ADL Data Conversion Utilities ADL Data Conversion Utilities

ADL Data Conversion Utilities

This chapter covers the following topics:
® Overview
e Data Unload with the ADL Unload Utility
® Data Validation
e Limited Data Unload
® Unloading a HDAM Database
e Control Statements for the ADL Unload Utility
e Data Unload With the ADL Customized Utility
e Converting Data - Load
® Establishing Logical Relationships
® 7/0OS JCL Requirements

® z/VSE JCS Requirements

Overview

There are two ways in which the data stored in a DL/I database can be converted to Adabas file(s): an
automated procedure and a manual one. Both procedures create a sequential file (the unloaded database),
which is input to the standard Adabas Compression utliDACMPAfter the data compression by

ADACMPthe Adabas utilitADALODQ(Initial File Loading and Mass Update Utility) will populate the

Adabas file(s) using the functioisOAD" and"UPDATE".

The difference between the two procedures lies in the fact that the automated procedure uses a
standardized Unload utilitfpAZUNDLL This utility unloads the original DL/l database in one step. In
contrast, the manual procedure creates the unloaded database in two steps, using a customized Unload
utility, DAZUNLODIn the first step, and a standardized Reformat utliiZ REFORiIn the second.

In the automated procedure, the Unload uth#ZUNDLIlaccesses DL/I to read the segments in the
database, while at the same time using the ADL to create the unloaded database. The utility thus runs in
mixed mode, and the PSB and DBD used need to be generated according to mixed mode conventions (i.e.
as both DL/l and ADL PSBs and DBDs). Limited data editing is possible during unloading of the DL/I
database: all or specific numeric fields may be checked for valid numeric contents. You can limit the
amount of unloaded data by specifying various parameters.

The manual procedure uses a customized Unload ubBl&ZUNDL] to unload the original DL/I
database, and a standardized Reformat utiiZREFORto create the unloaded databd&ZUNLODs

a normal DL/I application program which reads the DL/l database from the beginning to the end and
creates an intermediate unload fAZREFORS a normal mode ADL application program which reads
the intermediate unload file and creates the input fil&ARACMPThe PSB and DBD used for both

ADL Data Conversion Utilities Data Unload with the ADL Unload Utility

DAZUNLORNADAZREFORnay be the same.

As you have to customiZ2AZUNLODN order to unload a DL/I database, you are also able to edit the
data read before you create the intermediate unload file. You may, for example, want to do this in
situations where numeric data has not been stored in numeric fields.

The differences between the automated and the manual procedure are summarized on the following pages.

All PSBs created for the ADL utilities mentioned in this section (for example, the unload and connection
PSBs) must be installed with the optibANG=ASSEMr LANG=COBOILn thePSBGENstatement.

Automated Procedure Manual Procedure

The ADACMP input file is created| The ADACMP input file is created in two steps.
in one step.

The Unload utility runs in mixed | The Unload utility runs as a normal DL/l application. The
mode Reformat utility runs as a normal ADL application

Limited data editing possible durin The Unload utility has to be customized. Data editing is
the unload procedure. therefore possible.

Data Unload with the ADL Unload Utility

This section describes how to unload all the data of a database. Refer to the next section for details on how
to unload data selectively.

To use the automated method of conversion to unload the data stored in a DL/I database, perform the
following steps:

e Step 1: Convert the Physical DBD
® Step 2: Create an ADL Unload PSB
® Step 3: Create a DL/I Unload PSB

® Step 4: Unload the Data

Step 1. Convert the Physical DBD

Run the original DL/I DBD through the CBC utility (see the secA@. Conversion Utility for DBDs
and PSBs in this documentation).

Step 2: Create an ADL Unload PSB

The PSB created must contain two PCBs, both of which must be based on the original DBD and must
reference all of its segments. The first PCB is used to unload the data, while with the help of the second,
the data is prepared for the reloading. Run this PSB through the CBC utility. Note that if the DBD is
involved in logical relationships and contains logical child segments, these must also be referenced by the
PCBs (this also applies to virtual logical child segments).

