
Using ADL Files with Natural/Adabas
This chapter covers the following topics:

Introduction

Consistency Interface

Restrictions when using Natural/Adabas

Improve the Natural Access to Migrated Files

Error Situations and Consistency Response Codes

Availability of the Consistency Interface

Example Programs

Introduction
After a DL/I data base was converted to one or more ADL files, these files can be accessed and
manipulated with Natural applications or other programs using direct Adabas calls. This section explains:

how you can do this,

how ADL guarantees the integrity of the data as expected by original DL/I applications,

which restrictions apply for updates from Natural/Adabas applications.

how to improve the access to the migrated file for Natural applications.

Note:
Set the Natural parameter ADAMODE to "0" when you run Natural programs against the ADL Consistency.

Consistency Interface
When hierarchical structures, like those being defined in DL/I data bases, are mirrored into a table like
structure as those of ADL files, the original structure of the data has to be preserved by either the use of
physical pointers or foreign keys. The latter may be considered as logical pointers. ADL maintains both
kinds of pointers automatically.

The foreign keys maintained by ADL for a given segment type are built up in a similar way as a DL/I
concatenated key. In other words, the foreign key stored together with a segment occurrence determines
its position in the data base by identifying its parent segments (if there are any). ADL introduces the term
"partial concatenated key" (PCK) for the foreign key of one particular segment type.

The physical pointers are needed for DL/I applications. Whenever a DL/I application issues a data base
call, this call is intercepted by the ADL CALLDLI Interface. Implicitly, a DL/I data base call is serviced
by referring to the physical pointers. We say implicitly, because these physical pointers are determined by
the actual position of the segment occurrences in the data base. Based on this, the ADL CALLDLI
Interface then maintains the foreign keys automatically, though they are never used directly by DL/I

1

Using ADL Files with Natural/AdabasUsing ADL Files with Natural/Adabas

applications.

In case of Natural/Adabas applications, the situation is just the other way around. An Adabas call on ADL
files supplies the segment data and all PCKs of its parent segments. In order for DL/I applications to be
able to "see" these data as well, the corresponding physical pointers have to be built up. This task is
performed by the ADL Consistency Interface.

The ADL Consistency Interface intercepts Adabas calls. On the first level, all kind of retrieval calls (like
Adabas L3, S1 etc.) are routed directly to Adabas. On a second level, only calls referring to ADL files will
be considered. If necessary, the Consistency automatically constructs the physical pointers for the record
to be inserted, updated or deleted based on the PCKs provided by the user.

In a later stage of the data base conversion process, you might want to phase out the old DL/I applications
completely. Therefore, the further operation of the ADL Consistency Interface may become obsolete. For
this reason, the Natural applications or programs using direct Adabas calls should originally be designed
as if the Consistency Interface is not existent.

Note that the installation and operation of the Consistency Interface is described earlier in this
documentation.

Summary

the CALLDLI Interface automatically sets and maintains the PCKs of all parent segments,

the Consistency Interface sets and maintains the physical pointers needed to preserve the hierarchical
structure of the data base,

the Consistency Interface is necessary to update ADL files with Natural or programs using direct
Adabas calls, when access to these files for DL/I applications must still be provided.

Restrictions when using Natural/Adabas
Natural applications or programs using Adabas direct calls follow exactly the same syntax in accessing
either a normal Adabas file or an ADL file. The only difference is, that the applications may receive
response codes from the ADL Consistency Interface, if it is active.

The rules having to be obeyed when manipulating ADL files with Natural/Adabas programs are derived
directly from the fact that the hierarchical structure of the data, as seen from DL/I applications, has to
preserved. The ADL Consistency Interface is a product which guarantees the referential integrity of your
data.

The following is an example of the hierarchical structure of a DL/I data base consisting of four segments
types:

2

Restrictions when using Natural/AdabasUsing ADL Files with Natural/Adabas

Figure: Sample data base used in our examples

In DL/I, the segments STUDENT and INSTRUCTOR are child segments to the parent segment CLASS,
which in turn is a child segment to COURSE. The parent segments are identified by a course number or
class number respectively.

Transformed to an ADL file the course number is denoted the PCK of the record COURSE and serves as a
link for the records COURSE and CLASS. ADL stores the course number together with the CLASS data
as shown in the following table:

DL/I Segment
Type

ADL Record Type

COURSE COURSE

CLASS PCK-COURSE, CLASS

STUDENT PCK-COURSE, PCK-CLASS, STUDENT

INSTRUCTOR PCK-COURSE, PCK-CLASS, INSTRUCTOR

Referential integrity in this context means that each STUDENT/INSTRUCTOR record occurrence must
refer to an existing CLASS record occurrence, which in turn must also refer to an existing COURSE
record occurrence.

