
ADL Data Conversion Utilities
This chapter covers the following topics:

Overview

Data Unload with the ADL Unload Utility

Data Validation

Limited Data Unload

Unloading a HDAM Database

Control Statements for the ADL Unload Utility

Data Unload With the ADL Customized Utility

Converting Data - Load

Establishing Logical Relationships

z/OS JCL Requirements

z/VSE JCS Requirements

Overview
There are two ways in which the data stored in a DL/I database can be converted to Adabas file(s): an
automated procedure and a manual one. Both procedures create a sequential file (the unloaded database),
which is input to the standard Adabas Compression utility, ADACMP. After the data compression by
ADACMP, the Adabas utility ADALOD (Initial File Loading and Mass Update Utility) will populate the
Adabas file(s) using the functions "LOAD" and "UPDATE".

The difference between the two procedures lies in the fact that the automated procedure uses a
standardized Unload utility, DAZUNDLI. This utility unloads the original DL/I database in one step. In
contrast, the manual procedure creates the unloaded database in two steps, using a customized Unload
utility, DAZUNLOD, in the first step, and a standardized Reformat utility, DAZREFOR, in the second.

In the automated procedure, the Unload utility DAZUNDLI accesses DL/I to read the segments in the
database, while at the same time using the ADL to create the unloaded database. The utility thus runs in
mixed mode, and the PSB and DBD used need to be generated according to mixed mode conventions (i.e.
as both DL/I and ADL PSBs and DBDs). Limited data editing is possible during unloading of the DL/I
database: all or specific numeric fields may be checked for valid numeric contents. You can limit the
amount of unloaded data by specifying various parameters.

The manual procedure uses a customized Unload utility, DAZUNDLI, to unload the original DL/I
database, and a standardized Reformat utility, DAZREFOR, to create the unloaded database. DAZUNLOD is
a normal DL/I application program which reads the DL/I database from the beginning to the end and
creates an intermediate unload file. DAZREFOR is a normal mode ADL application program which reads
the intermediate unload file and creates the input file for ADACMP. The PSB and DBD used for both

1

ADL Data Conversion UtilitiesADL Data Conversion Utilities

DAZUNLOD and DAZREFOR may be the same.

As you have to customize DAZUNLOD in order to unload a DL/I database, you are also able to edit the
data read before you create the intermediate unload file. You may, for example, want to do this in
situations where numeric data has not been stored in numeric fields.

The differences between the automated and the manual procedure are summarized on the following pages.

All PSBs created for the ADL utilities mentioned in this section (for example, the unload and connection
PSBs) must be installed with the option LANG=ASSEM or LANG=COBOL in the PSBGEN statement.

Automated Procedure Manual Procedure

The ADACMP input file is created
in one step.

The ADACMP input file is created in two steps.

The Unload utility runs in mixed
mode

The Unload utility runs as a normal DL/I application. The
Reformat utility runs as a normal ADL application

Limited data editing possible during
the unload procedure.

The Unload utility has to be customized. Data editing is
therefore possible.

Data Unload with the ADL Unload Utility
This section describes how to unload all the data of a database. Refer to the next section for details on how
to unload data selectively.

To use the automated method of conversion to unload the data stored in a DL/I database, perform the
following steps:

Step 1: Convert the Physical DBD

Step 2: Create an ADL Unload PSB

Step 3: Create a DL/I Unload PSB

Step 4: Unload the Data

Step 1: Convert the Physical DBD

Run the original DL/I DBD through the CBC utility (see the section ADL Conversion Utility for DBDs
and PSBs in this documentation).

Step 2: Create an ADL Unload PSB

The PSB created must contain two PCBs, both of which must be based on the original DBD and must
reference all of its segments. The first PCB is used to unload the data, while with the help of the second,
the data is prepared for the reloading. Run this PSB through the CBC utility. Note that if the DBD is
involved in logical relationships and contains logical child segments, these must also be referenced by the
PCBs (this also applies to virtual logical child segments).

2

Data Unload with the ADL Unload UtilityADL Data Conversion Utilities

Data Base Conversion Overview

3

ADL Data Conversion UtilitiesStep 2: Create an ADL Unload PSB

4

Step 2: Create an ADL Unload PSBADL Data Conversion Utilities

Step 3: Create a DL/I Unload PSB

Run the PSB through the DL/I PSBGEN. The PSB created in the previous step can be used as the DL/I
unload PSB. Note that, in contrast to the previous step, it is not absolutely necessary for this PSB to
contain two identical PCBs, as one suffices.

Step 4: Unload the Data

Unload the data from the DL/I database by running the ADL Unload utility, DAZUNDLI. DAZUNDLI is
executed as a mixed mode program (see the section Batch Installation and Operation in the ADL
Interfaces documentation). The mixed mode control statement must have the following layout:

UNL,DAZUNDLI,psbname

where psbname is the name of the unload PSB.

The unloaded data is subsequently stored in a sequential file. You can use the sample JCL in the source
library member ADLDBC4 (z/OS) or ADLDBC4.J (z/VSE) as an example. The JCL/JCS requirements for
DAZUNDLI are given at the end of this section.

Database Conversion Unload (Automated Procedure)

5

ADL Data Conversion UtilitiesStep 3: Create a DL/I Unload PSB

Data Validation
During unloading of the DL/I database contents, it is possible to let ADL automatically correct either all
numeric fields or specific numeric fields. Packed (TYPE=P) and zoned decimal (TYPE=Z) fields are
checked by ADL for valid packed or zoned decimal value contents. If they do not contain a valid packed
or zoned decimal value, a null value (i.e. a packed zero for packed fields and a zoned decimal zero for
zoned decimal fields) is substituted. This procedure can be activated for all numeric fields within a DBD
or for specific ones only, using extra control cards for DAZUNDLI. The syntax of these control cards is as
follows:

MODE=CHECKNUM
SEGM=segname,FIELD=fldname
SEGM=

where segname is the name of segment within the unloaded DBD, and fldname is the name of a numeric
field within this segment.

Specifying only the control card MODE=CHECKNUM activates checking of all numeric fields within the
DBD. Specifying one or more SEGM/FIELD control cards limits the checking to only those fields
specified. Omitting the control cards altogether, or specifying MODE=STANDARD, deactivates checking of
any numeric fields.

6

Data ValidationADL Data Conversion Utilities

Limited Data Unload
The automated procedure described in the previous section may also be used to unload only a part of the
database. This can be achieved by modifying the unload PSB or by specifying additional control
statements for the DAZUNDLI utility. Note that if a logical child segment occurrence is unloaded, the
corresponding logical parent segment occurrences have to be unloaded as well.

This section covers the following topics:

Restrict the Unload Segment Types

Specify an Alternate Unload Sequence

Limit the Unloaded Records

Limit the Unloaded Root Segment Occurrences

Unload a Specific Range of Values

Unloading Specific Values

Restrict the Unload Segment Types

If the first PCB in the unload PSB does not contain all of the segments of the original DBD, only the
referenced ones will be unloaded. The second PCB has to reference at least the segments of the first PCB.
Note that a logical relationship between two DBDs requires a specification of the logical child segment
either on both sides or on none.

Specify an Alternate Unload Sequence

In order to unload the database in an alternate sequence, the first PCB in the unload PSB may refer to a
secondary index as the processing sequence. In this case the "START" and "END" parameters of
DAZUNDLI correspond to the values of the secondary index source fields.

The secondary index must have the root segment as target. It is recommended to use only those secondary
indices which have a one-to-one relation to the root segment, otherwise the repetition of the data will lead
to problems during the reload.

Limit the Unloaded Records

The number of unloaded records may be limited by specifying the "NUMREC" parameter for DAZUNDLI.
The syntax of this control card is as follows:

NUMREC=number_of_records

where number_of_records is the maximum number of unloaded records. This number can be up to 8 digits
long.

Every occurrence of every segment counts as one record. Thus if the "number_of_records" is reached, it
may be that not all dependent segments of the last unloaded root segment have been unloaded.

7

ADL Data Conversion UtilitiesLimited Data Unload

Example:

Unload at most 1000 records from the database:

NUMREC=1000

Limit the Unloaded Root Segment Occurrences

The number of unloaded root segment occurrences may be limited by specifying the "NUMROOT"
parameter for DAZUNDLI. The syntax of this control card is as follows:

NUMROOT=number_of_roots

where number_of_roots is the maximum number of unloaded root segment occurrences. This number can
be up to 8 digits long.

If the NUMREC parameter is not specified, the root segments will be unloaded together with all their
dependent segments.

