
Adabas Bridge for DL/1

Installation

Version 2.3.1

June 2014

This document applies to Adabas Bridge for DL/1 Version 2.3.1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ADL-INSTALL-231-20140626

Table of Contents

Installation ... v
1 Introduction ... 1

DL/I Features Supported .. 4
DL/I Features not Supported ... 5
Benefits ... 6
Migration Planning Checklist .. 6
Other Documentation You May Need ... 7

2 z/OS Installation Tape ... 9
ADL Load Library .. 10
ADL Load Library for CICS TS 2.3 and below .. 12
ADL Source Library ... 12
ADL Directory File ... 16
ADL Natural Programs .. 16

3 z/OS Installation .. 17
Overview .. 18
Initial Load of the ADL Libraries (Step 1) .. 18
Initial Load of the ADL Directory File (Step 2) .. 20
Initial Program Load of the ADL Natural Programs (Step 3) 21
Creating the ADL Parameter Module (Step 4) ... 21
Creating the ADL Executable Load Modules (Steps 5 - 10) 21
Creating the Consistency Front-Ends (Steps 11 - 12) ... 25

4 z/VSE Installation Tape .. 27
ADL Libraries ... 28
ADL Source Library ... 30
ADL Directory File ... 33
ADL Natural Programs .. 34

5 z/VSE Installation .. 35
Overview .. 36
Initial Load of the ADL Libraries (Step 1) .. 36
Initial Load of the ADL Directory File (Step 2) .. 38
Initial Program Load of the ADL Natural Programs (Step 3) 39
Creating the ADL Parameter Module (Step 4) ... 39
Creating the ADL Executable Modules (Steps 5 - 10) .. 39
Creating the Consistency Front-Ends (Steps 11 - 12) ... 43

6 ADL Parameter Module .. 45
Overview .. 46
List of Parameters for the ADL Parameter Module ... 46
Dynamic Overwrite Parameters ... 53

7 ADL Installation Verification Package .. 55
Introduction .. 56
DL/I Terms .. 56
Example Database .. 57
Adabas Terms ... 59

iii

DL/I terms versus Adabas terms .. 59
IVP Sample JCL .. 60
Conversion of the Example Database .. 61
DL/I Applications for the Installation Verification Package 64
DDMs for the Installation Verification Package ... 65
Example Database Application .. 65
Other Natural Objects of the Installation Verification Package 73
Tuning the ADL Installation Verification Package ... 74

8 Migration to ADL 2.3 and Backward Migration ... 77
Migrating to ADL 2.3 ... 78
Backward Migration ... 81
JCL Requirements .. 83
Other Changes .. 83

9 Miscellaneous .. 85
User Exit DAZUEX01 ... 86
User-supplied Index Maintenance Exit Routines .. 87
Application/Integration of Software Corrections .. 88
Upgrading to New ADL Releases .. 88

10 Appendix A - z/OS Dataset Usage .. 89
11 Appendix B - z/VSE Dataset Usage ... 91

Installationiv

Installation

Installation

This documentation provides an overview of the Installation procedure for the Adabas Bridge for
DL/I.

The following topics are covered:

Introduction

z/OS Installation Tape

z/OS Installation

z/VSE Installation Tape

z/VSE Installation

ADL Parameter Module

ADL Installation Verification Package

Migration to ADL 2.3 and Backward Migration

Miscellaneous

Appendix A - z/OS Dataset Usage

Appendix B - z/VSE Dataset Usage

v

vi

1 Introduction

■ DL/I Features Supported .. 4
■ DL/I Features not Supported ... 5
■ Benefits .. 6
■ Migration Planning Checklist ... 6
■ Other Documentation You May Need .. 7

1

The Adabas Bridge for DL/I (ADL) is Software AG's tool for the migration of DL/I or IMS/DB
databases into Adabas. DL/I applications can continue to run without any change. The migrated
data can be manipulated by Natural, Software AG's fourth generation language. The migrated
data can be accessed by SQL applications, if the Adabas SQL gateway is available. ADL can also
be used to run standard DL/I applications on Adabas sites.

The Adabas Bridge for DL/I runs under z/VSE and z/OS. It can execute concurrently in both batch
and online environments supporting CICS and IMS/TP.

ADL consists of the following major functional units:

■ TheADLConversionUtilities allow an automatic conversion of theDL/I data bases intoAdabas
files. Throughout the ADL documentation, an Adabas file originating from the conversion of a
DL/I data base will be referred to as an 'ADL file'. This is to point out the particular properties
of these files versus native Adabas files.

■ The ADL Directory is an Adabas file, where as a result of the conversion process, the DL/I data
base definitions and the related Adabas file layouts are stored. In addition, the ADL Directory
contains the ADL error messages and other information.

■ With the ADLOnline Services the contents of the ADLDirectory can be examined and the ADL
Interfaces under CICS can be maintained (start, stop, etc.).

■ TheADLCALLDLI Interface allowsDL/I applications to run against Adabas. It supports assem-
bler, COBOL, PL/1, RPG, FORTRAN, andNatural for DL/I. For programs using the 'EXEC DLI'
interface a special precompiler is available.

■ The ADL Consistency Interface allows Natural applications, or programs using Adabas direct
calls to manipulate the migrated data.

Installation2

Introduction

Figure 1

Figure 1 shows the individual functional units of ADL and their interrelation with DL/I, SQL and
Natural applications.

The ADL Installation documentation describes the installation of the basic components of ADL,
namely

■ the ADL source library,
■ the ADL load library,
■ the ADL directory file,
■ the ADL parameter module,
■ the ADL executable nuclei and
■ the ADL Online Services.

Additionally, the ADL Installation Verification Package is described in the ADL Installation.

3Installation

Introduction

Note: Most parts of the ADL installation can be performed with Software AG's System
Maintenance Aid (SMA). Refer to the SMA documentation for more details.

Once this installation process has been completed, you will be prepared

■ to convert DL/I DBD and PSB definitions into entries in the ADL directory file
■ to transfer data from a DL/I data base into an ADL file
■ to install and operate theADL Interfaces for CALLDLI programs andNatural/Adabas applications

The conversion of data definitions anddatabases is described in theADLConversiondocumentation.
The installation and operation of the interfaces is covered by the ADL Interfaces documentation.
In particular, this documentation describes the installation of the ADL Interfaces directly related
to the TP monitor in use.

TheADLMessages and Codesdocumentation comprises a list of all error codes andmessages issued
by ADL together with a glossary of terms related to DL/I, Adabas and ADL.

The ADL Installation documentation is intended for the system programmer in charge of the ADL
installation. The installation process requires familiarity with the operating system in use. No
particular knowledge of either data base system involved is required.

This documentation applies to both z/OS and z/VSE operating systems. References valid for only
one operating system are clearly marked as such. The term "DL/I" is used as a generic term for
IMS/VS and DL/I DOS/VS.

This chapter covers the following topics:

DL/I Features Supported

The Adabas Bridge for DL/I provides a CALLDLI and an EXEC DLI interface identical to the DL/I
language interface. In special the current version of the Adabas Bridge for DL/I supports the fol-
lowing DL/I features:

■ Up to 15 hierarchical levels;
■ Secondary indices;
■ Index maintenance exit routines;
■ Duplicate data fields;
■ Variable length segments;
■ Inverted structures;
■ Bidirectional logical relationships (physically paired and virtually paired);
■ Unidirectional logical relationships;

Installation4

Introduction

■ Fixed intersection data;
■ Variable intersection data segments;
■ Processing of an index database as a data database;
■ Sensitive fields;
■ Automatic data type conversion in conjunction with sensitive fields;
■ Multiple positioning;
■ Path calls;
■ The command codes “C”, “F”, “L”, “P”, “N”, “U” and “V”;
■ The insert, delete and replace rules “V”, “L”, “P” and “B”;
■ Restricted support of GSAM data bases.

DL/I Features not Supported

The current version of the Adabas Bridge for DL/I doesNOT support the following DL/I features:

■ Fast path data bases;
■ Sequence fields of root segment types exceeding a length of 253 bytes;
■ Sequence fields of dependent segment types exceeding a length of 120 bytes;
■ Data edit and compression routines;
■ The INDICES parameter in the SENSEGmacro;
■ The independent "AND" ("#") in conjunction with secondary indices;
■ Virtual fields;
■ Shared secondary index data bases;
■ The ACCESS=(INDEX,NOPROT) parameter in the DBDmacro;
■ The use of time stamps as checkpoint identifiers (restart/recovery procedures);
■ OS/VS checkpoint requests (restart/recovery procedures);
■ LAST (restart/recovery procedures under BMP);
■ The DEQ, STAT and LOG functions.

5Installation

Introduction

Benefits

The Adabas Bridge for DL/I has the following additional features and advantages:

■ Administartion for one database only, namely Adabas;
■ Pay for one database only;
■ Manipulation of the data by full functional Natural, Software AG's fourth generation language;
■ Access to migrated data with SQL applications;
■ Automatic data compression at field level (by Adabas);
■ No corrupted pointers because ADL does not use pointers;
■ Deleted data records are released immediately from storage. This is in contrast to DL/I, which
simply sets a flag in such records but does not release the storage used by them. With Adabas,
the released space can be re-used immediately for new records, there is no requirement to
maintain records that are marked as “deleted”, and less re-organization of the data base is re-
quired;

■ All converted DBDs have full "HIDAM" functionality, regardless of the original ACCESSmethod;
■ The PSB “language” can be overwritten by batch JCL;
■ Increasing the length of a field without unloading and reloading the data;
■ Adding segments to the end of a DBD without unloading and reloading the data;
■ Trace facilities for online and batch;
■ 'EXEC DL/I' programs can run under IMS/TP;
■ CALLDLI test program for batch;
■ Reduced online system resources, since Adabas (unlike DL/I) is not running in the CICS re-
gion/partition.

■ Symbolic checkpoint facility under z/VSE.
■ HD databases under z/OS.

Migration Planning Checklist

If you are planning to migrate from DL/I or IMS/DB to Adabas using the Adabas Bridge for DL/I
the following questions should be answered:

■ Which operating system, which TP monitor is used?
■ Number of PSBs, how many online, how many in batch?
■ Number of physical DBDs (without index or logical DBDs)?

Installation6

Introduction

■ Number of records (occurrences) in the DBDs?
■ Are there packed fields in the DBD definition?
■ Are there logical relationships? How many?
■ Which ACCESSmethod is used? SHISAM/GSAM?
■ Are there FAST PATH DBDs?
■ Are the DBDs, PSBs available as sources?
■ Which programming languages are used?
■ Are the programs using the EXEC DLI or the CALLDLI interface?
■ Are the programs available as sources (especially the EXEC DLI applications)?
■ How many applications have to be tested?
■ Are there any not-documented DL/I features used?
■ Are there any DL/I features used, which are not supported by ADL? See the corresponding list
earlier in this chapter.

■ Are there any time-critical applications?
■ Are there any plans to access the migrated data with Natural?

Other Documentation You May Need

The following Software AG publications may be useful when installing and operating the ADL
Interface:

■ Adabas Utilities documentation
■ Adabas Operations documentation
■ Adabas Messages and Codes
■ Adabas Reference Data and Adabas DBA Reference Data documentation.

For a complete list of Software AG documentation, refer to Software AG's Empowerweb site. If
you do not have an Empower user ID and password yet, you will find instructions for registering
on this site (free for customers with maintenance contracts).

7Installation

Introduction

https://empower.softwareag.com/default.asp

8

2 z/OS Installation Tape

■ ADL Load Library .. 10
■ ADL Load Library for CICS TS 2.3 and below .. 12
■ ADL Source Library ... 12
■ ADL Directory File ... 16
■ ADL Natural Programs ... 16

9

The Adabas Bridge for DL/I installation tape is a standard-label tape. The Report of Tape Creation
that accompanies the installation tape lists the volume serial number, tape density, media type,
data sets and sequence numbers. The tape is compatible with Software AG's SystemMaintenance
Aid (SMA). Refer to the SMA documentation for more details.

The ADL installation tape for systems operating under the IBM z/OS Operating System contains
the data sets as described in the table below. The "LOAD", "LC23" and "SOURCE" data sets have
been unloaded to tape using the IBM IEBCOPY utility, and the other data sets have been copied by
the IBM IEBGENER utility.

In this table, vrs indicates the current version, release and systemmaintenance (SM) level as indic-
ated on the Report of Tape Creation, for example 123 for Version 1, Release 2 and SM 3.

DescriptionLibrary

This data set contains the ADL Load Library, which comprises the load modules used
to link edit executable ADL modules.

ADLvrs.LOAD

This data set contains the executable ADL modules required for CICS TS 2.3 and below.ADLvrs.LC23

The ADL Source Library. This data set contains JCL examples for installing the ADL and
converting DL/I data bases, as well as macros for reassembling DBDs and PSBs, and
source code for sample data base unload programs.

ADLvrs.SRCE

An unloaded Adabas file for use as the ADL directory file.ADLvrs.SYSF

AnunloadedNatural library containing theADLOnline Services and theADL Installation
Verification Package.

ADLvrs.INPL

The following sections describe the libraries in more detail.

This chapter covers the following topics:

ADL Load Library

When loaded from the installation tape, the ADL Load Library contains executable ADL load
modules and loadmodules used in the installation process to create executable loadmodules. The
precise contents of the library are listed in the following table.

DescriptionModule

Adabas User Exit for the ADL Consistence Interface under CICS/ESA.ADLEXITB

ADL nucleus module containing the logic for generating and issuing Adabas calls.DAZAXES

Batch doorkeeper for the ADL Consistency Interface.DAZBDOKE

Batch entry point module.DAZBENT

Batch interface program (object module).DAZBIFP

Batch request handler.DAZBRQH

Installation10

z/OS Installation Tape

DescriptionModule

CICS application program interface.DAZCAPRI

ADL nucleus module for the CBC utility.DAZCCGEN

ADL nucleus module for the CBC utility.DAZCCOUT

ADL nucleus module for the CBC utility.DAZCCSUB

CICS doorkeeper for the ADL Consistency Interface.DAZCDOKE

ADL nucleus module containing the logic for retrieval calls and for maintaining positional
information.

DAZCDPOS

CICS —Write ADL tables on dump file.DAZCDUMP

CICS — ADL shut-down program (PLT).DAZCEND

CICS control program.DAZCICS

CICS interface program.DAZCIFP

CICS — Return status of ADL.DAZCINF

CICS — ADL start-up program (PLT).DAZCINIT

CICS – Allocate local user blocks.DAZCLUB

Environment independent routines of the ADL Consistency Interface.DAZCONSI

CICS request handler.DAZCRQH

ADL SVC for CICS.DAZCSVC

CICS — Switch off ADL trace.DAZCTOFF

CICS — Switch on ADL trace.DAZCTON

ADL nucleus module containing tracing and debugging routines.DAZDEBUG

ADL nucleus module containing the logic for DELETE, REPLACE and INSERT calls.DAZDREIN

Establish Logical Relationships utility.DAZELORE

Entry program for IMS/TP application programs.DAZENTRY

ADL nucleus module containing the logic for the EXEC command precompiler.DAZEXEC

Batch interface program - executable module (AMODE=24).DAZIFP

ADL nucleus module containing the logic for initializing internal control blocks.DAZINICB

ADL nucleus module containing the logic for the language processor.DAZLANP

Language Interface for batch mode.DAZLIBAT

Language interface for CICS.DAZLICI3

Batch mixed mode module.DAZMIX

Pre-load program for IMS/TP.DAZMPL

Reformat utility.DAZREFOR

ADL nucleus module containing general purpose service routines.DAZSERV

CICS — Stub for the ADL task-related user exit.DAZSTUB

CICS — ADL task-related user exit.DAZSYNC

ADL nucleus module containing the EXEC command syntax.DAZSYXTB

11Installation

z/OS Installation Tape

DescriptionModule

Adabas User Exit 6.DAZUEX06

Adabas User Exit 6 for migration to ADL 2.3.DAZUEXMI

Data Base Unload utility (automated procedure).DAZUNDLI

ADL nucleus module containing zaps for nucleus routines.DAZZAP

Program to test DL/I calls in batch.DAZZLER

ADL Load Library for CICS TS 2.3 and below

The standard ADL load library contains the modules for CICS TS 3.1 and CICS TS 3.2. For CICS
releases with changes relevant to ADL, an additional library is delivered containing the ADL
modules affected. This library is not a complete ADL load library; it contains only the CICS release
dependent ADL modules.

When loaded from the installation tape, the ADL Load Library for CICS TS 2.3 and below contains
executable ADL load modules required to operate the ADL under CICS TS 2.3 or below (until
CICS 3.2). When you run under any of these CICS releases, concatenate this library in front of the
ADL load library when you link the ADL CICS nucleus DAZNUCC, and in the concatenation list
of the CICS steplibs.

If your current CICS version is not compatible to the ADL modules, ADL will issue a message
ADL0906 at start-up.

The precise contents of the library are listed in the following table.

DescriptionModule

CICS control program.DAZCICS

CICS interface program.DAZCIFP

CICS – Allocate local user blocks.DAZCLUB

CICS request handler.DAZCRQH

ADL Source Library

When loaded from the installation tape, the ADL Source Library contains:

■ Macros for creating an ADL parameter module;
■ Macros for creating Adabas User Exit 6 extensions;
■ Macros for creating the CICS runtime control tables;

Installation12

z/OS Installation Tape

■ Macros for assembling DBDs and PSBs (substitutes for the original DL/IDBDGEN and PSBGEN
macros);

■ Source code for sample unload programs;
■ Source code for performing ADL functions under CICS;
■ Source code for the ADL supplied Adabas link module substitutes;
■ Sample JCL.

