
ADL Installation Verification Package
This chapter covers the following topics:

Introduction

DL/I Terms

Example Database

Adabas Terms

DL/I terms versus Adabas terms

IVP Sample JCL

Conversion of the Example Database

DL/I Applications for the Installation Verification Package

DDMs for the Installation Verification Package

Example Database Application

Other Natural Objects of the Installation Verification Package

Tuning the ADL Installation Verification Package

Introduction
The ADL Installation Verification Package (IVP) provides you with a full DL/I application environment.
It can be used to verify the successful installation of the ADL. Moreover, when running through the steps
outlined below, you will gain experience in the ADL concepts and the various ADL tools. By the way, if
you do not yet have DL/I or Adabas knowledge, you will learn about the most important terms of the both
database systems, and how ADL connect the both. If you are interested in more detailed information about
these database systems, refer to the corresponding IBM or Software AG documentation.

The ADL IVP consists of the following parts:

DBD and PSB definitions of the example database

Sample JCL

COBOL batch programs with input files

Assembler online programs

DAZZLER input streams

Natural program sources

1

ADL Installation Verification PackageADL Installation Verification Package

DDM definitions

The DDM definitions are loaded into the DDM file during the ADL installation. At the same time, the
Natural programs are loaded into the Natural library SYSADLIV. All other parts are in the ADL source
library.

DL/I Terms
In DL/I, the database layout is described in a so-called DBD (database description). For each information
type (like ‘COURSE’) there is one SEGMENT (type) definition, describing the corresponding data layout.
Single data information (like ’Mathematics’) is named ‘SEGMENT occurrence’. FIELD definitions can be
used, to describe a part of the segment data.

DL/I is a hierarchical database system. This means that the relation between the segments in a database is
a parent to child (1:n) relationship. The first level segment is named ‘root’. For each segment type, you
can define a sequence field. This specifies in which sequence you will retrieve the data. For dependent
segment types (child types), only the data which belongs to one specific parent occurrence is sequenced.
The concatenated data of the sequence fields of all parent segments together with the current sequence
field value is named ‘concatenated key’ (CCK). It describes the current position in the database. Under
ADL, one specific sequence field value from the CCK is denoted as partial concatenated key (PCK).

Alternate keys are called ‘secondary indices’. A secondary index on a dependent segment type also
defines an alternate entry into the database (besides the root). Additionally to the definitions in the
physical DBD, you need a secondary index DBD for each secondary index.

To reduce data replication, pointers can be defined between two segment types from different DBDs,
so-called ‘logical child (LC) segments’. An LC segment contains the concatenated key of the segment,
where it is pointing to (the destination parent), and if desired, some more information (intersection data).
With the help of the LC segments, you can build logical databases, which contain segment types from
both connected physical databases.

The view from the application to the DBDs is described in a PSB (program specification block). A PSB is
build up by one or more PCBs (program communication block), each PCB corresponds to one DBD. For
each PCB, the sensitive segments (SENSEG) describe, which segments can be accessed by the application.

The application program communicates with DL/I with a user PCB. To access specific data from the
database, it can specify a segment search argument (SSA). The data of the segment is returned in the I/O
area. A status code, which indicates whether the call was successful, is put into the user PCB.

Example Database
Let’s assume you have to build up a database system for a school. The school offers various courses, each
course consisting of one or more classes. You want to maintain the courses, the classes and the students
taking the classes. On the other hand, there are the instructors teaching the classes. You want to collect
information about their salary, skills, and address.

The COURSEDB and INSTDB members on the ADL source library are the DL/I DBD definitions for
these databases. The COURSEDB contains the information about the courses, classes, and students; the
INSTDB about the instructors, their salary, skill and address. The figure below shows the hierarchical
structure of the two databases.

2

DL/I TermsADL Installation Verification Package

Figure 1: Example Database

The two databases are connected by a logical relationship. In the INSTDB database, there is the segment
COURSEP, which points to the class, taught by the instructor. This is indicated by the second parent of
the COURSEP segment. Note that in this case, the segment data contains the concatenated key of the
CLASS segment. Additionally, it contains a YEAR field as intersection data. In the COURSEDB
database, there is the segment INSTRP, which points to the instructor teaching the class. Since both
logical child segments contain the same information (‘instructor is teaching class’), the corresponding data
is kept only in one of them, in the COURSEP segment. The SOURCE keyword at the INSTRP statement
indicates that the data is kept at the paired logical child. The COURSEP segment is named the ‘real
logical child’ (RLC), and the INSTRP segment is named the ‘virtual logical child’ (VLC).

There are two logical databases defined for the logical relationship between the COURSEDB and the
INSTDB databases. The COURSEL database starts from the COURSE segment in the COURSEDB
database. From here you can access not only the CLASS and STUDENT segments, but also the
INSTRUCT segment in the INSTDB database, and all its dependents. The INSTL database allows you to
access the COURSE, CLASS and STUDENT segments in the COURSEDB database, when starting from
the INSTRUCT segment in the INSTDB database.