Step 2: Create an ADL Unload PSB ADL Data Conversion Utilities

Data Base Conversion Overview

ADL Data Conversion Utilities

Perform for
each Adabas
file

Perform for
each non-real
logical child

Perform for
each logical
child

sttt)
¥

Unload

DAZUNDLI or
UNLOAD+REFOR

::

Initial Load

CMP/LOD({LOAD)

v

Bi-

directional

Log. Rel.
2

Mass Update
CMP/LOD(UPDATE)

Step 2: Create an ADL Unload PSB

Logical
Relationship
?

Establish Logical
Relationship
DAZELORE

Step 3: Create a DL/I Unload PSB ADL Data Conversion Utilities

Step 3: Create a DL/I Unload PSB

Run the PSB through the DLASBGENThe PSB created in the previous step can be used as the DL/I
unload PSB. Note that, in contrast to the previous step, it is not absolutely necessary for this PSB to
contain two identical PCBs, as one suffices.

Step 4. Unload the Data

Unload the data from the DL/I database by running the ADL Unload ulifaZUNDLL DAZUNDLIis
executed as a mixed mode program (see the sddioh Installation and Operation in the ADL
Interfaces documentation). The mixed mode control statement must have the following layout:

UNL,DAZUNDLI,psbname
wherepsbname is the hame of the unload PSB.

The unloaded data is subsequently stored in a sequential file. You can use the sample JCL in the source
library membe ADLDBC4(z/OS) orADLDBC4.J (z/VSE) as an example. The JCL/JCS requirements for
DAZUNDLIare given at the end of this section.

Database Conversion Unload (Automated Procedure)

ADL Data Conversion Utilities Data Validation

DLA
Database -
ADL
Directory

DBD/PSB
Library

DAZUNDLI

Unloaded

Report Database

Data Validation

During unloading of the DL/l database contents, it is possible to let ADL automatically correct either all
numeric fields or specific numeric fields. Pack&¥PE=P and zoned decimal' Y PE=2) fields are

checked by ADL for valid packed or zoned decimal value contents. If they do not contain a valid packed
or zoned decimal value, a null value (i.e. a packed zero for packed fields and a zoned decimal zero for
zoned decimal fields) is substituted. This procedure can be activated for all numeric fields within a DBD
or for specific ones only, using extra control cardfABZUNDLL The syntax of these control cards is as
follows:

MODE=CHECKNUM
SEGM=segname,FIELD=fldname
SEGM=

wheresegname is the name of segment within the unloaded DBD,faimme is the name of a numeric
field within this segment.

Specifying only the control caddODE=CHECKNUWtivates checking of all numeric fields within the
DBD. Specifying one or morSEGM/FIELD control cards limits the checking to only those fields
specified. Omitting the control cards altogether, or speciM@PE=STANDAR®Beactivates checking of
any numeric fields.

Limited Data Unload ADL Data Conversion Utilities

Limited Data Unload

The automated procedure described in the previous section may also be used to unload only a part of the
database. This can be achieved by modifying the unload PSB or by specifying additional control
statements for thBAZUNDLI utility. Note that if a logical child segment occurrence is unloaded, the
corresponding logical parent segment occurrences have to be unloaded as well.

This section covers the following topics:
® Restrict the Unload Segment Types
® Specify an Alternate Unload Sequence

Limit the Unloaded Records

Limit the Unloaded Root Segment Occurrences
e Unload a Specific Range of Values

e Unloading Specific Values

Restrict the Unload Segment Types

If the first PCB in the unload PSB does not contain all of the segments of the original DBD, only the
referenced ones will be unloaded. The second PCB has to reference at least the segments of the first PCB.
Note that a logical relationship between two DBDs requires a specification of the logical child segment
either on both sides or on none.

Specify an Alternate Unload Sequence

In order to unload the database in an alternate sequence, the first PCB in the unload PSB may refer to a
secondary index as the processing sequence. In this cdST&RT" and"END" parameters of
DAZUNDLIcorrespond to the values of the secondary index source fields.

