
General Programming Considerations
This section explains several concepts that are important to consider when programming calls.

Internal IDs can be specified to perform important functions during Adabas command execution. In the
control block of an Adabas direct call command, you can specify a:

Command ID (ACBCID or ACBXCID). This is a non-blank, non-zero value specified in the ACB or
ACBX that acts as an internal ID for the command processing. It can be used to eliminate repeated
interpretation and conversion by successive commands that use the same format buffer.

Format ID. This is a separate four-byte internal ID for decoded format buffers defined either as
user-specific or globally available (a global format ID) to other users running on the same Adabas
nucleus.

The uses of these IDs is explored in detail in this section.

Also described in this section are the procedures used to retrieve ISNs from the Adabas Work and the
multifetch and prefetch options. Multifetch and prefetch options are used to reduce execution time for
programs that process large amounts of data in sequential order by reducing the number of system
commands needed to the complete the Adabas call.

This chapter covers the following topics:

Command, Format, and Global Format IDs

ISN List Processing

Using the Multifetch/Prefetch Feature

Command, Format, and Global Format IDs
The command ID, specified in the Adabas control block (ACBCID or ACBXCID), performs important
functions during Adabas command execution. It is an automatically generated or user-specified nonblank,
nonzero value that performs the following functions:

It prevents repetitive format buffer decoding by acting as an internal ID for decoded record formats.

It tags ISN lists generated by the Sx command for later access, and saves ISN list overflow.

It tags (identifies) sequential read processes through sets of records.

If desired, a separate internal format ID for decoded format buffers can be specified. This value is
identified by a flag in the high-order (leftmost) two bits of the first byte of the Additions 5 field.
Depending on the flag value, the format ID can be user-specific (an individual format ID) or available to
other users running on the same Adabas nucleus (a global format ID).

This section covers the following topics:

1

General Programming ConsiderationsGeneral Programming Considerations

Specifying Command, Format, and Global Format IDs

Command IDs for Read Sequential Commands

Command and Format IDs for Read, Update, and Find Commands

Using Separate Command ID and Format IDs

Using a Global Format ID

Command IDs Used with ISN Lists

Automatic Command ID Generation

Releasing Command IDs

Internal Identification of Command IDs

Examples of Command ID Use

Specifying Command, Format, and Global Format IDs

The following table summarizes the Adabas control block (ACB or ACBX) settings required to specify
command IDs, format IDs, and global format IDs.

2

Specifying Command, Format, and Global Format IDsGeneral Programming Considerations

ID ACB or ACBX Field Specifications

Command ID (ACBCID or
ACBXCID)

Additions 5 (ACBADD5 or
ACBXADD5)

Command
ID

Set this field to any non-blank,
non-zero value.

Specifying a command ID value of
X’FFFFFFFF’ causes Adabas to
generate command IDs
automatically, beginning with
X’00000001’ and incrementing by 1
for each new command ID.

High-order, leftmost bits set to
binary "00".

Format
ID

Set this field to any non-blank,
non-zero value.

Specifying a command ID value of
X’FFFFFFFF’ causes Adabas to
generate command IDs
automatically, beginning with
X’00000001’ and incrementing by 1
for each new command ID.

Set the high-order, leftmost two
bits of the first byte to binary "10";
set the fifth through eighth bytes to
the format ID. The ID may not
start with X’FE’ or X’FF’.

In non-mainframe Adabas
environments, set the first byte of
the Additions 5 field to be any
lowercase letter.

Global
Format
ID

Set this field to any non-blank,
non-zero value.

Specifying a command ID value of
X’FFFFFFFF’ causes Adabas to
generate command IDs
automatically, beginning with
X’00000001’ and incrementing by 1
for each new command ID.

Set the high-order, leftmost two
bits of the first byte binary "11";
set the remaining bytes to the ID.
All eight bytes of the Additions 5
field are used as a global format
ID.

In mainframe environments, the
first byte may be assigned in the
hexadecimal range E2 through E9
(characters S-Z); all other ranges
are reserved for use by Software
AG.

In non-mainframe Adabas
environments, the first byte may
be assigned in the hexadecimal
range 51-5A (characters S-Z).

Notes:

1. When B’00’ is set in the high-order (leftmost) two bits of the first byte of the Additions 5 field, the
command ID is automatically used as the format ID.

