
Adabas

Planning for Adabas 8

Version 8.2.3

May 2011

This document applies to Adabas Version 8.2.3.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2011 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Table of Contents

1 Planning for Adabas 8 ... 1
2 General Information .. 3

Availability ... 4
Compatibility ... 4
Documentation ... 4

3 Migrating From Previous Adabas Versions .. 5
4 Architectural Changes ... 9

Lifted Limits ... 10
Spanned Record Support ... 11
Large Object (LB) Field Support .. 14
Long Alpha (LA) Field Changes .. 20
FDT Changes .. 21

5 ADARUN Changes ... 23
6 Utility Changes .. 25

ADAACK Utility Changes ... 26
ADACDC Utility Changes ... 26
ADACMP Utility Changes ... 26
ADADBS Utility Changes .. 28
ADADCK Utility Changes ... 29
ADAFRM Utility Changes ... 29
ADAICK Utility Changes ... 29
ADALOD Utility Changes ... 30
ADAORD Utility Changes ... 30
ADAREP Utility Changes .. 31
ADASAV Utility Changes .. 32
ADASEL Utility Changes ... 32
ADAULD Utility Changes ... 32

7 Command Changes ... 33
Direct Call Enhancements .. 34
Extended Adabas Control Block (ACBX) Support .. 34
Adabas Buffer Description (ABD) Support ... 40
Format Buffer Changes .. 41
LF Command Changes ... 46

8 User Exit Changes ... 47
User Exit 1 .. 48
User Exit 11 ... 48
Hyperexit Changes ... 48

9 Add-On Product Support for Adabas 8 .. 51
General Compatibility Information of Client-Based Add-On Products 52
Adabas System Coordinator Version 8 Support .. 54
Adabas Fastpath Version 8 Support ... 56
Adabas SAF Security Version 8 Support .. 57
Adabas Transaction Manager Version 8 Support .. 58

iii

Adabas Vista Version 8 Support .. 59
Index ... 61

Planning for Adabas 8iv

Planning for Adabas 8

1 Planning for Adabas 8

This document provides information useful to customers intending to install and use Adabas 8
and to those planning a migration from previous versions of Adabas.

Caution: The material presented here is subject to change before product release. Software
AG reserves the right to change the content of this product and this documentation prior
to release and does not guarantee that all functionality mentioned will be implemented.
However, this information is sufficiently accurate to allow you to successfully evaluate
your upgrade to Version 8.

This document is intended for use by those persons responsible for Adabas 8 configuration and
administration. A detailed knowledge of the current Adabas product set is assumed.

This document is organized as follows:

Provides information on the availability, prerequisites, and
documentation of Adabas 8.

General Information

Lists considerations for migrating from prior versions of
Adabas to Adabas 8.

Migrating From Previous Adabas
Versions

Describes the architectural changes of Adabas 8.Architectural Changes

Describes the utility changes of Adabas 8.Utility Changes

Describes the ADARUN changes for Adabas 8.ADARUN Changes

Describes the command changes of Adabas 8.Command Changes

Describes the hyperexit changes of Adabas 8.User Exit Changes

Describes the Adabas add-on product support for Adabas 8.Add-On Product Support for Adabas 8

1

2

2 General Information

■ Availability ... 4
■ Compatibility .. 4
■ Documentation ... 4

3

This chapter provides general information about Adabas 8.

Availability

Adabas 8 is scheduled to be available in the second or third quarter of 2006.

Compatibility

Adabas 8 is fully compatible with currently supported versions of Adabas.

Documentation

The documentation for this release is distributed entirely in HTML and PDF formats. This is a
departure from previous versions of Adabas in that no hard copy documentation is provided for
any mainframe Adabas documentation.

The Adabas documentation has been completely updated to reflect Adabas Version 8 technical
updates. For a complete list of the enhancements and other aspects of this release, read Adabas
Release Notes for Version 8.1.1.

Planning for Adabas 84

General Information

3 Migrating From Previous Adabas Versions

When planning your migration from prior versions of Adabas to Adabas 8, please consider the
following information. For information onAdabas add-on support, readAdd-OnProduct Support
for Adabas 8, elsewhere in this chapter.

1. A new direct call interface has been added in Adabas 8 that is fully compatible with the existing
AdabasACB-based direct call interface. The newdirect call interface is based on the newAdabas
8 ACBX and ABD structures.

Existing application programs that use the ACB-based direct call interface can continue to run
in the same way, without change. In addition, you can decide whether you want to use the
ACBX-based or ACB-based direct call interface in your application programs, on a call-by-call
basis. The same program can use both interfaces.

Some of the new features of Adabas 8 require that your application program use the ACBX-
based direct call interface. For example, if your application program makes use of the long
buffers (larger than 32K) or segmented buffers (multiple format and record buffers) available
with Adabas 8, you must use the ACBX-based direct call interface. For more information on
these, read Command Changes, elsewhere in this guide.

2. Existing files must either be reloaded or reorganized if you want to take advantage of the in-
creased limit for MU and PE fields provided with Adabas 8. You may also need to:
■ increase the work pool (ADARUN LWP parameter)
■ increase the protection area on the Work data set (ADARUN LP parameter)
■ increase the internal format pool (ADARUN LFP parameter).

3. If a file has been established with the extended MU or PE limits available in Adabas 8 (for ex-
ample, using the ADADBS MUPEX function described in Utility Changes elsewhere in this
guide), and an application program reads the occurrence count of an MU field or PE group
using an xxC element in the format buffer, verify that the program reads the occurrence count
into a record buffer field with two or more bytes (for example, FB='MUC,2,B.') If the program
reads the occurrence count into a one-byte field (for example, FB='MUC.' or FB='MUC,1,B.'), it

5

must be adjusted so that it can deal with two-byte occurrence count values. Adabas returns
response code 55 (ADARSP055), subcode 9 if you only provide a one-byte field in the record
buffer for the occurrence count of anMUfield or PE group in a filewith extendedMU/PE limits.

4. If your hyperdescriptors make use of extended MU or PE fields, you will need to reassemble
the corresponding hyperexits; with adjustments for the extended MU or PE fields, parameter
list, and input parameters. For more information, read Hyperexit Changes, elsewhere in this
guide.limits. If

5. Large object fields -- that is, fields defined with the new LB option -- are generally stored in the
LOB file associated with the file containing the LB fields (base file). Only small LB field values
(up to 253 bytes) are stored directly in the base file. In the LOBfile, LB field values are partitioned
into segments and stored in one ormore segment records, each ofwhich (except the last) occupies
a whole Data Storage block.

If you plan to use large object fields, reevaluate your Adabas nucleus (ADARUN) parameters
according to the following guidelines:
■ For insert, update, and delete operations involving LB field values, Adabas takes all LOB file
segment records involved in hold. The hold operations are counted against the ADARUN
NH and NISNHQ parameters. These parameters should therefore be increased depending
on the expected maximum number of LOB file segment records that may be updated in par-
allel transactions.

■ Furthermore, the before and after images of LB field values being inserted, updated, or deleted
arewritten to the protection area on theWork data set. The LP parameter should be increased
by the number of Work blocks equivalent to twice the estimated size of LB field values that
may be updated in parallel transactions.

■ The LOB file is defined with a unique descriptor (UQ option) that identifies its individual
segment records. When updating or deleting LB field values, Adabas needs about 30 bytes
of unique-descriptor-pool space per LOB segment record. The LDEUQ parameter should be
increased by 30 times the maximum number segment records per large object times the
number of LB field values that may be deleted or changed in parallel transactions.

■ The NAB parameter should be increased by the size of the largest LOB value that may be
read from or written to the database, times the estimated maximum number of parallel
Adabas calls that may read or write LOB values from or to the database.

■ The LU parameter should be increased by the size of the largest LOB value that may be read
from or written to the database. Note that the LU parameter does not describe the size of a
memory area allocated by Adabas but rather the maximum length of an area of the attached
buffers (defined by the NAB parameter) that can be used by a single Adabas call.

For complete information about ADARUN parameters, read Adabas Initialization (ADARUN
Statement), in Adabas Operations Manual.

6. If you intend to use either large object (LB) fields or spanned records, ensure that the ADARUN
LWPparameter is at least 50,000 bytes times the number of threads (NTparameter). For complete

Planning for Adabas 86

Migrating From Previous Adabas Versions

information about the ADARUN LWP parameter, read LWP : Length of Adabas Work Pool, in
Adabas Operations Manual.

7. Some restrictions exist in the use of utilities under Adabas 8. Be sure to read about the utility
enhancements and restrictions inUtility Changes (elsewhere in this guide) and Limitations and
Restrictions (inAdabas ReleaseNotes) for a description of howeachAdabas utility has been updated
for Adabas 8 and what the limitations and restrictions are for their use.

7Planning for Adabas 8

Migrating From Previous Adabas Versions

8

4 Architectural Changes

■ Lifted Limits .. 10
■ Spanned Record Support .. 11
■ Large Object (LB) Field Support ... 14
■ Long Alpha (LA) Field Changes .. 20
■ FDT Changes ... 21

9

This chapter describes the architectural changes ofAdabas 8. For a complete list of the enhancements
and other aspects of this release, read Adabas Release Notes for Version 8.1.1.

Lifted Limits

■ Logical Extent Limit
■ Physical Extent Limit
■ MU and PE Limit

Logical Extent Limit

The limit of five logical file extents for each Adabas file extent type has been lifted. The maximum
number of logical file extents that you can now define is derived from the block size of the first
Associator data set (DDASSOR1). The extent information is stored in a variable section of the FCB.
New extents can be added now until the used FCB size reaches the block size of the Associator
data set. For example, on a standard 3390 device type, a file could have more than 40 extents of
each type (or there could be more of one type if there are less for another).

Physical Extent Limit

The Associator and Data Storage components of your Adabas database may now each contain
more than five physical extents. A new maximum of 99 physical extents is now set for each,
however, your actual real maximum could be less because, in the same manner as the logical file
extent maximum, it is also derived from the block size of the first Associator data set (ASSOR1).
For example, on a standard 3390 device type, there could bemore than 75Associator, Data Storage,
and DSST extents each (or there could be more of one extent type if there are less for another).

MU and PE Limit

The number of occurrences of eachMUfield or each PE group in a record has been increased from
191 to 65,534. However, the actual limit is derived from the maximumData Storage record length
(the ADALODMAXRECL parameter), which defaults to the size of the Data Storage block minus
4.

Note: The use of more than 191 MU or PE fields in a record must be explicitly allowed for
a file (it is not allowed by default). This is accomplished using the new ADADBS MUPEX
function or the ADACMP COMPRESS MUPEX and MUPECOUNT parameters.

AllMUfields and PE groups and other fieldsmust fit into one compressed record. If you are using
spanned records (introduced with Adabas 8), more MU fields and PE groups can be stored.

If a file has been established with extended MU or PE limits, you should not read the occurrence
count of an MU field or PE group into a one-byte field in the record buffer. If you try, Adabas re-

Planning for Adabas 810

Architectural Changes

turns response code 55 (ADARSP055), subcode 9. Therefore, any application program that reads
the occurrence count using an xxC element in the format buffer (for example, FB='MUC.' or
FB='MUC,1,B.') must be changed to read the occurrence count into a field with two or more bytes
(for example, FB='MUC,2,B.' or FB='MUC,4,B.').

Spanned Record Support

This release ofAdabas introduces the concept of spanned records. In the database, the logical record
is split into a number of physical records, each part fitting into a single Data Storage (DS) block.
The resulting physical records are each assigned individual ISNs. The first physical record is called
the primary record and contains the beginning of the compressed record and is assigned a primary
ISN. The remaining physical records are called secondary records and contain the rest of the data
of the logical record. Secondary records are assigned secondary ISNs. These ISNs do not affect the
user ISNs assigned when using the N2 command or the ISNs used when using the I option of the
L1 command. If spanned records are used, a secondary address converter is used to map the sec-
ondary ISNs to the RABNs of the Data Storage blocks where the secondary records are stored.

