more
information about the asterisk field length specification, read Asterisk (*) Length Notation. 

The new format buffer indicator (L), referred to as the length indicator, can now be used to retrieve
or specify the actual length of an LA field value. For more information, read Format Buffer Changes. 

For multiple value LA fields and LA fields within periodic groups, you cannot specify the base field
without an occurrence index or with a "1-N" index. You must use a specific index or index range. For
example, if L2 is an LA field with the MU option, the following format buffer specifications are not
valid: 

FB=’L21-N.’

FB=’L2.’

However, the following format buffer specification is valid, requesting the first three values of field
L2: 

FB=’L21-3.’

10

Long Alpha (LA) Field ChangesArchitectural Changes



For an analysis of the differences between LA and LB fields, read Deciding Between LA and LB Fields. 

FDT Changes
The following changes have been made for field definitions in the FDT: 

The internal FDT structure in version 8 has increased and these larger FDTs may use more than four
Associator blocks. The additional blocks required for a larger FDT are automatically allocated from
the Associator free space. The fixed space for FDTs in the Associator will remain reserved to
accommodate backward compatibility and conversion. 

A new LB field option (large object field option) allows you to identify a field as an LB field. For
more information, read Defining Large Object (LB) Fields in the FDT. 

A new NB option (no blank compression option) allows you to stop Adabas from removing trailing
blanks from LA and LB fields. For more information, read Defining Large Object (LB) Fields in the 
FDT. 

The existing NV option can also be specified for LB fields. If specified, the LB field is not subject to
character code conversion, and it cannot be converted from A-format to W-format and vice versa.
For more information, read Defining Large Object (LB) Fields in the FDT. 

11

Architectural ChangesFDT Changes


	Architectural Changes
	Lifted Limits
	Logical Extent Limit
	Physical Extent Limit
	MU and PE Limit

	Spanned Record Support
	Spanned Record Structure
	Identifying Spanned Records
	Secondary Record Segmentation
	Padding Factors
	Spanned Record ISN Use
	ADARUN Parameters Affected
	Reporting on Spanned Records
	Securing Spanned Records

	Large Object (LB) Field Support
	Adabas 8 Handling of LB Fields
	Defining Large Object (LB) Fields in the FDT
	NV Option with LB Fields
	New NB Option
	Defining Binary LB Fields
	LB Field Examples

	Format Buffer Support of LB Fields
	Range Notation
	Occurrence Index
	Specifying LB Field Formats
	Specifying the Lengths of LB Fields
	Explicit Length Specification
	Zero Length Specification
	Asterisk (*) Length Notation


	Deciding Between Long Alpha and Large Object Fields

	Long Alpha (LA) Field Changes
	FDT Changes