The following table lists the other macros contained in this library.

DescriptionMember

Macro used to create entries for logical DBID/FNR assignments in theADLparametermodule.
This macro is provided for compatibility with ADL 2.2 only.

DAZLDT

Macro used to create the table of converted files for the ADL Consistency Interface (batch
or CICS).

DAZTCF

Macro used to create the ADL parameter module.DAZPARM

Macro used to create Adabas User Exit 6 extensions.ZFNR

Macro used to create Adabas User Exit 6 extensions.ZPCK

Macro used to create Adabas User Exit 6 extensions.ZREC

Macro used to create Adabas User Exit 6 extensions.ZSEG

Macro used to create Adabas User Exit 6 extensions.ZSEX

Macro used to create Adabas User Exit 6 extensions.ZVCK

Macro used to create the DAZPSB table.MGPSTIN

Macro used to create the DAZPSB table.MGPSTEN

Macro used to create the DAZPSB table.MGPSTFI

Macro used to create a DAZPSB table from a CICS PDIR.DFHDLPSB

Macro used to create the DAZBUF table.BUFMAC

Macro used to create the DAZDBD table.DBDMAC

DSECT describing an entry in the exit routine table for index maintenance.MEXRENDS

The following table lists the source members used during the assembly of the ADL supplied
Adabas link module substitute:

DescriptionMember

Sourcemember to be assembled as theADL suppliedAdabas linkmodule substitute in batch.DAZLNKO

Operating system independent part of the ADL supplied Adabas link module substitute in
batch.

DAZLNK

Operating system dependent part of the ADL supplied Adabas link module substitute in
batch.

LNKOS

The following table lists the sample JCL streams for the installation and conversion processes:

13Installation

z/OS Installation Tape

DescriptionMember

JCL for loading the ADL source and load library from tape.ADLINS1

JCL for loading the ADL directory file from tape.ADLINS2

JCL for updating an existing ADL directory file.ADLINS2A

JCL for an initial program load of the ADL Online Services, the ADL supplied Natural
subprograms ADLERROR and ADLACTIV and an initial program load of the Natural
programs for the ADL Installation Verification Package.

ADLINS3

JCL for creating the ADL parameter module.ADLINS4

JCL for creating an executable ADL CBC utility module.ADLINS5U

JCL for creating an executable ADL precompiler module.ADLINS6P

JCL for creating an executable ADL batch module.ADLINS7B

JCL for creating an executable ADL Consistency Interface module for batch.ADLINS8A

JCL for creating an executable ADL CICS module.ADLINS9C

JCL for creating an executable ADL Batch Region Controller.ADLINS10

JCL for assembly and link-edit of the ADL substitute for the Adabas link module in batch.ADLINS11

JCL for assembly and link-edit of theADL substitute for theAdabas linkmodule under CICS.ADLINS12

JCL for running a physical DBD through the DBD conversion process.ADLDPC

JCL for assembling and link editing a DBD/PSB.ADLDPC1

JCL for converting PSBs and logical DBDs.ADLDPC2

JCL for converting physical DBDs.ADLDPC23

JCL for assembling the User Exit 6 extension.ADLDPC4

JCL for unloading a DL/I data base with the DAZUNDLI utilityADLDBC4

JCL for loading a DL/I data base into Adabas (initial load).ADLDBC6

JCL for loading a DL/I data base to Adabas (mass update).ADLDBC7

JCL for establishing a logical relationship.ADLDBC9

Sample CICS system definition file.ADLCSD

JCL for assembling the DAZPSB table.ADLCTG1

JCL for running the "DAZSHINE" utility.ADLCTG2

JCL for assembling the DAZBUF table.ADLCTG3

JCL for assembling the DAZDBD table.ADLCTG4

JCL for precompile, assembly and link-edit of DAZCFCT.ADLCFCT

JCL for assembly of the DAZTCF table.ADLTCF

JCL for running the DAZZLER CALLDLI test program with the trace facility.ADLBATCH

Note the naming conventions for the JCL examples:

Installation14

z/OS Installation Tape

ADLxxxnn General sample JCL
IVPxxxnn JCL for the Installation Verification package

where xxx is

for the installation steps (refer to the z/OS Installation documentation;INS

for the DBD/PSB conversion steps (section ADL Conversion Utilities for DBDs and PSBs in the ADL
Conversion documentation);

DPC

for the data base conversion steps (section ADL Data Conversion Utilities in the ADL Conversion
documentation);

DBC

for the CICS table generation (section Generating the Runtime Control Tables), in the ADL Interfaces
documentation;

CTG

for the generation of the table of convertedAdabas files. (see the sectionBatch Installation andOperation
in the ADL Interfaces documentation);

TCF

and nn is the number of the step.

The other members in the Source Library are as follows:

DescriptionMember

Information about the current ADL release.$INFO$

Source of the sample unload program.DAZUNLOD

Source of the sample reformatting program.DAZREFOR

Source of the sample program to perform ADL functions under CICS.DAZCFCT

DSECT used by DAZCFCTDAZEISTG

ADACMP User Exit 6 skeleton, for changing the layout of an ADL file.ADLEX06

Sample user exit routine for index maintenance.ADLIMEX

Abbreviations used by the ADL Installation Verification Package (IVP).IVPINFO

ADARUN cards for the ADL IVP.IVPARUN

Execute a COBOL batch program of the ADL IVP.IVPCOB

COBOL sources for the ADL IVP.ADLXPCn

Input streams for the COBOL programs for the ADL IVP.ADLXPIn

Assembler sources for the ADL IVP to run under CICS.ADLXPAn

DAZZLER input streams for the ADL IVP.ADLXPDn

Physical DBD definitions for the ADL IVP.COURSEDB

Logical DBD definitions for the ADL IVP.COURSEL

Physical DBD definitions for the ADL IVP.INSTDB

Logical DBD definitions for the ADL IVP.INSTL

Primary Index DBD definition for the ADL IVP.MAINIDX

Primary Index DBD definition for the ADL IVP.INSTIDX

15Installation

z/OS Installation Tape

DescriptionMember

Secondary Index DBD definitions for the ADL IVP.STUDIDX

PSB definitions for the ADL IVP.SCHOOL

PSB definitions for the ADL IVP (DAZUNDLI utility).COURSUNL

PSB definitions for the ADL IVP (DAZUNDLI utility).INSTUNL

PSB definitions for the ADL IVP (DAZELORE utility).INSTELO

ADL Directory File

The unloaded Adabas Directory file on the installation tape was created by the Adabas Unload
utility, ADAULD. At installation, the file contains the texts of the ADL error messages. Later, it will
also be used as the directory file for storing the DBDs and PSBs for ADL and any checkpoint in-
formation.

ADL Natural Programs

This file contains the unloaded Natural programs comprising the ADL Online Services, together
with the ADL supplied Natural subprograms ADLERROR and ADLACTIV and the ADL Installation
Verification Package. The ADLERROR subprogram may be used by Natural applications to retrieve
the comprehensive error messages of the ADL Consistency Interface. The ADLACTIV subprogram
may be used by Natural applications to verify whether the ADL Consistency Interface is active or
not.

The files were created with the Natural SYSOBJH utility.

Installation16

z/OS Installation Tape

3 z/OS Installation

■ Overview ... 18
■ Initial Load of the ADL Libraries (Step 1) .. 18
■ Initial Load of the ADL Directory File (Step 2) .. 20
■ Initial Program Load of the ADL Natural Programs (Step 3) .. 21
■ Creating the ADL Parameter Module (Step 4) ... 21
■ Creating the ADL Executable Load Modules (Steps 5 - 10) .. 21
■ Creating the Consistency Front-Ends (Steps 11 - 12) .. 25

17

This chapter covers the following topics:

Overview

This chapter describes the steps necessary to install the Adabas Bridge for DL/I (ADL) in a z/OS
environment. After performing these steps, you will be able to run the ADL data base conversion
utilities, to use the ADL Online Services and to operate the ADL Interfaces for DL/I and Adabas
calls.

For easy reference, all installation steps are summarized below. In general, all steps must be per-
formed in all environments. Exceptions are clearly marked as such in the detailed description of
the individual steps.

DescriptionStep

Load the ADL libraries to disk.Step 1

Load the ADL directory file.Step 2

Load the ADL Online Services and the ADL Installation Verification Package.Step 3

Create the ADL parameter module.Step 4

Create the executable ADL data conversion module.Step 5

Create the executable ADL precompiler module.Step 6

Create the executable module for the ADL CALLDLI Interface in batch.Step 7

Create the executable module for the ADL Consistency Interface in batch.Step 8

Create the executable module for the ADL Interfaces under CICS.Step 9

Create the executable ADL batch region controller.Step 10

Create the ADL substitute for the Adabas link module in batch.Step 11

Link-edit the Adabas link module under CICS with the ADL exit ADLEXITB.Step 12

Note: If you use Software AG's SystemMaintenance Aid (SMA), steps 1 to 9 are performed
by SMA.

Initial Load of the ADL Libraries (Step 1)

Load the ADL libraries to disk using the JCL given below as an example.

Installation18

z/OS Installation

Library Space Requirements (z/OS)

The table below gives an estimate of howmuch space is needed for various device types (primary
cylinders, directory tracks).

3390Library

3, 10Load

6, 36Source

1, 2LC23

Copying the Tape Contents to a z/OS Disk

If you are using SMA, refer to the SystemMaintenance Aid documentation (included in the current
edition of the Natural documentation CD).

If you are not using SMA, follow the instructions below.

This section explains how to:

■ Copy dataset COPY.JOB from tape to disk.
■ Modify this dataset to conform with your local naming conventions.

The JCL in this dataset is then used to copy all datasets from tape to disk.

If the datasets formore than one product are delivered on the tape, the dataset COPY.JOB contains
the JCL to unload the datasets for all delivered products from the tape to your disk.

After that, you will have to perform the individual install procedure for each component.

■ Step 1 - Copy Dataset COPY.JOB from Tape to Disk
■ Step 2 - Modify COPY.JOB
■ Step 3 - Submit COPY.JOB

Step 1 - Copy Dataset COPY.JOB from Tape to Disk

The dataset COPY.JOB (Label 2) contains the JCL to unload all other existing datasets from tape
to disk. To unload COPY.JOB, use the following sample JCL:

//SAGTAPE JOB SAG,CLASS=1,MSGCLASS=X
//* ---------------------------------
//COPY EXEC PGM=IEBGENER
//SYSUT1 DD DSN=COPY.JOB,
// DISP=(OLD,PASS),
// UNIT=(CASS,,DEFER),
// VOL=(,RETAIN,SER=<Tnnnnn>),

19Installation

z/OS Installation

// LABEL=(2,SL)
//SYSUT2 DD DSN=<hilev>.COPY.JOB,
// DISP=(NEW,CATLG,DELETE),
// UNIT=3390,VOL=SER=<vvvvvv>,
// SPACE=(TRK,(1,1),RLSE),
// DCB=*.SYSUT1
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
// ↩

Where:

<hilev> is a valid high level qualifier
<Tnnnnn> is the tape number
<vvvvvv> is the desired volser

Step 2 - Modify COPY.JOB

Modify the COPY.JOB to conform with your local naming conventions and set the disk space
parameters before submitting this job:

■ Set HILEV to a valid high level qualifier.
■ Set LOCATION to a storage location.
■ Set EXPDT to a valid expiration date.

Step 3 - Submit COPY.JOB

Submit COPY.JOB to unload all other datasets from the tape to your disk.

Initial Load of the ADL Directory File (Step 2)

Load the ADL Directory File. This file is a standard Adabas file unloaded with the ADAULD utility
of Adabas. You may use the JCL in the ADL source library member ADLINS2 as an example.

If ADL is already installed at your site, and youwant to continue to use the existingADLdirectory
file, you may simply delete the obsolete error messages from the existing Directory File and load
the new messages from the unloaded file provided on the installation tape. You may use the JCL
in the ADL source library member ADLINS2A as an example.

Installation20

z/OS Installation

Initial Program Load of the ADL Natural Programs (Step 3)

Load the ADL Online Services and the DDM for the ADL Directory File, ADB-CONTROL. The INPL file
on the installation tape was created with the Natural SYSOBJH utility and is compatible with Nat-
ural version 4.1 and upwards. You may use the JCL in the ADL source library member ADLINS3
as an example.

Note that the INPL file on the ADL installation tape contains a DDM for the ADL Directory File and
the object modules of the library SYSADLwith the ADL-supplied subprograms ADLERROR and
ADLACTIV. These subprograms may be used by Natural applications operating under the ADL
Consistency Interface.

The same step loads also the ADL Installation Verification Package (SYSADLIV) and the related
DDMs.

Creating the ADL Parameter Module (Step 4)

Create the ADL parameter module (DAZPARM) by assembling the DAZPARMmacro. This procedure
is common to both z/OS and z/VSE and is described in the chapterADL Parameter Module in this
documentation.

You may use the JCL in the ADL Source Library member ADLINS4 as an example.

Creating the ADL Executable Load Modules (Steps 5 - 10)

The following steps are performed:

■ Step 5
■ Step 6
■ Step 7
■ Step 8
■ Step 9

21Installation

z/OS Installation

■ Step 10

Step 5

Create the executable ADL CBCutilitymodule by running the link editor and specifying the following
link edit directives:

ORDER DAZPARM
INCLUDE ADLLOAD(DAZPARM)
INCLUDE ADLLOAD(DAZCCGEN)
INCLUDE ADLLOAD(DAZCCOUT)
INCLUDE ADLLOAD(DAZCCSUB)
INCLUDE ADLLOAD(DAZAXES)
INCLUDE ADLLOAD(DAZSERV)
INCLUDE ADLLOAD(DAZDEBUG)
INCLUDE ADLLOAD(DAZZAP)
NAME DAZNUCU(R)

You may use the JCL in the ADL Source Library member ADLINS5U as an example.

Step 6

This step need only be performed where one or more of the application programs to be converted
uses the HLPI.

Create the executable ADL precompiler module by running the link editor and specifying the
following link edit directives:

ORDER DAZPARM
INCLUDE ADLLOAD(DAZPARM)
INCLUDE ADLLOAD(DAZEXEC)
INCLUDE ADLLOAD(DAZSERV)
INCLUDE ADLLOAD(DAZLANP)
INCLUDE ADLLOAD(DAZSYXTB)
INCLUDE ADLLOAD(DAZDEBUG)
INCLUDE ADLLOAD(DAZZAP)
NAME DAZNUCP(R)

You may use the JCL in the ADL Source Library member ADLINS6P as an example.

Installation22

z/OS Installation

Step 7

Create the executable ADL CALLDLI Interface batchmodule by running the link editor and specifying
the following link edit directives. This stepmust also be performedwhen installing under IMS/TP:

ORDER DAZPARM
INCLUDE ADLLOAD(DAZPARM)
INCLUDE ADLLOAD(DAZBENT)
INCLUDE ADLLOAD(DAZAXES)
INCLUDE ADLLOAD(DAZSERV)
INCLUDE ADLLOAD(DAZINICB)
INCLUDE ADLLOAD(DAZCDPOS)
INCLUDE ADLLOAD(DAZDREIN)
INCLUDE ADLLOAD(DAZDEBUG)
INCLUDE ADLLOAD(DAZZAP)
NAME DAZNUCB(R)

You may use the JCL in the ADL source library member ADLINS7B as an example.

Step 8

Create the executable ADL Consistency Interface module for batch by running the linkage-editor
and specifying the following link-edit directives:

ORDER DAZPARM
INCLUDE ADLLOAD(DAZPARM)
INCLUDE ADLLOAD(DAZAXES)
INCLUDE ADLLOAD(DAZBDOKE)
INCLUDE ADLLOAD(DAZBRQH)
INCLUDE ADALOAD(ADAUSER)
INCLUDE ADLLOAD(DAZCDPOS)
INCLUDE ADLLOAD(DAZCONSI)
INCLUDE ADLLOAD(DAZDEBUG)
INCLUDE ADLLOAD(DAZDREIN)
INCLUDE ADLLOAD(DAZINICB)
INCLUDE ADLLOAD(DAZSERV)
INCLUDE ADLLOAD(DAZZAP)
NAME DAZNUCA(R)

You may use the JCL in the ADL source library member ADLINS8A as an example.

The ADAUSER object module must be included from a valid Adabas load library.

Note: Whenever you want the user written user exit (DAZUEX01) to become active in batch
you must, in addition, include your user exit DAZUEX01within the ADL nucleus DAZNUCA.
This may be achieved by specifying an extra statement for the linkage-editor input:

23Installation

z/OS Installation

INCLUDE USRLOAD(DAZUEX01)

See the section ADL User Exit DAZUEX01 later in this documentation for more details on the
purpose and conventions for the user exit DAZUEX01.