A spanned record is comprised of one primary record and one ormore secondary records.However,
the number of segments in a spanned record is limited. The Adabas nucleus allows up to five
physical records (one primary record and four secondary records) in a spanned record.

Spanned records are not directly visible to application programs. Applications always address
spanned records via the ISNs of the primary records.

Spanned records are also supported in expanded Adabas files and in multi-client files.

Note: Spanned record support must be explicitly allowed for a file. You can do this using
the ADADBS RECORDSPANNING function or the SPAN parameter of ADACMP COM-
PRESS.

This section covers the following topics:

■ Spanned Record Structure
■ Identifying Spanned Records
■ Secondary Record Segmentation
■ Padding Factors
■ Spanned Record ISN Use
■ ADARUN Parameters Affected
■ Reporting on Spanned Records

11Planning for Adabas 8

Architectural Changes

■ Securing Spanned Records

Spanned Record Structure

A spanned record is comprised of one primary record and one or more secondary records. The
primary and secondary records in a spanned record are connected using their ISNs. The header
of each physical record contains the ISN of the current record, the ISN of the primary record, as
well as the ISN of the next secondary record. In addition, the header indicates whether the current
record is the primary record or a secondary record.

The header of each physical record also provides the length of the record -- even if it is a segmented
record (in which case, it is the length of the segment).

Identifying Spanned Records

Files can contain spanned records only if this has been explicitly requested via the SPAN parameter
of ADACMP COMPRESS, the RECORDSPANNING function of ADADBS or the equivalent
Adabas Online System function. The ADAREP database report and the Adabas Online System
report functions indicate whether or not a file has been defined to allow spanned records.

The SPAN attribute of a file is retained in an ADAULDUNLOAD function. In other words, when
a file is unloaded, deleted, and reloaded, its support for spanned records remains unchanged.

Similar rules hold for files that allowmore than 191 MU or PE occurrences. For more information
on identifying MU and PE occurrences greater than 191 in a compressed record, read Identifying
MU and PE Occurrences Greater Than 191 in Compressed Records, in Adabas Utilities Manual.

Secondary Record Segmentation

Secondary records are segmented either by field or by byte. For performance reasons, segmentation
is done by field whenever possible. However, when any non-LB (large object) type field is larger
than the data storage block size, the record is split at the byte level. If a field is larger than the re-
maining space in the data storage block, but smaller than the data storage block size, than the field
is split at the field level and not at the byte level. The header of each secondary record indicates
which type of segment record it is.

Planning for Adabas 812

Architectural Changes

Padding Factors

Padding factors are generally ignored for spanned records, in an attempt to fully use the block.
So it is frequently listed as zero on reports. The padding factor is only used in the last, short, segment
of a spanned record.

Spanned Record ISN Use

Primary and secondary records are addressed byAdabas using address converters (AC).However,
the primary address converter maps only the ISNs of primary records to the RABNs of their cor-
responding Data Storage blocks. If spanned records are used, a secondary address converter is
used to map the secondary ISNs to the RABNs of the Data Storage blocks where the secondary
records are stored. Therefore, spanned records have no affect on the index structure, since there
is still only one index for each record.

Separate ISN ranges are maintained for primary and secondary ISNs. Wherever an ISN is stored
or handled, it distinguishes between whether the action is for a primary or a secondary ISN.

All commands should be specified using the primary record's ISN; secondary record ISNs are kept
hidden and cannot be used. Physical sequential commands will automatically skip the secondary
records inData Storage. Read commands that specify secondary ISNswill receive an error (response
code 113, ADARSP113).

The ISN of the primary records are included in TOPISN and MAXISN values. Secondary record
ISNs are not. Secondary ISNs are included in the MINSEC and MAXSEC values instead. A file
containing spanned records can be loaded by specifying anMINISN value, but the MINISNmust
refer only to a primary record ISN (never a secondary record ISN).

ADARUN Parameters Affected

The following ADARUN parameters may need to be increased to support files with spanned re-
cords.

■ The number of ISNs in the hold queue per user (NISNHQ parameter) may need to be increased
as the number of spanned records to be updated also increases.

■ The length of the Adabas work pool (LWP) may also need to be increased since space is needed
to store both the before and after image of the spanned record and to support several update
threads running in parallel. Space may also be needed to accommodate larger descriptor value
tables (up to 65,534 occurrences of descriptors in PE groups are permitted).

13Planning for Adabas 8

Architectural Changes

Reporting on Spanned Records

Maximum record length statistics have no relevance with spanned files. Utilities that report on
the maximum record length will now report that the statistics as "N/A" (not applicable). The FCB
will contain high values in themaximum record length field for a file that is using spanned records.

Securing Spanned Records

Files containing spanned records can be ciphered and protected with security-by-value. If the
primary record's ISN is referenced, all secondary segment records must be read, and therefore,
processing is time-sensitive.

Large Object (LB) Field Support

Your Adabas files can now include large fields (known as large object (LB) fields) that can contain
up to 2,147,483,643 bytes (about 2 GB) of data. I

This section covers the following topics:

■ Adabas 8 Handling of LB Fields
■ Defining Large Object (LB) Fields in the FDT
■ Format Buffer Support of LB Fields
■ Deciding Between Long Alpha and Large Object Fields

Adabas 8 Handling of LB Fields

Both binary and character LB fields are supported in Adabas 8. Adabas does not modify binary
LB fields in any way. The identical LB field binary byte string that was stored is what is retrieved
when the LB field is read. For more information about defining binary LB fields, read Defining
Binary LB Fields, elsewhere in this guide.

Adabas performs character code conversion on character large objects according to Universal En-
coding Support (UES)-related definitions for the database, file, and user. The presence of the new
field option,NB (no blank compression) in the LB field definition indicateswhether on notAdabas
removes trailing blanks in character LB fields.

Planning for Adabas 814

Architectural Changes

Defining Large Object (LB) Fields in the FDT

LB fields must be defined in the Field Definition Table (FDT) using a new LB field option. The
field format must be "A" (alphanumeric).

The default field length of an LB fieldmust currently be defined as zero. Future releases of Adabas
may consider supporting nonzero default field lengths greater than 253 for long alpha (LA) and
large object (LB) fields.

An LB field cannot be:

■ A descriptor or parent of a special (phonetic, sub-, super-, or hyper-) descriptor.
■ Defined with the FI or LA options.
■ Specified in a search buffer or in its format selection criteria.

An LB field may be:

■ Defined with any of the following options: MU, NB (a new no blank compression option), NC,
NN, NU, or NV

■ Part of a simple group or a PE group.

This section covers the following topics:

■ NV Option with LB Fields
■ New NB Option
■ Defining Binary LB Fields
■ LB Field Examples

NV Option with LB Fields

When specified, the NV (no conversion) option indicates that no conversion should occur when
a field value is provided by or returned to amachine with a different architecture than the Adabas
server.

New NB Option

AnewNBoption can be usedwith LA and LB fields to control blank compression.When specified,
the NB option indicates that Adabas should not remove trailing blanks for the field. If you specify
the NB option for a field, you must also specify the NU or NC option for the field; NB processing
requires the use of NC or NU as well. Future releases of Adabas may consider allowing the NB
option for regular alphanumeric or wide-character fields.

15Planning for Adabas 8

Architectural Changes

Defining Binary LB Fields

Abinary LB field is defined by specifying both theNV and theNB options, indicating that Adabas
will not modify the field values in any way during storage.

Note: Binary LB fields are not defined using format B, because format B can imply byte
swapping in some environments with different byte orders. Byte swapping does not apply
to binary LB fields.

LB Field Examples

The following table provides some valid example of FDT definitions for LB fields:

DescriptionFDT Specification

Field L1 is a null-suppressed character LB field1,L1,0,A,LB,NU

Field L2 is a multiple-value, null-suppressed, binary LB field.1,L2,0,A,LB,NV,NB,NU,MU

Format Buffer Support of LB Fields

In general, LB fields can be specified in format buffers in much the same way as regular fields are
specified. This section describes the exceptions and special features of specifying LB fields in
format buffers:

■ Range Notation
■ Occurrence Index
■ Specifying LB Field Formats
■ Specifying the Lengths of LB Fields

Range Notation

Formultiple-value LBfields andLBfieldswithin periodic groups, you can use the range notification
to specify a fixed number of occurrences of a field. For example, the following format buffer spe-
cification will select the first 10 values of LB field L2:

FB='L21-10.'

However, you cannot specify the open-ended 1-N notation to select all occurrences of the field.
For example, the following format buffer is not valid:

Planning for Adabas 816

Architectural Changes

FB='L21-N.'

The 1-N notation is not supported for LB fields.

Occurrence Index

For multiple value LB fields and LB fields within periodic groups, you must specify a specific oc-
currence of the field. In the following example, the first value of multiple-value LB field L2 is se-
lected:

FB='L21.'

Likewise, in the following example, the fifth value of LB field L3 in its second PE-group instance
is selected:

FB='L32(5).'

However, you cannot specify the base fieldwithout an occurrence index. For example, the following
format buffer specification is not valid if L2 is a multiple-value field:

FB='L2.'

Specifying LB Field Formats

You can specify A (alphanumeric) in the format buffer of an LB field. If no format is specified, the
format defined for the LB field in the FDT is used.

Specifying the Lengths of LB Fields

There are three methods you can use in a format buffer specification to set the length of an LB
field in the corresponding record buffer:

■ Explicit Length Specification
■ Zero Length Specification
■ Asterisk (*) Length Notation

Note: If no length is specified for an LB field in its format buffer specification, the default
length (zero) from the FDT is used. In this case the rules for zero length specification are
used, as described elsewhere in this section.

17Planning for Adabas 8

Architectural Changes

Explicit Length Specification

You can explicitly specify the length in the format buffer. If a nonzero length is specified in the
format element for the LB field, the length specifies the amount of space allotted for the LB value
in the record buffer. The maximum valid length that can be specified is 2,147,483,647.

In the following example, 50,000 bytes are allotted for LB field L1 in the record buffer and 10 bytes
are allotted for field AA:

FB='L1,50000,AA,10,A.'

The record buffer must provide sufficient space for the entire field if its format element includes
an explicit length setting. If sufficient space is not provided, errors (response code 53, ADARSP053)
will result.

Zero Length Specification

If a zero length is specified in the format element, the amount of space available for the LB field
values in the record buffer is variable and depends on the actual LB value. In this case, the first
four bytes of the LB value in the record buffer are used to store the actual length of the LB field,
including the four-byte length itself (the LB value length plus four). Themaximum valid inclusive
length is 2,147,483,647. In the case of LA fields, only a two-byte length is stored in the record buffer.

In the following example, the record buffer for LB field L1 will first contain the four-byte length
of the L1 field, followed by the actual value of the L1 field. In addition, 10 bytes are allotted for
field AA, the value of which immediately follows the value of the L1 field.

FB='L1,0,AA,10,A.'

The record buffer must provide sufficient space for the entire field if its format element includes
a zero length setting. If sufficient space is not provided, errors (response code 53, ADARSP053)
will result.

Asterisk (*) Length Notation

For LA and LB fields only, you can specify an asterisk (*) instead of a length in the format element.
This indicates that the amount of space available for the LB field value in the record buffer is
variable and depends on the actual value of the LB field. However, unlike the zero length specific-
ation setting, no four-byte length field precedes the LB field value in the record buffer; the record
buffer area corresponding to the LB format element only contains the value of the LB field. The
actual LB field value length should be retrieved for read commands andmust be specified for update
commands using the new format buffer length indicator, L. Formore information about the length
indicator, read Length Indicator (L), elsewhere in this guide.

