
Adabas Bridge for DL/1

Interfaces

Version 2.3.1

June 2014

This document applies to Adabas Bridge for DL/1 Version 2.3.1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ADL-INTERFACES-231-20140626

Table of Contents

Interfaces .. vii
1 Introduction ... 1

Operational Environments ... 5
Other Documentation You May Need ... 5
Documentation Related to non-SAG Products .. 6

2 Batch Installation and Operation .. 7
CALLDLI Interface .. 8
Consistency Interface ... 12
User Exit ... 16
z/OS JCL Requirements .. 17
z/VSE JCS Requirements .. 18

3 CICS Installation and Operation ... 21
Overview CICS Installation ... 22
Prerequisites for z/OS CICS Installation .. 22
Prerequisites for z/VSE CICS Installation .. 24
Important Note for CICS Users .. 27
Generating the Runtime Control Tables .. 27
Tuning and Maintaining the Runtime Control Tables ... 37
z/OS Requirements ... 38
z/VSE Requirements ... 39
Activating and Controlling the ADL Interfaces ... 40
CALLDLI Interface ... 42
Consistency Interface ... 44
User Exit ... 46

4 IMS/TP Installation and Operation ... 47
Overview .. 48
Generating the Runtime Control Tables .. 48
CALLDLI Interface ... 49
ADL Pre-load Program .. 51
User Exit ... 51
JCL Requirements .. 51

5 ADL Online Services ... 53
Introduction .. 54
Main Menu ... 56
Maintaining the ADL Interfaces under CICS ... 58
ADL Directory Management Facility ... 63
Consistency DBD Maintenance .. 74
Maintenance of the Rolled-out PSBs .. 75
Maintenance of Checkpoints .. 80
Messages and Codes Retrieval ... 84

6 Precompiler for EXEC DLI Commands .. 87
Introduction .. 88
ADL Precompiler Input ... 91

iii

ADL Precompiler Output ... 93
COBOL Generated Code .. 94
PL/I Generated Code .. 94
CICS Command Language Translator ... 94
Linkage-Editor Requirements for Application Programs .. 94
z/OS JCL Requirements .. 95
z/VSE JCS Requirements .. 96

7 Using ADL Files with Natural/Adabas ... 99
Introduction .. 100
Consistency Interface ... 100
Restrictions when using Natural/Adabas .. 101
Improve the Natural Access to Migrated Files .. 103
Error Situations and Consistency Response Codes ... 104
Availability of the Consistency Interface .. 105
Example Programs ... 105

8 Converting Natural for DL/I Programs ... 109
Introduction .. 110
Conversion of the Data Definitions and of the Data .. 110
Modification of the Application ... 111

9 SQL Access to the Migrated Files .. 115
Introduction .. 116
How to Access the Migrated Data .. 116
Improving the Access to Migrated Data .. 117
Restrictions for SQL Applications .. 117

10 Debugging Aids - ADL Trace Facility ... 119
Data Base Call Trace ... 120
Internal Routine Trace .. 124
z/OS JCL Requirements .. 125
z/VSE JCS Requirements .. 126

11 CALLDLI Test Program - DAZZLER .. 129
Introduction .. 130
DL/I Statements .. 131
Sets .. 131
DAZZLER Control Statements ... 135
z/OS JCL Requirements for DAZZLER .. 137
z/VSE JCS Requirements for DAZZLER .. 137

12 Managing ADL Files .. 139
Overview .. 140
Reorganization with ADL Utilities (Pseudo Mixed Mode) 140
Reorganization with ADL Utilities (Normal Mode) .. 143
Reorganization with Adabas Utilities .. 145
Reorganization with User-written Programs ... 146
Change of DL/I Segment Definitions ... 147
Change of DL/I Field Definitions ... 148
Change of the Data Layout ... 149

Interfacesiv

Interfaces

Re-establishment of the Hierarchical Sequence ... 153
Change of DL/I PSB Definitions ... 153
Change of the ADL Structure ... 153
Change of Adabas DBIDs and File Numbers ... 154
Change of the Adabas File Layout ... 156

13 Performance Considerations .. 159
Introduction .. 160
Data Processing and Pointers ... 161
Initial Load and Reload the Database .. 163
Using the Adabas Multifetch Feature .. 164
Insert and Delete .. 166
Splitting a DBD ... 167
Field Definitions ... 167
Enqueue Logic .. 168
CICS/Batch Communication .. 168
Application Program and DB Design .. 168

14 Recovery and Restart Procedures .. 173
Introduction .. 174
Extensions and Restrictions .. 174
Adabas User Types ... 175
Automatic ET Calls Issued by ADL ... 179
Restart/Recovery Logic under ADL ... 180
ADL Actions for Basic and Symbolic Checkpoints .. 185
How to Restart a Batch Program .. 186

15 Appendix A - DAZZLER Test Stream ... 189
16 Appendix B - z/OS Dataset Usage ... 195
17 Appendix C - z/VSE Dataset Usage ... 197

vInterfaces

Interfaces

vi

Interfaces

This documentation describes the installation and operation of the Adabas Bridge for DL/I (ADL)
Interfaces for DL/I and Adabas applications.

The following topics are covered:

Introduction

Batch Installation and Operation

CICS Installation and Operation

IMS/TP Installation and Operation

ADL Online Services

Precompiler for “EXEC DLI” Commands

Using ADL Files with Natural/Adabas

Converting “Natural for DL/I” Programs

SQL Access to the Migrated Files

Debugging Aids - ADL Trace Facility

CALLDLI Test Program - DAZZLER

Managing ADL Files

Performance Considerations

Recovery and Restart Procedures

Appendix A - DAZZLER Test Stream

Appendix B - z/OS Dataset Usage

Appendix C - z/VSE Dataset Usage

vii

viii

1 Introduction

■ Operational Environments .. 5
■ Other Documentation You May Need .. 5
■ Documentation Related to non-SAG Products ... 6

1

This documentation describes the installation and operation of the Adabas Bridge for DL/I (ADL)
Interfaces for DL/I andAdabas applications. It will be needed in the phase following the conversion
of DL/I databases into ADL files.

The general installation of the ADL load and source libraries, the ADL Directory file and ADL
Natural utilities are described in the ADL Installation documentation. This documentation also
explains how to customize ADL to your site by means of specifying parameters for the ADL
parameter module.

The Adabas Bridge for DL/I consists of essentially six major functional units, namely

■ ADL Data Base Conversion Utility
■ ADL Directory file
■ ADL Online Services
■ CALLDLI Interface
■ Consistency Interface
■ ADL Installation Verification Package

TheADLData Base ConversionUtility allows you to convert yourDL/I DBD and PSB descriptions
into Adabas file descriptions and to convert data stored in DL/I data bases into data stored in
Adabas files automatically.Wheneverwe talk aboutAdabas fileswhich are based on the conversion
of DL/I data bases we use the term “ADL file” to point out the special properties of these files. The
information about the original DL/I structures and how they are translated intoAdabas definitions
is kept in the ADL Directory file. The contents of this file can be displayed with the ADL Online
Services, which additionally allow you to maintain the ADL interfaces under CICS.

The other two functional units of ADL are the CALLDLI Interface and the Consistency Interface.
The CALLDLI Interface allows DL/I applications to access ADL files in the same way as original
DL/I data bases. The Consistency Interface provides access to ADL files from Natural programs
or with Adabas direct calls. This interface preserves the hierarchical structure of the data, which
is of importance for ongoing DL/I applications.

The ADL Installation Verification Package provides a DL/I application environment including an
example database. The ADL Installation is verified and the conversion of the example database
is practiced. Several DAZZLER test streams, Cobol and Assembler program are included as well
as Natural applications for testing the ADL Consistency. Terms and concepts of DL/I and Adabas
are introduced and it is shown howADLmaps one to the other. The ADL Installation Verification
Package is described in details in the sectionADL Installation Verification Package in theADL Install-
ation documentation.

Interfaces2

Introduction

Figure 1: Functional units of ADL and their interrelation

Figure 1 shows the individual functional units of ADL and their interrelation with DL/I, SQL and
Natural applications.

This documentation provides you with the information necessary to operate both the CALLDLI
Interface and the Consistency Interface once ADL has been installed and the DL/I databases have
been converted.

This documentation is intended primarily for the systemprogrammer responsible for the operation
of Natural/Adabas and/or DL/I applications in batch and online systems. The section Using ADL
Files with Natural/Adabas is of particular interest for application programmers. Similarly, the
sectionsManaging ADL Files, ADLOnline Services and Recovery and Restart Procedureswill be
of interest to DBAs.

The first sections of this documentation cover the installation and operation of the ADL Interfaces
for batch, CICS and IMS/TP.

The sectionADLOnline Services describes how to examine the contents of the ADLDirectory file
and maintain the ADL Interfaces for CICS.

3Interfaces

Introduction

The section Precompiler for "EXEC DLI" Commands describes how to use the ADL-supplied
precompiler for “EXECDLI” commands. Although this precompiler is not a direct part of theADL
Interfaces, it might be required in caseDL/I and thus theHigh Level Programming Interface (HLPI)
is not available.

The section Using ADL Files with Natural/Adabas describes the way in which ADL files can be
accessed by Natural/Adabas applications.

The section Converting "Natural for DL/I" Programs describes what must be considered when
converting an NDL program to a “normal” Natural/Adabas program.

The section SQL Access to the Migrated Files describes how SQL applications can access the mi-
grated data with the Adabas SQL Gateway.

The section Debugging Aids - ADL Trace Facility covers the ADL Interfaces trace facility, which
was designed to debug your applications as well as to track down problems related to the ADL
Interfaces themselves.

A program to test DL/I calls in batch, DAZZLER, is described in the sectionCALLDLI Test Program
- DAZZLER.

The management of converted DL/I databases is described in the sectionManaging ADL Files. As
seen from an Adabas DBA point of view, there are a few things to be considered when managing
ADLfileswithAdabas utilities. Also, this section explains how and inwhichway theDL/I structure
or the Adabas file layout may be altered.

The tuning of ADL is described in the section Performance Considerations.

Obviously the conversion from DL/I to Adabas affects the restart and recovery scenarios. The
section Recovery and Restart Procedures explains these changes.

Most of the information contained in this documentation refers to both operating systems z/OS
and z/VSE. Informationwhich applies only to a single operating system is clearly marked as such.

In order to install and operate the ADL Interfaces, a certain degree of knowledge of both data base
systems, Adabas and DL/I, is required as well as a familiarity with the operating systems and TP
monitors. This manual makes frequent usage of terms, synonyms, abbreviations and facts related
to these systems. For clarity a glossary is providedwith theADLMessages and Codesdocumentation.

This chapter covers the following topics:

Interfaces4

Introduction

Operational Environments

The Adabas Bridge for DL/I operates in both online and batch environments. The online environ-
ments currently supported are CICS Versions 3.2 and above. Programming languages which use
the standard DL/I call interface, e.g. COBOL, Assembler, and PL/I, are supported in both online
and batch.

Operating system environments currently supported are: z/VSE and z/OS. The JCL/JCS examples
given in this documentation are tailored for z/VSE and z/OS.

Batch Operation

Once all DL/I data bases accessed by a particular application program have been converted, the
only other thing you need to do to operate the Adabas Bridge for DL/I in batch environments is
to remove the JCL statements for the DL/I data bases and add input cards with ADARUN para-
meters. These are needed since the application has become an Adabas application program. The
way in which the PSB name and application program names are specified, does not change. See
the section Batch Installation and Operation for further details.

Online Operation (CICS)

Once all DL/I data bases have been converted, you may remove all JCL statements and FCT and
ACT entries relating to them, as these are no longer required. Instead, you must generate a table
of all the PSBs needed by the CICS application programs. Under z/OS CICS the ADL requires the
installation of an SVC to operate properly. See the section CICS Installation and Operationfor
further details.

IMS/TP

Once all DL/I data bases have been converted, you may remove any JCL statements relating to
them, as these are no longer required. See the section IMS/TP Installation and Operation for
further details.

Other Documentation You May Need

The following Software AG publications may be useful when installing and operating the ADL
Interface:

■ Adabas Utilities documentation
■ Adabas Operations documentation
■ Adabas Messages and Codes

5Interfaces

Introduction

■ Adabas DBA Reference documentation

For a complete list of Software AG documentation, refer to Software AG's Empowerweb site. If
you do not have an Empower user ID and password yet, you will find instructions for registering
on this site (free for customers with maintenance contracts).

Documentation Related to non-SAG Products

The documentation mentioned belowmight be of interest and helpful for the installation and op-
eration of the ADL interfaces.

For z/OS users:

■ IMS/VS Application Programming
■ IMS/VS Application Programming for CICS/VS Users
■ IMS/VS Utilities Reference documentation
■ CICS TS Installation Guide
■ CICS TS Operations and Utilities Guide
■ CICS TS Resource Definition Guide

For z/VSE users:

■ DL/I DOS/VS Guide for New Users
■ DL/I DOS/VS Application Programming: CALL and RQDLI Interface
■ DL/I DOS/VS Application Programming: High Level Programming Interface
■ DL/I DOS/VS Utilities and Guide for the System Programmer
■ DL/I DOS/VS Resource Definition and Utilities
■ CICS TS Installation Guide
■ CICS TS Operations and Utilities Guide
■ CICS Resource Definition Guide

Interfaces6

Introduction

https://empower.softwareag.com/default.asp

2 Batch Installation and Operation

■ CALLDLI Interface ... 8
■ Consistency Interface ... 12
■ User Exit ... 16
■ z/OS JCL Requirements ... 17
■ z/VSE JCS Requirements ... 18

7

This chapter covers the following topics:

CALLDLI Interface

The ADL CALLDLI Interface processes all data base requests originating from DL/I calls or com-
mand level programs. For the application, it provides an interface identical to original DL/I. The
CALLDLI Interface decides dynamically,whether a request is to be routed toDL/I or to be processed
by ADL. In the first case, it simply acts as a front-end to DL/I.

ADL may be executed in batch in two different modes:

■ Normal Mode
This is used for application programs using PSBs which only reference DBDs describing previ-
ously converted DL/I data bases.

■ Mixed Mode
This is used for application programs using PSBs which reference at least one DBD describing
an unconverted DL/I data base.

In normal mode, all requests are processed by ADL. In mixed mode, requests are routed to DL/I
if they refer to non-converted DL/I data bases. GU and ISRT calls on the IOPCB and CHKP calls
will be routed to ADL as well as to DL/I.

Positional Parameters for DAZIFP

All DL/I parameters will be ignored, with the exception of the positional parameters given below.
These will be accepted and interpreted by DAZIFP in the same way as DL/I.

The syntax for the input statement is as follows:

runmode,pgmname,psbname[,keyword]

These parameters are explained on the next page.

DescriptionParameter

A three-character string indicating the run mode. The possible values are described in the
following table below.

runmode

The name of the application program to be loaded and started.pgmname

The name of the PSB used by the application program (if omitted, it is assumed that the PSB
name is the same as the application program name).

psbname

Interfaces8

Batch Installation and Operation

DescriptionRun Mode

Indicates a multi-user batch run. Programs using this mode of operation can run concurrently
with other programs (batch or online). An IO-PCB is added in front of the PCBs. Automatic ET

BMP/MPS

calls may be issued by the ADL. Checkpoints may be issued andwill result in Adabas ET calls.
See also the section Recovery and Restart Procedures. Compatible with DL/I BMP/MPS.

Indicates an Establish Logical Relationship utility run.ELO

Indicates a normal run. Batch update programs using this mode of operation cannot run
concurrently with any other program (batch or online) using the same data base(s). Read-only

IMS/DLI

programs can. Checkpointsmaybe issued andwill result inAdabas unsynchronized checkpoints
being taken (C1 calls). See also the section Recovery and Restart Procedures. Compatible to
DL/I IMS/DLI.

Indicates that the batch program is to be run in mixed mode. The same rules apply as for
IMS/DLI mode.

MIX

Indicates an MPS/SDB batch run in mixed mode.MPX/SDX

Indicates an IMS/TP message region processing run.MSG

Indicates an ADL precompiler run for translating command level programs.PRE

Indicates a Print Trace utility run.PRT

Indicates a Reformat utility run.REF

Indicates a shared-data base run. Programs running in this mode may access data bases
concurrently with other programs (batch and online). This mode of operation is provided for

SDB

compatibility with the DL/I “shared data bases” feature. The ET checkpoint logic is like
BMP/MPS, but no IO-PCB is added to the PCBs.

Indicates a DAZSHINE utility run.SHI

Indicates a stand-alone batch run. Programs using this mode of operation can not run
concurrently with online programs using the same data base(s), nor with any other batch

STA

programs. The ADL directory file is used exclusively. Checkpoints may be issued and will
result in Adabas unsynchronized checkpoints being taken (C1 calls). See also the section
Recovery and Restart Procedures.

Indicates an Unload utility run.UNL

Indicates a CBC utility run.UTC

Keywords for DAZIFP

In addition to the positional parametersmentioned above, youmay specify one ormore keywords
to control operation of ADL.

Any keywords specified must immediately follow the positional parameters. Any keywords not
on the list (e.g. the original DL/I parameters) encountered after the program and PSB names will
cause scanning to be terminated. In this case, all other parameters will be ignored.

If the parameters are read in from a file (i.e., DAZIN1, DAZIN2 or SYSIPT), more than one line
can be used for the parameter specification. A comma followed by a blank after the last keyword
of the line indicates that the specification of the parameters is continued in the next line. Any
character found after the blank in the initial line is treated as a comment.

9Interfaces

Batch Installation and Operation

The table below gives a short explanation of the keywords which may be specified. For further
information (including defaults) on all parameters, see the section ADL Parameter Module in the
ADL Installation documentation.

DescriptionKeyword

Suffix for the buffer table module name.BUFSF

Checkpoint message destination.CHKPMSG

The checkpoint ID from which the application is to be restarted.CPID

The size (in kilobytes) of the ADL DBD ICB buffer.DBD

Suffix for the DBD table module name.DBDSF

Adabas data base for the ADL directory file.DBID

Support of CA-DUO under z/OS.DUO

The size (in kilobytes) of the ADL ECB buffer.EBUF

The number of times a different root segment occurrence may be accessed before an Adabas
ET command is issued (BMP/MPS/SDB programs only).

ET

Adabas file number for the ADL directory file.FNR

z/VSE only. Specifies the input data set for the Print Utility when printing the routine trace
or for the ADL precompiler.

FX

IMS/TP syncpoint/Adabas ET synchronization.IMSY

Language of the application program. Overwrites the PSB language parameter.LANG

The size (in kilobytes) of the last call save area.LCS

Indicates whether an ISRT against a PCB with PROCOPT=L is to be written to Adabas or to
a sequential file.

LOAD

Defines the ADL Multifetch Table.MFT

Specifies if an Adabas OPEN is required or not.OPENRQ

z/OS only. Passes PL/I parameters to PL/I. See the explanation on the next page.PLI

z/VSE only. Specifies whether PL/I uses the LE/VSE.PLILE

z/VSE only. Specifies the number of logical printers.PR

The size (in kilobytes) of the ADL PSB ICB buffer.PSB

Suffix for the PSB table module name.PSBSF

Specifies the record buffer extension list.RBE

The number of times that ADL tries to put a record, which is currently held by another user,
into hold status.

RETRY

z/VSE only. Specifies the input/output data set for the Unload utility.SQ

The size (in kilobytes) of the ADL internal subroutine stack.STACK

Activates the Trace facility and specifies what is to be traced. This keyword is described in
the sectionDebugging Aids — the ADL Trace Facility.

TRACE

Specifies the CBC utility work area.UTI

Interfaces10

Batch Installation and Operation

PLI Parameter (z/OS Only)

This keyword is used to pass PL/I parameters to PL/I. The featuremay only be specified if the PL/I
application program has been link edited with “PLICALLB” as its entry point. Specifying “PLI”
or “PLI=(...)” will cause the PL/I program to be called in conformity with the standards for calling
the entry point “PLICALLB”.

Syntax

PLI =(options)

where options are PL/I execution options.

The following values may be entered:

REPORT, NOREPORT, SPIE, NOSPIE, STAE, NOSTAE.

For further details, see the IBM documentation PL/I Optimizing Compiler: Programmer's Guide.

Normal Mode Batch Execution

To invoke normal mode batch execution under ADL, execute the DAZIFP Bridge initialization
program. This program requires input parameters similar to those for the DL/I initialization pro-
gram. Both positional and keyword parameters exist (see above).

Neither the JCLdescribing the originalDL/I data bases nor the load libraries containing theDL/Iload
modules are required in normal batch execution.

The ADL load library containing the executable ADL batch module and the Adabas load library
must be included in the JCL. ADARUN control statements must also be provided, as is the case
with anyAdabas application program. For a detailed description of JCL requirements, see the end
of this section.

Unlike DL/I, ADL opens all files which are referenced in the PSB during initialization. This must
be considered, particularly if the file is opened in EXU mode and the application does not access
the file at all.

Mixed Mode Batch Execution

To invokemixedmode batch execution underADL, execute the normalDL/I initialization program.

You still require all the JCL describing the original DL/I data bases and the load libraries containing
the DL/I load modules.

Before running the program, make the following changes in the JCL/JCS:

1. Change the name of the application program in the DL/I parameters from the user program to
DAZIFP. No other parameters have to be modified.

11Interfaces

Batch Installation and Operation

2. Insert an extra input statement for DAZIFP:
■ z/OS Environments
Include a DD statement with the DD name DAZIN2 in the JCL.

■ z/VSE Environments
The mixed mode control statement is read from SYSIPT.

3. Add a JCL/JCS statement for the ADARUN file “DDCARD”.

For a more detailed description of the JCL/JCS requirements for mixed mode, see the end of this
section.

The parameters and syntax for the input statement are the same as for normalmode batch execution
(see the first topic of this section).

Note: DL/I andAdabas are not fully synchronized. Therefore, you should carefully consider
restart and recovery procedures for programs running in mixed mode, especially when
they are running concurrently to other programs (MPX or SDX run mode).

Pseudo Mixed Mode Batch Execution

In the "pseudo" mixed mode batch execution, the ADL interface program DAZIFP calls a copy of
itself. This can be useful when changing structures after the conversion. Pseudo mixed mode is
described in details in the sectionManaging ADL Files.

Link-editing of Application Programs

In general, application programs do not have to be re-linked.

The ADL load library provides the language interface module DAZLIBAT as a substitute for the
IBM language interface DFSLI000 (z/OS) andDLZLI000 (z/VSE). Thesemodules provide the entry
pointsASMTDLI, PLITDLI, CBLTDLI and FORTDLI. Youmight need theADLprovided language
interface in case DL/I is not available at your site, and you have to re-link application programs.

Consistency Interface

This paragraph describes how the ADL Consistency Interface intercepts Adabas calls and how
you activate the Consistency in a batch environment.

Interfaces12

Batch Installation and Operation

Activating the Consistency Interface

The ADLConsistency Interface intercepts Adabas calls on the Adabas linkmodule level. In batch,
this is a module named ADALNK.

A substitute for theAdabas linkmodule in batch, ADALNK, is deliveredwith theADL installation
tape. You will have to assemble and link-edit this module, as described in the section below.

Operation of the Consistency Interface requires the original Adabas link module to be present.
This, however, has to be renamed. The default new name for the original Adabas link module is
ADAOLK. When customizing the ADL substitute, you may choose any new unique name for the
original Adabas link module.

Consequently, you have to rename the original Adabas link module for batch, ADALNK, to
ADAOLK (or to whatever is the new name you choose.)

It is recommended that the ADL supplied substitute and the renamed copy of the original Adabas
link module are both stored on the ADL load library.

For the Consistency Interface to become active, the order of the concatenation of the ADL and
Adabas load libraries is of importance. For z/OS batch jobs, this means that the ADL load library
must be concatenated before the Adabas load library in the JOBLIB or STEPLIB DD statements.

Example:

//STEPLIB DD DISP=SHR,DSN=ADL.LOAD
// DD DISP=SHR,DSN=ADABAS.LOAD
// DD DISP=SHR,DSN=.............

In z/VSE, theADL load librarymust be defined in the search sequence of a LIBDEF statement before
the Adabas load library.

Example:

// LIBDEF *,SEARCH=(ADL,ADABAS,)

Customizing the Consistency Interface

The ADL source library contains the source of the substitute for Adabas link module in batch,
ADALNK. The name of this source member is DAZLNK.

All parameters for this module are given as assembler variables and their meaning is explained
in comment statements in the source.

All parameters correspond to customizable parameters in the original Adabas link module for
batch. Note, however, that you do not have to specify an SVC nor a default DBID when you cus-

13Interfaces

Batch Installation and Operation

tomize the ADL link module substitute. The values for these will dynamically be taken from the
original Adabas link module.

The assembly of the ADL link module substitute requires the ADL source library and the Adabas
supplied macro library as well as the system macro library to be available.

See the sections z/OS Installation and z/VSE Installation in the ADL Installation documentation for
more details on how to assemble and link-edit the ADL link module.

Parameters for the Consistency Interface

This paragraph describes which parameters are of importance for the Consistency Interface and
how youmay initialize them. Themeaning of the individual parameters, their possible values and
their default values are described in the section ADL Parameter Module in the ADL Installation
documentation.

Most of the parameters for the Consistency Interfacewill be initialized by the assembly and link-
edit of theADLparametermodule. Parameters of particular importance for theConsistency Interface
are:

The size of the “file description table”FDT

The size of the internal format buffer stackFSTAC

Do (not) read dynamic parametersPARM

The size of the internal record bufferRBSIZ

The size of the “segment description table”SDT

When you have specified “PARM=YES” in the assembly of the ADL parameter module, the Con-
sistency Interfacewill read a card containing dynamic parameters from the file DAZIN1 (z/OS) or
the logical unit SYSIPT (z/VSE). The layout of this card is:

Keyword=value,...

Keywords must be separated by commas, no intervening or leading blanks are allowed. Any un-
defined keyword causes the scanning to be terminated and the following statements to be ignored.

As described in the section Keywords for DAZIPF earlier in this section, more than one line can
be used for the parameter specification. You may specify the following dynamic parameters:

Interfaces14

Batch Installation and Operation

The size (in kilobytes) of the internal control block area for DBDsDBD

The DBID of the ADL directory fileDBID

The size (in kilobytes) of the external control block areaEBUF

The FNR of the ADL directory fileFNR

Adabas “OP” (not) requiredOPENRQ

The size (in kilobytes) of the internal control block area for PSBsPSB

The size (in kilobytes) of the internal subroutine stackSTACK

Specify trace parameters. This keyword is described in the sectionDebugging Aids — the
ADL Trace Facility in this documentation.

TRACE

For a detailed explanation of these parameters, see the ADL Installation documentation, section
ADL Parameter Module.

Table of Converted Adabas Files (DAZTCF)

In order to minimize the effort for batch programs accessing only native Adabas files (i.e. files
which do not result from a conversion of a DL/I data base), you may assemble a table containing
a list of the converted files. Link-edit it together with the ADL substitute for the Adabas batch link
module, ADALNK.

Youmay use the JCL(JCS) in the member ADLTCF (ADLTCF.J) as an example of how to assemble
the table under z/OS (z/VSE).

To create a table of converted files, DAZTCF, you assemble a source containing one call to the
ADL supplied macro DAZTCF for each DBID to be included in the table.

The two keyword parameters of the DAZTCF macro are:

the DBID to be included in the tableDBID=

list of file numbers to be included in the tableFILES=

For the FILES= parameter, there are five forms of specifying the argument:

a single file to be included in the tableFILES=x

a single file as part of a listFILES=(x, ...)

a single file as part of a listFILES=((x), ...)

a range of file numbers from x to y inclusiveFILES=((x,y), ...)

all files for a given DBIDFILES=ALL

Any number of files may be specified with the FILES= parameter.

DBIDs and file numbersmust be specified in ascending sequence. The sameDBID can be specified
more than once in the list.

15Interfaces

Batch Installation and Operation

Which files are to be included in the table of converted files, DAZTCF, should be evaluated very
carefully. Any call referencing a DBID/FNR combination not included in the DAZTCF table will
be routed directly to Adabas. Thus, if an ADL file is not included in this table, data integrity will
not be maintained by the Consistency Interface. On the other hand, the ADL directory file and all
Adabas, Natural etc. system files should not be included in the DAZTCF table.

The DAZTCF table can also be used under CICS. Refer to the section CICS Installation and Oper-
ation for more details.

Note: DAZTCF replaces the ADL 2.2 table of non-converted files DAZNCF which is no
longer supported.

Example:

DAZTCF DBID=001,FILES=ALL
DAZTCF DBID=002,FILES=((14,20),25,(100,200))
DAZTCF DBID=005,FILES=(1060)
END

Summary

In short, to activate the ADL Consistency Interface for Adabas or Natural batch jobs you have to
perform the following steps:

■ create the ADL substitute for the Adabas link module,
■ rename the original Adabas link module for batch, ADALNK,
■ concatenate the ADL load library before the Adabas load library,
■ add a DD card for DAZIN1 (z/OS) or an extra input statement on SYSIPT (z/VSE) when you
intend to read dynamic parameters.

Besides that, Adabas or Natural batch jobs run unchanged as described in the corresponding
Adabas and Natural documentations.

User Exit

ADL Interfaces optionally pass control to a user written routine (user exit) before each call to
Adabas. This user exit may be used for monitoring purposes as well as to apply modifications to
the call parameters before Adabas receives control. The conventions for this user exit and how it
is activated is described in the sectionMiscellaneous in the ADL Installation documentation.

Interfaces16

Batch Installation and Operation

z/OS JCL Requirements

The JCL requirements for batch operation are discussed in the following pages. Both normalmode
and mixed mode batch operation are described.

Normal Mode Batch Operation

The following table lists the data sets used by the ADL batch monitor when application programs
are run in normal mode.

DescriptionMediumDDname

Messages and codes.PrinterDAZOUT1

Example

//G EXEC PGM=DAZIFP,PARM='DLI,pgmname,psbname'
//STEPLIB DD DISP=SHR,DSN=ADL.LOAD
// DD DISP=SHR,DSN=ADABAS.LOAD
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZOUT1 DD SYSOUT=X
//*
//* application program datasets
//*

Mixed Mode Batch Operation

The following table lists the data sets used by theADLbatchmonitorwhen an application program
is run in mixed mode.

DescriptionMediumDDname

Control input for the ADL batch monitor, DAZIFP.ReaderDAZIN2

Report, messages and codes.PrinterDAZOUT1

Example

// EXEC DLIBATCH,MBR=DAZIFP,PSB=psbname
//G.STEPLIB DD
// DD
// DD DISP=SHR,DSN=ADL.LOAD
// DD DISP=SHR,DSN=ADABAS.LOAD
//*
//* datasets describing DL/I data bases
//*

17Interfaces

Batch Installation and Operation

//G.file DD
//*
//G.DDCARD DD *
ADARUN PROGRAM=USER,...
//G.DAZOUT1 DD SYSOUT=X
//G.DAZIN2 DD *
MIX,pgmname,psbname
//*
//* application program datasets
//*

DLIBATCH is the standard batch procedure provided by IBM as part of the IMS/DB installation.

z/VSE JCS Requirements

The JCS requirements for batch operation are discussed in the following pages. Both normalmode
and mixed mode batch operation are described.

Normal Mode Batch Operation

The following table lists the files used by the ADL batch monitor when application programs are
run in normal mode.

DescriptionMediumLogical UnitDTF

Control input for the ADL batch monitor, DAZIFP.ReaderSYSIPTDAZIN1

Messages and codes.PrinterSYSLSTDAZOUT1

The control input for the batch monitor (DAZIFP) and for ADARUN is read from SYSIPT. The
control statements must be specified in the following order:

DLI,pgmname,psbname,... input for DAZIFP
/*
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
user input
.
.
/*

Interfaces18

Batch Installation and Operation

Example

// EXEC PROC=ADLLIBS
// EXEC DAZIFP
DLI,pgmname,psbname
/*
ADARUN PROGRAM=USER,...
/*
/&

Mixed Mode Batch Operation

The following table lists the files used by the ADL batch monitor when an application program
is run in mixed mode.

DescriptionMediumLogical UnitDTF

Control input for the ADL batch monitor, DAZIFP.ReaderSYSIPTDAZIN1

Report, messages and codes.PrinterSYSLSTDAZOUT1

The control input for the batch monitor (DAZIFP), for ADARUN and for the DL/I initialization
program,DLZRRC00, is read fromSYSIPT. The control statementsmust be specified in the following
order:

DLI,DAZIFP,psbname,... input for DLZRRC00
MIX,pgmname,psbname,... input for DAZIFP
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
user input
.
.
/* ↩

Example

// EXEC PROC=ADLLIBS
// EXEC DLZRRC00
DLI,DAZIFP,psbname
MIX,pgmname,psbname
ADARUN PROGRAM=USER,...
/*
/&

19Interfaces

Batch Installation and Operation

20

3 CICS Installation and Operation

■ Overview CICS Installation .. 22
■ Prerequisites for z/OS CICS Installation ... 22
■ Prerequisites for z/VSE CICS Installation ... 24
■ Important Note for CICS Users ... 27
■ Generating the Runtime Control Tables .. 27
■ Tuning and Maintaining the Runtime Control Tables ... 37
■ z/OS Requirements ... 38
■ z/VSE Requirements .. 39
■ Activating and Controlling the ADL Interfaces .. 40
■ CALLDLI Interface ... 42
■ Consistency Interface ... 44
■ User Exit ... 46

21

This chapter covers the following topics:

Overview CICS Installation

To install the ADL interfaces in CICS under z/OS or z/VSE, perform the steps listed below.