In the COURSEDB database, a secondary index is defined. This is indicated by the ‘LCHILD
POINTER=INDX’ statement, followed by an XDFLD statement. It sorts the COURSE segment in the
sequence of the student names. This allows you to give a fast answer to questions like ‘Which courses is
student ‘Smith’ taking?’ The corresponding secondary index DBD is named STUDIDX.

The main PSB describing the two databases is the PSB ‘SCHOOL’. The other PSBs on the ADL source
library (COURSUNL, INSTUNL, and INSTELO) are required for ADL utilities. Note that the ADL
source library also contains the primary index DBD definitions MAINIDX and INSTIDX, which are not
used by ADL.

3

ADL Installation Verification PackageExample Database

Adabas Terms
With Adabas the data of the same layout is collected in a file, similar to a table of a relational database
system. Each file belonging to one database is identified by a unique file number (FNR), whereas each
database is identified by a unique database Id (DBID). The single piece of data information in a file is
named ‘record’, which is identified by a unique ISN (internal sequence number). A file is build up by one
or more fields. Key fields are named ‘descriptors’. Multiple fields can be combined into a superdescriptor
key field. A field can be defined with the null-value suppression (NU option), which helps to save data
storage. For descriptors, the NU option has the effect that a search with this descriptor will not return a
record if the corresponding descriptor value is null.

Series of consecutive fields can be combined in a group. So-called multiple value fields (MU option) can
contain more than one value in a single record. If a descriptor is defined with the MU option, a search will
return a record if any of the descriptor values matches the search.

The detailed layout of a file is described in the file description table (FDT). The FDT of an existing file
can be outlined with the Adabas Online Services or the Adabas Manager.

A DDM (Data Definition Module) is the logical definition of a physical database file referenced by
Natural programming objects. For a Natural program, the user view describes which fields from a specific
file can be accessed.

An application corresponds with Adabas with the ACB (Adabas Control Block). The search/value buffer
combination describes the value the application is looking for. The data is returned in the record buffer,
while the format buffer describes which field values should be put into the record buffer. The response
code in the ACB indicates, whether the call was successful.

DL/I terms versus Adabas terms
The following table gives you a rough correspondence of the DL/I and Adabas terms. Note that this
correspondence is on a higher level, for example the DL/I status code and the Adabas response code both
return the information how successful the call was, but the detailed codes are by far not the same. For
some terms there is no corresponding term in the other database system.

4

Adabas TermsADL Installation Verification Package

DL/I Adabas

 Database

DatabaseFile, related files

Segment type File, part of a file,
group

Root segment

Parent segment

Child segment

 Group

Field Field

Sequence field (root segment)Descriptor

Sequence field (dependent
segment)

Concatenated key

Secondary indexDescriptor

Segment occurrenceRecord

 ISN

DBD FDT

PSB

PCB (Natural) view

User PCBAdabas control
block

SSA Search/value buffer

Sensitive fieldFormat buffer

IO-area Record buffer

Status codeResponse code

How ADL converts the DL/I definitions into Adabas is described in Adabas File Layout of the section
Conversion of the Data Structure - General Considerations of the ADL Conversion documentation.

IVP Sample JCL
The ADL source library contains the following sample JCL members for the ADL Installation
Verification Package:

5

ADL Installation Verification PackageIVP Sample JCL

IVPCOB Run a COBOL batch program (ADLXPC1) against ADL.

IVPDBC4C Unload of the migrated COURSEDB.

IVPDBC4I Unload of the migrated INSTDB.

IVPDBC6A Initial load of the course/class data into Adabas.

IVPDBC6B Initial load of the student data into Adabas.

IVPDBC6C Initial load of the instructor data into Adabas.

IVPDBC9 Establish the logical relationship.

IVPDPC1 Assemble, link-edit of the DBD and PSB sources.

IVPDPC2 Conversion of the PSBs and logical DBDs.

IVPDPC23 Conversion of the INSTDB and COURSEDB databases.

IVPDPC4A Assemble, link-edit of the user exit 6 for COURSEDB.

IVPDPC4C Assemble, link-edit of the user exit 6 for INSTDB.

IVPINVA Create additional descriptors for the course and class data.

IVPINVB Create additional descriptors for the student data.

IVPINVC Create additional descriptors for the instructor data.

IVPZLER Run a DAZZLER stream (ADLXPD1) against ADL.

IVPZLERT Run a DAZZLER stream (ADLXPD4) against ADL in shared database mode with the
ADL traces facility.