In the following example, the record buffer for LB field L1 contains only the value of the L1 field,
followed by the value of the AA field for which 10 bytes have been allotted.

Planning for Adabas 818

Architectural Changes

FB='L1,*,AA,10,A.'

In the following example, the record buffer for LBmulti-value field L2 contains the first ten values
of L2.

FB='L21-10,*.'

The record buffer is not necessarily required to provide sufficient space for the entire field if its
format element includes an asterisk length setting. However, in read command processing, the
field value can be truncated if both of the following conditions are met:

■ The record buffer space available is insufficient for the field value.
■ A field with asterisk notation is specified at the end of the format buffer.

In these conditions, no error is returned. If this were the case in the second example above
(FB='L21-10,*.'), Adabas would truncate the ten values to be read down to the length of the
corresponding record buffer segment. (The truncation occurs from right to left; that is, the last
value is truncated first; if the remaining space is still insufficient, the second-to-last value is trun-
cated, and so on.) In extreme cases, if no space is available at all for the field value, the value is
truncated down to zero bytes.

In the first example above (FB='L1,*,AA,10,A.'), if the record buffer segment is too short, no
truncation occurs because this is not allowed for fields specified with a fixed length or length of
zero (0). Rather, the nucleus returns response code 53 (ADARSP053 - record buffer too small).

Only read commands executed by the Adabas nucleus may truncate values specified with the as-
terisk notation; no truncation occurs in update commands. In addition, the ADACMP utility does
not truncate values specified with the asterisk notation.

Deciding Between Long Alpha and Large Object Fields

The following table comparing pertinent LA and LB field features may help you decide which to
use when defining fields for your database.

LB Field BehaviorLA Field BehaviorFeature

Four bytes in the corresponding record
buffer area are used to store the actual
length of the LB field.

Two bytes in the corresponding
record buffer area are used to store
the actual length of the LA field.

Zero field length
specification in format
buffers

Some LB field values (those larger than 253
bytes) are stored offline in a separate large

Alphanumeric and wide-character
fields are stored within the
compressed record.

All long valuesmust fit into the same
compressed record. The maximum

Data record storage

object file (the LOBfile) and only references
to the LB field values in the LOB file are
included in the data record. This allows for
storing more long objects for a single data

length of simple or spanned data record than using normal or LA fields.
records limits the number and However, the performance overhead at

19Planning for Adabas 8

Architectural Changes

LB Field BehaviorLA Field BehaviorFeature

runtime and for file maintenance is
increased for LB fields because of this
behavior.

Smaller LB field values (up to 253 bytes)
are stored directly in the compressed

lengths of long values that can be
stored. This can be a problem if
multiple long values are contained
in a record.

record. This improves performance for
small values, but also limits the number of
small LB field occurrences that can be
stored in the same compressed record.

Supported for LB fields of any length.Supported for LA fields of any
length.

Asterisk (*) field length
notation in format buffers

Alphanumeric LB field can be used.Alphanumeric orwide-character LA
field can be used. This avoids the

Maximum length of any
stored object does not
exceed 16,381 bytes overhead of LB fields, but limits the

number of such fields that can be
stored in a single record.

Supports objects with sizes larger than
16,381 bytes.

Not supported.Maximum length of any
stored object exceeds
16,381 bytes

Supports multiple large objects.Not supported.So many large objects
that they will not fit in a
single simple or spanned
data record

Long Alpha (LA) Field Changes

The following updates have been made to long alpha (LA) fields in this release:

■ FDT definitions of LA fields can now specify the new NB option to control blank suppression
for the field. For more information about the NB option, read FDT Changes, elsewhere in this
guide.

■ LAfields can now specify fixed field lengths greater than 253 in format buffers. Formore inform-
ation, read Format Buffer Changes, elsewhere in this guide.

■ The new asterisk (*) field length specification is supported for LA fields in format buffers. For
more information about the asterisk field length specification, readAsterisk (*) LengthNotation,
elsewhere in this guide.

■ The new format buffer indicator (L), referred to as the length indicator, can nowbe used to retrieve
or specify the actual length of an LA field value. For more information, read Format Buffer
Changes, elsewhere in this guide.

Planning for Adabas 820

Architectural Changes

■ For multiple value LA fields and LA fields within periodic groups, you cannot specify the base
field without an occurrence index or with a "1-N" index. You must use a specific index or index
range. For example, if L2 is an LAfieldwith theMUoption, the following format buffer specific-
ations are not valid:

FB='L21-N.'

FB='L2.'

However, the following format buffer specification is valid, requesting the first three values of
field L2:

FB='L21-3.'

For an analysis of the differences between LA and LB fields, read Deciding Between LA and LB
Fields, elsewhere in this guide.

FDT Changes

The following changes have been made for field definitions in the FDT:

■ The internal FDT structure in version 8 has increased and these larger FDTs may use more than
fourAssociator blocks. The additional blocks required for a larger FDT are automatically allocated
from the Associator free space. The fixed space for FDTs in the Associator will remain reserved
to accommodate backward compatibility and conversion.

■ A new LB field option (large object field option) allows you to identify a field as an LB field.
For more information, read Defining Large Object (LB) Fields in the FDT, elsewhere in this
guide.

■ A new NB option (no blank compression option) allows you to stop Adabas from removing
trailing blanks from LA and LB fields. For more information, read Defining Large Object (LB)
Fields in the FDT, elsewhere in this guide.

■ The existing NV option can also be specified for LB fields. If specified, the LB field is not subject
to character code conversion, and it cannot be converted from A-format to W-format and vice
versa. For more information, read Defining Large Object (LB) Fields in the FDT, elsewhere in
this guide.

21Planning for Adabas 8

Architectural Changes

22

5 ADARUN Changes

The ADARUN CLOGLAYOUT parameter includes a new possible value, 8, that allows you to
specify that the format of theAdabas command log (CLOG) should beAdabas 8 format. ADARUN
CLOGLAYOUT=4 settings will no longer run, and setting 4 is no longer supported. Use
CLOGLAYOUT=5 instead.

In prior versions of Adabas, youwere not allowed to choose between the use of EXCP and EXCPVR
when running from an APF-authorized load library. EXCP was always used when running non-
APF-authorized; EXCPVR was always used when running APF-authorized. If you wanted to use
EXCP when running APF-authorized, you were required to apply special A$- or AY- zaps.

This release introduces a new ADARUN parameter, EXCPVR. Using this parameter, you can
specifywhether EXCPor EXCPVR is usedwhen runningAPF-authorized. For complete information
on the use of this parameter, read EXCPVR : Control EXCP or EXCPVR Use, in Adabas Operations
Manual.

Finally, updates to the old A$- or AY-zaps will no longer be provided, as the zaps are no longer
necessary.

23

24

6 Utility Changes

■ ADAACK Utility Changes .. 26
■ ADACDC Utility Changes .. 26
■ ADACMP Utility Changes .. 26
■ ADADBS Utility Changes .. 28
■ ADADCK Utility Changes .. 29
■ ADAFRM Utility Changes .. 29
■ ADAICK Utility Changes ... 29
■ ADALOD Utility Changes .. 30
■ ADAORD Utility Changes .. 30
■ ADAREP Utility Changes .. 31
■ ADASAV Utility Changes ... 32
■ ADASEL Utility Changes ... 32
■ ADAULD Utility Changes .. 32

25

All Adabas utilities have been updated to support the new extended features of Adabas 8. Some
of this support appears in the form of new or modified utility parameters. In other cases, support
was added internally that does not affect your use of the utility at all.

Note: Be sure to read about the utility restrictions in Limitations and Restrictions, in Adabas
Release Notes for a brief description of what the limitations and restrictions are for utility
use in Adabas 8.

This chapter describes the Adabas utilities whose user interface has changed in this release. For
complete information about the functions of any Adabas utility, read Utilitiesin Adabas Utilities
Manual.

ADAACK Utility Changes

Spanned record support is provided in the ADAACK utility. However, ADAACK assumes that
an ISN passed to it is a primary ISN or is the only ISN for a record. If an ISN is the primary ISN
for a spanned record, all of the associated segment records of the spanned record are automatically
checked in the secondary address converter.

When printing error information about a particular ISN, the ADAACK utility will now indicate
whether the problem is with a primary or secondary ISN, if the record is spanned.

ADACDC Utility Changes

Spanned records are not supported by the ADACDC utility at this time. However, when the
IGNORESPANNED parameter is specified in anADACDC run, ADACDCprocessing ignores spanned
records, issues a warning message, and continues its processing. A return code of "4" is returned.

ADACMP Utility Changes

■ General Changes
■ ADACMP COMPRESS Changes

Planning for Adabas 826

Utility Changes

■ ADACMP DECOMPRESS Changes

General Changes

Traditionally, the DD/FEHL error data set produced for ADACMP errors has truncated rejected
records that exceeded the FEHL physical record length. In Version 8, the rejected records are seg-
mented instead of truncated. Because of this change, the DD/FEHL LRECL settingmust be at least
500 bytes.

ADACMP COMPRESS Changes

The following new parameters have been added to the ADACMP COMPRESS utility to support
the MU/PE extension, spanned records, and LB fields:

■ The DATADEVICE parameter specifies theData Storage device type to be used for the segmentation
of spanned records. If the SPAN parameter is specified, ADACMP will break long, spanned,
compressed records into segments that are just a bit smaller than the Data Storage block size
implied by the DATADEVICE parameter.

If DATADEVICE is specified without the SPAN parameter, it is used to derive the maximum
compressed record length that will be accepted. Longer compressed records will be considered
in error and will be written to the DD/FEHL data set.

■ The HEADER parameter indicates whether or not the ADACMP compression logic should expect
segmented ADACMP record headers in the uncompressed input records. The default is NO.
(Contrast this with the HEADER parameter introduced in this release for ADACMP DECOM-
PRESS.)

■ The LOBDEVICE parameter identifies the device type that will be used for loading the LOB file
produced by the COMPRESS function.

■ The LOBVALUES parameter indicates whether the uncompressed input data may contain long LB
values (larger than 253 bytes).

■ The MAXLOGRECLEN parameter can be used to specify the size, in bytes, of a buffer used by
ADACMP to assemble the physical uncompressed segmented records into logical compressed
records. This buffer is allocated and used only if HEADER=YES is also specified.

■ The MUPEX parameter indicates whether the extended MU/PE limits are allowed for the file. If
this option is not specified, the maximum number of MU fields and the maximum number of
PE fields that can be specified is 191.

■ The MUPECOUNT parameter specifies the size of the value count field in the input record for the
COMPRESS function . Valid values are "1" or "2". If "1" is specified, each value count field pre-
ceding the MU or PE values in the input data must be one byte with a value of no more than
"191". If "2" is specified, each value count field preceding the MU or PE values in the input data
must be two bytes. A value count may exceed 191 only if the MUPEX parameter is also specified.

■ The SPAN parameter allows the record to be spanned after it is compressed if the compressed
record exceeds the data storage block size of the device.

27Planning for Adabas 8

Utility Changes

The following changes have been made to existing ADACMP COMPRESS parameters:

■ The report produced by the DEVICE parameter now includes an indication of whether or not the
MUPEX parameter has been set for a file.

■ The syntax of the FNDEF parameter has been changed, to allow you to specify the number of
occurrences of the MU and PE options. You can also specify the NB and LB field options.

■ The MAXPE191 parameter is no longer supported for the ADACMP COMPRESS function in
Adabas 8. When specified, a warning message is issued and processing continues.