DescriptionStep

Run ADLCSD against the DFHCSDUP utility.Step 1

Add entry to the CICS PLT (optional).Step 2

Add JCS/JCL to the CICS start-up job.Step 3

Edit, assemble and link edit the CICS runtime control tables.Step 4

Install the ADL SVC for CICS (z/OS only).
Add entries to the CICS DCT (z/VSE only).

Step 5

Generate the ACT (z/VSE only).Step 6

The individual steps in the CICS procedures are now explained in more detail.

Prerequisites for z/OS CICS Installation

Step 1

Use the member ADLCSD in the ADL source library as input for the CICS DFHCSDUP utility.
Thismember contains all program, transaction and transient data queue entries required for ADL.
It can be used as delivered ormodified to satisfy the local requirements. In particular the following
entries are mandatory:

PROGRAM(DAZCICS)
PROGRAM(DAZNUCC)
PROGRAM(DAZSYNC)
PROGRAM(DAZPSB)
PROGRAM(DAZDBD)
PROGRAM(DAZBUF)
TDQUEUE (DAZP)

The following entries are optional:

Interfaces22

CICS Installation and Operation

PROGRAM(DAZCINIT)
PROGRAM(DAZCEND)
PROGRAM(DAZCINF)
PROGRAM(DAZCTON)
PROGRAM(DAZCTOFF)
PROGRAM(DAZCDUMP)
TRANSACTION(DAZI)
TRANSACTION(DAZE)
TRANSACTION(DAZS)
TRANSACTION(DAZT)
TRANSACTION(DAZO)
TRANSACTION(DAZD)
TDQUEUE (DAZD)
TDQUEUE (DAZR)

If your DBDs are defined with user-supplied index maintenance exit routines, you have to add
PROGRAM-entries for each of these routines. See the sectionUser-supplied Index Maintenance Exit
Routines in the ADL Installation documentation for more information.

Make sure that all programs in the ADLCSD are accessible by CICS. This can be achieved by
putting themembers into theADL load library and by adding this library to the CICS load libraries.

Note: When you rununderCICSTS 2.3 or below, theADL.LC23 librarymust be concatenated
in front of the ADL load library.

Step 2 (optional)

If you want the ADL to be initialized automatically when CICS is started up, you must add the
following entry to the CICS PLT:

DFHPLT TYPE=ENTRY,PROGRAM=DAZCINIT

For automatic shutdown of the ADL when CICS is shut down, you must add the following entry
to the CICS PLT:

DFHPLT TYPE=ENTRY,PROGRAM=DAZCEND

Step 3

Add the following JCL statements to the CICS start-up job(s):

23Interfaces

CICS Installation and Operation

//DAZOUT2 DD DSN=dsnname,.....,
// DCB=(BLKSIZE=nnnn,LRECL=132,DSORG=PS,RECFM=FB)

If you want to run the trace facility under CICS, you must also add the following JCL statements
to the CICS start-up job:

//DAZOUT1 DD DSN=dsnname,....,
// DCB=(BLKSIZE=nnnn,LRECL=132,DSORG=PS,RECFM=FB)
//DAZOUT5 DD DSN=dsnname,.....,
// DCB=(BLKSIZE=nnnn,LRECL=8192,DSORG=PS,RECFM=VB)

Note: “dsname” can be any valid data set name. Block Sizes: any legal block size may be
used.

Step 4

When using ADL under CICS, you need to create the three additional runtime control tables
DAZPSB, DAZDBD and DAZBUF as described in the section Generating the Runtime Control
Tables.

Step 5

Copy the ADL SVC program DAZCSVC to an LPA list library. Add the following entry for the
ADL SVC to the SVC table:

SVCPARM nnn,REPLACE,TYPE(3),EPNAME(DAZCSVC),APF(NO) /* ADL SVC */

where nnn is a free SVC number in the range of 200-255.

Prerequisites for z/VSE CICS Installation

Step 1

Use the member ADLCSD in the ADL source library as input for the CICS DFHCSDUP utility.
Thismember contains all program and transaction entries required forADL. Remove the transient
data queue entries if the TDQUEUE keyword is not supported by the CICS level in use. The
ADLCSD member can be used as delivered or modified to satisfy the local requirements. In par-
ticular the following entries are mandatory:

Interfaces24

CICS Installation and Operation

PROGRAM(DAZCICS)
PROGRAM(DAZNUCC)
PROGRAM(DAZSYNC)
PROGRAM(DAZPSB)
PROGRAM(DAZDBD)
PROGRAM(DAZBUF)
TDQUEUE (DAZP) – if allowed

The following entries are optional:

PROGRAM(DAZCINIT)
PROGRAM(DAZCEND)
PROGRAM(DAZCINF)
PROGRAM(DAZCTON)
PROGRAM(DAZCTOFF)
PROGRAM(DAZCDUMP)
TRANSACTION(DAZI)
TRANSACTION(DAZE)
TRANSACTION(DAZS)
TRANSACTION(DAZT)
TRANSACTION(DAZO)
TRANSACTION(DAZD)
TDQUEUE (DAZD) – if allowed
TDQUEUE (DAZR) – if allowed

If your DBDs are defined with user-supplied index maintenance exit routines, you have to add
PROGRAM-entries for each of these routines. See the sectionUser-supplied Index Maintenance Exit
Routines in the appendix of the ADL Installation documentation for more information.

Make sure that all programs in the ADLCSD are accessible by CICS. This can be achieved by
putting themembers into theADL load library and by adding this library to the CICS load libraries.

Step 2 (optional)

If you want the ADL to be initialized automatically when CICS is started up, you must add the
following entry to the CICS PLT:

DFHPLT TYPE=ENTRY,PROGRAM=DAZCINIT

For automatic shutdown of the ADL when CICS is shut down, you must add the following entry
to the CICS PLT:

25Interfaces

CICS Installation and Operation

DFHPLT TYPE=ENTRY,PROGRAM=DAZCEND

Step 3

Add the following JCS statements to the CICS start-up job(s):

// DLBL DAZOUT2,'filename',....
// EXTENT SYSnnn,....

If you want to run the Trace facility under CICS, you must also add the following JCS statements
to the CICS start-up job:

// DLBL DAZOUT1,'filename',....
// EXTENT SYSnnn,....
// DLBL DAZOT5D,'filename',....
// EXTENT SYSnnn,....

Step 4

When using ADL under CICS, you need to create the three additional runtime control tables
DAZPSB, DAZDBD and DAZBUF as described in the section Generating the Runtime Control
Tables.

Step 5

If the TDQUEUE keyword of the DFHCSDUP utility is not available in the CICS in use, add the
following entries to the CICS DCT:

DFHDCT TYPE=SDSCI,DSCNAME=DAZOUT2,BLKSIZE=nnnn,RECSIZE=132,
RECFORM=FIXBLK,TYPEFLE=OUTPUT,DEVICE=DISK

DFHDCT TYPE=EXTRA,DESTID=DAZP,DSCNAME=DAZOUT2,OPEN=DEFERRED

If you want to run the Trace facility under CICS, you must also add the following entries to the
CICS DCT:

DFHDCT TYPE=SDSCI,DSCNAME=DAZOT5D,BLKSIZE=8196,RECFORM=VARBLK,
TYPEFLE=OUTPUT,DEVICE=DISK

DFHDCT TYPE=SDSCI,DSCNAME=DAZOUT1,BLKSIZE=nnnn,RECSIZE=132,
RECFORM=FIXBLK,TYPEFLE=OUTPUT,DEVICE=DISK

DFHDCT TYPE=EXTRA,DESTID=DAZD,DSCNAME=DAZOT5D,OPEN=DEFERRED

DFHDCT TYPE=EXTRA,DESTID=DAZR,DSCNAME=DAZOUT1,OPEN=DEFERRED

Note: Block Sizes: Any legal block size may be used.

Interfaces26

CICS Installation and Operation

Step 6

If you run application programs under CICS which do not explicitly specify the psbname in the
scheduling call but use the default psbname as defined in the CICS application control table, you
have to assemble and link-edit the ACT using the ADL-supplied macros.

Use the sample JCS in the ADL Source Library member ADLACT.J as an example (do not forget
to specify OPTION SYSPARM='DAZACT'). The default name of the load module produced by
this procedure is DAZACT. A two character suffixmay be appended to this name if it is necessary
to keep more than one version in the load library. In this case, the ACTSF parameter has to be set
to make the two-character suffix known to ADL. See the sectione ADL Parameter Module in the
ADL Installation documentation for details. The full name of the ACT (for example, DAZACT)
followed by the suffix must be added to the ADLCSDmember used as input for the DFHCSDUP
utility.

Important Note for CICS Users

Any CICS transaction that uses ADL must have a TWASIZE of at least 24 bytes. ADL saves the
24 bytes of the TWA, uses them itself, and then restores their former contents. After this, it returns
to the user. ADL does not use the TWA when PLINTWA=NO is specified while creating the
parameter module. See the section ADL Parameter Module in the ADL Installation documentation
for details.

Generating the Runtime Control Tables

As explained in the section ADL Conversion Utilities for DBDs and PSBs in the ADL Conversion
documentation , the information corresponding to the DBDs and PSBs is stored as external control
blocks on the ADL Directory file. When an application program running under CICS schedules a
particular PSB, all external control blocks related to and the DBDs referenced by that PSBmust be
converted to internal control blocks. These internal control blocks are kept in memory, allowing
faster access to the necessary information.

For performance reasons, the conversion from external to internal control blocks should not be
done repeatedly each time a program issues a scheduling call. It would be most appropriate to
convert the control blocks only once and keep them in memory. On the other hand, the storage
available might not be sufficient to hold all internal control blocks at the same time.

The solution chosen by ADL allows optimal performance in smaller systems where all internal
control blocks will be kept in memory, but has the flexibility to handle larger systems with nearly
the same performance.

27Interfaces

CICS Installation and Operation

When ADL is activated under CICS, all DBD and PSB external control blocks that will be accessed
in the online environment are converted to internal control blocks. All DBD-related internal control
blocks are kept in the DAZDBD table. The PSB-related internal control blocks are written to the
ADL Directory file. Whenever a PSB is scheduled for the first time, the related internal control
blocks are rolled into the table DAZBUF and remain there until ADL is switched off.

If the space in the DAZBUF buffer table is not sufficient to store all PSB internal control blocks,
PSBs that are currently not in use by any application programare purged and, in turn, the requested
PSB is rolled into DAZBUF. The DAZPSB table is used to control the DAZBUF buffer table.

The DAZBUF buffer table is arranged in groups, each containing slots. All slots in a group are of
the same size. Thus, if a group of slots are occupied and some PSBs are rolled out, the other groups
are not affected.

In addition to the DBD-related internal control blocks, the DAZDBD table contains the task ID
table, the local user blocks (LUB), the segment description table (SDT), the file description table
(FDT) and the exit routine table (EXR). The task ID table is used to assign a specific task ID to the
corresponding internal areas. The local user blocks are used as reentrant storage to reduce CICS
getmain requests.With the help of the SDT and FDT tables, theADLConsistency Interface translates
Adabas database requests to internal DL/I calls. The exit routine table maintains the user exists.

Step 1: Generating the Table of PSBs (DAZPSB)

Assemble and link-edit the table of PSBs, DAZPSB, using as input either

■ an existing DL/I Directory List, PSB-PDIR under z/OS, or
■ an existing Application Control Table, DFHACT under z/VSE

Ensure that you use the ADL-supplied macro substitutes that are in the ADL source library on
the installation tape.

Note: For z/VSE users: You must specify OPTION SYSPARM=`DAZPSB' for the assembly
of the ACT.

Alternatively, the DAZPSB module may be created using the ADL-supplied macros MGPSTIN,
MGPSTEN and MGPSTFI, as shown in the following example:

MGPSTIN DATE=mm/dd/yy
Initialization (assembly date)
MGPSTEN NAME=psbname

.

. as many PSB entries as needed

.
MGPSTEN NAME=psbname
MGPSTFI final macro to trigger table generation
END

Interfaces28

CICS Installation and Operation

An entry for an internally used Consistency PSB will be automatically generated in the DAZPSB
table. The name of this PSB is ADL$PSB.

Youmay use the JCL (JCS) in member ADLCTG1 (ADLCTG1.J) as an example of how to assemble
and link-edit the DAZPSB table under z/OS (z/VSE).

The default name for the PSB table module is DAZPSB; however, a two-character suffix may be
appended, if needed to keep more than one version in the load library. See the section ADL Para-
meter Module in the ADL Installation documentation for details on the PSBSF parameter. The full
name (DAZPSB followed by the two-character suffix) must be included in the ADLCSD member
used as input for the DFHCSDUP utility.

Step 2: Determining Requirements for the Runtime Control Tables

As soon as all PSBs thatwill be accessed in the online environment are known, theDBDs referenced
by these PSBs and the amount of storage needed for the internal control blocks can be determined
using the external control blocks stored on the ADL directory file.

TheADLutilityDAZSHINE can be used to determine requirements for theDAZDBDandDAZBUF
Runtime Control Tables. Figure 2a below shows the four-step table generation process performed
byDAZSHINE. The inputs toDAZSHINE are theDAZPSB table, theADLDirectory file containing
the DBD and PSB external control blocks, the ADL files and a control card in the following format:

MODE=xxxx,RANGE=(start,step)

where xxxx is

a report on the status and size of all PSBs will be produced.SHORT

as above, but in addition, a detailed summary on the status of all PCBs contained in each PSB
will be produced.

FULL

none of the above will be printed.NONE

and start and step determine the starting point and size (in bytes) of the steps used to group the
PSBs and produce the PSB size statistics. If you specify RANGE= (128,256) for example, possible
slot sizes will be 128, 384, 640 etc. The defaults are: MODE=NONE, RANGE=(128,128).

The PSBs are only grouped into the given slot sizes, if the total size of all PSBs exceeds 512 Kb.
Otherwise every PSB will have its own slot.

The output of DAZSHINE is a run report, statistics of the size and status of the PSBs contained in
DAZPSB, and the source needed for the generation of the DAZBUF buffer table. The DAZSHINE
run report describes each PCB contained in each PSB, all DBDs referenced by each PCB, and the
status of each referencedDBD (that is, converted or not converted). Thus, you can determinewhich
PCBs will access converted data bases and which ones will still access non-converted data bases.

29Interfaces

CICS Installation and Operation

CICS Table Generation Procedure

Interfaces30

CICS Installation and Operation

31Interfaces

CICS Installation and Operation

Figure 2a: CICS Table Generation

Note, however, that if a PCB references a logical DBDwhich is not converted, DAZSHINE cannot
find the physical DBDs referenced by this logical DBD. It is therefore recommended that you
convert the control blocks of all logical DBDs, even if the corresponding physical DBDs are not
yet converted.

In order to determine the size requirement for theADLFDTarea in theDAZDBD table, DAZSHINE
reads the FDTs of the ADL files. It uses the FDTs of all the files referenced by a physical DBD that
was converted with CONSI=YES in the GENDBD statement (see the section ADL Data Conversion
Utilities in the ADL Conversion documentation). A list of all these DBDs can be displayed and
modified by the ADL Online Services (see the corresponding section in this documentation).

The output of DAZSHINE provides you with the DBIDs and FNRs of the selected ADL files and,
if the corresponding FDThas been found,with the number of theAdabas fields in each file. Further
the DBD, SDT and FDT area sizes will be displayed. These areas will be allocated with the given
sizes in step 4, if the DBDMACmacro is assembled with the parameter values as calculated by
DAZSHINE.

Youmayuse the JCL (JCS) in thememberADLCTG2 (ADLCTG2.J) as an example on how to execute
the DAZSHINE utility under z/OS (z/VSE).

Thedefault names for the PSB,DBDandbuffer tablemodules areDAZPSB,DAZDBDandDAZBUF,
respectively. A two-character suffixmay be appended to each of these names if there is more than
one version to be kept in the source or load libraries. The suffix is set by the PSBSF, DBDSF and
BUFSF parameters. See the section, ADL Parameter Module in the ADL Installation documentation
for details.

Step 3: Generating the Internal Control Block Table (DAZBUF)

The buffer table DAZBUF is arranged in groups of slots of the same size. Figure 2b below depicts
the DAZBUF layout.

The slot size and number of slots in one group are definedwith theADL-suppliedmacro BUFMAC.
The following keyword arguments are required when calling the BUFMAC macro:

to specify the entry for one group of slots.ENTRYTYPE=

triggers the generation of the table. A BUFMAC macro with TYPE=FINAL must
be present as the last statement before the END statement.

FINAL

the size of the slots in bytes or kilobytes (K).nnn or nnn KSIZE=

the number of slots in the group.nnnNUM=

You cannot specify two groups of the same size. The total size of DAZBUF is limited to 512K; the
BUFMAC macro will issue an error message if this size is exceeded.

Interfaces32

CICS Installation and Operation

Usually, you do not have to modify the source to create DAZBUF; you assemble and link-edit the
output produced by the DAZSHINE utility. However, in certain cases it might be appropriate to
“tune” the DAZBUF table layout to gain performance when rolling in or rolling out the PSBs.
Refer to the corresponding section below.

You may use the JCL (JCS) in the member ADLCTG3 (ADLCTG3.J) as an example of how to as-
semble and link-edit the DAZBUF table under z/OS (z/VSE).

The default name for the buffer table module is DAZBUF, however, a two character suffix may
be appended if needed to keep more than one version in the load library. See the section ADL
Parameter Module in the ADL Installation documentation for details on the BUFSF parameter. The
full name (for example, DAZBUF) followed by the two-character suffix must be included in the
ADLCSD member used as input for the DFHCSDUP utility.

33Interfaces

CICS Installation and Operation

DAZBUF Buffer Table

Figure 2b: DAZBUF Buffer Table

Step 4: Generating the DBD Table (DAZDBD)

TheDAZDBD table is generated by the assembly and link-edit of a single call to theADL-supplied
macro DBDMAC, with the following keyword arguments:

the number of physical and secondary indexDBDs referenced by all PSBs inDAZPSB.Default:
10

NUMDBD=

the total number of segments in the DBDs as included in NUMDBD, above. Default: 50NUMSEG=

the total number of fields in the DBDs as included in NUMDBD, above. Default: 100NUMFLD=

the total number of secondary indices specified by all physical DBDs included in NUMDBD,
above. Default: 20

NUMSEC=

the total number of secondary indices forwhich an indexmaintenance exit routine is supplied.
Default: 0

NUMEXR=

the total number ofADLfiles accessible by theADLConsistency Interface. Default: NUMDBDNUMAFI=

the total number of field definitions in all ADL files above. Default: 9 x NUMAFI + 2 x
NUMSEG + NUMSEC + 2 x NUMFLD

NUMAFD=

Interfaces34

CICS Installation and Operation

The summary report of the DAZSHINE utility (Step 2 above) will provide you with these values,
in the case where you do not use the source generated by DAZSHINE.

Note that you do not have to specify precise parameter values, but they must always be large
enough to cover the total number of entries. You should, therefore, include those DBDs that are
not yet converted but will be in the future. This may prevent having to re-create DAZDBD every
time another database is converted.

In addition to tracking DBD internal control blocks, the DAZDBD module maintains a table of
task entries currently active under ADL. The DBDMACmacro parameter TSKENT specifies the
maximum number of tasks that can be active under ADL at the same time. TSKENT defaults to
255, which should normally be sufficient.

Also, there is an area which contains the local user blocks (LUBs). The LUBs are used at the start
and end of a task which is running against ADL. The LUBENT parameter of the DBDMACmacro
specifies the number of LUB entries. The default value of LUBENT is 10, which should normally
be sufficient.

The other tables contained in the DAZDBD module are the Exit Routine Table, the Segment De-
scription Table (SDT) and the File Description Table (FDT). The Exit Routine Table is used for the
administration of the User-supplied Index Maintenance Exit Routines. See the appendix in the
ADL Installation documentation for more information on exit routines. With the help of the other
two tables, the ADL Consistency Interface assigns an Adabas field to a SENSEG of the internal
PSB in order to generate an internal DL/I call.

You may use the JCL (JCS) in the member ADLCTG4 (ADLCTG4.J) as an example on how to as-
semble and link-edit the DAZDBD table under z/OS (z/VSE).

The default name for the DBD table module is DAZDBD; however, a two- character suffix may
be appended if needed to keep more than one version in the load library. See the section ADL
Parameter Module in the ADL Installation documentation for details of the DBDSF parameter. The
full name followed by the two-character suffix must be included in the ADLCSD member used
as input for the DFHCSDUP utility.

35Interfaces

CICS Installation and Operation

Interfaces36

CICS Installation and Operation

Figure 2c: DAZDBD Table

Tuning and Maintaining the Runtime Control Tables

When ADL is active under CICS, it continuously monitors the performance of the buffer table
DAZBUF and the PSBusage.When switched off,ADLprints a summary of the buffer performance.

This CICS Monitor Performance Summary report, which is written to the extra partition dataset
destination DAZP, can be printed using either the DAZPRINT utility or any standard printing
utility. The DAZPRINT utility is activated by executing the ADL initialization program DAZIFP
with the parameters shown below:

PRT,DAZPRINT
MODE=ROUTINE

The CICS Monitor Performance Summary tells you, how often a group of slots was used to roll
in a PSB from the directory file (“PSB Rolled In” count) and how frequently a task had to put in
wait status because a slot could not immediately be freed (“Task Wait” count). If the Task Wait
count is rather high compared to other groups of slots and to the Roll In count, the number of slots
in this particular slot group should be increased.

The Performance Summary also lists all PSBs by slot groups. This list shows the actual size of the
PSB internal control blocks, how frequently they have been used (Use Count) and how frequently
they have been rolled out (Roll Out Count). A Use Count of zero indicates that the particular PSB
was never scheduled during the CICS session, so you should check if such a PSB can be omitted
from the list of PSBs in the DAZPSB Table.

The performance of the buffer management can be improved by changing the number of slots for
the particular groups, by changing the group's slot sizes, or by adding or deleting slot groups.

The requirements for the buffer management will also change during the conversion process,
when more and more data bases will be converted. In particular, when additional DBDs or PSBs
are converted, you must check that the DAZDBD table is still large enough to handle all DBD in-
ternal control blocks and all corresponding FDTs. It is recommended, however, to repeat the steps
2, 3 and 4 of the CICS control table generation completely.

37Interfaces

CICS Installation and Operation

z/OS Requirements

The following table lists the data sets used by the utility DAZSHINE.

DescriptionMediumDDname

Control input for the ADL batch monitor, DAZIFP, and for the DAZSHINE utility.ReaderDAZIN1

Messages and codes.PrinterDAZOUT1

Report.ReportDAZOUT2

Source for the DAZBUF and DAZDBD table generation.DiskDAZOUT4

Examples:

The following is an example of a job to run the DAZSHINE utility:

// EXEC PGM=DAZIFP,PARM='SHI,DAZSHINE'
//STEPLIB DD DISP=SHR,DSN=ADL.LOAD
// DD DISP=SHR,DSN=ADABAS.LOAD
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZIN1 DD *
MODE=mode,RANGE=(start,step)
//DAZOUT1 DD SYSOUT=X
//DAZOUT2 DD SYSOUT=X
//DAZOUT4 DD DSN=&&DECK,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(80,(100,100),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)
//*
// EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=X
//SYSUT2 DD DSN=ADL.SOURCE,DISP=SHR
//SYSIN DD DSN=&&DECK,DISP=(OLD,DELETE)

The following is an example of a job to print the CICS Monitor Summary:

//PRT EXEC PGM=DAZIFP,PARM='PRT,DAZPRINT'
//STEPLIB DD DISP=SHR,DSN=ADL.LOAD
//DAZIN5 DD DISP=SHR,DSN=cics-file-dazout2
//DAZOUT1 DD SYSOUT=X
//DAZIN1 DD *
MODE=ROUTINE
/*

Interfaces38

CICS Installation and Operation

z/VSE Requirements

The following table lists the data sets used by the utility DAZSHINE.

DescriptionMediumLogical UnitDTF

Control input for the ADL batchmonitor, DAZIFP, and theDAZSHINE
utility.

ReaderSYSIPTDAZIN1

Report, messages and codes.PrinterSYSLSTDAZOUT1

Report. *PrinterSYS011DAZOUT2

Report. **DiskSYS013DAZOT3D

Report. **DiskSYS013DAZIN3D

Source for the generation of the DAZBUF table.DiskSYSxxxDAZOUT4

*Only required when more than one logical printer is available. In this case, SYS011 may be used
to assign a second printer to which the report will be routed directly.

**Only requiredwhen only one logical printer is available. In this case, the reportwhich is normally
directed to DAZOUT2 as the second print file will be directed to disk. At the end of the job it will
be read from disk and routed to DAZOUT1.

The control input for the batch monitor (DAZIFP), for ADARUN, and for DAZSHINE itself are
all read from SYSIPT. The control statements for this must be specified in the following order:

SHI,DAZSHINE Input for DAZIFP
/*
ADARUN DB=dbid,MODE=MULTI,PROGRAM=USER, ... Input for ADARUN
/*
MODE=mode,RANGE=(start,step) Input for DAZSHINE
/*
 .
 . ↩

Examples:

The following is an example of a job to execute the DAZSHINE utility:

// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL DAZOUT4,'punchfile',0,SD
// EXTENT SYS010,volser, ...
// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,'printfile',0,SD
// EXTENT SYS013,volser, ...
// DLBL DAZIN3D,'printfile',0,SD
// EXTENT SYS013,volser, ...
// EXEC DAZIFP

39Interfaces

CICS Installation and Operation

SHI,DAZSHINE Input for DAZIFP
/*
ADARUN PROGRAM=USER, ... Input for ADARUN
/*
MODE=mode,RANGE=(start,step) Input for DAZSHINE
/*
// DLBL IJSYSIN,'punchfile'
// EXTENT SYSIPT,volser ASSGN SYSIPT,DISK,VOL=volser,SHR
// EXEC LIBR,PARM='ACCESS S=data_set_name'
/&
CLOSE SYSIPT,READER

The following is an example of a job to print the CICS Monitor Summary:

// JOB
// ASSGN SYS014,DISK,VOL=xxxxxx,SHR
// DLBL DAZIN5D,'data_set_name',0,SD
// EXTENT SYS014,xxxxxx
// EXEC PROC=ADLLIBS
// EXEC DAZIFP
PRT,DAZPRINT
/*
MODE=ROUTINE
/*
/&

Activating and Controlling the ADL Interfaces

Under CICS, the ADL Interfaces may be activated in the following three ways:

■ Automatic activation
■ ADL Online Services
■ ADL transactions

Automatic activation and deactivation of ADL may be achieved by adding entries to the CICS
PLT for the ADL Interface modules DAZCINIT (for start-up) and DAZCEND (for shut-down).
This is described earlier in this section.

Themost convenientway ofmanaging theADL interfaces is provided by theADLOnline Services,
which allow you to activate and deactivate the ADL interfaces as well as start and stop the ADL
trace facility for some or all terminals. You can list the CICS PSB table and write the ADL tables
on theCICSdumpfile. These features are described inmore detail in the sectionADLOnline Services.

ADL provides transactions to activate, deactivate and control the ADL Interfaces under CICS. In
contrast to the ADLOnline Services (which is aNatural application), these transactions arewritten
inAssembler, so they can be used in environmentswhereNatural is not available. Each transaction

Interfaces40

CICS Installation and Operation

corresponds to one function as described below. After the requested function is performed, the
current status of ADL is displayed on the screen and control is returned to CICS.

The following functions are available:

FunctionProgramTransaction

Switch on the ADL InterfacesDAZCINITDAZI

Switch off the ADL InterfacesDAZCENDDAZE

Start the ADL trace facility for all terminalsDAZCTONDAZT

Stop the ADL trace facilityDAZCTOFFDAZO

Write the ADL tables to the CICS dump filesDAZCDUMPDAZD

Display the current status of the ADL InterfacesDAZCINFDAZS

In addition to the programs outlined above, the program DAZCFCT is delivered as source code.
It can be used to switch on the ADL trace facility for a specific terminal. The parameters of
DAZCFCT are given as assembler variables and their purpose is explained in comments in the
source code. A sample JCL/JCS to assemble and link-edit the program is provided in the source
library member ADLCFCT (ADLCFCT.J).

When the ADL Interfaces are activated, the following sequence of informational messages is sent
to the operator console:

ADL0931 - Adabas Bridge for DL/I - Nucleus loaded
ADL0936 - ADL table DAZPSB loaded
ADL0937 - ADL table DAZDBD loaded
ADL0935 - ADL table DAZBUF loaded
ADL0933 - ADL Consistence Interface is active
ADL0938 - ADL task related user exit is active
ADL0939 - Adabas Bridge for DL/I initialised

When the ADL Interfaces are activated manually, the message ADL0939 is also displayed at the
terminal.

If the initialization of ADL fails, or theADL Interfaces are in INDOUBT status, you should carefully
evaluate the cause of this problem. After correcting the error, you can activate the ADL Interfaces
with theDAZI transaction. It is recommended, however, to restart your CICS system after a failure
of the ADL Interfaces initialization in order to ensure a defined state of the system.

At the start of each transaction the INDOUBT is indicated. This will be overwritten at the end of
the transaction by the final status.

41Interfaces

CICS Installation and Operation

*** Adabas BRIDGE for DL/I 2.3.1 ***

CALLDLI Interface On
Consistence Interface .. On
Routine Trace Off
Call Trace Off
Trace Term ID
DL/I in System Yes
CICS Level 0640

ADL0939 - Adabas Bridge for DL/I initialised

Figure 2d: The ADL transaction DAZI

CALLDLI Interface

Normal Mode and Mixed Mode

As is the case with batch processing, the ADL CALLDLI Interface may be used with CICS in both
normal mode and mixed mode. In contrast to batch processing, however, there is no difference
between execution of CICS transactions in the two modes. The decision whether to pass a DL/I
call to ADL or to DL/I is made completely automatically, and is based on the status of the PSB and
DBD being used. The status of the PSB is displayed with the CICS PSB table in the ADL Online
Services. The various possibilities are as follows:

DescriptionPSB Status

The PSB and all related DBDs are converted; and the PSB is included in DAZPSB. Each call
will be passed on to ADL (Adabas).

ADL

The PSB is converted and included in DAZPSB. At least one referenced DBD is converted and
one is not converted. The ADL CALLDLI Interface will check the DBD accessed. If the DBD

Mixed

has been converted to Adabas, the call will be passed on to the ADLCALLDLI Interface: if not,
it will be passed on to DL/I.

The PSB is not converted or not included in DAZPSB or all related DBDs are not converted.
Each DL/I call will be passed on to DL/I.

DL/I

Note that all DBDs related to a PSB which has the status DL/I or Mixed must be properly defined
for DL/I and that the corresponding databasesmust be opened, regardless of the status of the DBD
(converted or not). ADLwill pass the scheduling call for each of the PSBs to DL/I, whichwill return
a scheduling error code (one of “TA”, “TE”, “TJ”, “TH”, “TK” or another) to the application.

Also, ADL will pass all calls referring to PSBs which are not contained in the ADL table of PSBs,
DAZPSB to DL/I.

Interfaces42

CICS Installation and Operation

Link-Editing of Application Programs

In general, application programs do not have to be re-linked. ADL provides a language interface
with the ADL load libraries:

for CICS under z/OS.DAZLICI3

for z/VSE CICS.DAZLICID

These modules provide the entry points CEETDLI, ASMTDLI, PLITDLI, CBLTDLI, RPGDLI and
FORTDLI. You may need these interfaces to replace the IBM language interfaces DFSLI000 (z/OS)
and DLZLI000 (z/VSE) in case of DL/I not being available in your system.

For detailed information on how to link-edit a CICS application, see the CICS Installation and Op-
eration Guide for z/OS or z/VSE.

Note: Application programs which have been linked with DAZLICI2 of ADL 2.2 or earlier
cannot run with ADL 2.3. Therefore these applications must be re-linked with the new
DAZLICI3. DAZLICI3 is CICS release independent so that a further relinking will be no
more required.

De-synchronization of CICS Applications

Programswhich issueDL/I and nativeAdabas calls (e.g. Natural forDL/I programs),will encounter
“synchronization” problems after the DL/I data has been converted to Adabas and is accessed
through the ADL. This is because from the Adabas point of view, all calls are issued by one user.
The open call issued by the program is overwritten by the open call of ADL, similar problems
arise for ET, BT, RC and CL commands.

ADLoffers a parameter “ADAUSR”. If you set this parameter to “YES”, theADLCALLDLI Interface
generates its ownAdabas user IDwhich avoids themismatchingwith theAdabas direct commands
issued by the program. TheAdabas user ID is only generatedwhen theADLConsistency interface
is active. Adabas calls against the ADL Consistency run under the same user ID as the native
Adabas calls.

If you do not have programs issuing DL/I and Adabas calls simultaneously, you can set
“ADAUSR=NO” which is also the default.

43Interfaces

CICS Installation and Operation

Consistency Interface

This section describes how the ADLConsistency Interface intercepts Adabas calls in a CICS envir-
onment and the actions necessary to activate the Consistency Interface.

The internal PSB with the name ADL$PSB is automatically generated by the ADL Consistency
Interface. It is built up dynamically based on the contents of the ADL Directory file whenever
ADL is switched on in a CICS system.With the CONSI parameter of the GENDBD function in the
ADL Control Block Conversion Utility, you can define which DBDs should be used to build up
the internal PSB (refer to the ADL Conversion documentation for details). The same functionality
is provided by theDBDs for Consistency function in theADLOnline Services (see the correspond-
ing section in this documentation).

