
Adabas Transaction Manager

Adabas Transaction Manager Introduction

Version 8.1.2

June 2014

This document applies to Adabas Transaction Manager Version 8.1.2.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ATM-INTRO-812-20140626

Table of Contents

Preface .. v
1 Adabas Transaction Manager Benefits and Features .. 1

The Role of the Adabas Transaction Manager ... 2
Global Transactions .. 2
Distributed Transaction Processing ... 4
Processing Modes ... 6
Interfacing with Adabas Applications ... 9
Pending Response Codes ... 15
Adabas Transaction Manager Support for ET Data ... 16
Adabas Transaction Manager Support for Triggers ... 17
Interfacing with Other DBMSs ... 18

2 Adabas Transaction Manager Components .. 23
ATM Transaction Manager ... 24
Adabas Transaction Manager Client Proxy ... 24
Recovery Database ... 25
Administration ... 25

iii

iv

Preface

This document provides an introduction to Adabas Transaction Manager.

The following topics are provided:

Adabas Transaction Manager Benefits and Features

Adabas Transaction Manager Components

v

vi

1 Adabas Transaction Manager Benefits and Features

■ The Role of the Adabas Transaction Manager ... 2
■ Global Transactions ... 2
■ Distributed Transaction Processing ... 4
■ Processing Modes ... 6
■ Interfacing with Adabas Applications ... 9
■ Pending Response Codes ... 15
■ Adabas Transaction Manager Support for ET Data ... 16
■ Adabas Transaction Manager Support for Triggers ... 17
■ Interfacing with Other DBMSs .. 18

1

This section provides an overview of the benefits and features provided by Adabas Transaction
Manager.

The Role of the Adabas Transaction Manager

The Adabas Transaction Manager is a server for coordinating distributed transaction processing
in distributed Adabas environments. It manages global transactions that are distributed across
multiple Adabas databases by coordinating changes to the databases in a seamless, integrated
way, using a two-phase commit protocol when necessary.

Adabas Transaction Manager addresses two basic needs:

■ the need to deliver industrial strength enterprise objects for widespread commercial use in
mainstream, critical business systems, and

■ the need to spread the large volumes of data that Adabas customersmanagemore evenly across
the computer(s) and organization.

Adabas customers have significant investments in existing application systems. The Adabas
Transaction Manager’s client proxy and Transaction Manager make it possible for these systems
to participate in distributed transaction processing transparently.

Global Transactions

■ What is a Global Transaction?
■ Global Transaction Status
■ Global Transaction Time Limits
■ Coordinating Global Transactions Across Systems

What is a Global Transaction?

A global transaction is a unit of work that involves changes to resources under the control of one
or more database management systems (DBMSs) operating in one or more system images. The
databases and operating system images can be local or remote. Transaction processing operations
can be handled serially or in parallel.

OnceAdabas TransactionManager software has been installed and configured, existing applications
can execute global transactionswith guaranteed all-or-none integrity. In terms of application logic,
nothing changes except that the application may receive new response codes if errors occur that
are associated with the management of global transactions. Such error conditions can be handled
normally by an error-handling routine. Details of the possible error conditions can be found in
the section Messages and Codes.

Adabas Transaction Manager Introduction2

Adabas Transaction Manager Benefits and Features

Global Transaction Status

A user is said to be at global transaction status when there are no uncommitted changes for that
user in databases running with runtime parameter setting DTP=RM; that is, when the user has no
pending changes in databases that are capable of two-phase commit processing.

Global Transaction Time Limits

In the same way that Adabas provides a time limit for local database transactions, Adabas Trans-
action Manager supports a time limit for global transactions. If a global transaction is incomplete
when the time limit expires, Adabas Transaction Manager attempts to complete it by committing
it or rolling it back, depending on its status. If the transaction is rolled back, the application receives
response code 9 with a suitable subcode notifying it of the backout.

Coordinating Global Transactions Across Systems

If Entire Net-Work is installed, global transactions can cross system boundaries. The ATM trans-
action manager that represents one operating system image coordinates with one or more other
ATM transaction managers, each of which represents another operating system image.

The root ATM transaction manager operating in the system image that is local to the user (applic-
ation) takes a superior role in coordinating the global transaction; the partner transactionmanagers
operating in other system images that process parts or branches of the global transaction take a
subordinate role.

An ATM transaction manager can take a superior role for one transaction while simultaneously
taking a subordinate role for another transaction.

Through the ATM client proxy component, the root transaction manager accepts a request from
the application to commit. It instructs all Adabas databases in its system image to prepare and it
instructs all partner transaction managers to prepare their branches of the global transaction. If
all prepare instructions are completed successfully, the root transaction manager instructs each
local database and partner transaction manager to commit.

3Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

Distributed Transaction Processing

■ What is Distributed Transaction Processing?
■ Adabas Support for Distributed Transaction Processing

What is Distributed Transaction Processing?

Processing global transactions across multiple local or remote databases and/or system images in
parallel is called distributed transaction processing (DTP).

Distributed transaction coordination processing ensures the integrity of global transactions by
making it possible for each participating database to process its part of the transaction independ-
ently, in parallel with other databases processing their parts of the transaction. Global transactions
are secured or rejected as a whole across separately managed resources in two phases:

■ In phase one (prepare phase), all databases participating in the global transaction are asked
whether the local part of the transaction can be committed.