2. When B’10’ is set in the high-order (leftmost) two bits of the first byte of the Additions 5 field,
separate values are used for the command ID and the format ID, and the fifth through eighth bytes of
the Additions 5 field are used as the format ID.

3. When B’11’ is set in the high-order (leftmost) two bits of the first byte of the Additions 5 field,

3

General Programming ConsiderationsSpecifying Command, Format, and Global Format IDs

separate values are used for the command ID and the format ID, the format ID is treated as a global
format ID and all eight bytes of the field are used as the global format ID.

4. Adabas does not verify the assignment of global format IDs. It is your responsibility to ensure that
only global format IDs in the allowable range are assigned. Software AG can neither enlarge the range of
global format IDs available to users nor make any changes to its products to resolve a global format ID
assignment problem.

Command IDs for Read Sequential Commands

The read sequential commands (L2/L3, L5/L6, L9) require that a command ID be specified. The
command ID is needed by Adabas to return the records to the user in the proper sequence. These
command IDs are maintained by Adabas in the table of sequential commands.

The command ID value provided with these commands is also entered and maintained in the internal
format buffer pool unless a separate format ID is provided, as described in the section Using Separate
Command and Format IDs. The command ID is released by Adabas when an end-of-file condition is
detected during read sequential processing.

Command and Format IDs for Read, Update, and Find Commands

The read commands (L1-L6, L9) and update commands (A1/A4, N1/N2) require a format buffer that
identifies the fields to be read or updated. This format buffer must be interpreted and converted into an
internal format buffer by Adabas. Using a valid command ID avoids repeated interpretation and
conversion by successive commands that use the same format buffer.

A read or update command with a valid command ID causes Adabas to check whether the command ID is
in the internal format buffer pool. If the command ID is present, its internal format buffer is used, and no
format buffer reinterpretation is required.

Note:
When reading or updating a series of records that use the same format buffer, processing time can be
significantly reduced if you use a command ID.

Internal format buffers (and the format IDs) resulting from L9 commands can only be used by other L9
commands. Moreover, L9 commands cannot use non-L9 internal format buffers / format IDs. This is also
true of global format buffers (and global format IDs) and L9 commands.

When reading and updating the same fields (for example, L5 followed by A1), Software AG also
recommends that the same command ID be used for both commands (see the A1/A4 and N1/N2
commands for restrictions on using the same format buffer for reading and updating).

If the read-first-record option is used with an S1/S2/S4 command and a command ID is specified, the
command ID and the resulting internal format buffer are also stored in the internal format buffer pool.

If the internal format buffer pool is full and a command is received with a command ID without an
internal format in the pool, Adabas overwrites the longest unused entry in the pool with the new
interpreted format ID. If a command is subsequently received that uses the deleted command ID, the
reinterpreted format buffer for that command ID replaces the next-longest unused entry in the pool. For
this reason, programs must not change the format buffer between successive read or update commands
with the same command ID. Note, however, that use of a command ID does not guarantee that the format
buffer is not reinterpreted.

4

Command IDs for Read Sequential CommandsGeneral Programming Considerations

Using Separate Command ID and Format IDs

It is possible to use separate values for command IDs and format IDs. As long as the high-order (leftmost)
two bits of the Additions 5 field are set to binary ’00’, the command ID is automatically used as the
format ID. If, however, the Additions 5 field’s high-order two bits are binary ’10’, the fifth through eighth
bytes (Additions 5 + 4(4)) of the field are used as the format ID. Note that the ID may not start with X’FE’
or X’FF’.

Note:
To identify the format ID as separate from the command ID, non-mainframe Adabas environments expect
the first byte of the Additions 5 field to be any lowercase letter. When using separate format IDs in a
heterogeneous environment, it is important to identify them alike across all platforms used in the system.

Using a Global Format ID

Particularly in an online environment, multiple users of the same program often read or update the same
fields of a file and therefore use identical format buffers.

When you use the individual format ID option, Adabas must store the same internal format buffer for
each user.

When you use the global format ID option, a single internal format buffer is shared by many users
and the need for Adabas to overwrite internal format buffer pool entries is reduced. This option
identifies the format buffer to each user by format ID only, rather than by both format ID and
terminal ID. A command ID cannot be designated as a global format ID; in addition, the restriction of
L9 formats and their IDs being valid only for use by other L9 commands also applies to global
formats and IDs.

The global format ID option is activated by setting the high-order (leftmost) two bits of the first byte of
the Additions 5 field to binary ’11’ (see Specifying Command, Format, and Global Format IDs). This
causes all eight bytes of Additions 5 to be recognized as the global format ID.

