
Installing Adabas with TP Monitors
This chapter provides information needed to install Adabas in batch mode and with its teleprocessing (TP)
monitors. It covers the following topics:

Preparing Adabas Link Routines for IBM Platforms

Installing Adabas with IMS TM under Adabas 8

General Considerations for Installing Adabas with CICS

Installing Adabas with CICS under Adabas 8

Installing the CICS High-Performance Stub Routine for Adabas 8

Installing Adabas with Com-plete under Adabas 8

General Considerations for Installing Adabas with Batch/TSO

Installing Adabas with Batch/TSO under Adabas 8

Establishing Adabas SVC Routing by Adabas Database ID

Modifying Source Member Defaults (LGBLSET Macro) in Version 8

Preparing Adabas Link Routines for IBM Platforms
This section describes the preparation of Adabas link routines for TP monitors for IBM platforms. The
source modules for Adabas 8 link routines are not provided in the Adabas 8 base source library. The
Adabas 8 link routines can only be tailored via zap or using a link globals table.

Addressing Mode Assembly Directives in Adabas Link Routines

UES-Enabled Link Routines

Addressing Mode Assembly Directives in Adabas Link Routines

All Adabas 8 link routines include AMODE and RMODE assembly directives. These assembly directives
allow the linkage editor to produce warning messages when conflicting AMODE or RMODE
linkage-editor control statements are encountered in the link JCL, JCS, or EXECs.

These assembly directives also serve to document the preferred AMODE and RMODE for each link
routine. It is important to note that in and of themselves, these directives do not alter the actual addressing
mode of the link routine during execution.

Re-linking Adabas 8 Link Routines

When re-linking the Adabas 8 link routines with certain AMODE and RMODE combinations, a warning
message may be generated by the linkage editor. This may be safely ignored as long as it pertains to a
conflict of AMODE or RMODE in the ESD record of one or more of the load modules that comprise the link
routine, and as long as the resulting module has the proper AMODE and RMODE attributes for execution

1

Installing Adabas with TP MonitorsInstalling Adabas with TP Monitors

with the intended calling application programs.

Care must be taken to ensure that AMODE(24) applications will operate properly when invoking the link
routine with the attributes chosen when it is re-linked. This is particularly important if the RMODE(ANY)
attribute is associated with a link routine that will be loaded dynamically but invoked by a program that is
AMODE(24). In this case, the link routine should be re-linked AMODE(31),RMODE(24) to avoid
addressing exception ABENDs because the AMODE(24) application cannot correctly invoke the link
routine if it resides above the 16-megabyte line.

The Adabas 8 link routines all run AMODE(31) after initialization, but they will return to the caller in the
caller’s AMODE.

Note:
Under CICS, the version 8 links run AMODE(31), but the Dataloc RDO parameter governs the AMODE
and RMODE of the running CICS transaction.

The batch/TSO non-reentrant link routine, ADALNK, has been assembled and linked with
AMODE(31),RMODE(24), and that is the recommended configuration to support AMODE(24) or
RMODE(24) application programs. It may be re-linked AMODE(31),RMODE(ANY) if desired, but this
should only be done if it is certain that all calling programs are AMODE(31).

The ADALNKR batch TSO reentrant link routine has been assembled and link-edited with
AMODE(31),RMODE(ANY). If it is loaded by an application that is AMODE(24), it should be relinked
AMODE(31),RMODE(24).

The z/OS Com-plete module ADALCO has been assembled and linked AMODE(31),RMODE(ANY). The
Com-plete TP monitor ensures proper AMODE switching between AMODE(24) or RMODE(24)
programs that invoke ADALCO through the Com-plete Adabas interface routine, TLOPADAB.

All of the version 8 CICS link routine modules - ADACICS, ADACICT, and ADACIC0 - have been
assembled and link-edited AMODE(31),RMODE(ANY). CICS manages the loading of programs and their
invocation depending on the DATALOC values associated with their program and transaction definitions.

The Adabas IMS interface link routine ADALNI has been assembled and link-edited
AMODE(31),RMODE(ANY). This is the preferred configuration for modern IMS applications, but if there
are still AMODE(24) IMS applications executing at your installation, ADALNI may be re-linked
AMODE(31),RMODE(24).

ADAUSER AMODE/RMODE Considerations

Software AG recommends that all batch applications invoke Adabas calls through the ADAUSER
module. This module is normally link-edited with the application program and it then loads the
appropriate link routine as well as ADARUN and ADAIOR/ADAIOS. The source member has the
AMODE and RMODE directives coded as AMODE 31, RMODE ANY. This is the most flexible configuration
for assembling and linking ADAUSER with the widest variety of application programs. However, if
ADAUSER is dynamically loaded, either the RMODE assembler directive should be changed to RMODE
24 before re-assembling it or the ADAUSER module should be re-linked AMODE(31),RMODE(24) to
ensure that AMODE 24 application programs may invoke it properly below the 16-megabyte line.

2

Addressing Mode Assembly Directives in Adabas Link RoutinesInstalling Adabas with TP Monitors

UES-Enabled Link Routines

The source code for the Adabas 8 batch and TSO link routines is not included with Adabas 8. These
modules are delivered with LNKUES along with the ASC2EBC and EBC2ASC translation tables. Please
run with these UES components for this version of Adabas 8. The link routine will detect if a Version 8
target database is not UES-enabled, and will provide an Adabas response code 228 (ADARSP228) if the
call is from a client requiring UES translation.

The Adabas 8 Com-plete link routine determines whether UES support is required from the settings in the
LCOGBL module that you modify and assemble when installing Adabas with Com-plete. For complete
information, read Installing Adabas with Com-plete.

This section covers the following topics:

Default or Customized Translation Tables
Calling LNKUES and LNKUES7
Adabas 8 Jobs for z/OS Universal Encoding Support
Disabling UES Support for Adabas 8 Routines

Default or Customized Translation Tables

By default, the load modules for all Adabas 8 link routines have been linked with LNKUES and the
default translation tables.

LNKUES converts data in the Adabas buffers and byte-swaps, if necessary, depending on the data
architecture of the caller.

The two standard translation tables are:

ASC2EBC: ASCII to EBCDIC translation; and

EBC2ASC: EBCDIC to ASCII translation.

The Adabas translation table pair is provided in the section Translation Tables.

You may use the load modules with the default translation tables linked in, or you may prepare your own
customized translation tables, re-assemble the tables, and link them with the LNKUES or LNKUES7
module that is delivered.

Notes:

1. It should only be necessary to modify these translation tables in the rare case that some
country-specific character other than "A-Z a-z 0-9" must be used in the Additions 1 (user ID) or
Additions 3 field of the control block.

2. The LNKUES module is functionally reentrant; however, it is not linked that way in the Adabas load
library.

3. When linking the LNKUES load module and the translation tables, the linkage editor may produce
warning messages concerning the reentrant or reusability status of the linked module. These warning
messages can be ignored.

4. If relinking an Adabas 8 link routine for UES support, the LNKUES module must be included. This
will ensure that your new Adabas 8 applications have support for Adabas 8 direct calls and control
blocks.

3

Installing Adabas with TP MonitorsUES-Enabled Link Routines

Calling LNKUES and LNKUES7

LNKUES is called only on Adabas link routine request (X’1C’) and reply (X’20’) calls if the first byte of
the communication ID contains X’01’ and the second byte does not have the EBCDIC (X’04’) bit set. In
Adabas 8 requests, LNKUES receives control before UEXIT1. In Adabas 8 replies, LNKUES receives
control after UEXIT2.

Adabas 8 Jobs for z/OS Universal Encoding Support

The following lists the sample jobs provided to manage universal encoding support in Adabas link
routines in z/OS environments:

Sample Job Description

LNKGCICS Assembles and links the CICS globals table with LNKUES
and the default translation tables ASC2EBC and EBC2ASC.

LNKLCO8 Links the Com-plete link globals table with LNKUES and the
default translation tables ASC2EBC and EBC2ASC.

LNKLNI8 Links the IMS link routine with the LNIGBL link globals
table, LNKUES, and the default translation tables ASC2EBC
and EBC2ASC.

LNKLNK8 Links the batch link routine with the LNKGBLS link globals
table, LNKUES, and the default translation tables ASC2EBC
and EBC2ASC.

LNKLNKR8 Links the reentrant batch link routine with the LNKRGBL
link globals table, LNKUES, and the default translation tables
ASC2EBC and EBC2ASC.

Before you can use any of these jobs, they should be edited to prepare the JOB card, update the load
library names, and make other changes as necessary for your environment. Refer to the comments in the
jobs themselves for more information.

Disabling UES Support for Adabas 8 Routines

This section describes how to disable UES support in the Adabas 8 IMS TM, Com-plete, and batch/TSO
link routines, if for some reason you feel it is necessary.

 To disable UES support in link routines:

1. Edit the link globals table for the associated link routine. Set the UES parameter setting to NO.

2. Assemble the link globals table after making any other necessary modifications to the equates and
other directives in the source module as required by your installation.

3. Link the Adabas link routine with the newly assembled link globals table and do not include any of
the UES components (that is, LNKUES, ASC2EBC, or EBC2ASC).

For more information about the specific link routines, read Installing Adabas with IMS TM under Adabas
8, Installing Adabas with Com-plete under Adabas 8, and Installing Adabas with Batch / TSO under
Adabas 8.

4

UES-Enabled Link RoutinesInstalling Adabas with TP Monitors

Installing Adabas with IMS TM under Adabas 8
This section describes installation of the Adabas link routine for the IMS TM TP monitor with Adabas 8.

IMS requires an Adabas link routine if it is to communicate with Adabas databases. The Adabas Version 8
executable default link routine is delivered in member ADALNI of the AIIvrs.LOAD library (where vrs is
the number of the latest Adabas version delivered on the tape). If you want to modify this link routine, use
member ADALNI8 to do so. ADALNI8 must be linked with a link globals module you prepare and with
any link routine exits you require to create the final ADALNI load module that is loaded by the IMS
message processing program (MPP) regions when an application calls them. Members ADALNI and
ADALNI8 are provided with some default settings.

This section covers the following topics:

IMS TM Link Routines for Adabas 8

Obtaining the Adabas User ID

Obtaining the SAF ID

Installation Procedure under Adabas 8

IMS TM Link Routines for Adabas 8

These are Adabas 8 link routines for IMS TM:

ADALNI is the executable default module for message processing programs (MPPs). If you require
no changes to the defaults provided in the link routine, use this module.

Use ADALNI8 as the base module for message processing programs (MPPs). If you need to tailor
ADALNI for your installation, use ADALNI8 to generate an updated ADALNI.

ADALNK is the batch Adabas link routine for batch message processing (BMP) programs,
batch-oriented BMP programs, and batch processing programs (DLIBATCH).

ADALNI and ADALNK use the CSECT name and ENTRY directive ADABAS by default.

The Adabas Version 8 ADALNI and ADALNK are UES-enabled as distributed. See the section Enabling
Universal Encoding Support (UES) for Your Adabas Nucleus for more information.

This section describes using ADALNI and ADALNI8 only. For information on using ADALNK, read
General Considerations for Installing Adabas with Batch/TSO.

Obtaining the Adabas User ID

The Adabas user ID is obtained at execution time by the ADALNI load module from the LTERM field
(first eight bytes) of the IOPCB. The user ID is stored in the Adabas user block field UBUID and will be
used for the last eight bytes of the Adabas communication ID.

5

Installing Adabas with TP MonitorsInstalling Adabas with IMS TM under Adabas 8

Obtaining the SAF ID

The SAF ID is supported for use by Adabas SAF Security (ADASAF) if an external security package such
as IBM’s RACF or CA’s ACF2 is present. The SAF ID is obtained at execution time by the ADALNI load
module from the user ID field (bytes 33-40) in the IOPCB. To get a valid SAF user ID, SAF sign-on must
be active in your IMS installation and the user must have performed an IMS /SIGN command to log onto
an IMS terminal.

Installation Procedure under Adabas 8

 To modify the default settings and prepare the Adabas 8 link routine for IMS:

1. Copy the sample member LNIGBL provided in the Adabas 8 AIIvrs.SRCE library to any appropriate
user source library where they can be modified. These modules contain LGBLSET parameters that
are used to create default settings for link components. A complete description of LGBLSET
parameters can be found in Modifying Source Member Defaults (LGBLSET Macro) in Version 8.

2. Modify the LNIGBL member in the user source library.

Note:
The OPSYS parameter must be set to ZOS.

3. Modify and run sample job ASMGBLS as described at the top of the job. ASMGBLS can be found
in the Adabas 8 ADAvrs.JOBS library. When fully modified, the SET statement in the job should
reference the LNIGBL member you prepared in the previous step and the NAME link edit control
statement should reference the name specified by the GBLNAME parameter in the LNIGBL
member.

Once modified, submit the ASMGBLS job to assemble and link-edit the link globals module.

A new link globals module (with the name specified by the GBLNAME parameter in LNIGBL) will
be generated in the user load library identified in the ASMGBLS job.

4. Copy sample job LNKLNI8 to a user source library and modify it to link the new link globals module
you created in the previous step and any required exits with the ADALNI8 base module. Instructions
for modifying the sample job are described at the top of the job. Be sure to direct the output from this
job to an appropriate user load library. LNKLNI8 can be found in the Adabas 8 AIIvrs.SRCE library.

The module resulting from this job is ADALNI.

5. Place the ADALNI module in a load library available for IMS MPP regions.

The Adabas 8 link routine is prepared.

General Considerations for Installing Adabas with CICS
The macro-level link routine ADALNC is no longer supported for all levels of CICS running under z/OS.
These environments must run a current version of Adabas and use the supplied command-level link
component.

6

General Considerations for Installing Adabas with CICSInstalling Adabas with TP Monitors

The Adabas command-level link routine supports the CICS transaction server (CTS) environment.

Notes:

1. The OPID option for the USERID field is not supported under CICS/TS 1.1 and above; therefore, it
is not provided with the command-level link routine.

2. The CICS components from Adabas 7.4 or later are required when running with an Adabas 8 SVC.

The following sections describe specific points of Adabas/CICS installation and operation from the CICS
perspective:

Adabas Bridge for VSAM Considerations

CICS MRO Environment Requirements

Using CICS Storage Protection

Sample Resource Definitions

Requirement for CICS Command Resource Security

Adabas Bridge for VSAM Considerations

If you are running Adabas Bridge for VSAM 4.2 or 5.1 under CICS, you must run CICS 3.3 or above and
the Adabas Version 7.1 or above command-level link routine.

CICS MRO Environment Requirements

If you run the Adabas CICS command-level link routine with the CICS multiple region option (MRO),
you must set the MRO parameter to "YES" and use the default for the NETOPT parameter. In an Adabas
8 installation, these parameters are supplied via the LGBLSET macro (read Modifying Source Member
Defaults (LGBLSET Macro) in Version 8).

You can use the LGBLSET NTGPID parameter to provide a 4-byte literal for the Adabas communication
ID to be used by the Adabas SVC when applications that call Adabas span multiple application regions.

Alternatively, you can create a user exit for the link routine that:

sets UBFLAG1 (byte X’29’ in the UB DSECT) to a value of X’08’ (UBF1IMSR); and

places a 4-byte alphanumeric value in the UB field UBIMSID.

This exit is link user exit 1 (LUEXIT1). The exit then allows the Adabas SVC to provide a proper Adabas
communication ID in the Adabas command queue element (CQE) even when transactions originate in
multiple regions.

Using CICS Storage Protection

The storage protection mechanism (STGPROT) was introduced under CICS/ESA 3.3. Storage protection
permits resources to access either CICS or user storage by using the storage protection keys.

7

Installing Adabas with TP MonitorsAdabas Bridge for VSAM Considerations

User keys may not overwrite CICS storage, thus affording a degree of protection to CICS.

CICS keys may read or write either CICS or user key storage, affording the highest degree of access
to CICS resources.

Transaction isolation is an extension of the storage protection mechanism. It further protects CICS
resources by isolating them in subspaces. This protects user key resources from one another, and protects
CICS key resources from the CICS kernel. Transaction isolation can be enabled globally through the
CICS TRANISO system initialization (SIT) parameter, and for each CICS transaction with the new
resource definition ISOLATE keyword. Transaction isolation places some restrictions on CICS resources
that must be available both during the life of the CICS system and to all transactions running in the CICS
system.

In Adabas 8 installations, the CICS link routine always uses a task-related user exit, module ADACICT,
so storage protection is supported by default.

Sample Resource Definitions

Under CICS/TS 1.1 and above for z/OS, the preferred method for defining and installing CICS programs
and transactions is RDO (resource definition online). The CICS documentation no longer recommends the
assembly of PPT and PCT entries to define resources.

Modify and use the sample DEFINE statements located in member DEFADAC as input to the IBM
DFHCSDUP utility to define the Adabas CICS command-level components. Consult the appropriate IBM
CICS documentation for information on the DFHCSDUP utility. The DEFADAC member can be found in
the Adabas 8 CICS command-level source library (ACIvrn.SRCE).

Requirement for CICS Command Resource Security

The Adabas CICS link routines require a command security level of "UPDATE" for the EXITPROGRAM
CICS command resource identifier. This allows the Adabas CICS application stub to issue the EXEC
CICS EXTRACT EXIT command without raising the NOTAUTH response from CICS and the security
software. The Adabas CICS application stub needs to issue the EXEC CICS EXTRACT EXIT to
determine that the given Adabas task-related user exit (TRUE) is installed and enabled, and to locate the
CICS global work area (GWA) associated with the given TRUE so that various data structures are made
available to the Adabas CICS application stub programs.

Installing Adabas with CICS under Adabas 8
A CICS application that uses Adabas services requires an Adabas CICS execution unit to function.

In Adabas versions prior to 8.2, the Adabas CICS execution unit was comprised of:

the Adabas CICS stub, ADACICS

the stub module’s direct call interface ADADCI

the Adabas task-related user exit (TRUE), ADACICT

the globals table, named CICSGBL by default.

8

Installing Adabas with CICS under Adabas 8Installing Adabas with TP Monitors

The stub module needs to know the name of the Adabas TRUE it is to invoke. In addition, the Adabas
TRUE needs to know the name of the globals table so that it can obtain run-time information, such as the
locations of callable exits and the settings of various operating parameters (such as the length of user
information).