The purpose of the consistency PSB, ADL$PSB, is to allow the Consistency Interface to generate
internal DL/I calls to serve data base requests from Natural or Adabas applications.

Installing the Consistency Interface

The ADL Consistency Interface for CICS intercepts Adabas calls in an Adabas user exit named
ADLEXITB.

To operate with the Consistency Interface, add a statement for ADLEXITB to the linkage editor
input for the Adabas linkmodule under CICS, as described in theADL Installation documentation.

Important: When theADLConsistency is usedwithAdabas version 8.1, anAdabas correction
must be applied. This is CI812002 for Adabas 8.1.2 or CI813001 for Adabas 8.1.3.

Customizing the Consistency Interface

WhenADL is “switched off” in a CICS system, eachAdabas call will be rejected by the ADLEXITB
user exit with a response 216. However, if you link a table of converted Adabas files (DAZTCF)
to the Adabas link module under CICS, a call will be rejected only if it refers to a file which is in
this table. Themethod for generating a table of converted Adabas files is described inConsistency
Interface in the section Batch Installation and Operation.

The contents of the DAZTCF table should be evaluated very carefully. Do not include the ADL
Directory file, Adabas and Natural system files etc., but include ADL files. Once ADL is switched
on, the DAZTCF table is no longer used. Instead, a similar table is generated dynamically based
on the information in the ADL Directory file.

Interfaces44

CICS Installation and Operation

Activating the Consistency Interface

Finally, for the Consistency Interface to become active under CICS, ADL has to be “switched on”
in that particular CICS system. See the section Activating and Controlling the ADL Interfaces.

OnceADL is switched on, the status of the internal Consistency PSB 'ADL$PSB' indicates the status
of the Consistency Interface.

Status DescriptionPSB

The Consistency Interface is active and the Consistency PSB is successfully initialized.ADL

The Consistency Interface is active but the Consistency PSB is found to be empty.Mixed

The Consistency Interface is not active.DL/I

Parameters for the Consistency Interface

This section describes which parameters are of importance for the Consistency Interface and how
youmay initialize them. Themeaning of the individual parameters, their possible values and their
default values are described in the ADL Installation documentation in the section ADL Parameter
Module.

All parameters are initialized by the assembly and link-edit of the ADL parameter module. Para-
meters of particular importance for the Consistency Interface in a CICS environment are:

the size (in bytes) of the internal format buffer stackFSTAC

the size (in bytes) of the internal record bufferRBSIZ

Summary

To activate the ADL Consistency Interface under CICS, you have to perform the following steps:

■ assemble the table DAZTCF of converted Adabas files (optional);
■ include ADLEXITB in the linkage editor input statements of the Adabas link or globals module;
■ include DAZTCF in the linkage editor input statements of the Adabas link or globals module
(optional);

■ ensure that ADL is “switched on” in the CICS system.

45Interfaces

CICS Installation and Operation

User Exit

ADL Interfaces optionally pass control to a user written routine (user exit) before each call to
Adabas. This user exit may be used for monitoring purposes as well as to apply modifications to
the call parameters before Adabas receives control. The conventions for this user exit and how it
is activated is described in section Adabas Call User Exit in the ADL Installation documentation.

Interfaces46

CICS Installation and Operation

4 IMS/TP Installation and Operation

■ Overview ... 48
■ Generating the Runtime Control Tables .. 48
■ CALLDLI Interface ... 49
■ ADL Pre-load Program ... 51
■ User Exit ... 51
■ JCL Requirements ... 51

47

This chapter covers the following topics:

Overview

For application programs accessing ADL to be able to run under IMS/TP, the batch-specific steps
of the installation procedure must have been performed.

Each application programaffectedmust be re-linkedwith anADL front-endprogram,DAZENTRY.
This front-end program then passes control toADL for PSB initialization every time the application
program is entered. After this, control is given to the application program.

Each DL/I call issued by the application program is passed on to the ADL CALLDLI Interface,
which then determines whether it must be passed on to IMS, handled by ADL itself, or both. Calls
using a DB PCB are handled as if the application program were running in mixed mode. All calls
against converted data bases are handled by ADL; all other calls are passed on to IMS. Calls using
an I/O PCB are generally passed on to IMS, except for the GU and CHKP calls using the first I/O
PCB. These are treated first of all by ADL as a checkpoint call (i.e. an Adabas ET call is issued),
and are then passed on to IMS.

If all DB PCBs of a PSB refer to converted databases, the DB PCBs can be deleted from the IMS
PSB (but not from the ADL PSB). This avoids warning messages from IMS/TP at start-up of the
message region, if the corresponding VSAM file is no longer available.

Generating the Runtime Control Tables

To operate the ADL Interfaces under IMS/TP you need to generate three runtime control tables:

a table containing an entry for each PSB to be used in the IMS/TP system. A PSB, which does
not contain DB PCBs (i.e., it contains TP-PCBs only) should not be included in the table.

DAZPSB

a table which is used to store DBD internal control blocks.DAZDBD

a table used as a buffer for PSB related internal control blocks which are subject to roll in/roll
out mechanisms.

DAZBUF

These tables are exactly the same as those needed to operate the ADL Interfaces under CICS. For
brevity, the generation of these tables is described only once, in the section CICS Installation and
Operation.

As is the case under CICS, the ADL CALLDLI Interface will only route those data base requests
to ADL which reference a PSB contained in the DAZPSB table.

A summary report on the performance of these tables in a particularmessage regionwill bewritten
to the file DAZOUT2 when the message region is terminated.

Interfaces48

IMS/TP Installation and Operation

CALLDLI Interface

IMS/TP Message Region Execution

To invoke an IMS/TP Message Region under ADL, execute the DAZIFP initialization program.
This program requires input (positional and keyword) parameters similar to those for the IMS
Message Region Controller. These are explained below.

The JCL describing the original IMS data bases which have been converted is not required.

The ADL load library containing the executable ADL batch module and the Adabas load library
must be included in the JCL. ADARUN control statements must also be provided, as is the case
with anyAdabas application program. For a detailed description of JCL requirements, see the end
of this section.

Pre-requirements for IMS/TP Application Programs

Each application program running under a Message Region Controller started with ADLmust be
re-linked with DAZENTRY using the following link edit directives:

ENTRY DAZENTRY
CHANGE pgment(DLITASM)
INCLUDE APPL(pgmname)
INCLUDE ADLLOAD(DAZENTRY)
NAME pgmname(R)

where

is the name of the application program andpgmname

is the name of the entry part of the application program.pgment

Only main programs, i.e., programs which are initially called by a transaction, should be linked
with DAZENTRY, but not subprograms, etc..

49Interfaces

IMS/TP Installation and Operation

Parameters for the ADL Message Region Control Program

All IMS parameters (i.e. those parameters specified in the EXEC statement) will be passed on un-
changed to IMS. The first positional parameter is also interpreted by DAZIFP and should be spe-
cified as follows:

MSG

This indicates an IMS/TP Message Region run.

In addition to the positional parameter mentioned above, you may specify one or more keyword
parameters in order to control operation of ADL. Such keyword parameters must be specified in
a separate control statement with the following format:

keyword,

The following table provides a brief explanation of the various keywords which can be specified.
For further information on all the parameters (including default settings), see the section ADL
Parameter Module in the ADL Installation documentation.

DescriptionKeyword

A two-character suffix for the name of the buffer table module.BUFSF

The size (in kilobytes) of the ADL DBD ICB buffer.DBD

A two-character suffix for the name of the DBD table module.DBDSF

The Adabas data base ID for the ADL directory file.DBID

The size (in kilobytes) of the ADL ECB buffer.EBUF

The Adabas file number of the ADL directory file.FNR

IMS/TP syncpoint/Adabas ET synchronization.IMSY

Passes parameters on to PL/I. See the section Batch Installation and Operation in this
documentation for details.

PLI

The size (in kilobytes) of the ADL PSB ICB buffer.PSB

A two-character suffix for the name of the PSB table module used under CICS.PSBSF

The size (in kilobytes) of the ADL internal subroutine stack.STACK

Activates the TRACE facility and specifies what is to be traced.TRACE

Interfaces50

IMS/TP Installation and Operation

ADL Pre-load Program

Add an entry for DAZMPL to the IMS/TP pre-load list DFSMPLxx. The module DAZMPL is de-
livered in the ADL load library. It is linked as re-usable and not re-entrant. This ensures that
IMS/TP will reload it after a failure.

User Exit

ADL Interfaces optionally pass control to a user written routine (user exit) before each call to
Adabas. This user exit may be used for monitoring purposes as well as to apply modifications to
the call parameters before Adabas receives control. The conventions for this user exit and how it
is activated is described in the sectionAdabas Call User Exit in theADL Installation documentation.

JCL Requirements

The following table lists the data sets used by the ADL batch monitor when an IMS/TP Message
Processing Region is run.

DescriptionMediumDDname

Control input for the ADL batch monitor, DAZIFP, and the keyword parameters.ReaderDAZIN2

Messages and codes.PrinterDAZOUT1

DAZIFP initialization and termination report.PrinterDAZOUT2

Example

//REGION EXEC PGM=DAZIFP,PARM=(MSG,.......)
//STEPLIB DD DSN=IMSVS.PGMLIB,DISP=SHR
// DD DSN=IMSVS.RESLIB,DISP=SHR
// DD DSN=ADL.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZIN2 DD *
DBID=9,FNR=30
//DAZOUT1 DD SYSOUT=X
//DAZOUT2 DD SYSOUT=X

51Interfaces

IMS/TP Installation and Operation

52

5 ADL Online Services

■ Introduction .. 54
■ Main Menu ... 56
■ Maintaining the ADL Interfaces under CICS .. 58
■ ADL Directory Management Facility .. 63
■ Consistency DBD Maintenance .. 74
■ Maintenance of the Rolled-out PSBs ... 75
■ Maintenance of Checkpoints .. 80
■ Messages and Codes Retrieval .. 84

53

This chapter covers the following topics:

Introduction

The ADL Online Services provides services which are used:

■ to maintain the ADL Interfaces under CICS,
■ to report the contents of the ADL directory file, in particular the DBD and PSB control blocks,
■ to assign DBDs for the ADL Consistency Interface,
■ to handle the rolled-out PSBs for CICS or IMS/TP,
■ to maintain the checkpoints stored in the directory,
■ to retrieve ADL messages and codes.

Figure 1: ADL Online Service Main Functions

Each of these services is selectable from the Main Menu of the ADL Online Services, and the fol-
lowing sections describe them in detail. Note that the service “CICSMaintenance” is only of interest
if you are running ADL in a CICS environment, and the service “Rolled-out PSB related ICBs” is
only of interest if you are running in a CICS environment or under IMS/TP. The service “DBDs
for Consistency” is only of interest if Natural or Adabas direct call programs are modifying the
migrated data.

Interfaces54

ADL Online Services

Prerequisites

The ADL Online Services is an online application written in Natural. Therefore it can only be ac-
cessed if Natural is available on your site. Furthermore, the service “Maintenance of the ADL In-
terfaces under CICS” can only be used if the ADL Online Services are installed in the same CICS
as the ADL Interfaces. The main functions under CICS, however, can also be performed from As-
sembler applications. Refer to the section CICS Installation and Operation in this documentation
for more information on the ADL functions under CICS.

In order to access the ADL Directory file, the ADL Online Services must be aware of the DBID
and the file number of theADLDirectory file. You have to specify the followingNatural parameter:

LFILE=(207,dbid,fnr)

where dbid and fnr are the database ID and file number of the ADL Directory file. The LFILE
parameter is described in detail in the Natural Parameter Reference documentation. If the LFILE
parameter is not defined, The ADL Online Services will display the following message at startup:

Warning: No Natural LFILE parameter for ADL directory!

In this case, you must specify the DBID and file number of the ADL Directory file in the Main
Menu, as described later.

Starting the ADL Online Services

The programs of theADLOnline Services are stored on the SYSADL library. To start the application,
enter the following statements:

LOGON SYSADL MENU

Terminating the ADL Online Services

To terminate the session, press the PF3, PF12 or CLEAR key in the Main Menu, or select the code
“.” in the Main Menu.

Online Help

For each menu of the ADL Online Services there is a help facility available. Press the PF1 key to
access the help information corresponding to the current screen.

55Interfaces

ADL Online Services

General Key Assignments

If not otherwise stated, the following general key assignments are valid for all of the screens in
the ADL Online Services:

MeaningValueKey

Display online help for the current screen.HelpPF1

Save modifications, if any, and return to previous screen.ExitPF3

Scroll to previous page.PrevPF7

Scroll to next page.NextPF8

Scroll to first page.TopPF10

Scroll to last page.BotPF11

As PF3, but modifications are not saved.CanPF12

Save modifications, if any, and return to the Main Menu.MenuPF15

As PF15, but modifications are not saved.Clear

General Map Elements

Every screen of the ADL Online Services contains the following elements:

■ Current date and time.
■ ADL Online Services version.
■ DBID and file number of the ADL directory.
■ Name of the active function.
■ Name of current map.

Note that in the CICS Maintenance the ADL Online Services version and DBID/FNR displayed
are those of the ADL nucleus rather than those of the Natural environment currently used.

Main Menu

When you start the ADL Online Services, the following menu is displayed:

Interfaces56

ADL Online Services

10:55:01 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Main Menu - MENU---M

Code Function ADL Directory
---- --------------------------------- -------------
A DBDs for Consistency (ADABAS) DBID: 1424
C CICS Maintenance FNR : 802
D Directory Management Facility -------------
M Messages and Codes Retrieval
R Rolled-out PSB-related ICBs
V ADL Version and Correction Status
X Checkpoint Maintenance
? Help
. Terminate Session
---- ---------------------------------

Code:

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Can

In the Main Menu you can select which of the ADL online service you want to use. The functions
provided are described below in details. Additionally you can specify the DBID and file number
of the ADL directory. The DBID/FNR specified will be used in all services; solely the CICS Main-
tenance uses the DBID and file number of the ADL CICS nucleus.

The Main Menu provides the following functions:

FunctionCode

DBDs for the ADLConsistency Interface. You can list andmodify the status of all converted physical
databases.

A

CICSMaintenance. The current status of the ADL Interfaces and of the ADL trace facility is outlined
together with some system information. You can start and stop the ADL Interfaces, switch the ADL

C

trace facility on and off, list the ADL PSB table for CICS, list the ADL zap status and write the ADL
tables to the CICS dump file.

Directory Management Facility. You can list the DBDs and PSBs of the ADL Directory file. The
segment and field definitions are outlined together with their corresponding Adabas definitions.

D

There is also a functionwhich supplies youwith a detailed list of information of each external control
block.

Messages and Codes Retrieval. You can display the full ADL error message text corresponding to
ADL error numbers. Also, the ADL abend codes and the DL/I status codes can be retrieved.

M

Rolled-out PSB-related ICBs. You can list the PSBs and corresponding environments, and delete
unused PSBs.

R

57Interfaces

ADL Online Services

FunctionCode

Checkpoint Maintenance. Your can list and delete checkpoints of programs which terminated
abnormally.

X

Online Help.?

Terminate the ADL Online Services..

To terminate the session, press either PF3 or PF12 or the Clear key.

Maintaining the ADL Interfaces under CICS

This service is reached by selecting code C in theMainMenu, and allows you tomaintain the ADL
Interfaces under CICS.

10:57:37 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - CICS Maintenance - ADLCICSM

CALLDLI Interface Off Terminal ID TCG7
Consistency Interface .. Off Routine Trace .. Off
DL/I in System Call Trace Off
CICS Level 0640 Trace Term ID ..

Functions :

_ Switch ADL Interfaces on
_ Switch Trace Facility on
_ List CICS PSB Table
_ List ADL Zap Status
_ Dump ADL Tables

Mark the requested function(s).

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit ADL Trace PSBs Zaps Can

The screen for this service displays the DBID and file number of the ADLDirectory file as defined
in the parameter module of the ADL CICS nucleus. The version of the ADL CICS nucleus is also
displayed. These values may therefore differ from those displayed in other screens of the ADL
Online Services.

The screen informs you about the status of the ADL Interfaces. The ADL CALLDLI Interface can
be in any one of the following states:

Interfaces58

ADL Online Services

DescriptionStatus

The ADL CALLDLI Interface is not active. All DL/I requests are routed to DL/I (if available).Off

The ADL CALLDLI Interface is active. All DL/I requests are routed to ADL, which decides
whether they can be handled by Adabas or whether they have to be forwarded to DL/I (mixed
mode only).

On

The ADL Interfaces are in an undefined state. The initialization could not be completed
successfully. Do not attempt to run your system when it is in this state. Deactivate the ADL

Indoubt

interfaces and determine the cause of the problem. When the problem has been solved, you can
start the ADL Interfaces again. You are recommended, however, to restart your CICS system
after a failure of the ADL initialization.

The ADL Consistency Interface can be in one of the following states:

DescriptionStatus

TheADLConsistency Interface is either not installed or not activated. If it is not installed, all Adabas
requests are routed to Adabas. Otherwise, depending on the entries in the DAZTCF table, the call
is either routed to Adabas or is refused with response 216.

Off

The ADL Consistency Interface is installed and active. All Adabas requests are routed to ADL,
which then decides if the requests can be forwarded directly to Adabas, or if they have to be
processed by ADL first.

On

Furthermore, the CICS Maintenance menu outlines the terminal ID, the CICS level, and whether
DL/I is in the system. The latter information can only be retrieved if the ADL CALLDLI Interface
is active. Finally the status of the ADL trace facility is displayed. It shows if the ADL internal
routines and/or the DL/I and Adabas calls will be traced and for which terminal(s).

The functions provided by the CICS Maintenance menu are described now in detail. If you mark
more than one function, they are processed one after the other.

Switch ADL Interfaces on / off

When youmark this function in theCICSMaintenancemenu, theADLCALLDLI andConsistency
Interfaces are switched on or off, depending on their current status.When switching ADL off, you
will be asked to confirm the requested function in a pop-up window.

The ADL Consistency Interface will only be activated if it is installed. This function will also reset
all internal tables used by ADL to handle the PSB scheduling. In addition a summary will printed
on the performance of the ADL buffer management. See the section Generating the Runtime
Control Tables in the for more details on how to use this report.

When the ADL CALLDLI Interface is successfully activated the following message is displayed:

59Interfaces

ADL Online Services

ADL0939 - Adabas Bridge for DL/I initialized

When the ADL Interfaces are deactivated, the following message is displayed:

ADL0940 - Adabas Bridge for DL/I switched off

Switch Trace Facility on / off

When you select this function in the CICS Maintenance menu the following pop-up window is
displayed

11:10:15 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - CICS Maintenance - ADLCICSM

CALLDLI Interface On Terminal ID TCG7
Consistency Interface .. On Routine Trace .. Off
DL/I in System No Call Trace Off
CICS Level 0640 Trace Term ID ..

Functions :

_ Switch A+--------------------------------------+
x Switch T| Switch on ADL Routine Trace . Y |
_ List CIC| Switch on ADL Call Trace Y |
_ List ADL| Terminal ID(s)............... TCG7 |
_ Dump ADL| |

| |
| Enter to perform, PF3 to exit |
+--------------------------------------+

Mark the requested function(s).

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit ADL Trace PSBs Zaps Can

This Trace facility provides the same trace possibilities as the batch Trace facility described in the
section Debugging Aids - ADL Trace Facility later in this documentation.

You can specify which kind of trace should be activated and for which terminal(s). The default
terminal ID is the current one. A blank character is treated as a wildcard. For example to switch
on the ADL Trace facility for all terminals where the ID starts with an 'A', specify 'A ' as terminal
ID. If the terminal ID is completely blank, the ADL Trace facility is started for all terminals. Note,
that you can only activate the Trace facility successfully, if the trace datasets have been installed.

Interfaces60

ADL Online Services

List CICS PSB Table

If you select this function in the CICS Maintenance menu, the following screen is displayed.

11:19:15 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - CICS PSB Table - ADLCPSBM

Nr. Name Status Lan #PCB #IO-PCB DBID Schedule Total use Rolled out
----- -------- ------ --- ---- ------- ---- -------- ---------- ----------

29 PSB026 DL/I - - - - - - -
30 PSB027 DL/I - - - - - - -
31 PSB028 DL/I - - - - - - -
32 PSB029 DL/I - - - - - - -
33 PSB030 DL/I - - - - - - -
34 SCHOOL ADL CBL 10 0 1424 0 0 0
35 SCHOOLL ADL CBL 1 0 1424 0 0 0
36 TSTPSB ADL CBL 6 0 1424 0 0 0
37 UNKNOWN DL/I - - - - - - -

Start: Total : 37

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Prev Next Top Bot Can

It lists all the PSBs contained in theDAZPSB table. The status indicates how the PSBwas initialized.
Possible status values are: `ADL', `DL/I' and `Mixed'. Their meaning is described under CALLDLI
Interface in the section CICS Installation and Operation. The following information can only be re-
trieved if the PSB status is 'ADL' or 'Mixed':

DescriptionColumn

The language of the corresponding application program(s) as defined in the PSB source.Lan

The total number of PCBs in the PSB.#PCB

The number of IO-PCBs in the PSB.#IO-PCB

The Adabas DBID of the ADL files belonging to the PSB.DBID

The number of tasks currently scheduling the PSB.Schedule

The number of tasks which have used the PSB up to now.Total use

The number of times the PSB-related ICBs have been rolled out to the ADL directory file.Rolled out

You can use the PF-keys for scrolling or you can specify a start value to restart the list from that
value. Note that pressing ENTER refreshes the screen.

61Interfaces

ADL Online Services

List ADL Zap Status

If you select this function in the CICS Maintenance menu, the following screen is displayed:

11:23:47 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - List ADL Zap Status - ADLCZAPM

Range Applied Zaps
--------- --
001 - 010 001 002 006
011 - 020
021 - 030
031 - 040
041 - 050
051 - 060
061 - 070
071 - 080
081 - 090
091 - 100

Start: 1

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Prev Next Top Bot Can

It lists all zaps applied to the ADL CICS nucleus DAZNUCC. A zap which is applied, is indicated
by its number. Possible zap numbers are 1 through 500. You can use the PF-keys for scrolling or
you can specify a start value to restart the list from that value.

Dump ADL Tables

When you select this function in the CICS Maintenance Menu, the following pop-up window is
displayed:

Interfaces62

ADL Online Services

11:28:11 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - CICS Maintenance - ADLCICSM

CALLDLI Interface On Terminal ID TCG7
Consistency Interface .. On Routine Trace .. Off
DL/I in System No Call Trace Off
CICS Level 0640 Trace Term ID ..

Functions :

_ Switch ADL Interfaces off
_ Switch Trace Facility on
_ List CICS PSB Table
_ L +---------------------------------------+
x D | Writing ADL tables to the dump file |

| Do you wish to continue? Y/N Y |
| |
| ENTER to perform, PF3 to exit |
+---------------------------------------+

Mark the requested function(s).

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit ADL Trace PSBs Zaps Can

When you enter 'Y' (yes), the ADL CICS tables DAZPSB, DAZDBD and DAZBUF are written to
the CICS dump file, together with the ADL internal area DAZSYSDS and the ADL zap directory.
This information is helpfulwhen debugging abnormal terminations of application programs under
CICS.

ADL Directory Management Facility

This service is reached by selecting code D in the Main Menu.

63Interfaces

ADL Online Services

Figure 2: Directory Management Facility

The ADL Directory Management Facility (DMF) consists of following parts:

■ The “Directory Management Facility” menu is the entry to DMF and all its services.
■ The “DBD List” menu provides a list of all DBDs which are stored on the ADL directory file.
■ The “List Segments” menu shows you the segments of a specific DBD.
■ The “List Fields” menu exposes the definitions of the fields under a given segment.
■ The “PSB List” menu provides a list of all PSBs which are stored on the ADL directory file.
■ You can “delete DBDs” or “PSBs” from the ADL directory file.
■ In the “External Control Block Information” menu you can retrieve an external control block
(ECB) in hexadecimal and character format.

■ The “specific ECB Information” provides you with all information of a specific ECB.

Interfaces64

ADL Online Services

Directory Management Facility Menu

11:31:32 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Directory Management Facility - ADBDMF-M

Code Function Name
---- --------------------------- ----
D DBD List O
L List Segments of Data Base R
P PSB List O
I ECB Information
? Help
. Back to the Main Menu
---- --------------------------- ----

Enter Code : Name: R -> required
O -> optional

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Can

This service is reached by selecting code D in theMainMenu. It is the entry to the DMF. The codes
in the menu provide the following functions:

FunctionCode

DBD List. Display all data bases, which are stored in the ADL directory file. The list starts at the
specified DBD name, or if none is given, at the top.

D

List Segments. Explode the segments of the given DBD. A name of a DBD is required.L

PSB List. Display all PSBs, which are stored in the ADL directory file. The list starts at the specified
PSB name, or if none is given, at the top.

P

ECB Information. Retrieve a detailed list of information of any external control block.I

Online Help.?

Back to the Main Menu..

65Interfaces

ADL Online Services

DBD List Menu

11:33:57 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - DBD List - ADBDBD-M

Cmd DBD Typ Cmd DBD Typ Cmd DBD Typ
--- -------- --- --- -------- --- --- -------- ---
_ COURSEDB P _ _
_ COURSEL L _ _
_ INSTDB P _ _
_ INSTL L _ _
_ STUDIDX X _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _

Start: ________

Available Commands: Delete Inform List Quit

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Next Top Can

This service is reached by selecting code D in the Directory Management Facility menu. It lists all
DBDs of the ADL directory file, together with their type. Possible types are:

MeaningType

Physical DBDP

Logical DBDL

Secondary Index DBDX

The DBDs can be marked with the following line commands:

MeaningLine Command

A pop-up window for interactive confirmation is displayed. The marked DBD will be
deleted from the ADL directory file, if you confirm with 'Y' (yes). Note that the Adabas
file(s) containing the data of the DBD, will not be deleted.

D

Display the ECB Information of the marked DBD.I

List the segments of the marked DBD.L

Exit the DBD List menu.Q

Interfaces66

ADL Online Services

If you want to delete a physical DBD, you must also delete all secondary index DBDs, which are
related to this DBD.Otherwise the CBCutilitywill indicate an error situation in case you reconvert
the DBD. A DBD can also be deleted with the DELDBD function of the ADL CBC utility which
automatically deletes the related secondary index DBDs.

If you enter a new start name in the corresponding field, the DBD list will start at the given value.

List Segments Menu

15:24:52 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - List Segments - ADBSEG-M

Data Base: COURSEDB Type: Physical
Converted

There are 4 Segments in 3 Levels with 1 Secondary Index. Completed

Seg Segment ADA ADA ADA Seg No. ADA ADA Log L.Parent L.Parent
Cmd No Name Level Grp PCK VCK Len Fld Dbid Fnr Id DB-Name Seg-Name
--- --- -------- ---- --- --- --- ---- --- ----- ----- --- -------- --------
_ 1 COURSE 1 SA PC 30 1 1424 833 71
_ 2 CLASS 2 SB PB 20 1 1424 833 71
_ 3 STUDENT 3 SA 40 2 1424 835 73
_ 4 INSTRP 3 SB 25 2 1424 834 72 INSTDB INSTRUCT
_
_
_
_

Available Commands: List Quit

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Next Top Can

This service is reached by selecting code L in the Directory Management Facility menu or by
marking aDBDwith code L in theDBDListmenu. It informs you about aDBD and all its segments.
The name and type of the DBD are displayed. Possible types are 'Physical', 'Logical', and 'Index'.
It is also indicated, whether the data base is converted to Adabas and whether the conversion is
completed. 'Completed' means, that all DBDs with logical relationships to the given one, are con-
verted, too. Furthermore the number of segments, of hierarchical levels and of secondary indices
is given.

67Interfaces

ADL Online Services

The list of segments contains the following information:

MeaningColumn

Here the user can insert a line command. The available commands are explained
later.

Cmd

The DL/I hierarchical segment number (position).Seg No.

The name of the segment as defined in the original DL/I DBD definition.Segment Name

The DL/I hierarchical level. This defines together with the segment number the
hierarchical structure of the DBD.

Level

The name of the Adabas group corresponding to the DL/I segment.ADA Grp

The Adabas name of the partial concatenated key (PCK) field. For every segment
with a sequence field a PCK field is created. It contains the data of the sequence
field, if a dependent segment is accessed.

ADA PCK

The Adabas name of the virtual concatenated key (VCK) field. It follows the same
rules as the PCKfield, but is only created, if a DBD is involved in logical relationships

ADA VCK

by itself. This means, that one segment of the DBD is a logical parent of a segment
of the sameDBD. The VCKfield contains the data of the sequence field, if a logically
dependent segment is accessed.

The length of the segment as defined in the original DL/I DBD definition. This is
also the total length of all Adabas fields, which belong to the correspondingAdabas
group.

Segm. Length

The number of DL/I fields belonging to this segment. Be aware that this is often not
the number ofAdabas fields of the correspondingAdabas group. In fact ADL creates

No. Flds

Adabas fields not only for every DL/I field, but also for every part of a DL/I segment
for which no DL/I field is defined. This are the so-called “filler” fields. On the other
hand for a redefined DL/I field no Adabas field may be created.

The Adabas DBID and file number of the ADL file with the data of this segment. If
the DBID is 0, the DBID of the ADL directory is used at runtime.

ADA Dbid/Fnr

The logical ID used for the unique identification of the hierarchical structured data.Log Id

If the segment is a logical child of another segment, the DL/I data base and segment
name of this “logical parent” segment are exposed here.

L. Parent
DB/Seg-Name

Note that for segments in a logical DBD only the segment number, name and level are exposed.

Possible line commands are:

MeaningLine Command

List the field definitions of the marked segment.L

Exit the List Segments menu.Q

Interfaces68

ADL Online Services

List Fields Menu

11:38:57 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - List Fields - ADBFIE-M

Data Base : COURSEDB Type ..: Physical
Segment ..: CLASS Length : 20

DL/I ADABAS Comments
Name Type Format Start Length Name Type Format
--------- ----- ------ ----- ------ ---- -------- ------ ----------------
CLASSNO SEQ,U C 1 5 AC A UNIQUE FIELD

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Next Top Can

This service is reached by marking a segment with code L in the List Segments menu. It informs
you about the fields of a segment. The name and type of the DBD is shown together with the name
and length of the segment.

The list of fields is divided in three parts:

DescriptionPart

The definitions of the DL/I field are displayed here: Name, format, start and length. For more
information about these values see the IMS/VS Utilities Reference documentation.

DL/I

The definitions of the Adabas field are shown here: Name, type and format. The Adabas field
length is the same as the corresponding DL/I field length. For more information about these
values see the Adabas Utilities documentation .

Adabas

A comment can be displayed here.Comments

69Interfaces

ADL Online Services

PSB List Menu

11:40:32 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - PSB List - ADBPSB-M

Cmd PSB Cmd PSB Cmd PSB
--- -------- --- -------- --- --------
_ SCHOOL _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _

Start: ________

Available Commands: Delete Inform Quit

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Next Top Can

This service is reached by selecting code P in the Directory Management Facility menu. It lists all
PSBs of the ADL directory file.

The PSBs can be marked with the following line commands:

MeaningLine Command

Apop-upwindow for interactive confirmation is displayed. Themarked PSBwill be deleted
from the ADL directory file, if you confirm with 'Y' (yes).

D

Display the ECB Information of the marked PSB.I

Exit the PSB List menu.Q

If you enter a new start name in the corresponding field, the PSB list will start at the given value.
A PSB can also be deleted with the DELPSB function of the ADL CBC utility.

Interfaces70

ADL Online Services

External Control Block Information Menu

11:42:48 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - External Control Block Information - TESTECBM

Code: I (Ecb,Info)
Type: DBD (Dbd,Seg,Fld,seX,Lch,Psb,pCb,SEs,SeF,xRf)
PSB/DBD name: COURSEDB
PCB/DBD offset ..: 00000000 PSB/XRF offset ..: 00000000

ECB type DBD Lines 2
DBD,PSB

L Offset External Control Block (hex) ECB (char) Offset
- ------ ----------------------------------- ---------------- --------
1 0000 00000000 00000460 C3D6E4D9 E2C5C4C2 * ?-COURSEDB * 00000000

0010 00000000 00000000 00000000 00000000 * * 00000010
2 0020 00000040 00000460 04010329 000003A0 * ?-???? ?? * 00000020

0030 00000000 00000000 00000000 00000000 * * 00000030
3 0040 40404040 40404040 40404040 40404040 * * 00000040

0050 40404040 40404040 40404040 40404040 * * 00000050
4 0060 40404040 40404040 40404040 40404040 * * 00000060

0070 40404040 40404040 40404040 40404040 * * 00000070

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Next Can

This service is reached by selecting code I in the DirectoryManagement Facility menu. To retrieve
information of an external control block (ECB) you have to specify a code, the type of the ECB,
the PSB or DBD name, and the offset to the ECB.

The “Code” defines how the information is to be returned.

MeaningCode

The ECB is listed in hexadecimal and character format on the bottom of the current screen.E

A detailed list of information of the specified ECB is displayed. When returning to the current map,
the ECB is listed as with code E.

I

The “Type” specifies the type of the requested ECB. Possible types are : DBD, SEG (segment), FLD
(field), SEX (secondary index), LCH (logical child), PSB, PCB, SES (sensitive segment), SEF (sens-
itive field), XRF (external reference). The shortest possible abbreviation for a type is denoted by
uppercase characters, like 'D' for DBD. In general you may use a 'D' for all DBD-related ECBs
(DBD, SEG, FLD, SEX, LCH, XRF) and a 'P' for all PSB-related ECBs, (PSB, PCB, SES, SEF). But if
you use the 'Next' (PF8) function, you must specify the correct type.