Note:
To identify the format ID as global in non-mainframe Adabas environments, the first byte of the Additions
5 field must be set to be any digit or uppercase letter. When using global format IDs in a heterogeneous
environment, it is important to identify them alike across all platforms used in the system.

The first byte of the global format ID may be assigned in the hexadecimal range E2-E9; characters S-Z.
All other ranges are reserved for use by Software AG.

The allowable range of values for global format IDs in non-mainframe Adabas environments is
hexadecimal 51-5A; characters S-Z.

Warning:
Adabas does not verify the assignment of global format IDs. It is the
user’s responsibility to ensure that only global format IDs in the
allowable range are assigned. Software AG can neither enlarge the
range of global format IDs available to users nor make any changes to
its products to resolve a global format ID assignment problem.

5

General Programming Considerations Using Separate Command ID and Format IDs

A global format ID can be deleted using the RC command and specifying the global format ID in the
Additions 5 field, as described.

Command IDs Used with ISN Lists

If a command ID is specified for any command which results in an ISN list (S1,S2,S4,S5,S8,S9), the
command ID value may be used to identify the list at a later time.

If the save-ISN-list option is used for an Sx command, a command ID must be provided. The
save-ISN-list option causes the entire ISN list to be stored on the Adabas Work. ISNs from the list
may subsequently be retrieved by an Sx command or by using the GET NEXT option of the L1/L4
command.

If the save-ISN-list option is not used and an ISN buffer overflow condition occurs (the entire ISN
list cannot be inserted in the ISN buffer), the overflow ISNs will be stored on the Adabas Work only
if a command ID value was used. In this case, the command ID and the ISN list it identifies will be
released by Adabas when all the ISNs have been returned to the user.

Automatic Command ID Generation

Automatic command ID generation may be invoked by specifying a command ID value of X’FFFFFFFF’.
This causes the Adabas nucleus to generate command IDs automatically, beginning with X’00000001’
and incrementing by 1 for each new command ID. Automatic command ID generation may not be
desirable in all cases; refer to the section Command and Format IDs for Read, Update, and Find
Commands.

Releasing Command IDs

You can release a command ID and its associated entries (or ISN list) with an RC command, a CL
command, or by using the release-CID option of any Sx command (S1, S2, S4, S5, S8, S9).

The RC command contains options that allow you to release only those command IDs contained in the
internal format buffer pool, the table of sequential commands, or the table of ISN lists.

The CL command causes all the command IDs currently active for you to be released.

The release-CID option of an Sx command causes the CID specified to be released as the first action taken
by the command.

Internal Identification of Command IDs

Each command ID entry is identified by Adabas using an internal user ID together with the command ID
value. As a result, one user need not be concerned with the command ID values in use by another.
However, a user should avoid using the same command ID value for different commands, particularly if
the command ID is used for sequential read (L2/L5, L3/L6, L9) commands and Sx commands.

Examples of Command ID Use

This section covers the following topics:

6

Command IDs Used with ISN ListsGeneral Programming Considerations

Example 1 : Find / Read Processing
Example 2 : Find / Read Using the GET NEXT Option
Example 3 : Read / Update Processing
Example 4 : Read / Find Processing

Example 1 : Find / Read Processing

A set of records is to be selected and read. The same format buffer is to be used for each record being
read.

FIND (S1) CID=EX1A
READ (L1) CID=EX1B
READ (L1) CID=EX1B

Example 2 : Find / Read Using the GET NEXT Option

A set of records is to be selected and read using the GET NEXT option of the L1/L4 command.

FIND (S1) CID=EX2A
READ (L1) CID=EX2A
READ (L1) CID=EX2A
READ (L1) CID=EX2A

Example 3 : Read / Update Processing

A file is to be read and updated in sequential order. The same format buffer is to be used for reading and
updating.

READ PHYS SEQ (L5) CID=EX3A
UPDATE (A4) CID=EX3A
READ PHYS SEQ (L5) CID=EX3A
UPDATE (A4) CID=EX3A

Example 4 : Read / Find Processing

A file is to be read in logical sequence. A find command is to be issued to a second file using the value of
a field read from the first file, and the records that result from the find command are then to be read using
the GET NEXT option.