Effective with Adabas 8.2 and later versions, the Adabas CICS execution unit is comprised of:

the Adabas CICS stub, ADACICS

the stub module’s direct call interface, ADADCI

an Adabas CICS names module, ACINAMES

one or more Adabas task-related user exits (TRUEs), ADACICT

a globals table associated with the stub module and the TRUE.

The names module (ACINAMES) is linked with the stub (ADACICS) to provide the name of the
associated TRUE and the globals table for a given CICS application. In addition, an Adabas CICS
installation options table (ACIOPT) is required and used by the Adabas CICS installation program,
ADACIC0, to load the Adabas globals tables required by the Adabas CICS execution units that will be
installed and activated in the CICS region.

This section covers the following topics:

The Adabas CICS Application Stub (ADACICS)

The Adabas CICS Names Module (ACINAMES)

The Adabas CICS Installation Options Table (ACIOPT)

The MACINS Macro

The MACIOPT Macro

Adabas Task-Related User Exits (TRUEs)

Supplied Modules

Installation Procedure

The Adabas CICS Application Stub (ADACICS)

The Adabas CICS application stub is invoked via EXEC CICS LINK or via the direct-call interface from a
CICS application program that intends to use Adabas database services. The stub consists of the
ADACICS module, the ADADCI module, the CICS modules DFHEAI and DFHEAI0, and the
ACINAMES module. The resultant load module may be given any name that is specified in the link
globals ENTPT keyword for the Adabas execution unit. The new module name is most easily created with
the linkage editor.

9

Installing Adabas with TP MonitorsThe Adabas CICS Application Stub (ADACICS)

The Adabas CICS Names Module (ACINAMES)

The Adabas CICS names module (ACINAMES) is a small stub containing the name of the TRUE to be
invoked from this stub and the name of the link globals table associated with the Adabas CICS execution
unit. The link globals table also contains the names of the stub and the TRUE, but linking it with the stub
has the following performance disadvantages:

The stub is functionally reentrant and the link globals table in CICS is modifiable during execution

Linking the globals table with the stub would also cause duplicate copies of the link globals table to
be kept in CICS storage at the same time, wasting space and possibly leading to problems if the copy
loaded by ADACIC0 differs from the copy linked with the Adabas stub

Using the ACINAMES module allows you to relink the Adabas CICS stub with any supported load
module name and gives that stub the ability to invoke the Adabas CICS TRUE with the name provided in
the ACINAMES module. The TRUE may also be relinked with any given valid load module name. This
permits the CICS region to execute different Adabas stubs and TRUEs built out of the same load modules
but tailored as required for different CICS applications. No changes are needed in the CICS application
programs themselves.

The Adabas CICS names module is built using the MACINS macro. The ACINAMES module may be
given any load module name, but the generated CSECT name (ordinarily generated by the MACINS
macro assembly job, ASMCINS) within the load module must be ACINAMES.

The Adabas CICS Installation Options Table (ACIOPT)

An additional component, an Adabas CICS installation options table (ACIOPT) is required and used by
the Adabas CICS installation program, ADACIC0, to load the Adabas globals tables required by the
Adabas CICS execution units that will be installed and activated in the CICS region.

The Adabas CICS installation options table is built using the MACIOPT macro.

The MACINS Macro

Use the MACINS macro to build the Adabas CICS names module, ACINAMES. The ACINAMES
module may be given any load module name, but the generated CSECT name (ordinarily generated by the
MACINS macro job) within the load module must be ACINAMES. In addition, the ACINAMES module
should be included when the Adabas CICS stub is relinked.

The MACINS macro is provided in the Adabas CICS z/OS source library. A sample ACINAMES source
member is provided in the ACIvrs source library on z/OS systems.

The syntax of the MACINS macro is shown below:

All MACINS parameters are required and are described in the following table:

10

The Adabas CICS Names Module (ACINAMES)Installing Adabas with TP Monitors

Parameter Description Default

GTNAME Specifies the name of the link globals table associated with this
Adabas CICS stub.

This parameter is required.

The name specified by the GTNAMES parameter must be the
name of a module that has been defined to CICS. It must also
match the name of a link globals table specified in the Adabas
CICS Installation Options Table (ACIOPT).

There is no default.

TRUENAME Specifies the name of the Adabas CICS task-related user exit
(TRUE) to be invoked by this Adabas CICS stub.

This parameter is required.

The name specified by the TRUENAME parameter must be the
name specified in the TRUENM parameter of the link globals
table specified in the corresponding GTNAME parameter

There is no default.

Example

In the following example, an ACINAMES module is prepared for an Adabas CICS stub named ADABAS
that will use an ADABAS CICS TRUE named ADATRUE and a link globals table named CICSGBL. The
source member to create the ACINAMES module might look like this:

* Sample "ACINAMES" for Adabas 8.2 multiple-TRUE support.
 MACINS TRUENAME=ADATRUE, X
 GTNAME=CICSGBL

The MACIOPT Macro

Use the MACIOPT macro to build the Adabas CICS installation options table which may either be linked
with ADACIC0 or, if named ACIOPT (the default), is defined to CICS and loaded by ADACIC0 when
the Adabas CICS installation process is started.

The MACIOPT macro is located in the ACIvrs source library on z/OS systems. A sample ACIOPT source
member is provided in the ACIvrs source library on z/OS systems.

The syntax of the MACINS macro is shown below:

11

Installing Adabas with TP MonitorsThe MACIOPT Macro

An ENTRY statement is required on every invocation of the MACIOPT macro. It designates the ENTRY
type, which in turn, determines which additional parameters are valid for the given entry. The three types
of ENTRY statement and their associated parameters are described in the rest of this document.

The ENTRY=GLOBAL Statement
The ENTRY=GROUP Statement
The ENTRY=FINAL Statement
Example

The ENTRY=GLOBAL Statement

The ENTRY=GLOBAL statement is always the first entry for the ACIOPT source member. Only one
ENTRY=GLOBAL statement should be specified per source member and it should precede all other
MACIOPT statements.

The ENTRY=GLOBAL statement specifies global parameters to be used by the CICS installation
program. The parameters associated with ENTRY=GLOBAL are described in the table below:

Parameter Description Default

GEN Indicates whether the ACIOPT CSECT or a mapping DSECT
of the ACIOPT module should be generated.

Valid values are CSECT or DSECT.

CSECT

CNAME Identifies the load module name to be generated when
link-editing a module directly with ADACIC0. Any module
name can be specified, but ACIOPT is the recommended name
(and the default).

An ENTRY ACIOPT statement is generated in the CSECT of
the load module to ensure that the V-CON in ADACIC0 will be
satisfied when a module with a different name is linked.

We recommend that you use the default load module name of
ACIOPT, defining ACIOPT to CICS and allowing ADACIC0
to load the ACIOPT module when the program is executed to
install the Adabas CICS components.

ACIOPT

12

The MACIOPT MacroInstalling Adabas with TP Monitors

Parameter Description Default

IMSGDEST Identifies the destination type for the installation progress and
error messages produced by ADACIC0: console, transient data
queue, or both.

IMSGDEST=CONSOLE is the default and causes all
installation messages to be written to the console with EXEC
CICS WRITE OPERATOR commands. This is how messages
for previous Adabas CICS components produced installation
messages.

IMSGDEST=TDQ causes ADACIC0 to determine if a named
CICS transient data queue is available and, if so, to write
installation progress and error messages to that queue. If
IMSGDEST=TDQ is specified, the IMQNAME parameter must
also be specified to provide the name of the CICS transient data
queue for the messages. If the named transient data queue is not
enabled and open, messages will be written to the console. No
error message is written to indicate that the transient data queue
could not be used. If the CICS transient data queue is open and
enabled, message ADAK001 is written to the console to
indicate that all further messages will be written to the CICS
transient data queue. If, during ADACIC0 processing, the
transient data queue becomes unavailable, subsequent messages
will be written to the console.

IMSGDEST=BOTH causes installation progress messages to be
written both to the console and to a named CICS transient data
queue.

CONSOLE

IMQNAME Specifies the 4-character name of the CICS transient data queue
where installation progress and error messages should be
written. If IMQNAME is specified then the IMSGDEST
parameter must be set to TDQ or BOTH.

The named transient data queue must be defined to CICS as
either an extra-partition queue or as an indirect queue which
references an extra-partition data queue. The simplest way to set
up such a data queue is to make it indirect and refer to the
CICS-supplied extra-partition data queue CSSL.

The queue may be defined using the CICS RDO facility (using
the CEDA transaction) or using the DFHDCT macro. For more
information, consult the appropriate IBM CICS documentation.

Installation messages written to a CICS transient data queue are
variable length records with no printer control character in the
first byte of the record. The records will not exceed 132 bytes in
length.

There is no default.

13

Installing Adabas with TP MonitorsThe MACIOPT Macro

Parameter Description Default

MNTRUE Specifies a maximum value for the number of Adabas CICS
execution units (and thus globals tables) to be installed for this
CICS or CICSplex.

If this number is exceeded, a warning MNOTE and condition
code of 4 is produced by the assembler.

This parameter is provided as an option to place an upper limit
on the number of Adabas CICS execution units that may be
installed. You might find this necessary to limit the storage and
resource constraints multiple Adabas CICS execution units
might place on your system. Although the setting for MNTRUE
may be quite high, the storage, resources and Adabas CICS
components must be available to be installed.

8

The ENTRY=GROUP Statement

ENTRY=GROUP statements define the names of the Adabas globals tables that should be loaded and
used to install the Adabas CICS execution units. More than one ENTRY=GROUP statement can be
specified in the ACIOPT source member; all ENTRY=GROUP statements must be specified after the
ENTRY=GLOBAL statement and before the ENTRY=FINAL statement.

Only one parameter can be specified for ENTRY=GROUP:

Parameter Description Default

GTNAME Specifies the name of the link globals table to be loaded and
used to install an Adabas CICS execution unit.

This parameter is required. Only one GTNAME parameter can
be specified on each ENTRY=GROUP statement.

There is no default.

The ENTRY=FINAL Statement

The ENTRY=FINAL statement must be the last MACIOPT statement in the source member. It causes the
actual ACIOPT CSECT statements to be generated. Only one ENTRY=FINAL statement may be
specified in the source member.

There are no parameters for the ENTRY=FINAL statement

Example

If assembled and link-edited, the following source member will produce the load module ACIOPT and
will install two Adabas CICS execution units. One will load a globals table named LNKCI02 and the other
will load a globals table named CICSGBL. Installation messages will be written to the CICS transient data
queue named ACIQ, if that queue is available.

 MACIOPT ENTRY=GLOBAL,IMSGDEST=TDQ,IMQNAME=ACIQ,MNTRUE=2
 MACIOPT ENTRY=GROUP,GTNAME=LNKCI02
 MACIOPT ENTRY=GROUP,GTNAME=CICSGBL
 MACIOPT ENTRY=FINAL

14

The MACIOPT MacroInstalling Adabas with TP Monitors

Adabas Task-Related User Exits (TRUEs)

Adabas 8.2 introduces support for the installation of multiple CICS task-related user exits (TRUEs) and
Adabas application stubs from a single execution of the ADACIC0 installation program. Multiple TRUEs
allow your site to tailor different Adabas CICS execution options in the same CICS region with a
centralized installation procedure and software.

The following diagram depicts the processing flow of the installation of multiple Adabas CICS TRUE and
application stub support.

The following diagram depicts the processing flow of the execution of this multiple Adabas CICS TRUE
and application stub support.

15

Installing Adabas with TP MonitorsAdabas Task-Related User Exits (TRUEs)

Supplied Modules

The following table lists the modules supplied in your Adabas installation to support the installation of
Adabas with CICS under Adabas 8.

Module Description

ADACIC0 CICS installation program

ADACICS CICS command-level module.

ADACICT CICS task-related user exit (TRUE) module.

Installation Procedure

To install the Adabas 8 CICS link routine components, complete the following steps:

Step 1. Copy the Load Modules
Step 2. Prepare the Adabas CICS Installation Options Table
Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT
Step 4. Prepare the Adabas CICS Names Module -- ACINAMES
Step 5. Prepare the Adabas CICS Application Stub -- ADACICS
Step 6. Prepare the CICS Link Globals Table -- CICSGBL
Step 7. Assemble the CICS Link Globals Table -- ASMGBLS
Step 8. Link the Assembled CICS Link Globals Table -- LNKGCICS
Step 9. Modify CICS Installation Values -- DEFADAC
Step 10. Update the CICS CSD File
Step 11. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0
Step 12. Start the CICS

16

Supplied ModulesInstalling Adabas with TP Monitors

Step 1. Copy the Load Modules

Copy the Adabas 8 CICS load modules from the Adabas distribution library to a load library that will be
in the CICS DFHRPL concatenation (see sample member CPYCICSM in the Adabas 8 ADAvrn.JOBS
library).

Step 2. Prepare the Adabas CICS Installation Options Table

An Adabas CICS installation options table (ACIOPT) is required to identify all the Adabas globals tables
that will be needed for the proper execution of each Adabas CICS execution unit in the CICS region or
CICSplex. The installation program (ADACIC0) run in Step 12 will obtain information of a global nature
from the table such as the destination for writing of installation messages. It will also scan the table and
load each Adabas globals table named in the ACIOPT module. In turn, each loaded globals table serves as
the basis for installing each Adabas CICS execution unit.

The Adabas CICS installation options table is built by coding a series of MACIOPT macros into a source
member, then assembling and linking that source member into a library that will be available during CICS
execution. The load module may be linked:

With the ADACIC0 installation program, or

As a standalone module named "ACIOPT", which is then defined as a program of the same name to
CICS.

For best performance, Software AG recommends linking a standalone ACIOPT module, defining it to
CICS as program ACIOPT. This will allow ADACIC0 to load ACIOPT during the installation process.

 To prepare the Adabas CICS installation options table, complete the following steps:

1. Code a source member, preferably called ACIOPT that contains MACIOPT macro statements to be
loaded by the ADACIC0 program at execution time. The MACIOPT macro statements define each
globals table that will be needed by each Adabas CICS execution unit.

The ACIOPT source member will consist of one MACIOPT ENTRY=GLOBAL entry, multiple
MACIOPT ENTRY=GROUP entries and one MACIOPT ENTRY=FINAL entry.

The MACIOPT ENTRY=GLOBAL specification must be first specification in the source
member; only one MACIOPT ENTRY=GLOBAL specification can be made per ACIOPT
generation.

The MACIOPT ENTRY=FINAL specification must be the last entry for the ACIOPT
generation; only one MACIOPT ENTRY=FINAL specification can be made per ACIOPT
generation.

Multiple MACIOPT ENTRY=GROUP entries may be specified, but they must follow the
MACIOPT ENTRY=GLOBAL specification and precede the MACIOPT ENTRY=FINAL
specification in the source member.

The MACIOPT macro is located in the ACIvrs source library on z/OS systems. For complete
information on the MACIOPT macro, read The MACIOPT Macro, elsewhere in this section. A
sample ACIOPT source member is provided in the ACIvrs source library on z/OS systems.

17

Installing Adabas with TP MonitorsInstallation Procedure

2. Assemble and link the ACIOPT source module either as the standalone module named "ACIOPT" or
with any load module name linked with ADACIC0. If linked as a standalone module it must be named
"ACIOPT" (see sample job ASMCOPT located in the ACIvrs source library) and it must be defined
as a program to CICS.

The ACIOPT module may be defined to CICS using the CEDA/RDO facility or the DFHCSDUP
utility. Sample DFHCSDUP statements are provided in the DEFADAC member in the ACIvrs source
library on z/OS systems.

Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT

An Adabas task-related user exit (TRUE) is created by relinking the Adabas ADACICT module with a
NAME statement, providing the desired TRUE name. One or more Adabas TRUEs can be created.

Note:
The Adabas TRUE name is specified later in the TRUENM parameter in the link globals table (set Step 6)
and in the TRUENAME parameter when the ACINAMES module (see Step 4) is prepared.

 To prepare the Adabas CICS TRUE, complete the following steps:

1. Relink the ADACICT module with a NAME or PHASE statement giving a new name for each
Adabas TRUE.

2. Define each named Adabas TRUE as a program to CICS.

A sample job, LNKATRU, is provided in the ACIvrs source library. This sample links the Adabas TRUE
with a load module named ADATRUE so that it can be installed and referenced in CICS.

Step 4. Prepare the Adabas CICS Names Module -- ACINAMES

The ACINAMES module is a small stub containing the name of the TRUE to be invoked from this stub
and the name of the link globals table associated with the Adabas execution unit. After the ACINAMES
source member is coded, it should be provided as input to the assembler and either punched by the
assembler to a text library or directly link-edited as a load module. The subsequent text deck or load
module would then be made available to the linkage editor when the Adabas CICS stub is relinked to
change its name or to update the ACINAMES module it uses.

 To prepare the ACINAMES module, complete the following step:

Code the source for the ACINAMES module using the MACINS macro. For complete information,
read The MACINS Macro.

The MACINS macro is provided in the Adabas CICS z/OS source library.

Sample job, ASMCINS, which is provided in the ACIvrs source library, assemble the ACINAMES
module and links it with the Adabas CICS application stub (see Step 5), and names the stub "ADABAS".

Example

For example, the source member to create the ACINAMES module might look like this:

18

Installation ProcedureInstalling Adabas with TP Monitors

* Sample "ACINAMES" for Adabas 8.2 multiple-TRUE support.
 MACINS TRUENAME=ADATRUE, X
 GTNAME=CICSGBL

This ACINAMES module uses an ADABAS CICS TRUE named ADATRUE and a link globals table
named CICSGBL.

Step 5. Prepare the Adabas CICS Application Stub -- ADACICS

The Adabas application stub is invoked via EXEC CICS LINK or via the direct-call interface from a CICS
application program that intends to use Adabas database services. The application stub consists of the
ADACICS module, the ADADCI module, the CICS modules DFHEAI and DFHEAI0 and the
ACINAMES module. The resultant load module may be given any name that is specified in the link
globals ENTPT keyword for the Adabas execution unit. The new module name is most easily created with
the linkage editor.

 To prepare the CICS application stub (ADACICS), complete the following step:

Relink the Adabas CICS application stub module, ADACICS, replacing ACINAMES in the module
with the name of the ACINAMES module created in the previous step (Step 4).