Note:
The member IVPINFO contains all abbreviations used in the sample JCL. Before you submit any job, you
must replace the abbreviation with the real values, such as ADL.LOAD with the name of the ADL load
library. Under z/OS you must additionally edit the member IVPARUN, which contains the ADARUN
cards, and adapt it to your requirements.

Conversion of the Example Database
Before you start the conversion, you must consider on which Adabas files the data should be stored. You
need three files for the example database. The instructor data (INSTDB) should be stored in one file
(FNR=c), while the data of the COURSEDB is split up into two files: file a for the course and class data,
and file b for the student data.

The conversion steps are described in more detail in the ADL Conversion documentation, sections ADL
Conversion Utilities for DBDs and PSBs and ADL Data Conversion Utilities.

Run the sample jobs in the following sequence:

1. IVPDPC1: Assemble and link-edit all DBD and PSB sources. Only the primary index DBD
definitions are not assembled, because ADL does not need them.

6

Conversion of the Example DatabaseADL Installation Verification Package

2. IVPDPC2: Convert the PSBs and the logical DBDs. The DBID and FNR of the ADL directory on
which the definition is stored should have already been defined during the ADL Installation. Note that a
logical DBD or a PSB can be converted, even if the corresponding physical DBD is not yet converted.

3. IVPDPC23: Convert the databases INSTDB and COURSEDB. The GENSEG statement for the
STUDENT segment is used to store the student data in a different file than the course and class data. This
job generates the ADACMP cards for all three files and the macro cards for the Adabas User Exit 6.

4. IVPDPC4A/C: Assemble and link-edit the User Exit 6 cards for COURSEDB and INSTDB
respectively, which have been generated in the previous step. Note that there is one User Exit 6 per
database, even if the segments are distributed over several files.

5. IVPDBC6A/B/C: Initial load of the Adabas files a, b, and c, respectively. Each job consists of the
following steps: Delete the file (if it already exists), compress the data, and load the file. Since we have
not unloaded any data before, we now load an empty file. In this case, User Exit 6 is not required.
Moreover, we do not need to establish logical relationships in an empty file, which is normally done by
running the DAZELORE utility.

The ADL Conversion utility has generated the following Adabas structures for the example database:

DL/I Adabas Description

COURSEDB File a Segments COURSE and CLASS of
COURSEDB

address pointers Z1 - Z8 Pointers to reflect the hierarchy.

address pointers PC PCK for the COURSE segment.

COURSE SA Course data segment / group.

COURSENO AA Course number field (descriptor).

 AB Filler field for remaining course data.

CLASS SB Class data segment / group.

CLASSNO AC Class number field.

 AD Filler field for remaining class data.

COURSEDB File b Segment STUDENT of COURSEDB

address pointers Z0 - Z8 Pointers to reflect the hierarchy.

address pointers PC, PB PCK for the COURSE and CLASS
segment.

STUKEY XA Secondary index field / descriptor.

STUDENT SA Student data segment / group.

SURNAME AA Student name field.

 AB Filler field for remaining student data.

INSTDB File c All segments of INSTDB

address pointers Z0 - Z8 Pointers to reflect the hierarchy.

address pointers PA PCK for the INSTRUCT segment.

7

ADL Installation Verification PackageConversion of the Example Database

DL/I Adabas Description

INSTRUCT SA Instructor data segment / group.

INSTNAME AA Instructor name field (descriptor).

 AB Filler field for remaining instructor
data.

COURSNO PC PCK of the COURSE segment as part
of INSTRP.

CLASSO PB PCK of the CLASS segment as part of
INSTRP.

COURSEP SB Course pointer intersection data
segment / group.

YEAR AC Course pointer intersection data field.

SALARY SC Salary data segment / group.

DATE AD Date field.

AMOUNT AE Amount field.

SKILL SD Skill data segment / group.

 AF Filler field for skill data.

ADDRESS SE Address data segment / group.

ZIPCODE AG Zip code field.

CITY AH City field.

STREET AI Street field.

After the steps mentioned above have been performed, DL/I applications can run against the example
database. But before we continue, we allocated additional descriptors and superdescriptors, which we will
need for Natural. Alternatively to the Adabas invert utility, it would also be possible to modify the
ADACMP cards generated in step 3, before the initial load.

6. IVPINVA: Create additionally descriptors for file a. We make the field AC (CLASSNO) a descriptor
and create a superdescriptor S1 (CCK-CLASS), build up by the fields PC (PCK-COURSENO) and AC
(CLASSNO). With the help of this superdescriptor we can easy read the class data in the hierarchical
sequence.

7. IVPINVB: Create additionally descriptors for file b. We make the field AA (SURNAME) a
descriptor and create a superdescriptor S1 (CCK-CLASS), build up by the fields PC (PCK-COURSE) and
PB (CLASSNO). With the help of this superdescriptor we can easy read the student data in the
hierarchical sequence.