■ If USERISN is specified with HEADER=YES, the ISN immediately follows the ADAH header
as part of the logical record.

When runningADACMPCOMPRESS for a file that includes LB fields, a second sequential output
data set (identified by the DDAUSB1 JCL DD control statement) is produced for the LOB file con-
taining the LB field values.

ADACMP DECOMPRESS Changes

ADACMPDECOMPRESSprocessing supports the extendedMUandPE limits and spanned records
as input. The size of the value count preceding MU or PE values in each decompressed output
record depends upon the extendedMU and PE support for a file. A two-byte value count is given
for files with extended MU and PE support. A one-byte value count is given for files without ex-
tended MU and PE support. In addition, the following functionality is supported.

■ The decompression of LB fields. A newLOBVALUESparameter has been added for this support.
■ A newHEADER parameter has been added to the ADACMP DECOMPRESS utility to indicate
whether or not the ADACMP decompression logic should produce the ADACMP segmented
record headers (ADAH and ADAC) as part of the decompressed output. The default is NO.

■ A new MAXLOGRECLEN parameter can be used to specify the size, in bytes, of a buffer used by
ADACMP to assemble logical records that span one or more physical records of uncompressed
output data. This buffer is allocated and used only if HEADER=YES is also specified.

■ The ISN parameter has been altered so that if it is specified with HEADER=YES, the ISN imme-
diately follows the ADAH header as part of the logical record.

ADADBS Utility Changes

Three new database services have been added to the ADADBS utility to support the extended
MU/PE field counts and record spanning:

■ The MUPEX function allows you to specify the maximum number of occurrences allowed for
MU or PE fields in a file.

■ The RECORDSPANNING function activates the use of spanned records in a file.

Planning for Adabas 828

Utility Changes

■ The SPANCOUNT function counts the spanned records in a file.

In addition, a new RESETPPT function resets the PPT blocks on the ASSO data set.

ADADCK Utility Changes

The ADADCK utility checks the header of a spanned record for plausibility, as follows:

■ The ISNs listed in the header are verified. The header contains the ISN of the primary record in
the spanned record chain, the ISN of the previous spanned record in the chain, and the ISN of
the next spanned record in the chain.

■ The spanned record identifier bits are checked. The header of a spanned record includes bits
that indicate whether the record is a primary or secondary spanned record. Only one of these
bits can be turned on in the header of any spanned record.

A newMAXPISNparameter has also been introduced that allows you to set themaximumnumber
of primary ISNs that will be checked for a spanned Data Storage file. The default is 1000.

ADAFRM Utility Changes

The ADAFRM utility can now be used to clear multiple PLOG headers from the PLOG, without
requiring that you reformat the entire PLOG. To do this, you should specify the NUMBER para-
meter in conjunction with the FROMRABN parameter and set the SIZE parameter to "1".

In addition, this utility can now handle the increased number of physical Associator and Data
Storage extents (99) allowed in Adabas 8.

ADAICK Utility Changes

If you run the ADAICK DSCHECK function, the primary and secondary ISNs are now identified
in the output.

29Planning for Adabas 8

Utility Changes

ADALOD Utility Changes

The following new parameters are introduced for the ADALOD LOAD and UPDATE functions
in support of spanned records and their associated secondary address converter:

■ The AC2RABN parameter allows you to specify or update space allocation for the secondary
address converter. The secondary address converter is used to map the secondary ISNs of sec-
ondary spanned records to the RABNs of the Data Storage blocks where the secondary records
are stored.

■ The optionalMAXISN2parameter allows you to specify the desired size of the secondary address
converter (AC2) in ISNs. The secondary address converter is used to map secondary ISNs of
secondary spanned records to the RABNs of theData Storage blockswhere the secondary records
are stored.

The following new parameters and parameter values are introduced for the ADALOD LOAD
functions in support of large object (LB) fields and their associated LOB files:

■ The optional LOBFILEparameter allows you to specify the file number of the LOB file associated
with a base file. This parameter is used when loading base files.

■ The optional BASEFILE parameter allows you to specify the file number of the base file associated
with a LOB file. This parameter is used when loading LOB files.

■ A new file type, LOB, specified on the FILE parameter, allows you to indicate that you are
loading an Adabas LOB file with a predefined FDT.

ADAORD Utility Changes

To support spanned records, the following twonewparameters have been added to theREORASSO,
REORDB, REORFASSO, REORFILE, and STORE functions of ADAORD.

■ The AC2RABN parameter allows you to specify the beginning RABN for the file's secondary
address converter extent.

■ The optionalMAXISN2parameter allows you to specify the desired size of the secondary address
converter (AC2) in ISNs.

The secondary address converter is used tomap the secondary ISNs of secondary spanned records
to the RABNs of the Data Storage blocks where the secondary records are stored.

You can restructure databases and files from Adabas 5.1 - 5.3, 6.1, 6.2, 7.1, 7.2, or 7.4 and store
them in Version 8 using ADAORD STORE. However, you cannot store the restructure output of
an Adabas 8 database or file in a database running with any prior Adabas version (for example,
Adabas 7).

Planning for Adabas 830

Utility Changes

You can restructure databases and files from an Adabas version prior to Adabas 8 and store them
in an Adabas 8 database using ADAORD STORE. However, you cannot store the restructured
output of an Adabas 8 database or file in a database running with any prior Adabas version (for
example, Adabas 7). If you attempt this, the following warning will be generated and ADAORD
will end with a CC=4:

*** Warning: The input dataset is from V8 and will not be processed

ADAREP Utility Changes

The report produced by ADAREP now lists whether the MUPEX and spanned record options
have been set for the database.

In the "Contents of Database" section of the report, the following changes have been made:

■ The padding factor has been removed from this table to make room for the larger extent values.
However, it is still shown in the individual file details also provided in the report and it appears
again if LAYOUT=1 is specified.

■ When LAYOUT=1 is specified during report creation, the larger extent values, supported by
Adabas 8, appear for each file.

■ If a file is unable to build at least ten further file extents, ADAREPmarks the file with an asterisk
(*) on the right.

In the "File Options" section of the report, a "T" indicates that two-byte MU/PE indexes are active
for the file and an "S" indicates that use of spanned records has been activated for the file. In addi-
tion, the "Contains LOB Fields" column indicates whether the file contains one or more LB fields
(an "L" appears if it does) and the "LOB File" column (the last column) indicates whether or not
the file is a LOB file (an "L" appears if it is). Note that these two LB field columns are mutually
exclusive; only one of them will be marked.

In the "Physical Layout of the Database" section of the report, secondary address converter extents
(for spanned records) are identified as "AC2" in the "Table File Type" column.

In the "File Information" section of the report, a new field called "Two Byte MU/PE" indicates
whether two-byteMU/PE indexes are active for the file. In the same section, the highest,maximum
expected, andminimum secondary ISN are given aswell as a newfield called "SpannedRec Supp",
which indicateswhether or not spanned records are activated for the file. In addition, the "Contain
LOB Fields" field indicates whether or not the file contains one or more LB fields and the "LOB
File" field indicates whether or not the file is a LOB file.

In the Space Allocation section of the report, secondary address converter extents (for spanned
records) are identified as "AC2" in the "List Type" column.

Finally, three new checkpoints may be written by the Adabas nucleus: 75, 76, and 77.

31Planning for Adabas 8

Utility Changes

ADASAV Utility Changes

The following new parameters are introduced for the ADASAVRESTONL FMOVE andADASAV
RESTOREFMOVE functions in support of spanned records and their associated secondary address
converter:

■ TheAC2RABNparameter allows you to specify the starting secondary address converter RABN
for each file specified by FMOVE.

■ TheMAXISN2parameter allows you to specify the newnumber of secondary ISNs to be allocated
for each file specified by FMOVE.

ADASEL Utility Changes

While there are no new parameters, ADASEL has been updated to support the MU/PE extension.
In particular, when specifying indexes for MU or PE fields in an ADASEL SELECT IF statement,
the indexes can now range from "1" through "65,534". Prior releases of Adabas restricted these in-
dexes to values ranging from "1" through "191".

ADASEL recognizes spanned records in its processing, but it cannot process files containing
spanned records.

ADAULD Utility Changes

While there are no new parameters, ADAULD has been updated to support theMU/PE extension
and spanned records. In particular, two new statistics listing the number of record segments that
were read and written during the run are produced by the ADAULD utility.

Planning for Adabas 832

Utility Changes

7 Command Changes

■ Direct Call Enhancements ... 34
■ Extended Adabas Control Block (ACBX) Support ... 34
■ Adabas Buffer Description (ABD) Support .. 40
■ Format Buffer Changes .. 41
■ LF Command Changes .. 46

33

This chapter describes the changes that have beenmade to commands, theACB, and to theAdabas
direct call interface for Adabas 8.

Direct Call Enhancements

A new direct call interface has been introduced with Adabas 8 that is based on new Adabas 8 ex-
tended Adabas control block (ACBX) and Adabas buffer description (ABD) structures.

Notes:

1. None of the enhancements are incompatible with the existing Adabas ACB-based direct call
interface.

2. Existing application programs that use the ACB-based direct call interface can continue to run
in the same way, without change.

3. In addition, you can decide whether you want to use the ACBX-based or ACB-based direct call
interface in your application programs, on a call-by-call basis. The same program can use both
interfaces.

Some of the new features of Adabas 8 require that your application program use the ACBX-based
direct call interface. For example, if your application programmakes use of the long buffers (larger
than 32K) or the segmented buffers (multiple format and record buffers), available with Adabas
8, you must use the ACBX-based direct call interface.

For information about the new ACBX direct call, including its syntax, read Calling Adabas in the
Adabas CommandReference Guide. For information about theACBX structure andABDs, readAdabas
Control Block Structures (ACB and ACBX) and Adabas Buffer Descriptions (ABDs) in the Adabas Com-
mand Reference Guide.

Extended Adabas Control Block (ACBX) Support

A new extended Adabas control block, the ACBX, is now provided to support the increase in the
buffer sizes in Adabas commands. The existing, non-extended Adabas control block (ACB) is still
supported and your existing applications will still work, but if you want to take advantage of
some of the extended features provided in Adabas 8, you must use the new ACBX. Specifically,
you must use the ACBX if you are using the long buffer (buffers longer than 32K) or segmented
buffer (multiple format/record buffer pairs or format/record/multifetch buffer triplets) features of
Adabas 8.

Otherwise, your application programs may freely switch between Adabas calls using the existing
direct call interface (ACB) and calls using the new interface (ACBX).

Planning for Adabas 834

Command Changes

This section covers the following topics:

■ How Adabas 8 Distinguishes Between ACB or ACBX Use
■ Differences between the ACB and the ACBX

For detailed information about the control blocks supported by Adabas, including structure and
DSECTs, read Adabas Control Block Structures (ACB and ACBX) in the Adabas Command Reference
Guide.

How Adabas 8 Distinguishes Between ACB or ACBX Use

Any application program can make both ACB and ACBX direct calls. The control block (ACB or
ACBX) is the first parameter in Adabas calls using either the ACB or ACBX interfaces. Adabas 8
determines which control block is used for a call by the presence of any value beginning with the
letter "F" at offset 2 of the control block. Offset 2 in theACB is the command code field (ACBCMD),
but since there is no valid F* Adabas command, no valid direct call using the ACB will contain a
value beginning with the letter "F" at offset 2. Offset 2 in the ACBX is a new version field
(ACBXVER) identifying the new ACBX.