READ LOG SEQ (L3) CID=EX4A
FIND (S1) CID=EX4B
READ (L1) CID=EX4B
READ (L1) CID=EX4B
READ LOG SEQ (L3) CID=EX4A
FIND (S1) CID=EX4B
READ (L1) CID=EX4B

7

General Programming ConsiderationsExamples of Command ID Use

ISN List Processing
This section discusses the procedures used to retrieve ISNs from the Adabas Work data set. If the GET
NEXT option of the L1/L4 command is used to read the records that correspond to the ISNs contained in
the ISN list, ISN handling as discussed in this section is performed automatically by Adabas, and the user
need not make use of these procedures.

The notation Sx command as used in this section refers to any command that may result in an ISN list
(S1/S2/S4/S5/S8/S9).

This section covers the following topics:

Storage of ISN Lists

Retrieval of ISN Lists

ISN List Processing Examples

Storage of ISN Lists

Adabas stores ISNs on the Work data set under either of the following conditions:

An Sx command is issued, a nonblank nonzero command ID is specified, and the save-ISN-list
option is specified. The entire resulting ISN list is stored.

An Sx command is issued, a non-blank non-zero command ID is specified, the save-ISN-list option is
not specified, and the resulting ISN list contains more ISNs than can be inserted in the ISN buffer.
Only the overflow ISNs are stored in this case.

If an Sx command is issued with blanks or binary zeros in the command ID field, Adabas does not store
any ISNs on the Adabas Work.

Retrieval of ISN Lists

You can retrieve ISNs stored on the Adabas Work data set by issuing an Sx command in which the same
command ID value is used as was used for the initial Sx command. When an Sx command with an active
command ID value is issued, Adabas uses this as an indicator that you are requesting ISNs from an
existing ISN list. Adabas locates the ISN list identified by the specified command ID and inserts the next
group of ISNs in the ISN buffer. As many ISNs are returned as can fit in the ISN buffer.

This section covers the following topics:

Save-ISN-List Option Specified
Save-ISN-List Option Not Specified
Using the ISN Quantity Field of the Control Block

Save-ISN-List Option Specified

If the save-ISN-list option was specified with the Sx command used to create the ISN list, Adabas uses the
ISN specified in the ISN lower limit field to determine the next group of ISNs to be returned.

8

ISN List ProcessingGeneral Programming Considerations

The next group begins with the first ISN that is greater than the ISN specified in ISN lower limit.

If binary zeros are specified, the next group begins with the first ISN in the list.

If a value is specified which is greater than any ISN in the list, response code 25 (ADARSP025) is
returned.

If the ISN list was created using an S2 command, the ISN specified must be present in the ISN list. Use of
the save-ISN-list option thus permits the user to skip forward and backward within an ISN list. This is
useful for programs that must perform forward and backward screen paging.

Save-ISN-List Option Not Specified

If the save-ISN-list option was not specified with the Sx command used to create the ISN list, Adabas
returns the ISNs in the order in which they are positioned in the list, and deletes each group from the
Work when it has been inserted in the user’s ISN buffer. The command ID used to identify the list is
released when the last group of ISNs has been returned to the user. The ISN lower limit field is not used in
this case, unless processing is to begin above a specified ISN range.

Using the ISN Quantity Field of the Control Block

The user can determine when all of the ISNs in a list have been retrieved using the ISN quantity field of
the control block.

The first Sx command returns the total number of records that satisfy the search criteria in this field.

In addition, each subsequent Sx command used to retrieve ISNs from the Adabas Work uses this field
to store the number of ISNs that were inserted in the ISN buffer.

ISN List Processing Examples

This section covers the following topics:

Example 1 : Using Sx Command with L1/L4 Commands with GET NEXT Option
Example 2 : Using the Save-ISN-List Option
Example 3 : With ISN Overflow Handling
Example 4 : Without ISN Overflow Handling

Example 1 : Using Sx Command with L1/L4 Commands with GET NEXT Option

Sx command
L1/L4 command with ’GET NEXT’ option
L1/L4 command with ’GET NEXT’ option
L1/L4 command with ’GET NEXT’ option

The following examples show various results according to the size of the ISN buffer. Positioning for ISN
list is defined by ISN lower limit.

1.

9

General Programming ConsiderationsISN List Processing Examples

ISN Buffer Length = 0
read the ISN list to the work area

2.

L1/L4 with GET NEXT
result: first ISN’s record

1.

ISN Buffer Length = 4
read first ISN with S1

2.

L1/L4 with GET NEXT
result: second ISN’s record

1.