Sample job, ASMCINS, which is provided in the ACIvrs source library, assemble the ACINAMES
module and links it with the Adabas CICS application stub (see Step 4), and names the stub
"ADABAS".

Example

For example, the link-edit control statements to create the Adabas module as the Adabas CICS stub might
be:

//LKED.SYSIN DD *
 MODE AMODE(31),RMODE(ANY)
 REPLACE ACINAMES
 INCLUDE ADALIB(ADACICS)
 INCLUDE USERLIB(ACINAMES)
 ENTRY ADACICS
 NAME ADABAS(R)
/*

In this example, the prepared ACINAMES module is used for an Adabas CICS stub named ADABAS.

Step 6. Prepare the CICS Link Globals Table -- CICSGBL

Link globals tables must be prepared to match the Adabas CICS execution units defined in the ACIOPT
module. These are built by editing or creating source members that use the LGBLSET macro and its
keywords.

Modify the sample CICSGBL member found in the Adabas 8 ACIvrn.SRCE library. This member
contains sample default installation (LGBLSET) parameter settings. For more information about what to
modify in this member, read Modifying Source Member Defaults (LGBLSET Macro) in Version 8.

Notes:

19

Installing Adabas with TP MonitorsInstallation Procedure

1. Adabas 8.2 no longer supports the ADACIRQ module or the reading of an input CICS transient data
queue to obtain the name of the link globals table during installation. This was necessary to permit
the installation of multiple Adabas CICS execution units from the same installation program.

2. The LGBLSET macro is included in the Adabas CICS link routine source library only for the Adabas
8.1.4 patch in which this feature was introduced. In all other releases, the LGBLSET macro is located
in the Adabas source library.

 To prepare the link globals table, complete the following steps:

1. Code the link globals table using the LGBLSET macro as described in Modifying Source Member
Defaults (LGBLSET Macro) in Version 8.

The OPSYS parameter must be set to ZOS.

Be sure to code the ENTPT and TRUENM parameters on each LGBLSET macro so they match the
intended Adabas CICS stub name and Adabas CICS TRUE name to be used in a given Adabas CICS
execution unit. The Adabas CICS installation program attempts to load each globals table in turn and
uses the loaded table to provide the data required to install and activate the components of the
execution unit.

2. Save the modified CICSGBL member with a unique name in an appropriate user source library.

Step 7. Assemble the CICS Link Globals Table -- ASMGBLS

Modify and run sample job ASMGBLS as described at the top of the job. ASMGBLS can be found in the
Adabas 8 ADAvrs.JOBS library. When fully modified, the SET statement in the job should reference the
CICSGBL member you prepared in Step 6 and the NAME link edit control statement should reference the
name specified by the GBLNAME parameter in the CICSGBL member.

Step 8. Link the Assembled CICS Link Globals Table -- LNKGCICS

Review and run the LNKGCICS member in the ACIvrn.SRCE library to link the newly assembled globals
table from the previous step with any user or Software AG product exits. (For information about specific
Software AG product exits, read the installation documentation for the product.) The LNKGCICS member
provides specific instructions. Be sure to link the globals table into a load library that will be made
available to CICS in the DFHRPL library concatenation. Note that any user or Software AG link routine
exits should be link-edited with this load module.

Step 9. Modify CICS Installation Values -- DEFADAC

Modify the DEFADAC member to provide the correct name of the link routine globals default table
created in Step 6. The default module name is CICSGBL. Tailor this member for any other CICS
installation values as required.

Step 10. Update the CICS CSD File

Run the IBM DFHCSDUP utility to update the CICS CSD file for the desired CICS using the modified
DEFADAC member as input.

20

Installation ProcedureInstalling Adabas with TP Monitors

Step 11. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0

Modify the CICS PLTPI table to add an entry for the CICS installation program ADACIC0. The
ADACIC0 installation program will start the TRUEs once CICS is started. Use member ADAPLTXX
from the Adabas 8 ACIvrn.SRCE library as a sample for enabling and starting a legacy Adabas TRUE and
the new Version 8 TRUE in the second phase of the PLT.

Once the PLTPI table is modified, assemble and link the modified PLTPI table into a library that will be
available to the desired CICS region.

Step 12. Start the CICS

Start the CICS and note any messages relating to the installation of the Adabas TRUE modules that appear
on the console. When CICS starts, it will call ADACIC0 (because it is in the PLTPI table), which will
install the Adabas CICS TRUEs.

Installing the CICS High-Performance Stub Routine for
Adabas 8
This section describes installation of the CICS high-performance stub routine with Adabas 8. The modules
and installation described here are provided so your existing Adabas 8 applications can continue to
function as usual.

The Adabas high-performance stub routine extends the direct call interface (DCI) facility that is available
with the Adabas CICS command-level link component to applications written in languages other than
Software AG’s Natural (for example, Assembler, COBOL, PL/I).

Note:
The stub routine must be used with the Adabas CICS command-level link component. The stub routine
will not function properly with the Adabas CICS/VSE macro-level link component. The LNCSTUB
module delivered in the Adabas Version 8 library will also function properly with Adabas Version 7.4
CICS link routines.

The DCI enables a CICS/TS application to call Adabas through the Adabas command-level link routine.
The overhead incurred when the EXEC CICS LINK and EXEC CICS RETURN command set is used to
transfer program control is thus avoided. Once the proper environment has been established with the
initial call (IC) command from the high-performance stub or Natural 3.1 or above, the DCI permits a
BALR interface to be used.

The high-performance stub routine is written in Assembler language. When linked with the application
program, it serves as an interface between the application and the Adabas CICS command-level link
component. The application program can then issue CALL statements to access the stub routine when
executing an Adabas command.

An application at CICS/TS 1.1 level or above derives the following advantages from the
high-performance stub:

improved performance and throughput when issuing Adabas commands under CICS/TS 1.1 or above
due to the reduced use of CICS services related to the CICS LINK and RETURN program control
mechanism.

21

Installing Adabas with TP MonitorsInstalling the CICS High-Performance Stub Routine for Adabas 8

a call mechanism for Adabas requests under CICS/TS 1.1 or above which is simpler than the
methods normally employed to pass control with information from one program to another in the CICS
environment.

This section covers the following topics:

Restrictions and Requirements

Stub Components

Installation Overview

Performance Using LNCSTUB

Modifying Source Member Defaults (ADAGSET Macro)

Restrictions and Requirements

The following restrictions and requirements apply to the high-performance stub routine:

1. CICS/TS 1.1 or above required

The Adabas high-performance stub routine is supported under CICS/TS 1.1 or above.

A CICS transaction work area (TWA) of at least 24 bytes or a CICS COMMAREA of at least 32
bytes must be provided to the application for the proper execution of the high-performance stub
routine. The Adabas 8 LNCSTUB module and the Adabas 8 installation verification programs now
use the CICS COMMAREA instead of the CICS TWA to pass data between the IVP programs,
LNCSTUB, and the CICS link routines. The use of the CICS COMMAREA has the following
advantages over the use of the CICS TWA:

The size of the COMMAREA can be set on a call-by-call basis by the application program,
while the TWA size is set when the CICS transaction is defined.

Applications using the CICS COMMAREA may run in stages II or III of CICS PLTPI
processing. The CICS TWA is not available during PLTPI processing.

The dynamic sizing of the CICS COMMAREA is better suited to the unbounded format of the
Adabas 8 ACBX direct call, ACBX control block, and Adabas Buffer Descriptions (ABDs). For
mor information on the Adabas Version 8 direct call interface and the data structures it uses,
read the Adabas Command Reference Guide

2. CICS Command-Level Link Required

The application program must be written using the CICS command-level interface and instructions,
and may not issue any CICS macro level commands.

3. Supported Programming Languages

The application program may be written in ALC (Assembler language), VS/COBOL, COBOL II,
COBOL/LE, PL/I, or C. Installation verification programs (IVPs) are provided in ALC and COBOL
in the ACIvrs.SRCE library

22

Restrictions and RequirementsInstalling Adabas with TP Monitors

Additional requirements for specific programming languages are discussed later in the sections relating to
each language.

Stub Components

Type Member Description

Source ADAGSET
ALCSIVP
COBSIVP
LNCSTUB

macro required for assembling LNCSTUB and ALCSIVP
source for the ALC install verification
source for the COBOL install verification
source for the high-performance stub

Job control JCLALCI
JCLCOBI
JCLLNCS

sample JCL for ALC install verification
sample JCL for COBOL install verification
sample JCL for LNCSTUB (high-performance stub)

Installation Overview

Use the following procedure to install the Adabas CICS high-performance stub routine:

1. Edit, preprocess, assemble and link the LNCSTUB module.

2. Define the application programs, optional IVPs and CICS link components to CICS using RDO or
the DFHCSDUP utility.

3. (Optional) Modify, preprocess, compile or assemble, link, and execute the desired installation
verification program (IVP).

4. Modify, preprocess, compile or assemble, link, and execute the application programs.

This procedure is described in the following steps:

Step 1: Install the LNCSTUB Module
Step 2: (Optional) Install and Execute an IVP
Step 3: Link and Execute the Application Program

Step 1: Install the LNCSTUB Module

The Adabas CICS high-performance stub routine is an Assembler language source module, provided in
member LNCSTUB in the ACIvrs.SRCE library.

Step 1 has the following substeps:

Edit the ADAGSET Macro
(Optional) Set the LNCSTUB Entry-Point Alias
Modify Member JCLLNCS
Preprocess, Assemble, and Link the LNCSTUB Module
Make the LNCSTUB Available to Application Programs

23

Installing Adabas with TP MonitorsStub Components

Edit the ADAGSET Macro

Note:
For information about editing the ADAGSET macro, refer to the section Modifying Source Member
Defaults (ADAGSET Macro).

Edit the ADAGSET macro in a library that will be available in the SYSLIB concatenation when
LNCSTUB is assembled.

Both the LNCSTUB and the ALCSIVP IVP modules now take values from the following ADAGSET
keywords:

LOGID, which identifies the database ID

PARMTYP, which determines whether the TWA or COMMAREA is used by the LNCSTUB and the
ALCSIVP programs to pass data

ENTPT, which specifies the name of the CICS link routine or CICS stub to be invoked by the
LNCSTUB and ALCSIVP programs. If your Adabas CICS command-level link component program
has been linked with a name other than ADACICS, change the value of the ENTPT keyword in the
ADAGSET macro. The value in this field is used in the priming EXEC CICS LINK command issued
by LNCSTUB.

TRUENM, which specifies the name of the Adabas TRUE to use

(Optional) Set the LNCSTUB Entry-Point Alias

The Adabas 8 LNCSTUB module provides an assembler GBLC variable (&STBNAME) that sets an
entry-point alias that can be used by calling programs. Modify the SETC statement near the top of the
LNCSTUB source member to set an alias if desired. The application program can then either issue its call
using "LNCSTUB" or the entry-point alias coded in this SETC statement.

Modify Member JCLLNCS

Member JCLLNCS (in the ADAvrs.JOBS library) is used to preprocess, assemble, and link the
LNCSTUB module. To modify this JCL to meet your site requirements, change the JOB card in the
member and the symbolic values as indicated in the following table:

24

Installation OverviewInstalling Adabas with TP Monitors

Value Description

&SUFFIX Suffix value used for the CICS translator. The default value is “1$”.

&ASMBLR Assembler program used to assemble the LNCSTUB source (ASMA90).

&M Member name to be processed; code LNCSTUB or ALCSIVP.

&STUBLIB A load library to contain the LNCSTUB load module. This library should be
available to application programs when they are linked.

&INDEX High-level qualifier for the CICS macro library used in the SYSLIB DD statement
for the assembler.

&INDEX2 High-level qualifier for the CICS load library to use for the translator STEPLIB
DD statement, and for the SYSLIB in the link step.

&ADACOML Adabas command-level source library containing the ADACB, ADAGDEF,
ADAGSET, and LNCDS copy code and macros.

&ADASRCE Adabas source library used for additional copy code or macro expansion.

&STBSRCE Source library containing the distributed Adabas CICS high-performance stub
LNCSTUB.

&MAC1 Primary system macro library, usually SYS1.MACLIB.

&OUTC Output class for messages, SYSPRINT, SYSOUT.

® Step region size.

&NCAL Value for the linkage editor NCAL parameter. The recommended value is NCAL.

&LSIZE Primary and secondary table sizes used by the linkage editor.

&WORK DASD device type to use for temporary and utility data sets.

Preprocess, Assemble, and Link the LNCSTUB Module

Because of the use of 31-bit instructions, the high-level assembler (ASMA90) should be used to assemble
the LNCSTUB module after CICS preprocessing.

Note:
The LNCSTUB module can be linked reentrant or reusable. If it is linked reentrant, it is automatically
reusable; if it is linked reusable, it is not automatically reentrant.

In addition to the CICS macro library, the Adabas CICS command-level source library and standard
Adabas source library must be provided to the SYSLIB DD statement in the assembly step:

Do not concatenate any CICS load libraries in the SYSLIB DD statement when linking the
LNCSTUB load module.

In the SYSLIN data stream after the LNCSTUB object deck, use just the control statement

NAME LNCSTUB(R)

Do not include the CICS stub modules DFHEAI0 & DFHEAI1 with the LNCSTUB load module. As
a result, however, the following occurs:

25

Installing Adabas with TP MonitorsInstallation Overview

The linkage editor issues IEW462 or similar messages indicating that DFHEAI1 is an
unresolved external reference;

The LNCSTUB module may be marked NOT EXECUTABLE by the linkage editor;

A condition code of 8 may be set in the link step.

When the application program is linked with LNCSTUB, all the external references are resolved. Use
of the link-edit parameters LET and NCAL are recommended so the missing CICS stub pieces result
in a condition code of ’04’ from the link-edit of LNCSTUB.

Make the LNCSTUB Available to Application Programs

The LNCSTUB module has an entry name of ADABAS, which can be used by the application program as
the object of a CALL statement to pass control to LNCSTUB with a list of parameters. The
language-specific calling conventions for LNCSTUB are discussed later in this section.

The LNCSTUB module has either an entry name of LNCSTUB or the alias entry name as coded in the
SETC statement to set the value of &STBNAME. Either value may be used by the application program as
the object of a CALL statement to pass control to LNCSTUB with a list of parameters. The
language-specific calling conventions for LNCSTUB are discussed later in this section.

The LNCSTUB load module must be available to the link step of the application program that is to use the
DCI facility.

Note:
In the same step, the CICS load library should be available; otherwise, the external references to the CICS
stub modules will not be resolved.

Place the LNCSTUB load module in a library available to your application language assembler or
compiler so that it will be included when the application programs are linked.

Step 2: (Optional) Install and Execute an IVP

Two installation verification programs (IVPs) are provided in source form: one for Assembler language,
and one for COBOL/VS. These programs are samples for implementing the Adabas high-performance
stub routine in your applications. They also provide a way of verifying the proper installation of the
LNCSTUB module.

This section describes each of these IVPs:

Install and Execute the Assembler IVP: ALCSIVP
Install and Execute the COBOL IVP: COBSIVP

Note:
The two installation verification programs ALCSIVP and COBSIVP only use fields AA and AE from the
Software AG-provided demonstration EMPLOYEES file. For more information about the Software
AG-provided demonstration files, read Load the Demonstration Files in the z/OS installation instructions.

26

Installation OverviewInstalling Adabas with TP Monitors

Install and Execute the Assembler IVP: ALCSIVP

The source member ALCSIVP is provided to demonstrate and verify the use of the Adabas DCI using the
LNCSTUB module. This program issues a series of Adabas commands using the conventional CICS
LINK/RETURN mechanism, produces a partial screen of output data, then reexecutes the same call
sequence using the Adabas DCI and the LNCSTUB subprogram.

 To install and execute the Assembler IVP, ALCSIVP:

1. Modify the source member ALCSIVP in ACIvrs.SRCE:

Edit the file number field DBFNR to be sure it matches the value needed to access the
EMPLOYEES file on the Software AG-provided demonstration database you intend to use. For
more information about the Software AG-provided demonstration files, read Load the
Demonstration Files in the z/OS installation instructions.

The ALCSIVP program will take the database-id from the LOGID keyword specified in the
ADAGSET macro.

Check the fields FBUFF, SBUFF and VBUFF for values consistent with your EMPLOYEES
file’s FDT and data content.

Check the name used in the EXEC CICS LINK statement to be sure it matches the name of your
Adabas CICS command-level link component program. The field LNCNAME is now used and
it derives its value from the ENTPT keyword of the ADAGSET macro.

The entry-point alias of the LNCSTUB module can be tested in ALCSIVP by changing the
SETC statement for the field &STUBNM to match the entry-point name coded in the
LNCSTUB source module using its SETC fieldname &STBNAME.

Note:
The ALCSIVP program will use the value of the ADAGSET keyword PARMTYP to determine
whether to use the CICS TWA or CICS COMMAREA to pass data between itself and the
Adabas CICS link routine during the first part of its processing when it uses the CICS LINK
command to invoke the Adabas CICS link routine. If PARMTYP=TWA is coded in the
ADAGSET macro used when ALCSIVP is assembled the CICS TWA is used, otherwise the
CICS COMMAREA is used on the EXEC CICS LINK commands.

2. Modify the sample job stream, JCLALCI in ADAvrs.JOBS:

Member JCLALCI is used to preprocess, assemble, and link the installation verification
program ALCSIVP. Place the load module in your CICS DFHRPL library concatenation..

To modify this JCL to meet your site requirements, change the JOB card in the member and the
symbolic values as indicated in the table used in step 1 (see Step 1, Modify Member JCLLNCS).

The JCLALCI member uses one additional symbolic parameter: &CICSLIB. This is the name of
your CICS RPL library.

3. Using the modified sample JCLALCI member, preprocess, assemble, and link ALCSIVP.

27

Installing Adabas with TP MonitorsInstallation Overview

4. Add the following RDO entries to your CICS system, or use the RDO facility to add the STB1
transaction to run the ALCSIVP program:

DEFINE PROGRAM(ALCSIVP) GROUP(ADABAS)
DESCRIPTION(ADABAS s ASSEMBLER IVP FOR HIGH-PERFORMANCE STUB)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(USER) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(STB1) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO EXECUTE THE ASSEMBLER IVP FOR HIGH-PERFORMANCE STUB)
PROGRAM(ALCSIVP) TWASIZE(32) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

5. Run the STB1 transaction to execute ALCSIVP. Executing ALCSIVP verifies the LNCSTUB
module.

Install and Execute the COBOL IVP: COBSIVP

Member COBSIVP illustrates the use of the Adabas DCI with a COBOL program. COBIVP produces a
screen showing output lines produced by a series of Adabas calls executed by the CICS LINK/RETURN
facility, followed by the reexecution of these Adabas commands using the DCI.