During phase one, participating databases must retain all transaction resources to prepare for
any event during phase two.

■ In phase two (commit or back out phase), when all participating databases have replied, the
global transaction is committed if all replies are positive or backed out if any reply is negative.

Each distributed environment includes:

■ the application (AP) for which a database transaction is performed;
■ the database management systems (DBMSs) called resource managers (RMs) that participate
in processing the global transaction;

Adabas Transaction Manager Introduction4

Adabas Transaction Manager Benefits and Features

■ a component called a transaction manager (TM) that uses two-phase commit processing to co-
ordinate the activities of RMs in a single operating system image; and

■ a component called a communications resource manager (CRM) that coordinates the activities
of TMs participating in a global transaction that spans more than one operating system image.

Adabas functions in this scenario as a resource manager.

The transaction manager and communications resource manager roles in this scenario belong to
the ATM transaction manager, which processes a global transaction across multiple Adabas
databases and, if necessary, acrossmultiple system images using EntireNet-Work to communicate
between those images.

Adabas Transaction Manager works in partnership with transaction managers that take a higher-
level, controlling role in coordinating global transactions, such as the CICS Syncpoint Manager or
the Recoverable ResourceManagement Services (RRMS) from IBM. In thisway,Adabas Transaction
Manager participates in global transactions that involve changes to both Adabas and non-Adabas
database or file systems such as DB2 or VSAM, within a single operating system image.

As an EntireNet-Work node, eachATM transactionmanager is aware of the otherATM transaction
managers in the distributed system and the resource managers they coordinate. The ATM trans-
action managers act in partnership to coordinate distributed transactions. At any time, each ATM
transaction manager can account for the status of the global transactions it is coordinating.

Distributed transaction support can be implemented for some applications and not for others.
Applications that use an Adabas link module with a transaction manager client proxy can benefit
from Adabas Transaction Manager's two-phase commit processing while those without a client
proxy continue to execute as before without Adabas Transaction Manager. Additional control is
possible through the use of client control parameters.

Adabas Support for Distributed Transaction Processing

Adabas incorporates nucleus functions to support the execution of distributed transactionprocessing
using a two-phase commit protocol that is transparent to existingAdabas application systems and
to Natural. The following items are relevant to distributed transaction processing:

■ The ADARUN runtime parameters DTP, LDTP, and IGNDTP.
■ The Adabas Work component, part 4 or WORK4 dataset.
■ For CICS users, a CICS-controlled interface is provided that conforms to the CICS Resource
Manager Interface (RMI) so that Adabas databases can participate in global transactions coordin-
ated by the CICS Syncpoint Manager. The interface issues the appropriate Adabas commands
to participate in the two-phase commit protocol.

See also the section Interfacing with Other DBMSs.

5Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

■ Similarly, for applications that run in a z/OS system as single-task batch jobs, or under Com-
plete or IMS TM, an interface to RRMS is provided. This allows Adabas databases to participate
in global transactions coordinated by RRMS.

See also the section Interfacing with Other DBMSs.

Distributed transaction support is available for ET logic users only.

Adabas Transaction Manager Version 8.1 provides distributed transaction support for Adabas
Cluster Services and Adabas Parallel Services databases.

Processing Modes

Global transactions may be processed using the following processing modes:

■ distributed transaction mode using Adabas Transaction Manager and the two-phase commit pro-
tocol, or

■ serial mode using a series of ET and BT commands.

■ Distributed Transaction Mode
■ Serial Mode

Distributed Transaction Mode

In distributed transaction mode, a two-phase commit protocol is used as described below.

■ Phase 1: Prepare
■ Phase 2: Commit or Remove
■ Example

Phase 1: Prepare

During phase 1, each database changed by a global transaction is asked to prepare its changes.
This means that the database and its associated logs must reach a state where the changes can
either be committed or removed as requested by the caller. The database must respond to the
prepare request, indicating success or failure.

Adabas Transaction Manager Introduction6

Adabas Transaction Manager Benefits and Features

Phase 2: Commit or Remove

When Adabas Transaction Manager has received the results of the prepare requests from all
databases participating in the global transaction, it can begin phase 2.

■ If any prepare request failed, Adabas Transaction Manager issues a roll back request to each of
the databases to remove the changes.

■ If all prepare requests were successful, Adabas Transaction Manager issues a commit request
to each of the databases to complete the global transaction.

Example

An application programprocesses a transfer of funds from a savings account to a checking account.
The accounts are stored in different databases.

First, the application reduces the balance in the savings account record in database A and increases
the balance in the checking account record in database B.

Next, it decides to commit the changes and issues an ET command. The transactionmanager client
proxy asks theATM transactionmanager to commit the global transaction. The transactionmanager
first issues a prepare request to database A and a prepare request to database B.

If both databases respond that they have prepared the transaction successfully, the transaction
manager instructs each database to complete its part of the transaction by committing the changes.

However, suppose database B is unable to complete the prepare operation for some reason.

7Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

The transaction cannot be completed. The transactionmanager initiates phase 2 by issuing a remove
or roll back request to each database.

■ Database A has prepared successfully the transaction, and is therefore able to reinstate the ori-
ginal balance in the savings account record using the recovery information it stored during the
prepare operation.

■ Database B has not prepared the transaction, so its standard roll back processing or (if the
database itself failed) recovery logic reinstates the original balance in the checking account record.