ISN Buffer Length = 12
read first ISN with S1
first 3 ISNs are returned in ISN buffer

2.

L1/L4 with GET NEXT
result: read fourth/fifth/sixth ISNs’ records

Example 2 : Using the Save-ISN-List Option

Initial Sx call using save-ISN-list option:

Command = S x
Command ID = SX01 (save-ISN-list option)
Command Option 1 = H
ISN Lower Limit = 0
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 7 (total matching ISNs in stored list)

10

ISN List Processing ExamplesGeneral Programming Considerations

Resulting ISN list: (all ISNs are stored on Work):

8 12 14 15 24 31 33

Resulting ISN buffer:

8 12 14 15 24

Subsequent Sx call:

Command = S x
Command ID = SX01
ISN Lower Limit = 24 (limit ISN choice to 24, +)
ISN Buffer Length = 20 (space for 5 ISNs from ISN list)
CALL ADABAS ...

Resulting ISN quantity = 2 (total ISNs returned in ISN buffer)

Resulting ISN buffer:

31 33 14 15 24.... remainder of ISN buffer unchanged....

Subsequent Sx call:

Command = S x
Command ID = SX01
ISN Lower Limit = 0
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 7

Resulting ISN buffer:

8 12 14 15 24

Example 3 : With ISN Overflow Handling

Initial Sx call (save-ISN-list option not used):

11

General Programming ConsiderationsISN List Processing Examples

Command = S x
Command ID = SX02
Command Option 1 = blank (no option)
ISN Lower Limit = 0
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 7 (total ISNs returned in ISN buffer and stored on Work)

Resulting ISN list: (only ISNs 31 and 33 are stored on Work)

8 12 14 15 24 31 33

Resulting ISN buffer:

8 12 14 15 24

Subsequent Sx call:

Command = S x
Command ID = SX02
ISN Lower Limit (not used)
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 2

Resulting ISN buffer:

31 33 14 15 24

ISNs 31 and 33 are deleted from the Adabas Work, and command ID SX02 is released. A subsequent Sx
call with command ID ’SX02’ will be processed as an initial Sx call since ’SX02’ was released after the
last ISNs were returned to the user.

Although the ISN lower limit is not specified in this example, a non-zero value would also return only
those ISNs greater than the specified value in the ISN buffer, just as in example 2.

Example 4 : Without ISN Overflow Handling

Initial Sx call with blank or zero command ID:

12

ISN List Processing ExamplesGeneral Programming Considerations

Command = S x
Command ID = blanks or binary zeros
Command Option 1 = blank (no option)
ISN Lower Limit = 0 (no lower limit specified)
ISN Buffer Length = 20
CALL ADABAS ...

Resulting ISN quantity = 7 (total matching ISNs)

Resulting ISN list: none are stored on Work

8 12 14 15 24 31 33

Resulting ISN buffer:

8 12 14 15 24

A subsequent Sx call with command ID equal to blanks or binary zeros and ISN lower limit equal to 0 will
result in a reexecution of the same find command with the same result as the initial call. A subsequent call
with command ID equal to blanks or binary zeros and ISN lower limit = 24 causes reexecution of the Sx
command. The result will be ISN quantity of 2 with ISNs 31 and 33 in the ISN buffer.

Using the Multifetch/Prefetch Feature
Programs that process large amounts of data in sequential order require frequent storage access, causing
long execution times. The Adabas multifetch and prefetch options significantly reduce the execution times
of such programs by reducing the number of system commands needed to complete Adabas calls.

The multifetch and prefetch options reduce execution time in almost all normal applications; however, the
specific advantage depends on the type of application program.

Note:
In Adabas 8, ACBX interface calls support the multifetch but not the prefetch feature. However, the
prefetch feature is still supported for ACB interface direct calls; so, if your application uses ACB interface
direct calls, you can continue to use the prefetch feature in those calls only.

This section covers the following topics:

Multifetching Versus Prefetching

Invoking Multifetch/Prefetch

Multifetch Operation Processing

Prefetch Operation Processing

13

General Programming Considerations Using the Multifetch/Prefetch Feature

The Effects of ISN Changes on Prefetched or Multifetched Records

Multifetching Versus Prefetching

The multifetch and prefetch features reduce the communication overhead between the application program
and the Adabas nucleus. Multifetch operations store multiple records that result from a single call and then
transfer the records to the user in the record buffer. Without multifetch operations, multiple Adabas calls
would be necessary to obtain the same result. When an ACB interface direct call is performed, the record
descriptor elements (RDEs) of multifetched records are stored in the ISN buffer; when an ACBX interface
direct call is performed, the record descriptor elements (RDEs) of multifetched records are stored in
multifetch buffers.