The presence or absence of an "F" at offset 2 determines how Adabas 8 interprets the direct call.
If an "F" is specified in offset 2, Adabas interprets the control block and remaining direct call
parameters as anACBX call; if an "F" is not specified in offset 2, Adabas interprets the control block
and remaining direct call parameters as an ACB call. If, for some reason, the remaining control
block fields and direct call parameters are not specified correctly for the type of call indicated by
the presence or absence of an "F" at offset 2 (for example, if ACB parameters are specified for an
ACBX call), errorsmay result or the results of the call may not be as expected. Formore information
about how direct calls are specified using the new ACBX, read Direct Call Changes, elsewhere in
this guide.

Differences between the ACB and the ACBX

The ACBX differs in many ways from the ACB. The ACBX includes some new fields that are not
included in the ACB and the sizes of some ACBX fields are larger than their ACB equivalents.
These expansions in the ACBX have been made to ensure that its structure can be flexible enough
to handle potential future enhancements to Adabas, without altering its fundamental structure
for many years.

This section describes the differences between the ACB and the ACBX:

■ Control Block Length
■ Buffer Length Fields
■ Command Options, Additions, and Reserved Fields
■ Unit Differences
■ Field Length Differences
■ New Fields in ACBX
■ ACB Dual Purpose Field Changes

35Planning for Adabas 8

Command Changes

■ Structure and Offset Differences

Control Block Length

The new ACBX is 192 (or X’C0’) bytes in length; the ACB is 80 bytes long.

Buffer Length Fields

The buffer length fields are not included in the ACBX as they are in the ACB. In Adabas 8, they
are instead provided in the individual Adabas buffer descriptions (ABDs). So the ACBX contains
no buffer fields corresponding to the ACBFBL, ACBIBL, ACBRBL, ACBSBL, and ACBVBL found
in the ACB; the ABDs associatedwith the call are used instead. One ABD represents an individual
Adabas buffer segment. They are described inAdabas BufferDescriptions, elsewhere in this guide.

Command Options, Additions, and Reserved Fields

The number of command option, additions, and reserved control block fields are increased in the
ACBX:

■ The ACBX contains eight command option fields, up from the two command option fields
available in the ACB.

■ The ACBX contains six additions fields, up from the five additions fields available in the ACB.
■ The ACBX contains four reserved fields, up from one reserved field available in the ACB.

Reserved ACBX fields must be set to binary zeros; the reserved 4 field (ACBXRSV4) should be
initialized to binary zeros and then left unchanged.

Unit Differences

The units used to measure command time (thread time) differ between the ACB and the ACBX.
The ACB measures command time (ACBCMDT) in 16 microsecond units; the ACBX measures
command time (ACBXCMDT) in 1/4096 microsecond units.

Field Length Differences

The lengths ofmany control block fields are increased in theACBX. The following table summarizes
these changes:

Planning for Adabas 836

Command Changes

LengthField Title
ACBXACB

42File Number

42Database ID

44ISN

44ISN Lower Limit

44ISN Quantity

84Compressed Record Length

84Decompressed Record Length

84Command Time

164User Area

4 (in the ABD)2Format Buffer Length

4 (in the ABD)2Record Buffer Length

4 (in the ABD)2Search Buffer Length

4 (in the ABD)2Value Buffer Length

New Fields in ACBX

The following new fields have been introduced in the ACBX:

DescriptionACBX DSECT Name

Additions 6ACBXADD6

Command options 3ACBXCOP3

Command options 4ACBXCOP4

Command options 5ACBXCOP5

Command options 6ACBXCOP6

Command options 7ACBXCOP7

Command options 8ACBXCOP8

The database ID. In the ACB, the database ID is stored in the response code field
(ACBRSP) for X’30’ calls and in the first byte of ACBFNR for other logical calls.

ACBXDBID

Error offset into the buffer (32-bit).ACBXERRA

Error character field (field name).ACBXERRB

Error subcode.ACBXERRC

Error buffer ID, if multiple buffers are involved.ACBXERRD

Error buffer sequence number, if multiple buffers are involved.ACBXERRE

Error offset into the buffer (64-bit) - this field is not yet supported.ACBXERRG

Compressed record length (or portion of record if the entire record is not read). In the
ACB, the compressed record length is stored in the Additions 2 field (ACBADD2).

ACBXLCMP

37Planning for Adabas 8

Command Changes

DescriptionACBX DSECT Name

Decompressed record length. In the ACB, the decompressed record length is stored in
the Additions 2 field (ACBADD2).

ACBXLDEC

The length of the ACBX, currently 192ACBXLEN

Reserved. The value of this field must be set to zero.ACBXRSV2

Reserved. The value of this field must be set to zero.ACBXRSV3

Reserved for use by Adabas.ACBXRSV4

Subcomponent response code, used by Adabas add-on products.ACBXSUBR

Subcomponent response subcode, used by Adabas add-on products.ACBXSUBS

Subcomponent error text, used by Adabas add-on products.ACBXSUBT

When set to C'F2', this field indicates to Adabas that the new extended ACB (ACBX) is
used.

ACBXVER

ACB Dual Purpose Field Changes

There are a number of cases where an ACB field that has multiple purposes has been split out into
new fields in the ACBX:

■ In the ACB, the Response code field (ACBRSP) is used to store the database ID for X’30’ calls.
For the other logical calls the one-byte database IDwas stored in the first byte of the file number
field, ACBFNR. The ACBX provides a Database ID field (ACBXDBID) for this purpose.

■ In the ACB, the ACBADD2 field is used to retain error information for certain Adabas response
codes. In the ACBX, new error information fields (ACBXERR* series) are provided for this
purpose.

■ In the ACB, the ACBADD2 field is used to return, for a successful call, the compressed and de-
compressed record lengths of the processed data. In the ACBX, for a successful call, the Com-
pressed Record field (ACBXLCMP) contains the length of the compressed data processed by
Adabas and the Decompressed Record field (ACBXLDEC) contains the length of the decom-
pressed data.

Structure and Offset Differences

The offset and sequence of ACBX fields is generally different from the corresponding ACB fields,
as depicted in the following table. For detailed information about theACBX structure, readAdabas
Control Block Structures (ACB and ACBX) in the Adabas Command Reference Guide.

Planning for Adabas 838

Command Changes

ACBX DSECT Field NameACB DSECT Field NameOffset

ACBXTYPE (Call type)ACBTYPE (Call type)00

ACBXRSV1 (reserved 1)reserved01

ACBXVER (ACBX version indicator)ACBCMD (Command code)02

ACBXLEN (ACBX length)ACBCID (Command ID)04

ACBXCMD (Command code)(ACBCID continued)06

ACBXRSV2 (reserved 2)ACBFNR (File number)08

ACBXRSP (Response code)ACBRSP (Response code -- used for the
database ID with X’30’ calls)

0A

ACBXCID (Command ID)ACBISN (ISN)0C

ACBXDBID (Database ID)ACBISL (ISN lower limit)10

ACBXFNR (File number)ACBISQ (ISN quantity)14

ACBXISNG (8-Byte ISN)ACBFBL (Format buffer length)18

(ACBXISNG continued)ACBRBL (Record buffer length)1A

ACBXISN (ISN -- included in ACBXISNG)ACBSBL (Search buffer length)1C

(ACBXISN and ACBXISNG continued)ACBVBL (Value buffer length)1E

ACBXISLG (8-Byte ISN Lower Limit)ACBIBL (ISN buffer length)20

(ACBXISLG continued)ACBCOP1 (Command option 1)22

(ACBXISLG continued)ACBCOP2 (Command option 2)23

ACBXISL (ISN lower limit -- included in ACBXISLG)ACBADD1 (Additions 1)24

ACBXISQG (8-Byte ISN Quantity)(ACBADD1 continued)28

ACBXISQ (ISN quantity -- included in ACBXISQG)ACBADD2 (Additions 2)2C

ACBXCOP1 (Command option 1)ACBADD3 (Additions 3)30

ACBXCOP2 (Command option 2)(ACBADD3 continued)31

ACBXCOP3 (Command option 3)(ACBADD3 continued)32

ACBXCOP4 (Command option 4)(ACBADD3 continued)33

ACBXCOP5 (Command option 5)(ACBADD3 continued)34

ACBXCOP6 (Command option 6)(ACBADD3 continued)35

ACBXCOP7 (Command option 7)(ACBADD3 continued)36

ACBXCOP8 (Command option 8)(ACBADD3 continued)37

ACBXADD1 (Additions 1)ACBADD4 (Additions 4)38

ACBXADD2 (Additions 2)ACBADD5 (Additions 5)40

ACBXADD3 (Additions 3)(ACBADD5 continued)44

(ACBXADD3 continued)ACBCMDT (Command time)48

ACBXADD4 (Additions 4)ACBUSER (User area)4C

ACBXADD5 (Additions 5)---54

ACBXADD6 (Additions 6)---5C

39Planning for Adabas 8

Command Changes

ACBX DSECT Field NameACB DSECT Field NameOffset

ACBXRSV3 (reserved 3)---64

ACBXERRG (Error offset in buffer, 64-bit -- this is not yet
supported).

---68

ACBXERRA (Error offset in buffer, 32-bit)---6C

ACBXERRB (Error character field)---70

ACBXERRC (Error subcode)---72

ACBXERRD (Error buffer ID)---74

ACBXERRE (Error buffer sequence number)---75

ACBXSUBR (Subcomponent response code)---78

ACBXSUBS (Subcomponent response subcode)---7A

ACBXSUBT (Subcomponent error text)---7C

ACBXLCMP (Compressed record length)---80

ACBXLDEC (Decompressed record length)---88

ACBXCMDT (Command time)---90

ACBXUSER (User area)---98

ACBXRSV4 (reserved 4)---A8

Adabas Buffer Description (ABD) Support

Since Adabas 8, through its ACBX interface, supports segmented buffers (multiple pairs of format
and record buffers, ormultiple triplets of format, record, andmultifetch buffers), the total number
of buffers is no longer fixed and limited. The individual buffers are no longer described by fields
in the ACBX itself (in the way the buffer lengths are defined in the ACB); instead, each buffer has
its own Adabas buffer description (ABD) structure that describes what kind of buffer it is, where
it is located, what size it is, and other pertinent information.

The addresses of ABDs can be specified in direct calls to Adabas using the ACBX. This section
describes the structure of an ABD.

With Adabas 8, you can define ABDs for eight different types of buffers:

■ Format buffers
■ Record buffers
■ Multifetch buffers
■ Search buffers
■ Value buffers
■ ISN buffers

Planning for Adabas 840

Command Changes

■ Performance buffers (used by Adabas Review)
■ User buffers

Each Adabas buffer segment is represented by a single ABD, although you can define multiple
ABDs of a given type in the same program. Offset 4 (ABDID) in each ABD identifies the type of
buffer defined by the ABD.

For detailed information about ABDs, including their structure, read Adabas Buffer Descriptions
(ABDs) in the Adabas Command Reference Guide.

Format Buffer Changes

The following changes have been made to format buffers and format buffer specifications in
Adabas 8:

■ A new format buffer indicator, L, can now be used to retrieve or specify the actual length of an
LB or long alpha (LA) field value. This format buffer element is referred to as the length indicator.

■ More than 32 K of data per buffer can now be specified in Adabas commands.
■ The field length specifications in a format buffer for alphanumeric and wide-character fields
has been extended from 253 bytes to 2,147,483,647 bytes.

■ Adabas format, record and multi-fetch buffers specified in Adabas direct calls using the ACBX
interface can be split into multiple segments, which need not be contiguous in storage.

■ Support for large object (LB) fields has been added to format buffers. This includes the ability
to specify lengths using zero field lengths and asterisk (*) field length notation. For complete
information on format buffer support for LB fields, read Format Buffer Support of LB Fields,
elsewhere in this guide.