8. IVPINVC: Create additionally descriptors for file c. For each of the dependent segments SALARY,
SKILL and ADDRESS we create a superdescriptor (S2 - S4), which is build up by the field PA
(PCK-INSTRUCT) and a part of the segment data. With the help of these superdescriptors we can easy
read the segments data in the hierarchical sequence. Additionally we create the superdescriptors S1
(CCK-COURSEP) and S5 (CCK-INSTRP) to reflect the hierarchical view of the COURSEP and the
INSTRP segments.

8

Conversion of the Example DatabaseADL Installation Verification Package

DL/I Applications for the Installation Verification Package
First we want to populate our databases with data. This is performed by the DAZZLER stream
ADLXPD1, which inserts courses, classes and students, as well as the related instructors. The DAZZLER
program is described in detail in the ADL Interfaces documentation, section CALLDLI Test Program -
DAZZLER. You can use the sample job IVPZLER to run the DAZZLER.

Perform also the other DAZZLER streams, by modifying the ‘CFILE’ card in the job IVPZLER.

Stream ADLXPD2 gives you a summary of all PCBs in the PSB SCHOOL.

Stream ADLXPD3 reads all students of one specific class.

Stream ADLXPD4 inserts, modifies and deletes some data. At the end it makes a BACKOUT, which
brings the database back into its original status. Use the sample job IVPZLERT for this stream. In
this case, ADL is running in mode SDB with ET=NO, which enables to use the BACKOUT function.
Additionally it starts the ADL trace facility, which is described in the ADL Interfaces documentation,
section Debugging Aids - ADL Trace Facility. The Routine Trace lists all ADL routine names where
ADL is running through when it performs the requested function. In the Database Call Trace, you
can see the DL/I calls as well as the resulting Adabas calls.

The next task is to run some COBOL batch programs against the example database. Compile and link-edit
the COBOL programs ADLXPC1/2/3. These COBOL programs use as input streams the members
ADLXPI1/2/3, respectively. Use the sample job IVPCOB to submit the programs.

ADLXPC1 lists the students of one specific course/class.

ADLXPC2 lists the courses and classes which are visited by one specific student

ADLXPC3 lists the students which are taught by one specific instructor.

Now we want to run some assembler programs under CICS against the example database. First you must
add the PSB SCHOOL to the ADL PSB table DAZPSB, and generate the ADL CICS tables as described
in Generating the Runtime Control Tables in section CICS Installation and Operation of the ADL
Interfaces documentation.

Assemble and link-edit the assembler programs ADLXPA1 and ADLXPA3. Make an entry in the
DFHCSDUP table for each of the programs. If possible, choose as TRANSID the names ADL1 and
ADL3, respectively. You may use the member IVPCSD in the ADL source library as input to
DFHCSDUP.

The program ADLXPA1 makes a scheduling call against the PSB SCHOOL and reads some data. The
program ADLXPA3 issues a checkpoint, after it has read and replaced some data.

DDMs for the Installation Verification Package
For each segment of the Example Database there is a DDM (Natural data definition module) defined. It is
named in the following way:

DBDname-segmentname

9

ADL Installation Verification PackageDL/I Applications for the Installation Verification Package

The DDMs contain all the fields described in the DL/I DBD source, the PCK fields for the hierarchical
access, and the additionally defined superdescriptors.

For each of these DDMs there is one local data area defined in the SYSADLIV library. The name of the
local data area is the same as the corresponding segment name.

The view INSTDB-ALL contains all fields of the INSTDB file c. This includes the ADL internal fields.
The corresponding local data area is named INST-ALL.

Before you can run any Natural program for the IVP, you must perform the Natural SYSDDM utility.
Re-catalog all views of the IVP with your actual used DBID / FNR combination. Use FNR a for the
COURSE and CLASS views, FNR b for the STUDENT view, and FNR c for the others.

Example Database Application
Logon to the Natural library SYSADLIV and catalog all sources by using the Natural CATALL utility.

Except for the MENU program, the members of the Example Database Application are named in the
following way:

ADBXPntm

where

n is the identification of the program (blank, A-N, 1-3),

t is the type of the object (blank=program, G=global data, L=local data, M=map,
S=subroutine), and

m is the identification of the object.

10

Example Database ApplicationADL Installation Verification Package

The Example Database Application SYSADLIV

SYSADLIV Main Menu

11

ADL Installation Verification PackageExample Database Application

10:51:33 ADABAS DL/I BRIDGE 10.07.07
 User: LHU EXAMPLE DATA BASE Library: SYSADLIV

 Consistency: Active - Main Menu - Program: ADBXP

 Listings 4
 Applications 5
 Data Editor 7
 Quit .