 To install and execute the COBOL IVP, COBSIVP:

1. Modify the source member, COBSIVP in ACIvrs.SRCE:

Edit the fields WORK-DBID and WORK-FNR to place the desired database ID and file number
in the VALUE clauses to access the EMPLOYEES file on the Software AG-provided
demonstration database you intend to use. For more information about the Software
AG-provided demonstration files, read Load the Demonstration Files in the z/OS installation
instructions.

Ensure that the value in the field LINK-NAME matches the name used in your Adabas CICS
command-level link component program.

Ensure that the values (literals in the PROCEDURE DIVISION) in the following fields are
consistent with the requirements of the EMPLOYEES file FDT and data content you are using:

ADABAS-FORMAT-BUFFER,
ADABAS-SEARCH-BUFFER, and
ADABAS-VALUE-BUFFER

2. Modify the sample job stream, JCLCOBI in ADAvrs.JOBS:

Member JCLCOBI is used to preprocess, compile, and link the COBSIVP installation
verification program. To modify the JCLCOBI example to meet site requirements, change the
JOB card in the member and provide values for the symbolic procedure variables as described in
the following table:

28

Installation OverviewInstalling Adabas with TP Monitors

Value Description

&ADALIB Adabas load library used to provide the ADASTWA load module for
the linkage editor.

&MEM Member name to be processed; in this case, COBSIVP.

&CICSLIB CICS RPL library where the COBSIVP load module is placed for
execution under CICS.

&COBLIB COBOL compiler STEPLIB.

&INDEX High-level qualifier for the CICS macro library used in the SYSLIB
DD statement for the compiler.

&INDEX2 High-level qualifier for the CICS load library to use for the translator
STEPLIB DD statement, and for the SYSLIB in the link step.

&LINKLIB COBOL LINKLIB.

&STBSRCE Source library containing the distributed Adabas CICS
high-performance stub LNCSTUB.

&STUBLIB A load library to contain the LNCSTUB load module. This library
should be available to your application programs when they are
linked.

&SYSMSG Output class for translator messages.

&SYSOUT Output class for SYSOUT and SYSPRINT messages.

&WORK DASD device type to use for temporary and utility data sets.

3. Preprocess, compile, and link COBSIVP:

Use the modified JCLCOBI job to preprocess, compile, and link the COBSIVP program.
Assemble ADASTWA into a library available to COBOL programs when they are linked.
Include the ADASTWA load module in the link of COBSIVP.

Use the modified JCLCOBI job to preprocess, compile, and link the COBSIVP program.
COBSIVP now uses the CICS COMMAREA to pass data to the Adabas CICS link routine, so it
is not necessary to link the ADASTWA program with COBSIVP for Version 8.

The LNCSTUB subroutine does not use ADASTWA because it places the passed Adabas
parameters in the TWA. Thus, the ADASTWA routine is not required when linking COBOL
applications that utilize the Adabas DCI through the LNCSTUB module.

Link the COBSIVP program with the LNCSTUB load module and make the LNCSTUB load
module available to the linkage editor to be included with the COBSIVP load module.

Note:
The IBM CICS stub modules are also resolved in the link step.

4. Add the following RDO entries to your CICS system, or use the RDO facility to add the STB2
transaction to run the COBSIVP program:

29

Installing Adabas with TP MonitorsInstallation Overview

DEFINE PROGRAM(COBSIVP) GROUP(ADABAS)
DESCRIPTION(ADABAS s COBOL IVP FOR HIGH-PERFORMANCE STUB)
LANGUAGE(COBOL) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(USER) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(STB2) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO EXECUTE THE COBOL IVP FOR HIGH-PERFORMANCE STUB)
PROGRAM(COBSIVP) TWASIZE(32) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

5. Run the STB2 transaction to execute COBSIVP. Executing COBSIVP verifies the LNCSTUB
module.

Step 3: Link and Execute the Application Program

Once the IVP programs have been successfully executed, the Adabas DCI is ready to be used with real
application programs. In step 3, the application program interface (API) is coded to utilize the LNCSTUB
subprogram.

Step 3 has the following substeps:

Modify the application programs that will utilize the Adabas CICS high-performance stub routine in
accordance with the guidelines described in the following section.

Preprocess, compile or assemble, and link the application programs to include the LNCSTUB
module.

Execute the application programs using the Adabas CICS high-performance stub.

Guidelines for Modifying the Application Program

The LNCSTUB load module must be linked with your application program. The application program
invokes the DCI interface using a standard batch-like call mechanism. The LNCSTUB module makes any
additional CICS requests required to pass data to the Adabas CICS command-level link component.

Programming Languages Supported by LNCSTUB

The LNCSTUB program functions with application programs written in Assembler language,
VS/COBOL, COBOL II, COBOL/LE PL/I, and C.

Use of the CICS Transaction Work Area

A transaction that uses the Adabas DCI or the Adabas CICS command-level link component may
provide a transaction work area (TWA) at least 28 bytes long. Failure to provide an adequate TWA
will result in an abend U636 (abnormal termination of the task).

Use of the CICS COMMAREA

30

Installation OverviewInstalling Adabas with TP Monitors

With the Adabas Version 8 CICS link routines and the Adabas 8 LNCSTUB module, use of a CICS
COMMAREA to pass data on EXEC CICS LINK commands is strongly recommended. The CICS
COMMAREA must be at least 32 bytes in length and the first 8 bytes of the COMMAREA must contain
the string "ADABAS52" or "ADABAS8X". The string "ADABAS8X" is for applications that exclusively
use the new Adabas Version 8 ACBX direct call interface and its parameter list.

Reentrant Requirement

The application program may or may not be reentrant. The LNCSTUB module has been written to be
reentrant, but using linkage editor parameters to mark the LNCSTUB load module as reentrant is not
recommended unless the application program will also be marked as reentrant.

CICS Requests Issued by LNCSTUB

The LNCSTUB module issues the following command-level CICS requests whenever it is invoked:

EXEC CICS ADDRESS EIB
EXEC CICS LINK

If the TWA is used to pass data to the Adabas command-level link:

EXEC CICS ADDRESS TWA
EXEC CICS ASSIGN TWALENG

DCI Entry Point Address

An EXEC CICS LINK command is issued by LNCSTUB at least once to acquire the DCI entry point
from the Adabas CICS command-level link component program. This address is then used for BALR
access on all subsequent Adabas calls for a transaction. Thus, the calling application program must
provide a fullword (4-byte) field to hold the DCI entry point address obtained by LNCSTUB. This
4-byte field is the first parameter passed to the LNCSTUB module by the call mechanism. The
remaining parameters comprise the Adabas parameter list needed to execute an Adabas request.
(Either a version 7 or verion 8 parameter list may be used)

DCI Parameter List

The Adabas DCI parameter list expected by the LNCSTUB program is composed of a pointer to the
DCI entry point in the Adabas CICS command-level link component followed by the six pointers to
the Adabas control block and buffers: format, record, search, value, and ISN.

For information on coding the standard Adabas control block and buffers, refer to the Adabas
Command Reference.

The Adabas parameter list offsets are summarized in the table below (note that an ACB call is used):

31

Installing Adabas with TP MonitorsInstallation Overview

Offset Pointer to the ...

0 DCI entry point in the Adabas command-level link component

4 Adabas control block

8 Adabas format buffer

12 Adabas record buffer

16 Adabas search buffer

20 Adabas value buffer

24 Adabas ISN buffer

All of the parameters except the first (the DCI entry point) are built and maintained by the
application program in accordance with the requirements of an Adabas call.

The DCI entry point parameter should be set to binary zeros at the beginning of a task, and should
not be modified by the application program thereafter. Software AG strongly recommends that the
fields comprising the parameter list be placed in CICS storage (WORKING-STORAGE for COBOL
and the DFHEISTG user storage area for Assembler) to maintain pseudo-reentrability.

The following is a sample parameter list for an assembler language program:

DFHEISTG DSECT
.
PARMLIST DS 0F
DS A(DCIPTR)
DS A(ADACB)
DS A(ADAFB)
DS A(ADARB)
DS A(ADASB)
DS A(ADAVB)
DS A(ADAIB)
.
DCIPTR DS F
ADACB DS CL80
ADAFB DS CL50
ADARB DS CL250
ADASB DS CL50
ADAVB DS CL50
ADAIB DS CL200
.
DFHEIENT CODEREG=(R12),EIBREG=(R10),DATAREG=(R13)
.
LA R1,PARMLIST
L R15,=V(LNCSTUB)
BALR R14,R15
.
END

Note:
The DFHEIENT macro in the Assembler example uses a DATAREG parameter of register 13. This
is a strict requirement of the LNCSTUB program. When the LNCSTUB program is invoked, register
13 should point to the standard CICS save area (DFHEISA) and register 1 should point to the
parameter list. The best way to ensure this standard is to code the Assembler application with a
DFHEIENT macro like the one in the example.

32

Installation OverviewInstalling Adabas with TP Monitors

The following is a sample parameter list for a COBOL language program:

WORKING-STORAGE SECTION.
.
01 STUB-DCI-PTR PIC S9(8) COMP VALUE ZERO.
01 ADACB PIC X(80).
01 ADAFB PIC X(50).
01 ADARB PIC X(250).
01 ADASB PIC X(50).
01 ADAVB PIC X(50).
01 ADAIB PIC X(200).
.
PROCEDURE DIVISION.
.
CALL ’LNCSTUB’ USING STUB-DCI-PTR,
ADACB,
ADAFB,
ADARB,
ADASB,
ADAVB,
ADAIB.
.
EXEC CICS RETURN END-EXEC.
.
GOBACK.

Restrictions on Application Program Coding

In all other respects, the application program should be coded like a standard CICS command-level
routine. As long as the DCI parameter list is correct when LNCSTUB is called, there are no
restrictions on the CICS commands that an application can issue.

Standard Batch Call Mechanism Used

As shown in the Assembler and COBOL language program parameter list examples above, the call to
the LNCSTUB entry point is accomplished like a batch application. Likewise, calls for the other
supported languages should be coded with their standard batch call mechanisms.

Link the Application Programs to Include the LNCSTUB Module

To properly link the LNCSTUB module with application programs, link the application program to
include the LNCSTUB module and the IBM CICS stub modules. The method for doing this varies with
the programming language used for the application:

Assembler language programs should include the DFHEAI and DFHEAI0 CICS modules;

COBOL applications should include DFHECI and DFHEAI0.

To avoid a double reference to the DFHEAI0 module, code the linkage editor REPLACE DFHEAI0
control statement at the beginning of the SYSLIN data deck.

 For linking Assembler language programs:

1. For an Assembler program, the SYSLIN input is similar to:

33

Installing Adabas with TP MonitorsInstallation Overview

INCLUDE DFHEAI

The Assembler object input is similar to:

REPLACE DFHEAI0
INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAI0)
NAME ALCSIVP(R)

When examining the cross-reference from the linkage editor, the symbol “entry-name” must have the
same starting location as the LNCSTUB module in the link map.

 For linking COBOL language programs:

1. For a COBOL program, the SYSLIN input is similar to:

REPLACE DFHEAI0
INCLUDE SYSLIB(DFHECI)

The COBOL object input is similar to:

INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAI0)
NAME COBSIVP(R)

When examining the cross-reference from the linkage editor, the symbol “entry-name” must have the
same starting location as the LNCSTUB module in the link map.

 For linking PL/I and C language programs:

1. Refer to the IBM manual CICS System Definition Guide for information about linking PL/I and C
applications under CICS.

Performance Using LNCSTUB

To obtain the best performance from applications using the Adabas direct call interface (DCI), examine
how the DCI interface functions at the logical level.

A CICS application using the standard LINK/RETURN mechanism to access the Adabas link routines
invokes the CICS program control service for every Adabas request made to the link routine. The
LNCSTUB module permits a BALR interface to be used. A BALR interface can substantially reduce the
CICS overhead required to pass control from the application program to the Adabas CICS command-level
link component.

The LNCSTUB module accomplishes this by using the standard EXEC CICS LINK/RETURN
mechanism to make an Initial Call (IC) to the Adabas CICS command-level link routine. The link routine
recognizes this call, and returns the entry point address of the DCI subroutine to LNCSTUB. LNCSTUB
must then save this address in a location that can be assured of existence throughout the duration of the
invoking task. This is why the calling program must provide the 4-byte field to hold the DCI entry point
address. After the DCI address has been obtained, and for as long as LNCSTUB receives this address as
the first parameter passed to it on subsequent Adabas calls, LNCSTUB utilizes the BALR interface to pass
control to the Adabas CICS command-level link component program.

34

Performance Using LNCSTUBInstalling Adabas with TP Monitors

As a consequence of this logic, the more Adabas requests made between ICs, the more efficient the
application in terms of passing data to and from Adabas under CICS. In fact, pseudo-conversational
applications that issue one Adabas call each time a task is invoked should not be coded to use the DCI
because there will be an IC request for each Adabas command issued by the calling program.

An additional performance improvement can be realized by taking advantage of the fact that the Adabas
CICS command-level link component program must be defined as resident in CICS. This fact should
allow the DCI entry point to be stored across CICS tasks, making it possible for different programs to call
the LNCSTUB module with a valid DCI entry point. The IC at each program startup is thus avoided.
When this procedure is used, however, any change to the CICS environment that invalidates the entry
point address (such as a NEWCOPY) will lead to unpredictable and possibly disastrous results.

It is imperative that at least one IC be made to the Adabas CICS command-level link component program
using CICS services. This call is used to trigger the acquisition of shared storage for the Adabas user
block (UB) and an array of register save areas. If no IC request is made, Adabas calls will not execute due
to a lack of working storage, and to the fact that critical control blocks used by the link routines and the
Adabas SVC are not built.

Modifying Source Member Defaults (ADAGSET Macro)

Warning:
In Adabas 8, the ADAGSET macro found in the Adabas 8
ACI vrn.SRCE library, should only be used for generating default
values for the Adabas 8 CICS high-performance stub routine.

To facilitate the assembly of the Adabas CICS high-performance stub routine, Software AG recommends
that you program the ADAGSET macro with site-specific default values and put it in a source library that
is available in the SYSLIB concatenation during assembly.

The ADAGSET parameter options with their default values (underlined) are described below:

AVB: Adabas VSAM Bridge Support
ENABNM: Entry Point Name for Program to Enable Adabas TRUE
ENTPT: Name of the Adabas CICS Command-Level Link Routine
LOGID: Default Logical Database ID
LRINFO: Length of Adabas Review Data Area
LUINFO: Length of User Data passed to Adabas LNKUEXIT1 and LNKUEXIT2
LUSAVE: Size of User Save Area for Adabas LNKUEXIT1 and LNKUEXIT2
LXITAA: Length of Work Area provided to LNKUEXIT2
LXITBA: Length of Work Area for LNKUEXIT1
MRO: Multiple Region Option
NETOPT: Method Used to Create User ID
NTGPID: Natural Group ID
NUBS: Number of User Blocks Created By CICS Link Routine
PARMTYP: Area for Adabas Parameter List
PURGE: Purge Transaction
RMI: Resource Manager Interface
SAF: Adabas SAF Security
SAP: SAP Application Support
SVCNO: Adabas SVC number

35

Installing Adabas with TP MonitorsModifying Source Member Defaults (ADAGSET Macro)

TRUE: Adabas Task-Related User Exit
TRUENM: Name of Adabas Task-Related User Exit
UBPLOC: User Block Pool Allocation
XWAIT: XWAIT Setting for CICS

AVB: Adabas VSAM Bridge Support

Parameter Description Syntax

AVB Indicates whether or not Software AG’s Adabas Bridge for
VSAM is to be supported by this command-level link routine.

AVB=YES: Adabas VSAM Bridge is to be supported.

AVB=NO: Adabas VSAM Bridge is not to be supported.

AVB={ NO | YES }

ENABNM: Entry Point Name for Program to Enable Adabas TRUE

Parameter Description Syntax

ENABNM The entry point name for the program that is run
to enable the Adabas TRUE during CICS PLTPI
processing. The value must be a valid program
name that matches the module name specified in
the DFHPLT table at your site. The default value
is ADAENAB.

This parameter is ignored if TRUE=NO is
specified.

ENABNM={’ADAENAB’ | ’name’ }

ENTPT: Name of the Adabas CICS Command-Level Link Routine

Parameter Description Syntax

ENTPT The name given to the Adabas CICS
high-performance stub link routine. This name is
used in EXEC CICS LINK commands to invoke
Adabas services from CICS application programs.

See also notes 1 and 2 in the installation
procedure.

ENTPT={’ADACICS’ | ’name’ }

LOGID: Default Logical Database ID

Parameter Description Syntax

LOGID The value of the default logical database ID. Valid ID numbers
are 1-65535. LOGID= nnn

36

Modifying Source Member Defaults (ADAGSET Macro)Installing Adabas with TP Monitors

LRINFO: Length of Adabas Review Data Area

Parameter Description Syntax

LRINFO The length (in bytes) of the Adabas Review data area to be
used by the REVEXITB program. The default is zero (Adabas
Review is not being used). The minimum (and recommended)
value is 256, the size Adabas Review expects when the
REVEXITB program is invoked. See the Adabas Review
documentation for more information.

LRINFO={ 0 | 256}

LUINFO: Length of User Data passed to Adabas LNKUEXIT1 and LNKUEXIT2

Parameter Description Syntax

LUINFO Length of the user data to be passed from the CICS link
routine to Adabas LNKUEXIT1 and LNKUEXIT2.

If LUINFO is not specified, the default is zero (no user
save area is passed).

LUINFO={ 0 | length}

LUSAVE: Size of User Save Area for Adabas LNKUEXIT1 and LNKUEXIT2

Parameter Description Syntax

LUSAVE Size of the user save area to be used by Adabas user exits
LNKUEXIT1 and LNKUEXIT2. If LUSAVE is specified, a
value of 72 or higher must be specified.