Example:

Unload at most 50 root segment occurrences together with their dependents:

NUMROOT=50

Unload a Specific Range of Values

The range of unloaded root segment occurrences may be limited to specific values by defining the
"START" or "END" parameter for DAZUNDLI. The syntax of these control cards is as follows:

START=string
END=string

where string is either the start or end value and must be of the following format:

’char_string’
X’hex_string’

where

char_string may contain any character

hex_string must consist of pairs of the characters 0-9, A-F, where each pair will be interpreted as a
hexadecimal character.

A string may be continued by ending the current line with a comma (","). The following line must contain
only a string without any keyword being specified. This continued string may start in any column, may
itself be continued and may have either format. Thus, it is possible to build up a start and end value from
both character and hexadecimal strings.

The database will be unloaded from the start to the end value, inclusively. The end value might not be
reached if the NUMREC or NUMROOT parameter is specified.

8

Limit the Unloaded Root Segment OccurrencesADL Data Conversion Utilities

The values refer to the root sequence field or, if an alternate sequence is chosen, to the secondary index
field. If the string is longer than the referenced field, it is truncated at the right. If it is shorter, it is padded
at the right with low values (hexadecimal X’00’) or high values (X’FF’) for the start or end value
respectively.

Packed values may be specified in hexadecimal format. It is recommended to use the correct field length,
as this avoids an undesired truncation or padding of the packed values.

The following example shows how to unload data for the root sequence field range from "EDV" to
"MATH" inclusively:

START=’EDV’
END=’MATH’

The following example shows how to unload all data with a root sequence field value of "XYZ" followed
by a hexadecimal "01":

START=’XYZ’,
 X’01’
END=’XYZ’,
 X’01’

Unloading Specific Values

Specific root segment occurrences may be unloaded by specifying the ROOTKEYS parameter. The syntax
of this control card is as follows:

ROOTKEYS
key values

or

ROOTKEYS=SEQ

In the first case, the ROOTKEYS must be the last parameter for DAZUNDLI. It is followed by one or more
root sequence field values. If ROOTKEYS=SEQ is specified, the root sequence field values are read in
from DAZIN3. In this case, it is not required that the ROOTKEYS parameter is the last parameter. The
corresponding root occurrences are unloaded together with all dependents. When the ROOTKEYS
parameter is specified, the START and END parameter must not be used.

The following example shows how to unload the data for the root sequence fields with the values ’EDV’
and ’GERMAN’.

ROOTKEYS
EDV
GERMAN

Unloading a HDAM Database
In a HDAM database, the sequence of the root occurrences is defined by the randomizing module. This
mostly does not correspond to the root key sequence. When such a database is unloaded (without
additional parameters), the reloaded Adabas data is randomly distributed over the data blocks. This results
in a poor performance for sequential reads, since for each new accessed root segment occurrence, a
physical I/O is required.

9

ADL Data Conversion UtilitiesUnloading a HDAM Database

Thus it is recommended to unload the data in root key sequence. To do this, use any application which
writes all the root sequence field values (and only these) to a sequential file. Sort these values by using
any sort utility. These sorted values can now be used as key values for the ROOTKEYS parameter of the
DAZUNDLI utility as described above. This forces DL/I to unload the database in the given sequence and
the loaded Adabas data is no longer randomly distributed over the data blocks.

If the data has been initially loaded in the randomized sequence, i.e., without the ROOTKEYS parameter, it
can be sequenced by unloading and reloading it from the ADL files. This time the ROOTKEYS parameter
is not required, because ADL uses the root sequence field always as sort key.

Control Statements for the ADL Unload Utility
The following keywords are available for DAZUNDLI. For a detailed description refer the previous
sections. The keywords are read from the control input for DAZUNDLI (see the sections z/OS JCL
Requirementsor z/VSE JCS Requirements later in this documentation).

Keyword Explanation Possible values Default

END Indicates the end value
of the unload. The
value refers to the root
sequence field, or if an
alternate processing
sequence is specified,
the corresponding
secondary index field.
The value may be
continued by putting a
comma after it.

Any character string or
an "X" followed by
pairs of the characters
0-9, A-F, which will
be interpreted as
hexadecimal
characters. Both types
of string have to be
enclosed by quotation
marks.

None. If no other
condition is met, the
database is unloaded until
the end of the database is
reached.

FIELD The name of a numeric
field to be checked for
valid values. This
keyword must be
preceded by the SEGM
keyword.

Any numeric field
name.

None.

MODE Indicates, whether
numeric fields are to be
checked for valid
values. The MODE
keyword can be
overridden by the
SEGM keyword.

STANDARD - do not
check numeric fields.
CHECKNUM - check
all numeric fields.

NUMREC The maximal number of
unloaded records.

1 - 99999999 No limit.

NUMROOT The maximal number of
unloaded root segment
occurrences.

1 - 99999999 No limit.

10

Control Statements for the ADL Unload UtilityADL Data Conversion Utilities

Keyword Explanation Possible values Default

ROOTKEYS Unload specific root
key values together
with their dependents.

None - the key values
are supplied after the
ROOTKEYS
parameter.
SEQ - the key values
are in DAZIN3.

If ROOTKEYS is not
specified at all, all root
key values are unloaded.

SEGM The name of a segment
with a numeric field to
be checked for valid
values. This keyword
must be followed by the
FIELD keyword. Once
the SEGM keyword is
specified, only the
corresponding fields
will be checked,
regardless of the
MODE keyword.

Any segment name. None.

START Indicates the start value
of the unload. The
value refers to the root
sequence field, or if an
alternate processing
sequence is specified,
the corresponding
secondary index field.
The value may be
continued by putting a
comma after it.

Any character string or
an "X" followed by
pairs of the characters
0-9, A-F, which will
be interpreted as
hexadecimal
characters. Both types
of string have to be
enclosed by quotation
marks.

None.

Data Unload With the ADL Customized Utility
To use the manual conversion method to unload the data stored in a DL/I database, perform the following
steps:

Step 1: Convert the Physical DBD

Step 2: Create a DL/I Unload PSB

Step 3: Create an ADL Reformat PSB

Step 4: Unload Data

ADL Request Handler (DAZBRQH)

Step 5: Reformat the Data

11

ADL Data Conversion UtilitiesData Unload With the ADL Customized Utility

Step 1: Convert the Physical DBD

Run the original DL/I DBD through the CBC utility (see the topic ADL Conversion Utilities for DBDs and
PSBs in this section).

Step 2: Create a DL/I Unload PSB

The PSB created must contain one PCB: this must be based on the original DL/I DBD and must reference
all segments of the DBD. Run the PSB through the DL/I PSBGEN. Note that if the DBD is involved in
logical relationships and contains logical child segments, these must also be referenced by the PCB (this
also applies to virtual logical child segments).

Step 3: Create an ADL Reformat PSB

Run the PSB created in Step 2 through the CBC utility (see the topic ADL Conversion Utilities for DBDs
and PSBs in this section).

Step 4: Unload Data

Write, assemble and link edit an unload program to unload the data from the DL/I database. An example
of an unload program is provided as the source member DAZUNLOD (z/OS) or DAZUNLOD.A (z/VSE) in
the Source Library on the installation tape.

Write the unload program in Assembler using the standard programming conventions for this language.

The unload program reads the DL/I database by issuing unqualified GN calls until it reaches the end. If the
standardized reformat program DAZREFOR is to be used in Step 5 (below) to create the input file for
ADACMP, the segment occurrences read have to be written out to the intermediate unload file as variable
length records with the following record layout:

Bytes Explanation

1-4 Length of the record, including this field (standard convention for variable length record). (4
bytes)

5-12 The DL/I segment name taken from the SENSEG feedback area in the user PCB. (8 bytes)

13- The DL/I segment data taken from the I/O area. Note that if the segment is of variable length,
the length bytes are part of the segment data and must be included as the first two bytes in the
segment I/O area.

The unload program is executed as a normal DL/I application program using the DL/I unload PSB.

Data Base Conversion Unload (Manual Procedure)

12

Step 1: Convert the Physical DBDADL Data Conversion Utilities

13

ADL Data Conversion UtilitiesStep 4: Unload Data

ADL Request Handler (DAZBRQH)

When using the sample program on the installation tape, you should bear in mind that it uses the ADL
internal request handler, DAZBRQH. It is therefore independent of the operating system used.

When DAZBRQH is being used, certain conventions need to be followed. These are described in detail in
the example program itself, but are summarized briefly below.

Save and Work Areas

Save and work areas for the request handler must be provided by the caller. The first fullword of this area
must contain the start address of the area itself, i.e. it must be pointing to itself. In the sample program,
this is achieved by using the macro SAVEAREA. For z/VSE users, this macro may also be used to change
the block size of the intermediate unload file dynamically.