Serial Mode

■ Serial Mode Transaction Control
■ Serial Mode and ET Data

Serial Mode Transaction Control

In the absence of Adabas Transaction Manager and the associated software components, a global
transaction must be committed by a series of ET commands, or backed out by a series of BT com-
mands. A 3GL application must do this explicitly. Natural implements this automatically and
transparently if it detects that a transaction has changed more than one database. This method of
transaction control is known as serial mode. It does not provide the global transaction integrity
guaranteed by two-phase commit in all circumstances.

Suppose an application is running and the ATM transaction manager is operating. If some com-
ponent of the transactionmanagement software fails; for example, if the ATM transactionmanager
becomes unavailable, the application receives a response code indicating that a problem exists
and that global transaction integrity can no longer be guaranteed. Once such an error condition
has been reported to the application, the transaction manager client proxy component can switch
the user automatically to serial mode, if set up to do so.

The application may react to the error condition (by restarting, for example), then continue to
operate exactly as it would if the transactionmanagement software were not installed. This means
that, in case of a critical failure of the transactionmanagement software, applications can continue
to executewithout any serious interruption, but alsowithout the guarantee of all-or-none integrity
for global transactions. Operating in serial mode carries no risk if only a single resource manager
is changed in each transaction, even if the transaction is controlled by an external coordinator.

At every suitable opportunity, the transaction management client proxy component attempts to
switch the user back from serial mode to distributed mode, but does not report an error to the
application if it fails to do so. When the switch is successful, the application continues to execute,
once again with guaranteed global transaction integrity.

Alternatively, the transaction management client proxy may be set up to regard such a failure as
critical so that applications are not allowed to continuewithout the guarantee of global transaction
integrity. In this case, transactionmanagement returns a response code to the application indicating

Adabas Transaction Manager Introduction8

Adabas Transaction Manager Benefits and Features

the nature of the failure. The application cannot continue normal processing until the fault is cor-
rected.

The use of serial mode is controlled using the client control EmergencySerial ETCommands.

Serial Mode and ET Data

Depending on configuration options, it might be important for the ATM transaction manager to
be active whenever ET data is written or read.

If the ATM transaction manager is inactive and a user is switched to serial mode, ET data requests
are directed to the database specified in the Adabas control block and not to ATM transaction
manager. This could result in

■ incorrect ET data being read.
■ ET data being written to a database fromwhich ATM transaction manager is not able to retrieve
it.

■ incorrect results when ATM transaction manager attempts to recover a transaction on behalf of
the user.

For these reasons, it is strongly recommended that the client control EmergencySerial ETCommands
is set to NO if the ATM transaction manager is to manage ET data (see also the parameter setting
TMETDATA=ATM).

If an ETID is used to read or write ET data through a link module that has an active transaction
management client proxy component and client runtime control ATM=ON, then for the same reasons
it is important that the ETID always use a link module with an active client proxy component and
with the client runtime control setting ATM=ON.

Conversely, if the ETID uses a link module with no ATM component available, or with ATM=OFF,
it must always use a linkmodulewith no transactionmanagement processing component, or with
ATM=OFF.

Interfacing with Adabas Applications

■ Overview

9Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

■ Adabas Transactional Commands

Overview

New or existing Adabas application systems written in Natural or a 3GL participate in two-phase
commit processing transparentlywhen theATMclient proxy component is available to theAdabas
link module for each supported client environment (batch, Com-plete, CICS, UTM). The client
proxy functions as a transparent application stub.

The client proxy invokes ATM transaction manager on behalf of the application in two-phase
commit processing and responds to the application according to the result. It transmits information
to theATM transactionmanager about the start, commit, and roll back points of a global transaction
as they occur.

The client proxy keeps the ATM transaction manager informed of changes in the distribution
scope of the global transaction so that it can correctly manage commit, roll back, and restart pro-
cessing.

1. The application communicates with its target Adabas databases in the normal way. The client
proxy monitors the commands issued by the application, selecting any that are transactional
and reacting appropriately.

2. Depending on the Adabas commands issued by the application, the client proxy issues appro-
priate requests to the transaction manager.

3. The transactionmanager issues commands to theAdabas nuclei participating in the transaction
in response to events such as requests from the client proxy.

Adabas Transaction Manager Introduction10

Adabas Transaction Manager Benefits and Features

Adabas Transactional Commands

Certain standard Adabas commands trigger special processing by the Adabas Transaction Man-
ager’s components. These commands are referred to as transactional because they affect or are
related to the processing that ensures transaction integrity. The transactional commands are listed
below together with information about how they are handled.

■ Data Modification Commands
■ Termination Commands: ET and BT
■ Close Commands
■ Open Commands
■ RE Commands
■ Ending a Transaction – Application Protocol

Data Modification Commands

The data modification commands A1,E1,N1, and N2 change application data in Adabas files.

The first data modification command issued to a database that is enabled for two-phase commit
processing (parameter setting DTP=RM) by a client session at global transaction status marks the
beginning of a global transaction. Subsequent datamodification commands issued to suchdatabases
may bring other databases into the scope of the global transaction.

Datamodification commands issued to databaseswith the parameter setting DTP=NO have no effect
on global transaction logic; they execute in the normal way and cause no special processing by
Adabas Transaction Manager. Even though these changes cannot be fully synchronised with
changes made to DTP=RM databases, Adabas Transaction Manager will do its best to ensure that
they are committed or backed out alongwith the client’s global transaction, if there is one. Changes
made to DTP=NO databases are committed or backed out:

■ whenAdabas TransactionManager commits or backs out the client’s current global transaction,
if there is one, or

■ when the client issues ET,BT,CL, or OP to those databases, or
■ when the respective Adabas nuclei reverse them using autobackout operations.