If LUSAVE is not specified, the default is zero (no user data
is passed).

LUSAVE={ 0 | size}

LXITAA: Length of Work Area provided to LNKUEXIT2

Parameter Description Syntax

LXITAA Length of the work area provided to the LNKUEXIT2 user exit
program.

Values from 0 (the default) to 32767 may be specified. 0
indicates that no LNKUEXIT2 program is linked with the
Adabas command-level link routine and no data is passed to
LNKUEXIT2.

Note:
This parameter is not yet fully implemented. It is provided for
future use by the CICS user exit A program linked with
LNKOLM.

LXITAA={ 0 | nn}

37

Installing Adabas with TP MonitorsModifying Source Member Defaults (ADAGSET Macro)

LXITBA: Length of Work Area for LNKUEXIT1

Parameter Description Syntax

LXITBA Length of the work area provided to the LNKUEXIT1 user exit
program.

Values from 0 (the default) to 32767 may be specified. 0
indicates that no LNKUEXIT1 program is linked with the
Adabas command-level link routine and no data is passed to
LNKUEXIT1.

Note:
This parameter is not yet fully implemented. It is provided for
future use by the CICS user exit A program linked with
LNKOLM.

LXITBA={ 0 | nn}

MRO: Multiple Region Option

Parameter Description Syntax

MRO The MRO parameter is used to indicate whether or not the
CICS multiple region option is to be used.

If you run the CICS command-level link with the CICS
multiple region option (MRO), set MRO=YES; otherwise, use
the default value MRO=NO.

If MRO=YES, NETOPT must be set to NETOPT=NO (the
default) to prevent non-unique LU names from multiple
application regions.

If NETOPT=YES and MRO=YES are specified, an assembler
MNOTE and a return code of 16 are produced from the
assembly step.

MRO={ NO | YES }

NETOPT: Method Used to Create User ID

38

Modifying Source Member Defaults (ADAGSET Macro)Installing Adabas with TP Monitors

Parameter Description Syntax

NETOPT If NETOPT=YES is specified, an 8-byte user ID will be
constructed from the VTAM LU name. If NETOPT=NO is
specified, the user ID is created from the constant CICS
plus the four-byte CICS terminal ID (TCTTETI) for
terminal tasks. For non-terminal tasks, the user ID
comprises the constant CIC plus the CICS task number.

If you run with the CICS multiple region option (MRO),
you must use the default value for this option. If
NETOPT=YES and MRO=YES are specified, an assembler
MNOTE and a return code of 16 are produced from the
assembly step.

NETOPT={ NO | YES }

NTGPID: Natural Group ID

Parameter Description Syntax

NTGPID This parameter is used to specify a 4-byte Natural group ID
as required for unique Adabas user ID generation in the
CICSplex environment with Natural Version 2.2.8 and
above. The value is associated with all users who call the
Adabas command-level link routine assembled with the
specified value.

There is no default value. If no value is specified, the
Adabas internal user ID is built in the conventional manner.

Any 4-byte alphanumeric value may be specified, but it
must be unique for each Adabas command-level link routine
running in a CICSplex, or z/OS image. If more than one
NTGPID is required (for example, both test and production
Natural 2.2.8), more than one Adabas command-level link
routine with associated TRUE must be generated.

If you run with the CICS multiple region option (MRO),
you may use NTGPID to provide a 4-byte literal for the
Adabas communication ID to be used by the Adabas SVC
when multiple application regions call Adabas.

NTGPID=4-byte-value

NUBS: Number of User Blocks Created By CICS Link Routine

39

Installing Adabas with TP MonitorsModifying Source Member Defaults (ADAGSET Macro)

Parameter Description Syntax

NUBS The number of user blocks (UBs) to be created by the
CICS link routine. The number of blocks must be large
enough to handle the maximum possible number of
concurrent Adabas requests.

Note:
The Adabas 6.2 and above command-level link routine
obtains storage for the user blocks (the UB pool) above the
16-megabyte line.

NUBS={ 50 | blocks }

PARMTYP: Area for Adabas Parameter List

Parameter Description Syntax

PARMTYP The area which is to contain the Adabas
parameter list. TWA picks up the parameter list in
the first six fullwords of the transaction work area
(TWA). When PARMTYP=COM, the Adabas
parameters are supplied in the CICS
COMMAREA provided by the calling program
with the EXEC CICS LINK command. The
COMMAREA list for an ACB call must be at
least 32 bytes long and begin with the label
"ADABAS52". PARMTYP=ALL (the default)
uses both the COMMAREA and TWA to pass the
Adabas parameters; in this case, the
COMMAREA is checked first.

PARMTYP=ALL or PARMTYP=COM must be
used if the TRUE=YES option is specified.

PARMTYP={ ALL | COM | TWA }

PURGE: Purge Transaction

Parameter Description Syntax

PURGE The PURGE parameter is used when assembling with CICS
3.2 or above. If PURGE=YES is specified, the CICS WAIT
EXTERNAL will contain PURGEABLE as one of its
parameters, allowing the transaction to be purged by CICS if
the DTIMOUT value is exceeded and PURGE is specified.

If PURGE=NO (the default) is specified, the
NONPURGEABLE option is generated.

PURGE={ NO | YES }

RMI: Resource Manager Interface

40

Modifying Source Member Defaults (ADAGSET Macro)Installing Adabas with TP Monitors

Parameter Description Syntax

RMI The RMI parameter is used to indicate whether or not the CICS
Resource Manager Interface is to be used.

If RMI=YES is specified, the Adabas task-related user exit
(TRUE) will be executed as a resource manager (RM) using the
CICS Resource Manager Interface (RMI).

RMI=YES is valid only when the Adabas Transaction Manager
is installed, enabled, and available to users executing in the
CICS environment. Consult the Adabas Transaction Manager
documentation for additional instructions related to the
installation of the Adabas TRUE.

RMI={ NO | YES }

SAF: Adabas SAF Security

Parameter Description Syntax

SAF Indicates whether or not the Adabas SAF Security (ADASAF)
is to be used. If you are using ADASAF, you must set
SAF=YES.

YES: Adabas SAF Security is to be used.

NO: Adabas SAF Security is not to be used.

ADASAF requires the Adabas task-related user exit (TRUE)
when running under CICS/TS 1.1 or above. When SAF=YES
and TRUE=YES, the task-related user exit passes the user’s
external security ID (sign-on) to Adabas.

If TRUE=YES is not specified in this case, the ADAGSET
macro terminates the LNKOLSC, LNKTRUE, or LNKENAB
assembly process with an MNOTE and a return code of 16.

TRUE=YES is not required when running ADASAF under
CICS/ESA 3.3 or below. The combination SAF=YES and
TRUE=NO is valid in such cases.

SAF={ NO | YES }

SAP: SAP Application Support

41

Installing Adabas with TP MonitorsModifying Source Member Defaults (ADAGSET Macro)

Parameter Description Syntax

SAP The SAP parameter is used to indicate whether or not Adabas
support for the SAP application system is required.

If SAP=YES is specified, the LNKOLSC program will detect a
SAP initialization call and set the user ID for SAP applications
from the constant provided on the initialization call, plus the
field ACBADD2.

For more information, refer to the supplementary information
provided to customers using the SAP application system.

SAP={ NO | YES }

SVCNO: Adabas SVC number

Parameter Description Syntax

SVCNO The SVCNO parameter is used to specify the value of the
Adabas SVC number. SVCNO={ 0 | nnn}

TRUE: Adabas Task-Related User Exit

Parameter Description Syntax

TRUE The TRUE parameter is used to indicate whether or not the
Adabas task-related user exit is to be used.

If TRUE=YES is specified, LNKOLSC will use the Adabas
task-related user exit ADACICT.

If TRUE=YES is specified, the parameter settings
PARMTYP={ALL | COM} and TRUENM=’name’ must also
be specified.

TRUE={ NO | YES }

TRUENM: Name of Adabas Task-Related User Exit

Parameter Description Syntax

TRUENM The TRUENM parameter is used to specify the
name of the Adabas task-related user exit.

This parameter is required if TRUE=YES is
specified.

See also notes 1 and 2 in the installation
procedure.

TRUENM= {’name’ | ’ADACICT’ }

42

Modifying Source Member Defaults (ADAGSET Macro)Installing Adabas with TP Monitors

UBPLOC: User Block Pool Allocation

Parameter Description Syntax

UBPLOC The UBPLOC parameter is used to specify whether
the user block (UB) pool is to be obtained above (the
default) or below the 16-megabyte line in CICS.

The ECB used by the EXEC CICS WAIT WAITCICS
or the EXEC CICS WAIT EXTERNAL is included in
the UB pool.

The UBPLOC=BELOW setting supports versions of
CICS that do not allow ECBs above the 16-megabyte
line; that is, CICS/ESA 3.2 or below.

Refer to the IBM manual CICS Application
Programming Reference for more information.

UBPLOC= { ABOVE | BELOW}

XWAIT: XWAIT Setting for CICS

Parameter Description Syntax

XWAIT The XWAIT parameter is used to specify whether a standard
EXEC CICS WAITCICS (XWAIT=NO) or a WAIT
EVENTS EXTERNAL (XWAIT=YES) will be generated
into the command-level link component by the assembler
process in the LNKOLSC module. XWAIT=YES is the
default.

The CICS WAIT EVENTS EXTERNAL (XWAIT=YES) is
the recommended interface for CICS/TS 1.1 and above.

The CICS WAITCICS statement (XWAIT=NO) is provided
for use with CICS/MVS 2.1.2 and for CICS/VSE 2.1 through
2.3. It may also be used for CICS/TS 1.1 and above, but may
result in poor CICS transaction performance or unpredictable
transaction results in busy CICS environments.

Note:
If XWAIT=NO is specified for use under CICS/ESA 3.3,
IBM APAR PN39579 must be applied to the CICS/ESA 3.3
system. For CICS/TS 1.1 and above, this APAR is not
required.

XWAIT={ NO | YES }

Notes:

1. The default for the XWAIT parameter is XWAIT=YES to conform with IBM usage.
2. If XWAIT=NO is specified, the LNKOLSC module issues an EXEC CICS WAITCICS command

instead of the EXEC CICS WAIT EVENT command. This conforms with recommended IBM usage
of the WAIT and ECB lists in a high-transaction volume CICS system with CICS/TS Version 1.1 and
above.

43

Installing Adabas with TP MonitorsModifying Source Member Defaults (ADAGSET Macro)

3. All EXEC CICS commands are processed by the CICS preprocessor; the ADAGSET parameters
cause the subsequent assembly step to skip some of the statements.

XWAIT Posting Mechanisms

CICS WAITCICS (XWAIT=NO) can support a soft post of the specified ECB. This has the disadvantage
of becoming a low priority dispatchable unit of work in a CICS/TS environment, since the hand-postable
work is not processed by CICS on every work cycle.

EXEC CICS WAIT EXTERNAL (XWAIT=YES), on the other hand, allows CICS to make use of its
special post exit code, and will always be checked and processed (if posted) on every CICS work cycle.

For more details on the differences between the various CICS WAIT commands and their relationship to
hard and soft posting mechanisms, consult the IBM CICS/TS Application Programming Reference and the
texts accompanying IBM APAR PN39579 or Item RTA000043874 on the IBM InfoLink service.

XWAIT and the Adabas SVC / Router

The Adabas SVC is fully compatible with the XWAIT=YES setting. The SVC performs the necessary
hard post for Adabas callers under CICS/TS using the Adabas 6 command-level link routine. The same
SVC performs a soft post for batch callers where the hard post is not required.

Installing Adabas with Com-plete under Adabas 8
Certain Adabas parameters are required by Com-plete, Software AG’s TP monitor, when installing
Adabas. For more information, see the Com-plete System Programmer’s manual.

Software AG’s TP monitor, Com-plete requires an Adabas link routine if it is to communicate with
Adabas databases, use Software AG’s Entire Net-Work product, or use products like Entire System Server
running under Com-plete. At this time, Com-plete does not support a mixed Adabas 7 and Adabas 8 link
routine environment; thus Com-plete must be run with either an Adabas 7 link routine or an Adabas 8 link
routine.

The Adabas Version 8 link routine is delivered in member ADALCO of the Adabas 8 z/OS load library.
This member must be linked with a link globals module you prepare and with any link routine exits you
require to create the final ADALCO load module that is loaded by Com-plete when Com-plete is
initialized. The final ADALCO load module and any exits linked with it must be reentrant.

The following table lists the modules supplied in your Adabas installation to support the installation of
Adabas with Com-plete under Adabas 8.

Module Description

ADALCO8 Base module

ADALCO Executable default module

 To prepare the Adabas 8 link routine:

1. Copy sample member LCOGBL provided in the Adabas 8 ADAvrs.SRCE library to any appropriate
user source library where it can be modified (where vrs is the number of the latest Adabas version
delivered on the tape). LCOGBL is a module containing LGBLSET parameters that are used to

44

Installing Adabas with Com-plete under Adabas 8Installing Adabas with TP Monitors

create default settings for command-level link components. A complete description of LGBLSET
parameters can be found in Modifying Source Member Defaults (LGBLSET Macro) in Version 8.

2. Modify the LCOGBL member in the user source library.

At a minimum supply values for the following LGBLSET parameters in LCOGBL:

Parameter Specify...

LOGID The default database or target ID. This should be a numeric
value between "1" and "65535". The default value is "1".

Note:
Specifying default values for LOGID and SVCNO under
Com-plete is for documentation purposes only. The ADASVC
Com-plete runtime control statements will provide the
supported database ID/Adabas SVC combinations to be used in
running Com-plete. For more information, read the Com-plete
documentation.

SVCNO The default Adabas SVC number. For z/OS, this number
should be between "200" and "255".

Note:
Specifying default values for LOGID and SVCNO under
Com-plete is for documentation purposes only. The ADASVC
Com-plete runtime control statements will provide the
supported database ID/Adabas SVC combinations to be used in
running Com-plete. For more information, read the Com-plete
documentation.

OPSYS The three-character abbreviation for the operating system under
which Com-plete executes. Valid values include "ZOS" and
"VSE".

Note:
The OPSYS parameter must be set to ZOS.

TPMON COM. This keyword specifies the three-character TP monitor
abbreviation. For Com-plete, this value should be "COM".

RENT YES. This keyword indicates whether or not the module is
serially reentrant. For Com-plete, this value should be "YES".

GEN CSECT. This keyword indicates whether a CSECT or DSECT
is generated. CSECT must be specified so an object module is
generated that can be linked as the link routine globals load
module.

UES Whether Adabas Universal Encoding Support (UES) should be
enabled. The default is YES. For more information, read
Enabling Universal Encoding Support (UES) for Your Adabas
Nucleus.

45

Installing Adabas with TP MonitorsInstalling Adabas with Com-plete under Adabas 8

Parameter Specify...

exit
parameters

Whether any other exits are to be active, and in the case of user
exits you provide, specify the user exit module names. Specify
this information in other parameters of LGBLCOM, as
described in Modifying Source Member Defaults (LGBLSET
Macro) in Version 8.

3. Modify and run sample job ASMGBLS as described at the top of the job. ASMGBLS can be found
in the Adabas 8 ADAvrs.JOBS library. When fully modified, the SET statement in the job should
reference the LCOGBL member you prepared in the previous step and the NAME link edit control
statement should reference the name specified by the GBLNAME parameter in the LCOGBL member.

Once modified, submit the ASMGBLS job to assemble and link-edit the link globals module.

A new link globals module (with the name specified by the GBLNAME parameter in LCOGBL) will
be generated in the user load library identified in the ASMGBLS job.

4. Copy sample job LNKLCO8 to a user source library and modify it to link the new link globals
module you created in the previous step and any required exits with the ADALCO8 base module.
Instructions for modifying the sample job are described at the top of the job. Be sure to direct the output
from this job to an appropriate user load library. LNKLCO8 can be found in the Adabas 8
ADAvrs.JOBS library.

The module resulting from this job is called ADALCO.

5. Place the ADALCO module in a load library available in the job step that will start Com-plete.

The Adabas 8 link routine is prepared.

General Considerations for Installing Adabas with
Batch/TSO
When installing Adabas 8 on TSO systems, Adabas-TSO communication is provided by the batch link
routines ADALNK8 (non-reentrant) and ADALNKR8 (reentrant).

In this version of Adabas, the ADALNK routines are UES-enabled as distributed. See the section
Enabling Universal Encoding Support (UES) for Your Adabas Nucleus for more information.

However, it is important to note that user programs linked with ADAUSER also load ADARUN.
ADARUN, in turn, loads other modules.

To start a user program linked with ADAUSER, the following modules must all be available from the
defined load libraries for that specific TSO user at execution time:

ADAIOR ADAMLF
ADAIOS ADAPRF
ADALNK ADARUN

This section covers the following topics:

46

General Considerations for Installing Adabas with Batch/TSOInstalling Adabas with TP Monitors

Non-reentrant ADALNK Batch Routine Operation

ADALNKR: Reentrant Batch Link Routine

Non-reentrant ADALNK Batch Routine Operation

The ADALNK module in the Adabas 8 load library operates in a Adabas 7-compatible manner when the
following conditions are met:

The calling application must be linked with ADAUSER. If the calling application is not linked with
ADAUSER, the ADALNK will not work.

The ADARUN module from the most recent Adabas 8 load library must be used.

The database ID and Adabas SVC number must be provided as input through DD statements.
Otherwise, the values in the link globals table will override these values.

If all three of these conditions are met, the default database ID and Adabas SVC number will be
overridden by the values provided in the DD statement input and passed to the link routine by ADARUN.

Operating in this fashion requires the fewest changes on the part of your data base administrator (DBA)
and application programmer. This is also the recommended mode of operation when executing Adabas
utilities.

ADALNKR: Reentrant Batch Link Routine

Several Software AG products require the use of a reentrant batch link routine and the ADALNKR load
module is provided in the Adabas load library to support them. The Adabas 8 ADALNKR source module
is not provided.