The “PSB/DBD name” is the name of the PSB or DBD, to which the ECB belongs.

71Interfaces

ADL Online Services

The offsets have to be specified in hexadecimal format.Which offsets you have to specify depends
on the ECB type you want to retrieve.

PSB/XRF OffsetPCB/DBD OffsetECB Type

00DBD

0offset to ECBSEG,FLD,SEX,LCH

00PSB

offset to PCB0PCB

offset to PCBoffset to ECBSES,SEF

0offset to 1st XRF1st XRF

offset to current XRFoffset to 1st XRFmore XRF

If you want to retrieve a specific ECB and you don't know the offset to it, you have to start with
the DBD or PSB ECB. For these the offsets are all zero. In the ECB Information you find the offset
to the first sub-structure like SEG or PCB. Then you can continue with the sub-structures until
you reach the requested ECB.

Example

You want to retrieve the ECB information of the first field 'CLASSNO' in the second segment
'CLASS' of the DBD 'COURSEDB'. Specify Code 'I', PSB/DBD name 'COURSEDB', and PSB/XRF
offset '0'. Then specify the following types and PCB/DBD offsets to retrieve the information which
is required for the next step.

ValueLinePageRetrieved ECBDBD OffsetTypeStep

00000040'First segment'1DBD COURSEDB00000000DBD1

00000160'Next segment'1Segment COURSE00000040SEG2

000001E0'First field'2Segment CLASS00000160SEG3

Field CLASSNO000001E0FLD4

For each retrieved ECB, the type (which can differ from the specified type) and the number of
lines used by this ECB are displayed. The list contains a line counter ('L'), the offset relative to the
start of the ECB, the ECB in hexadecimal and character format, and the offset relative to the start
of the corresponding DBD or PSB ECB. This last offset is the sum of the two specified offsets.

With the PF8 ('Next') key, you retrieve the next ECB of the same type. This function is not available
for DBD and PSB ECBs. In the example above you can press the PF8 key in step 3 instead of spe-
cifying the DBD offset '160', to retrieve the second segment (CLASS).

Interfaces72

ADL Online Services

Specific ECB Information

11:53:47 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - ECB Information - ADLPCB1M

SCHOOL + 00000520 PCB 7 Page 1 of 3

Keyword Name Description Value
------- -------- -------------------------------------- --------------------

TYPEC$TY Type of ADL External Control Block ... 18 => PCB
TYPECNXT Next PCB ECB (PSB offset) 000005E0

DBDNAME PCBECNAM Name of corresponding DBD COURSEDB
PROCSEQ PCBECIND Index DBD name

PCBECNUM PCB progressive number 7
PCBECLV# Number of levels 3
PCBECSN# Total number of sensitive segments ... 4

KEYLEN PCBECKEY Key feedback area length 35
PCBECSEN First sensitive segment (PCB offset) . 00000040 => COURSE
PCBEC$TY Type of PCB 02

TYPE PCBEC#GM GSAM PCB
POS PCBEC#MP Multiple positioning support X

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Prev Next Top Bot Can

This service is reached by selecting code I in the External Control Block Information menu or by
marking a line with I in the DBD List or PSB List menu. It supplies you with all information of a
specific external control block (ECB). In the header is the type and the name of the ECB displayed,
together with the DBD/PSB name and the offset to the current ECB. The page number can be
overwritten, if a specific page should be listed. Beside of the standard PF keys, you can also specify
a page '0' to exit the menu. The columns in the list provide the following information:

ColumnMeaning

MeaningColumn

TheDL/I keyword of the DBD/PSB definition, which specifies the value. Formore information
about the keywords see the IMS/VS Utilities Reference documentation.

Keyword

The ADL internal used name of the value.Name

A short description of the value.Description

Counters and numbers are printed in decimal format, offsets and type or flag bytes in
hexadecimal format. A flag is set, if the value is 'X'. Some values are coded, for example the

Value

'Type'. In this case the corresponding read-able value is denoted by '=>'. For some offsets the
corresponding ECB name is denoted in the same way.

73Interfaces

ADL Online Services

Consistency DBD Maintenance

This service is reached by selecting code A in the Main Menu.

11:56:47 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - DBDs for the ADL Consistency Interface - ADBCFD-M

Cmd DBD Status Cmd DBD Status Cmd DBD Status
--- -------- --- --- -------- --- --- -------- ---
_ COURSEDB N _ _
_ INSTDB N _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _
_ _ _

Start: ________

Available Commands: Yes No

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Yes No Undo Next Save Top Can

This menu lists all converted physical DBDs. It exposes if the corresponding Adabas files can be
accessed by the ADL Consistency Interface or not by the status “Y” (yes) or “N” (no), respectively.
You can change the status by entering the appropriate line commands. Save your changes with
PF9.

The status is defined with the CONSI parameter of the GENDBD function at the DBD conversion.
See the section ADL Conversion Utilities for DBDs and PSBs in the ADL Conversion documentation
for more details. Any changes of the status should be evaluated carefully. An Adabas/ Natural
call (batch or online) referencing a DBID / FNRwhich belongs to a DBDwith status “N”, is routed
directly to Adabas. Thus, if a DBD should be accessed by both DL/I and Adabas / Natural applic-
ations, it's status must be “Y”.

Youmay set the status of a DBD to “N”, if there is no Adabas / Natural application which updates
the corresponding files.

Interfaces74

ADL Online Services

You may also set the status to “N”, if only Adabas / Natural applications access this DBD, and
you have decided not to run any other DL/I applications against it. In this case there is no need to
support the ADL internal fields anymore.

UnusedDBDs should have the status “N” or should be deleted from the directory file. This should
be done, in order to avoid problems during the building up of the internal Consistency PSB, which
picks up all converted physical DBDs with status “Y”.

If there is more than one DBD referencing the same data (i.e., the same Adabas file), only one of
them should have the status “Y”. All others should be set to “N”.

Note, that the CICS or IMS/TP tables have to be re-generated (see the section Generating the
Control Tables in this documentation), if you change the status of a DBD from “N” to “Y”.

Possible line commands are:

MeaningLine Command

Set the status to “Y” (yes). Calls against this DBD will be handled by the ADL Consistency
Interface.

Y

Set the status to “N” (no). Calls against this DBD will be routed directly to Adabas.N

If you enter a new start name in the corresponding field, the list will start at the given value.

The assignment of the function keys is as follows:

FunctionKey

Set the status of all DBDs on the current page to “Y”.PF4

Set the status of all DBDs on the current page to “N”.PF5

Undo all modifications on the current page.PF6

Save all modifications.PF9

If you leave the menu and there are any modifications which have not yet been saved, you will
be asked whether you want to save them or not.

Maintenance of the Rolled-out PSBs

This service is reached by selecting code R in the Main Menu.

At start-up of ADL under CICS or IMS/TP all PSB related external control blocks (ECBs) are con-
verted to internal control blocks (ICBs) and rolled out to the ADL directory file. They are stored
with the name of the environment (CICS or IMS/TP start-up job name) and the PSB name. They
can be deleted, if ADL is not active in the corresponding environment.

75Interfaces

ADL Online Services

The Maintenance of the Rolled-out PSBs consists of following parts:

Figure 3: Rolled-out PSBs

Rolled-out PSB-related ICBs menu

This service is reached by selecting code R in the Main Menu.

11:58:31 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Rolled-out PSB-related ICBs - ADLPIM-M

Code Function
---- ------------------------------
P List PSBs in Environments
E List Environments
D Delete Rolled-out PSB ICBs
? Help
. Back to the Main Menu
---- ------------------------------

Enter Code :

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit PSBs Env. Can

Interfaces76

ADL Online Services

This menu is the entry to the Maintenance of the Rolled-out PSBs. The codes in the menu provide
the following functions:

FunctionPF-KeyCode

List all PSBs for all environments.PF4P

List all environments.PF5E

Delete all or specific PSBs.D

Online Help.?

Exit the menu..

List of the PSBs in the Environments

Dir 1424 / 802 - ADL 2.3.1 Rolled-out PSB-related ICBs - Page 1

No. Env. (Hex) PSB (Hex) Env. PSB Blocks
------- -------- -------- -------- -------- -------- -------- ------

1 C4C1C5C6 C3C9F0F2 C1C4D35B D7E2C240 DAEFCI02 ADL$PSB 3
2 C4C1C5C6 C3C9F0F2 C6C5D5C4 E3D7E2C2 DAEFCI02 BIGPSB 1
3 C4C1C5C6 C3C9F0F2 E2C3C8D6 D6D34040 DAEFCI02 SCHOOL 3
4 C4C1C5C6 C3C9F0F2 E2C3C8D6 D6D3D340 DAEFCI02 SCHOOLL 1
5 C4C1C5C6 C3C9F0F2 E3E2E3D7 E2C24040 DAEFCI02 TSTPSB 3

Total number of rolled-out PSB-related ICBs .. : 5
Total number of environments : 1

MORE

This service is reached by selecting code P or pressing PF4 in the Rolled-out PSB- related ICBs
menu. It lists the names of the environments and of the PSBs in hexadecimal and character format.
Additionally it outlines howmany blocks (Adabas records) are used to store the ICBs. At the end
of the list the total number of the rolled-out PSB-related ICBs and of the environments is printed.

Note, that the list is printed in sequential sequence. You can only page forward (by pressing
ENTER). When all PSBs have been listed, the Rolled-out PSB-related ICBs menu is displayed.

77Interfaces

ADL Online Services

List of the Environments

Dir 1424 / 802 - ADL 2.3.1 Environments of PCB-related ICBs - Page 1

No. Env. (Hex) Env.
------- -------- -------- --------

1 C4C1C5C6 C3C9F0F2 DAEFCI02

Total number of environments : 1

MORE

This service is reached by selecting code E or pressing PF5 in the Rolled-out PSB-related ICBs
menu. It lists the names of the environments in hexadecimal and character format. At the end of
the list the total number of the environments is printed.

Note, that the list is printed in sequential sequence. You can only page forward (by pressing
ENTER). When all environments have been listed, the Rolled-out PSB-related ICBs menu is dis-
played.

Delete Rolled-out PSBs

This service is reached by selecting code D in the Rolled-out PSB-related ICBs menu. First a pop-
up window is displayed, where you can choose, how to continue.

MeaningEnter

For each environment you will be asked if you want to delete the PSBs.Y

No PSB is deleted. Back to the Rolled-out PSB-related ICBs menu.N

All PSBs in all environments will be deleted. There is no additional confirmation.X

Test mode. All environments will be processed, but no PSB will be deleted.T

If you have entered 'Y', 'X', or 'T' in the pop-up window, the Delete PSB-related ICBs menu is dis-
played.

Interfaces78

ADL Online Services

13:23:16 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Delete PSB-related ICBs - ADLPID-M

No. Environ. PSBs Status
------- -------- ----- --------

1 DAEFCI02 Environments :
PSBs:
Records:

Start time ..: 13:23:16.7
Elapsed time : 00:00:00.0

Confirm deletion of PSBs in DAEFCI02
with Y N

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Next Help Exit Next Can

It lists the processed environments, the number of PSBs in the environment and the status. The
status can be either 'deleted' or blanks (not deleted). Additionally it informs you about the total
number of environments, PSBs, and records (blocks), which have been processed up to now. The
start and elapsed time of the processing is also displayed.

If you have entered 'Y' in the pop-up window, the name of an environment is displayed and you
have to confirm the deletion.

Enter

All PSBs of the displayed environment will be deleted.Y

No PSB of the displayed environment will be deleted.N

All PSBs of the displayed and of all following environments will be deleted. There is no additionally
confirmation.

X

Test mode. No PSB of the displayed environment will be deleted. The following environments will
be processed without confirmation, and no PSB of them will be deleted.

T

Note that a PSB must not be deleted, if ADL is active in the corresponding environment.

79Interfaces

ADL Online Services

Maintenance of Checkpoints

This service is reached by selecting code X in the Main Menu.

When a batch application issues a checkpoint, ADLwrites a checkpoint entry to theADLdirectory
file. A checkpoint entry is identified by the program name and the checkpoint ID. If the program
terminates normally, all written checkpointswill be removed from the directory andwill, therefore,
not appear on either list mentioned below. But if the program terminates abnormally, the check-
pointswill be listed and can be used to restart the program. Formore information on how to restart
a program, see the section Recovery and Restart Procedures in this documentation.

Checkpoint Maintenance produces two types of lists:

■ Checkpoint Information List: shows each individual checkpoint ID together with the name of
the abnormally terminated program,

■ Checkpoint ProgramList: shows the total amount of checkpoints for each abnormally terminated
program.

Checkpoints can also be deleted,whereby all checkpoints related to one program, are always deleted
together. It is, therefore, impossible to delete individual checkpoints.

Note: Do not delete any checkpoints belonging to programs which are to be restarted.

The checkpoint maintenance feature consists of the following parts:

Figure 4: Checkpoint Maintenance

Interfaces80

ADL Online Services

Checkpoint Maintenance Menu

This service is reached by selecting code X in the Main Menu.

13:25:12 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Checkpoint Maintenance - ADLXCM-M

Code Function
---- ------------------------------
L List all Checkpoints
P Program List
D Delete Checkpoints
? Help
. Back to the Main Menu
---- ------------------------------

Enter Code :

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Chkp Prog Can

Thismenu is the entry to theCheckpointMaintenance. The codes in themenuprovide the following
functions:

FunctionPF-KeyCode

List each checkpoint ID and program name.PF4L

List all abnormally terminated programs.PF5P

Delete checkpoints of all/specific programs.D

Online Help.?

Exit the menu..

81Interfaces

ADL Online Services

Checkpoint Information List

This service is reached by selecting code L or pressing PF4 in the Checkpoint Maintenance menu.
It lists the names of all abnormally terminated programs and the individual checkpoint IDs for
each of those programs. Additionally, it outlines how many Adabas records are used for each
checkpoint entry. At the end of the list the total number of checkpoints and of effected programs
is printed.

Note, that the list is printed in sequential order. You can only page forward (by pressing ENTER).
When all programswith the related checkpoint IDs have been listed, the CheckpointMaintenance
menu is displayed.

Dir. 1424 / 802 - ADL 2.3.1 List Checkpoint Information - Page 1

No. Program Checkpoint Records
------- -------- ---------- -------

1 DAZZLER GSM06X01 3

Total number of Checkpoints : 1
Total number of effected programs : 1

MORE

Checkpoint Program List

Dir. 1424 / 802 - ADL 2.3.1 Checkpoint Program List - Page 1

No. Program Checkpoints
------- -------- -----------

1 DAZZLER 1

Total number of Checkpoints : 1
Total number of effected programs : 1

MORE

Interfaces82

ADL Online Services

This service is reached by selecting code P or pressing PF5 in the Checkpoint Maintenance menu.
It lists the names of abnormally terminated programs and the total amount of checkpoints for each
program.

Note, that the list is printed in sequential order. You can only page forward (by pressing ENTER).
When all applicable programs have been listed, the Checkpoint Maintenance menu is displayed.

Deletion of Checkpoints

This service is reached by selecting code D in the Checkpoint Maintenance menu. First, a pop-up
window is displayed, where you can choose from the following options:

MeaningEnter

For each program you will be asked if you want to delete the checkpoints.Y

No deletion. Back to the Checkpoint Maintenance menu.N

All checkpoints of all programs will be deleted. There is no additional confirmation.X

Test mode. All programs will be processed, but no checkpoint will be deleted.T

If you have entered 'Y', 'X', or 'T' in the pop-upwindow, theDelete Checkpointsmenu is displayed.

14:08:28 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Delete Checkpoints - ADLXCD-M

No. Program CPIDs Status
------- -------- ----- --------

1 DAZZLER Programs:
Checkpoints .:
Records:

Start time ..: 14:08:28.0
Elapsed time : 00:00:00.0

Confirm deletion of the checkpoints
of program DAZZLER with Y N

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Next Help Exit Next Can

It lists the program names, the number of checkpoints found in them and their status. The status
can be either 'deleted' or blanks (not deleted). Additionally, it informs you about the total number

83Interfaces

ADL Online Services

of programs, checkpoints and Adabas records, which have been processed up to now. The start
and elapsed time of the processing is also displayed.

If you have entered 'Y' in the pop-up window, the name of an environment is displayed and you
have to confirm the deletion.

MeaningEnter

All checkpoints of the displayed program will be deleted.Y

No checkpoint of the displayed environment will be deleted.N

All checkpoints of the displayed and of all followingprogramswill be deleted. There is no additionally
confirmation.

X

Test mode. No checkpoint of the displayed program will be deleted. The following programs will
be processed without confirmation, and checkpoints will not be deleted.

T

Checkpoints must not be deleted, if it is planned to restart the program.

Messages and Codes Retrieval

This service is reached by selecting code M in the Main Menu. It starts with the ADL messages
retrieval.

14:10:30 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Messages and Codes Retrieval - ADLEMR-M

ADL message no.: 0701

Description:
Illegal or missing parameters

Cause : The mandatory parameters for DAZIFP were not specified
correctly. There should be three positional parameters:
xxx,pgmname,psbname,
These may be followed by keyword parameters.

Action : Check the input parameters and correct the error. See the
chapter Batch Installation and Operation, ADL Interfaces Manual
for details.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Read Help Code Exit Prev Next Can

Interfaces84

ADL Online Services

Enter a message number (range 1 to 1400) to retrieve the description of the ADL error message.
Additionally the probably cause for the failure and the recommended action is displayed.

With the PF2 key you can switch to the ADL ABEND and DL/I status codes retrieval.

14:12:13 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Messages and Codes Retrieval - ADLEMC-M

ABEND/Status code : ix

Description:
Violated insert rule

Cause: An insert rule has been violated.
Action: Check the insert rules and correct the program.
Command completed : No
Error situation ..: Yes (CMD or Conversion)
Possible commands : ISRT.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Read Help Msg Exit Prev Next Can

Enter the last two characters, to retrieve the description of the corresponding ADL ABEND code,
i.e. 'Z1' for ABEND code 'DAZ1'. The ABEND codes are displayed together with the probably
cause and the recommended action.

Enter a two character DL/I status code to retrieve the description of that status code. Further the
following information is displayed: The cause, the recommended action, whether the command
has been completed, whether it is an error situation, and for which commands this status code
can be retrieved. It is also indicated, if a status code can only be issued by DL/I (i.e. not by ADL),
or if it can only be issued by ADL.

Press the PF2 key to switch back to the ADL messages retrieval.

The message number 1500 (status code VR) has a special meaning. It indicates the current version
of ADL and gives some information about the ADL directory file.

85Interfaces

ADL Online Services

86

6 Precompiler for EXEC DLI Commands

■ Introduction .. 88
■ ADL Precompiler Input ... 91
■ ADL Precompiler Output ... 93
■ COBOL Generated Code .. 94
■ PL/I Generated Code ... 94
■ CICS Command Language Translator ... 94
■ Linkage-Editor Requirements for Application Programs ... 94
■ z/OS JCL Requirements ... 95
■ z/VSE JCS Requirements ... 96

87

This chapter covers the following topics:

Introduction

This section is only of interest for installations in which application programs using the Higher
Level Programming Interface (HLPI) need to be converted. It describes the different possibilities
and procedures available for converting such application programs written in COBOL or PL/I .

When an application programusing theHLPI issues aDL/I request in an unconverted environment
(i.e. where ADL is not involved), an extra interface layer is used to interpret the call from the ap-
plication program (which originates from an EXEC command) and transform them into normal
calls. The figure below illustrates this process.

Interfaces88

Precompiler for EXEC DLI Commands

HLPI Interface

Application programs using the HLPI can be run against ADL in one of two different ways: with
or without the ADL precompiler.

89Interfaces

Precompiler for EXEC DLI Commands

Running HLPI Programs without the ADL Precompiler

The application programs do not issue standard DL/I calls directly: instead, these are issued by
the HLPI. This means that the DL/I environment must be present. Command level programs can
be run against ADL in mixed mode.

Interfaces90

Precompiler for EXEC DLI Commands

Running HLPI Programs with the ADL Precompiler

The ADL precompiler translates each EXEC DLI command in the application program into one
(and only one) call to ADL. This call is passed directly to ADL in the same manner as for normal
DL/I calls. This means that no extra interface layer is required. Thus, in a completely converted
environment, DL/I need not still be available.When theADLprecompiler has been used, however,
application programs cannot be run in mixed mode.

ADL Precompiler Input

The ADL precompiler accepts as input a source programwritten in PL/ I or COBOL inwhich EXEC
DLI commands have been coded. It produces as output an equivalent source program in which
the commands have been translated into statements in the language of the source program. The
statements generated result in a call to the ADL nucleus (batch or CICS) to fulfill the function re-
quested.

Formore details on the syntax of the EXEC DLI commands, see the appropriate IBMdocumentations.

The ADL precompiler is activated separately before the compile and link edit steps.

The program source input data setmust contain fixed length records,whichmust be 80 bytes long.
The first statement of the source program must be a CBL statement for COBOL or a *PROCESS
statement for PL/ I . This control statement may be passed on unchanged as part of the program
source output.

The control statement contains the parameters for theADLprecompiler itself, and has the following
syntax:

91Interfaces

Precompiler for EXEC DLI Commands

LAN=XXX,keyword=value

ExplanationKeyword

(z/VSE only). Indicates whether the source program input should be read in from the reader or
from disk/tape. Possible values:

INPUT

The program source input is read in from disk or tape. You must specify DAZIN5D
or DAZIN5T, respectively, as DTF. The corresponding logical unit is SYS014. This

DISK

default logical unit can be overwritten by the ADL `FX' parameter as described in
the section ADL Parameter Module in the ADL Installation documentation. Since the
ADL precompiler expects a record size of 80 bytes, the `FX' setting should be
overwritten during the generation of the precompiler nucleus DAZNUCP. For
example: FX=(14,80,80)

The program source input is read in from the reader, i.e. from SYSIPT.READER

READERDefault:

The source program language, a three-character abbreviation. Possible values: CBL for COBOL
PLI for PL/I Default: none

LAN

Indicates whether or not the program listing, including the EXEC commands with sequence
numbers, is to be produced. Possible values: Y : (the program listing is to be produced) N : (the
program listing is not to be produced) Default: Y

LIST

(PL/I only) Specifies the left and right margin of the input statements of the source program.
The ADL precompiler will only scan that part of any input source statement between the two
margins. The syntax of this parameter is as follows: MARGIN=(L,R)
L : Left margin of source program Possible values: 1-71 Default: 2
R : Right margin of source program Possible values: 2-72 Default: 72

MARGIN

The three-character prefix to be used for variables (COBOL) and ENTRY names (PL/I). Possible
values: AXX where:
A : is any character which may be used as the first character of a COBOL variable name or PL/I
ENTRY name.
X : any character allowed to be the second or any subsequent character of a COBOL variable
name or PL/I ENTRY name.
Default: DAZ

PREF

(COBOL only). The maximum number of qualification statements to be expected in any one
command. Possible values: 1-999 Default: 8

QNUM

Indicates whether or not a program segment is to be precompiled. Possible values:
Y : A program segment is to be precompiled for later inclusion in themain program. This means
that only the EXEC commandswill be translated.No variables and no userDIBwill be generated.
N : A main program is to be precompiled.
Default: N
If SEGM=Y is specified for a PL/I program segment, make sure that the parameter PREF is
specified as well. The ADL precompiler generates a separate ENTRY statement with a unique

SEGM

name for each EXEC command in PL/I. Where a program segment is precompiled separately,
the ENTRY names generated must differ from those in the main program. This can be achieved
by specifying a different prefix (PREF parameter).

(COBOLonly) Themaximumnumber of SSAs to be expected in any one EXEC command. Possible
values: 1-15 Default: 15

SNUM

Interfaces92

Precompiler for EXEC DLI Commands

ExplanationKeyword

Indicates whether or not fields need to be generated for the user DL/I Interface Block (DIB).
Possible values:
Y : (fields for the user DIB will be generated).
N : (fields for the user DIB will not be generated).
Default: N

UDIB

Specifies whether or not the first statement should be output. Possible values:
Y : where the first statement should be output.
N : where the first statement should not be output.
Default: N

XOPTS

ADL Precompiler Output

The program source output is output as fixed length records with a length of 80 bytes.

The first output listing produced contains messages produced by the ADL precompiler. Where
one or more errors were encountered during translation, an error message with the following
layout will be produced:

Warning nnnn from ADL module DAZEXEC/DAZEXSER at address aaaaa
ADLnnnn message
Error occurred during interpretation of EXEC DLI statement with sequence no:
99999

where

is the number of the message,nnnn

is the offset within the ADL module DAZEXEC in which the message was generated, andaaaaa

is the sequence number of the EXEC DLI command which was found to be in error. This sequence
number corresponds to the number printed on the output data set containing the complete listing
(see below).

99999

The second output listing produced contains the original source program including the EXEC DLI
commands. In addition, each EXEC DLI command has been given a sequence number which can
be used to find particular commands found to be in error. Where an EXEC DLI command is found
to be in error, the error message written to the message output listing is reproduced.

93Interfaces

Precompiler for EXEC DLI Commands

COBOL Generated Code

For COBOL, each EXEC command is replaced by a series of MOVE statements followed by a CALL
statement. The MOVE statements take care of possible type conversions for numeric arguments and
assign constants to data variables. For this purpose declarations for these temporary variables are
automatically included in theworking storage. Declarations for the user DIB are also automatically
included in the working storage. It is possible to precompile program segments separately for
later inclusion in a main program.

PL/I Generated Code

For PL/ I each EXEC command is replaced by a DO statement, a declaration of a generated unique
ENTRY name, a CALL statement and an END statement. The ENTRY declaration takes care of possible
type conversions for numeric arguments. The ADL precompiler generates the declarations for the
user DIB variables for each valid PL/I PROCEDURE statement. It is possible to precompile program
segments separately for later inclusion in a main program.

CICS Command Language Translator

Where an application program also contains EXEC CICS commands, the CICSCommandLanguage
Translator has to process the application program as well before it can be compiled. The CICS
Command Language Translator may be activated either before or after the ADL precompiler. In
either case, make sure that the translator options for the CICS Command Language Translator do
not specify DLI.

Linkage-Editor Requirements for Application Programs

After having passed the ADL precompiler, the CICS language translator and the compiler, the
application program must be linked together with the appropriate language interfaces for ADL.
Depending on the operational environment, the following modules are to be linked to the applic-
ation program:

CICS online programs:

z/OS - DAZLICI3

z/VSE - DAZLICID

Interfaces94

Precompiler for EXEC DLI Commands

Batch programs:

z/OS - DAZLIBAT

z/VSE - DAZLIBAT

All language interfacemodules described above are on the installation tape in theADL load library.
The language interfacesmentioned above replace the IBMmodulesDFSLI000 (z/OS) andDLZLI000
(z/VSE). For details on how to link-edit command level application programs, see the CICS Install-
ation and Operations Guide

Important: All application programs which have been linked with DAZLICI2 of ADL 2.2 or
before, must be relinked with DAZLICI3. DAZLICI3 is CICS release independent.

z/OS JCL Requirements

The table below lists the data sets used by theADLprecompiler during processing of an application
program.

DescriptionMediumDDname

Program source inputDisk/TapeDAZIN2

ADL precompiler control statementReaderDAZIN1

Program listingPrinterDAZOUT1

Error messagesPrinterDAZOUT2

Precompiled programDisk/TapeDAZOUT4

Example

The following is an example of an ADL Precompiler Run for a COBOL application program:

95Interfaces

Precompiler for EXEC DLI Commands

//PRE EXEC PGM=DAZIFP,PARM='PRE,DAZEXPRE'
//STEPLIB DD DISP=SHR,DSN=ADL.LOAD
// DD DISP=SHR,DSN=ADABAS.LOAD
//DAZOUT1 DD SYSOUT=X
//DAZOUT2 DD SYSOUT=X
//DAZOUT4 DD DSN=&&TEMP,SPACE=(TRK,(20,20)),UNIT=VIO,DISP=(,PASS),
// DCB=(RECFM=FB,DSORG=PS,BLKSIZE=3120,LRECL=80)
//DDCARD DD *
ADARUN PROGRAM=USER,...
//*
//DAZIN1 DD *
LAN=CBL
//DAZIN2 DD *

...

... application program source code

...
//*
//APPLPROG EXEC DFHEITCL
//TRN.SYSIN DD DSN=&&TEMP,DISP=(OLD,DELETE)
//LKED.ADL DD DISP=SHR,DSN=ADLxxx.LOAD
//LKED.SYSIN DD *
INCLUDE ADL(DAZLICI3)
NAME anyname(R)

/*

z/VSE JCS Requirements

The table below lists the data sets used by the ADL precompiler during application program
processing.

DescriptionMediumLogical UnitDTF

Program source input *1ReaderSYSIPTDAZIN2

Program source input *2/ *3DiskSYS014DAZIN5D

Program source input *2/ *3TapeSYS014DAZIN5T

ADL precompiler control statementReaderSYSIPTDAZIN1

Program listingPrinterSYSLSTDAZOUT1

Error messagesPrinterSYS011DAZOUT2

Error messages *4DiskSYS013DAZOT3D

Error messages *4TapeSYS013DAZOT3T

Precompiled programDiskSYSxxxDAZOUT4

*1 Only required, if the default input mode INPUT=READER is active.

*2 Only required, if the input mode INPUT=DISK is specified.

Interfaces96

Precompiler for EXEC DLI Commands

*3 Either one (disk or tape) is required. The logical unit indicated, is the default logical unit. To
change it, specify the FX parameter as described in the section ADL Parameter Module in the ADL
Installation documentation. Note that the ADL precompiler expects a record length of 80 bytes.

*4 Only required when only one logical printer is available. In this case, the message which is
normally directed to DAZOUT2 as a second print file will be written to disk. At the end of the job,
it will be read from disk and routed to DAZOUT1.

If the default inputmode INPUT=READER is active, the control input for the batchmonitor (DAZIFP),
ADARUN, the ADL precompiler, and the program source input are all read in from SYSIPT. The
control statements must be specified in the following order:

PRE,DAZEXPRE input for DAZIFP
/*
ADARUN ... input for ADARUN
/*
LAN= ... input for the ADL precompiler
/*
. application program source
.
.
/*

Example

The following is an example of an ADL Precompiler Run for a COBOL application program:

97Interfaces

Precompiler for EXEC DLI Commands

// ASSGN SYS010,DISK,VOL=volume,SHR
// DLBL DAZOUT4,'punch-dataset',0,SD
// EXTENT SYS010,volume,,,rtrk,ntrks
// ASSGN SYS013,DISK,VOL=volume,SHR
// DLBL DAZOT3D,'temp-dataset',0,SD
// EXTENT SYS013,volume,,,rtrk,ntrks
// ASSGN SYS013,DISK,VOL=volume,SHR
// DLBL DAZIN3D,'temp-dataset',0,SD
// EXEC PROC=ADLLIBS
// EXEC DAZIFP,SIZE=512K
PRE,DAZEXPRE
/*
ADARUN PROGRAM=USER,...
/*
LAN=CBL
/*

COBOL application program source
....

/*
// DLBL IJSYSPH,'cobol-translation',0
// EXTENT SYSPCH,,1,0,rtrk,ntrks
ASSGN SYSPCH,DISK,VOL=volume,SHR
// DLBL IJSYSIN,'punch-dataset',0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volume,SHR
// EXEC DFHECP1$
CLOSE SYSIPT,SYSRDR
CLOSE SYSPCH,cuu
// DLBL IJSYSIN,'cobol-translation',0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volume,SHR
// OPTION CATAL
PHASE pgmname,*
INCLUDE DFHECI

// EXEC FCOBOL
INCLUDE DAZLICID

/*
CLOSE SYSIPT,SYSRDR
// EXEC LNKEDT
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR
ASSGN SYSPCH,cuu
/&

Interfaces98

Precompiler for EXEC DLI Commands

7 Using ADL Files with Natural/Adabas

■ Introduction .. 100
■ Consistency Interface ... 100
■ Restrictions when using Natural/Adabas ... 101
■ Improve the Natural Access to Migrated Files .. 103
■ Error Situations and Consistency Response Codes .. 104
■ Availability of the Consistency Interface .. 105
■ Example Programs .. 105

99

This chapter covers the following topics:

Introduction

After a DL/I data base was converted to one or more ADL files, these files can be accessed and
manipulated with Natural applications or other programs using direct Adabas calls. This section
explains:

■ how you can do this,
■ how ADL guarantees the integrity of the data as expected by original DL/I applications,
■ which restrictions apply for updates from Natural/Adabas applications.
■ how to improve the access to the migrated file for Natural applications.

Note: Set the Natural parameter ADAMODE to “0” when you run Natural programs against
the ADL Consistency.

Consistency Interface

When hierarchical structures, like those being defined in DL/I data bases, are mirrored into a table
like structure as those of ADL files, the original structure of the data has to be preserved by either
the use of physical pointers or foreign keys. The latter may be considered as logical pointers. ADL
maintains both kinds of pointers automatically.

The foreign keys maintained by ADL for a given segment type are built up in a similar way as a
DL/I concatenated key. In other words, the foreign key stored together with a segment occurrence
determines its position in the data base by identifying its parent segments (if there are any). ADL
introduces the term “partial concatenated key” (PCK) for the foreign key of one particular segment
type.