■ For files using the Adabas 8 extended MU/PE limits, format buffer elements for occurrence
counts (for example, FB='MUC.')must be adjusted so they can handle two-byte occurrence count
values (for example, FB='MUC,2,B.').

This section covers the following topics:

■ Length Indicator (L)

41Planning for Adabas 8

Command Changes

■ Rules for Specifying Multiple Adabas Buffer Segments

Length Indicator (L)

A new format buffer indicator, L, can now be used to retrieve or specify the actual length of any
LA or LB field value. This format buffer element is referred to as the length indicator.

Note: At this time, the length indicator can only be used in format buffer specifications for
LA or LB fields. Support for use of the length indicator in other fields as well will be con-
sidered in a future release of Adabas.

The length indicator is specified using the field name followed by the character L (for example,
FB='ACL,4,B.'would return the length of the AC field). If the field is a multiple-value field or is
located in a periodic group, the field name and character L are followed by the related occurrence
indices (for example, FB='ACL2,4,B.'would return the length of the second value of multiple-
value field AC). The compressed field length is returned in four-byte binary format. A different
length and format cannot be specified.

This section covers the following topics:

■ Using the Length Indicator with MU/PE Fields
■ Using the Length Indicator in Read Commands
■ Using the Length Indicator in Update Commands

Using the Length Indicator with MU/PE Fields

When used with MU or PE fields, the length indicator must specify occurrence indices, including
the range of occurrence index. However, it cannot specify the 1-N occurrence index. Consider the
following examples.

1. In the following example, the length of the fifth value of the second occurrence of periodic
group field AC would be returned:

FB='ACL2(5).'

2. In the following example, the lengths of the first ten values of multiple value field AC would
be returned:

FB='ACL1-10.'

3. The following example is illegal as the 1-N notation is notation is not allowed with the length
indicator in MU/PE fields:

Planning for Adabas 842

Command Changes

FB='ACL1-N.'

4. The following example is also illegal as the length indicator does not support MU fields with
out an occurrence index:

FB='MCL.'

In addition, if you elect to combine the length indicator and an asterisk length notation value re-
quest in the same format buffer for an MU or PE field, the value requests must use corresponding
ranges as the length requests. It does not matter whether the length requests and value requests
are specified in the same or different format buffer segments. Consider the following examples,
where XX is an LA or LB field with the MU option:

1. The following valid examples request the length of the first two values of the XX field as well
as their actual values.

FB='XXL1-2,XX1-2,*.'

FB='XXL1,XXL2,XX1,*,XX2,*.'

2. The following invalid examples are attempts to request the length of the first two values of the
XX field as well as their actual values. However, these examples are invalid because the ranges
specified for the MU field in the length and value requests are not specified in a corresponding
manner.

FB='XXL1,XXL2,XX1-2,*.'

FB='XXL1-2,XX1,*,XX2,*.'

3. The following two format buffers request the length of the third and fourth values of the XX
field, as well as their actual values.

FB='XXL3,XXL4.'

FB='XX3,*,XX4,*.'

4. The following invalid format buffers attempt to request the length of the third and fourth values
of the XX field, as well as their actual values, but fail because the ranges specified for the length
and value requests are not specified in a corresponding manner.

43Planning for Adabas 8

Command Changes

FB='XXL3,XXL4.'

FB='XX3-4,*.'

Using the Length Indicator in Read Commands

When the length indicator is specified for a field in the format buffer of a read command, the
number of bytes required for the field value in the record buffer (without padding and with no
further length indication) is returned at the corresponding field position in the record buffer. The
amount of space required in the record buffer is based on the field format and the UES-related
definitions for the database, file, and user.

You cannot, in the same format buffer, specify the length indicator to retrieve the length of an LA
or LB field in combinationwith a request for the actual field value in a different format (converted)
from the field's base format. For example, if character LB field L1 is stored in format A,
FB='L1L,4,B,L1,*,W.' is an illegal format buffer specification because it requests the length of
the L1 field in addition to the value of the L1 field converted to Unicode (format W). The reason
for this restriction is that the length element gives the length of the field in its native format, but
the length of the value returned in the requested format (Unicode) would be different due to the
conversion.

If character LB field L1 (format A) contains a 40,000-byte EBCDIC value, consider the following
examples:

1. Suppose the format buffer specification for L1 is:

FB='L1L,4,B.'

The record buffer will contain the four-byte binary length of the value of field L1:

X'00009C40'

2. Suppose the format buffer specification for L1 is:

FB='L1L,4,B,L1,*,A.'

The record bufferwill contain the four-byte binary length of the value of field L1 at the beginning
of the record buffer area , followed by 40,000 characters of the actual L1 data.

Read Operations, Length Indicators, and the NB (No Blank Compression) Option

If the length indicator of a field is specified in the format buffer (for example, FB='L1L,4,B.'),
and if the field is not subject to blank compression (the NB option is specified for the field in the
FDT), the length returned is the number of bytes specified when the value was stored (which can
be zero). However, if the field is subject to blank compression, the length returned is the number
of significant left-most bytes, beyond which the value is padded with blanks. For an all blank

Planning for Adabas 844

Command Changes

value, the returned length is the length of one blank (one byte for alphanumeric fields, two bytes
for wide-character fields).

Using the Length Indicator in Update Commands

When a length indicator is specified in the format buffer for an update command, the corresponding
value in the record buffer specifies the actual value length of the field in the record buffer. Only
one length indicator for the base field can be specified and it must be accompanied by the asterisk
(*) length notation in the format buffer.

The length indicator must occur in its format buffer segment prior to any format element that
implies a variable length in the record buffer (due to the use of asterisk notation or zero length
notation). In other words, the length indicator is located in a constant position, independent of
the values of any fields mentioned in the format.

Rules for Specifying Multiple Adabas Buffer Segments

Adabas format, record and multifetch buffers specified in Adabas direct calls using the ACBX in-
terface can be split into multiple segments, which need not be contiguous in storage. The search,
value, ISN, monitor, and user information buffers must each be provided in a single segment, as
in prior releases.

The following rules apply to multiple segment format buffers in ACBX Adabas direct calls:

■ Multiple format and record buffers usually come in pairs. For commandswhere data in the record
buffer is not described by a format specification in the format buffer, no format buffer segments
need be specified; if any are specified, they are ignored.

■ Multiple records can be read in one Adabas call using the multifetch feature. If multifetch is
used, the format, record, and multifetch buffer segments must be specified in triplets.

■ Each format buffer segmentmust endwith a period, as in prior releases, andmust be a complete
and valid format buffer on its own.

If a format ID is specified for a call, Adabas associates it with the set of all specified format
buffer segments. If a subsequent call specifies an almost -- but not exactly -- identical format
buffer (including the sequence of buffer segments), it must use a different format ID or release
and redefine a previously used format ID.

■ The specification sequence of buffers or buffer segments in an Adabas direct call depends on
the type of command:

1. An ACBX is followed by zero or more format buffer segments, usually the same number of
record buffer segments, and, for calls with multifetch, the same number of multifetch buffer
segments.

45Planning for Adabas 8

Command Changes

For commands where data in the record buffer is not described by a format specification in
the format buffer, no format buffer segments need be specified; if any are specified, they are
ignored.

2. Depending on the type of Adabas command, one search, value, or ISN buffer segment may
follow.

3. At the end of the call, zero or one performance buffer segment may be appended and zero
or one user information buffer segment may be appended.

LF Command Changes

If an LF command with Command Option 2 set to "S" is run and large object (LB) fields are en-
countered, the LB field description is returned in an F-type field element. Bit 6 in the second format
byte (at offset 7 or byte 8 in the element) is set to indicate that the LB (large object) option is set
for the field. In addition, bit 1 of the second format byte indicates whether the LB field is defined
with the NB option. For more information, read about the LF command in the Adabas Command
Reference Guide.

Planning for Adabas 846

Command Changes

8 User Exit Changes

■ User Exit 1 ... 48
■ User Exit 11 ... 48
■ Hyperexit Changes .. 48

47

This chapter describes the user exit changes for Adabas 8.

User Exit 1

With the introduction of user exit 11, support for user exit 1 will be dropped. However, to ease
the migration, a sample user exit, UEX11UX1, is supplied that you can insert in front of your ex-
isting user exit 1 to have it invoked as user exit 11. This samplewill onlywork for direct calls made
using the ACB direct call interface; it will not work for direct calls made using the Adabas 8 ACBX
direct call interface. The exit is still subject to exit 11 constraints, as described in User Exit 11. In
particular, changes are allowed only to the file number (CQEFNR), Additions 2 (ACBADD2),
Additions 3 (ACBADD3), and user area (ACBUSER) fields. The nucleus will ignore changes in
any other ACB field and all other changes to the CQE. Please refer to comments in the sample user
exit for more details, including how to link it with an existing user exit 1. Adabas nucleus support
for this transition aid will be withdrawn in a future Adabas release.

User Exit 11

This new user exit is given control by Adabas immediately after a command is received by the
Adabas nucleus. The command itself has yet to be processed except for the determination of the
type of command (simple access, complex access, update).

One of the most common applications of this user exit is to insert a security password or a cipher
code into the ACBX.

This user exit functionality largely matches that of the classic user exit 1, except for the fact that
edited copies of the CQE andACBXdata structures are used during user exit 11 processing, rather
than the actual structures used by user exit 1. Only certain fields in the ACBXmay be changed by
the exit: ACBXFNR (file number), ACBXADD2 (Additions 2), ACBXADD3 (Additions 3), and
ACBXUSER (user area). The nucleuswill ignore changes in any other ACBX fields and all changes
to the CQE. DSECT EX11PARMmaps the user exit 11 parameter list.

Hyperexit Changes

Updated hyperexit logic is supplied in this release that allows for the extended MU/PE fields in
hyperdescriptor specifications. TheAdabas 8 nucleus detects if an old hyperexit has been provided
and returns a response code if it detects an old parameter list.

In addition, Adabas 8 includes a Hyperexit Stub that allows your existing hyperexits to use the
Adabas 8 parameter list without change. The Hyperexit Stub is intended as a temporary solution
for those customers who do not wish to immediately update their hyperexits to use the new

Planning for Adabas 848

User Exit Changes

Adabas 8 parameter areas. For more information about all hyperexit support in Adabas 8, read
Hyperdescriptor Exits 01 - 31 in Adabas User, Hyperdescriptor, Collation Descriptor, and SMF Exits
Manual.

49Planning for Adabas 8

User Exit Changes

50

9 Add-On Product Support for Adabas 8

■ General Compatibility Information of Client-Based Add-On Products .. 52
■ Adabas System Coordinator Version 8 Support ... 54
■ Adabas Fastpath Version 8 Support .. 56
■ Adabas SAF Security Version 8 Support .. 57
■ Adabas Transaction Manager Version 8 Support .. 58
■ Adabas Vista Version 8 Support ... 59

51

This chapter describes Version 8 plans for the following add-on products.

Caution: The material presented here is subject to change before product release. Software
AG reserves the right to change the content of this product and this documentation prior
to release and does not guarantee that all functionality mentioned will be implemented.
However, this information is sufficiently accurate to allow you to successfully evaluate
your upgrade to Version 8.

General Compatibility Information of Client-Based Add-On Products

The client-based add-on products include:

■ Adabas Fastpath
■ Adabas SAF Security
■ Adabas Transaction Manager
■ Adabas Vista
■ Adabas System Coordinator

Many of the base Adabas 8 enhancements do not have a direct effect upon these add-on products.
Thismeans that the Adabas 8 enhancements provide no obstacle to upgrading. For example, these
products are not affected by internal Adabas 8 characteristics such as spanned records or internal
changes to utilities.