Multifetch operation is similar to prefetch; multifetch comprises prefetch functions and more. Releases of
Adabas prior to Adabas 8 support both prefetch and multifetch operations; however, new programs should
use the multifetch (M) option, which is common across all Adabas platforms. In addition, the prefetch
option is no longer supported for releases of Adabas 8 or later.

Invoking Multifetch/Prefetch

If you are using only ACB interface direct calls in your application, you can invoke prefetch or multifetch
processing using one of two methods. How they are invoked determines where the preread records are
held for processing and therefore what buffer space must be allocated.

The first method, specifying the PREFETCH=YES (for multifetch processing) or OLD (for prefetch
processing) parameter on the ADARUN statement, is the most efficient and requires no application
programming changes. These parameters provide control for batch jobs.

When PREFETCH=YES or OLD, Adabas uses a double-buffering technique that allows processing
of one group of records while the following group is being fetched.

For more information about the prefetch/multifetch ADARUN parameters, which include
PREFETCH, PREFICMD, PREFIFIL, PREFNREC, PREFSBL, PREFTBL, PREFXCMD, and
PREFXFIL, read Adabas Initialization (ADARUN Statement).

Note:
PREFETCH=OLD is available for the purpose of upwards compatibility. Some newer Adabas
features are no longer supported. For example, attempts to pass APLX multiple buffers with this
access will return a response code 22 (ADARSP022), subcode 51. We recommend you use
PREFETCH=YES if such new features must be supported.

The second method is to specify the M or O option (for multifetch processing) in the L1/L4, L2/L5,
L3/L6, L9, BT or ET commands or the P option (for prefetch processing) in the L1/L4, L2/L5, L3/L6
or L9 commands. Use of the command-level options M, O, and P are provided in the documentation
for individual commands, as well as in Multifetch Operation Processing and Prefetch Operation
Processing.

If you use ACBX interface direct calls in your application or if you mix ACB and ACBX interface direct
calls in your application, you can invoke multifetch processing only by specifying the M or O option in
the L1/L4, L2/L5, L3/L6, L9, BT or ET commands. Use of the command-level options M and O are
provided in the documentation for individual commands, as well as in Multifetch Operation Processing.

14

 Multifetching Versus PrefetchingGeneral Programming Considerations

Note:
Prefetch processing is not supported for applications that use ACBX interface direct calls.

Multifetch Operation Processing

Multifetch operations are compatible with the corresponding operations on non-mainframe platforms, and
can be used across platforms in heterogeneous environments.

Multifetching can be used with the following Adabas commands:

L1/L4 with I or N option (read by ISN, find with GET NEXT)

L2/L5 (read physical)

L3/L6 (read logical by descriptor)

L9 (histogram)

BT (backout transaction)

ET (end of transaction)

For all read calls (Lx), multifetch returns a group of records in the record buffer and a description of these
records in either the caller’s ISN buffer (for ACB interface direct calls) or the caller’s multifetch buffer
(for ACBX interface direct calls). The maximum number of records is limited by the following values,
which are specified in one of Adabas control blocks (ACB or ACBX) or the ABD, as appropriate:

User-defined maximum as input to the call

Record buffer length

ISN buffer length (ACB interface direct calls)

Multifetch buffer length (ACBX interface direct calls)

This section covers the following topics:

READ (Lx) Multifetch Processing
BT / ET Multifetch Processing

READ (L x) Multifetch Processing

If you are making a direct call for a read command and you want to use multifetch processing, certain
fields must be set prior to the call, as follows:

15

General Programming ConsiderationsMultifetch Operation Processing

What to Set

Where to Set It

ACB
Interface
Direct Call

ACBX Interface Direct Call

ACB ACBX ABD

Supported command type
and options (see the
command list in section
Multifetch Operation
Processing)

Command
code
(ACBCMD)

Command code
(ACBXCMD)

Maximum number of values
to return, or 0 to multifetch
all values.