The physical pointers are needed for DL/I applications.Whenever a DL/I application issues a data
base call, this call is intercepted by the ADL CALLDLI Interface. Implicitly, a DL/I data base call
is serviced by referring to the physical pointers. We say implicitly, because these physical pointers
are determined by the actual position of the segment occurrences in the data base. Based on this,
the ADLCALLDLI Interface thenmaintains the foreign keys automatically, though they are never
used directly by DL/I applications.

In case of Natural/Adabas applications, the situation is just the other way around. An Adabas call
on ADL files supplies the segment data and all PCKs of its parent segments. In order for DL/I
applications to be able to “see” these data as well, the corresponding physical pointers have to be
built up. This task is performed by the ADL Consistency Interface.

Interfaces100

Using ADL Files with Natural/Adabas

The ADLConsistency Interface intercepts Adabas calls. On the first level, all kind of retrieval calls
(like Adabas L3, S1 etc.) are routed directly to Adabas. On a second level, only calls referring to
ADL files will be considered. If necessary, the Consistency automatically constructs the physical
pointers for the record to be inserted, updated or deleted based on the PCKs provided by the user.

In a later stage of the data base conversion process, you might want to phase out the old DL/I ap-
plications completely. Therefore, the further operation of the ADL Consistency Interface may be-
come obsolete. For this reason, the Natural applications or programs using direct Adabas calls
should originally be designed as if the Consistency Interface is not existent.

Note that the installation and operation of the Consistency Interface is described earlier in this
documentation.

Summary

■ the CALLDLI Interface automatically sets and maintains the PCKs of all parent segments,
■ the Consistency Interface sets and maintains the physical pointers needed to preserve the hier-
archical structure of the data base,

■ the Consistency Interface is necessary to updateADLfileswithNatural or programs using direct
Adabas calls, when access to these files for DL/I applications must still be provided.

Restrictions when using Natural/Adabas

Natural applications or programs using Adabas direct calls follow exactly the same syntax in ac-
cessing either a normal Adabas file or an ADL file. The only difference is, that the applications
may receive response codes from the ADL Consistency Interface, if it is active.

The rules having to be obeyed when manipulating ADL files with Natural/Adabas programs are
derived directly from the fact that the hierarchical structure of the data, as seen from DL/I applic-
ations, has to preserved. The ADL Consistency Interface is a product which guarantees the refer-
ential integrity of your data.

The following is an example of the hierarchical structure of a DL/I data base consisting of four
segments types:

101Interfaces

Using ADL Files with Natural/Adabas

Figure: Sample data base used in our examples

In DL/I, the segments STUDENT and INSTRUCTOR are child segments to the parent segment
CLASS, which in turn is a child segment to COURSE. The parent segments are identified by a
course number or class number respectively.

Transformed to an ADL file the course number is denoted the PCK of the record COURSE and
serves as a link for the records COURSE and CLASS. ADL stores the course number together with
the CLASS data as shown in the following table:

ADL Record TypeDL/I Segment Type

COURSECOURSE

PCK-COURSE, CLASSCLASS

PCK-COURSE, PCK-CLASS, STUDENTSTUDENT

PCK-COURSE, PCK-CLASS, INSTRUCTORINSTRUCTOR

Referential integrity in this context means that each STUDENT/INSTRUCTOR record occurrence
must refer to an existing CLASS record occurrence, which in turn must also refer to an existing
COURSE record occurrence.

Interfaces102

Using ADL Files with Natural/Adabas

In order to allow the Consistency Interface to maintain the referential integrity, relation data have
to be supplied with each update request to an ADL file. For insert and replace calls (Adabas N1
or A1) this simply means that you have to supply the foreign keys of all related record types. In
DL/I calls this means supplying the concatenated key. Furthermore, when replacing a record, you
must not alter the foreign keys of its parent segment.

Delete calls may not attempt to delete parent segment occurrences which have dependent child
segment occurrences. For ADL files this means, that record occurrences without PCKs referred to
by other record occurrencesmust be deleted first. Considering the above example, note that a record
occurrence of CLASS can only be deleted after all record occurrences of STUDENTand INSTRUCT-
OR have been deleted.

Summary

■ when inserting records in an ADL file, specify the corresponding foreign keys or PCKs for the
related record type;

■ when replacing records in an ADL file, specify the corresponding foreign keys or PCKs for the
related record type but NEVER alter the PCKs;

■ when deleting a record occurrence, be sure that it is not referred to by PCK fields in other record
occurrences;

■ the Consistency Interface will preserve the referential integrity of the data base.

Improve the Natural Access to Migrated Files

When ADL migrates the DL/I structure, the generated Adabas file layout is optimized to satisfy
the needs of the DL/I applications. Therefore only the root sequence field, the physical pointer
fields (“Z1-field”) and the secondary index fields are defined as descriptors. From these fields
only the root sequence field should be used by Natural applications because the other fields are
ADL internal fields.

Natural applications read the hierarchy through the PCK fields. If the application should access
the data of a dependent segment, it is recommended to create an Adabas superdescriptor build
up by the PCK fields of the parent segments. If the segment itself has a sequence field, the corres-
ponding Adabas field should be added to the superdescriptor as well.

If Natural applications should access data in a secondary index like manner, any other field (like
a sequence field of a dependent segment) can be defined as descriptor. If you build up new super-
descriptors take care that only those fields are included which belong to the same segment plus
PCKfields of parents of the segment. If you use fields fromdifferent segments, one partwill always
be empty and the superdescriptor will not give you any value.

It is recommended that you define only those descriptors and superdescriptors which are really
used by any application. Every descriptor cost some performance not only in the Natural applica-

103Interfaces

Using ADL Files with Natural/Adabas

tions but also in the DL/I applications and when utilities run. On the other hand if you have use
for a descriptor or superdescriptor, you should define it. A non-descriptor search gives you the
poorest performance.

Error Situations and Consistency Response Codes

Whenever you violate the rules formanipulatingADL files defined earlier in this section, the ADL
Consistency Interface will return a non-zero response code in the Adabas control block. For Nat-
ural applications, this response code is available in the system variable *ERROR-NR. The Adabas
response code returned is “216” and the corresponding Natural *ERROR-NR is “3216”.

A more detailed error message can then be obtained from the ADL Consistency Interface by sub-
mitting an Adabas S1 call conforming to a defined standard. This is in detail explained in the
documentation ADL Messages and Codes. Natural programmers may simply obtain this error
message by a call to theADL suppliedNatural subprogramADLERROR, as in the example below:

IF *ERROR-NR = 3216
CALLNAT 'ADLERROR' #ERRMESS

END-IF

providing an alphanumeric variable “#ERRMESS” of at least 80 bytes length.

The error text returned has the following layout:

'ADLxxxx - error message '

where xxxx is a four character error code. For an explanation of the error code, please refer to the
documentation ADL Messages and Codes.

As explained above, the ADLConsistency Interfacewill guarantee the referential integrity of your
ADL files. However, we recommend a programming style, which avoids updates resulting in
ADL Consistency Interface response codes. In other words, the logic to preserve the referential
integrity of the data should as far as possible be included in the application program itself.

Example

Consider our example data base: Before placing a delete call for a record occurrence of CLASS,
place a read call to make sure that no record occurrences of STUDENT/ INSTRUCTOR still exist.

The reason for our recommendation is, that in a later stage of the data base conversion process
theADLConsistency Interface could become obsolete. Then, the logic of the application programs
might be affected by not receiving any Consistency response codes.

Interfaces104

Using ADL Files with Natural/Adabas

Availability of the Consistency Interface

Natural programsmay check the availability of the ADLConsistency Interface by calling the ADL
suppliedNatural subprogramADLACTIV. It returns a 2-bytes integer value. If theADLConsistency
Interface is active the value ’0’, otherwise the value ’8' is returned. Under CICS, if the ADL user
exit ADLEXITB is installed but the ADL Interfaces are not activated, a value ‘4’ is returned.

In general, a program which updates migrated data, should only run when the response from
ADLACTIV is ‘0’.

Example

DEFINE DATA LOCAL
1 #RSP(I2)
END-DEFINE
CALLNAT 'ADLACTIV' #RSP
DECIDE ON FIRST VALUE OF #RSP
VALUE 0

WRITE 'ADL Consistency is active.'
VALUE 4

WRITE 'ADL user exit installed, but ADL is not active.'
VALUE 8

WRITE 'ADL Consistency is not active.'
NONE

WRITE 'Unexpected response from ADL Consistency.'
END-DECIDE
END

Example Programs

The followingNatural programs demonstrate how to codewith respect to the referential integrity.
The full sources can be found on the SYSADLIV Natural library.

Program INS-STUD: Insert a Student

Before a dependent segment is inserted, it should be verified that the parents, i.e. the path to the
segment, exists.

105Interfaces

Using ADL Files with Natural/Adabas

* Check if the path to the student exits
*

FIND (1) COURSEDB-CLASS WITH CLASSNO = #CLASSNO
WHERE PCK-COURSENO = #COURSENO

IF NO RECORDS FOUND
REINPUT 'COURSE / CLASS NOT FOUND !'

END-NOREC
*
* Store the data in the data base
*

MOVE #COURSENO TO COURSEDB-STUDENT-UPD.PCK-COURSENO
MOVE #CLASSNO TO COURSEDB-STUDENT-UPD.PCK-CLASSNO
MOVE #SURNAME TO COURSEDB-STUDENT-UPD.SURNAME
MOVE #FILLER-AB TO COURSEDB-STUDENT-UPD.FILLER-AB
STORE COURSEDB-STUDENT-UPD
END OF TRANSACTION

END-FIND

Program DEL-COUR: Delete a Course

Before a parent is deleted, it should be verified that it has no dependents. The following program
does not perform the delete if there are dependents

* Check if the data exits
*
COURSE. FIND (1) COURSEDB-COURSE WITH COURSENO = #COURSENO

IF NO RECORDS FOUND
REINPUT 'COURSE NOT FOUND !'

END-NOREC
*
* Check if there are dependents
*

RESET #NBR
CLASS. READ COURSEDB-CLASS WHERE PCK-COURSENO = #COURSENO

MOVE *COUNTER TO #NBR
WRITE #NBR '. CLASS FOUND UNDER THIS COURSE:' CLASSNO CLASSNAME

END-READ
*

IF #NBR = 0 /* NO DEPENDENTS
*
* Delete the data
*

DELETE (COURSE.)
END OF TRANSACTION
WRITE 'COURSE DELETED!'

END-IF
END-FIND

Interfaces106

Using ADL Files with Natural/Adabas

Program CDELCOUR: Cascaded delete of a Course

When DL/I deletes a segment, all dependents are deleted automatically. This is named “cascaded
delete”. The program CDELCOUR (together with the programs called by it) is an example on how
to code a cascaded deletion with Natural.

FIND (1) COURSEDB-COURSE WITH COURSENO = #COURSENO
IF NO RECORDS FOUND
MOVE 'Course not found!'

TO #ADL-MESS
ESCAPE BOTTOM

END-NOREC
* Delete dependents recursively

CALLNAT 'CASDELCL' #COURSENO #N-CL #N-ST #N-IP #RESPONSE
IF #RESPONSE NE 0
ESCAPE BOTTOM

END-IF
* All dependents are deleted -> delete the COURSE

DELETE
MOVE 1 TO #N-SUM

END-FIND

107Interfaces

Using ADL Files with Natural/Adabas

108

8 Converting Natural for DL/I Programs

■ Introduction .. 110
■ Conversion of the Data Definitions and of the Data ... 110
■ Modification of the Application .. 111

109

This chapter covers the following topics:

Introduction

The Natural for DL/I (NDL) interface provides access to data stored in an IMS/DB database for
Natural applications. When the DL/I databases access by NDL are converted into Adabas files
with the ADL, the NDL applications can continue to run like any other DL/I application. NDL
converts the Natural generated internal Adabas call into an DL/I call which is converted by ADL
into anAdabas call and forwarded toAdabas. On theway back, the response ofAdabas is converted
by ADL into a DL/I response and returned to NDL which converts it into an Adabas response for
the Natural application.

NDL applications have special restrictions and enhancements caused by the hierarchical structure
of the underlying database. Thus after the migration, the NDL application cannot run “as they
are” against Adabas. This chapter describes what you have to respect when you convert a NDL
program to a “normal” Natural/Adabas program.

After the conversion, theNatural programmust run through theADLConsistency as long as there
is anyDL/I application (Cobol, PL/1) accessing the same data. The restrictions forNatural programs
running against the ADL Consistency are described in the section Using ADL Files with Natur-
al/Adabas in this documentation. Although the Consistency is an overhead too, the conversion
from Natural for DL/I to Natural/Consistency has several advantages:

■ Better performance because read calls are routed directly to Adabas.
■ The hierarchical view to the data is replaced by a flat view with foreign keys.
■ Normal Natural (i.e. Natural/Adabas) syntax can be used. No special NDL syntax restrictions,
error messages etc. must be obeyed.

■ When all NDL applications are converted, NDL is no longer required.
■ Natural with the Consistency is the path towards standard Natural/Adabas. I.e. as soon as no
DL/I application accesses the data anymore, the ADL Consistency is obsolete, too.

Conversion of the Data Definitions and of the Data

The DBD definitions accessed by the NDL application must be converted with the ADL Control
Block Conversion (CBC) utility. You can use one file per segment (GENSEG statement of the ADL
CBCutility), or collectmore than one segment in one file. TheADLConversionUtility is described
in the ADL Conversion documentation.

In a first step, the FDT is loadedwithout data into Adabas. Then load the field descriptions gener-
ated by ADL into Predict with the Predict Incorporate function.

Interfaces110

Converting Natural for DL/I Programs

Build new Predict masterfiles and DDMs from the ADL definitions and from the NDL definition.

Use from ADL

DescriptionField

ADL internal fields.Zx

Descriptors corresponding to secondary indices.Xx

Adabas groups corresponding to DL/I segments. Use the DL/I segment name as long name.Sx

Use from NDL

DescriptionField

All Adabas field definitions corresponding to parts of the DL/I segment. Take care that the short
names are unique. These fields must be part of the group corresponding to the DL/I segment.

xx

Special considerations for reference fields:

■ Define the sequence fields as descriptors. Note that the root sequence field is already defined
by ADL as descriptor. The short name of the root sequence field must be the one defined by
ADL.

■ For the foreign primary key fields, i.e. the PCKandVCKfields, use theADL short name (normally
Px/Qx), and the NDL long name. Define these fields as descriptors.

■ Build superdescriptors with the source segment to reflect secondary indices. Use NDL long-
names for those superdescriptors.

■ Do not allocate fields with foreign keys of secondary indices for dependent segments. Because
the secondary index fields belong to another segment, DL/I applications would not fill these
fields.

After thismodifications have been performed, generateADACMP cardswith Predict. Then unload
the data from DL/I and load it into Adabas with ADL utilities. For the compression, use the
ADACMP cards from Predict. The data conversion is described in the section ADL Conversion
Utility in the ADL Conversion documentation.

Modification of the Application

This section describes what have to be considered in the NDL applications concerning database
related commands when converting to Natural/Adabas and the ADL Consistency.

READ/FIND commands

READ and FIND commands are only affected when the application reads a dependent segment and
uses in the root level a secondary index. In this case the root level must first be read with the sec-

111Interfaces

Converting Natural for DL/I Programs

ondary index to get the primary key, and this must be used as foreign key when reading the de-
pendent.

Example

We have a root segment “A” with primary and secondary index and a dependent segment “B”
with a sequence field. We would like to access segment B and use on the root level the secondary
index.

DescriptionNatural Name

view of root segment AROOT-A-VIEW

view of dependent segment BSEG-B-VIEW

root primary keyA-PRIMKEY

root primary key used as foreign keyROOT-PRIM

root secondary indexA-SEC

root secondary index used as foreign keyROOT-SEC

dependent segment sequence fieldSEG-B-SEQ

NDL

FIND SEG-B-VIEW WITH ROOT-SEC=SEC-VAL1 /* sec index
AND SEG-B-SEQ=B-VAL2 /* dependent

ADL

FIND ROOT-A-VIEW WITH A-SEC=SEC-VAL1 /* sec index
MOVE A-PRIMKEY to #PRIM-VAL1 /* prim key
FIND SEG-B-VIEW WITH ROOT-PRIM=#PRIM-VAL1 /* prim key

AND SEG-B-SEQ=B-VAL2 /* dependent

STORE

When performing a STORE command, the foreign keys must be filled. Before the command is ex-
ecuted, it must be verified that the referenced values exist. This is eventually already ensured by
the application logic. In case of an inconsistence an error handling must be provided.

DELETE

DL/I and thusNDL too, offer a cascaded delete.When a segment occurrence is deleted, all depend-
ent segment occurrences are deleted automatically. In Natural/Adabas there is no such function.
If a record has dependents, i.e. recordswhich refer the current sequence field as foreign keys, these
records must be deleted explicitly.

Note: As long as theADLConsistency is active, the dependentsmust be deleted frombottom
to top and finally the record itself can be deleted

Interfaces112

Converting Natural for DL/I Programs

UPDATE

UPDATE commands are not affected by the conversion.

Note: Sequence fields and foreign keys can neither be updatedwith NDL nor with the ADL
Consistency. You should carefully evaluate, before updating such a fieldwithNatural/Ada-
bas.

END TRANSACTION/BACKOUT TRANSACTION

DL/Imakes an implicit checkpoint at each terminal I/O. BecauseAdabas does notmake any implicit
ET call, the transaction logic of the applicationmust be checked and if required, additionally 'END
TRANSACTION' statements must be added.

ERROR HANDLING

There will be no more NDL specific error message in the application. The error handling must
reflect only Natural/Adabas error situations. Additionally when the ADL Consistency is used, a
Consistency response code can be obtained. This is described in details in the chapterUsing ADL
Files with Natural/Adabas in this documentation.

113Interfaces

Converting Natural for DL/I Programs

114

9 SQL Access to the Migrated Files

■ Introduction .. 116
■ How to Access the Migrated Data ... 116
■ Improving the Access to Migrated Data .. 117
■ Restrictions for SQL Applications .. 117

115

This chapter covers the following topics:

Introduction

The Adabas SQL Gateway provides business users real-time access to Adabas data, no matter
where that data resides, using standard SQL-based desktop tools.

With Adabas SQL Gateway, mission-critical Adabas data can be accessed quickly and easily by
anyODBC, JDBC,OLEDB or .NET standard SQL application. IT and business users also can access
Adabas with SQL-based reporting tools, such as Business Objects, Crystal Reports andMSOffice.
With Adabas SQL Gateway, IT can deliver business users the information they need, straight to
their desktops.

After the DL/I databases have been converted to Adabas files, these files can be accessed by SQL
applications with the Adabas SQL Gateway. The advantages for the Adabas data offered by the
Adabas SQL Gateway can be extended to DL/I data this way.

This section explains:

■ How to access the migrated data from SQL applications.
■ How to improve the access.
■ What restrictions apply for the SQL applications.

The installation and operation of theAdabas SQLGateway is described in theAdabas SQLGateway
manual.

How to Access the Migrated Data

Import the Adabas definitions to the Adabas SQLGateway data dictionarywith the CONNXData
Dictionary Manager. You can either use the FDT import or if you have already generated DDMs
for Natural, you can use the SYSTRANS import function.

As described in the section Using ADL Files with Natural/Adabas in this documentation, ADL
mirrors the hierarchical structure defined in the DL/I database by using physical pointers and
foreign keys. An SQL table should reflect all the fields belonging to aDL/I segment plus the foreign
key fields. SQL tables should not contain the physical pointer fields nor other ADL internal fields
(Z0 – Z8, secondary index descriptor).

Once the data definitions are imported, you can read the data with SQL applications.

Interfaces116

SQL Access to the Migrated Files

Improving the Access to Migrated Data

Depending on the data you want to read with the SQL application, you should consider defining
new descriptors and superdescriptors in the Adabas file. You may define as descriptor:

■ Sequence fields of dependent segments (the root sequence field is already a descriptor).
■ Foreign key fields.

You may define as superdescriptors:

■ The concatenated key fields, i.e. all foreign key fields of the parents of a segment. This super-
descriptor may additionally include the sequence field of the segment itself if available.

■ Fields building up a secondary index.

You may define other fields as descriptors or superdescriptors even if there is no counterpart in
the DL/I structure. But ...

■ Do not build superdescriptors from fields of different segments. It will not contain any data.
■ Donot allocate descriptors/superdescriptorswhich you do not use. It is an overhead in perform-
ance.

Restrictions for SQL Applications

SQL applicationsmust not update themigrated data. If an SQL applicationwould insert dependent
segment data, DL/I applicationswould not “see” this data. This is because there is no “Consistency”
for SQL which updates the ADL internal physical pointer fields which are required for the DL/I
applications.

Moreover if an SQL application updates the data, it can destroy the hierarchy. For example if it
deletes a root segment data, the dependent data is still in the database but cannot longer be accessed
byDL/I applications. Once again, no “Consistency” prevents the SQL application fromdestroying
the referential integrity.

Note that these restrictions apply only as long as DL/I applications access the data. As soon as all
DL/I applications have been replaced, you can modify the data with SQL applications without
restrictions.

117Interfaces

SQL Access to the Migrated Files

118

10 Debugging Aids - ADL Trace Facility

■ Data Base Call Trace ... 120
■ Internal Routine Trace .. 124
■ z/OS JCL Requirements ... 125
■ z/VSE JCS Requirements .. 126

119

The Adabas Bridge for DL/I includes a Trace facility with which you can gather information on
the following:

■ DL/I and Adabas calls (referred to as “database call trace”).
■ Internal routine ADL calls (referred to as “routine trace”)

You may activate the Trace facility in different ways:

■ By specifying the TRACE parameter in the ADL parameter module (see the section ADL Parameter
Module in the ADL Installation documentation).

■ By specifying the TRACEparameter as one of the parameters for theADL initialization program,
DAZIFP (see the section Batch Installation and Operation in this documentation for details), or

■ Dynamically under CICS in the CICS Maintenance of the ADL Online Services or by running
the DAZT transaction.

This chapter covers the following topics:

Data Base Call Trace

Tracing DL/I and Adabas Calls

The Trace facility for DL/I and Adabas calls consists of two parts, one that is responsible for data
acquisition and the other for reporting.

Data Acquisition

The data acquisition part of the Trace facility collects data for every DL/I and Adabas call while
the application program is running, and stores them in a sequential file known as the trace file.

The default setting causes data to be collected for all calls, from the beginning of the job to the
end. However, you may also use the TRACE parameter operands listed below to trace a specific
number of DL/I calls or to start a trace at a particular call.

When you activate the Trace facility under CICSwith theADLOnline Services, the systemprompts
you for a terminal ID and the type of trace wanted. Specifying a terminal ID results in a trace of
calls from the specified terminal only. Any blank character in the specified terminal ID is treated
as a wildcard, i.e. it matches all characters. Thus, if a blank terminal ID is specified (4 blank char-
acters) a trace of calls from all active terminals is conducted.

The syntax of the Trace parameter for DAZIFP or the ADL Parameter Module is as follows:

Interfaces120

Debugging Aids - ADL Trace Facility

TRACE=([t],[s],[a],[n],[m],[c],[u],[b])

All parameters are positional parameters. Trailing commas can be omitted, e.g.

TRACE=(RD)

The operands of the TRACE parameter have the following meaning:

ExplanationOperand

The type of trace requested. One or more of the following values may be specified:
R: All internal routine calls will be traced.
D: All DL/I and Adabas calls will be traced.
U: Special trace for the CBC utility.
The order in which these values are specified is irrelevant.
Default: None

t

The start, i.e. the first DL/I call to be traced.
Possible values: 1 - 9999999
Default: 1

s

The number of DL/I calls to be traced.
Possible values: 1 - 9999999
Default: 9999999

a

The name of the routine at which the routine trace is to be started. The name given must start
with “DAZ”, and may have a maximum of 8 characters.
Default: DAZCOMDC

n

The number of the call to the routine specified in “n” at which the routine trace is to be started.
An entry of 0 causes “n” to be ignored and the complete routine trace to be printed.
Default: 0

m

The name of the routine which is to be counted. The name givenmust start with “DAZ”, andmay
have a maximum of 8 characters.
Default: DAZCOMDC

c

The logical unit number (for z/VSE only).
Possible values: 0-999
Default: 11

u

The block size (for z/VSE only).
Possible values: 0-99999
Default: 8196

b

For the ADL CALLDLI Interface the data collected contain the following information:

■ The “before” image of a DL/I call (i.e. its form before it is passed to the system): the function,
SSAs and I/O area (for insert and replace calls) are traced.

■ The “after” image of an Adabas call (i.e. its formwhen it is returned by the system): the Adabas
control block and buffers (any of the format, record, search, value and ISN buffers, if used) are
traced. The fields of theAdabas control block are listed individually in readable format (character

121Interfaces

Debugging Aids - ADL Trace Facility

or numeric) and in hexadecimal format (denoted by a leading “x”). The buffers are listed in
hexadecimal and in character format.

■ The “after” image of a DL/I call: the user PCB, key feedback area and I/O area (for retrieval calls)
are traced.

000001 GU ↩

 SSA1 :C3D6E4D9 E2C54040 4DC3D6E4 D9E2C5D5 D67E40D4 C1E3C8C5 D4C1F2F0 ↩
F05D *COURSE (COURSENO= MATHEMA200) *

L6 ISN: 0000000021 x00000015 DBID: 01424 x0590 FNR: 00833 x0341 RSP: ↩
00000 x0000 CID: 'Z???' xE9010101 TERM:
 TIME: 0000000005 x00000005 ISNL: 0000000000 ISNQ: 0000000000 OP1: ↩
'R' xD9 OP2: 'V' xE5 TASK:
 ADD1: 'AA' C1C1BBCA40404040 ADD2: ' ?' 001E003F ADD3: 4040404040404040 ADD4: ↩
4040404040740590 ADD5: 0000000000000000
 FBL: 0024 FB: F4E76BF4 E76BE9F4 6BF8E76B F8E76BF4 E76BF4E7 6BE2C14B ↩
 *4X,4X,Z4,8X,8X,4X,4X,SA. *
 RBL: 0063 RB: 40404040 40404040 00404040 40404040 40404040 40404040 40404040 ↩
40404040 * . *
 40D4C1E3 C8C5D4C1 F2F0F0D4 C1E3C8C5 D4C1E3C9 C3E24040 40404040 ↩
404040 * MATHEMA200MATHEMATICS *
 SBL: 0003 SB: C1C14B ↩
 *AA. *
 VBL: 0010 VB: D4C1E3C8 C5D4C1F2 F0F0 ↩
 *MATHEMA200 *

 DBD: COURSEDB STA: SEG: COURSE LEV: 01 SEN: 00000004 OPT: AP RES: ↩
01030470
 KYL: 0010 KY: D4C1E3C8 C5D4C1F2 F0F0 ↩
 *MATHEMA200 *
 IOL: 0030 IO: D4C1E3C8 C5D4C1F2 F0F0D4C1 E3C8C5D4 C1E3C9C3 E2404040 40404040 ↩
4040 *MATHEMA200MATHEMATICS *

Database call trace

For the ADL Consistency Interface, the following data are collected:

■ A “before” image of the user Adabas call.
■ A “before” image of internally emulated DL/I type calls. Only the I/O area but no SSAs will be
traced.

■ An “after” image of Adabas calls issued byADL i.e. in its formwhen it is returned fromAdabas.
■ An “after” image of internally emulated DL/I type calls.
■ An “after” image of the user Adabas call. This is after the Consistency has completed its pro-
cessing, but before the call is either passed to Adabas or control is returned to the user. Note
that a non-zero Adabas return code displayed is the actual ADL return code (in a range from
1201 to 1299) and not the return code which will be seen by the user (216).

Interfaces122

Debugging Aids - ADL Trace Facility

Only those user Adabas calls will be traced which perform an update function (insert, delete or
replace) and reference to an ADL file.

For the ADL Consistency Interface it is recommended to overwrite the default routine name of
the 'n' and 'c' operands with the ADL routine name DAZCFDEC.

Data Reporting

The data reporting part of the Trace facility reads and interprets the data stored in the trace file
and produces a trace report. As such, it is part of the ADL nucleus and is activated by executing
the ADL initialization programDAZIFPwith the parameters shown below as provided by the file
DAZIN1 (see the section Batch Installation and Operation for details).

PRT,DAZPRINT

You can control the Trace data reported using an additional control statement read in from either
DAZIN1 (z/OS) or DAZIN2 (z/VSE). This statement has one of the following two formats and options:

MODE=SHORT[,TERM=t][,TASK=i]

or

MODE=FULL[,ADA=x][,DLI=y][,TERM=t][,TASK=i]

where

ExplanationOperand

is a four-character CICS terminal ID indicating that only DL/Iand Adabas calls originating from
the specified terminal will be repeated.

t

is a task number up to five digits long indicating that only DL/Iand Adabas calls originating from
the specified task number will be repeated.

i

x is any combination of the following values:

Suppressed Buffer/CallsValue

Adabas record bufferR

Adabas format bufferF

Adabas search bufferS

Adabas value bufferV

Adabas ISN bufferI

Adabas calls before the first DL/I callN

and y is any combination of the following values:

123Interfaces

Debugging Aids - ADL Trace Facility

Suppressed AreasValue

DL/I I/O areaI

DL/I key feedback areaK

DL/I user PCBP

DL/I SSAsS

Specifying any of the x or y parameter values suppresses reporting of the indicated buffer or area.

Note: MODE=SHORT

is the same as

MODE=FULL,ADA=RFSVI,DLI=IKS

Example:

MODE=FULL,ADA=RFI,DLI=I

This parameter statement would cause the Adabas search and value buffers and the DL/I PCB,
key feedback area and SSAs to be reported.

Internal Routine Trace

The Trace facilitymay be used to trace all internal routine calls for ADL. The default setting causes
all routine calls from the beginning of the job to the end to be traced. However, you may use the
TRACE parameter operands listed earlier in the section on Data Acquisition to specify the name of
the routine at which tracing should be started and to ignore the first “n” times the routine was
called.

In batch, the routine calls trace is routed direct to the printer. In CICS, an extra partition data set
is used for this. Any standard printing utility, or the DAZPRINT utility, may then be used to print
the trace. The DAZPRINT utility is activated by executing the ADL initialization program DAZIFP
with the parameters shown below (see the section Batch Installation and Operation for details):

PRT,DAZPRINT

The following additional parameter statement must be specified:

Interfaces124

Debugging Aids - ADL Trace Facility

MODE=ROUTINE[,TERM=t]

where

t is a four-character CICS terminal ID, indicating that only routine calls originating from the ter-
minal specified should be printed.

z/OS JCL Requirements

The JCL requirements for the Trace facility are discussed below. Explanations of how to use the
Trace facility during a batch run and how to print out the trace data set are given.

Using the Trace Facility

The table below lists the data sets used by the ADL batchmonitor when the Trace facility has been
activated. These data sets are used in addition to any others.

DescriptionMediumDDname

Trace output file *Tape/DiskDAZOUT5

ADL routine calls trace **PrinterDAZOUT1

* Only required when the trace to be performed is to include DL/I and Adabas calls.

** Required when the trace to be performed is to include internal ADL routine calls. This file is
also used to print error messages, and should therefore already have been included.

Example

// EXEC PGM=DAZIFP,PARM='DLI,pgmname,psbname,TRACE=(RD)'
//STEPLIB DD DSN=ADL.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZOUT1 DD SYSOUT=X
//DAZOUT5 DD DISP=SHR,DSN=d-trace-dataset

125Interfaces

Debugging Aids - ADL Trace Facility

Printing the Trace Data Set

The following table lists the data sets used by the Print Trace utility, DAZPRINT.

DescriptionMediumDDname

Control input for the Print utility, DAZPRINT.ReaderDAZIN1

Report, messages and codes.PrinterDAZOUT1

DL/I and Adabas calls trace file.Tape/DiskDAZIN4

Routine trace file.Tape/DiskDAZIN5

Examples

The following is an example of a job to print the data base call trace:

// EXEC PGM=DAZIFP,PARM='PRT,DAZPRINT'
//STEPLIB DD DSN=ADL.LOAD,DISP=SHR
//DAZIN4 DD DSN=d-trace-dataset,DISP=SHR
//DAZOUT1 DD SYSOUT=X
//DAZIN1 DD *
MODE=FULL
//*

The following is an example of a job to print the internal routine trace from disk:

// EXEC PGM=DAZIFP,PARM='PRT,DAZPRINT'
//STEPLIB DD DSN=ADL.LOAD,DISP=SHR
//DAZIN5 DD DSN=r-trace-dataset,DISP=SHR
//DAZOUT1 DD SYSOUT=X
//DAZIN1 DD *
MODE=ROUTINE
//*

z/VSE JCS Requirements

The JCS requirements for the Trace facility described in this section are discussed on the following
pages. Explanations of how to use the Trace facility during a batch run and how to print out the
trace data set are given.

Interfaces126

Debugging Aids - ADL Trace Facility

Using the Trace Facility

The table below lists the files used by the ADL batch monitor when the Trace facility has been
activated. These files are used in addition to any others.

DescriptionMediumLogical UnitDTF

Trace output file. *DiskSYS012DAZOT5D

Trace output file. *TapeSYS012DAZOT5T

ADL routine calls trace. **PrinterSYSLSTDAZOUT1

* Only required when the trace to be performed is to include DL/I and Adabas calls. Only one of
the two files is needed.

The logical unit indicated is the default logical unit. To change it, specify the TRACE parameter
either in the ADL parameter module or as a dynamic parameter:

TRACE=(,,,,,,6)

** Required when the trace to be performed is to include internal ADL routine calls. This file is
also used for the printing of error messages, and is therefore automatically included.