Requests

Requests are issued by calling the request handler as a subroutine, with the registers R0 and R1 being used
to pass the necessary parameters. In the sample program, this is achieved by using the REQUEST macro.

Files

All files are opened by the request handler dynamically, but have to be closed by the caller.

Sample Program/DAZBRQH

Because the sample program uses the internal request handler, it must be linked with DAZBRQH.

Step 5: Reformat the Data

The intermediate unload file created in Step 4 is read and each unloaded segment is put through ADL. The
input file for ADACMP is created. The standardized reformat program in the Load Library, DAZREFOR
may be used if the intermediate unload file has been created according to the layout conventions in Step 4.

If the standardized reformat program does not meets your requirements, you can write your reformat
program. An example of a reformat program is provided as the source member DAZREFOR (z/OS) or
DAZREFOR.A (z/VSE) in the Source Library.

The reformat program reads the intermediate unload file and issues a load call against ADL for each
unloaded segment occurrence. A load call has the same syntax as a normal DL/I insert call, but LOAD is
specified as the function instead of ISRT .

The parameters for the LOAD call are as follows:

14

ADL Request Handler (DAZBRQH)ADL Data Conversion Utilities

Parameter Explanation

Parameter 1 (optional) The number of parameters (4) that follow.

Parameter 2 The function is LOAD.

Parameter 3 The PCB address for the first and only PCB in the reformat PSB.

Parameter 4 The I/O area as read from the intermediate unload file.

Parameter 5 An unqualified SSA specifying the name of the segment as read from the
intermediate unload file.

The standardized reformat program DAZREFOR is executed as a normal mode ADL program (see the
section Batch Installation and Operation in the ADL Interfaces documentation). The execution parameters
must have the following layout:

REF,DAZREFOR,psbname

where psbname is the name of the ADL reformat PSB.

Like DAZUNLOD, DAZREFOR uses the ADL internal request handler, DAZBRQH. The same conventions
apply.

Converting Data - Load
The manual and the automated procedures use the same methods of loading Adabas files. You must
perform the following steps:

* Only for databases related via a bidirectional logical relationship and if the standard or simplified
procedure of DAZELORE is used to establish logical relationships.

This section covers the following topics:

Step 6: Initial Load of the Adabas File(s)

Step 7: Mass Update for Paired Logical Child Segments

Step 6: Initial Load of the Adabas File(s)

Each Adabas file used to store the converted data is loaded individually using the standard Adabas utilities
(ADACMP, ADALOD).

The sequential file produced in the previous steps is taken as input for the ADACMP step, as are the
ADACMP statements generated by the CBC utility in Step 1.

Each Adabas file used must be loaded with the option USERISN. This applies to both the ADACMP and
the ADALOD steps (for ADACMP it is already generated by the CBC utility), as the ISNs are automatically
generated by the ADL.

Step 6 needs to be run once for each of the Adabas files used to store the DL/I database.

15

ADL Data Conversion UtilitiesConverting Data - Load

Note that the initial load does not load the data of a paired logical child segment of a bidirectional logical
relationship. This is performed by the next step, if required at all.

You may use the sample JCL (JCS) in the member ADLDBC6 (ADLDBC6.J) as an example of an initial
load job under z/OS (z/VSE).

Data Base Conversion Initial Load

Adabas User Exit 6

The ADACMP step uses Adabas User Exit 6. This exit consists of two parts which were linked together
during the DBD conversion procedure (see the section ADL Conversion Utilities for DBDs and PSBs in
this documentation):

1. Fixed Part

The fixed part consists of the DAZUEX06 module, which expands each input record on the unload
file to its full decompressed size before passing it on to ADACMP.

2. User Exit 6 Extension

The User Exit 6 extension is generated by the CBC utility and contains information on the structure
of the DBD being converted, and the default record layouts of the Adabas file(s) used to store the
converted data.

16

Step 6: Initial Load of the Adabas File(s)ADL Data Conversion Utilities

Adabas User Exit 6 needs a control statement to indicate which Adabas file should be loaded. The syntax
of this control statement is as follows:

FNR=nnnnn,MODE=LOAD

where nnnnn is the file number of the Adabas file to be loaded.

Information on how to load the file is provided at the end of this section.

Step 7: Mass Update for Paired Logical Child Segments

You only need to perform this step if the database being converted is involved in bidirectional logical
relationships. In this case, the data originating from a bidirectional logical segment is stored only once, in
an Adabas file. The way in which the data was stored under DL/I (virtual or physical pairing) has no effect
on this.

You must not perform this step when the Special or Turbo procedure is used to establish logical
relationships (see the following section: Establishing Logical Relationships).

Within a bidirectional logical relationship, the real logical child segment can be defined as the logical
child segment for which an Adabas file number and Adabas fields are generated. The paired logical child
segment can be defined as the logical child segment with which the real logical child segment is paired.
The reports produced by the CBC utility during conversion of the physical DBDs show which Adabas file
contains the logical child segment data, and therefore which of the two logical child segments is the real
logical child segment. Once all Adabas files storing data originally contained in DL/I databases related via
a bidirectional logical relationship have been loaded, the Adabas Mass Update utility ADALOD with the
UPDATE function must be run for all Adabas files which contain data originating from a bidirectional
logical child segment.

The real logical child segment occurrences are unloaded during the unload of the DL/I database in which
they were stored. They are subsequently loaded with an initial load using the Adabas utilities ADACMP
and ADALOD. The paired logical child segment occurrences are unloaded separately during the unload of
the DL/I database in which they were stored and must be added separately to the Adabas file in which the
real logical child segment occurrences have been loaded. This is done using ADALOD (UPDATE). To
produce the input for ADALOD (UPDATE), run the Adabas Compression utility ADACMP with the
following input:

The ADACMP statements for the Adabas file used to store the bidirectional logical child segment data,
i.e. the Adabas file for the real logical child segment. Note that because the output produced by the
ADACMP utility is input to the ADALOD (UPDATE) utility, the USERISN option must not be specified
and has to be removed from the ADACMP statements before you run the ADACMP step.

The Adabas User Exit 6 for the Adabas file used to store the bidirectional logical child segment data,
i.e. the Adabas file for the real logical child segment.

The unloaded DL/I database containing the paired logical child segment data.

A User Exit 6 control statement specifying a mass update run with the format:

FNR=nnnnn,MODE=MASS,LC=name

17

ADL Data Conversion UtilitiesStep 7: Mass Update for Paired Logical Child Segments

where

nnnnn is the file number of the Adabas file containing the bidirectional logical child segment data,
i.e. the Adabas file for the real logical child segment, and

name is the name of the paired logical child segment.

You may use the sample JCL (JCS) in the member ADLDBC7 (ADLDBC7.J) as an example of a mass
update under z/OS (z/VSE).

Data Base Conversion Mass Update

* Unloaded Database containing the paired logical child segment data.

** ADACMP Cards and User Exit 6 generated for the real logical child segment.

Establishing Logical Relationships
When the first seven unload/load steps have been successfully completed, the data stored in the DL/I
database have been converted to one or more Adabas file(s). Where no logical relationships exist for a
DBD, no other steps are necessary. However, where one or more logical relationships exist, each logical
child segment occurrence has to be "connected" to its logical parent. This is done in two steps using the
DAZELORE (Establish Logical Relationship) utility.

18

Establishing Logical RelationshipsADL Data Conversion Utilities

Step Description

Step 8 Create connect PSB.

Step 9 Establish logical relationship.

Four different procedures for Steps 8 and 9 - Standard, Simplified, Special and Turbo - exist (see below).
The procedure you should use in any given case depends on the DBDs and user applications involved. All
procedures involve creating a connect PSB and executing DAZELORE; the difference is that the Standard
procedure requires both the original DL/I and the converted databases, while the other procedures only
require the latter. The Standard procedure is thus more time-consuming but can be used in all cases. In
contrast, the Simplified, Special and Turbo procedures can only be used for converted databases in which
no logical child segments without matching logical parents and no variable intersection data segments
which are no longer accessible via their physical parents exist. The Special procedure differs from the
Simplified procedure only for bidirectional logical relationships. It can only be used if every logical child
segment occurrence has a paired logical child segment occurrence present in the database. For the Turbo
procedure the pre-requisites of the Special procedure must be fulfilled. Additionally all parent segments
on the logical and physical path up to and including the root segments must have unique sequence fields.