The secondary index must have the root segment as target. It is recommended to use only those secondary
indices which have a one-to-one relation to the root segment, otherwise the repetition of the data will lead
to problems during the reload.

Limit the Unloaded Records

The number of unloaded records may be limited by specifyingNOMREC "parameter foDAZUNDLL
The syntax of this control card is as follows:

NUMREC=number_of records

wherenumber_of recordsis the maximum number of unloaded records. This number can be up to 8 digits
long.

Every occurrence of every segment counts as one record. Thus if the "number_of_records" is reached, it
may be that not all dependent segments of the last unloaded root segment have been unloaded.

ADL Data Conversion Utilities Limit the Unloaded Root Segment Occurrences

Example:

Unload at most 1000 records from the database:

NUMREC=1000

Limit the Unloaded Root Segment Occurrences

The number of unloaded root segment occurrences may be limited by specifyiNg MBOOT"
parameter foDAZUNDLI The syntax of this control card is as follows:

NUMROOT=number_of_roots

wherenumber_of roots is the maximum number of unloaded root segment occurrences. This number can
be up to 8 digits long.

If the NUMRE@arameter is not specified, the root segments will be unloaded together with all their
dependent segments.

Example:

Unload at most 50 root segment occurrences together with their dependents:

NUMROOT=50

Unload a Specific Range of Values

The range of unloaded root segment occurrences may be limited to specific values by defining the
"START" or"END" parameter foDAZUNDLI The syntax of these control cards is as follows:

START=string
END=string

wherestring is either the start or end value and must be of the following format:

‘char_string’
X’hex_string’

where

char_string may contain any character

hex_string must consist of pairs of the characters 0-9, A-F, where each pair will be interpreted as a
hexadecimal character.

A string may be continued by ending the current line with a comma (","). The following line must contain
only a string without any keyword being specified. This continued string may start in any column, may
itself be continued and may have either format. Thus, it is possible to build up a start and end value from
both character and hexadecimal strings.

The database will be unloaded from the start to the end value, inclusively. The end value might not be
reached if thdNUMRE®r NUMROOparameter is specified.

Unloading a HDAM Database ADL Data Conversion Utilities

The values refer to the root sequence field or, if an alternate sequence is chosen, to the secondary index
field. If the string is longer than the referenced field, it is truncated at the right. If it is shorter, it is padded
at the right with low valueshéxadecimal X'00’) or high valuesX'FF’) for the start or end value
respectively.

Packed values may be specified in hexadecimal format. It is recommended to use the correct field length,
as this avoids an undesired truncation or padding of the packed values.

The following example shows how to unload data for the root sequence field rang&bbth to
"MATH" inclusively:

START="EDV’
END="MATH’

The following example shows how to unload all data with a root sequence field v&XieZ3f followed
by a hexadecimal "01":

START="XYZ,
xXor

END="XYZ’,
xXor

Unloading Specific Values

Specific root segment occurrences may be unloaded by specifyiRPBOEKEY parameter. The syntax
of this control card is as follows:

ROOTKEYS
key values

or

ROOTKEYS=SEQ

In the first case, thROOTKEY $ust be the last parameter ImAZUNDLL It is followed by one or more
root sequence field values.RIOOTKEYS=SE specified, the root sequence field values are read in
from DAZINS. In this case, it is not required that ROOTKEY $arameter is the last parameter. The
corresponding root occurrences are unloaded together with all dependents. WR@OTHCEY S
parameter is specified, 8T ARTandENDparameter must not be used.

The following example shows how to unload the data for the root sequence fields with théeBR\lies
and’GERMAN'.

ROOTKEYS
EDV
GERMAN

Unloading a HDAM Database

In aHDAMlatabase, the sequence of the root occurrences is defined by the randomizing module. This
mostly does not correspond to the root key sequence. When such a database is unloaded (without
additional parameters), the reloaded Adabas data is randomly distributed over the data blocks. This results
in a poor performance for sequential reads, since for each new accessed root segment occurrence, a
physical 1/0 is required.