Example

// ASSGN SYS012,DISK,VOL=volume,SHR
// DLBL DAZOT5D,'d-trace-dataset'
// EXTENT SYS012,volume,.....
// EXEC PROC=ADLLIBS
// EXEC DAZIFP
DLI,pgmname,psbname,TRACE=(RD)
/*
ADARUN PROGRAM=USER,.....
/*
/&

Printing the Trace Data File

The following table lists the files used by the Print Trace utility, DAZPRINT.

DescriptionMediumLogical UnitDTF

Control input for the ADL batch monitor, DAZIFP.ReaderSYSIPTDAZIN1

Control input for the Print utility, DAZPRINT.ReaderSYSIPTDAZIN2

DL/I and Adabas call trace file. *DiskSYS012DAZIN4D

DL/I and Adabas call trace file.*TapeSYS012DAZIN4T

Report, messages and codes.PrinterSYSLSTDAZOUT1

Routine trace file. **DiskSYS014DAZIN5D

127Interfaces

Debugging Aids - ADL Trace Facility

DescriptionMediumLogical UnitDTF

Routine trace file. **TapeSYS014DAZIN5T

* Only one of the two files is required. The logical unit indicated is the default logical unit. To
change it, specify the TRACE parameter either in the ADL parameter module or as a dynamic
parameter:

TRACE=(,,,,,,6)

** Only one of the two files is required. The logical unit indicated is the default logical unit. To
change it, specify the FX parameter in the ADL parameter module:

FX=(15,)

The control input for both the batch monitor (DAZIFP) and DAZPRINT is read from SYSIPT. The
control statements must be specified in the following order:

PRT,DAZPRINT input for DAZIFP
/*
MODE=FULL input for DAZPRINT
/*

Examples

The following is an example of a job to print the data base call trace:

// ASSGN SYS012,DISK,VOL=volume,SHR
// DLBL DAZIN4D,'d-trace-dataset'
// EXTENT SYS012,volume
// EXEC PROC=ADLLIBS
// EXEC DAZIFP
PRT,DAZPRINT
/*
MODE=FULL
/*
/&

The following is an example of a job to print the internal routine trace:

// ASSGN SYS014,DISK,VOL=volume,SHR
// DLBL DAZIN5D,'r-trace-dataset'
// EXTENT SYS014,volume
// EXEC PROC=ADLLIBS
// EXEC DAZIFP
PRT,DAZPRINT
/*
MODE=ROUTINE
/*
/&

Interfaces128

Debugging Aids - ADL Trace Facility

11 CALLDLI Test Program - DAZZLER

■ Introduction .. 130
■ DL/I Statements .. 131
■ Sets .. 131
■ DAZZLER Control Statements .. 135
■ z/OS JCL Requirements for DAZZLER ... 137
■ z/VSE JCS Requirements for DAZZLER ... 137

129

This chapter covers the following topics:

Introduction

DAZZLER is a special test utility provided with the Adabas Bridge for DL/I. It is used to format
DL/I calls and to monitor their results. This may be necessary, for example, to compare DL/I and
Adabas performance.

DAZZLER handles up to the following maximum values:

10Number of PCBs

15Number of SSAs

256I/O area length (bytes)

256SSA length (bytes)

You are most likely to want to use DAZZLER for low volume input, and for this reason the eight
possible statement types have been divided into two groups of four. The first group contains those
statements necessary for creating DL/I calls, and are referred to as DL/I statements. The second
group consists of statements provided for the user's benefit, particularly when handlingmedium-
to-large volumes of input. The statements in this second group are known as DAZZLER control
statements, and are all optional.

All statements in both groups contain a number of validated fields. The validation rules for each
field are explained in the discussion of the individual statements.

You should note that the first three positions of each statement contain an identifying title. Invalid
titles, and thus the information on the statement concerned, are immediately rejected.

Blank statements are ignored.

Note: All PSBs used for the DAZZLER programmust have been createdwith either the PSBGEN
statement option LANG=ASSEM or LANG=COBOL. Alternatively, if the PSB had been created
with LANG=PLI, you must specify LANG=COBOL as DAZIFP parameter.

Appendix A shows an example of DAZZLER usage.

Interfaces130

CALLDLI Test Program - DAZZLER

DL/I Statements

The following table lists the DL/I statements.

FunctionStatement

A compulsory statement which contains the DL/I call and other important related
parameters. It must be the first statement within the set (see below).

HEADER Statement

Anoptional “input/output area” statementwhich,whenpresent, causes the existing
I/O area to be overwritten.

IOA Statement

An optional “segment search argument” statement which, when present, causes
a specified segment search argument to be overwritten.

SSA Statement

An optional statement which, when present, produces a tabular summary of all
segment names and how many occurrences there are in a given PCB.

SUMMARY Statement

Sets

Each individual DL/I call requires that a set of statements be input — a set being defined as a
group of statements beginning with a HEADER statement and ending with either the statement
preceding the next HEADER or SUMMARY DL/I statement, JUMP DAZZLER control statement, or with
the end of the file, as appropriate. A SUMMARY statement is considered to be a set in itself.

In other words, a set can consist of:

■ only a HEADER statement,
■ a HEADER statement followed by any combination of other DL/I or DAZZLER control statements
(any COMMENT statements encountered will be ignored), or

■ only a SUMMARY statement.

If the HEADER statement of a set is rejected by the validation routines, all the remaining statements
in the same set will be rejected as well.

The following pages describe the individual statements, their layouts and the validation routines
appropriate in each case.

131Interfaces

CALLDLI Test Program - DAZZLER

HEADER Statement

....+....1....+....2....+....3....+....4....+....5....+....6....+.

*HD call nnn cc pp ss iiiii +++++ ssslssslssslssslssslssslssslsssl

The following pages explain the individual entries on the statement in detail.

DescriptionStatus*PositionStatement
Field

The identifier for the HEADER statement.C1-3*HD

The kind of DL/I call. This is validated against an internal table and must
be four characters long, plus trailing blanks if appropriate. e.g. "DLET",
"REPL", "GU", "GHNP", etc.

C5-8call

The number of times the set is to be run. The range is 1-999, with leading
zeros as appropriate. The default is 001. See also the "cc" field.

O10-12nnn

Any non-blank entry overrides any value entered in the "nnn" field. The
set is repeated until the status code returned by DL/I corresponds exactly

O14-15cc

to the entrymade here. An entry of “??” instructs DAZZLER to stop repeating
the call as soon as a non-blank status code is returned.

The PCB number to be used for this call.C17-18pp

The number of SSAs in the call. The range is 00 to 15 (a leading zero must
be provided if necessary). The default is 00.

O20-21ss

If this parameter is omitted, or if “00000” is entered, no further validation
is performed and any further coding in this statement is treated as a

O23-27iiiii

printable comment. If a five-figure number (including leading zeros) is
entered, this value is used as the initial value for an iterative overwrite of
the IOA. All remaining fields are then used to specify this overwrite.

Afive-figure numberwith leading zeroswhichwill be used as the increment
for the iterative overwrite initiated by the entry in "iiiii" . 00001 is the default.

O29-33+++++

Each occurrence of "sssl" represents the start position (SSS) and the length
("l") of the iterative overwrite of the IOA. The "sss" entry must include

O/C **35-66sssl...etc

leading zeros if necessary and be in the range 1-256. The "l" entry must be
in the range 1-5. In addition, the end position calculable from the two entries
must be less than 257. A minimum of 1 and a maximum of 8 "sssl" entries
may be provided. Blank entries are ignored.

* C = compulsory, O = optional

** Optional unless an entry has been made in “iiiii”, in which case compulsory.

Interfaces132

CALLDLI Test Program - DAZZLER

Example of the Iterative Overwrite Facility

Where nnn =004, iiiii contains 00100, +++++ contains 00035, and the following sssl entries are
provided

ssslssslssslssslssslssslssslsssl

+....4....+....5....+....6....+.
02040352 0615 0013 1111

then the results of the coding are:

4th Iteration3rd Iteration2nd Iteration1st IterationIOA Posititions

020501700135010020,21,22,23

0570350035,36

0020500170001350010061,62,63,64,65

2051701351001,2,3

5050111

BACK Call

In addition to DL/I calls you can specify BACK as the call in the HEADER statement. This results in
an Adabas BT (Backout Transaction) call which removes all data base modifications performed
during the user's current logical transaction. The BACK call can only be used, if DAZZLER runs as an
online batch application, i.e. with BMP, MPS or SDB as first DAZIFP parameter. To prevent conflicts
with the automatic ET functionality, it is recommended to specify ET=NO as DAZIFP parameter or
in the ADL Parameter Module. The BACK call can not be used while DAZZLER runs against DL/I.

IOA and SSA Statements

....+....1....+....2....+....3....+....4....+....5....+....6....+.

tit form sss ll dd

DescriptionStatus*PositionStatement
Field

Two settings are possible:
IOA - Indicates that the I/O area is to be overwritten.
Snn - Indicates that an SSA is to be overwritten. The value "nn" specifies the
SSA concerned andmust be in the range 1-15, with a leading zero if necessary.

C1-3tit

The entry in "nn" is validated for being not greater than the number of SSAs
coded on the HEADER statement.

O5-8form A four-character entrywith a trailing space if necessary. Indicates the format
for the rewrite to the program. The possible values are:

133Interfaces

CALLDLI Test Program - DAZZLER

DescriptionStatus*PositionStatement
Field

CharactersCHAR

Hexadecimal dataHEX

Positive packed decimal numberPCK

Positive packed decimal numberPCK+

Negative packed decimal numberPCK-

The default is CHAR.

A three-figure number with leading zeros, if necessary, which specifies the
start position for the overwrite. It must be in the range 1-256.

C10-12sss

Two-digit string, with a leading zero if necessary, specifying the length of the
overwrite. It is dependent on the entrymade under "form" . If this specifies

C14-15ll

character format, the "ll" entry determines the number of bytes to be
overwritten. If it specifies non-character format, it specifies the number of
digits to be read from the statement. The entry must be in the range 1-50,
except for packed decimal data, in which case the maximum is 18. The
calculable end position for the overwrite must be less than 257.

The data to be used in the overwrite are entered here, left-justified. Overwrites
in hexadecimal format cause the program to validate the data for being in the

C17-66dddd ...

ranges 0-9 or A-F and for being an even number of digits. Packed decimal
format causes validation for the range 0-9.

* C = compulsory, O = optional

The I/O area and the SSAs are only overwrittenwhen this is specifically requested. If a subsequent
call requires some or all of the same SSAs or the same data in the I/O area, it is not necessary for
these to be recoded. You should note that the I/O area may well change as the result of a DL/I call.

SUMMARY Statement

....+....1...

SUMMARY pp

DescriptionStatusPositionStatement Field

The required PCB number. The range is 01-10. A leading zeromust
be provided if necessary.

Compulsory9-10pp

This statement causes the program to produce a table showing, for any one PCB, all the retrievable
segment names and how many occurrences of each there are. The statement is NOT a part of a set
as defined earlier, but rather can be considered a set in itself. When a SUMMARY statement has been
encountered and validated as correct, the program issues an unqualified GU to establish position
on the first segment and then issues successive GN calls until a status code of "GB" is returned. The
table is then printed out and the program continues with the next statement. A SUMMARY statement

Interfaces134

CALLDLI Test Program - DAZZLER

may appear anywhere in the job stream and will also be recognized as ending a previous HEADER
statement set.

DAZZLER Control Statements

FunctionStatement

An optional statement which provides run control parameters. It comes at the
front of the input stream.

PRINT CONTROL
PARAMETER

This statement enables users to make comments which will not subsequently be
printed. It can appear anywhere in the job stream, and is ignored as soon as it is
encountered. It is used to help understand the test stream.

COM(MENT)

This statement tells DAZZLER to ignore all following statements until the
corresponding LABEL statement is read. It allows users to jump down the stream
and skip some or all statements.

JUMP

This statement is the partner of a JUMP statement. It places a label in the job stream
to indicate the point at which the program is to restart processing statements. If
no prior associated JUMP statement exists, the LABEL statement is ignored.

LABEL

PRINT CONTROL PARAMETER Statement

If the PRINT CONTROL PARAMETER statement is omitted, dates are printedwith the format "DD/MM/YY"
and a page throw occurs before each new set of statements.

The layout of the statement is as follows:

....+....1....+...

PARddtccsssssppeee

DescriptionStatus*PositionStatement
Field

The identifier for the statement.C1-3PAR

The date print field. Two values are possible:
US - Dates are printed in the format MM/DD/YY.
AM - Dates are printed in the format DD/MM/YY.
If the PRINT CONTROL PARAMETER statement is not used, then the date will
automatically have the format DD/MM/YY.

C4-5dd

If an entry is made here, the automatic page throw for every new call is
suppressed.

O6t

O7-8cc Specifies what is to be printed. Permissible entries are:

Print all.PA

135Interfaces

CALLDLI Test Program - DAZZLER

DescriptionStatus*PositionStatement
Field

Print no results from the calls.PN

Print from a specified call number onwards.PF

Print no results until a non- blank status code is
returned: after this, print the number of calls specified
by the "pp" field (see below).

PC

Print slots (e.g. print every 20th call).PS

The default is PA.

Specifies the start call number when PF or PS have been entered in the "cc"
field. If entered, the start call number must be a five-figure number with
leading zeros if necessary.

O9-13sssss

Two uses are possible:
Specifies the number of calls to be printed after a PC or a PF. The value
entered must be a two-figure number with a leading zero if necessary. An
entry of 99 means that all remaining calls will be printed.
For the PS parameter, specifies the number of calls either side of the selected
call number to be printed.

O14-15pp

Used onlywith the PS parameter. Specifies the number of calls to be skipped
when slots are to be printed. It is the repeating increment and must be a
three-figure number (including leading zeros where necessary).

O16-18eee

* C = compulsory, O = optional

COMMENT Statement

....+....1....+...

COM

Positions 1-3 must contain COM. This statement will be ignored by the program and is provided so
that users can increase the legibility of their test streams.

JUMP and LABEL Statements

....+....

JUMP lll
LABELlll

This pair of statements is provided so that users can ignore calls in the test stream. As soon as the
program reads the JUMP statement ("JUMP" in columns 1-5), it ignores all subsequent statements
until the matching LABEL statement ("LABEL" in columns 1-5) is found. The match is performed
on columns 6-8 (inclusive) of both statements. The three characters must match exactly for the
program to restart. If no LABEL statement exists for a JUMP statement, no further calls will take

Interfaces136

CALLDLI Test Program - DAZZLER

place. If no JUMP statement exists for a LABEL statement, then the latter is ignored. Note that a JUMP
statement forces an end of set condition (see earlier in this section).

z/OS JCL Requirements for DAZZLER

The following table lists the data sets used by the Test utility, DAZZLER.

DescriptionMediumDDname

Control input for DAZZLER.ReaderCFILE

Report.PrinterPRNTR

Example

// EXEC PGM=DAZIFP,PARM='DLI,DAZZLER,psbname'
//STEPLIB DD DSN=ADL.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZOUT1 DD SYSOUT=X
//*
//* DAZZLER DATASETS
//*
//PRNTR DD SYSOUT=X
//CFILE DD *
*HD GU 01
*HD GN GB 01
/*

z/VSE JCS Requirements for DAZZLER

The following table lists the files used by the Test utility, DAZZLER.

DescriptionMediumLogical UnitDTF

Control input for DAZZLER.ReaderSYS007CFILE

Report.PrinterSYS006PRNTR

The control input for the batch monitor (DAZIFP) and for ADARUN is read from SYSIPT. Where the
control input for DAZZLER itself is also to be read from SYSIPT (by assigning SYS007 to SYSIPT), the
control statements must be specified in the following order:

137Interfaces

CALLDLI Test Program - DAZZLER

DLI,DAZZLER,psbname,... input for ↩
DAZIFP
/*
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
*HD GU ↩
input for DAZZLER
.
.
/*

Example

// ASSGN SYS006,SYSLST
// ASSGN SYS007,SYSIPT
// EXEC DAZIFP
DLI,DAZZLER,psbname
/*
ADARUN PROGRAM=USER,...
/*
*HD GU 01
*HD GN GB 01
/*

Interfaces138

CALLDLI Test Program - DAZZLER

12 Managing ADL Files

■ Overview ... 140
■ Reorganization with ADL Utilities (Pseudo Mixed Mode) .. 140
■ Reorganization with ADL Utilities (Normal Mode) ... 143
■ Reorganization with Adabas Utilities .. 145
■ Reorganization with User-written Programs ... 146
■ Change of DL/I Segment Definitions .. 147
■ Change of DL/I Field Definitions ... 148
■ Change of the Data Layout .. 149
■ Re-establishment of the Hierarchical Sequence ... 153
■ Change of DL/I PSB Definitions .. 153
■ Change of the ADL Structure ... 153
■ Change of Adabas DBIDs and File Numbers ... 154
■ Change of the Adabas File Layout .. 156

139

This chapter covers the following topics:

Overview

When a DL/I data base has been converted into ADL files, the need for modifications of these files
may arise. The reason for this could be changes in the DL/I data base structure as well as changes
in theAdabas files layout of theADLfiles. Also, ADLfiles need to bemaintained for reorganization,
backup and recovery reasons in the same or similar way as normal Adabas files. During reorgan-
ization of an Adabas data base, ADL files may be assigned to Adabas DBIDs and file numbers
different from those assigned when the files were created.

The first three sections in this chapter describe the procedures applicable when modifying ADL
files, in particular the reorganization of ADL files.

■ by ADL utilities,
■ by Adabas utilities,
■ or by user-written programs.

The remaining sections list potential changes and outlineswhich of the procedures should be used
to perform the change. The following issues are explained in details:

■ how to change the DL/I structures like the PSB, segment or field definitions;
■ how to change the data layout of the I/O area;
■ how to re-establish the hierarchical sequence of the migrated data;
■ how to change the ADL structure by splitting a DBD over several files,
■ how to change the Adabas structure like the DBID, file number, group or field definitions.

Reorganization with ADL Utilities (Pseudo Mixed Mode)

Some of the changes described later in this chapter require a logical unload and reload of the data.
Logical unloads and reloads should be performed using the standard ADL Unload and Reload
utilities. The procedure is similar to that used to convert the original DL/I data base (see the section
ADL Conversion Utility in the ADL Conversion documentation).

At the conversion of the original DL/I data, ADL runs in “mixedmode”, i.e. DL/I calls ADLwhich
calls the ADL Unload utility DAZUNDLI.

When the structure of the converted data changes, DAZUNDLImaps the old to the new structure.
For this task it must be aware of both structures simultaneously. But the ADL directory supports
only one version of aDBD. Therefore “pseudomixedmode”was introduced toADL. In the pseudo

Interfaces140

Managing ADL Files

mixed mode, DAZUNDLI accesses two ADL environments, containing two interface programs
DAZIFP, two batch nuclei DAZNUCB and two ADL directories, one containing the old, the other
containing the new structure.

In a first step, a copy of the (“standard”) ADL environment is created by copying the ADL batch
interface programDAZIFP, the batch nucleusDAZNUCB, and theADLdirectory. ThisADL-copy-
environment reflects the old structure; the standard ADL environment is used to convert the new
structure. In “pseudomixedmode”, the ADL-copy-environment calls the standard ADL environ-
ment which calls the ADL Unload utility DAZUNDLI.

The following steps must be performed:

DescriptionStep

Copy ADL programsStep 1

Create the ADL unload PSBStep 2

Copy the ADL directoryStep 3

Modify and convert the DBDStep 4

Create the ADL reload PSBStep 5

Unload the data in pseudo-mixed modeStep 6

Load the Adabas file(s)Step 7

Re-establish logical relationshipsStep 8

These steps are explained in detail below. For more information about the ADL CBC utility see
the section ADL Conversion Utilities for DBDs and PSBs in the ADL Conversion documentation.

Step 1: Copy ADL programs

In theADL load library,make a copy of “DAZIFP” named “DAZIFPX”, and a copy of “DAZNUCB”
named “DAZNUCX”.

Step 2: Create an ADL Unload PSB

Create a PSB containing two PCBs. Both PCBs should be based on the original DBD and should
reference all segments. The first PCB will be used for reading the original data.

Run the PSB through the CBC utility.

141Interfaces

Managing ADL Files

Step 3: Copy the ADL directory

Copy the ADL directory file using standard Adabas utilities. This “copy-directory” contains the
old structure including the Unload PSB and will not be changed. The source directory (“standard
directory”) will be used for the new structure definitions.

Step 4: Modify and Convert the DBD

Modify the DBD sources according to your requirements.

Run the DBD through the CBC-utility. Ensure that the new structure is written into the standard
directory.

Step 5: Create the ADL Reload PSB

Create a PSB containing two PCBs. Both PCBs should be based on the modified DBD and should
reference all segments. The second PCB will be used for loading the modified data.

The Reload PSB must have the same name as the Unload PSB created in step 2. If both PSBs look
the same, you can omit this step.

Run the PSB through the CBC utility. Ensure that the new structure is written into the standard
directory.

Step 6: Unload the Data in Pseudo-Mixed Mode

Unload thedata by running theADLUnloadutility,DAZUNDLI.Asmentioned above,DAZUNDLI
is executed in pseudo mixed mode.

DAZIFP is used to read the source data. The old structure definitions are taken from the copy-
directory, i.e. it acts like DL/I in mixed mode. DAZIFP calls the application program DAZIFPX.

DAZIFPXwrites the datawith the new layout (as defined in the standard directory) to a sequential
file.

The control statement must have the following layout:

EXEC DAZIFP
DLI,DAZIFPX,psbname,FNR=c-dir,... input for DAZIFP
UNL,DAZUNDLI,psbname,FNR=s-dir,... input for DAZIFPX
ADARUN DB=dbid,... input for ADARUN
MODE=CHECKNUM input for DAZUNDLI

where psbname is the name of the unload/reload PSB, c-dir is the file number of the copy directory
with the old structure and s-dir is the file number of the standard directorywith the new structure.

Interfaces142

Managing ADL Files

Under z/OS the input for DAZIFP is readwith the PARMkeyword, the input for DAZIFPX is read
from DAZIN2, the ADARUN input is read from DDCARD, and the DAZUNDLI input from
DAZIN1. Under z/VSE all control input statements are read from SYSIPT.

The unloaded datawill be stored on a sequential file (DAZOUT3/DAZOT3D). See the sectionADL
Conversion Utility in the ADL Conversion documentation for more information on the DAZUNDLI
utility.

Step 7: Load the Adabas File(s)

Each Adabas file used to store the converted data is loaded separately using the standard Adabas
utilities, ADACMP and ADALOD. In other words, Step 7 needs to be run once for each of the
Adabas files used to store the data.

Step 8: Re-Establish Logical Relationships

If the DBD is involved in logical relationships, the steps above must be performed for each DBD
logical related. Finally, each logical child segment needs to be connected to its logical parent. This
is done by performing Steps 8 and 9 of the section ADL Data Conversion Utilities in the ADL Con-
version documentation.

Reorganization with ADL Utilities (Normal Mode)

If the new structure is the same as the old structure, the logical unload and reload of the data can
be performed in "normal mode" using the standardADLUnload andReload utilities. The procedure
is a simplified version of the pseudo mixed mode procedure described in the section above.

The copy of the ADL environment is not needed. DAZUNDLI is executed as a “normal mode”
batch program (see Normal Mode Batch Execution in the section Batch Installation and Operation).

The following steps must be performed:

DescriptionStep

Create the ADL unload PSB.Step 1

Unload the data in normal mode.Step 2

Load the Adabas file(s).Step 3

Re-establish logical relationships.Step 4

These steps are explained in detail below. For more information about the ADL CBC utility see
the section ADL Conversion Utilities for DBDs and PSBs in the ADL Conversion documentation.

143Interfaces

Managing ADL Files

Step 1: Create an ADL Unload PSB

Create a PSB containing two PCBs. Both PCBs should be based on the DBD and should reference
all segments. The first PCB will be used for reading the data. The second PCB will be used for
loading the data.

Run the PSB through the CBC utility.

Step 2: Unload the Data in Normal Mode

Unload thedata by running theADLUnloadutility,DAZUNDLI.Asmentioned above,DAZUNDLI
is executed in normal mode. Note that this differs from the unloading of a native DL/I data base,
which is executed in “mixed mode”.

The control statement must have the following layout:

EXEC DAZIFP
UNL,DAZUNDLI,psbname,... input for DAZIFP
ADARUN DB=dbid,... input for ADARUN
MODE=CHECKNUM input for AZUNDLI

where psbname is the name of the unload PSB.

Under z/OS the input for DAZIFP is read with the PARM keyword, the ADARUN input is read
fromDDCARD, and theDAZUNDLI input fromDAZIN1.Under z/VSE all control input statements
are read from SYSIPT.

The unloaded datawill be stored on a sequential file (DAZOUT3/DAZOT3D). See the sectionADL
Data Conversion Utilities in the ADL Conversion documentation for more information on the
DAZUNDLI utility

Step 3: Load the Adabas File(s)

Each Adabas file used to store the converted data is loaded separately using the standard Adabas
utilities, ADACMP and ADALOD. In other words, Step 3 needs to be run once for each of the
Adabas files used to store the data.

The sequential file produced by Step 2 is taken as input for the ADACMP, as is the FDT and the
user exit 6 generated at the conversion of the DBD

The process of loading the data using Adabas utilities is identical to the process described under
Step 6 of the section ADL Data Conversion Utilities in the ADL Conversion documentation.

Interfaces144

Managing ADL Files

Step 4: Re-Establish Logical Relationships

If the DBD is involved in logical relationships, the steps above must be performed for each DBD
logical related. Finally, each logical child segment needs to be connected to its logical parent. This
is done by performing Steps 8 and 9 of the section ADL Data Conversion Utilities in the ADL
Conversion documentation.

Reorganization with Adabas Utilities

You may use any Adabas utility for the maintenance of ADL files. But one important restriction
must be considered: Never alter or implicitly change the ISN of an ADL record.

ADL uses the Adabas ISN to maintain the hierarchical structure of the data base as defined in the
DL/I DBDs. To alter the ISN of a recordwould thus destroy the physical pointer to its child records.

The ISNs of records in ADL files must be preserved by specifying the option USERISN=YES for the
Adabas utilities ADACMP (edit/compress /decompress data) and ADALOD (file loading).

Some of the changes described later in this section do not require a logical unload and reload of
the datawithADLutilities. TheAdabas utilities can be used instead, which are considerably faster.
The following steps must be performed:

DescriptionStep

Unload the dataStep 1

Convert the (changed) physical DBDStep 2

Generate an user exit 6Step 3

Load the dataStep 4

These steps are explained in detail below.

Step 1: Unload the Data

Use the Adabas utility ADACMPwith the DECOMPRESS function to unload and decompress the
data of the ADL file. The Adabas utility is described in the Adabas Utilities documentation.

145Interfaces

Managing ADL Files

Step 2: Convert the (Changed) Physical DBD

Run the (changed) DBD against the ADL CBC-utility (see the section ADL Conversion Utilities for
DBDs and PSBs in the ADL Conversion documentation). Use the original DBD name for the new
structure. This step can be omitted, if there is no change in the DBD definition.

Step 3: Generate an User Exit 6

Write, assemble and link-edit an ADACMP user exit 6, which maps the data from the old structure
to the new structure. Special care has to be taken for the ADL internal fields, which should remain
untouched in most cases. You may use the member ADLEX06 (z/OS) or ADLEX06.A (z/VSE) in the
ADL source library as an Assembler skeleton for an ADACMP user exit 6. For more information on
the ADACMP user exit 6 see the Adabas DBA Reference documentation.

Step 4: Load the Data

The data is loaded into Adabas with the Adabas utilities ADACMP and ADALOD. The sequential file
produced in Step 1 and the ADACMP cards generated by the CBC utility in Step 2 are used as input
for ADACMP. This utility calls the user exit 6 from Step 3.

Note, that you can not use the standard ADL user exit DAZUEX06, if the data have been unloaded
with Adabas utilities. And vice versa, if the data have been unloaded with ADL utilities like
DAZUNDLI, the ADL user exit must be used rather than your own.

Reorganization with User-written Programs

Some specific changes in the database structure can not be handled by standard utilities. In general,
you have to follow the same steps as described in the section Reorganization with ADL Utilities
(PseudoMixedMode) for details on unloading/reloading data. In this case the DAZUNDLI utility
is replaced by your own unload program. The related unload PSB should contain two PCBs as
described in the section mentioned above. The second PCB should specify the processing option
'L' (LOAD), and the ADL LOAD parameter should be set to 'UTILITY', so that the data is written to
a sequential file. The insert call which writes the data to the sequential file, must supply the data
in the new hierarchical sequence. The SSA for the call must be unqualified and should only refer
to the segment name corresponding to the data.

Interfaces146

Managing ADL Files

Change of DL/I Segment Definitions

ADL does not store any information about the child segments in the respective parent data.
Therefore, the addition or deletion of dependent segment types does not effect the parent segments.
But, since the segment number is part of the ADL internal pointer filed, all segments following in
the hierarchy are effected when a segment type is inserted or deleted.

Adding a new Segment Type

When a new segment type is added to the end of the DBD, no other segment is affected.

The following steps are required:

■ Add the new segment definition to the DBD source and run it through the ADL CBC utility. If
the data of the new segment should reside on a separate Adabas file, add a GENSEG statement
to the input cards of the CBC utility.

■ Modify the Adabas file definitions. If the data is on a separate file, use the ADACMP and ADALOD
utilities to allocate an empty Adabas file. Otherwise, add the new group/field definitions to the
existing FDT, for example with the Adabas Online System (AOS).

When the new segment is not the last segment in the DBD a logical unload and reload of the data
is required. This will supply the ADL internal pointers with the new segment numbers. Follow
the steps described in the section Reorganization with ADL Utilities (Pseudo Mixed Mode)
earlier in this documentation.

Deleting a Segment Type

If an entire segment type is to be deleted, the procedure to follow depends on the hierarchical
position of the segment. Additionally, if data is stored for this segment, the related storage space
has to be released.

If the segment is the last segment of the DBD and the data is stored on a separate Adabas file,
follow these steps:

■ Delete the segment definition from the DBD source and run it through the ADL CBC utility.
Take care that no GENSEG statement refers to the deleted segment.

■ Delete the Adabas file related to the segment with the DELETE function of the Adabas utility.

If the segment is the last segment of the DBD and no data is stored for this segment, it is sufficient
to run the modified DBD definition through the ADL CBC utility. The group and field definitions
related to the segment remain in the Adabas FDT, but because of the Adabas compression there
is no storage possessed by that field. It it sufficient to eliminate these fields during the next reor-
ganization.

147Interfaces

Managing ADL Files

Another situation is given, if the segment to be deleted is supplied with data and if it is stored
with data of other segments on one Adabas file. If the segment is the last one in the DBD, follow
the steps described in the section Reorganization with Adabas Utilities. If it is not the last one, a
logical unload and reload is required as described in the sectionReorganizationwithADLUtilities
(Pseudo Mixed Mode). Leave out the corresponding sensitive segment from the first PCB of the
unload PSB.

Moving a Segment Type

Moving a segment type to another hierarchical position is a special task which can not be handled
by standard utilities. Refer to the sectionReorganization with User-written Programs for details.

Increasing the Segment Length

If you want to increase the overall length of a segment, the modified DBD definition must run
through the ADLCBC utility. Depending on the last Adabas field in the groupwhich corresponds
to the segment, further action may be necessary:

■ If the length of this field can be increased so that the entire new segment is covered by thewhole
group, this should be done using the Adabas Online System (AOS). The maximum length of an
Adabas field is restricted to 253 bytes. Note, that the FDT generated by the ADL CBC can differ
from the one defined by AOS. But this is no problem as long as the overall group length is the
same as the segment length.

■ If the new length of the last Adabas field would exceed 253 bytes, you have to follow the steps
described in the section Reorganization with Adabas Utilities . In this case you can use the
FDT generated by the ADL CBC utility to reload the data.

Change of DL/I Field Definitions

DL/I corresponds with the application on a segment level. Field definitions affect the application
only for sequence fields, sensitive fields and fields which are referred to in secondary indices. All
other `normal' field definitions are meaningless to the application. This means, the application
canworkwith copy codeswhich are totally different from the layout defined by theDBDdefinition.
Therefore, these `normal' DL/I field definitions can be changed without the need to modify your
application, as long as they still fit into the segment.

ADL uses the DL/I field definitions to generate the initial layout of the corresponding Adabas file.
See the section Conversion of the Data Structure - General Considerations in theADL Conversion docu-
mentation for more information on the generated Adabas file layout. As with DL/I, the DL/I field
definitions do not affect theDL/I application, when it runs against ADL. But it concerns theAdabas
file layout in that way that the Adabas compression and the Natural programs which access the
migrated data, as described in the section mentioned above.

Interfaces148

Managing ADL Files

Therefore, the DL/I field definitions should be checked carefully before the conversion or at reor-
ganization time.

If you want to change the DL/I field definitions after the migration, you should follow the steps
outlined in the section Reorganization with Adabas Utilities earlier in this section. There is no
need for an user exit 6, as long as the data layout remains the same. If the data layout should be
modified too, refer the next section. All these reorganization steps are only required, if the Adabas
file layout should match the DL/I definitions. Since there is no need for this correspondence, you
may modify the DL/I definitions only using the ADL CBC utility or on the other hand you may
modify the Adabas file layout only, as described later.

Adding Key Fields and Logical Relationships

If you want to define a new sequence field or a new secondary index, you must follow the steps
outlined in the section Reorganization with ADL Utilities (Pseudo Mixed Mode) earlier in this
documentation. The same is true, if you want to add a new logical relationship to the DBD defin-
itions.