Step 9

Create the executable ADL Interfaces CICS module by running the link editor and specifying the
following link edit directives:

INCLUDE CICLOAD(DFHEAI)
INCLUDE CICLOAD(DFHEAI0)
INCLUDE ADLLOAD(DAZPARM)
INCLUDE ADLLOAD(DAZCAPRI)
INCLUDE ADLLOAD(DAZCIFP)
INCLUDE ADLLOAD(DAZCLUB)
INCLUDE ADLLOAD(DAZCRQH)
INCLUDE ADLLOAD(DAZCDOKE)
INCLUDE ADLLOAD(DAZCONSI)
INCLUDE ADLLOAD(DAZAXES)
INCLUDE ADLLOAD(DAZSERV)
INCLUDE ADLLOAD(DAZINICB)
INCLUDE ADLLOAD(DAZCDPOS)
INCLUDE ADLLOAD(DAZDREIN)
INCLUDE ADLLOAD(DAZDEBUG)
INCLUDE ADLLOAD(DAZSTUB)
INCLUDE ADLLOAD(DAZZAP)
ENTRY DAZPARM
NAME DAZNUCC(R)

You may use the JCL in the ADL source library member ADLINS9C as an example.

Note: The ADL load library contains modules which are CICS release dependent. The
members in the standard load library are for CICS TS 3.1 and CICS TS 3.2. When you run
under CICS TS 2.3 or below, the ADL.LC23 library must be concatenated in front of the
ADL load library.

Note: Whenever you want the user written user exit (DAZUEX01) to become active under
CICS, you must, in addition, include your user exit DAZUEX01within the ADL Interfaces
CICS nucleus, DAZNUCC. This may be achieved by specifying an extra statement for the
linkage-editor input:

Installation24

z/OS Installation

INCLUDE USRLOAD(DAZUEX01)

See the section ADL User Exit DAZUEX01 later in this documentation for more details on the
purpose and conventions for the user exit DAZUEX01.

Step 10

Create the executable ADL batch region controller by running the linkage-editor and specifying
the following link-edit directives:

ENTRY DAZBIFP
INCLUDE ADLLOAD(DAZBIFP)
INCLUDE ADLLOAD(DAZBRQH)
INCLUDE ADALOAD(ADAUSER)
INCLUDE USRLOAD(DAZUEX01)
NAME DAZIFP(R)

You may use the JCL in the ADL source library member ADLINS10 as an example. The ADL load
library, the Adabas load library and the user load library must be defined with the file names
ADLLOAD, ADALOAD and USRLOAD, respectively.

Note: This step has to be performed only if you want a user written user exit (DAZUEX01) to
become active in batch. See the sectionADLUser ExitDAZUEX01 later in this documentation
for more details on the purpose and conventions for this user exit.

Creating the Consistency Front-Ends (Steps 11 - 12)

Step 11

Note: This step is only required if you plan to use the ADL Consistency Interface in batch.

Assemble and link-edit the ADL substitute for the Adabas link module in batch, ADALNK. Youmay
use the JCL in the ADL source library member ADLINS11 as an example. You need to perform this
step only if you plan to use the ADL Consistency Interface. See the section Batch Installation and
Operation in the ADL Interfaces documentation for more information on how to install the ADL
Consistency Interface.

The ADL source library member to be assembled is DAZLNKO. Before the assembly, you will have
to customize the assembler local variable &ADALNK in the ADL source library member DAZLNKO.
&ADALNK specifies the new name chosen for the original Adabas link module which must be re-
named. It is defaulted to "ADAOLK".

Note that the ADL source library, the Adabas source library and the system macro libraries must
be concatenated in the given order.

25Installation

z/OS Installation

If you want to make use of the table of converted Adabas files (DAZTCF) you have to perform the
steps described in section Batch Installation and Operation in the ADL Interfaces documentation.
Assemble DAZTCF before link-editing ADALNK. The assembly of DAZTCF is included in the sample
JCL ADLINS11. Add the following statement to the linkage-editor input for the Adabas batch link
module:

INCLUDE ADLLOAD(DAZTCF)

ForAdabas version 8 and above, youmust additionally link theAdabas link-globals-table LNKGBLS
to the ADL substitute:

INCLUDE ADALOAD(LNKGBLS)

Step 12

This step is only required if you plan to use the ADL Consistency Interface under CICS. See the
section CICS Installation and Operation in the ADL Interfaces documentation for more information
on how to install the ADL Consistency Interface.

Add the following statement to the linkage-editor input for the Adabas link module under CICS
or, for Adabas version 8, to the linkage-editor input for the Adabas globals module:

INCLUDE ADLLOAD(ADLEXITB)

If you want to use the table of converted Adabas files, assemble the DAZTCF table and include this
also:

INCLUDE ADLLOAD(DAZTCF)

Note: The parameter LUSAVE in the Adabas link source member LNKOLSCmust have a value
of at least 72 bytes. For Adabas Version 8 and above set the “ADL” parameter in the
LGBLSET macro to “YES”.

Installation26

z/OS Installation

4 z/VSE Installation Tape

■ ADL Libraries ... 28
■ ADL Source Library ... 30
■ ADL Directory File ... 33
■ ADL Natural Programs ... 34

27

The Adabas Bridge for DL/I installation tape is a standard-label tape. The Report of Tape Creation
that accompanies the installation tape lists the volume serial number, tape density, media type,
data sets and sequence numbers. The tape is compatible with Software AG's SystemMaintenance
Aid (SMA). Refer to the SMA documentation for more details.

The ADL installation tape for systems operating under the IBM z/VSE Operating System contains
four files as described in the table below. The first file has been unloaded to tape using the IBM
LIBR BACKUP utility, and the other files have been copied by the IBM IEBGENER utility.

In this table, vrs indicates the current version, release and systemmaintenance (SM) level as indic-
ated on the Report of Tape Creation, for example 123 for Version 1, Release 2 and SM 3.

DescriptionDSNData Set

The ADL Core Image Library, containing the ADL core image load modules.
The ADL Relocatable Library, containing ADL relocatable load modules used

ADLvrs.LIBR1

to link edit executable ADL modules. The ADL Source Library, containing JCS
examples for installing theADLand convertingDL/I data bases, aswell asmacros
for reassembling DBDs and PSBs, and source code for sample data base unload
programs.

An unloaded Adabas file for use as the ADL directory file.ADLvrs.SYSF2

An unloaded Natural library containing the ADL Online Services and the ADL
Installation Verification Package.

ADLvrs.INPL3

The following sections describe the libraries in more detail.

This chapter covers the following topics:

ADL Libraries

The following libraries are described in more detail below:

■ ADL Core Image Library

Installation28

z/VSE Installation Tape

■ ADL Relocatable Library

ADL Core Image Library

When loaded from the installation tape, the ADL Core Image Library contains executable ADL
load modules. The table below gives the names and descriptions of the modules.

DescriptionModule

CICS - Write ADL tables on dump file.DAZCDUMP

CICS - ADL shut-down program (PLT).DAZCEND

CICS control program.DAZCICS

CICS - Return status of ADL.DAZCINF

CICS - ADL start-up program (PLT).DAZCINIT

CICS - Switch off ADL trace.DAZCTOFF

CICS - Switch on ADL trace.DAZCTON

Establish Logical Relationships utility.DAZELORE

Batch interface program.DAZIFP

Batch mixed mode module.DAZMIX

Reformat utility.DAZREFOR

CICS - ADL task-related user exit.DAZSYNC

Data Base Unload utility (automated procedure).DAZUNDLI

Program to test DL/I calls in batch.DAZZLER

ADL Relocatable Library

When loaded from the installation tape, the ADLRelocatable Library contains the relocatable load
modules given in the table below. These are used during installation to create executable ADL
load modules.

DescriptionModule

ADL nucleus module containing the logic for generating and issuing Adabas calls.DAZAXES

Batch doorkeeper for the ADL Consistency Interface.DAZBDOKE

Batch entry point module.DAZBENT

Batch interface program (object module).DAZBIFP

Batch request handler.DAZBRQH

CICS application program interface.DAZCAPRI

ADL nucleus module for the CBC utility.DAZCCGEN

ADL nucleus module for the CBC utility.DAZCCOUT

ADL nucleus module for the CBC utility.DAZCCSUB

29Installation

z/VSE Installation Tape

CICS doorkeeper for the ADL Consistency Interface.DAZCDOKE

ADL nucleus module containing the logic for retrieval calls and for maintaining positional
information.

DAZCDPOS

CICS interface program.DAZCIFP

CICS – Allocate local user blocks.DAZCLUB

Environment independent routines of the ADL Consistency Interface.DAZCONSI

CICS request handler.DAZCRQH

ADL nucleus module containing tracing and debugging routines.DAZDEBUG

ADL nucleus module containing the logic for DELETE, REPLACE and INSERT calls.DAZDREIN

ADL nucleus module containing the logic for the EXEC command precompiler.DAZEXEC

ADL nucleus module containing the logic for initializing internal control blocks.DAZINICB

ADL nucleus module containing the logic for the language processor.DAZLANP

Language interface for batch mode.DAZLIBAT

Language interface for CICS.DAZLICID

ADL nucleus module containing general purpose service routines.DAZSERV

CICS — Stub for the ADL task-related user exit.DAZSTUB

ADL nucleus module containing the EXEC command syntax.DAZSYXTB

Adabas User Exit 6.DAZUEX06

Adabas User Exit 6 for migration to ADL 2.3.DAZUEXMI

ADL nucleus module containing zaps for nucleus routines.DAZZAP

ADL Source Library

When loaded from the installation tape, the ADL Source Library contains:

■ Macros for creating an ADL parameter module;
■ Macros for creating Adabas User Exit 6 extensions;
■ Macros for creating the CICS runtime control tables;
■ Macros for assembling DBDs and PSBs (substitutes for the original DL/IDBDGEN and PSBGEN
macros);

■ Macros for assembling the application control table (substitute for the original DL/I DLZACT
macro);

■ Source code for sample unload programs;
■ Source code for performing ADL functions under CICS;
■ Source code for the ADL supplied Adabas link module substitutes;
■ Sample JCS.

Installation30

z/VSE Installation Tape

The table below lists the other macros contained in this library.

DescriptionMember

Macro used to create entries for logical DBID/FNR assignments in theADLparametermodule.
This macro is provided for compatibility with ADL 2.2 only.

DAZLDT

Macro used to create the table of converted files for the Adabas link module substitute in
batch.

DAZTCF

Macro used to create the ADL parameter module.DAZPARM

Macro used to create Adabas User Exit 6 extensions.ZFNR

Macro used to create Adabas User Exit 6 extensions.ZPCK

Macro used to create Adabas User Exit 6 extensions.ZREC

Macro used to create Adabas User Exit 6 extensions.ZSEG

Macro used to create Adabas User Exit 6 extensions.ZSEX

Macro used to create Adabas User Exit 6 extensions.ZVCK

Macro used to create the DAZPSB table.MGPSTIN

Macro used to create the DAZPSB table.MGPSTEN

Macro used to create the DAZPSB table.MGPSTFI

Macro used to create a DAZPSB or DAZACT table.DLZACT

Macro used to create the DAZDBD table.DBDMAC

Macro used to create the DAZBUF table.BUFMAC

The following table lists the source members used during the assembly of the ADL supplied
Adabas link module substitutes:

DescriptionMember

Sourcemember to be assembled as theADL suppliedAdabas linkmodule substitute in batch.DAZLNKD

Operating system independent part of the ADL supplied Adabas link module substitute in
batch.

DAZLNK

Operating system dependent part of the ADL supplied Adabas link module substitute in
batch.

LNKDOS

The following table lists the sample JCS streams for the installation and conversion processes:

DescriptionMember

JCS for loading the ADL libraries from tape.ADLINS1.J

JCS for loading the ADL directory file from tape.ADLINS2.J

JCS for updating an existing ADL directory file.ADLINS2A.J

JCS for an initial program load of the ADL Online Services and the ADL supplied Natural
subprograms ADLERROR and ADLACTIV and an initial program load of theNatural programs
for the ADL Installation Verification Package .

ADLINS3.J

31Installation

z/VSE Installation Tape

DescriptionMember

JCS for creating an ADL parameter module.ADLINS4.J

JCS for creating an executable ADL CBC utility.ADLINS5U.J

JCS for creating an executable ADL precompiler module.ADLINS6P.J

JCS for creating an executable ADL batch module.ADLINS7B.J

JCS for creating an executable ADL Consistency Interface module for batch.ADLINS8A.J

JCS for creating an executable ADL CICSmodule.ADLINS9C.J

Sample CICS system definition file.ADLCSD

JCS for assembling the DAZPSB table.ADLCTG1.J

JCS for running the DAZSHINE utility.ADLCTG2.J

JCS for assembling the DAZBUF table.ADLCTG3.J

JCS for assembling the DAZDBD table.ADLCTG4.J

JCL for precompile, assembly and link-edit of DAZCFCT.ADLCFCT.J

JCS for assembly of the DAZTCF table.ADLTCF.J

Note the naming conventions for the JCL examples:

ADLxxxnn General sample JCL
IVPxxxnn JCL for the Installation Verification package

where xxx represents one of the following suffixes

for the installation steps (section z/VSE Installation in this documentation);INS

for the DBD/PSB conversion steps (section ADL Conversion Utilities for DBDs and PSBs in the ADL
Conversion documentation ;

DPC

for the data base conversion steps (section ADL Data Conversion Utilities in the ADL Conversion
documentation;

DBC

for the CICS table generation (section Generating the Runtime Control Tables in the ADL Interfaces
documentation);

CTG

for the generation of the converted Adabas file table (see the section Batch Installation and Operation
in the ADL Interfaces documentation);

TCF

and nn is the number of the step.

The following table lists the remaining members in the Source Library.

Installation32

z/VSE Installation Tape

DescriptionMember

Information about the current ADL release.$INFO$

ADACMP User Exit 6 skeleton, for changing the layout of an ADL file.ADLEX06

Sample user exit routine for index maintenance.ADLIMEX

COBOL sources for the ADL IVP.ADLXPCn

Input streams for the COBOL programs for the ADL IVP.ADLXPIn

Assembler sources for the ADL IVP to run under CICS.ADLXPAn

DAZZLER input streams for the ADL IVP.ADLXPDn

Physical DBD definitions for the ADL IVP.COURSEDB

Logical DBD definitions for the ADL IVP.COURSEL

PSB definitions for the ADL IVP (DAZUNDLI utility).COURSUNL

Source of the sample unload program.DAZUNLOD

Source of the sample reformat program.DAZREFOR

Source of the sample program to perform ADL functions under CICS.DAZCFCT

DSECT used by DAZCFCTDAZEISTG

Physical DBD definitions for the ADL IVP.INSTDB

Primary Index DBD definition for the ADL IVP.INSTIDX

Logical DBD definitions for the ADL IVP.INSTL

PSB definitions for the ADL IVP (DAZUNDLI utility).INSTUNL

PSB definitions for the ADL IVP (DAZELORE utility).INSTELO

Abbreviations used by the ADL Installation Verification Package (IVP).IVPINFO

ADARUN cards for the ADL IVP.IVPARUN

Execute a COBOL batch program of the ADL IVP.IVPCOB

Primary Index DBD definition for the ADL IVP.MAINIDX

PSB definitions for the ADL IVP.SCHOOL

Secondary Index DBD definition for the ADL IVP.STUDIDX

ADL Directory File

The unloaded Adabas Directory file on the installation tape was created by the Adabas Unload
utility, ADAULD. At initialization, the file contains the texts of the ADL error messages. Later, it will
also be used for storing the DBDs and PSBs for ADL and any checkpoint information.

33Installation

z/VSE Installation Tape

ADL Natural Programs

This file contains the unloaded Natural programs comprising the ADL Online Services, together
with the ADL supplied Natural subprograms ADLERROR and ADLACTIV and the ADL Installation
Verification Package. The ADLERROR subprogram may be used by Natural applications to retrieve
the comprehensive error messages of the ADL Consistency Interface. The ADLACTIV subprogram
may be used by Natural applications to verify whether the ADL Consistency Interface is active or
not.

The files were created with the Natural Object Handler (SYSOBJH).

Installation34

z/VSE Installation Tape

5 z/VSE Installation

■ Overview ... 36
■ Initial Load of the ADL Libraries (Step 1) .. 36
■ Initial Load of the ADL Directory File (Step 2) .. 38
■ Initial Program Load of the ADL Natural Programs (Step 3) .. 39
■ Creating the ADL Parameter Module (Step 4) ... 39
■ Creating the ADL Executable Modules (Steps 5 - 10) .. 39
■ Creating the Consistency Front-Ends (Steps 11 - 12) .. 43

35

This chapter covers the following topics:

Overview

This chapter describes the steps necessary to install the Adabas Bridge for DL/I (ADL) in a z/VSE
environment. After performing these steps, you will be able to run the ADL data base conversion
utilities, to use the ADL Online Services and to operate the ADL Interfaces for DL/I and Adabas
calls.

For easy reference, all installation steps are summarized below. In general, all steps must be per-
formed in all environments. Exceptions are clearly marked as such in the detailed description of
the individual steps.

DescriptionStep

Load the ADL libraries to disk.Step 1

Load the ADL directory file.Step 2

Load the ADL Online Services and the ADL Installation Verification Package.Step 3

Create the ADL parameter module.Step 4

Create the executable ADL data conversion module.Step 5

Create the executable ADL precompiler module.Step 6

Create the executable module for the ADL CALLDLI Interface in batch.Step 7

Create the executable module for the ADL Consistency Interface in batch.Step 8

Create the executable module for the ADL Interfaces under CICS.Step 9

Create the executable ADL batch region controller.Step 10

Create the ADL substitute for the Adabas link module in batch.Step 11

Link-edit the Adabas link module under CICS with the ADL exit ADLEXITB.Step 12

Note: If you use Software AG's SystemMaintenance Aid (SMA), steps 1 to 9 are performed
by SMA.