ADL Data Conversion Utilities

Thus it is recommended to unload the data in root key sequence. To do this, use any application which
writes all the root sequence field values (and only these) to a sequential file. Sort these values by using
any sort utility. These sorted values can now be used as key valuesR@THEKEY parameter of the
DAZUNDLIutility as described above. This forces DL/I to unload the database in the given sequence and

Control Statements for the ADL Unload Utility

the loaded Adabas data is no longer randomly distributed over the data blocks.

If the data has been initially loaded in the randomized sequence, i.e., withB@QEEKEY Parameter, it
can be sequenced by unloading and reloading it from the ADL files. This tirROO& KEY Parameter
is not required, because ADL uses the root sequence field always as sort key.

Control Statements for the ADL Unload Utility

The following keywords are available fDAZUNDLL For a detailed description refer the previous

sections. The keywords are read from the control inpuDAXUNDLI (see the sectior®OS JCL
Requirementsor z/VSE JCS Requirements later in this documentation).

unloaded root segmen
occurrences.

Keyword Explanation Possible values Default
END Indicates the end valu¢ Any character string ¢ None. If no other
of the unload. The an "X" followed by condition is met, the
value refers to the root pairs of the character¢ database is unloaded unti
sequence field, or if an 0-9, A-F, which will |the end of the database
alternate processing |be interpreted as reached.
sequence is specified,| hexadecimal
the corresponding characters. Both type
secondary index field. | of string have to be
The value may be enclosed by quotatior]
continued by putting a| marks.
comma after it.
FIELD The name of a numeri¢ Any numeric field None.
field to be checked for| name.
valid values. This
keyword must be
preceded by the SEGN
keyword.
MODE Indicates, whether STANDARD - do not
numeric fields are to b(check numeric fields.
checked for valid CHECKNUM - check
values. The MODE all numeric fields.
keyword can be
overridden by the
SEGM keyword.
NUMREC The maximal number ¢ 1 - 99999999 No limit.

unloaded records.

NUMROOT The maximal number ¢ 1 - 99999999 No limit.

10

I
S

Data Unload With the ADL Customized Utility

ADL Data Conversion Utilities

of the unload. The
value refers to the root
sequence field, or if an
alternate processing
sequence is specified,
the corresponding
secondary index field.
The value may be
continued by putting a
comma after it.

an "X" followed by
pairs of the character
0-9, A-F, which will
be interpreted as
hexadecimal
characters. Both type
of string have to be
enclosed by quotatior]
marks.

Keyword Explanation Possible values Default
ROOTKEYS Unload specific root | None - the key values If ROOTKEYS is not

key values together |are supplied after the| specified at all, all root

with their dependents.| ROOTKEYS key values are unloaded,
parameter.
SEQ - the key values
are in DAZIN3.

SEGM The name of a segmer Any segment name. |None.

with a numeric field to

be checked for valid

values. This keyword

must be followed by th

FIELD keyword. Once

the SEGM keyword is

specified, only the

corresponding fields

will be checked,

regardless of the

MODE keyword.

START Indicates the start valu Any character string ¢ None.

Data Unload With the ADL Customized Utility

To use the manual conversion method to unload the data stored in a DL/l database, perform the following

steps:

e Step 1: Convert the Physical DBD

® Step 2: Create a DL/I Unload PSB

® Step 3: Create an ADL Reformat PSB

® Step 4: Unload Data

® ADL Request Handler (DAZBRQH)

e Step 5: Reformat the Data

ADL Data Conversion Utilities Step 1: Convert the Physical DBD

Step 1: Convert the Physical DBD

Run the original DL/I DBD through the CBC utility (see the tofizl. Conversion Utilities for DBDs and
PSBs in this section).

Step 2: Create a DL/l Unload PSB

The PSB created must contain one PCB: this must be based on the original DL/I| DBD and must reference
all segments of the DBD. Run the PSB through the BEBGENNOote that if the DBD is involved in

logical relationships and contains logical child segments, these must also be referenced by the PCB (this
also applies to virtual logical child segments).