 Option :

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Quit List Appl Data

The Example Database Application is started with the command ‘menu’. The first map displayed is the
‘Main Menu’. Here, as in the other screens of the Example Database Application, the user Id, the current
Natural library name, and the current active program name are displayed. Additionally it is indicated,
whether the ADL Consistency is active or not. For this check, the ADLACTIV subprogram is called,
which can also be used by your own applications.

The Example Database Application does not preserve the referential integrity, as described in the ADL
Interfaces documentation, section Using ADL Files with Natural/Adabas. This enables you to test
Consistency error situations when the Consistency is active, as well as to destroy the referential integrity if
the Consistency is not active. Note that your own Natural programs should never run against migrated
data when the ADL Consistency is inactive.

From the Main Menu you can select three sub-menus: the ‘List Menu’, the ‘Applications Menu’ and the
‘Data Menu’ by choosing the option ‘4’, ‘5’, or ‘7’, respectively, or by pressing the corresponding PF-key.
When you choose the option ‘.’ (dot) or press PF3, you will leave the Example Database Application.

SYSADLIV List Menu

12

Example Database ApplicationADL Installation Verification Package

10:57:03 ADABAS DL/I BRIDGE 10.07.07
 User: LHU EXAMPLE DATA BASE Library: SYSADLIV

 - List Menu - Program: ADBXPA

 PFK ! Function
 ------+--------------------
 PF3 ! Main Menu
 PF4 ! List Courses
 PF5 ! List Classes
 PF6 ! List Students
 PF7 ! List Instructors

 Press a PF-KEY!

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Menu Cour Clas Stud Inst

The following functions are available in the ‘List Menu’ by pressing a PF-key:

PF-key Function

PF3 Redisplay the Main Menu.

PF4 List all courses sorted by the COURSENO field.

PF5 List all classes sorted by the CLASSNO field. This function uses the fact, that the
CLASSNO field has been defined as a descriptor (job IVPINVA).

PF6 List all students sorted by the SURNAME field. This function uses the fact, that the
SURNAME field has been defined as a descriptor (job IVPINVB).

PF7 List all instructors sorted by the INSTNAME field.

SYSADLIV Application Menu

13

ADL Installation Verification PackageExample Database Application

10:58:00 ADABAS DL/I BRIDGE 10.07.07
 User: LHU EXAMPLE DATA BASE Library: SYSADLIV

 - Applications Menu - Program: ADBXPB

 PFK ! Function
 --------+---
 PF3 ! Main Menu
 PF4 ! What Students are in a Course / Class?
 PF5 ! What Courses / Classes visits a Student?
 PF6 ! What Students instructs an Instructor?

 Press a PF-KEY!

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Menu CC>S S>CC I>S

The Applications Menu provides you with the following functions:

PF-key Program Function

PF3 Redisplay the Main Menu.

PF4 ADBXP1 List the students of one specific course/class.

PF5 ADBXP2 List the courses and classes which are taken by one specific student.

PF6 ADLXP3 List the students, which are taught by one specific instructor.

These Natural programs perform exactly the same functions as the COBOL programs ADLXPC1/2/3,
described above. Take the time to compare the corresponding sources. The Natural programs are shorter,
i.e. faster written, and easier to understand, which means, less bugs and less maintenance. Moreover the
Natural programs can run in batch and CICS, while making the COBOL programs able to run online
would mean much more programming effort and a more complicated code.

SYSADLIV Data Menu

14

Example Database ApplicationADL Installation Verification Package

10:58:31 ADABAS DL/I BRIDGE 10.07.07
 User: LHU EXAMPLE DATA BASE Library: SYSADLIV

 - Data Menu - Program: ADBXPC

 Mark Segment sorted by
 ---- -------- ---------
 _ COURSE COURSENO
 _ CLASS CCK-CLASS
 _ CLASS CLASSNO
 _ STUDENT CCK-STUDENT
 _ STUDENT SURNAME
 _ INSTRUCT INSTNAME
 _ COURSEP CCK-COURSEP
 _ COURSEP CCK-INSTP
 _ SALARY CCK-SALARY
 _ SKILL CCK-SKILL
 _ ADDRESS CCK-ADDRESS

 Mark Segment(s) with ’x’ or press a PF-Key!
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Quit Menu Start Buff

From the Data Menu, you can edit the data of all segments of the Example Database. Mark a line with ‘x’
to edit the corresponding data. The ‘sorted by’ field indicates which descriptor is used to sort the data for
the editor. For some segments, more than one sequence is possible, for example the CLASS segment can
be edited in the hierarchical sequence with the CCK-CLASS key, or directly in the sequence of the
CLASSNO field. The logical child segment COURSEP can be viewed like the COURSEP segment by the
CCK-COURSEP key (sequence: INSTNAME), or like the INSTRP segment by the CCK-INSTP key
(sequence: COURSENO/CLASSNO).

When you edit the data of a segment, the list begins at the start-value of the sort-field. When you press
PF4 in the Data Menu, the start-values for the key fields are displayed, and can be modified.