Steps 8 and 9 have to be performed separately for every logical child: i.e. once for every unidirectional
logical relationship and twice for every bidirectional logical relationship for both the Standard and the
Simplified procedures. The Special and Turbo procedure, however, only needs to be run once per logical
relationship, regardless of whether or not this relationship is bidirectional.

When large databases are being converted, performance problems may arise with these steps. We
therefore recommend that you run the DAZELORE utility in single user mode where possible. In addition,
you should use the Turbo, Special or Simplified methods wherever possible as these procedures do not
require that the original DL/I database be accessed simultaneously. The highest performance is provided
by the Turbo procedure.

Furthermore, the DAZELORE utility may be run using checkpoints, which means that a particular run may
be split up into several sub-runs if necessary. See the section entitled Restart Considerations later on in
this section for details of how to use checkpoints with the DAZELORE utility and how to perform restarts.

This section covers the following topics:

Standard Procedure

Simplified and Special Procedures

Turbo Procedure

DAZELORE Run Report

Restart Considerations

Standard Procedure

The Standard procedure is required in all cases in which segment occurrences which were originally
present in the DL/I database have been physically deleted, but are still accessible via a logical path. This
may occur in one of two situations:

19

ADL Data Conversion UtilitiesStandard Procedure

With segment occurrences which have been physically deleted but which are still accessible via a
logical child segment.

The physical unload performed in the unload procedure does not unload these physically deleted segment
occurrences. Logical child segment occurrences may thus be present in the converted database(s), even
though no matching logical parent segment occurrences exist (even the parents of these logical parents
may be missing). The missing segment occurrences have to be added to the Adabas files in such a way as
to be accessible via logical, not physical, paths.

Segment occurrences which are variable intersection data may no longer be accessible via their
physical parents but may still be accessible via a logical child segment.

Again, the physical unload performed in the unload procedure does not unload these segment occurrences.
The missing segment occurrences have to be added to the Adabas files in such a way that they are only
accessible via the logical child.

All missing segments are reinserted during the DAZELORE runs using the Standard procedure.

The two situations listed above are explained in the set of examples following.

Physical DBDs and their Logical Relationships

20

Standard ProcedureADL Data Conversion Utilities

In the example above, the two DBDs, DBD4 and DBD5, are involved in two logical relationships:

A unidirectional logical relationship between the logical child segment D4B and the logical parent
segment D4I within DBD4;

A bidirectional logical relationship between DBD4 and DBD5 with the logical child segments D4F
and D5B and the logical parent segments D4C and D5A.

Certain segments may be physically deleted but still logically accessible. This depends on the setting of
the delete rules for the segments involved in the logical relationships and on the logic of the application
programs.

Segments D4A, D4C, D4F, D4G, and D4I may have been physically deleted but may still be accessible
via the logical child segment D4B. The segment occurrences will not have been unloaded with DBD4, and
will need to be inserted during the DAZELORE run for D4B.

Segments D4A and D4C may have been physically deleted but may still be accessible via the logical child
segment D5B. The segment occurrences will not have been unloaded with DBD4, and will need to be
inserted during the DAZELORE run for D5B.

Segment D5A may have been physically deleted but may still be accessible via the logical child segment
D4F. The segment occurrences will not have been unloaded with DBD5, and will need to be inserted
during the DAZELORE run for D4F.

21

ADL Data Conversion UtilitiesStandard Procedure

In addition, segments D4G, D4H and D4I may no longer be accessible via their physical parent D4F, but
may still be accessible via D5B. The segment occurrences will not have been unloaded with DBD4, and
will need to be inserted during the DAZELORE run for D5B.

Step 8: Creating a Standard Connect PSB

The Standard connect PSB must contain four PCBs: PCB1, PCB2, PCB3 and PCB4. All these PCBs
must specify processing option "A". PCB1 and PCB3 must also specify processing option "P" for path
calls.

PCB1

PCB1 is based on the converted DBD and references the logical child segment and all its parent segments
only. The PCB must be based on the physical DBD. For this reason, the sensitive segment (SENSEG)
describing the logical child segment cannot describe the concatenated segment.

PCB2

PCB2 is based on the converted DBD and references the logical child segment, all its parent segments,
and all the parent segments of the logical parent in the inverted structure. The PCB has to be based on the
logical DBD. The SENSEG describing the logical child segment must describe the concatenated segment.
Where the logical child segment is a bidirectional logical child and the paired logical child segment has
dependents (i.e. variable intersection data segments), the latter must be included as dependents of the
logical child as well.

PCB3

PCB3 is based on the converted DBD and references the logical parent segment and all its parent
segments only. The PCB has to be based on the physical DBD.

PCB4

PCB4 is only needed where the logical child segment is a bidirectional logical child and its paired logical
child segment has dependents. In all other cases it may be omitted. PCB4 is based on the converted DBD
and references the logical child segment and all its parent segments. It must also reference all variable
intersection data segments as dependents of the logical child. The PCB must be based on the logical DBD.
The SENSEG describing the logical child segment must describe the concatenated segment.

The Standard connect PSB must be run through the DL/I PSBGEN and the CBC utility (see the section
ADL Conversion Utilities for DBDs and PSBs in this documentation).

The following figures illustrate this in more detail.

Logical DBDs based on DBD4 and DBD5

22

Standard ProcedureADL Data Conversion Utilities

23

ADL Data Conversion UtilitiesStandard Procedure

* concatenated segments

Standard Connect PSB for Logical Child D4B

Standard Connect PSB for Logical Child D4F

24

Standard ProcedureADL Data Conversion Utilities

Standard Connect PSB for Logical Child D5B

Establishing a Logical Relationship (Standard Procedure)

25

ADL Data Conversion UtilitiesStandard Procedure

Step 9: Establishing Logical Relationship - Standard Procedure

Logical children and parents are connected by running the ADL Establish Logical Relationships utility,
DAZELORE. In the Standard procedure, DAZELORE is executed as a mixed mode program (see the
section Batch Installation and Operation in the ADL Interfaces documentation) using a mixed mode
control statement with the following layout:

ELO,DAZELORE,psbname

where psbname is the name of the Standard connect PSB.

DAZELORE also needs a control statement to indicate which logical child segment should be connected.
The syntax of this control statement must be as follows:

LC=lognam,MODE=STANDARD

where lognam is the name of the logical child segment in the physical DBD.

The specification of the LC parameter is mandatory and it must be the first parameter specified.

Where a DBD is involved in more than one logical relationship, several DAZELORE jobs need to be run.
The order for this is only important where variable intersection data segments exist and at least one of
them is a logical parent. In this case, the DAZELORE run which may cause variable intersection data
segments to be inserted, must be run before the DAZELORE runs connecting the logical child segments to

26

Standard ProcedureADL Data Conversion Utilities

the variable intersection data segments which are logical parent segments.

In the case of the examples given on the previous pages, the order in which the jobs have to be run is as
follows:

1. The DAZELORE run for segment D5B.

This is because segment D4I is both a variable intersection data segment and a logical parent, and
during this run D4I segment occurrences may be inserted.

2. The order of the two remaining DAZELORE runs (for D4B and D4F) is irrelevant.

Because segment occurrences may be inserted during DAZELORE runs, the situation may arise in which
logical child segment occurrences are inserted although the DAZELORE run for the logical child segment
has already been performed. To establish whether this is the case, look at the report which is printed out at
the end of each DAZELORE run and which gives all the segment occurrences inserted during that run. If a
segment occurrence has been inserted, rerun the DAZELORE utility for that logical child segment.

For example, let us assume that, in the illustrations given previously, the DAZELORE runs for D5B and
D4F have been successfully performed. The DAZELORE run for D4B may have triggered the insertion of
D4F segment occurrences. If this is the case, the DAZELORE run for D4F must be repeated.

Simplified and Special Procedures

The Simplified and Special procedures may be used in all cases in which the original DL/I database did
NOT contain any segment occurrences which have since been physically deleted but which are still
accessible via a logical path.

The Special procedure only differs from the Simplified procedure for bidirectional logical relationships. It
can only be used if all logical child segment occurrences have a matching paired logical child occurrence
and vice versa, i.e. if both logical access paths are always present for any logical child-logical parent link.
This fact has to be ensured by the user, for example by checking whether the numbers of unloaded records
of the paired segments in the DAZUNDLI report are equal. The special procedure creates the paired logical
child segments in accordance with the information extracted from the real logical child segment. Note that
for the special procedure the logical child segment for which DAZELORE is run has to be the real logical
child segment.

The advantages of the Special procedure are that the Mass Update step is not required during loading of
the data in Adabas files (see Step 7: Mass Update for Paired Logical Child Segments), and that only one
DAZELORE run is needed to establish the bidirectional logical relationship. This single DAZELORE run
also has certain performance advantages over that used in the Simplified procedure.

