
Precompiler for "EXEC DLI" Commands
This chapter covers the following topics:

Introduction

ADL Precompiler Input

ADL Precompiler Output

COBOL Generated Code

PL/I Generated Code

CICS Command Language Translator

Linkage-Editor Requirements for Application Programs

z/OS JCL Requirements

z/VSE JCS Requirements

Introduction
This section is only of interest for installations in which application programs using the Higher Level
Programming Interface (HLPI) need to be converted. It describes the different possibilities and procedures
available for converting such application programs written in COBOL or PL/I . 

When an application program using the HLPI issues a DL/I request in an unconverted environment (i.e.
where ADL is not involved), an extra interface layer is used to interpret the call from the application
program (which originates from an EXEC command) and transform them into normal calls. The figure
below illustrates this process. 

HLPI Interface

1

Precompiler for EXEC DLI CommandsPrecompiler for "EXEC DLI" Commands



Application programs using the HLPI can be run against ADL in one of two different ways: with or
without the ADL precompiler. 

Running HLPI Programs without the ADL Precompiler

The application programs do not issue standard DL/I calls directly: instead, these are issued by the HLPI.
This means that the DL/I environment must be present. Command level programs can be run against ADL
in mixed mode. 

Running HLPI Programs with the ADL Precompiler

2

Running HLPI Programs without the ADL PrecompilerPrecompiler for EXEC DLI Commands



The ADL precompiler translates each EXEC DLI  command in the application program into one (and only
one) call to ADL. This call is passed directly to ADL in the same manner as for normal DL/I calls. This
means that no extra interface layer is required. Thus, in a completely converted environment, DL/I need
not still be available. When the ADL precompiler has been used, however, application programs cannot be
run in mixed mode. 

ADL Precompiler Input
The ADL precompiler accepts as input a source program written in PL/ I or COBOL in which EXEC DLI
commands have been coded. It produces as output an equivalent source program in which the commands
have been translated into statements in the language of the source program. The statements generated
result in a call to the ADL nucleus (batch or CICS) to fulfill the function requested. 

For more details on the syntax of the EXEC DLI  commands, see the appropriate IBM documentations. 

The ADL precompiler is activated separately before the compile and link edit steps. 

The program source input data set must contain fixed length records, which must be 80 bytes long. The
first statement of the source program must be a CBL statement for COBOL or a *PROCESS statement for
PL/ I . This control statement may be passed on unchanged as part of the program source output. 

The control statement contains the parameters for the ADL precompiler itself, and has the following
syntax: 

LAN=XXX,keyword=value

Keyword Explanation 

INPUT (z/VSE only). Indicates whether the source program input should be read in from the
reader or from disk/tape. Possible values: 

3

Precompiler for EXEC DLI CommandsADL Precompiler Input



Keyword Explanation 

 DISK The program source input is read in from disk or tape. You must specify
DAZIN5D or DAZIN5T, respectively, as DTF. The corresponding
logical unit is SYS014. This default logical unit can be overwritten by
the ADL ‘FX’ parameter as described in the section ADL Parameter 
Module in the ADL Installation documentation. Since the ADL
precompiler expects a record size of 80 bytes, the ‘FX’ setting should be
overwritten during the generation of the precompiler nucleus
DAZNUCP. For example: FX=(14,80,80) 

READER The program source input is read in from the reader, i.e. from SYSIPT. 

Default: READER 

  

LAN The source program language, a three-character abbreviation. Possible values: CBL for
COBOL PLI for PL/I Default: none 

LIST Indicates whether or not the program listing, including the EXEC commands with
sequence numbers, is to be produced. Possible values: Y : (the program listing is to be
produced) N : (the program listing is not to be produced) Default: Y 

MARGIN (PL/I only) Specifies the left and right margin of the input statements of the source
program. The ADL precompiler will only scan that part of any input source statement
between the two margins. The syntax of this parameter is as follows: MARGIN=(L,R)
L : Left margin of source program Possible values: 1-71 Default: 2 
R : Right margin of source program Possible values: 2-72 Default: 72 

PREF The three-character prefix to be used for variables (COBOL) and ENTRY names (PL/I ).
Possible values: AXX where: 
A : is any character which may be used as the first character of a COBOL variable name
or PL/I ENTRY name. 
X : any character allowed to be the second or any subsequent character of a COBOL
variable name or PL/I ENTRY name. 
Default: DAZ 

QNUM (COBOL only). The maximum number of qualification statements to be expected in any
one command. Possible values: 1-999 Default: 8 

SEGM Indicates whether or not a program segment is to be precompiled. Possible values:
Y : A program segment is to be precompiled for later inclusion in the main program. This
means that only the EXEC commands will be translated. No variables and no user DIB
will be generated. 
N : A main program is to be precompiled. 
Default: N 
If SEGM=Y is specified for a PL/I program segment, make sure that the parameter PREF
is specified as well. The ADL precompiler generates a separate ENTRY statement with a
unique name for each EXEC command in PL/I. Where a program segment is precompiled
separately, the ENTRY names generated must differ from those in the main program. This
can be achieved by specifying a different prefix (PREF parameter). 