Change of the Data Layout

The data layout of a segment is usually described in the copy code of the I/O area in the applications.
A data field is a part of the I/O area and is of a specific meaning to the application. It can match a
DL/I field definition but as described earlier there is no need for this.

If changes have been made to the data layout and this new structure is to be reflected in the ADL
directory (for the Natural access or for the ADL Online System) the modified DBD definitions
have to be run through the ADL Conversion Utilities as described in the section ADL Conversion
Utilities for DBDs and PSBs. This step is required if the overall segment length has been changed
or sequence or secondary index fields have been moved or modified. In all other cases this step
is optional.

Changing the Length of a Data Field

If youwant to increase the size of a data field, the correspondingAdabas file description is import-
ant. There is one special case to be regarded:

■ The end of a data field coincides with the end of an Adabas field and the increased length of
this Adabas field does not exceed 253 bytes. In this case use theAdabasOnline System to increase
the length of that Adabas field.

In all other cases follow the steps outlined in the section Reorganization with Adabas Utilities
earlier in this section.

If you want to decrease the size of a data field there is again one special case to be regarded:

149Interfaces

Managing ADL Files

■ The end of a data field coincides with the end of an Adabas field, the length of the decreased
field is greater than zero, and the part to be omitted contains all null values. In this case use the
Adabas Online System to decrease the length of that Adabas field.

In all other cases follow the steps outlined in the section Reorganization with Adabas Utilities
earlier in this section.

Changing the length of data fields can affect the overall segment length and the start position of
all following fields. Therefore, check whether the DBD definitions have to be modified as well, as
described at the beginning of this section.

Changing the Length of a Sequence Field

If you want to change the length of a root sequence field, perform the following steps:

■ Modify the DBD and run it through the ADL CBC utility.
■ If the DBD is involved in logical relationships, run all connected DBDs through the ADL CBC
utility.

■ Use AOS to increase the length of all modified fields (compare the old ADACMP cards with
the new ones). These fields are the root sequence field (usually “AA”) and the corresponding
concatenated key fields (usually “PA” or “QA”) in all involved Adabas files.

■ If the field is involved in secondary indices, you must unload and reload the data with ADL
Utilities. See the section Reorganization with ADL Utilities (Normal Mode). If the data is not
involved in secondary indices, unload and reload of the data is not required.

If you want to change the length of a dependent sequence field, perform the same steps as for a
root sequence field. But you must always unload and reload the data with ADL Utilities to build
up the new internal pointer field (Z1).

Adding and Deleting Data Fields

A new data field can be added by increasing the length of the previous data field as described
above. Note, that in case you do not need to reorganize the data with Adabas utilities, the ADACMP
cards generated by an ADL CBC run of the modified DBD does not match the current used FDT.

Deleting a data field can be reached by decreasing the size of the data field to the length of null.
This is also outlined in the previous section.

Interfaces150

Managing ADL Files

Changing the Data Position

If a data field should be moved to another position in the I/O area the procedure described in
sectionReorganizationwith Adabas Utilitiesmust be followed. During this reorganization other
modifications can be performed like changing the field or segment lengths, add or delete fields,
etc. as described above.

Examples

Increase the length of a field

In the Instructor database 'INSTDB' there is a segment ADDRESSwhich describes the address of the
instructor. The segment was originally defined in the following way:

SEGM NAME=ADDRESS,PARENT=INSTRUCT,BYTES=60
FIELD NAME=ZIPCODE,BYTES=4,START=1
FIELD NAME=CITY,BYTES=16,START=5
FIELD NAME=STREET,BYTES=40,START=21

The Adabas group and fields corresponding to this segment and its elements are named SE, AG,
AH and AI respectively. The length of the Adabas fields are the same as those of the corresponding
DL/I fields.

Now the zip code should be increased from 4 to 5 bytes and the city field from 16 to 20 bytes.

In a first step you have to modify the DBD source:

SEGM NAME=ADDRESS,PARENT=INSTRUCT,BYTES=65
FIELD NAME=ZIPCODE,BYTES=5,START=1
FIELD NAME=CITY,BYTES=20,START=6
FIELD NAME=STREET,BYTES=40,START=26

Run the modified DBD against the ADL CBC utility as described in the section ADL Conversion
Utilities forDBDs and PSBs in theADLConversiondocumentation . This ensures that the new segment
length is known toADL. Use the Adabas Online System to increase the length of the Adabas fields
AG and AK from 4 to 5 bytes and from 16 to 20 bytes, respectively. From the view of the database
management the work is finished. Of course, now the applications have to be modified to reflect
the new layout of the I/O area for the ADDRESS segment. Depending on the task it can be required
to edit the data, for example in case of zip code data moving from 4 digits to 5 digits.

151Interfaces

Managing ADL Files

Adding a new field

The new field NUMBER containing the house number has to be added to the ADDRESS segment. The
field should be 6 bytes long and be of type character. The easiest way is to increase the STREET
field from 40 to 46 bytes. The application can use these additional 6 bytes as the house number
field.

The new DBD definition looks like this:

SEGM NAME=ADDRESS,PARENT=INSTRUCT,BYTES=71
FIELD NAME=ZIPCODE,BYTES=5,START=1
FIELD NAME=CITY,BYTES=20,START=6
FIELD NAME=STREET,BYTES=46,START=26

Run the new definition against the ADL CBC utility. Use the Adabas Online System to increase
the length of the Adabas field AI from 40 to 46 bytes. Note, that the new part of the I/O area (field
NUMBER) is initially filled with blanks.

Move fields

The field STREET (including the NUMBER data field) of the example above should be moved to the
start of the ADDRESS segment. The new DBD definition should look like:

SEGM NAME=ADDRESS,PARENT=INSTRUCT,BYTES=71
FIELD NAME=NUMBER,BYTES=6,START=1
FIELD NAME=STREET,BYTES=40,START=7
FIELD NAME=ZIPCODE,BYTES=5,START=47
FIELD NAME= CITY,BYTES=20,START=52

First unload and decompress the correspondingAdabas file, then run themodifiedDBDdefinition
against the ADL CBC utility. To generate an user exit 6 you may use the Assembler skeleton
ADLEX06 from the ADL source library. Make sure that all fields which should not be reorganized
are moved unchanged from the input to the output record. Assuming that register 5 points to the
start of SE group (segment ADDRESS) in the input record and register 6 to the same in the output
record, the following Assembler statements will reorganize the fields:

MVC 0(6,6),65(5) MOVE NUMBER
MVC 6(40,6),25(5) MOVE STREET
MVC 46(5,6),0(5) MOVE ZIPCODE
MVC 51(20,6),5(5) MOVE CITY

Assemble and link-edit the user exit. Then load the data back into Adabas with the ADACMP and
ADALOD utilities. The ADACMP utility must use the newly created user exit and the new ADACMP cards
produced by the ADL CBC utility.

Interfaces152

Managing ADL Files

Re-establishment of the Hierarchical Sequence

At an initial load the migrated data is stored in Adabas in the hierarchical sequence. Continuous
insertion and deletion of data distorts this sequential order and eventuallymay decrease the access
performance as described in section Performance Considerations in this documentation. Therefore,
it may be advantageous to re-establish the hierarchical sequence. This can be achieved by following
the steps outlined in the sectionReorganization with ADLUtilities (NormalMode) earlier in this
documentation.

Change of DL/I PSB Definitions

If any changes have been made to the DL/I PSB definitions, the modified PSB must be run against
the ADL CBC utility as described in the section ADL Conversion Utilities for DBDs and PSBs in the
ADL Conversion documentation.

Ensure that the old definition are deleted from the directory before converting the new one.

The following PSB definitions can bemodified: the processing option, the key length, the position-
ing, or the processing sequence. In addition, PCBs, sensitive segments or sensitive fields can be
added or deleted to/from the PSB. After adding new elements to a PSB which is contained in the
ADLCICS table DAZPSB, the ADL CICS tables DAZDBD and DAZBUFmust be regenerated as described
in the section CICS Installation and Operation in this documentation.

Change of the ADL Structure

At DBD conversion time it is defined on which Adabas files the segments should be stored. Later,
it may become necessary to change these definitions. If you want to move or copy the ADL files
to a new DBID/FNR combination, refer to the section Change of Adabas DBIDs and File Numbers
later in this section.

Splitting a DBD

If the segments of aDBD should be distributed over several Adabas files, the datamust be unloaded
and reloaded as described in the sectionReorganizationwithADLUtilities (PseudoMixedMode)
earlier in this documentation. Although the DBD definition did not change, it is necessary to
generate a new DBD reflecting the new structure. Use the GENSEG keyword for the ADL CBC
utility to specify, on which files the segments should be stored.

153Interfaces

Managing ADL Files

Change of Adabas DBIDs and File Numbers

TheDBID andfile number assigned to the segment types of a database during theDBD conversion
process is stored in the ADL directory. If you want to assign to an ADL file an Adabas DBID or
file number different from the one defined at database conversion time, you must run the DBD
against the ADL Control Block Conversion with the new DBID / FNR combination.

If the DBID used to store the data is the same as the DBID of the ADL directory, it is recommended
to omit the DBIDparameterwith theGENDBD function. See the exampleCreating amirror database
later in this section for details.

At the ADL Control Block Conversion a logical ID is defined for the DBD. This logical ID is used
by ADL as a part of the physical pointers reflecting the hierarchical structure of the data base.
Related segments are found based on the values stored in the physical pointers. If you want to
assign to an ADL file an Adabas DBID or file number different from the one defined at data base
conversion time, you must specify the same logical ID as with the original conversion.

For synchronization reasons it is important that all DBIDs referenced by all PCBs of a PSB are
identical. If ADL detects that this is not the case, it will abnormally terminate the application with
the error code "ADL0329".

Examples

Moving an ADL file within an ADL environment

Assume a DL/I database named "ADLDBD1" has been assigned to Adabas DBID 2 and file number
96 andwas convertedwith LOGID=1.After reorganization of the system this file should be assigned
to file number 10 on the sameDBID. Youwould have to code the following statement at the control
block conversion:

GENDBD NAME=ADLDBD1,DBID=2,FNR=10,LOGID=1

If the ADL directory is also on DBID=2, you can omit the DBID keyword (recommended). Note
that LOGID=1 is the default value. Therefore you can shorten the statement as follows:

GENDBD NAME=ADLDBD1,FNR=10

Copying an ADL file within an ADL environment

Assume a DL/I database named “ADLDBD2A” has been assigned to Adabas DBID 2 and file
number 20 and was converted with LOGID=1.

Interfaces154

Managing ADL Files

GENDBD NAME=ADLDBD2A,DBID=2,FNR=20,LOGID=1

Later the data has been unloaded and reloaded to file number 21 with Adabas utilities. Now it is
desired to access both files with one DL/I or with one Natural application through the ADL
CALLDLI or ADL Consistency Interface, respectively.

In order to do this, perform the following steps:

■ Copy the DBD source and use a new DBD name, e.g. “ADLDBD2B”.
■ Run the DBD definitions of “ADLDBD2B” through the ADL Control Block Conversion. Specify
the newDBID/FNR combination. Use the same LOGID as with the original DBD and store it on
the same ADL directory.

GENDBD NAME=ADLDBD2B,DBID=2,FNR=21,LOGID=1

Copying an ADL file to another ADL environment

Assume a DL/I database named “ADLDBD3” has been assigned to Adabas DBID 2, file number
11 and LOGID=1.

GENDBD NAME=ADLDBD3,DBID=2,FNR=11,LOGID=1

A new ADL environment has been created with its own ADL directory file and ADL nucleus
modules. The data of “ADLDBD3” has been copied to DBID 3 and file number 22 with Adabas
utilities. To access this data in the new environment perform the following steps:

■ Run the DBD definitions of “ADLDBD3” against the ADL Control Block Conversion. Store the
definitions on the new directory file. Use the same LOGID as in the original DBD. You can use
the same DBD name. Specify the new DBID and FNR at the GENDBD statement.

GENDBD NAME=ADLDBD3,DBID=3,FNR=22,LOGID=1

Creating a mirror database

Assume theADLdirectory file and all theADLfiles, which are referred in this directory, are stored
on DBID 1. Moreover at the conversion the DBID parameter was never specified for the GEND-
BD/GENSEG function.

To create a mirror database on DBID 2, unload the ADL directory file and all ADL files with
Adabas utilities from DBID 1 and reloaded them to DBID 2, assigning the same file numbers as
before. Take care that the Adabas utilities preserve the User ISNs.

There is no need to run any of the DBD definitions against the ADL Control Block Conversion
again. If no DBID is specified in the ADL directory for an ADL data file, ADL assumes that the
data uses the same DBID as the directory.

155Interfaces

Managing ADL Files

You can create a new ADL batch nucleus with the new DBID specified in the ADL parameter
module to access the new environment in batch. But you can also use the sameADL batch nucleus
for both environments. When you start a batch program, you just have to specify the DBID of the
ADL directory file as a dynamic parameter for DAZIFP as described in the section Batch Install-
ation and Operation in this documentation. Thereupon ADL will treat this DBID as the physical
DBID of all ADL files.

For CICS you have to create a new ADL CICS nucleus specifying the DBID of the new directory
file with the DAZPARMmacro.

Root-only databases

A root-only database is a database, which does not have any dependent segment type. Therefore
the LOGID parameter which is stored with dependent segments is meaningless. When you copy
or move a root database follow the rules described above for normal databases.

Change of the Adabas File Layout

All modifications described in this section concern the Adabas side, only. Changes which affect
the DL/I side as well are described in the previous sections.

The need to change the Adabas field layout of ADL files may originate from requirements of new
Natural or Adabas applications. Also, to obtain an increase in the Adabas compression rate or
performance might be a reason for modifications. You may change the Adabas layout of an ADL
file after the data base conversion within certain limitations.

Changing Adabas Group Definitions

The overall length of the Adabas groups generated for each segment type must not be altered. A
group length can only be altered as a result of a changed DL/I segment length as described earlier.

The Adabas group name corresponding to a DL/I segment is defined at the DBD conversion. If
the group name should be altered, follow the steps outlined in the section Reorganization with
Adabas Utilities earlier in this section. Use the ADANAME keyword of the GENSEG function when
running the ADL CBC utility to specify the new group name. Note that the change of one group
name can affect the group names of the following segments. There is no need for a user exit 6 at
the ADACMP run.

Interfaces156

Managing ADL Files

Changing Adabas Field Definitions

The following rules apply when attempting to alter the Adabas field definitions:

You must not alter

■ the ADL system fields (ZO .. Z8),
■ the ADL generated PCKfield and the descriptors corresponding to secondary index fields (both
are identified by a clear comment in the ADL generated input source for ADACMP),

■ the Adabas field corresponding to a sequence field.

You can alter

■ all field definitions inside the Adabas groups corresponding to segments, provided the overall
group length remains the same. This regards the number of the fields inside the group, the
length and the format of each field. Note, however, that ADL is not aware of the types of these
Adabas fields and thus errors due to invalid data supplied for numerical fields can occur. Follow
the steps outlined in the section Reorganization with Adabas Utilities earlier in this section.
There is no need for an user exit 6 (step 3), if the data layout has not been changed and as long
as the DBD has not been touched, step 2 can also be omitted. After unloading the data, modify
the ADACMP cards manually as required.

You can add

■ any newAdabas field definitions outside of the Adabas group corresponding to DL/I segments,
■ any definitions of descriptors, superdescriptors, etc., regardless whether the related fields have
been generated by ADL or not. If a descriptor is defined as UNIQUE in ADL files, be aware that
yourDL/I ISRT callsmay receive the status 'II' (segment already exists). This happens because
the CALLDLI Interface automatically transforms an Adabas response code 198 into a DL/I status
code 'II'.

Important: Please note that newAdabas fields defined outside the DL/I segment (group) are
not unloaded at the reorganization with ADL utilities.

157Interfaces

Managing ADL Files

158

13 Performance Considerations

■ Introduction .. 160
■ Data Processing and Pointers .. 161
■ Initial Load and Reload the Database .. 163
■ Using the Adabas Multifetch Feature ... 164
■ Insert and Delete ... 166
■ Splitting a DBD .. 167
■ Field Definitions ... 167
■ Enqueue Logic .. 168
■ CICS/Batch Communication .. 168
■ Application Program and DB Design .. 168

159

This chapter covers the following topics:

Introduction

The performance of DL/I applications depends on various factors:

■ The environment: The hardware, how the data is physically stored, the operating system, the
TP monitor, the number of users on the system, the number of users accessing the database
management system,whether there are batch jobs running at the same time as online applications
and more.

■ The database structure: The ACCESSmethod used, the number of hierarchical levels, the com-
plexity of the structure including logical relationships and secondary indices, the distribution
of the database over different Adabas files and more.

■ The application: The way it retrieves the data: direct (GU calls) or sequential (GN, GNP calls), the
amount of data for insert, update or delete requests, the complexity of the SSAs, the fields used
for qualifying the call and more.

Further on, there are some side-effects related to the performancewhich should also be considered:

■ The disk space required to store the data.
■ How often the database has to be reorganized.
■ How flexible the database system is, that is, how much effort it takes to change the layout of
the database.

■ How the database system affects the loading of the TP monitor.
■ What tools are available to debug performance-critical applications.

When the DL/I application runs against migrated data, two Software AG products are involved:
ADL and Adabas. For the tuning of Adabas, you should refer to the appropriate Adabas docu-
mentations, such as, the Adabas DBA Reference documentation . It helps you to optimize your
physical database layout (disk usage), the buffer pool management, the usage of Multifetch and
more. You may use Adabas facilities, such as Review, Adabas Statistics Facility and AOS/Adabas
Manager to debug performance-critical applications. You should always keep in mind that, from
theAdabas point of view, yourDL/I application is like any other applicationmakingAdabas direct
calls.

The current section explains the tuning ofADL. It describes in detail how the performance is affected
by

■ direct and sequential data processing,
■ the layout of the ADL internal pointer fields,
■ unload and reload the data with ADL utilities,

Interfaces160

Performance Considerations

■ initial load of HDAM databases,
■ Adabas Multifetch (Prefetch) feature,
■ the Multifetch table (MFT parameter) and the Record Buffer Extension (RBE parameter),
■ the last-call save area (LCS parameter),
■ mass insert by user application,
■ deletion of data,
■ splitting the segments of a DBD over several Adabas files,
■ Adabas Fastpath,
■ the field definitions,
■ the enqueue logic (ET parameter),
■ the communication between Adabas and the CICS or batch region,
■ the way your application accesses the data.

Data Processing and Pointers

Three DL/I commands are available to retrieve data:

■ Get Unique (“GU”) for direct access of specific data,
■ Get Next (“GN”) for sequential read of the whole database,
■ Get Next in Parent (“GNP”) for sequential read of a part of the hierarchy.

For the sequential read commands, DL/I supplies pointers which reflect the sequence of the pro-
cessing:

■ The hierarchic forward pointer which points to the hierarchical “next” segment, that is, the
segment which will be retrieved at the next unqualified “GN” command.

■ The physical child first and the physical twin forward pointers. These pointers are used when
processing a “GNP” command.

For the direct access of data, DL/I treats the root segment differently from the others.

■ The root segment is handled by the appropriate ACCESSmethod, for example, VSAM if this was
specified at the DBD generation.

■ Dependent segment data is searched by running through the pointers, that is, for each level, the
physical child first pointer is used to get the first occurrence of the segment type wanted, and
then the physical twin forward pointer is repeatedly used until the specified data occurrence is
reached.

161Interfaces

Performance Considerations

In order to reflect the hierarchical structure, ADLmainly uses one field, the ADL physical pointer
field Z1 which is defined as a unique Adabas descriptor. In fact it is a “descriptor” rather than a
“pointer” because it describes its own position instead of pointing to other data. In addition to the
Z1 field, the root sequence field is defined as a descriptor too (the “root descriptor”).

The layout of the ADL physical looks like:

AppendageSegment Sequence FieldParent ISNSegment NumberParent Logical IDField

variablevariable411Length

The Logical ID and segment number are each 1 byte long, the Parent ISN is 4 bytes long, the length
of the sequence field is defined by the DBD definition and the appendage has a variable length.
If the segment sequence field is not unique or does not exist at all, the appendage is generated to
make the Z1 field unique. The Z1 field can be up to 126 bytes long. Tominimize the space require-
ments, an appendage as short as possible is used.

Note: The layout of the ADL physical pointer field has been changed with ADL 2.3. The
former DBID (1 byte) and FNR (1 byte) have been replaced by the Logical ID (1 byte); and
the parent ISN has been increased from 3 bytes to 4 bytes. ADL 2.3 uses only one layout of
the ADL physical pointer where the segment number is in front of the parent ISN corres-
ponding to the ADL 2.2 “SEQ=SEG” layout.

For the direct access of data, ADL treats the root segment differently from the others (like DL/I):

■ On the root level, ADL makes use of the root descriptor.
■ For dependent segments, the Z1 field is used.

For each level, an L3 or L9 call is issued, depending whether the data is wanted (for path call or
lowest level) or not. The start value for these calls is built up for dependent segments from the
already known Logical ID and ISN of the parent and from the requested segment number. If the
SSA searches for a specific sequence field value (with “greater” or “equal”), this value is included
in the start value too. In this case, the value on that level can be accessed directly; no run through
a pointer queue is required.

Sequential reading of the root segment data is handled by sequential reading of the root descriptor.
Sequential reading through the hierarchy cannot be translated into oneAdabas sequence. For each
(sensitive) segment, there is one Adabas sequence (one command ID). To read the first occurrence
in a twin chain, ADL makes a value start call, where the sequence field part of the Z1 field in the
value buffer is supplied with a minimal value.

To retrieve the next occurrence in the twin chain, ADL continues reading in the Adabas sequence.
Since there is no information which says how many records are in the twin chain, ADL has to
check whether the retrieved record belongs to the current twin chain. This is done by checking
whether the Logical ID, segment number and ISN match those requested. This has the effect that
ADL reads one record too many at the end of a twin chain. This additionally-read record is used
by the last-call save area as described later.

Interfaces162

Performance Considerations

Initial Load and Reload the Database

The data is initially loaded to the ADL files with the Adabas utilities ADACMP and ADALOD. The
physical sequence in which it is loaded is defined by the unload utility, usually DAZUNDLI (see the
sectionADLData Conversion Utilities in theADL Conversion documentation for more information).
This utility reads the data in the hierarchical sequence, that is, for each root, it reads all dependent
segments before it accesses the next root. Therefore, the loaded data is in the hierarchical sequence
too. This means that, if a root segment is on one data block, then the dependents will be on the
same block, the next root also, and so on, depending on how many records can be stored on one
data block.

An application which reads the data in the hierarchical sequence can therefore issue many DL/I
calls before the next physical I/O is required. This is, of course, only true as long as the data is in
the hierarchical sequence. When new data is inserted and old data deleted, it comes more and
more out of that sequence. If you notice a considerable decrease in performance, you should think
about restoring the database. Restoringwith Adabas utilities makes no sense, because Adabas has
no idea about the hierarchy which is inherent in your data. The easiest way is similar to the initial
load: unload the database with DAZUNDLI and reload it with ADACMP and ADALOD. In this case,
DAZUNDLI runs as a normal (that is, not mixed mode) application, as described in the section
ManagingADLFiles in this documentation. This brings the data back to the hierarchical sequence.

Additional considerations should be made when initially loading a randomized database, such
as, an HDAM database. Root segments are retrieved by DL/I in the randomized sequence. When
reading with ADL, they are accessed in the sequence of the root sequence field. If these two se-
quences do not match, you may notice poor performance for sequential reads. In this case, you
should load the data in the root key sequence, as described in the section Unloading a HDAM
Database in the ADL Conversion documentation.

The unload utility, DAZUNDLI (or DAZREFOR), also assigns the Adabas ISNs which are used when
the data is loaded into the Adabas file. Therefore, after an initial load or restoring of the data, the
ISNs reflect the hierarchical sequence too. The sequence of the ISNs is only important when the
last-call save area (LCS) is used (described below). This feature works best when the ISNs are in
the hierarchical sequence. Thus, if the LCS is used, restoring of the data with ADL utilities should
be considered if the ISNs are out of the hierarchical sequence for the most part.

163Interfaces

Performance Considerations

Using the Adabas Multifetch Feature

The Adabas Multifetch feature reduces the communication overhead between the application
program and the Adabas nucleus for sequential reads. See the Adabas Operations documentation
for more information. The Multifetch feature is similar to the Prefetch feature. If not otherwise
stated, we use Multifetch as a synonym for Multifetch and Prefetch.

The Multifetch feature is activated for batch applications by specifying the ADARUN PREFETCH=YES
parameter. The number of sequences (command IDs) which are multifetched is defined by the
keywords PREFTBL (total buffer length) and PREFSBL (single buffer length), exactly PREFTBLdivided
by PREFSBL. This number has to be evaluated very carefully. Multifetching “bad” sequences can
considerably decrease the performance. For example, an L3 sequence with many value-restarts
(“V” option) is bad, becauseMultifetch throws away the data of the corresponding buffer at every
restart. The Multifetch buffers are occupied by the sequences which are used first, that is, the first
CID uses the first buffer, the second the next one, and so on. You can exclude specific command/file
number combinations fromMultifetch by specifying the PREFXCMD and PREFXFIL keywords. Note
that an Adabas OP (open) command refreshes all the buffers.

The ADL parameters RBE and MFT can be used to restrict the number of multifetched records for
a specific PCB/SENSEG combination. (See the section ADL Parameter Module in the ADL Installation
documentation for a detailed description.) Here we have to distinguish between Multifetch and
Prefetch. The MFT can only be usedwith theMultifetch feature and, in this case, you are recommen-
ded to use it instead of the RBE.

With the Multifetch Table (MFT), you can explicitly specify the number of multifetched records.
For an unspecified PCB/SENSEG combination, themaximumnumber of recordswill bemultifetched.
If you want to multifetch not the maximum number but a smaller amount, you should specify an
MFT entry for this PCB/SENSEG combination. Because of the double buffering of Multifetch,
Adabas will return twice as many records as you specify. To minimize the amount of returned
data for a specific sequence you should specify a value “1”, whichwill result in 2 returned records.

With the Record Buffer Extension (RBE) parameter, you can increase the record- buffer length for
specific PCB/SENSEG combinations. This has the effect that fewer records fit into the the ISN buffer
for the corresponding Prefetch call. Thus, the fewer records you want to prefetch, the bigger the
corresponding RBE entry should be. To retrieve the maximum number of records for a specific
PCB/SENSEG combination, you should omit the corresponding RBE entry.

The use of Multifetch for migrated data requires knowledge of the application and of how ADL
translates the DL/I calls into Adabas calls. With the ADL trace facility, you can obtain this inform-
ation (see the sectionDebugging Aids - ADL Trace Facility. It lists you the DL/I calls of the application
and the resulting Adabas calls. From this list, you can see, for example, that a GU call is translated
into an Adabas “L3” with value-start. Therefore the corresponding CIDs are bad candidates for
Multifetch. On the other hand, if a root segment is read sequentially (GN calls), there is one value-
start at the first call and then no other restart. Therefore, you can multifetch this sequence.

Interfaces164

Performance Considerations

With the last-call save area (LCS), the record last retrieved is saved. This feature can be activated
by specifying the LCS parameter, as described in the section ADL Parameter Module in the ADL
Installation documentation. If an application program reads the same record twice or more, only
one Adabas call will be issued by ADL because it finds this value in the LCS. But the main import-
ance of the LCS is when reading sequentially through dependent segments.

As described earlier, ADL makes a value-start call at the beginning of each twin chain. Then it
reads sequentially through the chain until it finds one record that does not belong to the chain.
Now, under certain circumstances, it can happen that this additionally read record is the first record
of the next twin chain of the same segment type. In this case, the LCS preserves ADL for reading
the same record twice. Since this saved call was the call with the value-start, a sequential read (GN
or GNP) through a dependent segment type is translated into sequential Adabas reads without
intermediate restarts. Therefore, you can use the Multifetch feature for dependent segments too.
The remaining questions are: which record does ADL find after the end of a twin chain and under
which condition is this record the first of the next twin chain for the same segment type? The se-
quence in which ADL retrieves the data is determined by the layout of the ADL physical pointer
fields, which is described earlier in this section.

The Z1 physical pointer field sorts the data in the sequence “segment number / parent ISN”. In
general, the record found after the end of a twin chain is from the same segment type with the
next higher parent ISN. If this ISN belongs to the next parent, the record found is the first of the
next twin chain. Therefore, the ISNs should match the hierarchical sequence. This is true after an
initial load of the data or after a restore. If the ISNs are mainly out of the hierarchical sequence,
you should reestablish the hierarchical sequence as described in the sectionManaging ADL Files
in this manual. If you do not want to reestablish the hierarchical sequence by any reason, adjust
the number of multifetched records with the MFT or RBE parameter or avoid multifetching those
sequences at all.

Summary

■ Do not use Multifetch for direct reading (“GU”).
■ Use Multifetch for sequential reading of root-segment data.
■ Use the last-call save area (LCS) and Multifetch for sequential reading of dependent data.
■ Do not use Multifetch for sequential reading of dependent data if you do not use the last-call
save area (LCS).

■ Adjust the number ofmultifetched/prefetched recordswith the MFT or RBEparameter, respectively.
■ Check with the ADL trace facility or with Adabas utilities whether the data and ISNs are still
in the hierarchical sequence. If required, restore the databasewithADLutilities, so that the ISNs
match the hierarchical sequence again.

165Interfaces

Performance Considerations

Insert and Delete

ADL/I insert request ("ISRT") is translated by ADL into an Adabas N1 call. A special case is given
when loading the database. For the initial load during the conversion process, the datawhich have
been unloaded by ADL utilities are loaded into Adabas with the Adabas utilities ADACMP and
ADALOD. ADACMP requires the ADL user exit DAZUEX06.

Another way of initially loading data is using insert calls by a user application against a PCBwith
PROCOPT=L. This insert call must be qualified with one SSA which specifies the segment to be in-
serted but no other qualification. The data must be inserted in the hierarchical sequence. How
such an insert call is treated by ADL depends on the setting of the LOAD parameter.

If LOAD=DIRECT is specified, an Adabas N1 call is issued, as with any “normal” insert against a
PCB with PROCOPT=I.

If LOAD=UTILITY is specified, the data is written to a sequential file. It has the same layout as the
data generated by the ADL data conversion utilities. It is loaded into Adabas with ADACMP (with
the ADL user exit) and ADALOD.

Which of these two methods should be used depends on the amount of data to be loaded. If it is
only a small amount of data, the easiest way is to load it directly into Adabas. If, however, there
is a lot of data to be loaded, you are recommended to use the Adabas utilities, because the utilities
are considerably faster than a direct insert.

ADL/I delete request ("DLET") is translated byADL into Adabas E1 calls for the specified segment
occurrence and all its dependents. Normally, DL/I does not really delete the data; it sets a flag
which indicates that the record is “deleted”. When retrieving the data, DL/I has to run through
such “deleted” data, because the pointers are still there. Therefore, the DL/I database has to be
reorganized to get rid of that garbage and to release the corresponding storage.

When Adabas deletes a record, the storage is released immediately. This takes more time than just
setting a flag and youmay notice an increased time, especially formass deletes by user applications.
On the other hand, there is no running through “deleted” data and no requirement for a reorgan-
ization to release the storage.

Interfaces166

Performance Considerations

Splitting a DBD

With the GENSEG statement of the ADL CBC utility, you can distribute the segments of a DBD
to multiple Adabas files.

The following reasons for splitting a DBD are related to performance.

■ If the application accesses some segment types and not others, splitting will reduce the number
of physical I/Os. This is because more of the accessed data fits on one data block, since the in-
formation not requested is no longer stored with it.

■ If some of the segments contain constant data like tables, which are often read but not updated,
you can use Adabas Fastpath especially for these files.

■ For some requests, you can use Adabas utilities if the segment is separated. For example, if you
want to delete all the data of a dependent segment type, you can refresh the corresponding
Adabas file.

But splitting a DBD can also have disadvantages:

■ The initial load will consume more time, because the ADL user exit always has to process the
whole DBD data.

■ If your application accesses segments that reside on different Adabas files, it probably requires
more physical I/Os. If it reads, for example, one root segment occurrence and all its dependents,
at least one I/O is performed for eachAdabas file. As long as your application reads sequentially
through the data, this will not lead to any problem. This is because Adabas will find the sub-
sequent data in the buffer pool and therefore, the total number of I/Os will not increase. If,
however, it reads the data out of sequence, the number of I/Os is multiplied by the number of
Adabas files accessed.

Field Definitions

The fields are primarily defined in the DL/I DBD source. As described in the section Conversion of
the Data Structure - General Considerations in the ADL Conversion documentation , you can change
the default Adabas field specifications before or during the conversion process. One reason for
such a modification can be better compression. The more the data is compressed, the fewer I/Os
are required. However, the compression itself also needs some time. Therefore, if you add new
field definitions for “better” compression, but, in fact, there is nothing to compress, you keep
Adabas occupied with unnecessary work

If a Natural program accesses all the data of one segment, the corresponding format buffer (FB)
contains all Adabas fields that build up the Adabas group related to the segment. More field
definitions require more time for the format buffer translation. This is especially the case if the

167Interfaces

Performance Considerations

call has to be handled by the ADL Consistency Interface, since the format buffer translation of
ADL is not as sophisticated as of Adabas.