Initial Load of the ADL Libraries (Step 1)

Load the ADL libraries to disk using the JCS given as an example below.

Installation36

z/VSE Installation

Library Space Requirements (z/VSE)

The following table gives an estimate of how much space is needed for various device types
(primary tracks, directory tracks).

3390Library

40, 1SL

80, 1RL

80, 1CL

Copying the Tape Contents to a z/VSE Disk

If you are using SMA, refer to the SystemMaintenance Aid documentation (included in the current
edition of the Natural documentation CD).

If you are not using SMA, follow the instructions below.

This section explains how to:

■ Copy dataset COPY.JOB from tape to disk.
■ Modify this dataset to conform with your local naming conventions.

The JCL in this member is then used to copy all datasets from tape to disk.

If the datasets for more than one product are delivered on the tape, the member COPYTAPE.JOB
contains the JCL to unload the datasets for all delivered products from the tape to your disk, except
the datasets that you can directly install from tape, for example, Natural INPL objects.

After that, you will have to perform the individual install procedure for each component.

■ Step 1 - Copy Dataset COPYTAPE.JOB from Tape to Disk
■ Step 2 - Modify COPYTAPE.JOB
■ Step 3 - Submit COPYTAPE.JOB

Step 1 - Copy Dataset COPYTAPE.JOB from Tape to Disk

The dataset COPYTAPE.JOB (File 5) contains the JCL to unload all other existing datasets from
tape to disk. To unload COPYTAPE.JOB, use the following sample JCL:

37Installation

z/VSE Installation

* $$ JOB JNM=LIBRCAT,CLASS=0, +
* $$ DISP=D,LDEST=(*,UID),SYSID=1
* $$ LST CLASS=A,DISP=D
// JOB LIBRCAT
* ***
* CATALOG COPYTAPE.JOB TO LIBRARY
* ***
// ASSGN SYS004,NNN <------ tape address
// MTC REW,SYS004
// MTC FSF,SYS004,4
ASSGN SYSIPT,SYS004
// TLBL IJSYSIN,'COPYTAPE.JOB'
// EXEC LIBR,PARM='MSHP; ACC S=lib.sublib' <------- for catalog
/*
// MTC REW,SYS004 ↩

ASSGN SYSIPT,FEC
/*
/&
* $$ EOJ ↩

Where:

NNN is the tape address
lib.sublib is the library and sublibrary of the catalog

Step 2 - Modify COPYTAPE.JOB

Modify COPYTAPE.JOB to conform with your local naming conventions and set the disk space
parameters before submitting this job.

Step 3 - Submit COPYTAPE.JOB

Submit COPYTAPE.JOB to unload all other datasets from the tape to your disk.

Initial Load of the ADL Directory File (Step 2)

Load the ADL Directory File. This file is a standard Adabas file unloaded with the ADAULD utility
of Adabas. You may use the JCL in the ADL source library member ADLINS2.J as an example.

If ADL is already installed at your site and youwant to continue to use the existing ADL directory
file, you may simply delete the obsolete error messages from the existing Directory File and load
the new messages from the unloaded file provided on the installation tape. You may use the JCL
in the ADL source library member ADLINS2A.J as an example.

Installation38

z/VSE Installation

Initial Program Load of the ADL Natural Programs (Step 3)

Load the ADL Online Services and the DDM for the ADL Directory File, ADB-CONTROL. The INPL file
on the installation tape was created with the Natural SYSOBJH utility and is compatible with Nat-
ural version 4.1 and upwards. You may use the JCL in the ADL source library member ADLINS3.J
as an example.

Note that the INPL file on the ADL installation tape contains a DDM for the ADL Directory File and
the object modules of the library SYSADLwith the ADL-supplied subprograms ADLERROR and
ADLACTIV. These subprograms may be used by Natural applications operating under the ADL
Consistency Interface.

The same step loads also the ADL Installation Verification Package (SYSADLIV) and the related
DDMs.

Creating the ADL Parameter Module (Step 4)

Create the ADL parameter module (DAZPARM) by assembling the DAZPARMmacro. This procedure
is common to both z/OS and z/VSE and is described in the section The ADL Parameter Module .

You may use the JCS in the ADL Source Library member ADLINS4.J as an example.

Creating the ADL Executable Modules (Steps 5 - 10)

Step 5

Create the executable ADL CBCutilitymodule by running the link editor and specifying the following
link edit directives:

PHASE DAZNUCU,*,NOAUTO
INCLUDE DAZPARM
INCLUDE DAZCCGEN
INCLUDE DAZCCOUT
INCLUDE DAZCCSUB
INCLUDE DAZAXES
INCLUDE DAZSERV
INCLUDE DAZDEBUG
INCLUDE DAZZAP
ENTRY DAZPARM

You may use the JCS in the ADL Source Library member ADLINS5U.J as an example.

39Installation

z/VSE Installation

Step 6

This step need only be performed where one or more of the application programs to be converted
uses the HLPI.

Create the executable ADL precompiler module by running the link editor and specifying the
following link edit directives:

PHASE DAZNUCP,*,NOAUTO
INCLUDE DAZPARM
INCLUDE DAZEXEC
INCLUDE DAZSERV
INCLUDE DAZLANP
INCLUDE DAZSYXTB
INCLUDE DAZDEBUG
INCLUDE DAZZAP
ENTRY DAZPARM

You may use the JCS in the ADL Source Library member ADLINS6P.J as an example.

Step 7

Create the executable ADL CALLDLI Interface batchmodule by running the link editor and specifying
the following link edit directives:

PHASE DAZNUCB,*,NOAUTO
INCLUDE DAZPARM
INCLUDE DAZBENT
INCLUDE DAZAXES
INCLUDE DAZSERV
INCLUDE DAZINICB
INCLUDE DAZCDPOS
INCLUDE DAZDREIN
INCLUDE DAZDEBUG
INCLUDE DAZZAP
ENTRY DAZPARM

You may use the JCS in the ADL Source Library member ADLINS7B.J as an example.

Installation40

z/VSE Installation

Step 8

Create the executable ADL Consistency Interface module for batch by running the linkage-editor
and specifying the following link-edit directives:

PHASE DAZNUCA,*,NOAUTO
INCLUDE DAZPARM
INCLUDE DAZAXES
INCLUDE DAZBDOKE
INCLUDE DAZBRQH
INCLUDE ADAUSER
INCLUDE DAZCDPOS
INCLUDE DAZCONSI
INCLUDE DAZDEBUG
INCLUDE DAZDREIN
INCLUDE DAZINICB
INCLUDE DAZSERV
INCLUDE DAZZAP
ENTRY DAZPARM

The ADAUSER object module must be included from a valid Adabas relocatable library.

Note: When you want the user written user exit (DAZUEX01) to become active in batch, you
must, in addition, include your user exit DAZUEX01within the ADL nucleus DAZNUCA. This
may be achieved by specifying an extra statement for the linkage-editor input:

INCLUDE DAZUEX01

See the section ADL User Exit DAZUEX01 later in this documentation for more details on the
purpose and conventions for the user exit DAZUEX01.

You may use the JCS in the ADL source library member ADLINS8A.J as an example on how to
link-edit the ADL nucleus DAZNUCA.

Step 9

Create the executable ADL Interfaces CICS module by running the link editor and specifying the
following link edit directives:

PHASE DAZNUCC,*,NOAUTO
INCLUDE DFHEAI
INCLUDE DFHEAI0
INCLUDE DAZPARM
INCLUDE DAZCAPRI
INCLUDE DAZCIFP
INCLUDE DAZCRQH
INCLUDE DAZCDOKE
INCLUDE DAZCLUB
INCLUDE DAZCONSI

41Installation

z/VSE Installation

INCLUDE DAZAXES
INCLUDE DAZSERV
INCLUDE DAZINICB
INCLUDE DAZCDPOS
INCLUDE DAZDREIN
INCLUDE DAZDEBUG
INCLUDE DAZSTUB
INCLUDE DAZZAP
ENTRY DAZPARM

You may use the JCS in the ADL Source Library member ADLINS9C.J as an example.

Note: When you want the user written user exit (DAZUEX01) to become active under CICS,
you must, in addition, include your user exit DAZUEX01within the ADL Interfaces CICS
nucleus, DAZNUCC. This may be achieved by specifying an extra statement for the linkage-
editor input:

INCLUDE DAZUEX01

See the section ADL User Exit DAZUEX01 later in this documentation for more details on the
purpose and conventions for the user exit DAZUEX01.

Step 10

Create the executable ADL batch region controller by running the linkage-editor and specifying
the following link-edit directives:

ACTION CLEAR
PHASE DAZIFP,*,NOAUTO
INCLUDE DAZBIFP
INCLUDE DAZBRQH
INCLUDE ADAUSER
INCLUDE DAZUEX01
ENTRY DAZBIFP

Youmay use the JCS in the ADL source librarymember ADLINS10.J as an example. The ADL load
library, the Adabas load library and the user load library must be defined in a "LIBDEF
PHASE,SEARCH=" statement in the given order.

It is only necessary to perform this step, if you want a user written user exit (DAZUEX01) to become
active in batch. See the section ADL User Exit DAZUEX01 later in this documentation for more
details on the purpose and conventions for this user exit.

Installation42

z/VSE Installation

Creating the Consistency Front-Ends (Steps 11 - 12)

Step 11

This step is only required if you plan to use the ADL Consistency Interface in batch.

Assemble and link-edit the ADL substitute for the Adabas link-module in batch, ADALNK. Youmay
use the JCS in the ADL source library member ADLINS11.J as an example. You need to perform
this step only, if you plan to use the ADL Consistency Interface. See the section Batch Installation
and Operation in theADL Interfaces documentation formore information on how to install the ADL
Consistency Interface.

The ADL source library member to be assembled is DAZLNKD. Before the assembly, you will have
to customize the assembler local variable &ADALNK in the ADL source library member DAZLNKD.
&ADALNK specifies the new name chosen for the original Adabas link module. It is defaulted to
"ADAOLK".

Note that the ADL source library, the Adabas source library and the system macro libraries must
be concatenated in the given order.

If you want to make use of the table of converted Adabas files (DAZTCF) you have to perform the
steps described in section Batch Installation and Operation in the ADL Interfaces documentation.
Assemble DAZTCF before link-editing of ADALNK. The assembly of DAZTCF is included in the sample
JCL ADLINS11.

Add the following statement to the linkage-editor input for the Adabas batch link module:

INCLUDE DAZTCF

ForAdabas version 8 and above, youmust additionally link theAdabas link-globals-table LNKGBLS
to the ADL substitute:

INCLUDE LNKGBLS

Step 12

This step is only required if you plan to use the ADL Consistency Interface under CICS. See the
section CICS Installation and Operation in the ADL Interfaces documentation for more information
on how to install the ADL Consistency Interface.

Add the following statement to the linkage-editor input for the Adabas link module under CICS:

43Installation

z/VSE Installation

INCLUDE ADLEXITB

If you want to use the table of converted Adabas files, assemble the DAZTCF table and include this
also:

INCLUDE DAZTCF

Note: The parameter LUSAVE in the Adabas link source member LNKOLSCmust have a value
of at least 72 bytes.

Installation44

z/VSE Installation

6 ADL Parameter Module

■ Overview ... 46
■ List of Parameters for the ADL Parameter Module .. 46
■ Dynamic Overwrite Parameters .. 53

45

This chapter covers the following topics:

Overview

TheAdabas Bridge for DL/I requires certain installation-dependent information. This information
is basically supplied to ADL by means of a parameter module. Most of the parameters are called
static, that is, they can be defined in the ADL parameter module only. In addition, for batchmode,
the possibility exists to define certain parameters dynamically to the ADL batch region controller,
DAZIFP, and to the ADL substitute for the Adabas link module in batch, ADALNK.

The ADL parameter module is created by the assembly and link-edit of the DAZPARMmacro. All
parameters for this macro are keyword parameters.

Finally, the ADL parameter module will be link-edited together with one of the five ADL nuclei
(DAZNUCA, DAZNUCB, DAZNUCC, DAZNUCP and DAZNUCU). You may, for each individual nucleus,
define a different ADL parameter module depending on the requirements.

Note: With ADL 2.3 the logical file numbers have been replaced by logical IDs. Therefore
the DAZLDTmacro which was part of the ADL 2.2 parameter module has become obsolete.
For compatibility reasons DBDs converted with ADL 2.2 or before may still use this macro.
Its meaning and usage can be found in the ADL 2.2 documentation.

List of Parameters for the ADL Parameter Module

DefaultPossible valuesExplanationKeyword

Blank(z/VSE only) A two-character suffix for the name of the ACT
table module.

ACTSF

ADABAS(CICS only) The name of the Adabas link module. If you want
to use the ADL Consistency Interface, this parameter must be

ADANAME

the same as theNatural parameter ADANAME. Refer to the section
CICS Installation and Operation in the ADL Interfaces
documentation for more details.

YESYES or NO(CICS only) Specifieswhether the ADL CALLDLI interface should
generate a special AdabasUser ID under CICS. TheAdabas user

ADAUSR

Id is only generated when the ADL Consistency interface is
active. For more information see the section CICS Installation
and Operation in the ADL Interfaces documentation.

BlankA two-character suffix for the name of the buffer table module.
See the section Generating the Runtime Control Tables in the ADL
Interfaces documentation for details.

BUFSF

Installation46

ADL Parameter Module

DefaultPossible valuesExplanationKeyword

11 - Message is
written to
DAZOUT1

Specifies where the checkpoint message is to be written, if at all.CHKPMSG

2 - Message is
written to
DAZOUT2

NO - No
checkpoint
message is
written

NoneAny 8-character
string.

(DAZIFP parameter only). The checkpoint ID from which the
application is to be restarted (for programs using symbolic
checkpoints only).

CPID

512 bytes0 - 999The size (in bytes) of the area used by ADL for retrieving
segment occurrences when processing cascaded deletes. The
size of this area can be determined as follows:

(n + 1) * 8

CRSIZ

where “n” is themaximumnumber of levels forwhich the delete
applies. The default size should be sufficient in most cases.

16 KB0 - 999The size (in kilobytes) of the ADL's DBD ICB buffer. This buffer
is only allocated and used in application batch runs, when it
stores the DBD internal control blocks.

DBD

BlankA two-character suffix for the name of the DBD table module.
See the section Generating the Runtime Control Tables in the ADL
Interfaces documentation for details.

DBDSF

1 - 32767Adabas data base ID for the ADL directory file. This parameter
is mandatory.

DBID

NOYES or NO(z/OSbatch only) Support ofCA-DUOunder z/OSbatch operation.
DUO=YES has to be specified for programswhich are link-edited

DUO

by the CA-DUO linkage editor. Note that the program has to be
linked with the ADL language interface module DAZLIBAT and
not with DUODLZLI. Use the 'NCAL' parameter for DUOLINK.
The entry point for COBOL programs is DLITCBL. The
application runs under the control of DUO, which itself is called
by DAZIFP. DUO=NO has to be specified in any other case. For
further information see the CA documentation in the CA-DUO
USER GUIDE.

8 KB0 - 99The size (in kilobytes) of ADL's ECB buffer. The size allocated
for this area depends on the size of the PSB used and the DBDs
referenced.

EBUF

11 - 999999, NOThe number of times a different root segment occurrence may
be accessed before an Adabas ET command is issued. This

ET

parameter is only of interest for batch programs running as BMP,

47Installation

ADL Parameter Module

DefaultPossible valuesExplanationKeyword

MPS or SDB jobs. ET=NOmay be specified in cases where no
automatic ETs should be issued. For further information, see the
section Recovery and Restart Procedures in the ADL Interfaces
documentation. Under CICS, ADL enqueues every accessed DB
record. If no update has taken place, ADL releases the record as
soon as the next one is accessed. The ET parameter specifies the
record number at which this release starts. Thus, ET allows the
number of Adabas 'RI' calls to be decreased. Note that the
records which have been accessed before the specified number
is reached remain in hold status until the next explicit
SYNCPOINT call or until the end of the task. If ET=NO is specified
under CICS, ADL will not enqueue a record as long as it is
accessed without hold (i.e. with GU, GN, GNP). As soon as it is
accessed with a hold command (i.e. with GHU, GHN, GHNP)
ADL enqueues the record and treats it as if ET=1was specified.

128 bytes0 - 999The size (in bytes) of the area allocated to the Adabas format
buffer. The maximum length of the format buffers created by

FBSIZ

ADL depends on the depth of the hierarchy and the number of
secondary indices defined for a particular source segment. The
default value is generally sufficient for a segment at level 15
having 20 secondary indices.

4 KB4 - 999(Batch only). The size (in kilobytes) of the file description table
used internally by the ADL Consistency Interface.

FDT

1 - 32767Adabas file number for the ADL directory file. This parameter
is mandatory.

FNR

800 bytes16 - 9999The size (in bytes) for the format buffer stack used internally by
the ADL Consistency Interface.