Step 3: Create an ADL Reformat PSB

Run the PSB created in Step 2 through the CBC utility (see theADhi€Conversion Utilities for DBDs
and PSBs in this section).

Step 4: Unload Data

Write, assemble and link edit an unload program to unload the data from the DL/I database. An example
of an unload program is provided as the source meBPRZIUNLODz/OS) orDAZUNLOD.A(z/VSE) in
the Source Library on the installation tape.

Write the unload program in Assembler using the standard programming conventions for this language.

The unload program reads the DL/l database by issuing unqu&ifiedlls until it reaches the end. If the
standardized reformat progrddAZREFORSs to be used in Step 5 (below) to create the input file for
ADACMPthe segment occurrences read have to be written out to the intermediate unload file as variable
length records with the following record layout:

Bytes| Explanation

1-4 |Length of the record, including this field (standard convention for variable length record). (4
bytes)

5-12 | The DL/I segment name taken from the SENSEG feedback area in the user PCB. (8 bytes)

13- | The DL/I segment data taken from the I/O area. Note that if the segment is of variable length,
the length bytes are part of the segment data and must be included as the first two bytés in the
segment I/O area.

The unload program is executed as a normal DL/l application program using the DL/l unload PSB.

Data Base Conversion Unload (Manual Procedure)

12

Step 4: Unload Data ADL Data Conversion Utilities

DLA
Database
DBD/PSB
Library
L
DAZUNLOD
Report
mediate
Unload
File
ADL
Directory
Y
DAZREFOR
Unloaded
Report Database

13

ADL Data Conversion Utilities ADL Request Handler (DAZBRQH)

ADL Request Handler (DAZBRQH)

When using the sample program on the installation tape, you should bear in mind that it uses the ADL
internal request handldbAZBRQHIt is therefore independent of the operating system used.

WhenDAZBRQHk being used, certain conventions need to be followed. These are described in detail in
the example program itself, but are summarized briefly below.

Save and Work Areas

Save and work areas for the request handler must be provided by the caller. The first fullword of this area
must contain the start address of the area itself, i.e. it must be pointing to itself. In the sample program,
this is achieved by using the ma8AVEAREAFor z/VSE users, this macro may also be used to change
the block size of the intermediate unload file dynamically.

Requests

Requests are issued by calling the request handler as a subroutine, with the R@amelR1 being used
to pass the necessary parameters. In the sample program, this is achieved by R&EQIMEE Thacro.

Files
All files are opened by the request handler dynamically, but have to be closed by the caller.
Sample ProgrambDAZBRQH

Because the sample program uses the internal request handler, it must be linkKe&IABRQH

Step 5: Reformat the Data

The intermediate unload file created in Step 4 is read and each unloaded segment is put through ADL. The
input file for ADACMRs created. The standardized reformat program in the Load LIlWABREFOR
may be used if the intermediate unload file has been created according to the layout conventions in Step 4.

If the standardized reformat program does not meets your requirements, you can write your reformat
program. An example of a reformat program is provided as the source mMeARREFORz/OS) or
DAZREFOR.Az/VSE) in the Source Library.

The reformat program reads the intermediate unload file and issues a load call against ADL for each
unloaded segment occurrence. A load call has the same syntax as a normal DL/ inseri_€af Dot
specified as the function insteadlSRT .

The parameters for tHeDADcall are as follows:

14

Converting Data - Load ADL Data Conversion Utilities

Parameter |Explanation

Parameter 1 |(optional) The number of parameters (4) that follow.

Parameter 2 | The function is LOAD.
Parameter 3 | The PCB address for the first and only PCB in the reformat PSB.

Parameter 4 | The I/O area as read from the intermediate unload file.

Parameter 5 | An unqualified SSA specifying the name of the segment as read from the
intermediate unload file.

The standardized reformat progr®AZREFORs executed as a hormal mode ADL program (see the
sectionBatch Installation and Operatiam the ADL Interfaces documentation). The execution parameters
must have the following layout:

REF,DAZREFOR,psbname

wherepsbname is the name of the ADL reformat PSB.