3

Using ADL Files with Natural/AdabasRestrictions when using Natural/Adabas

In order to allow the Consistency Interface to maintain the referential integrity, relation data have to be
supplied with each update request to an ADL file. For insert and replace calls (Adabas N1 or A1) this
simply means that you have to supply the foreign keys of all related record types. In DL/I calls this means
supplying the concatenated key. Furthermore, when replacing a record, you must not alter the foreign keys
of its parent segment.

Delete calls may not attempt to delete parent segment occurrences which have dependent child segment
occurrences. For ADL files this means, that record occurrences without PCKs referred to by other record
occurrences must be deleted first. Considering the above example, note that a record occurrence of
CLASS can only be deleted after all record occurrences of STUDENT and INSTRUCTOR have been
deleted.

Summary

when inserting records in an ADL file, specify the corresponding foreign keys or PCKs for the
related record type;

when replacing records in an ADL file, specify the corresponding foreign keys or PCKs for the
related record type but NEVER alter the PCKs;

when deleting a record occurrence, be sure that it is not referred to by PCK fields in other record
occurrences;

the Consistency Interface will preserve the referential integrity of the data base.

Improve the Natural Access to Migrated Files
When ADL migrates the DL/I structure, the generated Adabas file layout is optimized to satisfy the needs
of the DL/I applications. Therefore only the root sequence field, the physical pointer fields ("Z1-field")
and the secondary index fields are defined as descriptors. From these fields only the root sequence field
should be used by Natural applications because the other fields are ADL internal fields.

Natural applications read the hierarchy through the PCK fields. If the application should access the data of
a dependent segment, it is recommended to create an Adabas superdescriptor build up by the PCK fields
of the parent segments. If the segment itself has a sequence field, the corresponding Adabas field should
be added to the superdescriptor as well.

If Natural applications should access data in a secondary index like manner, any other field (like a
sequence field of a dependent segment) can be defined as descriptor. If you build up new superdescriptors
take care that only those fields are included which belong to the same segment plus PCK fields of parents
of the segment. If you use fields from different segments, one part will always be empty and the
superdescriptor will not give you any value.

It is recommended that you define only those descriptors and superdescriptors which are really used by
any application. Every descriptor cost some performance not only in the Natural applications but also in
the DL/I applications and when utilities run. On the other hand if you have use for a descriptor or
superdescriptor, you should define it. A non-descriptor search gives you the poorest performance.

4

Improve the Natural Access to Migrated FilesUsing ADL Files with Natural/Adabas

Error Situations and Consistency Response Codes
Whenever you violate the rules for manipulating ADL files defined earlier in this section, the ADL
Consistency Interface will return a non-zero response code in the Adabas control block. For Natural
applications, this response code is available in the system variable *ERROR-NR. The Adabas response
code returned is "216" and the corresponding Natural *ERROR-NR is "3216".

A more detailed error message can then be obtained from the ADL Consistency Interface by submitting an
Adabas S1 call conforming to a defined standard. This is in detail explained in the documentation ADL
Messages and Codes. Natural programmers may simply obtain this error message by a call to the ADL
supplied Natural subprogram ADLERROR, as in the example below:

IF *ERROR-NR = 3216
 CALLNAT ’ADLERROR’ #ERRMESS
END-IF

providing an alphanumeric variable "#ERRMESS" of at least 80 bytes length.

The error text returned has the following layout:

’ADLxxxx - error message ’

where xxxx is a four character error code. For an explanation of the error code, please refer to the
documentation ADL Messages and Codes.

As explained above, the ADL Consistency Interface will guarantee the referential integrity of your ADL
files. However, we recommend a programming style, which avoids updates resulting in ADL Consistency
Interface response codes. In other words, the logic to preserve the referential integrity of the data should
as far as possible be included in the application program itself.

Example

Consider our example data base: Before placing a delete call for a record occurrence of CLASS, place a
read call to make sure that no record occurrences of STUDENT/ INSTRUCTOR still exist.

The reason for our recommendation is, that in a later stage of the data base conversion process the ADL
Consistency Interface could become obsolete. Then, the logic of the application programs might be
affected by not receiving any Consistency response codes.