If a logical child segment occurrence which does not have a matching logical parent is encountered during
the run, the following error message is produced.

ADL0612: Unexpected DP status code for DAZELORE procedure used

The job then terminates. In this case, rerun DAZELORE using the Standard procedure.

Step 8: Creating a Simplified or Special Connect PSB

27

ADL Data Conversion UtilitiesSimplified and Special Procedures

Simplified and Special connect PSBs contain a single PCB based on the converted DBD and referencing
the logical child segment and all its parent segments only. The PCB has to be based on the physical DBD.
For this reason, the SENSEG describing the logical child segment cannot describe the concatenated
segment. This PCB is identical to the PCB1 described in the section Creating a Standard Connect PSB. It
must specify processing option "AP" .

Simplified or Special connect PSBs must be run through the CBC utility (see the section ADL Conversion
Utilities for DBDs and PSBs in this documentation).

Establishing a Logical Relationship (Simplified and Special Procedures)

Step 9: Establishing a Logical Relationship - Simplified or Special Procedure

This is done by running DAZELORE. In the Simplified and Special procedures, DAZELORE is executed as
a normal mode program (see the section Batch Installation and Operation in the ADL Interfaces
documentation). The control statement parameters must have the following layout:

ELO,DAZELORE,psbname

where psbname is the name of the Simplified or Special connect PSB.

DAZELORE also needs a control statement to indicate which logical child segment should be connected.
The syntax of the control statement for the Simplified procedure is as follows:

LC=lognam,MODE=SIMPLIFIED

28

Simplified and Special ProceduresADL Data Conversion Utilities

and that for the Special procedure is:

LC=lognam,MODE=SPECIAL

where lognam is the name of the logical child segment in the physical DBD.

You may use the sample JCL (JCS) in the member ADLDBC9 (ADLDBC9.J) as an example of a
DAZELORE run under z/OS (z/VSE).

Turbo Procedure

The Turbo procedure is the fastest way to build up the logical relationships. Whenever possible it is
recommended to use the Turbo procedure.

The Turbo procedure can only be used if the following issues are satisfied:

The pre-requisites of the Special Procedure are fulfilled. See the previous section for details.

It can only be used for bi-directional logical relationships. Uni-directional relationships are currently
not supported.

All parent segments on the logical and physical path up to and including the root segments must have
unique sequence fields.

Note that for the Turbo procedure the logical child segment for which DAZELORE is run has to be the real
logical child segment.

Like the Special procedure, the Mass Update step is not required during loading of the data in Adabas files
(see Step 7: Mass Update for Paired Logical Child Segments), and only one DAZELORE run is needed to
establish the bidirectional logical relationship.

If a logical child segment occurrence which does not have a matching logical parent is encountered during
the run, the following error message is produced.

ADL0612: Unexpected DP status code for DAZELORE procedure used

The job then terminates. In this case, rerun DAZELORE using the Standard procedure.

The Turbo procedure has the following performance advantages:

It does not read the hierarchy to access the logical child segment data. Instead it uses the ADL
internal pointer field to read the child segment data directly.

The ADARUN MULTIFETCH feature can be used, when reading the logical child segments. It is
recommended to use one MULTIFETCH buffer with maximum size which will contain the sequential
reads of the logical child segment data.

ADL (like DL/I) maintains for each logical child a counter at its physical parent and at its logical
parent. The other procedures update these counters whenever a logical child is processed. The Turbo
procedure updates the physical parent counter only once when all its children are processed. The
logical parent counters are kept in an online table (“DP counter table”) and updated at the end
of the run. If a counter in the DP counter table is bigger than 127, the corresponding counter in the
database is updated and the counter is reset. Thus for every 128th logical child the counter of the
logical parent is updated (and not for every logical child).

29

ADL Data Conversion UtilitiesTurbo Procedure

The update of a logical parent counter in the sequence of the corresponding logical children (as done
with the other procedures) is a “random” update and therefore very time consuming because usually every
update requires a physical I/O. The Turbo procedure does not only collect the updates (as described
before) but it makes also the final update in ISN sequence.

For a better performance it is recommended to use “RESTART=NO” with the Turbo procedure.

Step 8: Creating a Turbo Connect PSB

The Turbo connect PSB contains a single PCB based on the converted DBD and referencing the logical
child segment and all its parent segments only (i.e. same as the Special connect PSB). The PCB has to be
based on the physical DBD. For this reason, the SENSEG describing the logical child segment cannot
describe the concatenated segment. This PCB is identical to the PCB1 described in the section Creating a
Standard Connect PSB. It must specify processing option "AP" .

If RESTART=YES is specified for the DAZELORE run, the KFB (key-feedback area) length in the PCB
must be at least 8 bytes long. If it is shorter, set it to 8 bytes.

The Turbo connect PSBs must be run through the CBC utility (see the topic ADL Conversion Utilities for
DBDs and PSBs in this documentation).

Step 9: Establishing a Logical Relationship - Turbo Procedure

30

Turbo ProcedureADL Data Conversion Utilities

This is done by running DAZELORE. In the Turbo procedure, DAZELORE is executed as a normal mode
program (see the section Batch Installation and Operation in the ADL Interfaces documentation). The
control statement parameters must have the following layout

ELO,DAZELORE,psbname

where psbname is the name of the Turbo connect PSB.

DAZELORE also needs a control statement to indicate which logical child segment should be connected.
The syntax of the control statement for the Turbo procedure is as follows:

LC=lognam,MODE=TURBO,MAXDPISN=n

where lognam is the name of the logical child segment in the physical DBD and n is the size of the DP
counter table as described later in details.

You may use the sample JCL (JCS) in the member ADLDBC9 (ADLDBC9.J) as an example of a
DAZELORE run under z/OS (z/VSE).

DAZELORE Run Report

Each DAZELORE run produces a report. Such reports can be divided into two parts: a first part which is
produced before any of the logical child segments are processed, and a second part which is produced at
the end of a normally terminated run.

31

ADL Data Conversion UtilitiesDAZELORE Run Report

The first part of the report has the following layout and contains the following information:

CONNECT LOGICAL CHILD TO ITS LOGICAL PARENT
PROCEDURE........................: procedure
LOGICAL CHILD DBD................: LCDBD
LOGICAL CHILD SEGMENT............: LCseg
LOGICAL PARENT DBD...............: LPDBD
LOGICAL PARENT SEGMENT.......... : LPseg

where

procedure is the procedure (Standard, Simplified or Special) used.

LCDBD is the name of the DBD of the logical child segment.

LCseg is the name of the logical child segment.

LPDBD is the name of the DBD of the logical parent segment.

LPseg is the name of the logical parent segment.

The second part of the report that is produced at the end of a successful run can have a variety of layouts
and contain a variety of information.

If, during the processing of a logical child segment, DAZELORE finds that the destination parent segment
has been physically deleted and subsequently reinserted, the following message is produced:

PHYSICALLY DELETED SEGMENTS HAVE BEEN REINSERTED

This message is followed by a list of all the segment types and the number of segment occurrences
inserted, as shown below.

SEGMENT QUANTITY
------- --------
.......
.......

Alternatively, if no such situation has been encountered, the following message is produced:

NO PHYSICALLY DELETED SEGMENTS HAVE BEEN FOUND

Where a bidirectional logical child is being processed and the paired logical child segment has dependents
(variable intersection data), variable intersection data segments may have been inserted during the run. In
this case the following message is produced:

VARIABLE INTERSECTION DATA SEGMENTS HAVE BEEN INSERTED

It is followed by a list of segment types and quantities similar to that mentioned above.

Where no such segments were encountered, the following message is produced:

NO VARIABLE INTERSECTION DATA SEGMENTS HAVE BEEN INSERTED

32

DAZELORE Run ReportADL Data Conversion Utilities

Where a segment occurrence that is a logical child segment was inserted during the DAZELORE run, the
following eye catcher is printed behind the segment name and quantity, to indicate that DAZELORE needs
to be rerun for this segment type.

LOGICAL CHILD RE-INSERTED, RE-RUN DAZELORE

The following five messages appear at the end of the report:

THIS RUN PROCESSEDNO....... LOGICAL CHILDREN

This message states the total number of logical child segment occurrences processed in the run. It is
followed by the next message:

OF WHICHNO....... LOGICAL CHILDREN WERE ALREADY CONNECTED

which states the total number of logical child segment occurrences found to have been already processed
in previous runs.

The third message states the total number of destination parent segment occurrences found to have been
physically deleted.