FSTAC

x: 14x: 1 - 99(z/VSE only) Used to specify the input data set for the Print
utility for printing the Trace routine or for theADLprecompiler.
The syntax of the parameter is as follows:

FX=([x],[y],[z])

FX

y: 132
bytes

z: 1320
bytes

y: 0 - 99999

z: n * y ≤
99999 where n
is any positive
integer.

where

x is Logical unit

y is Record length in bytes

z is Block size in bytes

1024 bytes0 - 32767The size (in bytes) of the area allocated to theAdabas ISN buffer.
This is needed forAdabas calls using PREFETCH, i.e. for segments

IBSIZ

for which no Z0 field is available (see the section DBD/PSB
Conversion) and for which either an "INSERT LAST" or a "GET
NEXT LAST" DL/I call is issued. The number of Adabas calls
needed to retrieve the last segment occurrence can be influenced
by changing the size of the ISN buffer. When automatic ETs are
to be issued by ADL (see the ET parameter), a so-called retain

Installation48

ADL Parameter Module

DefaultPossible valuesExplanationKeyword

ISN list is created for every PCB. It contains the file numbers and
ISNs of the last accessed root segment and of those dependencies,
which should be kept in hold status. The size of one retain ISN
list area is:

IBSIZ / (number-of-PCBs - 1)

NOYES or NO(IMS/TP only) Indicates whether or not IMS/TP sync
point/Adabas ET synchronization is to be done. Every GU call

IMSY

on the first I/O PCB triggers an Adabas ET call and an IMS/TP
sync point (in this order). As there is a gap between the two
synchronization points, a synchronization problem may occur
between the data stored in theAdabas data base and the IMS/TP
message queue. When this parameter is set to "YES", such a
situation is recognized and the application will be terminated.

Language
specified

ASSEM, ASM,
ASSEMBLER,

(DAZIFP parameter only). Specifies the language of the
application program to be executed. If this parameter is not
given, the language defined in the PSB is used.

LANG

in the
PSB.

COBOL, CBL,
FORTRAN,
PL/I, PL/1,
PLI, PL1,
RPG, NATURAL,
NDL.

NO0-999, NO(Batch only). The size (in kilobytes) of the “last call save area”
(LCS). Refer to the section Performance Considerations in theADL

LCS

Interfaces documentation for more details. If "NO" is specified,
the LCSwill not be used.

DIRECTDIRECT or
UTILITY

(Batch only). Indicates, how an ISRT call against a PCBwith
PROCOPT=L is to be treated. When this parameter is set to

LOAD

"DIRECT", the ISRT is translated into an Adabas 'N1' call, the
data is directly inserted into the Adabas file. When it is set to
"UTILITY" the data is written into the sequential file DAZOUT3
(DAZOT3D) for z/OS (z/VSE). This file has the same layout as the
one produced by the ADL utilities DAZUNDLI or DAZREFOR. The
data can be loaded to Adabas by an initial load as described in
the sectionConvertingData - Load inADLData ConversionUtilities
in theADL Conversion documentation. For more information on
the LOAD parameter see the section Performance Considerations in
the ADL Interfaces documentation.

range for value of
the ISN lower
limit field:

(DAZIFP parameter only). Specifies the Multifetch Table (MFT).
This parameter should only be usedwhen theAdabasMultifetch
facility is active. It defines the ISN lower limit value for L3 calls

MFT

1 - 32767against specific PCB/SENSEG combinations. Thus it specifies,
how many records should be returned by Multifetch. A value
'0'means, that the maximum number of records is returned.
This number is determined by the size of the ISN buffer and the
record buffer, i.e., by the ADARUN parameters PREFSBL and

49Installation

ADL Parameter Module

DefaultPossible valuesExplanationKeyword

PREFTBL. '0' is the default value for all not specified
PCB/SENSEG combinations. A value '1'means, that the
multifetching of the corresponding PCB/SENSEG combination
will be minimized, i.e., 2 records per read activity. Refer to
section Performance Considerations in the ADL Interfaces
documentation for more details. Note, that the MFT and RBE
parameters are mutually exclusive. If you specify the MFT
parameter, youmust not use the ADARUNparameter PREFNREC.
The syntax of the parameter is as follows:
MFT=(MFT-entry1,MFT-entry2,...). A maximum number
of 128 entries is allowed. An empty list 'MFT=()' is possible
also. A MFT-entry has the following layout:

(pcb,senseg,value)
where:
pcb is the number of the PCB
senseg is the number of the sensitive segment and
value is the value of the ISN lower limit field.

00-910(Batch only). The maximum number of secondary indices for
which an index maintenance exit routine is supplied (EXTRTN
keyword in the DBD definition).

NUMEXR

161-99The maximum number of logical relationships in which the
DBDs referenced by a PSB are involved. This parameter is used

NUMLR

to reserve working space during initialization of the DBDs and
PSBs. Note that all logical relationships must be included in the
count, even though not all of them may be referenced by a
particular PSB.

320-999Themaximumnumber of qualification statements to be expected
for a single DL/I call. This parameter is used to calculate the

NUMQS

length of the buffer used to store the internal representation of
the qualification statements of a DL/I call. The default value
should be sufficient in most cases, otherwise a status code “AV”
is received.

NOYES - Adabas
"OP" required.

Under CICS, specifies whether or not an Adabas "OP" call is to
be issued on a scheduling call. This parameter is related to the

OPENRQ

NO - Adabas
"OP" not
required.

OPENRQ parameter for ADARUN. See the Adabas Operations
documentation for a full explanation of this parameter.
OPENRQ=YESmust be specified for ADL if it was specified for
ADARUN.

NOYES - read
dynamic
parameters.

Whether or not dynamic overwrite parameter will be read from
the file DAZIN1 (z/OS) or the logical unit SYSIPT(z/VSE) during
initialization of the ADL substitute for the Adabas link module
in batch.

PARM

NO - do not read
dynamic
parameters.

Installation50

ADL Parameter Module

DefaultPossible valuesExplanationKeyword

1 - 8 characters.The Adabas password. When specified, this password will be
used by the ADL for every Adabas call.

PASSWRD

8 KB0 - 99The size (in kilobytes) of theADLbuffer used by the precompiler.
The size allocated for this area depends on the complexity of the
EXEC commands used.

PBUF

YESYES - PL/1 is
using the LE/VSE

(z/VSE batch only). This parameter is used for batch z/VSE
programs written in PL/1.

PLILE

language
environment.

NO - The PL/1
LE/VSE language
environment is
not used.

YESYES - parameter
list is in TWA.

(CICS only). Determines whether or not the Adabas call
parameter list is passed on to the CICS TWA.

PLINTWA

NO - parameter
list is pointed to
by R1.

11,2(z/VSE only). The number of logical printers available. The CBC
utility produces two separate printer output files. Youmay send

PR

these to two different logical printers, if these are available, by
setting this parameter to PR=2. Specifying PR=1will cause the
second printer output file to be stored on an intermediate disk
file.

16 KB0 - 999The size (in kilobytes) of ADL's PSB ICB buffer. This buffer is
only allocated and used in application batch runs, when it stores
the PSB internal control blocks.

PSB

BlankA two-character suffix for the name of the PSB table module
used under CICS.

PSBSF

range for size by
which the RBL
will be increased:

(DAZIFP parameter only). Specifies the record buffer extension
(RBE) list. It allows increasing the record buffer length (RBL) for
L3 calls against specific PCB/SENSEG combinations. The increase

RBE

0 - 32767of the RBL does notmean that the RB area is increased. Thus you
will find garbage in the ADL trace after the 'real' end of the
record buffer. This parameter should be used only, if theAdabas
Prefetch facility is active. Refer to the section Performance
Considerations in the ADL Interfaces documentation for more
details. Note that the RBE and MFT parameters are mutually
exclusive. The syntax of the parameter is as follows:

RBE=(RBE-entry1,RBE-entry2,...)
A maximum number of 128 entries is allowed. An empty list
`RBE=()' is possible also. An RBE-entry has the layout

51Installation

ADL Parameter Module

DefaultPossible valuesExplanationKeyword

(pcb,senseg,size)
where
pcb is the number of the PCB
senseg is the number of the sensitive segment and
size is the size by which the RBL will be increased.

1024 bytes3 - 9999The size (in bytes) for the record buffer used internally by the
ADL Consistency Interface and by the DAZSHINE utility.

RBSIZ

WAIT1 - 65535, WAITThe number of times ADL tries to put into the hold status a
record which is already held by another user. After the last try

RETRY

ADL will abend with the message ADL0145. RETRY=WAITmay
be specified to let Adabaswait until the record has been released
or a timeout occurs.

32 bytes0 - 999The size (in bytes) of the area allocated to the Adabas search
buffer. The Adabas Bridge for DL/I never creates a search buffer
greater than the default length given.

SBSIZ

4 KB4 - 999(Batch only) The size (in kilobytes) of the segment description
table used internally by the ADL Consistency Interface.

SDT

x: 13x: 1 - 999(z/VSE only)Used to specify the in/output data set for theUnload
utility. The syntax of the parameter is as follows:

SQ=([x],[y])

SQ

y: 8196
bytes

y: 0 - 99999

where

x - logical unit

y - Block size in bytes

5 KB1 - 18The size (in kilobytes) of the ADL internal subroutine stack. The
size allocated for this area depends largely on the type of DL/I
calls issued. The default size should be sufficient in most cases.

STACK

none200 – 255z/OS CICS ADL Installation SVC number.SVC

Activates the Trace facility and specifies what is to be traced.
The syntax of the parameter is as follows:

TRACE = ([t],[s],[a],[n],[m],[c],[u],[b])

TRACE

The operands for this parameter and further details are explained
in the section Debugging Aids - ADL Trace Facility in the ADL
Interfaces documentation.

x: 32 KBx: 8 - 999Specifies the CBC utility work area. This buffer is only allocated
and used in CBC utility runs. The syntax of the parameter is as
follows:

UTI=([x],[y])

UTI

y: Y (yes)y: Y (yes) N (no)

where

x - The size (in kilobytes) of the CBC utility work area.

Installation52

ADL Parameter Module

DefaultPossible valuesExplanationKeyword

y - Specifies whether or not output control statements are to be
generated by the CBC utility.

256 bytes0 - 999The size (in bytes) of the area allocated to the Adabas value
buffer. ADL never creates a value buffer greater than the default
length given.

VBSIZ

Dynamic Overwrite Parameters

When running the ADL Interfaces in batch, some of the parameters specified for the DAZPARM
macro may be dynamically overwritten. The dynamic overwrite parameters are set during the
initialization of the ADL batch region controller, DAZIFP, or the ADL substitute for the Adabas
link module in batch.

More details on how to specify these dynamic overwrite parameters are given in the section Batch
Installation andOperation in theADL Interfacesdocumentation . Also, there youwill find a complete
list of dynamic overwrite parameters for the ADL CALLDLI and the ADLConsistency Interface. The
syntax and themeaning of the dynamic overwrite parameters is exactly the same as for the DAZPARM
macro.

53Installation

ADL Parameter Module

54

7 ADL Installation Verification Package

■ Introduction .. 56
■ DL/I Terms ... 56
■ Example Database .. 57
■ Adabas Terms .. 59
■ DL/I terms versus Adabas terms ... 59
■ IVP Sample JCL .. 60
■ Conversion of the Example Database .. 61
■ DL/I Applications for the Installation Verification Package .. 64
■ DDMs for the Installation Verification Package ... 65
■ Example Database Application ... 65
■ Other Natural Objects of the Installation Verification Package ... 73
■ Tuning the ADL Installation Verification Package .. 74

55

This chapter covers the following topics:

Introduction

The ADL Installation Verification Package (IVP) provides you with a full DL/I application envir-
onment. It can be used to verify the successful installation of the ADL. Moreover, when running
through the steps outlined below, you will gain experience in the ADL concepts and the various
ADL tools. By the way, if you do not yet have DL/I or Adabas knowledge, you will learn about
the most important terms of the both database systems, and how ADL connect the both. If you
are interested inmore detailed information about these database systems, refer to the corresponding
IBM or Software AG documentation.

The ADL IVP consists of the following parts:

■ DBD and PSB definitions of the example database
■ Sample JCL
■ COBOL batch programs with input files
■ Assembler online programs
■ DAZZLER input streams
■ Natural program sources
■ DDM definitions

The DDMdefinitions are loaded into the DDMfile during the ADL installation. At the same time,
the Natural programs are loaded into the Natural library SYSADLIV. All other parts are in the
ADL source library.

DL/I Terms

In DL/I, the database layout is described in a so-calledDBD (database description). For each inform-
ation type (like ‘COURSE’) there is one SEGMENT (type) definition, describing the corresponding
data layout. Single data information (like 'Mathematics') is named ‘SEGMENT occurrence’. FIELD
definitions can be used, to describe a part of the segment data.

DL/I is a hierarchical database system. This means that the relation between the segments in a
database is a parent to child (1:n) relationship. The first level segment is named ‘root’. For each
segment type, you can define a sequence field. This specifies in which sequence you will retrieve
the data. For dependent segment types (child types), only the data which belongs to one specific
parent occurrence is sequenced. The concatenated data of the sequence fields of all parent segments
together with the current sequence field value is named ‘concatenated key’ (CCK). It describes the

Installation56

ADL Installation Verification Package

current position in the database. Under ADL, one specific sequence field value from the CCK is
denoted as partial concatenated key (PCK).

Alternate keys are called ‘secondary indices’. A secondary index on a dependent segment type also
defines an alternate entry into the database (besides the root). Additionally to the definitions in
the physical DBD, you need a secondary index DBD for each secondary index.

To reduce data replication, pointers can be defined between two segment types from different
DBDs, so-called ‘logical child (LC) segments’. An LC segment contains the concatenated key of the
segment, where it is pointing to (the destination parent), and if desired, some more information
(intersection data).With the help of the LC segments, you can build logical databases, which contain
segment types from both connected physical databases.

The view from the application to the DBDs is described in a PSB (program specification block). A
PSB is build up by one or more PCBs (program communication block), each PCB corresponds to one
DBD. For each PCB, the sensitive segments (SENSEG) describe, which segments can be accessed by
the application.

The application program communicates with DL/I with a user PCB. To access specific data from
the database, it can specify a segment search argument (SSA). The data of the segment is returned
in the I/O area. A status code, which indicates whether the call was successful, is put into the user
PCB.

Example Database

Let’s assume you have to build up a database system for a school. The school offers various courses,
each course consisting of one or more classes. You want to maintain the courses, the classes and
the students taking the classes. On the other hand, there are the instructors teaching the classes.
You want to collect information about their salary, skills, and address.

The COURSEDB and INSTDB members on the ADL source library are the DL/I DBD definitions
for these databases. The COURSEDB contains the information about the courses, classes, and
students; the INSTDB about the instructors, their salary, skill and address. The figure below shows
the hierarchical structure of the two databases.

57Installation

ADL Installation Verification Package

Figure 1: Example Database

The two databases are connected by a logical relationship. In the INSTDB database, there is the
segment COURSEP, which points to the class, taught by the instructor. This is indicated by the
second parent of the COURSEP segment. Note that in this case, the segment data contains the
concatenated key of the CLASS segment. Additionally, it contains a YEAR field as intersection
data. In the COURSEDB database, there is the segment INSTRP, which points to the instructor
teaching the class. Since both logical child segments contain the same information (‘instructor is
teaching class’), the corresponding data is kept only in one of them, in the COURSEP segment.
The SOURCE keyword at the INSTRP statement indicates that the data is kept at the paired logical
child. The COURSEP segment is named the ‘real logical child’ (RLC), and the INSTRP segment is
named the ‘virtual logical child’ (VLC).

There are two logical databases defined for the logical relationship between the COURSEDB and
the INSTDBdatabases. TheCOURSELdatabase starts from theCOURSE segment in theCOURSEDB
database. From here you can access not only the CLASS and STUDENT segments, but also the
INSTRUCT segment in the INSTDB database, and all its dependents. The INSTL database allows
you to access the COURSE, CLASS and STUDENT segments in the COURSEDB database, when
starting from the INSTRUCT segment in the INSTDB database.

In the COURSEDB database, a secondary index is defined. This is indicated by the ‘LCHILD
POINTER=INDX’ statement, followed by an XDFLD statement. It sorts the COURSE segment in
the sequence of the student names. This allows you to give a fast answer to questions like ‘Which
courses is student ‘Smith’ taking?’ The corresponding secondary index DBD is named STUDIDX.

The main PSB describing the two databases is the PSB ‘SCHOOL’. The other PSBs on the ADL
source library (COURSUNL, INSTUNL, and INSTELO) are required for ADL utilities. Note that

Installation58

ADL Installation Verification Package

the ADL source library also contains the primary index DBD definitionsMAINIDX and INSTIDX,
which are not used by ADL.

Adabas Terms

With Adabas the data of the same layout is collected in a file, similar to a table of a relational
database system. Each file belonging to one database is identified by a unique file number (FNR),
whereas each database is identified by a unique database Id (DBID). The single piece of data inform-
ation in a file is named ‘record’, which is identified by a unique ISN (internal sequence number). A
file is build up by one or more fields. Key fields are named ‘descriptors’. Multiple fields can be
combined into a superdescriptor key field. A field can be defined with the null-value suppression
(NU option), which helps to save data storage. For descriptors, the NU option has the effect that a
search with this descriptor will not return a record if the corresponding descriptor value is null.