Availability of the Consistency Interface
Natural programs may check the availability of the ADL Consistency Interface by calling the ADL
supplied Natural subprogram ADLACTIV. It returns a 2-bytes integer value. If the ADL Consistency
Interface is active the value ’0’, otherwise the value ’8’ is returned. Under CICS, if the ADL user exit
ADLEXITB is installed but the ADL Interfaces are not activated, a value ‘4’ is returned.

In general, a program which updates migrated data, should only run when the response from ADLACTIV
is ‘0’.

5

Using ADL Files with Natural/AdabasError Situations and Consistency Response Codes

Example

DEFINE DATA LOCAL
1 #RSP(I2)
END-DEFINE
CALLNAT ’ADLACTIV’ #RSP
DECIDE ON FIRST VALUE OF #RSP
VALUE 0
 WRITE ’ADL Consistency is active.’
VALUE 4
 WRITE ’ADL user exit installed, but ADL is not active.’
VALUE 8
 WRITE ’ADL Consistency is not active.’
NONE
 WRITE ’Unexpected response from ADL Consistency.’
END-DECIDE
END

Example Programs
The following Natural programs demonstrate how to code with respect to the referential integrity. The full
sources can be found on the SYSADLIV Natural library.

Program INS-STUD: Insert a Student

Before a dependent segment is inserted, it should be verified that the parents, i.e. the path to the segment,
exists.

* Check if the path to the student exits
*
 FIND (1) COURSEDB-CLASS WITH CLASSNO = #CLASSNO
 WHERE PCK-COURSENO = #COURSENO
 IF NO RECORDS FOUND
 REINPUT ’COURSE / CLASS NOT FOUND !’
 END-NOREC
*
* Store the data in the data base
*
 MOVE #COURSENO TO COURSEDB-STUDENT-UPD.PCK-COURSENO
 MOVE #CLASSNO TO COURSEDB-STUDENT-UPD.PCK-CLASSNO
 MOVE #SURNAME TO COURSEDB-STUDENT-UPD.SURNAME
 MOVE #FILLER-AB TO COURSEDB-STUDENT-UPD.FILLER-AB
 STORE COURSEDB-STUDENT-UPD
 END OF TRANSACTION
 END-FIND

Program DEL-COUR: Delete a Course

Before a parent is deleted, it should be verified that it has no dependents. The following program does not
perform the delete if there are dependents

* Check if the data exits
*
COURSE. FIND (1) COURSEDB-COURSE WITH COURSENO = #COURSENO
 IF NO RECORDS FOUND
 REINPUT ’COURSE NOT FOUND !’
 END-NOREC
*
* Check if there are dependents

6

Example ProgramsUsing ADL Files with Natural/Adabas

*
 RESET #NBR
CLASS. READ COURSEDB-CLASS WHERE PCK-COURSENO = #COURSENO
 MOVE *COUNTER TO #NBR
 WRITE #NBR ’. CLASS FOUND UNDER THIS COURSE:’ CLASSNO CLASSNAME
 END-READ
*
 IF #NBR = 0 /* NO DEPENDENTS
*
* Delete the data
*
 DELETE (COURSE.)
 END OF TRANSACTION
 WRITE ’COURSE DELETED!’
 END-IF
 END-FIND

Program CDELCOUR: Cascaded delete of a Course

When DL/I deletes a segment, all dependents are deleted automatically. This is named “cascaded delete”.
The program CDELCOUR (together with the programs called by it) is an example on how to code a
cascaded deletion with Natural.

FIND (1) COURSEDB-COURSE WITH COURSENO = #COURSENO
 IF NO RECORDS FOUND
 MOVE ’Course not found!’
 TO #ADL-MESS
 ESCAPE BOTTOM
 END-NOREC
* Delete dependents recursively
 CALLNAT ’CASDELCL’ #COURSENO #N-CL #N-ST #N-IP #RESPONSE
 IF #RESPONSE NE 0
 ESCAPE BOTTOM
 END-IF
* All dependents are deleted -> delete the COURSE
 DELETE
 MOVE 1 TO #N-SUM
 END-FIND

7

Using ADL Files with Natural/AdabasExample Programs

	Using ADL Files with Natural/Adabas
	Introduction
	Consistency Interface
	
	Summary

	Restrictions when using Natural/Adabas
	
	
	Figure: Sample data base used in our examples

	Summary

	Improve the Natural Access to Migrated Files
	Error Situations and Consistency Response Codes
	
	Example

	Availability of the Consistency Interface
	
	Example

	Example Programs
	
	Program INS-STUD: Insert a Student
	Program DEL-COUR: Delete a Course
	Program CDELCOUR: Cascaded delete of a Course