You can change default values for these reentrant batch link routines. For more information, read one of
the following sections:

Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules

Zapping the Default Values for the Adabas 8 ADALNK or ADALNKR Modules

Software AG recommends that batch application programs be linked with the ADAUSER module, not
ADALNK or ADALNKR. The ADAUSER load module is not reentrant, but the reentrant link routine
module may be linked with it as long as the application program conforms to the calling requirements
described in Adabas 8 Batch/TSO Reentrant Link Routine (ADALNKR) Calling Requirements and the
PROG=RENTUSER ADARUN parameter is provided in DDCARD input instead of the keyword
parameter PROG=USER.

When using the latest Adabas 8 ADALNKR module to obtain reentrant operation under batch or TSO,
you must prepare the ADALNKR module in advance. It must be linked with a customized link globals
table that provides defaults for the database ID, Adabas SVC number, and other requirements. Any
reentrant exits should also be linked with it as required.

47

Installing Adabas with TP MonitorsNon-reentrant ADALNK Batch Routine Operation

Installing Adabas with Batch/TSO under Adabas 8
When installing Adabas 8 on TSO systems, the standard Adabas 8 batch link routine (ADALNK) provides
Adabas/TSO communication (SMA job number I056).

This section covers the following topics:

Supplied Modules

Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules

Zapping the Default Values for the Adabas 8 ADALNK or ADALNKR Modules

Supplied Modules

The following table lists the modules supplied in your Adabas installation to support the installation of
Adabas with batch/TSO under Adabas 8.

Module Description

ADALNK8 Base module

ADALNKR8 Base reentrant module

ADALNK Executable default module

ADALNKR Executable default reentrant module

Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules

You can change default values for various link routine parameters used by the Adabas 8 ADALNK and
ADALNKR modules.

 To change default values, complete the following steps:

1. Copy the sample member LNKGBLS (for non-reentrant links) or LNKRGBL (for reentrant links)
members provided in the Adabas 8 ADAvrs (where vrs is the number of the latest Adabas version
delivered on the tape).SRCE library to any appropriate user source library where they can be
modified. These modules contain LGBLSET parameters that are used to create default settings for
link components. A complete description of LGBLSET parameters can be found in Modifying Source
Member Defaults (LGBLSET Macro) in Version 8.

2. Modify the LNKGBLS or LNKRGBL member in the user source library. Provide values for the
LOGID, SVC, and other keywords to suit your installation requirements.

Note:
The OPSYS parameter must be set to ZOS.

3. Modify and run sample job ASMGBLS as described at the top of the job. ASMGBLS can be found
in the Adabas 8 ADAvrs.JOBS library. When fully modified, the SET statement in the job should
reference the LNKGBLS or LNKRGBL member you prepared in the previous step and the NAME
link edit control statement should reference the name specified by the GBLNAME parameter in the
LNKGBLS or LNKRGBL member.

48

Installing Adabas with Batch/TSO under Adabas 8Installing Adabas with TP Monitors

Once modified, submit the ASMGBLS job to assemble and link-edit the link globals module.

A new link globals module (with the name specified by the GBLNAME parameter in the LNKGBLS
or LNKRGBL member) will be generated in the user load library identified in the ASMGBLS job.

4. Copy sample job LNKLNK8 or LNKLNKR8 (reentrant) to a user source library and modify it to link
the new link globals module you created in the previous step and any required exits with the appropriate
ADALNK8 or ADALNKR8 (reentrant) base module. Instructions for modifying the sample job are
described at the top of the job. Be sure to direct the output from the job to an appropriate user load library.
LNKLNK8 and LNKLNKR8 can be found in the Adabas 8 ADAvrs.SRCE library.

The module resulting from this job is called ADALNK or ADALNKR (as appropriate).

5. Tailor the ADARUN DDCARD input for the job steps that will use the Adabas 8 batch/TSO link
routines. The DDCARD input should include the following updates:

Specify the ADARUN PROG=USER parameter for a non-reentrant link routine, or specify
ADARUN PROG=RENTUSER to use a reentrant link routine in the job step. For more
information about the PROG parameter, read PROGRAM : Program to Run.

6. Make sure the appropriate load libraries are made available to the job step. These may be STEPLIB,
TASKLIB, JOBLIB, or, for reentrant modules, the LPA or LINKLIB.

Zapping the Default Values for the Adabas 8 ADALNK or ADALNKR
Modules

You can change default values for various link routine parameters used by the Adabas 8 ADALNK and
ADALNKR modules.

Changes to some default values for the Adabas 8 batch/TSO link routines, ADALNK and ADALNKR,
may occur with a zap to either the ADALNK or ADALNKR module. This includes the default values for
the database ID and the Adabas SVC number. All other default values should be set using the link globals
table, as described in Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules.
Software AG recommends changing all values in the link globals table and relinking ADALNK or
ADALNKR (as appropriate).

Use the following IMASPZAP control statements to change default values in ADALNK or ADALNKR
(as appropriate):

NAME ADALNK LNKGBLS
VER 0030 0001 Default DBID
REP 0030 #### Site-specific DBID
VER 0032 0AF9 Default Adabas SVC number
REP 0032 0A## Site-specific Adabas SVC number
*
NAME ADALNKR LNKRGBL
VER 0030 0001 Default DBID
REP 0030 #### Site-specific DBID
VER 0032 0AF9 Default Adabas SVC number
REP 0032 0A## Site-specific Adabas SVC number

49

Installing Adabas with TP MonitorsZapping the Default Values for the Adabas 8 ADALNK or ADALNKR Modules

Establishing Adabas SVC Routing by Adabas Database ID
Your application programs that use Adabas link routines in z/OS and VSE environments can route
database calls through specific Adabas SVCs, based on the database ID used in the call. SVC routing is
managed through the use of a DBID/SVC routing table you supply. Up to 1000 database IDs may be
specified in the table and associated with any number of valid SVC numbers installed in the z/OS or VSE
system. The DBID/SVC routing table is created using the MDBSVC macro.

Duplicate database IDs are not allowed in the DBID/SVC routing table as there is no reliable way for the
link routine to determine which SVC should be used for a database ID if it is listed more than once. If
duplicate database IDs are found while the table is being assembled, they are flagged with an assembler
MNOTE and a return code of 16 is returned for the assembly attempt.

Notes:

1. Adabas client-based add-ons, such as Adabas Transaction Manager, are not compatible with this
feature since for client-based functionality to work, it must be channeled through only a single router
for any given session, not across routers. To avoid problems if the dynamic SVC by DBID routing
feature in enabled for these products, error messages are issued, the assembly step of the globals table
will receive return code 16, and the globals table load module will not be generated.

2. ADALNK linked with the ADASVCTB should only be used by application programs and should not
be made available to the Adabas nucleus or to Entire Net-Work.

Caution:
This feature should be used with caution. Transactional integrity is not guaranteed. If an application
makes calls to multiple databases that are routed to more than one Adabas SVC, it becomes possible to
issue ET, BT, OP, CL, RC, or other Adabas commands that may affect the transaction on one database,
but not on the other databases running on different Adabas SVCs that were accessed previously. It
therefore is the responsibility of the application program to ensure that all necessary logic is included to
ensure transactional integrity across multiple databases where multiple Adabas SVCs are employed.

This section covers the following topics:

Installing the Adabas DBID/SVC Routing Feature

General Operation

Using the MDBSVC Macro

Installing the Adabas DBID/SVC Routing Feature

The general steps for installing the Adabas DBID/SVC routing feature are:

1. Define the DBID/SVC routing table in a library member using MDBSVC macro statements. For
more information about the DBID/SVC routing table and the MDBSVC macro, read Using the
MDBSVC Macro.

2. Assemble and link-edit the DBID/SVC routing table member to create a load module or PHASE that
will be made available to the operating environment where the SVC routing feature will be used.

50

Establishing Adabas SVC Routing by Adabas Database IDInstalling Adabas with TP Monitors

3. Modify a link globals table for the operating environment, specifying the LGBLSET keywords
DYNDBSVC=YES and DBSVCTN=name, where name is the name of the DBID/SVC routing table
load module that should be used by the link routine. Assemble and link-edit the updated link globals table
as required for the operating environment. For more information about the link globals table and the
LGBLSET macro, read Modifying Source Member Defaults (LGBLSET Macro) in Version 8 . For
information on assembling and link-editing the link globals table once the table is updated, refer to the
instructions for each z/OS or VSE TP monitoring environment, provided elsewhere in this section.

4. Make the prepared DBID/SVC routing table available in a load library that is accessible by the
application program’s job step, so it can be loaded by the link routine when it runs.

5. Except for CICS systems, you will need to relink ADALNK or ADALNKR making sure that the
INCLUDE statements for the LNKDSL and DEPRTR (or RTRVSE on VSE) modules are included in the
job.

This section covers the following topics:

Installing DBID/SVC Routing under z/OS Batch, TSO and IMS
Installing DBID/SVC Routing under CICS

Installing DBID/SVC Routing under z/OS Batch, TSO and IMS

The installation steps for the Adabas SVC routing feature under z/OS batch, TSO, and IMS are the same.

 To install the Adabas DBID/SVC routing feature under z/OS batch, TSO, or IMS, complete the
following steps:

1. Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a library
member. Sample member ADASVCTB is provided in the ADAvrs.SRCE library as a template for
preparing this member. For more information about using the MDBSVC macro, read Using the
MDBSVC Macro.

2. Assemble and link-edit the DBID/SVC routing table member to create the table as a load module that
you can make available to the application execution job step. The load module should be linked
non-reusable and non-reentrant because the link routine subprogram LNKDSL will need to store the
addresses of the Adabas SVC IDT headers in the DBID/SVC module to reduce the operating
overhead on multiple commands accessing the same Adabas SVC.

3. Define or modify a link globals table for the execution environment. The following LGBLSET
keywords are required to support the Adabas SVC routing feature:

51

Installing Adabas with TP MonitorsInstalling the Adabas DBID/SVC Routing Feature

LGBLSET Keyword
Setting

Description

DYNDBSVC=YES This keyword and setting indicate that Adabas SVC
routing is active for this job step.

DBSVCTN=name This keyword specifies the name of the DBID/SVC
table for this job step. This name must match the
name of the load module created to ensure the
proper table is loaded when the link routine runs.

4. Assemble and link-edit the updated link globals table, as described for the appropriate TP monitor.
For batch/TSO, read Installing Adabas with Batch/TSO under Adabas 8; for IMS, read Installing
Adabas with IMS TM under Adabas 8 .

5. Relink ADALNK or ADALNKR, making sure that the INCLUDE statements for the LNKDSL and
DEPRTR modules are included in the job. Samples of the jobs used to relink ADALNK and
ADALNKR are listed in the following table:

Link Routine Sample Job

z/OS batch TSO IMS

ADALNK LNKLNK8 LNKLNK8 ---

ADALNKR LNKLNKR8 LNKLNKR8 ---

ADALNI8 --- --- LNKLNI8

Installing DBID/SVC Routing under CICS

 To install the Adabas DBID/SVC routing feature under CICS, complete the following steps:

1. Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a library
member. Sample member ADASVCTB is provided in the ADAvrs.SRCE library as a template for
preparing this member. For more information about using the MDBSVC macro, read Using the
MDBSVC Macro.

2. Assemble and link-edit the DBID/SVC routing table member to create the table as a load module and
place it in a library that will be part of the CICS DFHRPL concatenation. The load module should be
linked non-reusable and non-reentrant because the link routine subprogram LNKDSL will need to
store the addresses of the Adabas SVC IDT headers in the DBID/SVC module to reduce the
operating overhead on multiple commands accessing the same Adabas SVC.

3. Define the load module as a program to CICS using RDO, or the DFHCSDUP utility. See member
DEFADA8 in the ACIvrs.SRCE libarary for sample DFHCSDUP definition statements. The program
attributes should be Reload(No), Resident(Yes), Dataloc(Any), and Execkey(CICS).

4. Define or modify a link globals table for the execution environment. The following LGBLSET
keywords are required to support the Adabas SVC routing feature:

52

Installing the Adabas DBID/SVC Routing FeatureInstalling Adabas with TP Monitors

LGBLSET Keyword
Setting

Description

DYNDBSVC=YES This keyword and setting indicate that Adabas SVC
routing is active for this job step.

DBSVCTN=name This keyword specifies the name of the DBID/SVC
table for this job step. This name must match the
name of the load module created to ensure the
proper table is loaded when the link routine runs.

5. Assemble and link-edit the updated link globals table, as described in Installing Adabas with CICS
under Adabas 8 for z/OS installations.

General Operation

When the Adabas SVC routing feature is installed, as described earlier in this section, it is loaded as
described below:

In batch, TSO, or IMS environments, the DBID/SVC routing table is loaded when the link routine
initializes if the LGBLSET DYNDBSVC parameter is set to YES in the link globals table. The
address of the routing table is kept in the link routine work area for use by all subsequent calls.

In CICS environments, the Adabas 8 initialization module ADACIC0, normally run during PLTPI
processing, loads and validates the DBID/SVC routing table, if the LGBLSET DYNDBSVC
parameter was set to YES in the link globals table for the CICS region. The address of the routing
table is kept in the global work area associated with the Adabas 8 task-related user exit (TRUE)
module, ADACICT, and is made available on each application call to the TRUE by the Adabas
command-level module ADACICS/ADADCI.

When an application call is made, the DBID/SVC routing table is searched by the LNKDSL subroutine
which is linked with the appropriate link routine for each operating environment. LNKDSL is called after
any LUEXIT1 (link routine user exit 1) is invoked, in case the pre-Adabas call user exit modifies the
command’s database ID for subsequent processing. The call to LNKDSL is made before any monitoring
or Adabas Fastpath exits are called, so the monitoring product, such as Adabas Review, Adabas Fastpath,
or Adabas Transaction Manager, will perform their processing based on the appropriate Adabas SVC
found in the DBID/SVC routing table.

If the database ID associated with a particular call is not found in the DBID/SVC routing table, the default
value for the Adabas SVC as specified by the MDBSVC macro’s TYPE=INIT parameter is used. If the
SVC located is not an Adabas SVC, or if it is not installed on the z/OS system, an Adabas response code
of 213 with subcode 16 or 20 is returned to the application. If the calling database is not active for an SVC
number, an Adabas response code of 148 (ADARSP148) is returned to the application.

Duplicate database IDs are not allowed in the DBID/SVC routing table as there is no reliable way for the
link routine to determine which SVC should be used for a database ID if it is listed more than once. If
duplicate database IDs are found while the table is being assembled, they are flagged with an assembler
MNOTE and a return code of 16 is returned for the assembly attempt.

53

Installing Adabas with TP MonitorsGeneral Operation

Using the MDBSVC Macro

Use the MDBSVC macro to define various aspects of the Adabas DBID/SVC routing table. Several
MDBSVC macros are coded together using TYPE=INIT, TYPE=GEN, and TYPE=FINAL keywords to
comprise a source module or member. This source module or member is then assembled and link-edited to
build the DBID/SVC routing table load module. Sample member ADASVCTB in ADAvrs.SRCE can be
used as a template for creating site-specific versions of the DBID/SVC routing table source module. Here
is a sample DBID/SVC routing table source member that uses the CSECT name TESTDBT; when the
table is assembled, its load module name will be TESTDBT:

TESTDBT CSECT
 MDBSVC TYPE=INIT,SVC=249,DBID=001
 MDBSVC TYPE=GEN,SVC=237,DBID=(2,10,21,33,175,1149), X
 DBID2=(100,101,102,13500)
 MDBSVC TYPE=GEN,SVC=231,DBID=(226,899)
 MDBSVC TYPE=GEN,SVC=206,DBID=(15,16,69,99,500,12144)
 MDBSVC TYPE=GEN,SVC=248,DBID=(14,54,111,177,1213,5775)
 MDBSVC TYPE=GEN,SVC=249,DBID=(17,19,25,35,42,44,61,76)
 MDBSVC TYPE=FINAL
 END

When coding keyword values of MDBSVC macro statements, the assembler rules for continuing lines,
identifying lists, and providing keyword values must be followed or assembly errors will result. Keywords
and values with lists coded as objects of keywords must be separated by commas. There are no positional
parameters used with the MDBSVC macro.

The MDBSVC macro can include the following four types of statements, as described in the following
table:

MDBSVC
Statement Type

Description Number
Allowed

TYPE=INIT Only one MDBSVC TYPE=INIT statement can be included in
the DBID/SVC routing table source member and it must be the
first MDBSVC statement in the member. This statement
identifies the beginning of the DBID/SVC routing table. The
MDBSVC TYPE=INIT statement may also provide the default
database ID and Adabas SVC number used for a call.

1

TYPE=GEN Any number of MDBSVC TYPE=GEN statements can be
included in the DBID/SVC routing table source member. These
statements specify the lists of Adabas database IDs associated
with specific valid Adabas SVC numbers.

any number,
as needed.

TYPE=FINAL Only one MDBSVC TYPE=FINAL statement can be included
in the DBID/SVC routing table source member and it must be
the last MDBSVC statement in the member before the
assembler END statement. This statement identifies the end of
the DBID/SVC routing table.

1

TYPE=DSECT This statement type is reserved for Software AG internal use
only. Do not use this statement type.

0

54

Using the MDBSVC MacroInstalling Adabas with TP Monitors

The MDBSVC TYPE=INIT statement can be preceded by a named CSECT statement and named
AMODE and RMODE statements. If the CSECT, AMODE, or RMODE statements are included, the
name used in them must agree with the name for the DBID/SVC routing table, as coded in the
TABNAME parameter on the MDBSVC TYPE=INIT statement and as specified in the DBSVCTN
keyword of the LGBLSET macro used for creating the link globals table.

This section covers the following topics:

MDBSVC TYPE=INIT Syntax
MDBSVC TYPE=GEN Syntax
MDBSVC TYPE=FINAL Syntax
MDBSVC Parameters

MDBSVC TYPE=INIT Syntax

The syntax for the MDBSVC TYPE=INIT statement is:

MDBSVC TYPE=INIT [,SVC=svcno] [,DBID=dbid] [,TABNAME={name|ADBSVCT}] [,OPSYS={ZOS|VSE}]

The parameters you can code on the MDBSVC TYPE=INIT statement are described in MDBSVC
Parameters.

MDBSVC TYPE=GEN Syntax

The syntax for the MDBSVC TYPE=GEN statement is:

MDBSVC TYPE=GEN [,SVC=svcno] [,DBID=id[, id]...][,DBID2=id[, id]...]

The parameters you can code on the MDBSVC TYPE=GEN statement are described in MDBSVC
Parameters.