.......NO....... DESTINATION PARENT SEGMENTS WERE FOUND TO BE MISSING

Where the logical child segment being processed is a bidirectional logical child, the message below is
produced. It states the total number of paired logical child segment occurrences found to have been
physically deleted.

.......NO....... PAIRED LOGICAL CHILD SEGMENTS WERE FOUND TO BE MISSING

The DAZELORE Turbo procedure reports additionally the highest DP ISN found and how many DP ISNs
are bigger than MAXDPISN.

The following message is produced last.

LOGICAL RELATIONSHIP SUCCESSFULLY ESTABLISHED

Restart Considerations

The Establish Logical Relationship utility (DAZELORE) may be run with checkpoints in order to make it
restartable by specifying “RESTART=YES” as DAZELORE parameter. The number of logical child
segment occurrences to be processed before a checkpoint is taken are defined with the INTER parameter.
When checkpoints are being used and a DAZELORE run is terminated abnormally, it may be restarted
from any checkpoint which has been successfully issued. The procedure for taking checkpoints and
restarting runs is the same as that used for all normal batch jobs issuing restart and symbolic checkpoint
calls (see the section Recovery and Restart Procedures in the ADL Interfaces documentation for more
details). For every checkpoint, an Adabas unsynchronized checkpoint (a C1 call) is taken and a message is
written to DAZOUT1 naming the checkpoint ID. An abnormally terminated DAZELORE run may be
restarted after the Adabas file(s) involved have been restored to the situation as represented by the
checkpoint from which it is to be restarted. DAZELORE will reposition itself automatically when restarted
from a checkpoint.

A restart is not possible in case of running DAZELORE with MODE=STANDARD in a z/VSE system.

33

ADL Data Conversion UtilitiesRestart Considerations

For extremely long DAZELORE runs, it is possible to limit the total number of logical child segment
occurrences to be processed in one particular run and to use the restart capabilities to continue processing
in a subsequent run. For this limitation “RESTART=YES” must be used and both the INTER and the
NUMCP parameters must be specified. As described above, the INTER parameter specifies the number of
logical child segment occurrences to be processed before a checkpoint is taken whereas the NUMCP
parameter specifies the number of checkpoints to be written before the program ends. The total number of
processed logical child segment occurrences is therefore the product of both parameters: NUMCP *
INTER. When the checkpoints specified with the NUMCP parameter are written, DAZELORE ends. This
termination of DAZELORE does not delete the checkpoint entries in the ADL directory file. This means
that a subsequent DAZELORE run may be restarted from the last checkpoint without the Adabas files
involved being restored, as no Adabas calls were issued after the last checkpoint. For the restart use
“CPID= cccc” as DAZIFP parameter where cccc is the last checkpoint Id.

When all logical child occurrences have been processed, DAZELORE ends normally and deletes all
checkpoints from the ADL directory.

The additional keyword parameters for DAZELORE may be specified in the parameter statement as
follows:

LC=LCname,MODE=mode,keyword

Parameters for DAZELORE

34

Restart ConsiderationsADL Data Conversion Utilities

Keyword Explanation Possible
values:

Default:

RESTART Specifies whether DAZELORE can be restarted or not.

If "YES" is specified, DAZELORE can be restarted. The
parameters INTER and NUMCP can be specified.
DAZELORE issues XRST and CHKP calls. The ADL
Directory file is used in exclusive mode, i.e. no other user
can work on it simultaneously.

If "NO" is specified, DAZELORE cannot be restarted. In
case of an unexpected failure, the utility must be started
from the very beginning. The ADL Directory file is not used
in exclusive mode.

YES

NO

YES

INTER Specifies the number of processed logical child segment
occurrences before a checkpoint is issued. The parameter
can only be specified for RESTART=YES. For
MODE=TURBO, checkpoints are issued after all logical
child segments belonging to one parent segment have been
processed. That means that the real number of processed
logical child segment occurrences can be slightly higher
than specified with the INTER parameter.

1 -
2147483647

2147483647

NUMCP Specifies the number of checkpoints issued by DAZELORE.
As soon as DAZELORE has reached this number, it is
stopped and can be restarted later. At the restart the last
checkpoint Id must be given as DAZIFP CPID parameter.
The NUMCP parameter can only be specified for
RESTART=YES and if the INTER parameter has been
specified. The total number of processed logical child
segment occurrences is: NUMCP * INTER.

1 -
2147483647

1

MAXDPISN Specifies the length (in bytes) of the table of the destination
parent (DP) counters (the destination parent is the logical
parent in the logical relationship). As far as possible the
table should be as big as the maximum ISN of the
destination parent data. The counters of DPs with ISNs
higher than MAXDPISN are updated immediately and lead
therefore to a poorer performance. The report of
DAZELORE outlines the highest DP ISN found and how
many DP ISNs are bigger than MAXDPISN. The
REGION/PARTITION of the job should be adjusted
accordingly so that the table can be allocated. This
parameter can only be specified for MODE=TURBO.

1 -
16777215

65536

Example

Where the total number of logical child segment occurrences is 5,312,726, and it has been decided to
process them in 3 runs, with a checkpoint to be taken every 10,000th logical child segment occurrence, the
following parameter setting is required:

35

ADL Data Conversion UtilitiesRestart Considerations

run INTER NUMCP Processed LCs

1 10,000 200 2,000,000

2 10,000 200 2,000,000

3 10,000 200 1,312,726

z/OS JCL Requirements
The following examples illustrate the z/OS JCL requirements for the utility runs described in this section.
They include the requirements for the DAZUNDLI, DAZUNLOD and DAZREFOR utilities, for the
ADACMP step during data loading, and for DAZELORE.

DAZUNDLI

DAZUNLOD

DAZREFOR

Loading the Data

DAZELORE

DAZUNDLI

The table below lists the data sets used by the Unload utility, DAZUNDLI.

DDname Medium Description

DAZIN1 Reader Control input for DAZUNDLI. *

DAZIN2 Reader Control input for batch monitor in mixed mode.

DAZIN3 Tape/Disk Root sequence field values. **

DAZOUT1 Printer Report, messages and codes.

DAZOUT3 Tape/Disk The unloaded database.

* Set to dummy if no keyword is specified.

** Only required if the ROOTKEYS=SEQ is set.

Example

//UNDLI EXEC DLIBATCH,PSB=PSB4CON,MBR=DAZIFP (1)
//STEPLIB DD
// DD
// DD DSN=ADL vrs.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//*
//* DATASETS DESCRIBING DL/I DATABASES
//*
//G.file DD ...
//*
//* ADARUN CARDS

36

z/OS JCL RequirementsADL Data Conversion Utilities

//*
//G.DDCARD DD *
ADARUN PROGRAM=USER,...
//*
//* ADABAS DL/I BRIDGE DATASETS
//*
//G.DAZIN1 DD *
MODE=CHECKNUM
//G.DAZIN2 DD *
UNL,DAZUNDLI,PSB4CON
//G.DAZOUT1 DD SYSOUT=X
//G.DAZOUT3 DD DSN=ADL.DBD4.UNLOAD,DISP=OLD

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

DAZUNLOD

The following table lists the data sets used by the Unload utility, DAZUNLOD.

DDname Medium Description

DAZOUT1 Printer Report, messages and codes.

DAZOUT3 Tape/Disk The unloaded database.

Example

//UNLOD EXEC DLIBATCH,PSB=PSB4CON,MBR=DAZUNLOD (1)
//G.STEPLIB DD
// DD
// DD DSN=ADL vrs.LOAD,DISP=SHR
//*
//* DATASETS DESCRIBING DL/I DATABASES
//*
//G.file DD ...
//*
//* ADABAS DL/I BRIDGE DATASETS
//*
//G.DAZOUT1 DD SYSOUT=X
//G.DAZOUT3 DD DSN=ADL.DBD4.REFOR,DISP=OLD

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

DAZREFOR

The following table lists the data sets used by the Reformat utility, DAZREFOR.

DDname Medium Description

DAZIN3 Tape/Disk The data to be reformatted.

DAZOUT1 Printer Report, messages and codes.

DAZOUT3 Tape/Disk The unloaded database.

37

ADL Data Conversion UtilitiesDAZUNLOD

Example

//REFOR EXEC PGM=DAZIFP,PARM=’REF,DAZREFOR,PSB4CON’
//STEPLIB DD DSN=ADL vrs.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//DAZIN3 DD DSN=ADL.DBD4.REFOR,DISP=OLD
//DAZOUT1 DD SYSOUT=X
//DAZOUT2 DD SYSOUT=X
//DAZOUT3 DD DSN=ADL.DBD4.UNLOAD,DISP=OLD
//DDCARD DD *
ADARUN PROGRAM=USER,...