SNUM (COBOL only) The maximum number of SSAs to be expected in any one EXEC
command. Possible values: 1-15 Default: 15 

4

ADL Precompiler InputPrecompiler for EXEC DLI Commands



Keyword Explanation 

UDIB Indicates whether or not fields need to be generated for the user DL/I Interface Block
(DIB). Possible values:
Y : (fields for the user DIB will be generated). 
N : (fields for the user DIB will not be generated).
Default: N 

XOPTS Specifies whether or not the first statement should be output. Possible values:
Y : where the first statement should be output. 
N : where the first statement should not be output. 
Default: N 

ADL Precompiler Output
The program source output is output as fixed length records with a length of 80 bytes. 

The first output listing produced contains messages produced by the ADL precompiler. Where one or
more errors were encountered during translation, an error message with the following layout will be
produced: 

Warning nnnn from ADL module DAZEXEC/DAZEXSER at address aaaaa
ADLnnnn message ............
Error occurred during interpretation of EXEC DLI statement with sequence no: 
99999

where

nnnn is the number of the message, 

aaaaa is the offset within the ADL module DAZEXEC in which the message was generated, and 

99999 is the sequence number of the EXEC DLI  command which was found to be in error. This
sequence number corresponds to the number printed on the output data set containing the
complete listing (see below). 

The second output listing produced contains the original source program including the EXEC DLI
commands. In addition, each EXEC DLI  command has been given a sequence number which can be used
to find particular commands found to be in error. Where an EXEC DLI  command is found to be in error,
the error message written to the message output listing is reproduced. 

COBOL Generated Code
For COBOL, each EXEC command is replaced by a series of MOVE statements followed by a CALL
statement. The MOVE statements take care of possible type conversions for numeric arguments and assign
constants to data variables. For this purpose declarations for these temporary variables are automatically
included in the working storage. Declarations for the user DIB are also automatically included in the
working storage. It is possible to precompile program segments separately for later inclusion in a main
program. 

5

Precompiler for EXEC DLI CommandsADL Precompiler Output



PL/I Generated Code
For PL/ I each EXEC command is replaced by a DO statement, a declaration of a generated unique ENTRY
name, a CALL statement and an END statement. The ENTRY declaration takes care of possible type
conversions for numeric arguments. The ADL precompiler generates the declarations for the user DIB
variables for each valid PL/I PROCEDURE statement. It is possible to precompile program segments
separately for later inclusion in a main program. 

CICS Command Language Translator
Where an application program also contains EXEC CICS commands, the CICS Command Language
Translator has to process the application program as well before it can be compiled. The CICS Command
Language Translator may be activated either before or after the ADL precompiler. In either case, make
sure that the translator options for the CICS Command Language Translator do not specify DLI. 

Linkage-Editor Requirements for Application Programs
After having passed the ADL precompiler, the CICS language translator and the compiler, the application
program must be linked together with the appropriate language interfaces for ADL. Depending on the
operational environment, the following modules are to be linked to the application program: 

CICS online programs: 

z/OS - DAZLICI3 

z/VSE - DAZLICID

Batch programs:

z/OS - DAZLIBAT

z/VSE - DAZLIBAT

All language interface modules described above are on the installation tape in the ADL load library. The
language interfaces mentioned above replace the IBM modules DFSLI000 (z/OS) and DLZLI000
(z/VSE). For details on how to link-edit command level application programs, see the CICS Installation
and Operations Guide

Important:
All application programs which have been linked with DAZLICI2 of ADL 2.2 or before, must be relinked
with DAZLICI3. DAZLICI3 is CICS release independent. 

z/OS JCL Requirements
The table below lists the data sets used by the ADL precompiler during processing of an application
program. 

6

PL/I Generated CodePrecompiler for EXEC DLI Commands



DDname Medium Description 

DAZIN2 Disk/Tape Program source input 

DAZIN1 Reader ADL precompiler control statement 

DAZOUT1 Printer Program listing 

DAZOUT2 Printer Error messages 

DAZOUT4 Disk/Tape Precompiled program 

Example

The following is an example of an ADL Precompiler Run for a COBOL application program: 