Series of consecutive fields can be combined in a group. So-called multiple value fields (MU option)
can contain more than one value in a single record. If a descriptor is defined with the MU option,
a search will return a record if any of the descriptor values matches the search.

The detailed layout of a file is described in the file description table (FDT). The FDT of an existing
file can be outlined with the Adabas Online Services or the Adabas Manager.

A DDM (Data Definition Module) is the logical definition of a physical database file referenced by
Natural programming objects. For a Natural program, the user view describes which fields from
a specific file can be accessed.

An application corresponds with Adabas with the ACB (Adabas Control Block). The search/value
buffer combination describes the value the application is looking for. The data is returned in the
record buffer, while the format buffer describes which field values should be put into the record
buffer. The response code in the ACB indicates, whether the call was successful.

DL/I terms versus Adabas terms

The following table gives you a rough correspondence of the DL/I and Adabas terms. Note that
this correspondence is on a higher level, for example theDL/I status code and theAdabas response
code both return the information how successful the call was, but the detailed codes are by far not
the same. For some terms there is no corresponding term in the other database system.

59Installation

ADL Installation Verification Package

AdabasDL/I

Database

File, related filesDatabase

File, part of a file, groupSegment type

Root segment

Parent segment

Child segment

Group

FieldField

DescriptorSequence field (root segment)

Sequence field (dependent segment)

Concatenated key

DescriptorSecondary index

RecordSegment occurrence

ISN

FDTDBD

PSB

(Natural) viewPCB

Adabas control blockUser PCB

Search/value bufferSSA

Format bufferSensitive field

Record bufferIO-area

Response codeStatus code

HowADL converts theDL/I definitions intoAdabas is described inAdabas File Layout of the section
Conversion of the Data Structure - General Considerations of the ADL Conversion documentation.

IVP Sample JCL

The ADL source library contains the following sample JCL members for the ADL Installation
Verification Package:

Installation60

ADL Installation Verification Package

Run a COBOL batch program (ADLXPC1) against ADL.IVPCOB

Unload of the migrated COURSEDB.IVPDBC4C

Unload of the migrated INSTDB.IVPDBC4I

Initial load of the course/class data into Adabas.IVPDBC6A

Initial load of the student data into Adabas.IVPDBC6B

Initial load of the instructor data into Adabas.IVPDBC6C

Establish the logical relationship.IVPDBC9

Assemble, link-edit of the DBD and PSB sources.IVPDPC1

Conversion of the PSBs and logical DBDs.IVPDPC2

Conversion of the INSTDB and COURSEDB databases.IVPDPC23

Assemble, link-edit of the user exit 6 for COURSEDB.IVPDPC4A

Assemble, link-edit of the user exit 6 for INSTDB.IVPDPC4C

Create additional descriptors for the course and class data.IVPINVA

Create additional descriptors for the student data.IVPINVB

Create additional descriptors for the instructor data.IVPINVC

Run a DAZZLER stream (ADLXPD1) against ADL.IVPZLER

Run a DAZZLER stream (ADLXPD4) against ADL in shared database mode with the ADL
traces facility.

IVPZLERT

Note: The member IVPINFO contains all abbreviations used in the sample JCL. Before you
submit any job, youmust replace the abbreviationwith the real values, such as ADL.LOAD
with the name of the ADL load library. Under z/OS youmust additionally edit the member
IVPARUN, which contains the ADARUN cards, and adapt it to your requirements.

Conversion of the Example Database

Before you start the conversion, you must consider on which Adabas files the data should be
stored. You need three files for the example database. The instructor data (INSTDB) should be
stored in one file (FNR=c), while the data of the COURSEDB is split up into two files: file a for the
course and class data, and file b for the student data.

The conversion steps are described in more detail in the ADL Conversion documentation, sections
ADL Conversion Utilities for DBDs and PSBs and ADL Data Conversion Utilities.

Run the sample jobs in the following sequence:

1. IVPDPC1: Assemble and link-edit all DBD and PSB sources. Only the primary index DBD
definitions are not assembled, because ADL does not need them.

2. IVPDPC2: Convert the PSBs and the logical DBDs. The DBID and FNR of the ADL directory
onwhich the definition is stored should have already been definedduring theADL Installation.

61Installation

ADL Installation Verification Package

Note that a logical DBD or a PSB can be converted, even if the corresponding physical DBD is
not yet converted.

3. IVPDPC23: Convert the databases INSTDB and COURSEDB. The GENSEG statement for the
STUDENT segment is used to store the student data in a different file than the course and class
data. This job generates the ADACMP cards for all three files and the macro cards for the
Adabas User Exit 6.

4. IVPDPC4A/C: Assemble and link-edit the User Exit 6 cards for COURSEDB and INSTDB re-
spectively, which have been generated in the previous step. Note that there is one User Exit 6
per database, even if the segments are distributed over several files.

5. IVPDBC6A/B/C: Initial load of the Adabas files a, b, and c, respectively. Each job consists of the
following steps: Delete the file (if it already exists), compress the data, and load the file. Since
we have not unloaded any data before, we now load an empty file. In this case, User Exit 6 is
not required.Moreover, we do not need to establish logical relationships in an empty file, which
is normally done by running the DAZELORE utility.

The ADL Conversion utility has generated the following Adabas structures for the example
database:

DescriptionAdabasDL/I
Segments COURSE and CLASS of COURSEDBFile aCOURSEDB

Pointers to reflect the hierarchy.Z1 - Z8address pointers

PCK for the COURSE segment.PCaddress pointers

Course data segment / group.SACOURSE

Course number field (descriptor).AACOURSENO

Filler field for remaining course data.AB

Class data segment / group.SBCLASS

Class number field.ACCLASSNO

Filler field for remaining class data.AD
Segment STUDENT of COURSEDBFile bCOURSEDB

Pointers to reflect the hierarchy.Z0 - Z8address pointers

PCK for the COURSE and CLASS segment.PC, PBaddress pointers

Secondary index field / descriptor.XASTUKEY

Student data segment / group.SASTUDENT

Student name field.AASURNAME

Filler field for remaining student data.AB
All segments of INSTDBFile cINSTDB

Pointers to reflect the hierarchy.Z0 - Z8address pointers

PCK for the INSTRUCT segment.PAaddress pointers

Instructor data segment / group.SAINSTRUCT

Installation62

ADL Installation Verification Package

DescriptionAdabasDL/I

Instructor name field (descriptor).AAINSTNAME

Filler field for remaining instructor data.AB

PCK of the COURSE segment as part of INSTRP.PCCOURSNO

PCK of the CLASS segment as part of INSTRP.PBCLASSO

Course pointer intersection data segment / group.SBCOURSEP

Course pointer intersection data field.ACYEAR

Salary data segment / group.SCSALARY

Date field.ADDATE

Amount field.AEAMOUNT

Skill data segment / group.SDSKILL

Filler field for skill data.AF

Address data segment / group.SEADDRESS

Zip code field.AGZIPCODE

City field.AHCITY

Street field.AISTREET

After the steps mentioned above have been performed, DL/I applications can run against the
example database. But before we continue, we allocated additional descriptors and super-
descriptors, which wewill need for Natural. Alternatively to the Adabas invert utility, it would
also be possible to modify the ADACMP cards generated in step 3, before the initial load.

6. IVPINVA: Create additionally descriptors for file a. We make the field AC (CLASSNO) a
descriptor and create a superdescriptor S1 (CCK-CLASS), build up by the fields PC (PCK-
COURSENO) and AC (CLASSNO). With the help of this superdescriptor we can easy read the
class data in the hierarchical sequence.

7. IVPINVB: Create additionally descriptors for file b. We make the field AA (SURNAME) a
descriptor and create a superdescriptor S1 (CCK-CLASS), build up by the fields PC (PCK-
COURSE) andPB (CLASSNO).With the help of this superdescriptorwe can easy read the student
data in the hierarchical sequence.

8. IVPINVC:Create additionally descriptors for file c. For each of the dependent segments SALARY,
SKILL and ADDRESS we create a superdescriptor (S2 - S4), which is build up by the field PA
(PCK-INSTRUCT) and a part of the segment data. With the help of these superdescriptors we
can easy read the segments data in the hierarchical sequence. Additionally we create the super-
descriptors S1 (CCK-COURSEP) and S5 (CCK-INSTRP) to reflect the hierarchical view of the
COURSEP and the INSTRP segments.

63Installation

ADL Installation Verification Package

DL/I Applications for the Installation Verification Package

First we want to populate our databases with data. This is performed by the DAZZLER stream
ADLXPD1, which inserts courses, classes and students, as well as the related instructors. The
DAZZLER program is described in detail in the ADL Interfaces documentation, section CALLDLI
Test Program - DAZZLER. You can use the sample job IVPZLER to run the DAZZLER.

Perform also the other DAZZLER streams, by modifying the ‘CFILE’ card in the job IVPZLER.

■ Stream ADLXPD2 gives you a summary of all PCBs in the PSB SCHOOL.
■ Stream ADLXPD3 reads all students of one specific class.
■ Stream ADLXPD4 inserts, modifies and deletes some data. At the end it makes a BACKOUT,
which brings the database back into its original status. Use the sample job IVPZLERT for this
stream. In this case,ADL is running inmode SDBwith ET=NO, which enables to use the BACKOUT
function. Additionally it starts the ADL trace facility, which is described in the ADL Interfaces
documentation, section Debugging Aids - ADL Trace Facility. The Routine Trace lists all ADL
routine names where ADL is running through when it performs the requested function. In the
Database Call Trace, you can see the DL/I calls as well as the resulting Adabas calls.

The next task is to run some COBOL batch programs against the example database. Compile and
link-edit the COBOL programs ADLXPC1/2/3. These COBOL programs use as input streams the
members ADLXPI1/2/3, respectively. Use the sample job IVPCOB to submit the programs.

■ ADLXPC1 lists the students of one specific course/class.
■ ADLXPC2 lists the courses and classes which are visited by one specific student
■ ADLXPC3 lists the students which are taught by one specific instructor.

Now we want to run some assembler programs under CICS against the example database. First
youmust add the PSB SCHOOL to theADLPSB table DAZPSB, and generate theADLCICS tables
as described in Generating the Runtime Control Tables in section CICS Installation and Operation of
the ADL Interfaces documentation.

Assemble and link-edit the assembler programs ADLXPA1 and ADLXPA3. Make an entry in the
DFHCSDUP table for each of the programs. If possible, choose as TRANSID the names ADL1 and
ADL3, respectively. You may use the member IVPCSD in the ADL source library as input to DF-
HCSDUP.

The program ADLXPA1 makes a scheduling call against the PSB SCHOOL and reads some data.
The program ADLXPA3 issues a checkpoint, after it has read and replaced some data.

Installation64

ADL Installation Verification Package

DDMs for the Installation Verification Package

For each segment of the Example Database there is a DDM (Natural data definition module)
defined. It is named in the following way:

DBDname-segmentname

The DDMs contain all the fields described in the DL/I DBD source, the PCK fields for the hierarch-
ical access, and the additionally defined superdescriptors.

For each of these DDMs there is one local data area defined in the SYSADLIV library. The name
of the local data area is the same as the corresponding segment name.

The view INSTDB-ALL contains all fields of the INSTDB file c. This includes the ADL internal
fields. The corresponding local data area is named INST-ALL.

Before you can run any Natural program for the IVP, you must perform the Natural SYSDDM
utility. Re-catalog all views of the IVP with your actual used DBID / FNR combination. Use FNR
a for the COURSE and CLASS views, FNR b for the STUDENT view, and FNR c for the others.

Example Database Application

Logon to the Natural library SYSADLIV and catalog all sources by using the Natural CATALL
utility.

Except for the MENU program, the members of the Example Database Application are named in
the following way:

ADBXPntm

where

is the identification of the program (blank, A-N, 1-3),n

is the type of the object (blank=program, G=global data, L=local data, M=map, S=subroutine), andt

is the identification of the object.m

65Installation

ADL Installation Verification Package

The Example Database Application SYSADLIV

Installation66

ADL Installation Verification Package

SYSADLIVMain Menu

10:51:33 ADABAS DL/I BRIDGE 10.07.07
User: LHU EXAMPLE DATA BASE Library: SYSADLIV

Consistency: Active - Main Menu - Program: ADBXP

Listings 4
Applications 5
Data Editor 7
Quit .

Option :

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Quit List Appl Data

The Example Database Application is started with the command ‘menu’. The first map displayed
is the ‘Main Menu’. Here, as in the other screens of the Example Database Application, the user
Id, the current Natural library name, and the current active program name are displayed. Addi-
tionally it is indicated,whether theADLConsistency is active or not. For this check, theADLACTIV
subprogram is called, which can also be used by your own applications.

The Example Database Application does not preserve the referential integrity, as described in the
ADL Interfaces documentation, section Using ADL Files with Natural/Adabas. This enables you
to test Consistency error situations when the Consistency is active, as well as to destroy the refer-
ential integrity if the Consistency is not active. Note that your own Natural programs should
never run against migrated data when the ADL Consistency is inactive.

From the Main Menu you can select three sub-menus: the ‘List Menu’, the ‘Applications Menu’
and the ‘Data Menu’ by choosing the option ‘4’, ‘5’, or ‘7’, respectively, or by pressing the corres-
ponding PF-key. When you choose the option ‘.’ (dot) or press PF3, you will leave the Example
Database Application.

67Installation

ADL Installation Verification Package

SYSADLIV List Menu

10:57:03 ADABAS DL/I BRIDGE 10.07.07
User: LHU EXAMPLE DATA BASE Library: SYSADLIV

- List Menu - Program: ADBXPA

PFK ! Function
------+--------------------
PF3 ! Main Menu
PF4 ! List Courses
PF5 ! List Classes
PF6 ! List Students
PF7 ! List Instructors

Press a PF-KEY!

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Menu Cour Clas Stud Inst

The following functions are available in the ‘List Menu’ by pressing a PF-key:

FunctionPF-key

Redisplay the Main Menu.PF3

List all courses sorted by the COURSENO field.PF4

List all classes sorted by the CLASSNO field. This function uses the fact, that the CLASSNO field
has been defined as a descriptor (job IVPINVA).

PF5

List all students sorted by the SURNAME field. This function uses the fact, that the SURNAME
field has been defined as a descriptor (job IVPINVB).

PF6

List all instructors sorted by the INSTNAME field.PF7

Installation68

ADL Installation Verification Package

SYSADLIV Application Menu

10:58:00 ADABAS DL/I BRIDGE 10.07.07
User: LHU EXAMPLE DATA BASE Library: SYSADLIV

- Applications Menu - Program: ADBXPB

PFK ! Function
--------+---

PF3 ! Main Menu
PF4 ! What Students are in a Course / Class?
PF5 ! What Courses / Classes visits a Student?
PF6 ! What Students instructs an Instructor?

Press a PF-KEY!

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Menu CC>S S>CC I>S

The Applications Menu provides you with the following functions:

FunctionProgramPF-key

Redisplay the Main Menu.PF3

List the students of one specific course/class.ADBXP1PF4

List the courses and classes which are taken by one specific student.ADBXP2PF5

List the students, which are taught by one specific instructor.ADLXP3PF6

TheseNatural programsperformexactly the same functions as theCOBOLprogramsADLXPC1/2/3,
described above. Take the time to compare the corresponding sources. The Natural programs are
shorter, i.e. faster written, and easier to understand, whichmeans, less bugs and lessmaintenance.
Moreover the Natural programs can run in batch and CICS, while making the COBOL programs
able to run online would mean much more programming effort and a more complicated code.

69Installation

ADL Installation Verification Package

SYSADLIV Data Menu

10:58:31 ADABAS DL/I BRIDGE 10.07.07
User: LHU EXAMPLE DATA BASE Library: SYSADLIV

- Data Menu - Program: ADBXPC

Mark Segment sorted by
---- -------- ---------
_ COURSE COURSENO
_ CLASS CCK-CLASS
_ CLASS CLASSNO
_ STUDENT CCK-STUDENT
_ STUDENT SURNAME
_ INSTRUCT INSTNAME
_ COURSEP CCK-COURSEP
_ COURSEP CCK-INSTP
_ SALARY CCK-SALARY
_ SKILL CCK-SKILL
_ ADDRESS CCK-ADDRESS

Mark Segment(s) with 'x' or press a PF-Key!
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Quit Menu Start Buff

From the Data Menu, you can edit the data of all segments of the Example Database. Mark a line
with ‘x’ to edit the corresponding data. The ‘sorted by’ field indicates which descriptor is used to
sort the data for the editor. For some segments, more than one sequence is possible, for example
the CLASS segment can be edited in the hierarchical sequencewith the CCK-CLASS key, or directly
in the sequence of the CLASSNO field. The logical child segment COURSEP can be viewed like
the COURSEP segment by the CCK-COURSEP key (sequence: INSTNAME), or like the INSTRP
segment by the CCK-INSTP key (sequence: COURSENO/CLASSNO).

When you edit the data of a segment, the list begins at the start-value of the sort-field. When you
press PF4 in the Data Menu, the start-values for the key fields are displayed, and can be modified.

When you press PF5 in the Data Menu, the ‘Global Buffer Values’ are displayed and can be mod-
ified. There is one global buffer value for each descriptor. The global buffer values are used at the
‘yank’ and ‘put’ commands in the editor, as described later.