Loading the Data

The table below lists the data sets used during the first step of the data loading process, which uses the
Adabas Compression utility, ADACMP.

DDname Medium Description

DAZIN1 Reader Control input for the Adabas User Exit 6, DAZUEX06.

DAZOUT1 Printer Report, messages and codes.

Examples

1. ADACMP run for an initial load of DBD4 on DBID=9,FNR=34

//ADACMP EXEC PGM=ADARUN
//STEPLIB DD DSN=ADABAS.LOAD,DISP=SHR
// DD DSN=ADL vrs.LOAD,DISP=SHR
//DDEBAND DD DSN=ADL.DBD4.UNLOAD,DISP=OLD
//DDAUSBA DD DSN=ADL.DBD4.LOAD,DISP=OLD
//DDFEHL DD DSN=&&FEHL,UNIT=SYSDA,SPACE=(CYL,(1,1)),DISP=(,PASS)
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//DDCARD DD *
ADARUN PROGRAM=ADACMP,DB=9,SVC=svc,DE=3390,UEX6=I00034
//DDKARTE DD * (1)
ADACMP USERISN
ADACMP FNDEF=’01,Z0,A,DE,MU,UQ,NU’ Z1 INVERTED (INSERT LAST)
ADACMP FNDEF=’01,Z1,A,DE,MU,UQ,NU’ MAIN DESCRIPTOR FIELD UP22
ADACMP FNDEF=’01,Z2,004,B,NU’ ROOT ISN (NON ROOT SEGS)
.
.
/*
//DAZIN1 DD *
FNR=034,MODE=LOAD
//DAZOUT1 DD SYSOUT=X
//*
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=X
//SYSUT1 DD DSN=&&FEHL,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=X
//SYSIN DD *
/*

(1) The ADACMP statements generated by the CBC utility as member W00034.

38

Loading the DataADL Data Conversion Utilities

2. ADACMP run for a mass update of the logical child D5B

//ADACMP EXEC PGM=ADARUN
//STEPLIB DD DSN=ADABAS.LOAD,DISP=SHR
// DD DSN=ADL vrs.LOAD,DISP=SHR
//DDEBAND DD DSN=ADL.DBD5.UNLOAD,DISP=OLD
//DDAUSBA DD DSN=ADL.DBD4.MASS,DISP=OLD
//DDFEHL DD DSN=&&FEHL,UNIT=SYSDA,SPACE=(CYL,(1,1)),DISP=(,PASS)
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//DDCARD DD *
ADARUN PROGRAM=ADACMP,DB=9,SVC=svc,DE=3390,UEX6=I00035
//DDKARTE DD * (1)
ADACMP FNDEF=’01,Z0,A,DE,MU,UQ,NU’ Z1 INVERTED (INSERT LAST)
ADACMP FNDEF=’01,Z1,A,DE,MU,UQ,NU’ MAIN DESCRIPTOR FIELD UP22
ADACMP FNDEF=’01,Z2,004,B,NU’ ROOT ISN (NON ROOT SEGS)
.
.
/*
//DAZIN1 DD *
FNR=034,LC=D5B,MODE=MASS
//DAZOUT1 DD SYSOUT=X
//*
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=X
//SYSUT1 DD DSN=&&FEHL,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=X
//SYSIN DD *
/*

(1) The ADACMP statements generated by the CBC utility as member W00034 without the USERISN
option.

DAZELORE

The table below lists the data sets used by the Establish Logical Relationship utility, DAZELORE.

DDname Medium Description

DAZIN1 Reader Control input for DAZELORE and for the batch monitor in normal
mode.

DAZIN2 Reader Control input for the batch monitor in mixed mode. *

DAZOUT1 Printer Report, messages and codes.

* Only required if DAZELORE is run in mixed mode, i.e. when MODE=STANDARD is specified for the
conversion of an original DL/I database.

Examples

1. DAZELORE run with MODE=STANDARD

//ELORE EXEC DLIBATCH,PSB=PSB4BI,MBR=DAZIFP (1)
//G.STEPLIB DD
// DD
// DD DSN=ADL vrs.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//*

39

ADL Data Conversion UtilitiesDAZELORE

//* DATASETS DESCRIBING DL/I DATABASES DBD4 AND DBD5
//*
//G.FILE DD ...
//*
//* ADARUN CARDS
//*
//G.DDCARD DD *
ADARUN PROGRAM=USER,...
//*
//* ADABAS DL/I BRIDGE DATASETS
//*
//G.DAZIN1 DD *
LC=D4F,MODE=STANDARD
//G.DAZIN2 DD *
ELO,DAZELORE,PSB4BI
//G.DAZOUT1 DD SYSOUT=X

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

2. DAZELORE run with MODE=TURBO

// EXEC PGM=DAZIFP,PARM=’ELO,DAZELORE,INSTELO’
//STEPLIB DD DSN=ADL vrs.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//DAZOUT1 DD SYSOUT=X
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZIN1 DD *
LC=COURSEP,MODE=TURBO,RESTART=NO,MAXDPISN=5000000

z/VSE JCS Requirements
The following examples illustrate the JCS requirements for the utility runs described in this section. They
include the requirements for the DAZUNDLI, DAZUNLOD and DAZREFOR utilities, for the ADACMP step
during data loading, and for DAZELORE.

DAZUNDLI

DAZUNLOD

DAZREFOR

Loading the Data

DAZELORE

DAZUNDLI

The following table lists the files used by the Unload utility, DAZUNDLI, in mixed mode.

40

z/VSE JCS RequirementsADL Data Conversion Utilities

DTF Logical Unit Medium Description

DAZIN1 SYSIPT Reader Control input for DAZUNDLI. *

DAZIN2 SYSIPT Reader Control input for batch monitor.

DAZIN3D SYS014 Disk Root seq. field value **/***

DAZIN3T SYS014 Tape Root seq. field value **/***

DAZOUT1 SYSLST Printer Report, messages and codes.

DAZOT3D SYS013 Disk The unloaded database. **

DAZOT3T SYS013 Tape The unloaded database. **

* Only required if any keyword has been specified.

** Only one of either disk or tape is required. The logical unit indicated is the default logical unit. To
change it, specify the SQ parameter either in the ADL parameter module or as a dynamic parameter, for
example: SQ=(5,)

*** Only required if the ROOTKEYS=SEQ keyword has been specified.

The control input for the batch monitor (DAZIFP), for ADARUN, for DAZUNDLI, and for the DL/I
initialization program, DLZRRC00, are all read from SYSIPT. The control statements must be specified
in the following order:

DLI,DAZIFP,psbname,... input for DLZRRC00
UNL,DAZUNDLI,psbname,... input for DAZIFP
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
MODE=CHECKNUM input for DAZUNDLI

Examples

1. DAZUNDLI run unloading a database on disk

// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,’ADL.DBD4.UNLOAD,0,SD’
// EXTENT SYS013,volser,1,0,.......
// EXEC DLZRRC00
DLI,DAZIFP,PSB4CON
UNL,DAZUNDLI,PSB4CON
ADARUN PROGRAM=USER,...
/*

2. DAZUNDLI run unloading a database on tape

// ASSGN SYS005,TAPE
// TLBL DAZOT3T,’ADL.DBD4.UNLOAD,0,SD’
// EXEC DLZRRC00
DLI,DAZIFP,PSB4CON
UNL,DAZUNDLI,PSB4CON,SQ=(5,)
ADARUN PROGRAM=USER,...
/*

41

ADL Data Conversion UtilitiesDAZUNDLI

DAZUNLOD

The table below lists the files used by the Unload utility, DAZUNLOD.

DTF Logical Unit Medium Description

DAZOUT1 SYSLST Printer Report, messages and codes.

DAZOT3D SYS014 Disk The unloaded database. *

DAZOT3T SYS014 Tape The unloaded database. *

* Only one of the two is required. The logical unit indicated is the default logical unit. To change it,
specify the SQ parameter either in the ADL parameter module or as a dynamic parameter, for example:
SQ=(5,)

Example

// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,’ADL.DBD4.REFOR,0,SD’
// EXTENT SYS013,volser,1,0,.......
// EXEC DLZRRC00
DLI,DAZUNLOD,PSB4CON
/*

DAZREFOR

The following table lists the files used by the Reformat utility, DAZREFOR.

DTF Logical Unit Medium Description

DAZIN1 SYSIPT Reader Control input for batch monitor.

DAZOUT1 SYSLST Printer Report, messages and codes.