If the client is operating in serial mode following some component failure, Adabas Transaction
Manager takes no part in processing data modification commands; they are simply passed to the
appropriate Adabas database(s). Even so, Adabas Transaction Manager will do its best to ensure
that changes to all databases are either committed or backed out together.

11Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

Termination Commands: ET and BT

Natural or 3GL applications currently terminate a global transaction by issuing a sequence of ET
or BT commands, targeting each changed database in turn:

■ as a result of the first such command, Adabas Transaction Manager commits (ET) or backs out
(BT) the current global transaction.

■ subsequent ET or BT commands are directed to the target database only, as there is no longer a
global transaction in progress.

Note: A 3GL application that manages its own subtransactions (that is, it commits changes
on one database while leaving changes uncommitted on another) must run without an
Adabas Transaction Manager client proxy, or with client runtime control ATM=OFF, and
cannot therefore make use of Adabas Transaction Manager.

Processing Logic

A termination command issued by a client who is operating in distributed transaction processing
mode always triggers a commit (ET) or back out (BT) operation, even if the command is directed
at a database running with the parameter setting DTP=NO.

■ If a global transaction is open for the client, Adabas Transaction Manager attempts to commit
it (or back it out) using the two-phase commit protocol if necessary, regardless of the database
that is the target of the command.

■ If the command is directed at a database that has not been changed by the current global trans-
action or a database that is running with DTP=NO, the command is passed to the specified target
after the global transaction has been committed (or backed out).

■ An equivalent termination command is sent to any other changed database that runswith DTP=NO
where there are uncommitted changes or held records.

■ If there is no global transaction open, the command is simply passed to the specified target.

If the client is operating in serial mode following some component failure, the ATM transaction
manager takes no part in processing ET or BT commands. However, if the Adabas Transaction
Manager client proxy detects an ET or BT command after one or more databases have been
changed, it will issue similar commands to all changed databases in sequence.

With ET Data

If an ET command with ET data is issued by a client in distributed transaction processing mode,
the processing just described occurs, but the ET data is also stored according to the value of the
Adabas Transaction Manager ADARUN parameter TMETDATA:

■ If TMETDATA=ATM, ET data is stored in the ATM transaction manager’s database.
■ If TMETDATA=TARGETS and a global transaction is open for the client, ET data specified on the ET
command is stored in all databaseswith DTP=RM involved in the transaction. The ET data is stored

Adabas Transaction Manager Introduction12

Adabas Transaction Manager Benefits and Features

in the database specified in the ET command whether it has DTP=RM or not. If it has DTP=NO,
storage of the ET data in this database is not synchronized with the completion of the global
transaction, but occurs after the global transaction has been committed.

If TMETDATA=TARGETS and no global transaction is open for the user, ET data is stored only in the
database specified in the ET command.

Note: Any ET commands generated by Adabas Transaction Manager client proxy when
it detects an incomplete sequence of ET commands are issued without ET data.

The ET data is committed during the two-phase commit process for the global transaction; if the
global transaction is backed out, the user’s ET data also reverts to its previous state (in all affected
databases when TMETDATA=TARGETS).

Extended Hold Processing

PET andM command options allow a program to commit (ET) or back out (BT) a transaction while
leaving some records in hold status. Adabas TransactionManager's transparency feature supports
these options when the ExtendedHold client runtime control is set. Extended hold processing
proceeds as follows:

■ When Adabas Transaction Manager commits or backs out the current global transaction as a
result of the first ET or BT command in the sequence, it has no knowledge of any P or M options
that are to be applied to the databases involved in the transaction except those specified on the
first command.

■ Adabas TransactionManager therefore assumes that all held records are to remain in hold status,
except in the database that is the target for the first ET/BT command. It honors the P orM option
specified in the first command, but ensures that the other target databases do not release their
held records during the two-phase commit process. Thus, the user’s global transaction is com-
mitted or backed out as requested, but at this stage some of the transaction’s held records may
still be in hold status.

As each subsequent command in the sequence is issued, Adabas Transaction Manager’s client
proxy passes the command on to its target, ensuring that any P or M option is honored. Adabas
TransactionManager expects the application to issue a complete sequence of ET or BT commands
– one for each changed database. However, if the proxy detects a non-transactional command
from the application before the sequence is complete, the sequence ends and the proxy generates
a command for each affected database that has not received an ET or BT during the sequence,
indicating that all the held records are to be released.

If a user has been switched to serial mode because of the failure of some component, and extended
hold is active, the client proxy will continue to process ET and BT commands as described above.
The only difference is that any changes will be secured by a series of commands, without the
synchronization that would normally be guaranteed by the two-phase commit protocol used by
the ATM transaction manager.

13Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

If the extended hold option is not active (the default setting), any ET or BT commandwill cause all
the user’s held ISNs to be released in databases where changes have been made, except possibly
in the database that is the target of the command; for this database, any P or M option present in
the command will be honored.

Note: Extended hold processing does not occur when an unsolicited syncpoint occurs. See
the client control TransactionControl for more information.