MDBSVC TYPE=FINAL Syntax

The syntax for the MDBSVC TYPE=FINAL statement is:

MDBSVC TYPE=FINAL

No parameters are valid on the MDBSVC TYPE=FINAL statement.

MDBSVC Parameters

The parameters that can be specified on various MDBSVC statements are as follows:

DBID

55

Installing Adabas with TP MonitorsUsing the MDBSVC Macro

The DBID parameter can be coded on both the MDBSVC TYPE=INIT and MDBSVC TYPE=GEN
statements.

When specified on the MDBSVC TYPE=INIT statement, it lists the default database ID
associated with the SVC specified in the SVC parameter. In this case, only one database ID can
be listed in the DBID parameter on a TYPE=INIT statement.

When specified on a MDBSVC TYPE=GEN statement, it lists the database IDs associated with
the SVC specified in the SVC parameter. If more than one database ID is listed, they should be
enclosed in parentheses and separated by commas.

Database IDs listed in the DBID parameter must be numeric and must correspond to the IDs of
installed Adabas databases. In z/OS environments, database IDs must range from 1 to 65535. The
same database ID cannot be specified on multiple MDBSVC statements; they must be unique across
all of the DBID and DBID2 statements in the DBID/SVC routing table. Duplicate values are flagged
with an MNOTE, which causes the assembly of the DBID/SVC routing table to stop with return code
16.

The following is an example of some DBID parameters on various MDBSVC statements. Note that
two MDBSVC statements list database IDs associated with SVC 237. This allows more database IDs
to be coded for the same SVC number. Compare the way this is coded to the way the same example
is coded for the DBID2 parameter. Both codings produce the same end result.

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=242,DBID=(3,18)
MDBSVC TYPE=FINAL
END

DBID2

The DBID2 parameter can be coded only on MDBSVC TYPE=GEN statements. It lists additional
database IDs to be associated with an Adabas SVC specified in the SVC parameter. The DBID2
parameter is optional, but when it is specified, it must follow a DBID parameter.

Database IDs listed in the DBID2 parameter must be numeric and must correspond to the IDs of
installed Adabas databases. In z/OS environments, database IDs must range from 1 to 65535. The
same database ID cannot be specified on multiple MDBSVC statements; they must be unique across
all of the DBID and DBID2 statements in the DBID/SVC routing table. Duplicate values are flagged
with an MNOTE, which causes the assembly of the DBID/SVC routing table to stop with return code
16.

The following is an example of some MDBSVC statements that includes a DBID2 parameter.
Compare the way this example is coded to the way the same example is coded for the DBID
parameter. Both codings produce the same end result.

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33), X
 DBID2=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=242,DBID=(3,18)
MDBSVC TYPE=FINAL
END

56

Using the MDBSVC MacroInstalling Adabas with TP Monitors

OPSYS

The OPSYS parameter is an optional parameter that can be coded only on the MDBSVC
TYPE=INIT statement. This parameter identifies the operating system where the DBID/SVC routing
table is assembled. Valid values for the OPSYS parameter are "ZOS" and "VSE"; the default is
"ZOS".

PREFIX

The PREFIX parameter can only be coded only on the MDBSVC TYPE=DSECT statement, which is
reserved for internal use by Software AG. Do not use this parameter.

SVC

The SVC parameter can be coded on both the MDBSVC TYPE=INIT and MDBSVC TYPE=GEN
statements.

When specified on the MDBSVC TYPE=INIT statement, it specifies the default Adabas SVC
number to be used when the calling application provides a database ID that is not found in the
DBID/SVC routing table.

When specified on a MDBSVC TYPE=GEN statement, it specifies the Adabas SVC number to
be associated with the Adabas databases identified by the DBID and DBID2 parameters.

The SVC number listed in the SVC parameter must be numeric and must correspond to the SVC
number of an installed Adabas SVC. In z/OS environments, the SVC number must range from 200 to
255. Duplicate SVC values can be coded on multiple MDBSVC statements; this allows you to code
long lists of database IDs and associate them with the same Adabas SVC.

In the following example, notice that there are two MDBSVC statements for SVC 249. It is the
default SVC for the link routine and is also used for database 1, 3, and 18. There are also two
MDBSVC statements for SVC 237; the two statements are used to list nine databases associated with
SVC 237 (2, 4, 10, 16, 21, 33, 175, 1149, and 1221).

MDBSVC TYPE=INIT,SVC=249,DBID=1
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=249,DBID=(3,18)
MDBSVC TYPE=FINAL
END

TABNAME

The TABNAME parameter is an optional parameter that can be coded only on the MDBSVC
TYPE=INIT statement. This parameter specifies the name of the DBID/SVC routing table when the
source member does not include a separate (and previously coded) CSECT statement. In this case,
the name you specify on the TABNAME parameter is used to generate a named CSECT statement
and named AMODE and RMODE directives.

The DBID/SVC routing table name that you specify should be between 1 and 8 alphanumeric
characters long. In the following example, a DBID/SVC routing table with the name TESTDBT is
coded.

57

Installing Adabas with TP MonitorsUsing the MDBSVC Macro

MDBSVC TYPE=INIT,SVC=249,DBID=1,TABNAME=TESTDBT
MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)
MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)
MDBSVC TYPE=GEN,SVC=249,DBID=(3,18)
MDBSVC TYPE=FINAL
END

Modifying Source Member Defaults (LGBLSET Macro) in
Version 8
The Adabas 8 LGBLSET macro is used to set default installation values for the Adabas link routines. It is
used to prepare an object module which may either be link-edited with the Adabas 8 link routines or
provided to the link routines in the job step where they are run. Your Adabas libraries include sample
members provided to support the various teleprocessing (TP) monitors in each environment. Each of these
sample members may be copied to an appropriate library and modified to provide the necessary
customization required for the link routine that is intended to run in a given environment.

The LGBLSET parameter options with their default values (underlined) are described in the rest of this
section:

ADL: Adabas Bridge for DL/I Support

AVB: Adabas Bridge for VSAM Support

CITSNM: Adabas CICS TS Queue Name

COR: SYSCOR Exit Support

DBSVCTN: DBID/SVC Routing Table

DYNDBSVC: DBID/SVC Routing Table

ENTPT: Name of the Adabas CICS Command-Level Link Routine

GBLNAME: Name of Link Globals Module

GEN: Generate CSECT or DSECT

IDTNAME: BS2000 IDT Common Memory Name

IDTUGRP: BS2000 Memory Pool User Bound

LOGID: Default Logical Database ID

LUIDX: CICS Link User ID Exit Flag

LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2

LUIXNAM: CICS Link User ID Generation Exit Name

LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2

58

Modifying Source Member Defaults (LGBLSET Macro) in Version 8Installing Adabas with TP Monitors

LX1NAME: User Exit 1 Module Name

LX2NAME: User Exit 2 Module Name

MRO: Multiple Region Option

NETOPT: Method Used to Create User ID

NTGPID: Natural Group ID

NUBS: Number of User Blocks Created By CICS Link Routine

OPSYS: Operating System

PARMTYP: Area for Adabas Parameter List

PRE: DSECT Data Prefix

PURGE: Purge Transaction

RENT: Reentrant Module Flag

RETRYX: Retry Command Exit Flag

REVIEW: Adabas Review Support

RMI: Resource Manager Interface

RTXNAME: Command Retry Exit Name

SAF: Adabas Security Interface Flag

SAP: SAP Application Support

SAPSTR: SAP ID String

SVCNO: Adabas SVC number

TPMON: Operating Environment

TRUENM: CICS TRUE Name

UBPLOC: User Block Pool Allocation

UBSTIME: User Block Scan Time

UBTYPE: User Block Type

UES: Universal Encoding Support

USERX1: User Exit 1 Flag

USERX2: User Exit 2 Flag

59

Installing Adabas with TP MonitorsModifying Source Member Defaults (LGBLSET Macro) in Version 8

XWAIT: XWAIT Setting for CICS

ADL: Adabas Bridge for DL/I Support

Parameter Description Syntax

ADL Indicates whether or not the Consistency Interface of
Software AG’s Adabas Bridge for DL/I is to be supported
by this command-level link routine.

ADL=YES: Adabas Bridge for DL/I Consistency
Interface is to be supported.

ADL=NO: Adabas Bridge for DL/I Consistency
Interface is not to be supported.

ADL={NO|YES}

AVB: Adabas Bridge for VSAM Support

Parameter Description Syntax

AVB Indicates whether or not Software AG’s Adabas Bridge for
VSAM is to be supported by this command-level link
routine.

AVB=YES: Adabas Bridge for VSAM is to be
supported.

AVB=NO: Adabas Bridge for VSAM is not to be
supported.

AVB={NO|YES}

CITSNM: Adabas CICS TS Queue Name

Parameter Description Syntax

CITSNM Specifies the 16-byte string that represents the
CICS TS queue name for Adabas. The default is
"ADACICS".

CITSNM={ADACICS| qname}

COR: SYSCOR Exit Support

Parameter Description Syntax

COR Indicates whether or not Adabas System Coordinator
(SYSCOR), Adabas Transaction Manager, and Adabas
Fastpath exits are installed and active.

COR=YES: The exits are installed and active.

COR=NO: The exits are not installed and active.

COR={NO|YES}

60

ADL: Adabas Bridge for DL/I SupportInstalling Adabas with TP Monitors

DBSVCTN: DBID/SVC Routing Table

Parameter Description Syntax

DBSVCTN Provides the name of the DBID/SVC routing
table that should be used by the link routine
during its execution, if any.

The routing table name must conform to names
for z/OS standard load modules. It is used by a
z/OS LOAD macro/SVC during batch, TSO, or
IMS operation or by an EXEC CICS LOAD
PROGRAM command during CICS operation.

If the load module listed is not found, or if it is
found to contain invalid header information, user
abend U657 is issued in batch, TSO, or IMS
environments.

If the load module is not defined to CICS or not
found in the CICS DFHRPL concatenation, the
Adabas CICS link routine environment is not
initialized.

Note:
If the DYNDBSVC parameter is set to NO, this
parameter setting is ignored.

For more information about SVC routing by
database ID in z/OS environments, read
Establishing Adabas SVC Routing by Adabas
Database ID.

Note:
Adabas client-based add-ons, such as Adabas
Transaction Manager, are not compatible with
this feature since for client-based functionality to
work, it must be channeled through only a single
router for any given session, not across routers.
To avoid problems if the dynamic SVC by DBID
routing feature in enabled for these products,
error messages are issued, the assembly step of
the globals table will receive return code 16, and
the globals table load module will not be
generated.

DBSVCTN={name| ADASVCTB}

DYNDBSVC: DBID/SVC Routing Table

61

Installing Adabas with TP MonitorsDBSVCTN: DBID/SVC Routing Table

Parameter Description Syntax

DYNDBSVC Indicates whether Adabas SVC routing by database
ID should be enabled for the link routine.
DYNDBSVC=YES enables Adabas SVC routing by
database ID; DYNDBSVC disables it. The default is
NO.

For more information about SVC routing by database
ID in z/OS environments, read Establishing Adabas
SVC Routing by Adabas Database ID.

DYNDBSVC={YES|NO}

ENTPT: Name of the Adabas CICS Command-Level Link Routine

Parameter Description Syntax

ENTPT The name given to the Adabas CICS command-level
link routine. This name is used in EXEC CICS
LINK commands to invoke Adabas services from
CICS application programs.

See also notes 1 and 2 in the installation procedure.

ENTPT={ADACICS|name}

GBLNAME: Name of Link Globals Module

Parameter Description Syntax

GBLNAME The name of the link globals module.GBLNAME={LNKGBLS|name}

GEN: Generate CSECT or DSECT

Parameter Description Syntax

GEN Indicates whether a CSECT or DSECT is
generated.

GEN={CSECT|DSECT}

IDTNAME: BS2000 IDT Common Memory Name

Parameter Description Syntax

IDTNAME The common memory pool name of the BS2000 IDT.IDTNAME=name

IDTUGRP: BS2000 Memory Pool User Bound

Parameter Description Syntax

IDTUGRP Indicates whether the common memory pool is user
bound (BS2000)

IDTUGRP={NO|YES}

62

ENTPT: Name of the Adabas CICS Command-Level Link RoutineInstalling Adabas with TP Monitors

LOGID: Default Logical Database ID

Parameter Description Syntax

LOGID The value of the default target database ID. Valid ID
numbers are 1-65535. The default is "1".

LOGID={nnn | 1}

LUIDX: CICS Link User ID Exit Flag

Parameter Description Syntax

LUIDX Indicates whether the CICS link user ID user exit is active.

LUIDX=YES: The link user ID user exit is active.

LUIDX=NO: The link user ID user exit is not active.

The actual name of the user exit is provided in the
LUIXNAM parameter.

LUIDX={ NO|YES}

LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2

Parameter Description Syntax

LUINFO The length of the user data to be passed to target user
exit 4. Valid values are numbers from zero (0) through
32,767.

If LUINFO is not specified, the default is zero (no user
data is passed).

LUINFO={ 0| length}

LUIXNAM: CICS Link User ID Generation Exit Name

Parameter Description Syntax

LUIXNAM The name of the user ID generation user exit that
should be used by the CICS link routine.

The exit program must be written in IBM’s
high-level assembler language. It may issue
EXEC CICS commands. It must either be coded
reentrant or quasi-reentrant, if it obtains its own
DFHEISTG area and changes that to the
task-related user exits (TRUEs),

LUIXNAM={LUIDXIT| name}

LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2

63

Installing Adabas with TP MonitorsLOGID: Default Logical Database ID

Parameter Description Syntax

LUSAVE The size of the user save area to be used by Adabas user
exits LUEXIT1 and LUEXIT2. Valid values range from
zero (0) through 256. The default is "72".

If LUSAVE is not specified, the default is zero (no user
save area is passed).

LUSAVE={72| size}

LX1NAME: User Exit 1 Module Name

Parameter Description Syntax

LX1NAME The name of the link user exit 1 moduleLX1NAME={LUEXIT1| name}

LX2NAME: User Exit 2 Module Name

Parameter Description Syntax

LX2NAME The name of the link user exit 2 moduleLX2NAME={LUEXIT2| name}

MRO: Multiple Region Option

Parameter Description Syntax

MRO Indicates whether or not the CICS multiple region option
(MRO) support is required.

If you run the CICS command-level link with the CICS
MRO, set this to MRO=YES; otherwise, use the default
value MRO=NO.

If MRO=YES, NETOPT must be set to NETOPT=NO (the
default) to prevent non-unique LU names from multiple
application regions.

If NETOPT=YES and MRO=YES are specified, an
assembler MNOTE and a return code of 16 are produced
from the assembly step.

MRO={NO|YES}

NETOPT: Method Used to Create User ID

64

LX1NAME: User Exit 1 Module NameInstalling Adabas with TP Monitors

Parameter Description Syntax

NETOPT If NETOPT=YES is specified, an 8-byte user ID will be
constructed from the VTAM LU name. If NETOPT=NO
is specified, the user ID is created from the constant
CICS plus the four-byte CICS terminal ID (TCTTETI)
for terminal tasks. For non-terminal tasks, the user ID
comprises the constant CICS plus the CICS task number.

If you run with the CICS multiple region option (MRO),
you must use the default value for this option. If
NETOPT=YES and MRO=YES are specified, an
assembler MNOTE and a return code of 16 are produced
from the assembly step.

NETOPT={NO|YES}

NTGPID: Natural Group ID

Parameter Description Syntax

NTGPID Specifies a four-byte Natural group ID as required for
unique Adabas user ID generation in the CICS
sysplex environment with Natural Version 2.2.8 and
above. The value is associated with all users who call
the Adabas command-level link routine assembled
with the specified value.

There is no default value. If no value is specified, the
Adabas internal user ID is built in the conventional
manner.

Any four-byte alphanumeric value may be specified,
but it must be unique for each Adabas
command-level link routine running in a CICS
sysplex, or z/OS image. If more than one NTGPID is
required (for example, both test and production
Natural 2.2.8), more than one Adabas command-level
link routine with associated TRUE must be
generated.

If you run with the CICS multiple region option
(MRO), you may use NTGPID to provide a 4-byte
literal for the Adabas communication ID to be used
by the Adabas SVC when multiple application
regions call Adabas.

NTGPID=4-byte-value

NUBS: Number of User Blocks Created By CICS Link Routine

65

Installing Adabas with TP MonitorsNTGPID: Natural Group ID

Parameter Description Syntax

NUBS The number of user blocks (UBs) to be created in the
user block pool by the CICS link routine. The number
of blocks must be large enough to handle the maximum
possible number of concurrent Adabas requests.

Note:
The Adabas 6.2 and above command-level link routine
obtains storage for the user blocks (the UB pool) above
the 16-megabyte line.

NUBS={100| blocks}

OPSYS: Operating System

Parameter Description Syntax

OPSYS The operating system in use. OPSYS={ZOS|VSE|CMS|BS2}

PARMTYP: Area for Adabas Parameter List

66

OPSYS: Operating SystemInstalling Adabas with TP Monitors

Parameter Description Syntax

PARMTYP The CICS area which is to contain the Adabas
parameter list. "TWA" picks up the parameter list
in the first six fullwords of the transaction work
area (TWA).

When PARMTYP=COM, the Adabas parameters
are supplied in the CICS COMMAREA provided
by the calling program with the EXEC CICS
LINK command. The COMMAREA list for an
ACB call must be at least 32 bytes long and begin
with the label "ADABAS52". The COMMAREA
list for an ACBX call must be at least 24 bytes
long and begin with the label "ADABAS8X". In
addition, the last ABD in the COMMAREA list
for an ACBX call must be indicated by setting the
VL-bit -- in other words, the high bit in the
address must be on (X’80’).

PARMTYP=ALL (the default) uses both the
COMMAREA and TWA to pass the Adabas
parameters; in this case, the COMMAREA is
checked first.

We do not recommend that you attempt to map
the CICS TWA to the Adabas 8 ACBX direct call.
This is because the TWA is of finite size per
transaction and because the TWA in not available
at CICS startup. We therefore recommend that
CICS programs using the Adabas 8 CICS link
routines use the COMMAREA only for passing
data.