DAZIN3D SYS014 Disk The unloaded database. *

DAZIN3T SYS014 Tape The unloaded database. *

DAZOT3D SYS013 Disk The unloaded database. *

DAZOT3T SYS013 Tape The unloaded database. *

* Only one of either tape or disk is required. The logical unit indicated is the default logical unit. To
change it, specify the SQ parameter either in the ADL parameter module or as a dynamic parameter, for
example: SQ=(5,)

The control input for the batch monitor (DAZIFP) and for ADARUN is read from SYSIPT. The control
statements must be specified in the following order:

REF,DAZREFOR,psbname,... input for DAZIFP
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*

42

DAZUNLODADL Data Conversion Utilities

Example

// ASSGN SYS014,DISK,VOL=volser,SHR
// DLBL DAZIN3D,’ADL.DBD4.REFOR,0,SD’
// EXTENT SYS014,volser,1,0,.......
// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,’ADL.DBD4.UNLOAD,0,SD’
// EXTENT SYS013,volser,1,0,.......
// EXEC DAZIFP
REF,DAZREFOR,PSB4CON
ADARUN PROGRAM=USER,...
/*

Loading the Data

The table below lists the files used during the first step of the data loading process, which uses the Adabas
Compression utility, ADACMP.

DTF Logical Unit Medium Description

DAZIN1 SYSIPT Reader Control input for the Adabas User Exit 6, DAZUEX06.

DAZOUT1 SYSLST Printer Report, messages and codes.

The control input for the Adabas User Exit 6, DAZUEX06, for ADARUN and for the Adabas Compression
utility, ADACMP, are all read from SYSIPT. The control statements must be specified in the following
order:

ADARUN DB=dbid,MO=MULTI,PROGRAM=ADACMP input for ADARUN
/*
ADACMP USERISN,RECFM=VB,LRECL=8196 input for ADACMP
ADACMP FNDEF=’01,Z0,.....’
.
.
/*
FNR=fnr,MODE=LOAD input for DAZUEX06
/*

Examples

1. ADACMP run for an initial load of DBD4, DBID=9,FNR=34

// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL EBAND,’ADL.DBD4.UNLOAD,0,SD’
// EXTENT SYS010,volser,1,0,.......
// ASSGN SYS012,DISK,VOL=volser,SHR
// DLBL AUSBA,’ADL.DBD4.LOAD,0,SD’
// EXTENT SYS012,volser,1,0,.......
// ASSGN SYS014,IGN
// EXEC PROC=ADLLIBS
// EXEC ADARUN,SIZE=4K
ADARUN PROGRAM=ADACMP,SVC=svc,DE=3390,UEX6=I00034
/*
ADACMP USERISN,LRECL=8196,RECFM=VB (1)
ADACMP FNDEF=’01,Z0,A,DE,MU,UQ,NU’ Z1 INVERTED (INSERT LAST)
ADACMP FNDEF=’01,Z1,A,DE,MU,UQ,NU’ MAIN DESCRIPTOR FIELD
ADACMP FNDEF=’01,Z2,003,B,NU’ ROOT ISN (NON ROOT SEGS)
.

43

ADL Data Conversion UtilitiesLoading the Data

.
/*
FNR=034,MODE=LOAD
/*

(1) The ADACMP statements generated by the CBC utility as member W00034.

2. ADACMP run for a mass update of the logical child D5B

// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL EBAND,’ADL.DBD5.UNLOAD,0,SD’
// EXTENT SYS010,volser,1,0,.......
// ASSGN SYS012,DISK,VOL=volser,SHR
// DLBL AUSBA,’ADL.DBD4.MASS,0,SD’
// EXTENT SYS012,volser,1,0,.......
// ASSGN SYS014,IGN
// EXEC PROC=ADLLIBS
// EXEC ADARUN,SIZE=4K
ADARUN PROGRAM=ADACMP,SVC=svc,DE=3390,UEX6=I00034
/*
ADACMP LRECL=8196,RECFM=VB (1)
ADACMP FNDEF=’01,Z0,A,DE,MU,UQ,NU’ Z1 INVERTED (INSERT LAST)
ADACMP FNDEF=’01,Z1,A,DE,MU,UQ,NU’ MAIN DESCRIPTOR FIELD
ADACMP FNDEF=’01,Z2,003,B,NU ROOT’ ISN (NON ROOT SEGS)
.
.
/*
FNR=34,MODE=MASS,LC=D5B
/*

(1) The ADACMP statements generated by the CBC utility as member W00034 without the USERISN
option.

DAZELORE

The following table lists the files used by the Establish Logical Relationship utility, DAZELORE.

DTF Logical
Unit

Medium Description

DAZIN1 SYSIPT Reader Control input for DAZELORE and for the batch monitor in
normal mode.

DAZIN2 SYSIPT Reader Control input for the batch monitor in mixed mode. *

DAZOUT1 SYSLST Printer Report, messages and codes.

* Only required if DAZELORE is run in mixed mode, i.e. when MODE=STANDARD is specified for the
conversion of an original DL/I database.

The control input for the batch monitor, DAZIFP, for DAZELORE itself, for ADARUN and for the DL/I
initialization program, DLZRRC00, is read from SYSIPT. The control statements must be specified in the
following order:

44

DAZELOREADL Data Conversion Utilities

DLI,DAZIFP,psbname,... input for DLZRRC00 *
ELO,DAZELORE,psbname,... input for batch monitor
/*
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
LC=lcname,MODE=STANDARD input for DAZELORE
/*

* Only required when DAZELORE is run in mixed mode.

Examples

1. DAZELORE run with MODE=STANDARD

// EXEC DLZRRC00
DLI,DAZIFP,PSB4CON
ELO,DAZELORE,PSB4CON
/*
ADARUN PROGRAM=USER,...
/*
LC=D4F,MODE=STANDARD
/*

2. DAZELORE run with MODE=TURBO

// EXEC DAZIFP
ELO,DAZELORE,INSTELO
/*
ADARUN PROGRAM=USER,...
/*
LC=COURSEP,MODE=TURBO,RESTART=NO,MAXDPISN=5000000
/*

45

ADL Data Conversion UtilitiesDAZELORE

	ADL Data Conversion Utilities
	Overview
	Data Unload with the ADL Unload Utility
	Step 1: Convert the Physical DBD
	Step 2: Create an ADL Unload PSB
	Data Base Conversion Overview

	Step 3: Create a DL/I Unload PSB
	Step 4: Unload the Data
	Database Conversion Unload (Automated Procedure)

	Data Validation
	Limited Data Unload
	Restrict the Unload Segment Types
	Specify an Alternate Unload Sequence
	Limit the Unloaded Records
	Example:

	Limit the Unloaded Root Segment Occurrences
	Example:

	Unload a Specific Range of Values
	Unloading Specific Values

	Unloading a HDAM Database
	Control Statements for the ADL Unload Utility
	Data Unload With the ADL Customized Utility
	Step 1: Convert the Physical DBD
	Step 2: Create a DL/I Unload PSB
	Step 3: Create an ADL Reformat PSB
	Step 4: Unload Data
	Data Base Conversion Unload (Manual Procedure)

	ADL Request Handler (DAZBRQH)
	Save and Work Areas
	Requests
	Files
	Sample Program/DAZBRQH

	Step 5: Reformat the Data

	Converting Data - Load
	Step 6: Initial Load of the Adabas File(s)
	Data Base Conversion Initial Load
	Adabas User Exit 6

	Step 7: Mass Update for Paired Logical Child Segments
	Data Base Conversion Mass Update

	Establishing Logical Relationships
	Standard Procedure
	Physical DBDs and their Logical Relationships
	PCB1
	PCB2
	PCB3
	PCB4
	Logical DBDs based on DBD4 and DBD5
	Standard Connect PSB for Logical Child D4B
	Standard Connect PSB for Logical Child D4F
	Standard Connect PSB for Logical Child D5B
	Establishing a Logical Relationship (Standard Procedure)

	Simplified and Special Procedures
	Establishing a Logical Relationship (Simplified and Special Procedures)

	Turbo Procedure
	Step 8: Creating a Turbo Connect PSB
	Step 9: Establishing a Logical Relationship - Turbo Procedure

	DAZELORE Run Report
	Restart Considerations
	Parameters for DAZELORE
	Example

	z/OS JCL Requirements
	DAZUNDLI
	Example

	DAZUNLOD
	Example

	DAZREFOR
	Example

	Loading the Data
	Examples

	DAZELORE
	Examples

	z/VSE JCS Requirements
	DAZUNDLI
	Examples

	DAZUNLOD
	Example

	DAZREFOR
	Example

	Loading the Data
	Examples

	DAZELORE
	Examples