Using ET Data IDs (ETIDs)

It is possible for a client to use an ETID for some database sessions, and concurrently to use other
database sessions with no ETID. It is also possible for a client to use different ETIDs concurrently
in different database sessions; however, Software AG strongly recommends that you avoid this
practice.

Close Commands

Since a close command implies end-of-transaction, every CL command triggers the same processing
as for an ET command, except that:

■ the user is also closed in the target database;
■ if the target database is at ET status, the current global transaction is not affected.

Open Commands

If an OP command is issued by a client who has no global transaction in process, and the user has
no uncommitted changes in the target database, the command is simply passed to the indicated
target database.

An OP command sent to a database in which the client has uncommitted changes or held records
will cause the client’s uncommitted changes on all databases to be backed out and all held records
to be released, regardless of their distributed transaction processing parameter settings.

An OP command sent to a database inwhich the client has no uncommitted changes or held records
will simply be passed to its target without affecting the user’s global transaction status. This logic
allows “open on demand” processing without interference in global transaction processing.

If the OP command specifies that ET data is to be read, the above processing occurs. If processing
is successful, the user’s ET data is returned to the calling program. This applies even if the target
database has the parameter setting DTP=NO. The ET data is read either from the ATM transaction
manager’s database or, if the transaction manager is running with the parameter setting
TMETDATA=TARGETS, from the database indicated by the OP command.

Adabas Transaction Manager Introduction14

Adabas Transaction Manager Benefits and Features

RE Commands

If a user issues an RE command while operating in serial mode, the command is simply directed
to the indicated target database without any interference by Adabas Transaction Manager.

If an RE command is issued in distributed transaction processing mode, the required ET data is
obtained either from the ATM transaction manager’s database or, if the transaction manager is
running with the parameter setting TMETDATA=TARGETS, from the database indicated by the RE
command.

Ending a Transaction – Application Protocol

Adabas Transaction Manager acts to end a distributed transaction across all affected databases,
with full transaction integrity, as soon as the application session issues an ET or BT command.
Nevertheless, Adabas Transaction Manager expects an application to be well-formed in the way
it pursues transaction outcome. Specifically, wheremultiple databases aremodified, the application
is expected to pursue transaction outcome on all the changed databases, in series. For example, if
two databases are modified, Adabas Transaction Manager expects to see two ET commands (one
to each database) to cause a positive transaction outcome; or two BT commands (one to each
database) for a negative transaction outcome. If an application tries to issue a transactional command
without having issued the expected ET/BT commands to all databases changed by the previous
transaction, response code 240, sub-code 496 will be returned.

Pending Response Codes

Sometimes a transaction is terminated in such a way that the owner should receive a non-zero
response code, but in circumstances in which it is not possible to return a response code; for ex-
ample, the transaction manager backs the transaction out because its global transaction time limit
has been exceeded. When this happens, the manager stores details of the pending response code
in a list, and returns it to the client at the first possible opportunity. Pending response codes can
be listed and displayed using ATM’s Online Services application.

As with standard usage of Adabas, the time for which a pending response code is preserved de-
pends on whether ETIDs are used.

If the transactionwhich caused the pending response code involved noRMdatabase sessionswith
ETIDs, the pending response code is discarded as soon as any of the following conditions has been
satisfied:

■ The response code has been returned to the client.
■ The client is known to have disappeared.
■ All DTP=RM databases that took part in the transaction have been restarted.
■ The ATMmanager terminates.

15Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

If the transaction which caused the pending response code involved one or more RM database
sessions with ETIDs, the pending response code is discarded as soon as any of the following con-
ditions has been satisfied:

■ The response code has been returned to the client.
■ The client session is known to have disappeared.
■ All DTP=RM databases that took part in the transaction, and for which an ETID was in use, have
been restarted.

Note: In this case a pending response code will survive a restart of the ATMmanager.

Adabas Transaction Manager Support for ET Data

ETdata is a special type of application data. Changes to ETdata take effect if and only if a transaction
completes successfully.

Adabas Transaction Manager supports ET data with global transactions. If the global transaction
completes successfully, the new ET data is stored; otherwise, the existing ET data remains un-
changed.

If an application issues an ET command with ET data, on a session for which no valid ETID has
been provided, ATM, like Adabas, will not store the ET data persistently. Instead, it will proceed
as follows:

■ If the target database of the ET command is being managed using the two-phase protocol, the
ET data will be ignored, but ATM will not draw attention to this fact by means of a non-zero
response code;

■ Otherwise, the ET data will be passed to the database which the application specified on the ET
command, and to no other database.

If ET data is stored by an ET or CL command on a session which has an ETID, its default location
is determined by the Adabas Transaction Manager ADARUN parameter TMETDATA:

■ When considered part of the global transaction, ET data is stored in and read from the ATM
transaction manager’s database (TMETDATA=ATM). When an application wants to read ET data,
the transaction manager satisfies the request from its own database, without regard to the
database specified in the Adabas command.

■ When considered part of a particular database, ET data is stored in every database affected by
the global transaction (TMETDATA=TARGETS). An application must issue a suitable command to
an appropriate database in order to read ET data.

Adabas Transaction Manager Introduction16

Adabas Transaction Manager Benefits and Features

The default location for ET data can be overridden by means of the client runtime control
Application controls ET data . If this control is set to YES, the ET data is stored only in the
database to which the command was issued.