These products will support the new and changed Adabas features in the following ways (where
relevant):

When a specific Adabas 8 feature directly affects current add-on product
functionality, the appropriate add-on products are enhanced to support the
Adabas 8 feature enhancements.

Specific Adabas 8 Feature
Support

When a specific Adabas 8 feature does not directly affect current product
functionality, the Adabas 8 functionality can be freely used, but the add-on
product might not take advantage of it.

Adabas 8 Feature Tolerance

This section covers the following topics:

■ Specific Adabas 8 Feature Support
■ Adabas 8 Feature Tolerance
■ Required Actions to Support Adabas 8

Planning for Adabas 852

Add-On Product Support for Adabas 8

■ Adabas 7.4 Compatibility

Specific Adabas 8 Feature Support

The following Adabas 8 features are supported in the client-based add-on products:

■ The new ACBX calling protocol
■ The new FDT layout
■ Large object (LB) fields, where relevant
■ MU/PE limit increases, where relevant

Adabas 8 Feature Tolerance

All other Adabas 8 features are tolerated by the client-based add-on products, since they have no
specific effect upon the functionality of these products.

Required Actions to Support Adabas 8

There are no specific actions needed to be taken in the client-based add-on products to make them
support Adabas 8 because detection of the Adabas version level is automatic, where relevant.
However, there are some conversion requirements.

Specifically, the client-based add-on products share the same system configuration file. The system
configuration file is an Adabas file container for all the information needed to enable the software
to operate effectively at runtime. Conversion of the system configuration file fromprevious releases
is mandatory, as follows:

■ A new file must be used for the Version 8 level
■ A conversion utility will be available to copy Version 7.4 file contents and convert them into
the new Version 8 file format.

■ If the conversion step fails, the new file must be reset to an empty state before starting the con-
version again.

Adabas 7.4 Compatibility

TheVersion 8.1 client-based add-on products can be usedwithAdabas 7.4 andAdabas 8 databases
simultaneously under the following conditions:

■ Adabas 8 functionality is not used when targeting Adabas 7.4 databases
■ Fixes (to be clarified when the client-based add-on products are released) may be necessary to
enable Version 8.1 client-based add-ons to operate with Adabas 7.4 and other Version 7.4-com-
patible Adabas add-ons.

53Planning for Adabas 8

Add-On Product Support for Adabas 8

■ All of the client-based add-on products must be at the same level. For example, you cannot mix
Adabas Fastpath 7.4 functionality with Adabas Vista 8.1 functionality.

Adabas System Coordinator Version 8 Support

Adabas System Coordinator is a client-based add-on product for Adabas. Please read General
Compatibility Information of Client-Based Add-On Products, earlier in this section, for general
information onmigratingAdabas SystemCoordinator and the other client-based add-on products
to Version 8.

The Adabas System Coordinator provides base technology for Adabas Fastpath, Adabas SAF Se-
curity, Adabas Transaction Manager, and Adabas Vista. Consequently, some enhancements have
been implemented in the Adabas System Coordinator to provide benefit for these other products
in a highly integrated way.

This section covers the following topics.

■ More Focused Client Runtime Configuration
■ Fully Dynamic Client Runtime Configuration for Experts
■ Alternate System Configuration File
■ Variable Data Container
■ Versioning Feature
■ Applying Adabas System Coordinator To a Client Job Without Other Client-Based Add-On Products

More Focused Client Runtime Configuration

There is increasing need for Adabas client sessions to operate differently within the same job. For
example:

■ Client "ABC" in CICSXYZ needs special tracing controls to be in use, all other clients do not.
■ Transaction "D412" in CICSXYZ must be able to operate with a lower timeout limit than other
transactions.

■ Step name "S0010" in job PRODA032must be excluded from using the Adabas SystemCoordin-
ator.

This level of runtime control is becoming extremely important. For example, tracing options can
be directed at a very few sessions, rather than globally. This canmean overallmemory consumption
can be kept to aminimum,while at the same time aggressively pursuing a problemby investigating
only the sessions to be scrutinized.

Adabas System Coordinator Version 8.1 allows these configuration controls to be prescribed in
advance by adding optional override controls to the original base job level controls. With Version
8.1 it is possible to preconfigure overrides as follows:

Planning for Adabas 854

Add-On Product Support for Adabas 8

Override ControlsJob Type

Batch job 1. Step name

2. LOGIN (e.g. RACF LOGIN
userid)

3. Special API

Special APITSO, CMS, TIAM, etc

COM-PLETE, CICS, IMS, UTM 1. Special API

2. LOGIN

3. Transaction code

As a terminal operatormoves fromone transaction to another, the runtime behaviors can be altered
dynamically according to what is prescribed in the configuration file.

Fully Dynamic Client Runtime Configuration for Experts

In addition to being able to preset the different configurations to be adopted at runtime, you can
now dynamically change the runtime controls for your current session. So, you may decide to
switch tracing on or off, for example, regardless of what is prescribed in the configuration file.

These truly dynamic changes can be performed in Natural by logging onto one of the product
libraries (SYSMP812, SYSMT812, SYSMV812, SYSMW812 or SYSMX812) and entering CORENV xxx
on the command line, where xxx is the product code AFP, AVI, ATM or COR.

Alternate System Configuration File

The system configuration file is now a vital part of the runtime operation. As such, it can become
a single point of failure. Adabas System Coordinator 8.1 now allows you to define an alternate
configuration file.

Note: It is your responsibility to ensure the two configuration files are identical at all times.

Each session will attempt to use the primary system configuration file. If it is unavailable, the al-
ternate system configuration file will be used, if one is defined. Once a configuration file has been
identified for a session, that file will continue to be the primary configuration file for that session
until it becomes unavailable, at which point the alternate configuration file will be used. Over
time, different sessions may be using different files at the same time until you forcibly cause all
sessions to switch over bymaking one or the other configuration file unavailable for a long period.

If you use an alternate configuration file, then both the primary and alternate configuration files
must be available at both Coordinator daemon startup and shutdown. This is necessary because
recovery and restart information is placed in the file, and the same information must be placed in
both files so they do not get out of step.

55Planning for Adabas 8

Add-On Product Support for Adabas 8

Variable Data Container

Your own variable data can now be stored in the configuration file. You can enter this data at the
same time as the base or override configuration. This can be used simply for your own document-
ation purposes, but you can also use a runtime API call to retrieve the data (up to 256 bytes). This
means you can easily recognize differences between sessions at runtime for your own purposes
according to the configuration being used.

Versioning Feature

The versioning feature allows you to go through a gradual upgrade before fully using Version
8.1. This covers the clients and databases where this software is introduced. In TP systems, a front-
end to the ADALNK technology is introduced allowing (for example) ADALNK74 versus
ADALNK81 to be used within the same client job. The ADALNK path is chosen according to
transaction code (by default). This allows you to convert gradually.

A similar approach is taken for the software in Adabas target databases. For example, you can use
Adabas SystemCoordinator andAdabas Fastpath 7.4 in parallel withAdabas SystemCoordinator
and Adabas Fastpath 8.1. This accommodates clients coming through the 7.4 versus 8.1 paths
simultaneously.

Applying Adabas System Coordinator To a Client Job Without Other Client-Based Add-On Products

Adabas System Coordinator provides some general features that are applicable even if the other
client-based add-on products are not to be used for a job. For example, the command retry feature
may be needed for a job but not Adabas Fastpath. Adabas SystemCoordinator 8.1 can be activated
without needing any of the other products.

Adabas Fastpath Version 8 Support

Adabas Fastpath is a client-based add-on product for Adabas. Please readGeneral Compatibility
Information of Client-Based Add-On Products, earlier in this section, for general information on
migrating Adabas System Coordinator and the other client-based add-on products to Version 8.

The Adabas System Coordinator provides base technology for Adabas Fastpath, Adabas SAF Se-
curity, Adabas Transaction Manager, and Adabas Vista. Consequently, some enhancements have
been implemented in the Adabas System Coordinator to provide benefit for these other products
in a highly integrated way. For further information, read Adabas System Coordinator Support,
elsewhere in this section. Adabas Fastpath is compliant with the dynamic client runtime config-
uration introduced in Adabas System Coordinator 8.1.

This section covers the following topics.

■ Automated Buffer Restart Enhancements

Planning for Adabas 856

Add-On Product Support for Adabas 8

■ Direct Access Optimization for Secured Files
■ AFPLOOK Changes

Automated Buffer Restart Enhancements

The automated buffer restart feature is enhanced so that you can now control: "Restart every “n”
hours but only at “n” o’clock".

This is enhanced to provide some help for sites where the Adabas Fastpath buffer operates 24
hours, 7 days a week, but the commands statistics exceed the present 4G limit, which means the
displays lose significance.With this feature, you canmake sure a restart occurs prior to the normal
time span in which the limit is exceeded. In addition, you can isolate the actual restart time into
a quiet period of your day to make sure it does not take place at peak times.

A future release will allow statistics to exceed the 4G limit.

Direct Access Optimization for Secured Files

Adabas Fastpath’s default behavior is to avoid caching for secured files because the assumption
is that security is used to differentiate between data used by different sessions. However, some
sites do not secure data in this way, and so find that it is satisfactory for their secured files to be
cached in this way. This feature, however, should be used with caution.

AFPLOOK Changes

The predictions made by the AFPLOOK sampler have been changed to be more in line with the
optimization achieved by the present level of Adabas Fastpath. It will also be possible to precon-
figure theAFPLOOKversion that is shippedwithAdabaswithout having to use the online admin-
istration tool.

Adabas SAF Security Version 8 Support

Adabas SAF Security is a client-based add-on product for Adabas. Please readGeneral Compatib-
ility Information of Client-Based Add-OnProducts, earlier in this section, for general information
on migrating Adabas System Coordinator and the other client-based add-on products to Version
8.

This section covers the following topics.

■ Variable Resource Renaming
■ Stored Procedure Protection
■ Hold-Based Commands
■ Adabas Security

57Planning for Adabas 8

Add-On Product Support for Adabas 8

■ Adabas SAF Security Deactivation

Variable Resource Renaming

WithAdabas SAF Security 8.1, youwill be able to use logical names for protected resources, rather
than number-based names. This will make it much more flexible to make collections of resources
to be gathered together.

Stored Procedure Protection

An option to protect execution of PC calls will be introduced.

Hold-Based Commands

An option to assess hold-based commands (L4, L5, etc.) as update commands rather than access
commands will be introduced.

Adabas Security

An option to use the SAF-based GROUP identity as the ADASCR password will be introduced.

Adabas SAF Security Deactivation

In some cases, it is possible that Adabas SAF Security fails to initialize within a database. Some
sites wish to be able to configure whether this should force Adabas nucleus termination or not,
by database. This feature will be introduced in Adabas SAF Security Version 8.1.

Adabas Transaction Manager Version 8 Support

Adabas Transaction Manager is a client-based add-on product for Adabas. Please read General
Compatibility Information of Client-Based Add-On Products, earlier in this section, for general
information onmigratingAdabas SystemCoordinator and the other client-based add-on products
to Version 8.

The Adabas System Coordinator provides base technology for Adabas Fastpath, Adabas SAF Se-
curity, Adabas Transaction Manager, and Adabas Vista. Consequently, some enhancements have
been implemented in the Adabas System Coordinator to provide benefit for these other products
in a highly integrated way. For further information, read Adabas System Coordinator Support,
elsewhere in this section. Adabas Transaction Manager is compliant with the dynamic client
runtime configuration introduced in Adabas System Coordinator 8.1.

This section covers the following topics.

Planning for Adabas 858

Add-On Product Support for Adabas 8

■ Nonactivity Timeout Handling

Nonactivity Timeout Handling

This will now be handled by the equivalent general Adabas System Coordinator facility rather
than by any specific facility to Adabas Transaction Manager.