ISN lower
limit
(ACBISL)

ISN lower limit
(ACBXISL)

Set to "M" or O (see notes
below)

Command
Option 1
(ACBCOP1)

Command
Option 1
(ACBXCOP1)

Length of the record buffer Record buffer
length
(ACBRBL)

--- Buffer size
(ABDXSIZE) in
the record buffer
ABD

Length of the ISN buffer ISN buffer
length
(ACBIBL)

--- ---

Length of the multifetch
buffer

--- --- Buffer size
(ABDXSIZE) in
the multifetch
buffer ABD

Notes:

1. Command option "M" indicates that the multifetch option is to be used. Command option "O" selects
both the multifetch option ("M") and the existing command option "R" (returns Adabas response
code 145 (ADARSP145) for a requested ISN that is already being held by another user) for the
L4/L5/L6 commands.

2. For an L1 command, either the command option "I" (ISN sequence) or option "N" (GET NEXT
option) must be specified with the multifetch command option "M" or "O"; otherwise, Adabas
response code 22 (ADARSP022) occurs.

The contents of the returned record buffer and ISN or multifetch buffer are as follows:

Record Buffer: record1, record2, ... , recordn

Records are returned in the record buffer as usual. If more than one record is returned, all records are
placed adjoining in the record buffer.

16

Multifetch Operation ProcessingGeneral Programming Considerations

Descriptive elements for these records are returned in the ISN buffer. The first (leftmost) fullword of the
ISN buffer contains the number of elements that follow (signed integer, four bytes). Following this count
are the record descriptor elements, each 16 bytes long:

ISN or Multifetch Buffer: RDE count{ RDE1 }...

A record descriptor element (RDE) has the structure shown in the following table.

Format Length Content

All fields unsigned
integer, right aligned

4 bytes Length of this record in record buffer. Records
may have different lengths.

4 bytes Adabas response for this record. If a nonzero
response is given, no record is stored in the
record buffer.

4 bytes ISN for this record.

4 bytes (L9 only) ISN quantity: value count for this
descriptor.

If an error is detected while the first record is being processed, the error response is returned in the
response code field of the appropriate Adabas control block (ACBRSP or ACBXRSP).

If an error is detected while a record other than the first is being processed, the response code is returned
in the corresponding record descriptor element in the ISN or multifetch buffer.

BT / ET Multifetch Processing

By default, Adabas releases all currently held ISNs for the user issuing a BT/ET command. With the
multifetch option, only a subset of the records held by the current transaction is released. The records to be
released from hold status are specified in the ISN buffer if you are using the ACB direct call interface; if
you are using the ACBX direct call interface, the records to be released from hold status are specified in
the multifetch buffer. The first fullword in the ISN or multifetch buffer specifies the number of 8-byte
elements following.

You can activate the command-level multifetch feature for the ET/BT command call by setting the
following fields of the Adabas control block as indicated:

If you are making a direct call for an ET or BT command and you want to use multifetch processing,
certain fields must be set prior to the call, as follows:

17

General Programming ConsiderationsMultifetch Operation Processing

What to Set

Where to Set It

ACB Interface
Direct Call

ACBX Interface Direct Call

ACB ACBX ABD

"BT" or "ET" Command code
(ACBCMD)

Command code
(ACBXCMD)

"M" Command
Option 1
(ACBCOP1)

Command Option
1 (ACBXCOP1)

Length of the
ISN buffer

ISN buffer length
(ACBIBL)

--- ---

Length of the
multifetch
buffer

--- --- Buffer size (ABDXSIZE)
in the multifetch buffer
ABD

Note:
If multifetch is set with ADARUN PREFETCH=YES, the "P" option (prefetch) is automatically used for
ET and BT commands; the "M" option (multifetch) is automatically used for all other commands.

The ISN or multifetch buffer must contain the following values:

ISN or Multifetch Buffer: ISN descriptor count { ISN descriptor element (See table below)} ...

An ISN descriptor element has the structure shown in the following table.

Format Length Content

Binary, right aligned 4 bytes Adabas file number

4 bytes ISN

Prefetch Operation Processing

Prefetch is effective for programs that call sequential commands (L1/L4 with GET NEXT, L2/L5, L3/L6,
L9) using the ACB direct call interface. It is not available for use with ACBX direct calls.

When using prefetch, a series of sequential read commands requires only one Adabas call. This single call
causes several records to be read at a time from the database. This results in a significant reduction in
interregion communication overhead and also permits the overlapped operation of the user program and
the Adabas nucleus.