It is strongly recommended that a client should not use more than one ETID concurrently in dif-
ferent database sessions. If this recommendation is followed, there can be no confusion about
which ETID should be used when ET data is to be stored or read. If the recommendation is not
followed, and the ADARUN parameter TMETDATA=ATM is specified, and is not overridden by the
client runtime control Application controls ET data, ATMwill assume that an ETdata operation
should use the ETID that is currently associated with the database to which the ET, CL, OP or RE
command has been issued.

For information about:

■ controlling the storage of ET data and synchronizing storage across transaction coordinators,
see section ET Data Storage and the TMETDATA parameter.

■ establishing the current ET data of your applications in theATM transactionmanager’s database
before they execute, see Copy ET Data.

■ how ET commands with ET data are handled in a distributed environment, see section Adabas
Transactional Commands.

■ problems handling ET data in serial processing mode, see section Serial Mode.
■ handling ETdata in application environmentswhere dynamic transaction routing can take place,
see sectionDynamic Transaction Routing .

Adabas Transaction Manager Support for Triggers

Triggers can execute global transactions under the control of Adabas Transaction Manager. Refer
to the documentation for the Adabas SystemCoordinator to find out how to configure the System
Coordinator for a trigger environment.

If your application causes participating triggers to be fired, and you require a global transaction
to include changes made by both the application program and the participating trigger, you must
ensure that the very first change command (store, delete or update) of the global transaction is
issued by the application program, not by the trigger.

17Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

Interfacing with Other DBMSs

■ Using External Transaction Managers
■ Using the ATM CICS RMI and the CICS Syncpoint Manager
■ Using RRMS
■ Dynamic Transaction Routing

Using External Transaction Managers

Adabas Transaction Manager also provides configurable facilities (APIs) to respond to directions
from external transaction managers such as

■ IBM’s Recoverable Resource Management Services (RRMS); or
■ the CICS Syncpoint Manager

1. An external transactionmanager is responsible for the two-phase commit process.When instruc-
ted by the application (or some other agent), it directs the subordinate transaction managers
that are involved in a transaction to prepare the transaction and, if all prepares are successful,
to commit the transaction.

2. Each subordinate transaction manager is responsible for implementing each phase of the two-
phase commit process separately, as directed. For example, theATM transactionmanager issues
a prepare to each Adabas nucleus participating in the transaction, then takes no further action
for the transaction until it receives the instruction to commit or roll back from the external
transaction manager.

Adabas Transaction Manager Introduction18

Adabas Transaction Manager Benefits and Features

When participating in global transactions with non-Adabas DBMSs, the Adabas Transaction
Manager components jointly handle all communication with the external transaction manager.
Using the interfaces provided, an appropriate component of Adabas TransactionManager registers
with the external transactionmanager and agrees to use the asynchronous exits that it driveswhen
two-phase commit processing is required. A single instance of Adabas Transaction Manager thus
responds to the external transaction manager on behalf of all the Adabas databases within the
network. For sites with a large number of databases, this provides an additional efficiency bonus.

Using the ATM CICS RMI and the CICS Syncpoint Manager

Adabas databases defined as resource managers according to the requirements of the Adabas
TransactionManager CICS ResourceManager Interface (RMI) are directly coordinated by a locally
executing ATM transaction manager which, in turn, acts as a resource manager coordinated by
the external CICS SyncpointManager. Other resourcemanagers coordinated by theCICS Syncpoint
Manager can include other Adabas Transaction Managers and/or DBMSs.

Adabas databases in a CICS environment can participate along with any combination of other
DBMSs in global transactions that are coordinated by the CICS Syncpoint Manager, which drives
the two-phase commit protocol. All the information necessary to recover to a consistent state after
a failure is collected in CICS logs and the logs of the subordinate resource managers.

Adabas Version 7.1 and above implements RMI through theAdabas task-related user exit (TRUE).
From Version 7.4, this facility has been available on VSE/ESA systems, as well as z/OS systems.

A transaction that is coordinated through the CICS/RMI can change Adabas databases on local or
remote systems. Syncpoints are coordinated across all affected resource managers and Adabas
databases if

■ the Adabas databases run with parameter setting DTP=RM;
■ eachAdabas database runs under the control of anATM transactionmanager in the same system;
and

■ the affected systems are connected by Entire Net-Work.

Databases runningwith the parameter setting DTP=NO can also be changed by the same transaction;
Adabas Transaction Manager will issue ET commands to commit the changes, but these will not
be synchronized with the two-phase commit process.

Example

A global transaction changes some Adabas databases, a DB2 database, and some VSAMdata. The
CICS SyncpointManager controls the two-phase commit process across all DBMSs. The application’s
decision to commit might be signaled by

■ an ET command;
■ an EXEC CICS SYNCPOINT command; or

19Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

■ CICS task end.

In each case, the CICS SyncpointManager requests each resourcemanager (ATM,DB2, andVSAM)
to prepare and then commit (assuming all prepares are successful) its part of the global transaction.

Because Adabas Transaction Manager is able to coordinate global transactions across operating
system images, the support for CICS/RMI also covers transactions that change Adabas databases
across system boundaries.

Using CICS RMI with APPC Applications

TheAdabas TransactionManager CICSRMI implementationmakes it possible for server programs,
executing under CICS, to make Adabas changes under the transactional control of a remote CICS
region or some other agent. Themost commonway of achieving this is through the use ofAdvanced
Peer-to-Peer Communication (APPC).