Adabas Vista Version 8 Support

Adabas Vista is a client-based add-on product for Adabas. Please read General Compatibility
Information of Client-Based Add-On Products, earlier in this section, for general information on
migrating Adabas System Coordinator and the other client-based add-on products to Version 8.

The Adabas System Coordinator provides base technology for Adabas Fastpath, Adabas SAF Se-
curity, Adabas Transaction Manager, and Adabas Vista. Consequently, some enhancements have
been implemented in the Adabas System Coordinator to provide benefit for these other products
in a highly integrated way. For further information, read Adabas System Coordinator Support,
elsewhere in this section. AdabasVista is compliantwith thedynamic client runtime configuration
introduced in Adabas System Coordinator 8.1.

This section covers the following topics.

■ Generations Replace Publish and Draft Copies
■ File Translation Pages
■ Source Name Removed
■ Target Category Removed From Partitioned Files

Generations Replace Publish and Draft Copies

Previous versions of Adabas Vista allowed individual file rules to have published and draft copies.
This allowed the active runtime rules to be left in place while changes were beingmade. However,
thismeant thatmanydraft rules could not be simultaneously activated into the operational runtime.

Organizing the rules into generationsmeans that a complete new set of rules can be prepared in
the background and then simultaneously activated. This is a far better control mechanism for in-
troducing change to the runtime operation.

Multiple generations of rules can be constructed at the same time, but only one generation can be
named as the active one. At any time, you can define a different generation as the active generation.
This automatically places the originally active generation in inactive status.

The base rules for a generation cannot be directly modified. You must define a deltamodification
to a generation to make changes. You can have multiple deltas in parallel to a generation. Once
you are happy with a delta modification you can apply it to update the base generation.

59Planning for Adabas 8

Add-On Product Support for Adabas 8

File Translation Pages

With Adabas Vista 8.1, you can now define multiple pages of translation rules. The name of each
page is chosen by your data base administrator. Each page contains one or more file translation
file rules. Each job that is defined to use Adabas Vista can have up to eight pages named for use
at runtime for that job. Adabas Vista merges all these pages into one set of translation rules for
runtime use.

Some rules can be defined as being mandatory, or have a numeric priority setting. During the
merge the mandatory and priority settings are honored.

In addition, it is possible to set up a mandatory page itself, but the translation rules contained
within that page do not themselves have to be mandatory. The mandatory page is always used,
when it exists. The mandatory page does not have to be named on Adabas Vista job controls; this
is how previous version compatibility is most likely to be maintained. The Adabas Vista 8.1 con-
version utility will arrange to convert your existing 7.4 rules accordingly

Source Name Removed

The source name field is removed from translation rules. The Adabas Vista 8.1 conversion utility
will discard these translation rules automatically.

Target Category Removed From Partitioned Files

The target category is no longer a part of the partitioned file definition. It is only used for translation
rules.

Planning for Adabas 860

Add-On Product Support for Adabas 8

Index

(see Adabas buffer description (ABD) support) (see extended
Adabas control block (ACBX)) (see large object (LB) fields)

A
ABD, 40
ACB and ACBX differences, 35
ACB versus ACBX use, 35
ACBX, 34
ADAACK utility

changes, 26
Adabas

Adabas buffer description (ABD) support, 40
ADARUN changes, 23
add-on product general Adabas 8 compatibility, 52
add-on product support, 51
architectural changes, 9
availability, 4
command changes, 33
compatibility, 4
documentation, 4
FDT changes, 21
format buffer description (ABD) support, 41
general information, 3
large object (LB) field support, 14
long alpha (LA) field changes, 20
migrating from previous versions, 5
planning for Version 8,
spanned record support, 11
user exit changes, 47
utility changes, 25

Adabas Fastpath
AFPLOOK changes, 57
automated buffer restart enhancements, 57
compatibility, 52
direct access optimization for secured files, 57
version 8 support, 56

Adabas SAF Security
Adabas security, 58
compatibility, 52
deactivation, 58
hold-based commands, 58
stored procedure protection, 58
variable resource renaming, 58
version 8 support, 57

Adabas System Coordinator
alternate system configuration file, 55
applying to a client job without other client-based add-on
products, 56

compatibility, 52
focused client runtime configuration, 54
fully dynamic client runtime configuration, 55
variable data container, 56
version 8 support, 54
versioning feature, 56

Adabas Transaction Manager
compatibility, 52
nonactivity timeout handling, 59
version 8 support, 58

Adabas Vista
compatibility, 52
file translation pages, 60
generations replacing publish and draft copies, 59
removal of source name, 60
removal of target category from partitioned files, 60
version 8 support, 59

ADACDC utility
changes, 26

ADACMP utility
changes, 26

ADADBS utility
changes, 28

ADADCK utility
changes, 29

ADAFRM utility
changes, 29

ADAICK utility
changes, 29

ADALOD utility
changes, 30

ADAORD utility
changes, 30

ADAREP utility
changes, 31

ADARUN
changes, 23

ADARUN parameters
spanned records, 13

ADASAV utility
changes, 32

ADASEL utility
changes, 32

ADAULD utility
changes, 32

add-on product support, 51
Adabas 7.4 compatibility, 53
Adabas 8 feature tolerance, 53
general Adabas 8 compatibility, 52
required actions for support, 53

61

specific Adabas 8 feature support, 53
architectural changes, 9
asterisk (*) length notation, 18
availability, 4

B
binary LB fields, 16
buffer segments

rules for specifying multiple segments, 45

C
checkpoints

written by Adabas nucleus/utilities, 31
CLOGLAYOUT parameter, 23
command changes, 33
compatibility, 4

D
direct call enhancements, 34
documentation, 4
dropped user exits, 48

E
EXCP parameter, 23
EXCPVR parameter, 23
explicit length specification, 18
extended Adabas control block (ACBX) support, 34

F
FDT

changes, 21
defining large object (LB) fields, 15

format buffer
length indicator (L), 42

format buffer changes, 41

G
general information, 3

H
hyperexit changes, 48

I
identifying spanned records, 12
ISN use by spanned records, 13

L
large object (LB) fields

binary LB fields, 16
blank compression (NB) option, 15
defining in FDT, 15
examples, 16
format buffer support, 16
handling, 14

long alpha versus large object fields, 19
no conversion (NV) option, 15
occurrence index, 17
range notation, 16
specifying formats, 17
specifying lengths, 17
support for, 14

LB fields, 14
length indicator (L), 42

in read commands, 44
in update commands, 45
with MU and PE fields, 42
with read operations and no blank compression (NB) option,
44

LF command changes, 46
lifted limits, 10
logical extent limit, 10
long alpha (LA) fields

changes, 20
long alpha versus large object fields, 19

LWP parameter, 13

M
migration information, 5
MU field limit, 10
MU fields

using length indicator (L) with, 42

N
NB option, 15
new user exits, 48
NISNHQ parameter, 13
no blank compression (NB) option

in read operations with length indicators (L), 44
NV option, 15

O
occurrence index, 17

P
padding factors, 13
PE field limit, 10
PE fields

using length indicator (L) with, 42
physical extent limit, 10
planning for Adabas 8,

R
range notation, 16
read commands

using length indicator (L) with, 44
read operations

with length indicators (L) and no blank compression (NB)
option, 44

reporting
spanned records, 14

rules for specifying multiple Adabas buffer segments, 45

Planning for Adabas 862

Index

S
secondary records, 12
securing spanned records, 14
segmentation, 12
spanned records

ADARUN parameters, 13
identifying, 12
ISN use, 13
padding factors, 13
reporting, 14
secondary record segmentation, 12
securing, 14
structure, 12
support for, 11

structure of spanned records, 12

U
update commands

with length indicators (L), 45
user exit 1, 48
user exit 11, 48
user exit changes, 47

Z
zero length specification, 18

63Planning for Adabas 8

Index

64

	Planning for Adabas 8
	Table of Contents
	1 Planning for Adabas 8
	2 General Information
	Availability
	Compatibility
	Documentation

	3 Migrating From Previous Adabas Versions
	4 Architectural Changes
	Lifted Limits
	Logical Extent Limit
	Physical Extent Limit
	MU and PE Limit

	Spanned Record Support
	Spanned Record Structure
	Identifying Spanned Records
	Secondary Record Segmentation
	Padding Factors
	Spanned Record ISN Use
	ADARUN Parameters Affected
	Reporting on Spanned Records
	Securing Spanned Records

	Large Object (LB) Field Support
	Adabas 8 Handling of LB Fields
	Defining Large Object (LB) Fields in the FDT
	NV Option with LB Fields
	New NB Option
	Defining Binary LB Fields
	LB Field Examples

	Format Buffer Support of LB Fields
	Range Notation
	Occurrence Index
	Specifying LB Field Formats
	Specifying the Lengths of LB Fields
	Explicit Length Specification
	Zero Length Specification
	Asterisk (*) Length Notation

	Deciding Between Long Alpha and Large Object Fields

	Long Alpha (LA) Field Changes
	FDT Changes

	5 ADARUN Changes
	6 Utility Changes
	ADAACK Utility Changes
	ADACDC Utility Changes
	ADACMP Utility Changes
	General Changes
	ADACMP COMPRESS Changes
	ADACMP DECOMPRESS Changes

	ADADBS Utility Changes
	ADADCK Utility Changes
	ADAFRM Utility Changes
	ADAICK Utility Changes
	ADALOD Utility Changes
	ADAORD Utility Changes
	ADAREP Utility Changes
	ADASAV Utility Changes
	ADASEL Utility Changes
	ADAULD Utility Changes

	7 Command Changes
	Direct Call Enhancements
	Extended Adabas Control Block (ACBX) Support
	How Adabas 8 Distinguishes Between ACB or ACBX Use
	Differences between the ACB and the ACBX
	Control Block Length
	Buffer Length Fields
	Command Options, Additions, and Reserved Fields
	Unit Differences
	Field Length Differences
	New Fields in ACBX
	ACB Dual Purpose Field Changes
	Structure and Offset Differences

	Adabas Buffer Description (ABD) Support
	Format Buffer Changes
	Length Indicator (L)
	Using the Length Indicator with MU/PE Fields
	Using the Length Indicator in Read Commands
	Using the Length Indicator in Update Commands

	Rules for Specifying Multiple Adabas Buffer Segments

	LF Command Changes

	8 User Exit Changes
	User Exit 1
	User Exit 11
	Hyperexit Changes

	9 Add-On Product Support for Adabas 8
	General Compatibility Information of Client-Based Add-On Products
	Specific Adabas 8 Feature Support
	Adabas 8 Feature Tolerance
	Required Actions to Support Adabas 8
	Adabas 7.4 Compatibility

	Adabas System Coordinator Version 8 Support
	More Focused Client Runtime Configuration
	Fully Dynamic Client Runtime Configuration for Experts
	Alternate System Configuration File
	Variable Data Container
	Versioning Feature
	Applying Adabas System Coordinator To a Client Job Without Other Client-Based Add-On Products

	Adabas Fastpath Version 8 Support
	Automated Buffer Restart Enhancements
	Direct Access Optimization for Secured Files
	AFPLOOK Changes

	Adabas SAF Security Version 8 Support
	Variable Resource Renaming
	Stored Procedure Protection
	Hold-Based Commands
	Adabas Security
	Adabas SAF Security Deactivation

	Adabas Transaction Manager Version 8 Support
	Nonactivity Timeout Handling

	Adabas Vista Version 8 Support
	Generations Replace Publish and Draft Copies
	File Translation Pages
	Source Name Removed
	Target Category Removed From Partitioned Files

	Index