Enqueue Logic

Batch applications which run in multi-user or shared-database (so called “online batch”) mode
should supply their own enqueue logic. Nevertheless, you can run a program in online batch, al-
though it was originally designed to run in normal mode. ADL guarantees the integrity of the
data by putting each accessed root record into hold. If the application does not make checkpoints,
the Adabas hold queue will soon be full. For this situation, ADL offers the automatic-ET feature,
which is controlled by the ET parameter described in the ADL Installation documentation , section
ADL ParameterModule. Because each ET call consumes some time, you should set the ET parameter
to a value right below the critical value where an Adabas hold queue overflow would occur.

Under CICS, ADL puts each accessed root record into hold, as in online batch. It is released as
soon as the next root record is accessed if there was no update on that hierarchy. Here, the ET
parameter helps you reduce the number of RI calls. The records not released remain in hold status
until the next syncpoint or terminate call is issued. This may lead to situations where other users
have to wait for such records or, fatally, to deadlock situations. If, however, your application
avoids such situations, you can adjust the ET parameter to save the time for the RI calls.

CICS/Batch Communication

Usually, DL/I runs in the same region/partition as the user application. This saves interregion
communication. On the other hand, it loads the online system, especially when big buffers are
required on smaller machines. In addition, if batch applications access online databases, the CICS
system has to forward the calls to the “online” DL/I. Adabas runs in its own region/partition (if
not in single user mode), Therefore, you have the overhead of the interregion communication, but
the online system is relieved of the database management system and, of course, no batch request
must be handled by CICS.

Application Program and DB Design

A good programming style is a general task and not directly related to a conversion. However,
some problems become obvious when you are using features of ADL or Adabas. If, for example,
you see oneDL/I call in theADL tracewhich is translated intomyriads of Adabas calls, you should
not hesitate to take a look into your application program or into the DB design. Changes in this
area would help DL/I as well as ADL. In addition, if your application makes one million calls too

Interfaces168

Performance Considerations

many, you can tune your database system as much as you like, but you will never get rid of these
superfluous calls in this way.

The examples that follow are far from complete. Most of them have been seen on real sites. They
should give you an idea of what can be done wrong and how to make things work better.

Examples

Non-descriptor Search

In a qualified SSA, a normal field is used for searching, that is, no sequence field and no
secondary index field.

Description:

This is a “non-descriptor search”. For a root segment, the range of the search extends from
the first record to the end of the database. For dependent segments, it is restricted to the

Effect:

children of one specific parent occurrence. The search stops if a record fulfils the qualification;
otherwise, it runs until the end of the range is reached.

Use, as far as possible, the sequence field or an already existing secondary index. Otherwise,
define a new secondary index which specifies the field from the SSA as search field.

Action:

Wrong Key

In a qualified SSA for a root segment, the primary key is used, but the PCB specifies an alternate
processing sequence.

Description:

This is also a non-descriptor search, as in the previous example. If a "PROCSEQ" statement is
specified in the PCB definition, the only usable key field is the corresponding secondary index
field. All the other fields, including the primary key, are treated like non-descriptors.

Effect:

Use a PCB without an alternate processing sequence.Action:

Second-level Qualification

The SSA specifies two levels: the first level is not qualified but the second level is qualified.Description:

This is a non-descriptor search on the first level. It stopswhen the correct second-level segment
is found or at the end of the database.

Effect:

Define a secondary index on the second-level segment and use this in the call.Action:

169Interfaces

Performance Considerations

Retrieve same Data

The application program issues a path call over two levels. The first level always specifies the
same segment occurrence.

Description:

The first-level segment occurrence has to be read for each call.Effect:

Once the first level is read, avoid reading it again. You can specify only the lowest-level segment
or make no path call.

Action:

If you use the last-call save area (LCS), the record is saved in the LCS buffer. For the repeated
read, the value of the LCS is taken and the overhead is minimized.

Note:

Concatenated Segment

In a concatenated segment, the sequence or any other field of the destination parent is used
for the qualification in the SSA.

Description:

This is a non-descriptor search.Effect:

The only key field you can use for concatenated segments is the sequence field of the logical
child segment.

Action:

No Sequence Field

A qualified SSA is used for a dependent segment, but this does not have a sequence field.Description:

This is a non-descriptor search.Effect:

Define a (non-unique) sequence field for the field used in the SSA.Action:

Read in Sequence

The application reads the data in the sequence of the sequence field, but it uses qualified direct
reads, such as:
GU ROOT (SQF = 1) GU ROOT
(SQF = 2) GU ROOT (SQF = 3)
This can be, for example, in an HDAM database, where the randomized sequence does not
match the key-field sequence.

Description:

Each call is translated into an Adabas call with value-start. Multifetch can not be used. In
addition, if there are gaps in the data, a lot of unnecessary calls are issued.

Effect:

Read the data with GN calls and an unqualified SSA, such as
GN ROOT
Under this condition, you can use Multifetch. This also works for HDAM databases, since
ADL always returns the data in the sequence of the sequence field.

Action:

Interfaces170

Performance Considerations

Segments without Data

An application makes unqualified GN or GNP calls and some of the sensitive segments in the
PCB are never supplied with data.

Description:

, one Adabas call is issued, in order to realize that there is no data of that segment type under
this parent.

Effect:

Use qualified calls or do not specify the sensitive segments in the PCB.Action:

If you use the last-call save area (LCS), the next record is saved in the LCS buffer.When reading
the empty segment, ADL realizes from the value saved in the LCS that there is no data for this
segment and the overhead is minimized.

Note:

171Interfaces

Performance Considerations

172

14 Recovery and Restart Procedures

■ Introduction .. 174
■ Extensions and Restrictions ... 174
■ Adabas User Types .. 175
■ Automatic ET Calls Issued by ADL .. 179
■ Restart/Recovery Logic under ADL ... 180
■ ADL Actions for Basic and Symbolic Checkpoints ... 185
■ How to Restart a Batch Program ... 186

173

This chapter covers the following topics:

Introduction

This section describes how the Adabas Bridge for DL/I (ADL) handles DL/Icheckpoint calls and,
in the case of an abnormal end to a program, how the database can be recovered and the application
program restarted.

Note that the recovery and restart logic and procedures forNatural applications or programs using
direct Adabas calls are not affected by ADL.

In DL/I, an application program may set checkpoints using the CHKP call. This results in the con-
firmation of all changes to the database made by the program up to this point. In addition, under
z/OS, the XRST routine allows the use of “symbolic checkpointing”, with which user data may be
saved for each checkpoint. These data can later be used to restart the program, should it have
terminated abnormally.

The ADL reproduces the full functionality of the DL/I XRST and CHKP calls and thus provides
complete restart and recovery capabilities.

Adabas provides two basic methods of checkpointing:

■ ET (“end of transaction”) logic, intended to be used for updating files concurrently, and
■ C1 checkpoint calls, intended to be used by programs which use files exclusively.

Both the ET and C1 checkpoint methods are used by ADL.

Extensions and Restrictions

Symbolic checkpointing is also possible under z/VSE, thus allowing full recovery/restart capabil-
ities.

The following restrictions apply to ADL:

■ The use of time stamps instead of checkpoint identifiers is not supported.
■ OS/VS checkpoint requests are not supported.
■ (for IMS/TP BMP only) "LAST"may not be used to indicate that the program is to be restarted
from the last issued checkpoint. Instead, establish the checkpoint identifier of the last issued
checkpoint using the messages on the DAZOUT1 file, and then supply this for the XRST call.

Interfaces174

Recovery and Restart Procedures

Adabas User Types

Asmentioned above, the restart/recovery logic used byAdabas in a given situationmainly depends
on how an application program accesses the data base. Three user types are distinguished: access-
only users (ACC), exclusive file users (EXU) and ET logic users (UPD). ADL uses all of these:
which type will be used in a given situation depends on the following features:

■ the operational environment;
■ the mode in which the application program is run (the first three characters in the parameter
statement);

■ how the files in the data base are accessed (read only, update), as determined by the PSB specified
for the program; and

■ the method of (DL/I) checkpointing used (without checkpointing, basic checkpointing or sym-
bolic checkpointing).

The following tables show howADL applies the Adabas user types and checkpoint methods, e.g.
the last column in the first table means

■ 1st table: “STA” is specified for DAZIFP, i.e. the program runs as “stand-alone”.
■ Last block “Update”: The program makes updates.
■ Last column in block “Symb”: The program uses symbolic checkpointing.

Under these conditions, ADL runs the program asAdabas “EXU”user (indicated in the third line),
it issues no ETs (forth line) but uses “C1” commands (fifth line) for the ADL checkpoint method.

Normal Batch Programs

Two situations may be distinguished:

■ where “STA” has been specified as the first positional parameter for DAZIFP
■ where “DLI”, or “IMS” has been specified as the first parameter for DAZIFP

175Interfaces

Recovery and Restart Procedures

With "STA"

Interfaces176

Recovery and Restart Procedures

With "DLI", or "IMS"

The advantage of using the "STA" parameter for normal batch programs is that no ET calls have
to be issued. However, other application programs also using symbolic checkpoints cannot run
concurrently. This is because STA programs use the ADL directory file as exclusive (EXU) users.

177Interfaces

Recovery and Restart Procedures

SDB, BMP (z/OS) or MPS (z/VSE) Programs

Interfaces178

Recovery and Restart Procedures

CICS or IMS/TP Message Region

Automatic ET Calls Issued by ADL

Adabas ET logic allows concurrent processing of one ormore files bymore than one user. All records
which are updated by a program are held in a queue and may not be updated by any other user
until the program issues an Adabas ET call. This results in a confirmation of all updates made by
the program and the release of the held records. However, the use of ET logic for programs (e.g.
batch programs) which use files as exclusive users or which do not update these files is not recom-
mended.

If ET calls are not issued often enough, the Adabas hold queue for update records may overflow,
resulting in a fatal error. On the other hand, ET calls should not be issued too frequently, in order
to avoid unnecessary buffer flushes.

ADL includes an option to issue ET calls automatically. The actual procedure performed depends
on the program type and the operational environment.Automatic ETswill be issued in the following
cases:

■ Normal Batch and SDB, BMP (z/OS) or MPS (z/VSE) Programs
ADL issues ET calls automatically. The ET parameter providedwhen creating theADLparameter
module (see the section ADL Parameter Module in the ADL Installation documentation) or as a
keyword for DAZIFP, determines the number of changes which can bemade to the root segment
position in the database (summarized over all PCBs in the PSB) before an ET call is automatically
issued. For some batch programs it may be desirable not to issue ET calls at all. This can be
achieved by specifying "ET=NO".

179Interfaces

Recovery and Restart Procedures

■ IMS/TP
ADL automatically issues an ET call each time the application program issues a GU call on the
I/O PCB.

■ CICS Environment
Under CICS, all users are ET logic users and ADL will automatically issue an ET call in two
situations:
■ where the application program issues an explicit termination call, and
■ every time an implicit termination call is taken (i.e. at the end of a task).

When a program terminates abnormally, an Adabas BT call is issued and all database modifica-
tions made by this program are backed out.

If OPENRQ=YES has been specified when assembling the parameter module DAZPARM, ADL
will issue an Adabas "OP" each time a scheduling call is received, and a "CL" for the termination
call.

Restart/Recovery Logic under ADL

The figures on the following pages explain how ADL uses restart/recovery logic for different
program types and operational environments.

Normal Batch Programs

Two situations may be distinguished:

■ with "STA" as the first positional parameter specified for DAZIFP
■ with "DLI" or "IMS" specified as the first parameter for DAZIFP

These two cases are described in the tables below.

Interfaces180

Recovery and Restart Procedures

With "STA"

In the case of basic checkpointing, it is recommended that DLI or IMS be used instead of STA as
the first parameter for DAZIFP to avoid the ADL directory file being in exclusive mode.

181Interfaces

Recovery and Restart Procedures

With "DLI", or "IMS"

Interfaces182

Recovery and Restart Procedures

SDB, BMP (z/OS) or MPS (z/VSE) Programs

183Interfaces

Recovery and Restart Procedures

CICS

Interfaces184

Recovery and Restart Procedures

IMS/TP Message Region

ADL Actions for Basic and Symbolic Checkpoints

Normal Batch and SDB/BMP/MPS Programs

With a CHKP call, the following message is written to the DAZOUT1 file:

'DAZCHKP - CHECKPOINT WRITTEN. DATE: dd/mm/yy TIME: hh/mm/ss FOR PROGRAM progname
WITH CHECKPOINT-IDENTIFIER chkpiden'

where

185Interfaces

Recovery and Restart Procedures

is the actual date,dd/mm/yy

the actual time,hh/mm/ss

the name of the application program,progname

the eight-character checkpoint identifier as passed to the CHKP call.chkpiden

If the symbolic checkpoint call is used, up to seven data areas are stored on the ADL directory file.
The checkpoints on the latter are identified by the name of the program and the eight-character
checkpoint identifier.

Finally, ADL issues an ET and/or a C1 call. In theAdabas checkpoint table, the checkpoints associated
with the C1 call are identified by the checkpoint name "CHKP". Please refer to the Adabas Utilities
documentation for details on how to obtain and read the Adabas checkpoint table.

If a program ends normally, the corresponding checkpoint entries on the ADL directory file will
be deleted. If a program ends abnormally, these entries will be deleted after the program has been
restarted. An abnormally ended program which is never restarted will thus produce garbage in
the directory file. In order to clear the ADL directory file, run a dummy program containing only
an XRST call. This dummy program must have the same name as the abnormally terminated
program.

Alternatively, you can list and delete the checkpoint entries in the ADL directory with the ADL
Online Services as described in the section The ADL Online Services in this documentation.

CICS and IMS/TP

ADL issues an ET call for each CHKP call.

In all cases, the current position in the data base will be deleted after a CHKP call. In the case of a
restart, the position is NOT reestablished after an XRST call.

How to Restart a Batch Program

To restart a batch program, perform the following five steps:

Step 1

Use the output of the application program on the DAZOUT1 file to find the checkpoint identifier
and the date and time of the checkpoint at which you want to restart your program.

Step 2

Find the corresponding protection log number and block number of the desired checkpoint in the
Adabas checkpoint table. This table may be obtained using the Adabas ADAREP (report) utility. See
the Adabas Utilities documentation for more details.

Interfaces186

Recovery and Restart Procedures

Step 3

Make a copy of the protection log file using the Adabas ADARES (restart) utility with either the COPY
or the PLCOPY function, for single or dual protection logging respectively. The following ADARUN
and ADARES statements are provided as an example (dual protection logging was active):

ADARUN input statement:

ADARUN PROGRAM=ADARES,MODE=SINGLE

ADARES input statement:

ADARES PLCOPY DUALPLD=3350

See the Adabas Utilities documentation for more details.

Step 4

Restore the entire data base or one or more of its files to the state in effect when the desired
checkpoint was taken, using the Adabas ADARES utility with the BACKOUT function. The following
ADARUN/ADARES input statements are provided as an example.

ADARUN input statement:

ADARUN PROGRAM=ADARES,MODE=SINGLE

ADARES input statement:

ADARES BACKOUT FILE=37,PLOGNUM=8,TOCP=CHKP,TOBLK=19

File 37 is restored to the checkpoint which is found on protection log file 8 in block 19 (all check-
points issued by ADL are named CHKP). Please refer to the Adabas Utilities documentation and
the Adabas Operations documentation for more details.

Step 5

Restart your program. The eight-character checkpoint identifier may be supplied either with the
CPID keyword for DAZIFP or in the I/O area referenced by the XRST call in the application program.
If bothmethods are used at the same time, the value providedwith the CPID keywordwill be used.

If the checkpoint is not found on the ADL directory file, or if the XRST call requests more data than
have been previously stored with the CHKP call, ADL will issue an error message and abend the
application program immediately.

187Interfaces

Recovery and Restart Procedures

188

15 Appendix A - DAZZLER Test Stream

189

COM **
COM * THIS DAZZLER STREAM IS DESIGNED TO PROVIDE EXAMPLES *
COM * OF THE USE OF THE VARIOUS STATEMENTS (BOTH *
COM * OPTIONAL AND MANDATORY) THAT CAN BE USED. *
COM **
COM *
COM * All these comment statements (indicated as so by the 'COM' in
COM * the first three positions) are ignored by the program,
COM * as are any blank statements like the ones following:

COMment statements do not have to have a blank/asterisk (' *') in
COM positions 4 and 5 and are not printed. In addition, as no
COM statement contains information after position 66, it is possible
COM to code printable comments in positions 67 - 80 inclusive.

COM * In these examples, comments PRECEDE the actual coding, and
COM * blank statements have been inserted for ease of reading.
COM *
COM **

COM **
COM *
COM * 1) The first decision to be made concerns the
COM * printer. Some consideration should be given
COM * to the volume and required content. Many options
COM * are available. The default values assumed if
COM * this statement is not present are that dates take the
COM * format dd/mm/yy and that all lines should be
COM * printed with an automatic page-throw before each
COM * set of statements. The following example suppresses the
COM * automatic page-throw, prints dates as mm/dd/yy
COM * and only prints the 10675th and 10676th calls in
COM * detail.
COM *
COM * The program always prints every statement read, with
COM * the exception of comment or blank statements, plus
COM * a last page showing the total number of calls made.
COM *
COM **

PARUS>PF1067501

COM **
COM * As a reminder, all the preceding statements in this example
COM * are totally optional and, if the default settings for the
COM * PAR statement above were required, then nothing need
COM * have been encoded.
COM **

Interfaces190

Appendix A - DAZZLER Test Stream

COM **
COM *
COM * 2) The following example shows the use of the
COM * iterative function on the header statement and the use
COM * of both types of overwrite statement.
COM * Reading from the left, the header statement specifies
COM * the following:
COM *
COM * Do an 'ISRT' call 9 times in succession using PCB1
COM * with 1 SSA, iteratively increasing the number from
COM * its start value of 100 by 100 and overwriting the
COM * I/O Area in position 14 for a length of 5 and in
COM * position 95 for a length of 4.
COM *
COM * The next statement causes the first SSA to have the
COM * segment name in positions 1 to 8 inclusive (all
COM * segment names are 8 characters long and left-justified)
COM * followed by 42 spaces. The default format (character
COM * format) is used as no entry was made in positions
COM * 5 to 8 inclusive. For the same reason, this default
COM * also applies to the remaining IOA statements.
COM *
COM * These last four statements cause the I/O Area to be set
COM * up for a total of 170 characters. The NNNNN entries
COM * will be iteratively overwritten by the values from
COM * the *HD statement.
COM *
COM * Note that the order of the five statements following
COM * the *HD statement is immaterial: the same results are
COM * achieved no matter what order they are specified in.
COM *
COM **

*HD ISRT 009 01 01 00100 00100 0145 0954
S01 001 50 ITEMID
IOA 001 50 ITEMID/MITEM/NNNNN*...............................
IOA 051 50ITEMID/MMACD/*NNNN**
IOA 101 50 ...END OF
IOA 151 20 SEGMENT ITEMID --->:

COM **
COM *
COM * 3) The following example shows a single call
COM * ('ISRT') using two SSAs.
COM * The *HD statement specifies an insert using PCB1 and 2
COM * SSAs.
COM * The two SSAs and the IOA are created as explained
COM * above in the second step.
COM *
COM **

*HD ISRT 01 02

191Interfaces

Appendix A - DAZZLER Test Stream

S01 001 50 ITEMID (MITEM = ITEMID/MITEM/00100*)
S02 001 50 LAGER
IOA 001 50 THIS IS A LAGER SEGMENT THAT CONTAINS NO SEQUENCE
IOA 051 50 FIELD WHATSOEVER - HOWEVER FOR INTERNAL CONTROL PU
IOA 101 50 RPOSES -0101- END OF SEGMENT LAGER --->:

COM **
COM *
COM * 4) The following example shows a single call
COM * ('GHU') using two SSAs.
COM * The *HD statement specifies a 'GHU' using PCB1 and 2
COM * SSAs.
COM * The two SSAs are created as explained
COM * above in the second step.
COM *
COM **

*HD GHU 01 02
S01 001 50 ITEMID (MITEM = ITEMID/MITEM/00700*)
S02 001 50 PRODST (SPKEY = ITEMID-00700/SPKEY-701*****)

COM **
COM * 5) POSITION AT BEGINNING AND PRINT THE LOT
COM *
COM * This is achieved by issuing an unqualified get
COM * unique which automatically retrieves the first
COM * segment in the data base and follows this with
COM * successive get nexts until the end of the data
COM * base is reached. This condition is indicated
COM * by a status code of 'GB'.
COM * The two *HD statements are translated as follows :
COM * Issue a 'GU' using PCB1 and then issue a 'GN',
COM * also using PCB1. Keep issuing a 'GN' call
COM * until a status code of 'GB' is returned in the
COM * PCB.
COM *
COM **

*HD GU 01
*HD GN GB 01

COM **
COM * LAST) PRINT THE NUMBER OF EACH TYPE OF SEGMENT
COM * ACCESSIBLE BY PCB3
COM *
COM * Internally, this statement will cause an unqualified
COM * GU on PCB3 to be issued, thus positioning at
COM * the beginning. Unqualified GNs are then issued
COM * until a status code of 'GB' is returned in the
COM * PCB. This is apparently the same as the previous

Interfaces192

Appendix A - DAZZLER Test Stream

COM * two *HD statements in combination (but on a different
COM * PCB), but the SUMMARY statement does not print out
COM * each segment as it reads it. Instead, it only
COM * prints the summary table at the end.
COM **

SUMMARY 03

COM **
COM *
COM * As all blank statements and comment lines are ignored by
COM * DAZZLER, the identical results from the stream above
COM * would be achieved by the stream which now follows.
COM *
COM **

PARUS>PF1067501
*HD ISRT 009 01 01 00100 00100 0145 0954
S01 001 50 ITEMID
IOA 001 50 ITEMID/MITEM/NNNNN*...............................
IOA 051 50ITEMID/MMACD/*NNNN**
IOA 101 50 ...END OF
IOA 151 20 SEGMENT ITEMID --->:
*HD ISRT 01 02
S01 001 50 ITEMID (MITEM = ITEMID/MITEM/00100*)
S02 001 50 LAGER
IOA 001 50 THIS IS A LAGER SEGMENT THAT CONTAINS NO SEQUENCE
IOA 051 50 FIELD WHATSOEVER - HOWEVER FOR INTERNAL CONTROL PU
IOA 101 50 RPOSES -0101- END OF SEGMENT LAGER --->:
*HD GHU 01 02
S01 001 50 ITEMID (MITEM = ITEMID/MITEM/00700*)
S02 001 50 PRODST (SPKEY = ITEMID-00700/SPKEY-701*****)
*HD GU 01
*HD GN GB 01
SUMMARY 03

193Interfaces

Appendix A - DAZZLER Test Stream

194

16 Appendix B - z/OS Dataset Usage

The following table provides a complete list of all the z/OS input and output data sets used by the
ADL Interfaces.

Storage MediumDSORGRECFMLRECLBLKSIZEDDname

READERPSF80DAZIN1

READERPSF80DAZIN2

PRINTERPSF132DAZOUT1

PRINTERPSF132DAZOUT2

TAPE/DISK*PSVBuser-defineduser-definedDAZIN3

TAPE/DISK*PSVBuser-defineduser-definedDAZOUT3

TAPE/DISKPSVB81928196DAZIN4

TAPE/DISK*PSFB132user-definedDAZIN5

TAPE/DISKPSVB81928196DAZOUT5

TAPE/DISKPSF80DAZOUT4

* The block size and/or record format may be changed by specifying a DCB for the data set in the
DD statement.

195

196

17 Appendix C - z/VSE Dataset Usage

The following table provides a complete list of all the z/VSE input and output files used by the
ADL Interfaces.

Storage MediumDSORGRECFMLRECLBLKSIZELogical UnitDTF

READERPSF80SYSIPTDAZIN1

READERPSF80SYSIPTDAZIN2

PRINTERPSF132SYSLSTDAZOUT1

PRINTER *1PSF132SYS011DAZOUT2

DISK *2PSVB81928196SYS013DAZIN3D

TAPE *2PSVB81928196SYS013DAZIN3T

DISK *2PSVB81928196SYS013DAZOT3D

TAPE *2PSVB81928196SYS013DAZOT3T

DISK *3PSVB81928196SYS012DAZIN4D

TAPE *3PSVB81928196SYS012DAZIN4T

DISK*4PSFB1321320SYS014DAZIN5D

TAPE*4PSFB1321320SYS014DAZIN5T

DISK *3PSVB81928196SYS012DAZOT5D

TAPE *3PSVB81928196SYS012DAZOT5T

DISK *5PSF80SYSxxxDAZOUT4

*1 This printer output may be routed to a second logical printer, if one is available, by specifying
PR=2 in the ADL parameter module or as a dynamic parameter. If no second logical printer is
available, the printer output is written to a temporary file using DAZOT3D as output and DAZIN3D
as input, and printed on SYSLST at the end of the job.

197

*2 The logical unit and block size may be modified by specifying SQ=(logical unit,block size) in
theADLparametermodule or as a dynamic parameter. The values given in the table are the default
values.

*3 The logical unit and block size may be modified by specifying TRACE=(,,,,,,logical unit,block
size) in the ADL parameter module or as a dynamic parameter. The values given in the table are
the default values.

*4 The logical unit and block size may be modified by specifying FX=(logical unit, blocksize) in
theADLparametermodule or as a dynamic parameter. The values given in the table are the default
values.

*5 The logical unit must be assigned using an EXTENT statement.

Interfaces198

Appendix C - z/VSE Dataset Usage

	Interfaces
	Table of Contents
	Interfaces
	1 Introduction
	Operational Environments
	Batch Operation
	Online Operation (CICS)
	IMS/TP

	Other Documentation You May Need
	Documentation Related to non-SAG Products

	2 Batch Installation and Operation
	CALLDLI Interface
	Positional Parameters for DAZIFP
	Keywords for DAZIFP

	Normal Mode Batch Execution
	Mixed Mode Batch Execution
	Pseudo Mixed Mode Batch Execution
	Link-editing of Application Programs

	Consistency Interface
	Activating the Consistency Interface
	Customizing the Consistency Interface
	Parameters for the Consistency Interface
	Table of Converted Adabas Files (DAZTCF)
	Summary

	User Exit
	z/OS JCL Requirements
	Normal Mode Batch Operation
	Mixed Mode Batch Operation

	z/VSE JCS Requirements
	Normal Mode Batch Operation
	Mixed Mode Batch Operation

	3 CICS Installation and Operation
	Overview CICS Installation
	Prerequisites for z/OS CICS Installation
	Step 1
	Step 2 (optional)
	Step 3
	Step 4
	Step 5

	Prerequisites for z/VSE CICS Installation
	Step 1
	Step 2 (optional)
	Step 3
	Step 4
	Step 5
	Step 6

	Important Note for CICS Users
	Generating the Runtime Control Tables
	Step 1: Generating the Table of PSBs (DAZPSB)
	Step 2: Determining Requirements for the Runtime Control Tables
	Step 3: Generating the Internal Control Block Table (DAZBUF)
	Step 4: Generating the DBD Table (DAZDBD)

	Tuning and Maintaining the Runtime Control Tables
	z/OS Requirements
	z/VSE Requirements
	Activating and Controlling the ADL Interfaces
	CALLDLI Interface
	Normal Mode and Mixed Mode
	Link-Editing of Application Programs
	De-synchronization of CICS Applications

	Consistency Interface
	Installing the Consistency Interface
	Customizing the Consistency Interface
	Activating the Consistency Interface
	Parameters for the Consistency Interface
	Summary

	User Exit

	4 IMS/TP Installation and Operation
	Overview
	Generating the Runtime Control Tables
	CALLDLI Interface
	IMS/TP Message Region Execution
	Pre-requirements for IMS/TP Application Programs
	Parameters for the ADL Message Region Control Program

	ADL Pre-load Program
	User Exit
	JCL Requirements

	5 ADL Online Services
	Introduction
	Prerequisites
	Starting the ADL Online Services
	Terminating the ADL Online Services
	Online Help
	General Key Assignments
	General Map Elements

	Main Menu
	Maintaining the ADL Interfaces under CICS
	Switch ADL Interfaces on / off
	Switch Trace Facility on / off
	List CICS PSB Table
	List ADL Zap Status
	Dump ADL Tables

	ADL Directory Management Facility
	Directory Management Facility Menu
	DBD List Menu
	List Segments Menu
	List Fields Menu
	PSB List Menu
	External Control Block Information Menu
	Specific ECB Information

	Consistency DBD Maintenance
	Maintenance of the Rolled-out PSBs
	Rolled-out PSB-related ICBs menu
	List of the PSBs in the Environments
	List of the Environments
	Delete Rolled-out PSBs

	Maintenance of Checkpoints
	Checkpoint Maintenance Menu
	Checkpoint Information List
	Checkpoint Program List
	Deletion of Checkpoints

	Messages and Codes Retrieval

	6 Precompiler for EXEC DLI Commands
	Introduction
	Running HLPI Programs without the ADL Precompiler
	Running HLPI Programs with the ADL Precompiler

	ADL Precompiler Input
	ADL Precompiler Output
	COBOL Generated Code
	PL/I Generated Code
	CICS Command Language Translator
	Linkage-Editor Requirements for Application Programs
	z/OS JCL Requirements
	z/VSE JCS Requirements

	7 Using ADL Files with Natural/Adabas
	Introduction
	Consistency Interface
	Restrictions when using Natural/Adabas
	Improve the Natural Access to Migrated Files
	Error Situations and Consistency Response Codes
	Availability of the Consistency Interface
	Example Programs

	8 Converting Natural for DL/I Programs
	Introduction
	Conversion of the Data Definitions and of the Data
	Modification of the Application

	9 SQL Access to the Migrated Files
	Introduction
	How to Access the Migrated Data
	Improving the Access to Migrated Data
	Restrictions for SQL Applications

	10 Debugging Aids - ADL Trace Facility
	Data Base Call Trace
	Tracing DL/I and Adabas Calls
	Data Acquisition
	Data Reporting

	Internal Routine Trace
	z/OS JCL Requirements
	Using the Trace Facility
	Printing the Trace Data Set

	z/VSE JCS Requirements
	Using the Trace Facility
	Printing the Trace Data File

	11 CALLDLI Test Program - DAZZLER
	Introduction
	DL/I Statements
	Sets
	HEADER Statement
	Example of the Iterative Overwrite Facility
	BACK Call

	IOA and SSA Statements
	SUMMARY Statement

	DAZZLER Control Statements
	PRINT CONTROL PARAMETER Statement
	COMMENT Statement
	JUMP and LABEL Statements

	z/OS JCL Requirements for DAZZLER
	z/VSE JCS Requirements for DAZZLER

	12 Managing ADL Files
	Overview
	Reorganization with ADL Utilities (Pseudo Mixed Mode)
	Step 1: Copy ADL programs
	Step 2: Create an ADL Unload PSB
	Step 3: Copy the ADL directory
	Step 4: Modify and Convert the DBD
	Step 5: Create the ADL Reload PSB
	Step 6: Unload the Data in Pseudo-Mixed Mode
	Step 7: Load the Adabas File(s)
	Step 8: Re-Establish Logical Relationships

	Reorganization with ADL Utilities (Normal Mode)
	Step 1: Create an ADL Unload PSB
	Step 2: Unload the Data in Normal Mode
	Step 3: Load the Adabas File(s)
	Step 4: Re-Establish Logical Relationships

	Reorganization with Adabas Utilities
	Step 1: Unload the Data
	Step 2: Convert the (Changed) Physical DBD
	Step 3: Generate an User Exit 6
	Step 4: Load the Data

	Reorganization with User-written Programs
	Change of DL/I Segment Definitions
	Adding a new Segment Type
	Deleting a Segment Type
	Moving a Segment Type
	Increasing the Segment Length

	Change of DL/I Field Definitions
	Adding Key Fields and Logical Relationships

	Change of the Data Layout
	Changing the Length of a Data Field
	Changing the Length of a Sequence Field
	Adding and Deleting Data Fields
	Changing the Data Position
	Examples
	Increase the length of a field
	Adding a new field
	Move fields

	Re-establishment of the Hierarchical Sequence
	Change of DL/I PSB Definitions
	Change of the ADL Structure
	Splitting a DBD

	Change of Adabas DBIDs and File Numbers
	Examples

	Change of the Adabas File Layout
	Changing Adabas Group Definitions
	Changing Adabas Field Definitions
	You must not alter
	You can alter
	You can add

	13 Performance Considerations
	Introduction
	Data Processing and Pointers
	Initial Load and Reload the Database
	Using the Adabas Multifetch Feature
	Summary

	Insert and Delete
	Splitting a DBD
	Field Definitions
	Enqueue Logic
	CICS/Batch Communication
	Application Program and DB Design
	Examples

	14 Recovery and Restart Procedures
	Introduction
	Extensions and Restrictions
	Adabas User Types
	Normal Batch Programs
	With "STA"
	With "DLI", or "IMS"

	SDB, BMP (z/OS) or MPS (z/VSE) Programs
	CICS or IMS/TP Message Region

	Automatic ET Calls Issued by ADL
	Restart/Recovery Logic under ADL
	Normal Batch Programs
	With "STA"
	With "DLI", or "IMS"

	SDB, BMP (z/OS) or MPS (z/VSE) Programs
	CICS
	IMS/TP Message Region

	ADL Actions for Basic and Symbolic Checkpoints
	Normal Batch and SDB/BMP/MPS Programs
	CICS and IMS/TP

	How to Restart a Batch Program

	15 Appendix A - DAZZLER Test Stream
	16 Appendix B - z/OS Dataset Usage
	17 Appendix C - z/VSE Dataset Usage