When you press the PF3 key in the Data Menu, the Main Menu is redisplayed.

Installation70

ADL Installation Verification Package

SYSADLIV Example Database Editor

Segment: COURSE ADABAS DL/I BRIDGE User: LHU
sorted by: COURSENO EXAMPLE DATA BASE Library: SYSADLIV
Start: BIOLOGY300 EDITOR Program: ADBXPD
-------------------------------- DATA AREA ----------------------------------
S M COURSENO COURSENAME

_ BIOLOGY300 BIOLOGY_____________
_ EDV 800 EDP_________________
_ ENGLISH620 ENGLISH_____________
_ GERMAN 610 GERMAN______________
_ GREEK 400 GREEK_______________
_ HISTORY500 HISTORY_____________
_ MATHEMA200 MATHEMATICS_________
_ PHILOSO100 PHILOSOPHY__________
_ RINGKNO700 KNOWLEDGE OF RING___
_ __________ ____________________

-------------------------------- INPUT AREA ----------------------------------
_ __________ ____________________
_ __________ ____________________
_ __________ ____________________
_ __________ ____________________
_ __________ ____________________

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help STOP Menu Segm Start Save Top Next Input Let Undo

When you have marked any segment in the Data Menu, you come into the Example Database
Editor. At the top of the screen, the current segment name, the name of the sort key, and the start-
value are displayed. The main part of the screen is spitted into two areas: the 'Data Area' and the
'InputArea'. TheDataArea displays the data of the segment. You canmodify the data by overtyping
it. Modifications in the editor data does not automatically result in modifications of the database
data, unless you have saved it. In the Input Area you can specify the data, which should be inserted
into the database.

There are two special columns in front of the data, the status column (‘S’) and the line-command
column (‘M’). The status column ‘S’ indicates the actual status of the data in the line:

DescriptionAreaValue

Data is marked for deletion.DataD

Data is marked for modification.DataM

Data is marked for insertion.InputI

The 'M' column can be marked with the following line commands:

71Installation

ADL Installation Verification Package

DescriptionAreaValue

Delete the line.D+ID

Copy the line to the Input Area.D+IC

Undo the changes in the line since last Enter or PF-key pressing.D+IL

Undo the changes in the line since last Save request.DataU

‘Yank’, i.e. copy the key values from the current line into the global buffer.DataY

Put the key values from the global buffer into the current line.InputP

The PF-keys provide the following functions:

FunctionNamePF-key

All changes are performed on the screen, but there is no access to the database. The line
commands are executed and the status column is set.

Enter

Display the help text.HelpPF1

Redisplay the Data Menu. All modifications since the last Save / Input are lost.STOPPF2

Redisplay the Data Menu. The modifications of the data area are saved and the data from
the Input area is inserted into the database, i.e. it includes the 'Save' and the ‘Input’ functions.

MenuPF3

Change the segment and the sort-key names. If you specify an incorrect segment / sort-key
combination, the Data Menu is displayed. This function includes the 'Save' and the ‘Input’
function.

SegmPF4

Modify the start field value. The list will start at the value greater than or equal to the specified
one. This function includes the 'Save' function.

StartPF5

The modifications of the data area are saved.SavePF6

The list is started from the top. This function includes the ‘Save’ function.TopPF7

The next page is listed. This function includes the ‘Save’ function.NextPF8

Insert the data from the Input Area into the database. This function includes the ‘Save’
function.

InputPF9

Undo all changes since the last Enter or PF-key pressing.LetPF11

Undo all changes in the Data Area since the last Save request.UndoPF12

With the Example Database Editor you can easily test the ADL Consistency rules. What happens
if you delete a COURSE, which has dependents? Can you insert a STUDENT with a not-existing
CLASSNO? Which fields can be modified? By 'playing' through questions like this, you will get
a better feeling for the Consistency rules. Note that it is recommended that your own applications
never violate the Consistency rules, i.e. they should never receive an error message from the ADL
Consistency. The sectionUsingADLFileswithNatural/Adabas in theADL Interfacesdocumentation
describes how to archive this.

Installation72

ADL Installation Verification Package

Other Natural Objects of the Installation Verification Package

On the SYSADLIV library there are some programs which show how to respect the referential
integrity.

■ The programDEL-COURdeletes aCOURSE segment occurrence. Before it performs the deletion,
it checks, whether the COURSE has dependent segments.

■ The program INS-STUD inserts a new student record. Before the insert, it verifies whether the
chosen COURSE/CLASS path exists.

■ The programs UPD-COUR and UPD-STUD update a COURSE and a STUDENT record. These
programsmodify neither the sequence field nor the PCKfields. TheUPD-STUDprogramupdates
the secondary index source fields, while the secondary index descriptor field (XA) is handled
by the Consistency.

When you delete a parent segment type underDL/I, all dependent segment occurrences are deleted
automatically. This is named 'hierarchical cascaded deletion'. The Consistency does not perform
a cascaded deletion. It deletes only the current record, or if this record has dependents, it returns
a response code. Thus you must code your own hierarchical cascaded deletion if you want to
perform such a task. In the SYSADLIV library there are some examples for a hierarchical cascaded
delete.

■ The subprogramsCASDELST andCASDELIPdelete all students and instructor pointers, belong-
ing to a given PCK-COURSE/PCK-CLASS combination. Since these segments do not have de-
pendent segments, the deletion can be performed without any further validation.

■ The subprogram CASDELCL deletes all classes belonging to a given PCK-COURSE. Before it
deletes a class, it deletes all dependent STUDENT and INSTRP occurrences by calling the sub-
programs CASDELST and CASDELIP.

■ The programs CDELCOUR and CDELCLAS ask for one course or class number, for which it
will perform a hierarchical cascaded deletion. They use the subprograms mentioned above to
delete the dependent segment occurrences, before they delete the COURSE or CLASS record
itself.

The program READ-Z uses the view INSTDB-ALL to read the data of the INSTDB database in the
sequence of the ADL internal pointer field Z1. Additionally it selects some specific data. You can
use the ADL internal fields for specific purposes, like validation of the data, but you should keep
in mind, that these fields will no longer be supplied if the ADL Consistency has become obsolete.

Finally there are some programs and subprograms in the SYSADLIV library, which can be used
by your applications. You can copy the source programs into your application library. Use them
as delivered, or adapt them to your requirements.

73Installation

ADL Installation Verification Package

■ The subprogramADLACTIV verifieswhether theADLConsistency is active. It returns a 2-bytes
integer response code. For amore detailed description, seeAvailability of the Consistency Interface
in the section Using ADL Files with Natural/Adabas of the ADL Interfaces documentation.

■ The subprogram ADLACTIM verifies whether the ADL Consistency is active. It returns the
same 2-bytes integer response code as the subprogram ADLACTIV. Additionally it returns an
80-bytes character message telling the status of the ADL Consistency.

■ The program ADLCONSI shows how to use the ADLACTIV subprogram.
■ The subprogramADLERROR returns the last Consistency errormessage in an 80-bytes character
field. For a more detailed description see Error Situations and Consistency Response Codes in the
section Using ADL Files with Adabas of the ADL Interfaces documentation.

■ The subprogramADLFNR returns the DBID and FNR of the ADL directory as defined with the
Natural LFILE parameter. Both values are numeric fields of length 5. Additionally it returns a
2-bytes integer response code. If an LFILE setting for the ADL directory file is defined, the re-
sponse code is zero.

■ The program LFILE sets the Natural LFILE parameter for the ADL directory. It reads the new
DBID and FNR from the input.

■ The subprogram SETLFILE sets the Natural LFILE parameter for the ADL directory. Use func-
tion=3 and specify the DBID and FNR parameters (each 5 byte numeric) as required. The sub-
program returns a 2 byte integer response.

Tuning the ADL Installation Verification Package

The tuning of applications which run against the ADL is described in general in the section Per-
formance Considerations in theADL Interfaces documentation. Here we take a closer look to three
possibilities, which can increase the performance:

■ Hierarchical Sequence
■ Last Call Savearea (LCS)
■ ADARUN Multifetch Feature

Hierarchical Sequence

Originally the data is loaded randomly, i.e. in the sequence how the inserts have been issued. The
hierarchical sequence can be established by performing a logical unload with DAZUNDLI, a re-
loadwith theAdabas utilitiesADACMPandADALOD, and an establishing of the logical relation-
ships with DAZELORE, as described in the section Managing ADL Files in the ADL Interfaces
documentation.

You can use the sample jobs IVPDBC4C and IVPDBC4I to unload the COURSEDB and INSTDB
databases, respectively. These jobs use the unload PSBs COURSUNL and INSTUNL. The data can
be reloaded intoAdabaswith the sample jobs IVPDBC6A, IVPDBC6B and IVPDBC6C. If you reload

Installation74

ADL Installation Verification Package

the data in this way, you must re-create the additionally descriptors with the jobs IVPINVA,
IVPINVB and IVPINVC. Alternatively you can reload the data by refreshing the three files and
loading the data. In this case, youmust modify the IVPDBC6x jobs, so that they use the ADALOD
UPDATE function. Finally the logical relationship must be re-established by running the
DAZELORE utility. This is handled by the sample job IVPDBC9, which uses the PSB INSTELO.

Last Call Savearea (LCS)

The LCS is switched on by specifying the LCS parameter for DAZIFP.We specify the value ‘LCS=7’.
Note that the LCS does not save data of logical child segment types (here INSTRP andCOURSEP).

ADARUN Multifetch Feature

ADARUNMultifetch is activated by specifying the PREFETCH parameter for ADARUN. We
specify the value

PREFETCH=YES,PREFSBL=32767,PREFTBL=294903

This means that the highest single buffer length (PREFSBL=32767) is used and one single buffer
for each of the 9 segments (PREFTBL=9*32767=294903).

Performance Test Streams

We use two different test streams. The streams are named ‘ADLXPD5’ and ‘ADLXPD6’ and reside
on the ADL source library. In the first stream we read all segments of the DBD COURSEDB and
all segments of the DBD INSTDB sequentially, i.e. we make unqualified GN calls, until the end of
the database is reached. In the second streamwe read the student data togetherwith their COURSE
and CLASS information, i.e. we make GN path calls to the STUDENT segment.

At the beginning of every stream there are seven L3-calls against the ADL directory. These seven
calls use all the value-start option (OP2=V). In the following we count only the number of L3-calls
against the data files.

Test 1) Read all Segments of COURSEDB Sequentially (Stream ADLXPD5)

Number of DL/I calls: 426

54321JobNo.

YYYNNhierarchical sequence

YYNYNLCS

YNNNNADARUNMultifetch

5050997699Number of L3’s with value start

74424424424424Number of L3, no value start

124474523500523Total number of L3 calls

75Installation

ADL Installation Verification Package

In the first job, we read the data in the original sequence, without using any additional feature.
As you can see, the number of L3-calls ismuch higher than the number of DL/I calls. This is because
ADL makes one unsuccessful L3-call each time that the end of a twin chain is reached.

In the second job the number of value-starts is reduced by using the last-call-savearea. In this run,
the LCS can only help randomly, because the data is not in the hierarchical sequence.

In the third job, we have sorted the data in the hierarchical sequence. The number of L3-calls is
still the same as in the first run. This is because we must satisfy the same DL/I calls, and we make
the same unsuccessful L3 calls at the end of a twin chain as in the first job. Nevertheless, re-estab-
lishing the hierarchical sequence can decrease the number of I/Os because successive records can
be found on one block. In our example it makes no sense to look to at the number of I/Os because
the amount of data is too small.

In the fourth job the LCS canwork optimally, because the data is found in the hierarchical sequence.
Nevertheless there are relatively many L3-calls with value-start option, because the LCS doesn't
work on logical child segment types. In this case there are 42 value-starts against the INSTRP and
COURSEP segments, and only 8 value-start calls against all the other segments.

Now we can use with the fifth job the ADARUNMultifetch feature, since the number of value-
start calls isminimized. This reduces the number ofAdabas L3 calls, which do not use the 'V' option,
considerably.

Test 2) Read all Students in COURSEDB Sequentially (Stream ADLXPD6)

Number of DL/I calls: 311

54321JobNo.

YYYNNhierarchical sequence

YYNYNLCS

YNNNNADARUNMultifetch

33301730Number of L3’s with value start

7338338338338Number of L3, no value start

10341368355368Total number of L3 calls

In this stream we do not access any logical child segment. Therefore the LCS can work optimal.
In case the data is in the hierarchical sequence (job 4 and 5) we need exactly one value-start call
for each of the three segments. Together with the ADARUNMultifetch feature, ADL can satisfy
the 311 DL/I calls, by issuing 10 Adabas calls.

Installation76

ADL Installation Verification Package

8 Migration to ADL 2.3 and Backward Migration

■ Migrating to ADL 2.3 .. 78
■ Backward Migration ... 81
■ JCL Requirements ... 83
■ Other Changes ... 83

77

This section covers the following topics:

Migrating to ADL 2.3

The Adabas Bridge for DL/I uses several internal fields to reflect the DL/I hierarchy. These fields
are the Z-field (Z0, Z1, Z2 etc.) and the secondary index fields (their Adabas names start usually
with ‘X’). The Z-fields are stored with each dependent record, the secondary index fields with
each secondary index source record.

Some of the internal fields contain Adabas ISNs; with ADL 2.2 the Z0 and Z1 fields additionally
contained a DBID and file number. The layout of ADL internal fields has been changed with ADL
2.3 to be able to handle 4-byte ISNs and 2-byte DBIDs and file numbers. The new layout (see the
section Performance Considerations in the ADL Interfaces documentation for more information) is
not compatible with the ADL 2.2 layout, i.e. ADL 2.3 does not support the ADL 2.2 layout and
vice versa. Therefore all data which have been convertedwith ADL 2.2 or belowmust bemigrated
to the new ADL 2.3 layout before you can work with ADL 2.3.

Although ADL 2.3 is able to run with ADL 2.2 directory entries, physical DBD definitions must
be reconverted to generate the newADACMPandDAZUEX06 cards. It is not required to re-convert
PSB definitions or logical DBD definitions.

For the migration, all ADL files (i.e. files converted from DL/I) must be unloaded and reloaded
with Adabas utilities. At the reload the Adabas User Exit 6 DAZUEXMI maps the old layout to
the new layout.

The following steps must be performed for the migration of the data to the new layout:

■ Step 1: Preparation
■ Step 2: Install ADL 2.3
■ Step 3: Run the DBD definition through the ADL CBC utility
■ Step 4: Create the Adabas User Exit 6 for migration
■ Step 5: Modify the ADACMP cards
■ Step 6: Unload and reload the data with Adabas utilities

After these steps have been performed for all ADL files, you can run your applications against
ADL 2.3.

For emergency, ADL offers a backwardmigration fromADL 2.3 to ADL 2.2. See sectionBackward
Migration for details.

The following sections describe the migration steps in more details.

Installation78

Migration to ADL 2.3 and Backward Migration

Step 1: Preparation

Copy the ADL directory file with standard Adabas utilities. The new file will be used as ADL 2.3
directory.

Note: Although this step is not required, it allows to convert the DBD definitions to the new
directory (step 3) while ADL 2.2 is still running.

Save the ADL 2.2 User Exit 6 extension (if available) and the old ADACMP cards. The old User
Exit 6 extension simplifies the data migration (step 6) because you do not need to specify the SEQ
parameter. The old ADACMP cards will be checked later against the new ADACMP card to
identify manual changes (step 5)

Step 2: Install ADL 2.3

The installation of ADL 2.3 is described in Upgrading to New ADL Releases in the sectionMiscel-
laneous.

Load the new error messages into the new ADL 2.3 directory file.

If you have used logical file numbers with ADL 2.2, you can delete the DAZLDT entries from the
ADL 2.3 parameter module.

Step 3: Run the DBD definition through the ADL CBC utility

TheCBCutility is described in details in theADLConversiondocumentation, sectionADLConversion
Utilities for DBDs and PSBs. Consider the following:

■ There is no need to re-assemble the DBD definition (step 1 of the CBC utility).
■ The DBID and FNR parameters of the GENDBD/GENSEG functions reflect the physical file, i.e.
the Adabas file where the data is stored (with ADL 2.2 it reflected the logical file).

■ If the DBID of the data file is the same as theDBID of theADLdirectory, omit the DBID parameter
for the GENDBD function. This eases the creation of mirror databases.

■ Specify as LOGID the previous value of FNR for every GENDBD/GENSEG function where the
FNR parameter was specified.

■ Specify all other parameters as with ADL 2.2. Especially if you have used the BACKW parameter,
it must use the same value as before.

■ The member with the ADACMP cards is named Wfffff, where fffff is the file number. Use
several libraries to save ADACMP cards of several DBIDs.

■ The member with the User Exit 6 extension is named Ifffff, where fffff is the file number.

79Installation

Migration to ADL 2.3 and Backward Migration

Step 4: Create the Adabas User Exit 6 for migration

Assemble the Adabas User Exit 6 extension and link-edit this with DAZUEXMI. The Adabas User
Exit 6 extension is the output of step 3 of the control block conversion.

If available, use the extension generated by ADL 2.2, otherwise the extension generated by ADL
2.3.

Step 5: Modify the ADACMP cards

If you had adjusted the Adabas FDT (additional user fields, super descriptors, etc.) with previous
ADL versions, you must apply the changes to the ADACMP cards accordingly.