PARMTYP={ALL|COM |TWA}

PRE: DSECT Data Prefix

Parameter Description Syntax

PRE The two-byte string to be used as the DSECT data prefix.
The default is "LG".

PRE={LG| prefix}

PURGE: Purge Transaction

67

Installing Adabas with TP MonitorsPRE: DSECT Data Prefix

Parameter Description Syntax

PURGE The PURGE parameter is used when assembling with
CICS 3.2 or above. If PURGE=YES is specified, the CICS
WAIT EXTERNAL will contain PURGEABLE as one of
its parameters, allowing the transaction to be purged by
CICS if the DTIMOUT value is exceeded and PURGE is
specified.

If PURGE=NO (the default) is specified, the
NONPURGEABLE option is generated.

PURGE={NO|YES}

RENT: Reentrant Module Flag

Parameter Description Syntax

RENT Indicates whether the globals module is reentrant.RENT={NO|YES}

RETRYX: Retry Command Exit Flag

Parameter Description Syntax

RETRYX Indicates whether the retry command exit is active.RETRYX={NO|YES}

REVIEW: Adabas Review Support

Parameter Description Syntax

REVIEW Indicates whether or not Software AG’s Adabas Review
performance monitor is installed and active. When
REVIEW=YES is specified, a work area of 512 bytes is
set up for use by Adabas Review.

REVIEW={NO|YES}

RMI: Resource Manager Interface

Parameter Description Syntax

RMI The RMI parameter is used to indicate whether or not the
CICS Resource Manager Interface is in use.

If RMI=YES is specified, the Adabas task-related user exit
(TRUE) will be executed as a resource manager (RM) using
the CICS Resource Manager Interface (RMI).

RMI=YES is valid only when the Adabas Transaction
Manager is installed, enabled, and available to users
executing in the CICS environment. Consult the Adabas
Transaction Manager documentation for additional
instructions related to the installation of the Adabas TRUE.

RMI={ NO|YES}

68

RENT: Reentrant Module FlagInstalling Adabas with TP Monitors

RTXNAME: Command Retry Exit Name

Parameter Description Syntax

RTXNAME The name of the command retry exit
module.

RTXNAME={LUEXRTR|name}

SAF: Adabas Security Interface Flag

Parameter Description Syntax

SAF Indicates whether Software AG’s Adabas SAF Security
support is required.

SAF={NO|YES}

SAP: SAP Application Support

Parameter Description Syntax

SAP Indicates whether or not SAP user ID generation is
supported.

If SAP=YES is specified, the program will detect a SAP
initialization call and set the user ID for SAP applications
from the constant provided on the initialization call, plus the
field ACBADD2.

For more information, refer to the supplementary
information provided to customers using the SAP
application system.

SAP={NO|YES}

SAPSTR: SAP ID String

Parameter Description Syntax

SAPSTR The four-byte SAP ID string to use. SAPSTR={’SAP*’| string}

SVCNO: Adabas SVC number

Parameter Description Syntax

SVCNO The value of the Adabas SVC number.

On z/OS systems, valid values range from 200-255 and the
default is "249".

On z/VSE systems, valid values range from 32-128 and the
default is "45".

SVCNO=nnn

69

Installing Adabas with TP MonitorsRTXNAME: Command Retry Exit Name

TPMON: Operating Environment

Parameter Description Syntax

TPMON The TP monitor operating environment. Valid
values should be specified as follows:

Specify "BAT" to use batch.

Specify "CICS" to use CICS.

Specify "COM" to use Com-plete.

Specify "IMS" to use IMS.

Specify "TSO" to use TSO.

Specify "UTM" to use UTM.

Warning:
Be sure to specify a TP
monitor operating
environment that is
supported on the
operating system you
selected in the OPSYS
parameter. In addition, if
OPSYS=CMS is specified,
the TPMON parameter
should not be specified.

TPMON={BAT|CICS|COM|IMS}

TRUENM: CICS TRUE Name

Parameter Description Syntax

TRUENM Specifies the module name of the Adabas CICS
task-related user exit (TRUE). The default is
ADACICT.

TRUENM={ADACICT|name}

UBPLOC: User Block Pool Allocation

70

TPMON: Operating EnvironmentInstalling Adabas with TP Monitors

Parameter Description Syntax

UBPLOC Specifies whether the user block (UB) pool is to be
obtained above (the default) or below the
16-megabyte line in CICS.

The ECB used by the EXEC CICS WAIT
WAITCICS or the EXEC CICS WAIT EXTERNAL
is included in the UB pool.

The UBPLOC=BELOW setting supports versions of
CICS that do not allow ECBs above the
16-megabyte line; that is, CICS/ESA 3.2 or below.

Refer to the IBM manual CICS Application
Programming Reference for more information.

UBPLOC={ABOVE|BELOW}

UBSTIME: User Block Scan Time

71

Installing Adabas with TP MonitorsUBSTIME: User Block Scan Time

Parameter Description Syntax

UBSTIME Specifies the user block (UB) scan time in fat
seconds. A fat second is the interval required to
change bit-31 of the doubleword set by an STCK
instruction. The default is 1800 seconds.

This parameter sets the minimum interval at which
the Adabas task-related user exit (TRUE) will
decide that a user block entry in the user block
pool is eligible for release, if (for some reason) the
user block entry was not released by normal
Adabas CICS processing. Thus, UBSTIME=1800
indicates that a locked user block entry will be
released by the Adabas TRUE if more than 1800
fat seconds have elapsed since the user block entry
was locked for an Adabas call.

The value of UBSTIME should be set higher than
the Adabas CT (transaction time) ADARUN
parameter. An ADAM93 message indicating either
a post failure or a missing 16 call is likely to occur
around the time the user block entry is released or
prior to the user block entry’s release if the Adabas
CT timeout value has been exceeded.

Note:
The Adabas TRUE will not release a user block
entry even if the UBSTIME has elapsed if the
ECB associated with the locked user block has not
been posted. This is to prevent accidental posting
of the wrong CICS task by the Adabas SVC.

UBSTIME={seconds| 1800}

UBTYPE: User Block Type

72

UBTYPE: User Block TypeInstalling Adabas with TP Monitors

Parameter Description Syntax

UBTYPE Identifies the kind of user block (UB) storage the
Adabas CICS installation program and Adabas
task-related user exit (TRUE) should obtain and use.

Valid values are TASK and POOL. POOL is the
default. UBTYPE=POOL causes the installation
program to obtain a pool of user blocks in CICS
storage. This is the classic mechanism used by Adabas
CICS link routines.

UBTYPE=TASK changes the behavior of the Adabas
CICS installation program and Adabas TRUE so they
obtain a single user block element, including any
required extensions for user data and Software AG
products, for each CICS task that invokes the Adabas
TRUE. The user block is obtained in CICS shared
storage in user-key. It is released when the Adabas
TRUE is driven by CICS at the end of the CICS task.
The advantage of UBTYPE=TASK is that there is no
scan time required to locate and lock a given UB pool
element on each Adabas call. The disadvantages of
using UBTYPE=TASK are that a CICS GETMAIN
must be issued for each CICS task the first time the
Adabas TRUE is invoked for the task and that a CICS
FREEMAIN must be issued to release the user block
storage at the end of the CICS task.

The decision to use UBTYPE=TASK should be based
on whether your answers to the following questions
are "Yes":

1. Do the majority if CICS tasks that use this CICS
execution unit run for long periods, issuing many
Adabas calls within each task?

2. Do the CICS tasks often trip CPU limits set by
CICS execution monitoring programs such as
those from Omegamon?

UBTYPE=POOL should be used if there are problems
with CICS storage fragmentation of when most of the
Adabas CICS transactions issues a relatively small
number of Adabas calls per CICS task.

Software AG encourages you to experiment with
values for UBTYPE because it is not possible to
reliably predict the mix of transactions used at each
site or how they call Adabas.

UBTYPE={POOL|TASK}

73

Installing Adabas with TP MonitorsUBTYPE: User Block Type

UES: Universal Encoding Support

Parameter Description Syntax

UES Indicates whether or not Universal Encoding Support
(UES) is required.

UES={NO|YES}

USERX1: User Exit 1 Flag

Parameter Description Syntax

USERX1 Indicates whether or not user exit 1 is active. USERX1={NO|YES}

USERX2: User Exit 2 Flag

Parameter Description Syntax

USERX2 Indicates whether or not user exit 2 is active. USERX2={NO|YES}

XWAIT: XWAIT Setting for CICS

Parameter Description Syntax

XWAIT Indicates whether a standard EXEC CICS WAITCICS
(XWAIT=NO) or a WAIT EVENTS EXTERNAL
(XWAIT=YES) will be executed by the Adabas 8
task-related user exit (TRUE). XWAIT=YES is the
default.

The CICS WAIT EVENTS EXTERNAL (XWAIT=YES)
is the recommended interface for CICS/TS 1.1 and above.

The CICS WAITCICS statement (XWAIT=NO) is
provided for use with CICS/MVS 2.1.2 and for CICS/VSE
2.1 through 2.3. It may also be used for CICS/TS 1.1 and
above, but may result in poor CICS transaction
performance or unpredictable transaction results in busy
CICS environments.

Note:
If XWAIT=NO is specified for use under CICS/ESA 3.3,
IBM APAR PN39579 must be applied to the CICS/ESA
3.3 system. For CICS/TS 1.1 and above, this APAR is not
required.

XWAIT={NO| YES}

Notes:

1. If XWAIT=NO is specified, the ADACICT (Adabas 8 TRUE) module issues an EXEC CICS
WAITCICS command instead of the EXEC CICS WAIT EVENT command. XWAIT=YES
conforms with recommended IBM usage of the WAIT and ECB lists in a high-transaction volume
CICS system with CICS/TS Version 1.1 and above.

74

UES: Universal Encoding SupportInstalling Adabas with TP Monitors

2. All EXEC CICS commands are processed by the CICS preprocessor; the LGBLSET parameters
cause the subsequent assembly step to skip some of the statements.

XWAIT Posting Mechanisms

CICS WAITCICS (XWAIT=NO) can support a soft post of the specified ECB. This has the disadvantage
of becoming a low priority dispatchable unit of work in a CICS environment, since the hand-postable
work is not processed by CICS on every work cycle.

EXEC CICS WAIT EXTERNAL (XWAIT=YES), on the other hand, allows CICS to make use of its
special post exit code, and will always be checked and processed (if posted) on every CICS work cycle.

For more details on the differences between the various CICS WAIT commands and their relationship to
hard and soft posting mechanisms, consult the IBM CICS Application Programming Reference and the
texts accompanying IBM APAR PN39579 or “Item RTA000043874” on the IBM InfoLink service.

XWAIT and the Adabas SVC / Router

The Adabas SVC is fully compatible with the XWAIT=YES setting. The SVC performs the necessary
hard post for Adabas callers under CICS using the Adabas command-level link routine. The same SVC
performs a soft post for batch callers where the hard post is not required.

75

Installing Adabas with TP MonitorsXWAIT: XWAIT Setting for CICS

	Installing Adabas with TP Monitors
	Preparing Adabas Link Routines for IBM Platforms
	Addressing Mode Assembly Directives in Adabas Link Routines
	Re-linking Adabas 8 Link Routines
	ADAUSER AMODE/RMODE Considerations

	UES-Enabled Link Routines
	Default or Customized Translation Tables
	Calling LNKUES and LNKUES7
	Adabas 8 Jobs for z/OS Universal Encoding Support
	Disabling UES Support for Adabas 8 Routines

	Installing Adabas with IMS TM under Adabas 8
	IMS TM Link Routines for Adabas 8
	Obtaining the Adabas User ID
	Obtaining the SAF ID
	Installation Procedure under Adabas 8

	General Considerations for Installing Adabas with CICS
	Adabas Bridge for VSAM Considerations
	CICS MRO Environment Requirements
	Using CICS Storage Protection
	Sample Resource Definitions
	Requirement for CICS Command Resource Security

	Installing Adabas with CICS under Adabas 8
	The Adabas CICS Application Stub (ADACICS)
	The Adabas CICS Names Module (ACINAMES)
	The Adabas CICS Installation Options Table (ACIOPT)
	The MACINS Macro
	Example

	The MACIOPT Macro
	The ENTRY=GLOBAL Statement
	The ENTRY=GROUP Statement
	The ENTRY=FINAL Statement
	Example

	Adabas Task-Related User Exits (TRUEs)
	Supplied Modules
	Installation Procedure
	Step 1. Copy the Load Modules
	Step 2. Prepare the Adabas CICS Installation Options Table
	Step 3. Prepare the Adabas CICS Task-Related User Exits (TRUEs) -- ADACICT
	Step 4. Prepare the Adabas CICS Names Module -- ACINAMES
	Example
	Step 5. Prepare the Adabas CICS Application Stub -- ADACICS
	Example
	Step 6. Prepare the CICS Link Globals Table -- CICSGBL
	Step 7. Assemble the CICS Link Globals Table -- ASMGBLS
	Step 8. Link the Assembled CICS Link Globals Table -- LNKGCICS
	Step 9. Modify CICS Installation Values -- DEFADAC
	Step 10. Update the CICS CSD File
	Step 11. Modify, Assemble and Link the CICS PLTPI Table for ADACIC0
	Step 12. Start the CICS

	Installing the CICS High-Performance Stub Routine for Adabas 8
	Restrictions and Requirements
	Stub Components
	Installation Overview
	Step 1: Install the LNCSTUB Module
	Edit the ADAGSET Macro
	(Optional) Set the LNCSTUB Entry-Point Alias
	Modify Member JCLLNCS
	Preprocess, Assemble, and Link the LNCSTUB Module
	Make the LNCSTUB Available to Application Programs

	Step 2: (Optional) Install and Execute an IVP
	Install and Execute the Assembler IVP: ALCSIVP
	Install and Execute the COBOL IVP: COBSIVP

	Step 3: Link and Execute the Application Program
	Guidelines for Modifying the Application Program
	Link the Application Programs to Include the LNCSTUB Module

	Performance Using LNCSTUB
	Modifying Source Member Defaults (ADAGSET Macro)
	AVB: Adabas VSAM Bridge Support
	ENABNM: Entry Point Name for Program to Enable Adabas TRUE
	ENTPT: Name of the Adabas CICS Command-Level Link Routine
	LOGID: Default Logical Database ID
	LRINFO: Length of Adabas Review Data Area
	LUINFO: Length of User Data passed to Adabas LNKUEXIT1 and LNKUEXIT2
	LUSAVE: Size of User Save Area for Adabas LNKUEXIT1 and LNKUEXIT2
	LXITAA: Length of Work Area provided to LNKUEXIT2
	LXITBA: Length of Work Area for LNKUEXIT1
	MRO: Multiple Region Option
	NETOPT: Method Used to Create User ID
	NTGPID: Natural Group ID
	NUBS: Number of User Blocks Created By CICS Link Routine
	PARMTYP: Area for Adabas Parameter List
	PURGE: Purge Transaction
	RMI: Resource Manager Interface
	SAF: Adabas SAF Security
	SAP: SAP Application Support
	SVCNO: Adabas SVC number
	TRUE: Adabas Task-Related User Exit
	TRUENM: Name of Adabas Task-Related User Exit
	UBPLOC: User Block Pool Allocation
	XWAIT: XWAIT Setting for CICS
	XWAIT Posting Mechanisms
	XWAIT and the Adabas SVC / Router

	Installing Adabas with Com-plete under Adabas 8
	General Considerations for Installing Adabas with Batch/TSO
	Non-reentrant ADALNK Batch Routine Operation
	ADALNKR: Reentrant Batch Link Routine

	Installing Adabas with Batch/TSO under Adabas 8
	Supplied Modules
	Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules
	Zapping the Default Values for the Adabas 8 ADALNK or ADALNKR Modules

	Establishing Adabas SVC Routing by Adabas Database ID
	Installing the Adabas DBID/SVC Routing Feature
	Installing DBID/SVC Routing under z/OS Batch, TSO and IMS
	Installing DBID/SVC Routing under CICS

	General Operation
	Using the MDBSVC Macro
	MDBSVC TYPE=INIT Syntax
	MDBSVC TYPE=GEN Syntax
	MDBSVC TYPE=FINAL Syntax
	MDBSVC Parameters

	Modifying Source Member Defaults (LGBLSET Macro) in Version 8
	ADL: Adabas Bridge for DL/I Support
	AVB: Adabas Bridge for VSAM Support
	CITSNM: Adabas CICS TS Queue Name
	COR: SYSCOR Exit Support
	DBSVCTN: DBID/SVC Routing Table
	DYNDBSVC: DBID/SVC Routing Table
	ENTPT: Name of the Adabas CICS Command-Level Link Routine
	GBLNAME: Name of Link Globals Module
	GEN: Generate CSECT or DSECT
	IDTNAME: BS2000 IDT Common Memory Name
	IDTUGRP: BS2000 Memory Pool User Bound
	LOGID: Default Logical Database ID
	LUIDX: CICS Link User ID Exit Flag
	LUINFO: Length of User Data Passed to Adabas LUEXIT1 and LUEXIT2
	LUIXNAM: CICS Link User ID Generation Exit Name
	LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2
	LX1NAME: User Exit 1 Module Name
	LX2NAME: User Exit 2 Module Name
	MRO: Multiple Region Option
	NETOPT: Method Used to Create User ID
	NTGPID: Natural Group ID
	NUBS: Number of User Blocks Created By CICS Link Routine
	OPSYS: Operating System
	PARMTYP: Area for Adabas Parameter List
	PRE: DSECT Data Prefix
	PURGE: Purge Transaction
	RENT: Reentrant Module Flag
	RETRYX: Retry Command Exit Flag
	REVIEW: Adabas Review Support
	RMI: Resource Manager Interface
	RTXNAME: Command Retry Exit Name
	SAF: Adabas Security Interface Flag
	SAP: SAP Application Support
	SAPSTR: SAP ID String
	SVCNO: Adabas SVC number
	TPMON: Operating Environment
	TRUENM: CICS TRUE Name
	UBPLOC: User Block Pool Allocation
	UBSTIME: User Block Scan Time
	UBTYPE: User Block Type
	UES: Universal Encoding Support
	USERX1: User Exit 1 Flag
	USERX2: User Exit 2 Flag
	XWAIT: XWAIT Setting for CICS
	XWAIT Posting Mechanisms
	XWAIT and the Adabas SVC / Router