When you press PF5 in the Data Menu, the ‘Global Buffer Values’ are displayed and can be modified.
There is one global buffer value for each descriptor. The global buffer values are used at the ‘yank’ and
‘put’ commands in the editor, as described later.

When you press the PF3 key in the Data Menu, the Main Menu is redisplayed.

SYSADLIV Example Database Editor

15

ADL Installation Verification PackageExample Database Application

Segment: COURSE ADABAS DL/I BRIDGE User: LHU
 sorted by: COURSENO EXAMPLE DATA BASE Library: SYSADLIV
 Start: BIOLOGY300 EDITOR Program: ADBXPD
 -------------------------------- DATA AREA ----------------------------------
 S M COURSENO COURSENAME
 _ BIOLOGY300 BIOLOGY_____________
 _ EDV 800 EDP_________________
 _ ENGLISH620 ENGLISH_____________
 _ GERMAN 610 GERMAN______________
 _ GREEK 400 GREEK_______________
 _ HISTORY500 HISTORY_____________
 _ MATHEMA200 MATHEMATICS_________
 _ PHILOSO100 PHILOSOPHY__________
 _ RINGKNO700 KNOWLEDGE OF RING___
 _ __________ ____________________
 -------------------------------- INPUT AREA ----------------------------------
 _ __________ ____________________
 _ __________ ____________________
 _ __________ ____________________
 _ __________ ____________________
 _ __________ ____________________
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help STOP Menu Segm Start Save Top Next Input Let Undo

When you have marked any segment in the Data Menu, you come into the Example Database Editor. At
the top of the screen, the current segment name, the name of the sort key, and the start-value are
displayed. The main part of the screen is spitted into two areas: the ’Data Area’ and the ’Input Area’. The
Data Area displays the data of the segment. You can modify the data by overtyping it. Modifications in
the editor data does not automatically result in modifications of the database data, unless you have saved
it. In the Input Area you can specify the data, which should be inserted into the database.

There are two special columns in front of the data, the status column (‘S’) and the line-command column
(‘M’). The status column ‘S’ indicates the actual status of the data in the line:

Value Area Description

D Data Data is marked for deletion.

M Data Data is marked for modification.

I Input Data is marked for insertion.

The ’M’ column can be marked with the following line commands:

Value Area Description

D D+I Delete the line.

C D+I Copy the line to the Input Area.

L D+I Undo the changes in the line since last Enter or PF-key pressing.

U Data Undo the changes in the line since last Save request.

Y Data ‘Yank’, i.e. copy the key values from the current line into the global buffer.

P Input Put the key values from the global buffer into the current line.

16

Example Database ApplicationADL Installation Verification Package

The PF-keys provide the following functions:

PF-key Name Function

Enter All changes are performed on the screen, but there is no access to the
database. The line commands are executed and the status column is set.

PF1 Help Display the help text.

PF2 STOP Redisplay the Data Menu. All modifications since the last Save / Input are
lost.

PF3 Menu Redisplay the Data Menu. The modifications of the data area are saved and
the data from the Input area is inserted into the database, i.e. it includes the
’Save’ and the ‘Input’ functions.

PF4 Segm Change the segment and the sort-key names. If you specify an incorrect
segment / sort-key combination, the Data Menu is displayed. This function
includes the ’Save’ and the ‘Input’ function.

PF5 Start Modify the start field value. The list will start at the value greater than or
equal to the specified one. This function includes the ’Save’ function.

PF6 Save The modifications of the data area are saved.

PF7 Top The list is started from the top. This function includes the ‘Save’ function.

PF8 Next The next page is listed. This function includes the ‘Save’ function.

PF9 Input Insert the data from the Input Area into the database. This function includes
the ‘Save’ function.

PF11 Let Undo all changes since the last Enter or PF-key pressing.

PF12 Undo Undo all changes in the Data Area since the last Save request.

With the Example Database Editor you can easily test the ADL Consistency rules. What happens if you
delete a COURSE, which has dependents? Can you insert a STUDENT with a not-existing CLASSNO?
Which fields can be modified? By ’playing’ through questions like this, you will get a better feeling for
the Consistency rules. Note that it is recommended that your own applications never violate the
Consistency rules, i.e. they should never receive an error message from the ADL Consistency. The section
Using ADL Files with Natural/Adabas in the ADL Interfaces documentation describes how to archive this.

Other Natural Objects of the Installation Verification
Package
On the SYSADLIV library there are some programs which show how to respect the referential integrity.

The program DEL-COUR deletes a COURSE segment occurrence. Before it performs the deletion, it
checks, whether the COURSE has dependent segments.

The program INS-STUD inserts a new student record. Before the insert, it verifies whether the
chosen COURSE/CLASS path exists.