Like DAZUNLODPDAZREFORises the ADL internal request handi2AZBRQHThe same conventions
apply.

Converting Data - Load

The manual and the automated procedures use the same methods of loading Adabas files. You must
perform the following steps:

* Only for databases related via a bidirectional logical relationship and if the standard or simplified
procedure oDAZELOREs used to establish logical relationships.

This section covers the following topics:
® Step 6: Initial Load of the Adabas File(s)

® Step 7: Mass Update for Paired Logical Child Segments

Step 6: Initial Load of the Adabas File(s)

Each Adabas file used to store the converted data is loaded individually using the standard Adabas utilities
(ADACMP, ADALOD.

The sequential file produced in the previous steps is taken as input AID&@VIRtep, as are the
ADACMRBtatements generated by the CBC ultility in Step 1.

Each Adabas file used must be loaded with the op8BRISN This applies to both thtiDACMRNd
the ADALODsteps (foADACMR is already generated by the CBC utility), as the ISNs are automatically
generated by the ADL.

Step 6 needs to be run once for each of the Adabas files used to store the DL/l database.

15

ADL Data Conversion Utilities Step 6: Initial Load of the Adabas File(s)

Note that the initial load does not load the data of a paired logical child segment of a bidirectional logical
relationship. This is performed by the next step, if required at all.

You may use the sample JCL (JCS) in the merAlrDBC6ADLDBC6.J) as an example of an initial
load job under z/OS (z/VSE).

Data Base Conversion Initial Load

User Exit 6
Control Cards

Unloaded
Database

ADACMP
Cards

ADACMP
ADALOD
(LOAD)

Adabas
Database

Adabas User Exit 6

The ADACMP step uses Adabas User Exit 6. This exit consists of two parts which were linked together
during the DBD conversion procedure (see the seétinin Conversion Utilities for DBDs and PSBs
this documentation):

1. Fixed Part

The fixed part consists of the DAZUEX06 module, which expands each input record on the unload
file to its full decompressed size before passing it on to ADACMP.

2. User Exit 6 Extension

The User Exit 6 extension is generated by the CBC utility and contains information on the structure
of the DBD being converted, and the default record layouts of the Adabas file(s) used to store the
converted data.

16

Step 7: Mass Update for Paired Logical Child Segments ADL Data Conversion Utilities

Adabas User Exit 6 needs a control statement to indicate which Adabas file should be loaded. The syntax
of this control statement is as follows:

FNR=nnnnn,MODE=LOAD
wherennnnn is the file number of the Adabas file to be loaded.

Information on how to load the file is provided at the end of this section.

Step 7: Mass Update for Paired Logical Child Segments

You only need to perform this step if the database being converted is involved in bidirectional logical
relationships. In this case, the data originating from a bidirectional logical segment is stored only once, in
an Adabas file. The way in which the data was stored under DL/I (virtual or physical pairing) has no effect
on this.

You must not perform this step when the Special or Turbo procedure is used to establish logical
relationships (see the following sectidstablishing Logical Relationships).

Within a bidirectional logical relationship, the real logical child segment can be defined as the logical

child segment for which an Adabas file number and Adabas fields are generated. The paired logical child
segment can be defined as the logical child segment with which the real logical child segment is paired.
The reports produced by the CBC utility during conversion of the physical DBDs show which Adabas file
contains the logical child segment data, and therefore which of the two logical child segments is the real
logical child segment. Once all Adabas files storing data originally contained in DL/l databases related via
a bidirectional logical relationship have been loaded, the Adabas Mass UpdatéDi#lityDDwith the
UPDATHunction must be run for all Adabas files which contain data originating from a bidirectional
logical child segment.

The real logical child segment occurrences are unloaded during the unload of the DL/I database in which
they were stored. They are subsequently loaded with an initial load using the AdabasARikt&sIP
andADALODThe paired logical child segment occurrences are unloaded separately during the unload of
the DL/I database in which they were stored and must be added separately to the Adabas file in which the
real logical child segment occurrences have been loaded. This is donADALGDUPDATE To

produce the input foADALOOUPDATE, run the Adabas Compression util®pACMRvith the

following input:

e The ADACMRBtatements for the Adabas file used to store the bidirectional logical child segment data,
i.e. the Adabas file for theeal logical child segment. Note that because the output produced by the
ADACMRutility is input to theADALODUPDATE utility, the USERISNoption must not be specified
and has to be removed from tABACMRtatements before you run tABACMRBtep.