The programmer of an APPC application must ensure that the protocol is followed correctly.
Syncpoints may be executed only when the program has the correct conversation state, otherwise
abends such as ASP2 can occur.

In such an environment, a SYNCPOINT ROLLBACK operation changes the conversation state of all
participants. In particular, a BT command should not be followed by an ET command in an APPC
application, otherwise ASP2 abends are likely.

If you plan to use the CICS RMI implementation with APPC applications, please refer to the IBM
documentation and ensure that your applications follow the correct protocol. Remember to consider
the syncpoints that ATM generates when ET,BT and CL commands are issued.

Using CICS RMI in Serial Mode

Serial mode execution allows applications to continue processingwithout interruption, if the ATM
transaction manager should be unavailable for a period, but without the guarantee of transaction
integrity in the case of system failure. If a CICS client who is running under the RMI is switched
to serial mode, the Adabas TransactionManager client proxy will ensure that any CICS syncpoint
(commit or roll back) is propagated to all changed Adabas databases, through the use of a series
of ET or BT commands. This does not prevent the possibility of a mixed result (some databases
committed and others backed out) in the case of a system or component failure, but it does allow
CICS applications to continue running until the transaction manager can be restarted.

Adabas Transaction Manager Introduction20

Adabas Transaction Manager Benefits and Features

Using RRMS

■ Using RRMS in z/OS Environments
■ Using RRMS with IMS TM

Using RRMS in z/OS Environments

In z/OS environments, the IBM Recoverable Resource Management Services (RRMS) makes it
possible for any combination of resource managers (typically DBMSs) to participate in global
transactions that are coordinated by Resource Recovery Services (RRS), a component of RRMS
that drives the two-phase commit protocol. Its logs and the logs of the subordinate resource
managers provide all the information needed to recover to a consistent state after a failure.

To participate in this process Adabas, like any other DBMS, must be implemented as an RRMS-
compliant resource manager. This is possible with Adabas Version 7.4 and above, and Adabas
Transaction Manager. The locally executing ATM transaction manager participates as an RRMS
resourcemanager on behalf of all Adabas databases onmainframe systems, both local and remote.

For example, suppose a global transaction changes several Adabas databases and a DB2 database.
RRMS controls the two-phase commit process by driving exit routines provided by DB2 and
Adabas Transaction Manager. The application’s decision to commit can be signaled by

■ an ET command;
■ a system call to RRMS from the application itself; or
■ a system call to RRMS made by some other agent on behalf of the application.

In each case, RRMS executes the prepare exit routines of each resource manager (ATM and DB2)
and then, if all prepares are successful, their commit exit routines.

Because Adabas Transaction Manager is able to coordinate global transactions across operating
system images, its RRMS support also handles transactions that changeAdabas data across system
boundaries.

RRMS support is provided for single-user, single-TCB batch applications, and for applications
running under IMS TM.

21Adabas Transaction Manager Introduction

Adabas Transaction Manager Benefits and Features

Using RRMS with IMS TM

If your applications run under IMS TM, and IMS allows its transactions to be coordinated by
RRMS, Adabas Transaction Manager can ensure that their Adabas changes are committed (or
backed out) in a synchronized manner, under the control of RRMS. An IMS commit syncpoint
causes RRMS to carry out a commit operation for all changed resources that are managed by
RRMS-enabled resource managers. An IMS rollback syncpoint causes all changes to be backed
out.

The completion of an IMS message (normally this means screen I/O) causes a syncpoint to take
place. In the case of successful completion, this is a commit syncpoint.Moreover, a commit syncpoint
implies the completion of processing for the currentmessage. For this reason, an ET or CL command
that is issued during the processing of a message will not cause an RRMS commit syncpoint; any
pendingAdabas changeswill be committed, but non-Adabas resourceswill be unaffected. Further,
any held ISNs will be released, or will remain in held status, depending on the presence of P or
M command options, and the setting of the Extended Hold client runtime control.

The syncpoint that takes place at message end is unsolicited, fromAdabas TransactionManager’s
point of view.As in the case of unsolicited syncpoints under the CICSResourceManager Interface,
this syncpoint will affect pending changes in any Adabas databases, and will cause all held ISNs
to be released.

A roll back operation is signaled by an IMS rollback command, or by abnormal termination of
message processing. Rollback can occur during the processing of an IMS message, and does not
necessarily indicate that processing of the message has completed. Any Adabas command that
causes a backout to take place will trigger an IMS rollback syncpoint; this causes an RRMS roll
back for all changed resources that are managed by an RRMS-enabled resource.

Dynamic Transaction Routing

Using the Adabas System Coordinator, Adabas Transaction Manager can be used to provide
support for distributed transactions in environments where dynamic transaction routing can take
place. This includes application environments such asCICSMROand IMSTM.Adabas Transaction
Manager will recognize a user who has been dynamically migrated from another address space,
or even from another operating system image, and will allow the user to continue processing. If
your systems allow a user to be relocated dynamically to a different system you should set the
ADARUN parameter TMETDATA=TARGETS for your ATM transaction managers. The alternative
setting, TMETDATA=ATM, relies on each client having a consistent (unchanging) local ATM transaction
manager for the duration of the client session.

If your systems use ETIDs, and allow clients to be dynamically relocated between systems, you
must take care to ensure that each ETID is unique across all the systems.