17

ADL Installation Verification PackageOther Natural Objects of the Installation Verification Package

The programs UPD-COUR and UPD-STUD update a COURSE and a STUDENT record. These
programs modify neither the sequence field nor the PCK fields. The UPD-STUD program updates the
secondary index source fields, while the secondary index descriptor field (XA) is handled by the
Consistency.

When you delete a parent segment type under DL/I, all dependent segment occurrences are deleted
automatically. This is named ’hierarchical cascaded deletion’. The Consistency does not perform a
cascaded deletion. It deletes only the current record, or if this record has dependents, it returns a response
code. Thus you must code your own hierarchical cascaded deletion if you want to perform such a task. In
the SYSADLIV library there are some examples for a hierarchical cascaded delete.

The subprograms CASDELST and CASDELIP delete all students and instructor pointers, belonging
to a given PCK-COURSE/PCK-CLASS combination. Since these segments do not have dependent
segments, the deletion can be performed without any further validation.

The subprogram CASDELCL deletes all classes belonging to a given PCK-COURSE. Before it
deletes a class, it deletes all dependent STUDENT and INSTRP occurrences by calling the
subprograms CASDELST and CASDELIP.

The programs CDELCOUR and CDELCLAS ask for one course or class number, for which it will
perform a hierarchical cascaded deletion. They use the subprograms mentioned above to delete the
dependent segment occurrences, before they delete the COURSE or CLASS record itself.

The program READ-Z uses the view INSTDB-ALL to read the data of the INSTDB database in the
sequence of the ADL internal pointer field Z1. Additionally it selects some specific data. You can use the
ADL internal fields for specific purposes, like validation of the data, but you should keep in mind, that
these fields will no longer be supplied if the ADL Consistency has become obsolete.

Finally there are some programs and subprograms in the SYSADLIV library, which can be used by your
applications. You can copy the source programs into your application library. Use them as delivered, or
adapt them to your requirements.

The subprogram ADLACTIV verifies whether the ADL Consistency is active. It returns a 2-bytes
integer response code. For a more detailed description, see Availability of the Consistency Interface
in the section Using ADL Files with Natural/Adabas of the ADL Interfaces documentation.

The subprogram ADLACTIM verifies whether the ADL Consistency is active. It returns the same
2-bytes integer response code as the subprogram ADLACTIV. Additionally it returns an 80-bytes
character message telling the status of the ADL Consistency.

The program ADLCONSI shows how to use the ADLACTIV subprogram.

The subprogram ADLERROR returns the last Consistency error message in an 80-bytes character
field. For a more detailed description see Error Situations and Consistency Response Codes in the
section Using ADL Files with Adabas of the ADL Interfaces documentation.

The subprogram ADLFNR returns the DBID and FNR of the ADL directory as defined with the
Natural LFILE parameter. Both values are numeric fields of length 5. Additionally it returns a
2-bytes integer response code. If an LFILE setting for the ADL directory file is defined, the response
code is zero.

18

Other Natural Objects of the Installation Verification PackageADL Installation Verification Package

The program LFILE sets the Natural LFILE parameter for the ADL directory. It reads the new
DBID and FNR from the input.

The subprogram SETLFILE sets the Natural LFILE parameter for the ADL directory. Use
function=3 and specify the DBID and FNR parameters (each 5 byte numeric) as required. The subprogram
returns a 2 byte integer response.

Tuning the ADL Installation Verification Package
The tuning of applications which run against the ADL is described in general in the section Performance
Considerations in the ADL Interfaces documentation. Here we take a closer look to three possibilities,
which can increase the performance:

Hierarchical Sequence

Last Call Savearea (LCS)

ADARUN Multifetch Feature

Hierarchical Sequence

Originally the data is loaded randomly, i.e. in the sequence how the inserts have been issued. The
hierarchical sequence can be established by performing a logical unload with DAZUNDLI, a re-load with
the Adabas utilities ADACMP and ADALOD, and an establishing of the logical relationships with
DAZELORE, as described in the section Managing ADL Files in the ADL Interfaces documentation.

You can use the sample jobs IVPDBC4C and IVPDBC4I to unload the COURSEDB and INSTDB
databases, respectively. These jobs use the unload PSBs COURSUNL and INSTUNL. The data can be
reloaded into Adabas with the sample jobs IVPDBC6A, IVPDBC6B and IVPDBC6C. If you reload the
data in this way, you must re-create the additionally descriptors with the jobs IVPINVA, IVPINVB and
IVPINVC. Alternatively you can reload the data by refreshing the three files and loading the data. In this
case, you must modify the IVPDBC6x jobs, so that they use the ADALOD UPDATE function. Finally the
logical relationship must be re-established by running the DAZELORE utility. This is handled by the
sample job IVPDBC9, which uses the PSB INSTELO.