Step 6: Unload and reload the data with Adabas utilities

Unload each Adabas file used to store the converted data using the standard Adabas utility
ADACMP DECOMPRESS. Specify the option ISN.

The data of each file is loaded individually using the standard Adabas utilities ADACMP COM-
PRESS and ADALOD.

The sequential file produced by the ADACMPDECOMPRESS is taken as input for the ADACMP
COMPRESS step, as are the ADACMP statements generated by the CBC utility.

EachAdabas file usedmust be loadedwith the optionUSERISN. This applies to both theADACMP
and the ADALOD steps (for ADACMP it is already generated by the CBC utility).

Adabas User Exit 6

The ADACMP COMPRESS step uses Adabas User Exit 6. This exit consists of two parts which
were linked together in step 4:

1. Fixed Part
The fixed part consists of the DAZUEXMImodule, which maps the ADL 2.2 layout to the ADL 2.3
layout.

2. User Exit 6 Extension
The User Exit 6 extension is generated by the CBC utility and contains information on the
structure of the DBD being migrated, and the default record layouts of the Adabas file(s) used
to store the data. You can use the User Exit 6 Extension generated by ADL 2.2 as well as the
extension generated by ADL 2.3.

Adabas User Exit 6 needs a control statement to indicate which Adabas file should be migrated.
The syntax of this control statement is as follows:

Installation80

Migration to ADL 2.3 and Backward Migration

FNR=nnnnn,MODE=MIGR,SEQ=sss,DBID=nnn

DefaultPossible valuesDescriptionParameter

1 - 65534Specifies the file number to be processed. The value
must be the same as the FNR specified at the CBC

FNR

utility run, i.e. the logical file number if the extension
was generated with ADL 2.2 or the physical file
number if it was generated with ADL 2.3.

MIGRMIGR -The data is migrated from
ADL 2.2 to ADL 2.3

Specifies whether the data should be migrated from
ADL 2.2 to ADL 2.3 or vice versa.

MODE

BACK - The data is migrated back
from ADL 2.3 to ADL 2.2

SEGSEG - Sequence is “segment”. This
was the default for the ADL 2.2
conversion.

Specifies the ADL 2.2 processing sequence of the file.
This parametermust only be specified if the extension
was generated with ADL 2.3.

SEQ

PAR - Sequence is “parent”. This
is the setting for all DBDs
converted with ADL 2.1 or before.

1 - 255Specifies the logical DBID to be inserted to the ADL
internal field. The valuemust be the same as theDBID

DBID

specified at the ADL 2.2 CBC utility run. This
parameter is mandatory for the backward migration
(MODE=BACK), otherwise it is not required.

Backward Migration

For emergency, ADL offers a backward migration from ADL 2.3 to ADL 2.2. The following steps
must be performed for a backward migration:

■ Install ADL 2.2
■ Restore the ADL directory

81Installation

Migration to ADL 2.3 and Backward Migration

■ Unload and reload the data with Adabas utilities

Install ADL 2.2

The ADL 2.2 installation is described in the ADL 2.2 documentation. If the old ADL load library
is still available, you can omit this step.

Restore the ADL directory

Use the original ADL 2.2 directory (see step 1 of the migration).

Alternatively you can convert the DBD definition with ADL 2.2. The DBID and FNR parameters of
the ADL 2.2 GENDBD/GENSEG functions reflect the logical file which is described in details in
the ADL 2.2 documentation.

If the logical file numbers differ from the physical file numbers, DAZLDT entries must be added
to the ADL parameter module.

Unload and reload the data with Adabas utilities

Unload eachAdabas file used to store the converted data using the standardAdabas utility ADACMP
DECOMPRESS. Specify the option ISN.

The data of each file is loaded individually using the standard Adabas utilities ADACMP COMPRESS
and ADALOD. The sequential file produced by the ADACMP DECOMPRESS is taken as input for the
ADACMP COMPRESS step. Use the ADACMP statements generated by the ADL 2.2 CBC utility run. Each
Adabas file used must be loaded with the option USERISN. This applies to both the ADACMP and
the ADALOD steps.

The ADACMP COMPRESS step uses Adabas User Exit 6. For the backward migration use the same
Adabas User Exit 6 which was used for the (forward-) migration of the file to ADL 2.3.

The parameters of the Adabas User Exit 6 are described in details in the section above. For the
backward migration you must specify MODE=BACK. Additionally to the parameters used for the
migration, you must specify the DBID parameter, reflecting the logical DBID used at the ADL 2.2
CBC utility run.

Installation82

Migration to ADL 2.3 and Backward Migration

JCL Requirements

The JCL requirements for the migration and backward migration are the same as for the initial
load. Refer to z/OS JCL Requirements or z/VSE JCS Requirements in the sectionADLData Conversion
Utilities of the ADL Conversion documentation.

Other Changes

z/OS CICS application programs which have been linked with the ADL language interface DAZ-
LICI2, must be re-linked with the new language interface DAZLICI3. This is especially true for all
precompiled EXEC DLI programs. See the ADL Interfaces documentation, section CICS Installation
and Operation for further information.

83Installation

Migration to ADL 2.3 and Backward Migration

84

9 Miscellaneous

■ User Exit DAZUEX01 ... 86
■ User-supplied Index Maintenance Exit Routines .. 87
■ Application/Integration of Software Corrections .. 88
■ Upgrading to New ADL Releases ... 88

85

This chapter covers the following topics:

User Exit DAZUEX01

Before ADL issues an Adabas call, it passes control to a user-written user exit. The purpose of this
user exit is to allow any modifications to Adabas parameters, for example, assignment of Adabas
command IDs, to conform to user site standards. Also, this user exit might be useful formonitoring
programs as well as access control programs.

Note, however, that the user is responsible for the integrity of the Adabas call parameters. This is
in particular true for the Adabas command ID. ADL uses specific Adabas command IDs which
are determined according to an internal algorithm. Should the user intend tomodify these command
IDs, care should be taken that identical Adabas command IDs used by ADL are reflected by
identical command IDs in the user exit.

The entry point name of the user exit must be DAZUEX01. On entry to the user exit the following
register conventions apply in batch and online:

points to the Adabas parameter listR1

points to a 18-fullword save areaR13

return addressR14

entry point address of DAZUEX01R15

In addition, under CICS, R8 points to the CSA and R12 points to the user TCA.

The contents of those registers not mentioned above are undefined. On return, all registers must
be restored to their original values with the exception of R15. The save area pointed to by R13may
be used to save the registers of ADL.

The user exit must be re-enterable. When running under z/OS/XA, the user exit must eventually
be able to run in AMODE 31, depending on how your environment has been configured.

In order to become active, the user exit must be link-edited with the ADL batch region controller,
DAZIFP, with the executable ADL Consistency Interface module for batch, DAZNUCA, and with the
executable ADL Interfaces module for CICS, DAZNUCC. See the section z/OS Installation or z/VSE
Installation for more details on how to link-edit these modules.

Installation86

Miscellaneous

User-supplied Index Maintenance Exit Routines

With the EXTRTN keyword of the XDFLD statement in the DBD definition, the name of a user-supplied
indexmaintenance exit routine can be specified. This exit routine allows the suppression of indexing
for certain data base records.

On entry to the exit routine, the following register conventions apply:

UsageRegister

points to the proposed index pointer segmentR2

points to the exit routine table entry described belowR3

points to the index source segmentR4

points to an 18-fullword save areaR13

return addressR14

entry point address of the exit routineR15

The contents of registers not mentioned above are undefined. On return, all registers must be re-
stored to their original valueswith the exception of R15, whichmust contain a return code of either
0 or 4. A return code of 0 means that the index is to be allocated, whereas a return code of 4 means
that the indexing of the data base record is suppressed.

Control is passed to the exit routine for insert and replace calls which affect the corresponding
secondary index. Unlike DL/I, the exit routine is not called by ADL for delete requests, since the
descriptor value corresponding to this index is deleted byAdabas anyway. Therefore, logical error
situations cannot occur.

An exit routine table entry has the following layout (see the source library member MEXRENDS):

EXRENDS DSECT
EXRENTGN DS CL8 NAME OF TARGET SEGMENT
EXRENXDN DS CL8 NAME OF XDFLD
EXRENNAM DS CL8 NAME OF USER EXIT ROUTINE
EXRENADR DS A ENTRY POINT OF USER EXIT ROUTINE
EXRENDBD DS A ADDRESS OF DBD ICB
EXRENSEX DS H O.T. SEC. INDEX ICB (WRT. DBDIC)
EXREN$FL DS X FLAG:
EXREN#AD EQU B'00000001' 'USER EXIT ALREADY DEFINED'
EXREN#NF EQU B'00000010' 'USER EXIT NOT FOUND'

DS 0F ALIGN
EXRENLLL EQU *-EXRENDS

In order to become active, the exit routine must be an executable module. The module namemust
be the same as specified with the EXTRTN keyword. It must be present on the corresponding load
library. Under CICS, an entry in the DFHCSDUP table must be defined for each exit routine.

87Installation

Miscellaneous

A sample exit routine is supplied in the source library member ADLIMEX.

Application/Integration of Software Corrections

Unless otherwise stated, all corrections distributed for ADLwill be valid for both z/OS and z/VSE
operating systems.

Source changes are to be applied directly to the affectedmembers in theADL source library. Under
z/VSE, source changes to macros must be followed by an EDECK assembly of the affected macros.

Fixes to ADL load modules (ZAPs) are distributed in the IMASPZAP format for the z/OS operating
system, and in MSHP format for the z/VSE operating system.

When applying corrections to load modules, it is recommended to follow the guidelines given in
the Adabas Installation documentation.

It is strongly recommended to apply all ZAPs to the affected object modules directly and to repeat
the link-edit of the affected ADL executable load modules afterwards. This is to ensure that the
corrections remain active, even if an executable module should be re-linked.

Upgrading to New ADL Releases

In general, an upgrade to a new ADL release will require the following steps to be performed:

1. Load the ADL libraries to disk. (Step 1 of the original installation procedure.)

2. Update the error messages on the ADL directory file. (Step 2 of the original installation proced-
ure.)

3. Reload the ADL Online Services. (Step 3 of the original installation procedure.)

4. Regenerate the ADL parameter module. (Step 4 of the original installation procedure.)

5. Create the newADL executable loadmodules. (Steps 5 to 9 of the original installation procedure.)

6. Create the new Consistency front-ends. (Steps 10 to 11 of the original installation procedure.)

7. Regenerate the CICS Runtime Control Tables.

Steps 1 through 6 are described in detail in the sections z/OS Installation and z/VSE Installation.
Step 7 is described in the ADL Interfaces documentation.

Steps 1 through 5 can be performed with Software AG's System Maintenance Aid (SMA).

When upgrading to a newADL release, youwill usually not have to reconvert your DBD definition
or to repeat the database conversion procedure. The upgrade to ADL 2.3 requires a datamigration
as described in the sectionMigration to ADL 2.3 and Backward Migration.

Installation88

Miscellaneous

10 Appendix A - z/OS Dataset Usage

The following table provides a complete list of all the z/OS input and output data sets used by the
ADL batch monitor, DAZIFP and the ADL utilities.

Storage MediumDSORGRECFMLRECLBLKSIZEDDname

READERPSF80DAZIN1

READERPSF80DAZIN2

PRINTERPSF132DAZOUT1

PRINTERPSF132DAZOUT2

TAPE/DISK*PSVBuser-defineduser-definedDAZIN3

TAPE/DISK*PSVBuser-defineduser-definedDAZOUT3

TAPE/DISKPSVB81928196DAZIN4

TAPE/DISK*PSFB132user-definedDAZIN5

TAPE/DISKPSVB81928196DAZOUT5

TAPE/DISKPSF80DAZOUT4

* The block size and/or record format may be changed by specifying a DCB for the data set in the
DD statement.

89

90

11 Appendix B - z/VSE Dataset Usage

The following table provides a complete list of all the z/VSE input and output files used by the
ADL batch monitor, DAZIFP and the ADL utilities.

The following table provides a complete list of all the z/VSE input and output files used by the
ADL Interfaces.

Storage MediumDSORGRECFMLRECLBLKSIZELogical UnitDTF

READERPSF80SYSIPTDAZIN1

READERPSF80SYSIPTDAZIN2

PRINTERPSF132SYSLSTDAZOUT1

PRINTER *PSF132SYS011DAZOUT2

DISK **PSVB81928196SYS013DAZIN3D

TAPE **PSVB81928196SYS013DAZIN3T

DISK **PSVB81928196SYS013DAZOT3D

TAPE **PSVB81928196SYS013DAZOT3T

DISK ***PSVB81928196SYS012DAZIN4D

TAPE ***PSVB81928196SYS012DAZIN4T

DISK ****PSFB1321320SYS014DAZIN5D

TAPE ****PSFB1321320SYS014DAZIN5T

DISK ***PSVB81928196SYS012DAZOT5D

TAPE ***PSVB81928196SYS012DAZOT5T

DISK *****PSF80SYSxxxDAZOUT4

* This printer output may be routed to a second logical printer, if one is available, by specifying
PR=2 in the ADL parameter module or as a dynamic parameter. If no second logical printer is
available, the printer output is written to a temporary file using DAZOT3D as output and DAZIN3D
as input, and printed on SYSLST at the end of the job.

91

** The logical unit and block sizemay bemodified by specifying SQ=(logical unit,block size)
in the ADL parameter module or as a dynamic parameter. The values given in the table are the
default values.

*** The logical unit and block size may be modified by specifying TRACE=(,,,,,,logical
unit,block size) in the ADL parameter module or as a dynamic parameter. The values given
in the table are the default values.

****The logical unit and block sizemay bemodified by specifying FX=(logical unit, blocksize)
in the ADL parameter module or as a dynamic parameter. The values given in the table are the
default values.

***** The logical unit must be assigned using an EXTENT statement.

Installation92

Appendix B - z/VSE Dataset Usage

	Installation
	Table of Contents
	Installation
	1 Introduction
	DL/I Features Supported
	DL/I Features not Supported
	Benefits
	Migration Planning Checklist
	Other Documentation You May Need

	2 z/OS Installation Tape
	ADL Load Library
	ADL Load Library for CICS TS 2.3 and below
	ADL Source Library
	ADL Directory File
	ADL Natural Programs

	3 z/OS Installation
	Overview
	Initial Load of the ADL Libraries (Step 1)
	Library Space Requirements (z/OS)
	Copying the Tape Contents to a z/OS Disk
	Step 1 - Copy Dataset COPY.JOB from Tape to Disk
	Step 2 - Modify COPY.JOB
	Step 3 - Submit COPY.JOB

	Initial Load of the ADL Directory File (Step 2)
	Initial Program Load of the ADL Natural Programs (Step 3)
	Creating the ADL Parameter Module (Step 4)
	Creating the ADL Executable Load Modules (Steps 5 - 10)
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Creating the Consistency Front-Ends (Steps 11 - 12)
	Step 11
	Step 12

	4 z/VSE Installation Tape
	ADL Libraries
	ADL Core Image Library
	ADL Relocatable Library

	ADL Source Library
	ADL Directory File
	ADL Natural Programs

	5 z/VSE Installation
	Overview
	Initial Load of the ADL Libraries (Step 1)
	Library Space Requirements (z/VSE)
	Copying the Tape Contents to a z/VSE Disk
	Step 1 - Copy Dataset COPYTAPE.JOB from Tape to Disk
	Step 2 - Modify COPYTAPE.JOB
	Step 3 - Submit COPYTAPE.JOB

	Initial Load of the ADL Directory File (Step 2)
	Initial Program Load of the ADL Natural Programs (Step 3)
	Creating the ADL Parameter Module (Step 4)
	Creating the ADL Executable Modules (Steps 5 - 10)
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Creating the Consistency Front-Ends (Steps 11 - 12)
	Step 11
	Step 12

	6 ADL Parameter Module
	Overview
	List of Parameters for the ADL Parameter Module
	Dynamic Overwrite Parameters

	7 ADL Installation Verification Package
	Introduction
	DL/I Terms
	Example Database
	Adabas Terms
	DL/I terms versus Adabas terms
	IVP Sample JCL
	Conversion of the Example Database
	DL/I Applications for the Installation Verification Package
	DDMs for the Installation Verification Package
	Example Database Application
	Other Natural Objects of the Installation Verification Package
	Tuning the ADL Installation Verification Package
	Hierarchical Sequence
	Last Call Savearea (LCS)
	ADARUN Multifetch Feature

	8 Migration to ADL 2.3 and Backward Migration
	Migrating to ADL 2.3
	Step 1: Preparation
	Step 2: Install ADL 2.3
	Step 3: Run the DBD definition through the ADL CBC utility
	Step 4: Create the Adabas User Exit 6 for migration
	Step 5: Modify the ADACMP cards
	Step 6: Unload and reload the data with Adabas utilities

	Backward Migration
	Install ADL 2.2
	Restore the ADL directory
	Unload and reload the data with Adabas utilities

	JCL Requirements
	Other Changes

	9 Miscellaneous
	User Exit DAZUEX01
	User-supplied Index Maintenance Exit Routines
	Application/Integration of Software Corrections
	Upgrading to New ADL Releases

	10 Appendix A - z/OS Dataset Usage
	11 Appendix B - z/VSE Dataset Usage