Note:
If the hold option is used (L4/5/6 commands), Adabas places records in hold status when they are read
into the prefetch buffer area. This means that if an ET command is issued before all records have been
processed, all records (including those not yet processed) are released. The hold ISN option of the ET or
HI command can be used to place any such records back into hold status.

18

Prefetch Operation ProcessingGeneral Programming Considerations

Specific commands or files can be excluded from prefetch option processing by specifying the files or
commands to be excluded with the respective ADARUN PREFXFIL or PREFXCMD parameters.

This section covers the following topics:

Invoking Prefetch Operation with Command Option P
Additional Prefetch Programming Considerations

Invoking Prefetch Operation with Command Option "P"

When enabling prefetch with the command-specific P option, Adabas uses the ISN buffer defined within
the user program as the intermediate storage area for the pre-read records. Each record in the ISN buffer is
preceded by a 16-byte header:

Byte Use

1-2 Length of record (including length definition). A length of zero indicates
the end of data.

3-4 Nucleus response code

5-8 Nucleus internal ID (if the response code is neither zero nor 3, a subcode
is returned in the rightmost 2 bytes)

9-12 ISN of the record

13-16 ISN quantity (L9 command only)

The first record is provided by Adabas in the record buffer (without the 16-byte header). The user must
then process additional records from the ISN buffer. When end-of-file occurs, the header of the last record
in the ISN buffer contains Adabas response code 3 (ADARSP003), and the two-byte end character
contains binary zeros.

Additional Prefetch Programming Considerations

The following are points to consider when using the prefetch option:

The record buffer size should be set just large enough to contain the largest expected decompressed
record.

If the sequential pass of a file is not to be continued until end-of-file condition is detected, be sure to
issue an RC command to release the command ID used whenever file processing has been completed.

The command ID should not be changed during file processing.

When using a command option "P" to invoke prefetch operation, the ISN buffer size must be a
multiple of the total of the record buffer length plus 16, and a final two bytes for an end character:

19

General Programming ConsiderationsPrefetch Operation Processing

ISN Buffer Size for Prefetch Programming

The Effects of ISN Changes on Prefetched or Multifetched Records

If a prefetched or multifetched record is updated, the following processing is applied:

Important:
You should not modify a file (especially the descriptor being accessed) while reading or locating (finding)
records in the same file.

Any update-protection only applies to the active sessio;, anything done by other sessions is not
included.

If an ISN is modified for a record that has been preferchted or multifetched, it is re-fetched (via the
L1 command) when the program finally gets to it.

If an ISN is deleted for a record that has been preferchted or multifetched, it is skipped.

If an ISN is inserted for a record that has been preferchted or multifetched, it is skipped. For this
reason, we do not recommend that you modify files while reading or locating records in the same
file.

20

The Effects of ISN Changes on Prefetched or Multifetched RecordsGeneral Programming Considerations

	General Programming Considerations
	 Command, Format, and Global Format IDs
	Specifying Command, Format, and Global Format IDs
	Command IDs for Read Sequential Commands
	 Command and Format IDs for Read, Update, and Find Commands
	 Using Separate Command ID and Format IDs
	Using a Global Format ID
	Command IDs Used with ISN Lists
	Automatic Command ID Generation
	Releasing Command IDs
	Internal Identification of Command IDs
	Examples of Command ID Use
	Example 1 : Find / Read Processing
	Example 2 : Find / Read Using the GET NEXT Option
	Example 3 : Read / Update Processing
	Example 4 : Read / Find Processing

	ISN List Processing
	Storage of ISN Lists
	Retrieval of ISN Lists
	Save-ISN-List Option Specified
	Save-ISN-List Option Not Specified
	Using the ISN Quantity Field of the Control Block

	ISN List Processing Examples
	Example 1 : Using Sx Command with L1/L4 Commands with GET NEXT Option
	Example 2 : Using the Save-ISN-List Option
	Example 3 : With ISN Overflow Handling
	Example 4 : Without ISN Overflow Handling

	 Using the Multifetch/Prefetch Feature
	 Multifetching Versus Prefetching
	 Invoking Multifetch/Prefetch
	Multifetch Operation Processing
	READ (Lx) Multifetch Processing
	BT / ET Multifetch Processing

	Prefetch Operation Processing
	Invoking Prefetch Operation with Command Option "P"
	Additional Prefetch Programming Considerations
	ISN Buffer Size for Prefetch Programming

	The Effects of ISN Changes on Prefetched or Multifetched Records