Last Call Savearea (LCS)

The LCS is switched on by specifying the LCS parameter for DAZIFP. We specify the value ‘LCS=7’.
Note that the LCS does not save data of logical child segment types (here INSTRP and COURSEP).

ADARUN Multifetch Feature

ADARUN Multifetch is activated by specifying the PREFETCH parameter for ADARUN. We specify the
value

PREFETCH=YES,PREFSBL=32767,PREFTBL=294903

This means that the highest single buffer length (PREFSBL=32767) is used and one single buffer for each
of the 9 segments (PREFTBL=9*32767=294903).

19

ADL Installation Verification PackageTuning the ADL Installation Verification Package

Performance Test Streams

We use two different test streams. The streams are named ‘ADLXPD5’ and ‘ADLXPD6’ and reside on
the ADL source library. In the first stream we read all segments of the DBD COURSEDB and all
segments of the DBD INSTDB sequentially, i.e. we make unqualified GN calls, until the end of the
database is reached. In the second stream we read the student data together with their COURSE and
CLASS information, i.e. we make GN path calls to the STUDENT segment.

At the beginning of every stream there are seven L3-calls against the ADL directory. These seven calls
use all the value-start option (OP2=V). In the following we count only the number of L3-calls against the
data files.

Test 1) Read all Segments of COURSEDB Sequentially (Stream ADLXPD5)

Number of DL/I calls: 426

JobNo. 1 2 3 4 5

hierarchical sequence N N Y Y Y

LCS N Y N Y Y

ADARUN Multifetch N N N N Y

Number of L3’s with value start 99 76 99 50 50

Number of L3, no value start 424 424 424 424 74

Total number of L3 calls 523 500 523 474 124

In the first job, we read the data in the original sequence, without using any additional feature. As you can
see, the number of L3-calls is much higher than the number of DL/I calls. This is because ADL makes one
unsuccessful L3-call each time that the end of a twin chain is reached.

In the second job the number of value-starts is reduced by using the last-call-savearea. In this run, the LCS
can only help randomly, because the data is not in the hierarchical sequence.

In the third job, we have sorted the data in the hierarchical sequence. The number of L3-calls is still the
same as in the first run. This is because we must satisfy the same DL/I calls, and we make the same
unsuccessful L3 calls at the end of a twin chain as in the first job. Nevertheless, re-establishing the
hierarchical sequence can decrease the number of I/Os because successive records can be found on one
block. In our example it makes no sense to look to at the number of I/Os because the amount of data is too
small.

In the fourth job the LCS can work optimally, because the data is found in the hierarchical sequence.
Nevertheless there are relatively many L3-calls with value-start option, because the LCS doesn’t work on
logical child segment types. In this case there are 42 value-starts against the INSTRP and COURSEP
segments, and only 8 value-start calls against all the other segments.

Now we can use with the fifth job the ADARUN Multifetch feature, since the number of value-start calls
is minimized. This reduces the number of Adabas L3 calls, which do not use the ’V’ option, considerably.

20

ADARUN Multifetch FeatureADL Installation Verification Package

Test 2) Read all Students in COURSEDB Sequentially (Stream ADLXPD6)

Number of DL/I calls: 311

JobNo. 1 2 3 4 5

hierarchical sequence N N Y Y Y

LCS N Y N Y Y

ADARUN Multifetch N N N N Y

Number of L3’s with value start 30 17 30 3 3

Number of L3, no value start 338 338 338 338 7

Total number of L3 calls 368 355 368 341 10

In this stream we do not access any logical child segment. Therefore the LCS can work optimal. In case
the data is in the hierarchical sequence (job 4 and 5) we need exactly one value-start call for each of the
three segments. Together with the ADARUN Multifetch feature, ADL can satisfy the 311 DL/I calls, by
issuing 10 Adabas calls.

21

ADL Installation Verification PackageADARUN Multifetch Feature

	ADL Installation Verification Package
	Introduction
	DL/I Terms
	Example Database
	
	
	Figure 1: Example Database

	Adabas Terms
	DL/I terms versus Adabas terms
	IVP Sample JCL
	Conversion of the Example Database
	DL/I Applications for the Installation Verification Package
	DDMs for the Installation Verification Package
	Example Database Application
	
	
	The Example Database Application SYSADLIV

	SYSADLIV Main Menu
	SYSADLIV List Menu
	SYSADLIV Application Menu
	SYSADLIV Data Menu
	SYSADLIV Example Database Editor

	Other Natural Objects of the Installation Verification Package
	Tuning the ADL Installation Verification Package
	Hierarchical Sequence
	Last Call Savearea (LCS)
	ADARUN Multifetch Feature
	Performance Test Streams
	Test 1) Read all Segments of COURSEDB Sequentially (Stream ADLXPD5)
	Test 2) Read all Students in COURSEDB Sequentially (Stream ADLXPD6)