//PRE      EXEC PGM=DAZIFP,PARM=’PRE,DAZEXPRE’
 //STEPLIB  DD   DISP=SHR,DSN=ADL.LOAD
 //         DD   DISP=SHR,DSN=ADABAS.LOAD
 //DAZOUT1  DD   SYSOUT=X
 //DAZOUT2  DD   SYSOUT=X
 //DAZOUT4  DD   DSN=&&TEMP,SPACE=(TRK,(20,20)),UNIT=VIO,DISP=(,PASS),
 //         DCB=(RECFM=FB,DSORG=PS,BLKSIZE=3120,LRECL=80)
 //DDCARD   DD   *
 ADARUN PROGRAM=USER,...
 //*
 //DAZIN1   DD   *
 LAN=CBL
 //DAZIN2   DD   *
       ...
       ...   application program source code
       ...
 //*
 //APPLPROG EXEC DFHEITCL
 //TRN.SYSIN DD DSN=&&TEMP,DISP=(OLD,DELETE)
 //LKED.ADL  DD DISP=SHR,DSN=ADLxxx.LOAD
 //LKED.SYSIN DD *
  INCLUDE ADL(DAZLICI3)
  NAME anyname(R)
 /*

z/VSE JCS Requirements
The table below lists the data sets used by the ADL precompiler during application program processing. 

7

Precompiler for EXEC DLI Commandsz/VSE JCS Requirements



DTF Logical Unit Medium Description 

DAZIN2 SYSIPT Reader Program source input *1 

DAZIN5D SYS014 Disk Program source input *2/ *3 

DAZIN5T SYS014 Tape Program source input *2/ *3 

DAZIN1 SYSIPT Reader ADL precompiler control statement 

DAZOUT1 SYSLST Printer Program listing 

DAZOUT2 SYS011 Printer Error messages 

DAZOT3D SYS013 Disk Error messages *4 

DAZOT3T SYS013 Tape Error messages *4 

DAZOUT4 SYSxxx Disk Precompiled program 

*1 Only required, if the default input mode INPUT=READER is active. 

*2 Only required, if the input mode INPUT=DISK is specified. 

*3 Either one (disk or tape) is required. The logical unit indicated, is the default logical unit. To change it,
specify the FX parameter as described in the section ADL Parameter Module in the ADL Installation
documentation. Note that the ADL precompiler expects a record length of 80 bytes. 

*4 Only required when only one logical printer is available. In this case, the message which is normally
directed to DAZOUT2 as a second print file will be written to disk. At the end of the job, it will be read
from disk and routed to DAZOUT1. 

If the default input mode INPUT=READER is active, the control input for the batch monitor (DAZIFP), 
ADARUN, the ADL precompiler, and the program source input are all read in from SYSIPT. The control
statements must be specified in the following order: 

PRE,DAZEXPRE                                input for DAZIFP
/*
ADARUN ...                                  input for ADARUN
/*  
LAN= ...                                    input for the ADL precompiler
/*
.                                           application program source
.
.
/*

Example

The following is an example of an ADL Precompiler Run for a COBOL application program: 

8

z/VSE JCS RequirementsPrecompiler for EXEC DLI Commands



// ASSGN SYS010,DISK,VOL=volume,SHR
// DLBL DAZOUT4,’punch-dataset’,0,SD
// EXTENT SYS010,volume,,,rtrk,ntrks
// ASSGN SYS013,DISK,VOL=volume,SHR
// DLBL DAZOT3D,’temp-dataset’,0,SD
// EXTENT SYS013,volume,,,rtrk,ntrks
// ASSGN SYS013,DISK,VOL=volume,SHR
// DLBL DAZIN3D,’temp-dataset’,0,SD
// EXEC PROC=ADLLIBS
// EXEC DAZIFP,SIZE=512K
PRE,DAZEXPRE
/*
ADARUN PROGRAM=USER,...
/*
LAN=CBL
/*
  COBOL application program source
  ....
/*
// DLBL IJSYSPH,’cobol-translation’,0
// EXTENT SYSPCH,,1,0,rtrk,ntrks
ASSGN SYSPCH,DISK,VOL=volume,SHR
// DLBL IJSYSIN,’punch-dataset’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volume,SHR
// EXEC DFHECP1$
CLOSE SYSIPT,SYSRDR
CLOSE SYSPCH,cuu
// DLBL IJSYSIN,’cobol-translation’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volume,SHR
// OPTION CATAL
 PHASE pgmname,*
 INCLUDE DFHECI
// EXEC FCOBOL
 INCLUDE DAZLICID
/*
CLOSE SYSIPT,SYSRDR
// EXEC LNKEDT
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR
ASSGN SYSPCH,cuu
/&

9

Precompiler for EXEC DLI Commandsz/VSE JCS Requirements


	Precompiler for "EXEC DLI" Commands
	Introduction
	
	HLPI Interface

	Running HLPI Programs without the ADL Precompiler
	Running HLPI Programs with the ADL Precompiler

	ADL Precompiler Input
	ADL Precompiler Output
	COBOL Generated Code
	PL/I Generated Code
	CICS Command Language Translator
	Linkage-Editor Requirements for Application Programs
	
	CICS online programs:
	Batch programs:


	z/OS JCL Requirements
	
	Example


	z/VSE JCS Requirements
	
	Example