Adabas Transaction Manager Introduction22

Adabas Transaction Manager Benefits and Features

2 Adabas Transaction Manager Components

■ ATM Transaction Manager .. 24
■ Adabas Transaction Manager Client Proxy ... 24
■ Recovery Database ... 25
■ Administration ... 25

23

ATM Transaction Manager

TheAdabas TransactionManager componentwhich contains all logic formanaging the two-phase
commit process for global transactions is referred to as ATM transactionmanager, the Transaction
Manager, the TM, or simply, the Manager.

AnATM transactionmanager is required for each instance of the operating system. EachManager
executes in its own address space as a special kind ofAdabas nucleus. AnATM transactionmanager
can interact with peer ATM transaction managers in other systems to provide global transaction
integrity across systems. Adabas Transaction Manager can also interact with the CICS Syncpoint
Manager and with RRMS, enabling Adabas databases to participate in global transactions that
affect other database or file systems. The Transaction Manager is invoked transparently on behalf
of applications.

ADARUNparameters are used to control processing of the TransactionManager. These parameters
are described in the section Parameters.

For information on execution of the Transaction Manager, see section Operations.

Execution of anATM transactionmanager requires that an associatedAdabas SystemCoordinator
daemon be active and available. For information about the Adabas System Coordinator, refer to
theAdabas SystemCoordinatordocumentation. For information about configuringATMTransaction
Managers andAdabas SystemCoordinator for different environments, see the sectionConfiguration.

Adabas Transaction Manager Client Proxy

The transactionmanager client proxy represents the application in two-phase commit processing.
Executing as a subroutine of the Adabas linkmodule and functioning as a transparent application
stub, the client proxy invokes the ATM transaction manager on behalf of the application and re-
sponds to the application according to the result.

A job or TP system that requiresATMservicesmust execute alongside anATM transactionmanager
and an Adabas System Coordinator daemon, executing in the same system and under the same
Adabas SVC or ID table. For information about the Adabas System Coordinator, refer to the
Adabas System Coordinator documentation.

For information on client controls, which control the operation of the client proxy, see the section
Parameters.

For information on client proxy execution, see the section Operations.

Adabas Transaction Manager Introduction24

Adabas Transaction Manager Components

Recovery Database

TheATM transactionmanager uses database files to store vital recovery information about incom-
plete transactions, and for other purposes. With some earlier versions of Adabas Transaction
Manager, it was strongly recommended that these files be defined in a separate database, which
was referred to as the recovery database. These files must now reside in the ATM transaction
manager’s own database. There is no longer any need for a separate database to contain these
files.

For more information see section Restart and Recovery.

Administration

■ Online Services
■ Operator Commands
■ Diagnostic Log

Online Services

Adabas Transaction Manager Online Services can be used to perform the following activities:

■ set the parameters that control the way that Adabas TransactionManager processes application
jobs,

■ list client sessions and global transactions,
■ display detailed status information,
■ view the status of Adabas Transaction Manager throughout the network,
■ display runtime statistics for any ATM transaction manager in the network.

Online Services can also be used to force selectively the termination of one or more transactions.
In an emergency, a transaction can be flushed from the system and its resources released without
regard for transaction integrity. If this happens, all available details of the transaction are stored
in the Transaction Manager’s database and can be printed.

For more information see Online Services.

25Adabas Transaction Manager Introduction

Adabas Transaction Manager Components

Operator Commands

Operator commands are provided to control Adabas Transaction Manager operation. See section
Operations for more information.

Diagnostic Log

An ATM transaction manager can produce a diagnostic log that uses a dual logging system. If a
log file becomes full, the Manager closes that log file and switches to the other one. Logs may also
be switched by using the operator command TM FEOFLOG. The JOBS library contains the sample
job ATMLPRNT that can be used to produce a formatted report of the diagnostic log.

Adabas Transaction Manager Introduction26

Adabas Transaction Manager Components

	Adabas Transaction Manager Introduction
	Table of Contents
	Preface
	1 Adabas Transaction Manager Benefits and Features
	The Role of the Adabas Transaction Manager
	Global Transactions
	What is a Global Transaction?
	Global Transaction Status
	Global Transaction Time Limits
	Coordinating Global Transactions Across Systems

	Distributed Transaction Processing
	What is Distributed Transaction Processing?
	Adabas Support for Distributed Transaction Processing

	Processing Modes
	Distributed Transaction Mode
	Phase 1: Prepare
	Phase 2: Commit or Remove
	Example

	Serial Mode
	Serial Mode Transaction Control
	Serial Mode and ET Data

	Interfacing with Adabas Applications
	Overview
	Adabas Transactional Commands
	Data Modification Commands
	Termination Commands: ET and BT
	Close Commands
	Open Commands
	RE Commands
	Ending a Transaction – Application Protocol

	Pending Response Codes
	Adabas Transaction Manager Support for ET Data
	Adabas Transaction Manager Support for Triggers
	Interfacing with Other DBMSs
	Using External Transaction Managers
	Using the ATM CICS RMI and the CICS Syncpoint Manager
	Using RRMS
	Using RRMS in z/OS Environments
	Using RRMS with IMS TM

	Dynamic Transaction Routing

	2 Adabas Transaction Manager Components
	ATM Transaction Manager
	Adabas Transaction Manager Client Proxy
	Recovery Database
	Administration
	Online Services
	Operator Commands
	Diagnostic Log