® The Adabas User Exit 6 for the Adabas file used to store the bidirectional logical child segment data,
i.e. the Adabas file for theeal logical child segment.

e The unloaded DL/l database containing phied logical child segment data.

® A User Exit 6 control statement specifying a mass update run with the format:

FNR=nnnnn,MODE=MASS,LC=name

17

ADL Data Conversion Utilities

where

Establishing Logical Relationships

nnnnn

is the file number of the Adabas file containing the bidirectional logical child segment dpta,
i.e. the Adabas file for the real logical child segment, and

name | is the name of the paired logical ch

ild segment.

You may use the sample JCL (JCS) in the memibdtDBC7(ADLDBC7.J) as an example of a mass

update under z/OS (z/VSE).

Data Base Conversion Mass Update

¥

Unloaded
Database

ADACMP
Cards

&k

i

User Exit 6
Control Cards

ADACMP
ADALOD
(UPDATE)

Adabas
Database

* Unloaded Database containing tbegred logical child segment data.

* ADACMP Cards and User Exit 6 generated for teal logical child segment.

Establishing Logical Relationships

When the first seven unload/load steps have been successfully completed, the data stored in the DL/I
database have been converted to one or more Adabas file(s). Where no logical relationships exist for a
DBD, no other steps are necessary. However, where one or more logical relationships exist, each logical
child segment occurrence has to be "connected" to its logical parent. This is done in two steps using the

DAZELOREEstablish Logical Relationship) utility.

18

Standard Procedure ADL Data Conversion Utilities

Step |Description

Step 8 |Create connect PSB.

Step 9 |Establish logical relationship.

Four different procedures for Steps 8 and 9 - Standard, Simplified, Special and Turbo - exist (see below).
The procedure you should use in any given case depends on the DBDs and user applications involved. All
procedures involve creating a connect PSB and exedDiZd=L OREthe difference is that the Standard
procedure requires both the original DL/l and the converted databases, while the other procedures only
require the latter. The Standard procedure is thus more time-consuming but can be used in all cases. In
contrast, the Simplified, Special and Turbo procedures can only be used for converted databases in which
no logical child segments without matching logical parents and no variable intersection data segments
which are no longer accessible via their physical parents exist. The Special procedure differs from the
Simplified procedure only for bidirectional logical relationships. It can only be used if every logical child
segment occurrence has a paired logical child segment occurrence present in the database. For the Turbo
procedure the pre-requisites of the Special procedure must be fulfilled. Additionally all parent segments
on the logical and physical path up to and including the root segments must have unique sequence fields.

Steps 8 and 9 have to be performed separately for every logical child: i.e. once for every unidirectional
logical relationship and twice for every bidirectional logical relationship for both the Standard and the
Simplified procedures. The Special and Turbo procedure, however, only needs to be run once per logical
relationship, regardless of whether or not this relationship is bidirectional.

When large databases are being converted, performance problems may arise with these steps. We
therefore recommend that you run iW@ZELOREHutility in single user mode where possible. In addition,

you should use the Turbo, Special or Simplified methods wherever possible as these procedures do not
require that the original DL/I database be accessed simultaneously. The highest performance is provided
by the Turbo procedure.

Furthermore, th® AZELOREutility may be run using checkpoints, which means that a particular run may
be split up into several sub-runs if necessary. See the section dregiad Considerations later on in
this section for details of how to use checkpoints witiXAZ ELOREutility and how to perform restarts.

This section covers the following topics:

o Standard Procedure

Simplified and Special Procedures

Turbo Procedure

DAZELORE Run Report
® Restart Considerations

Standard Procedure

The Standard procedure is required in all cases in which segment occurrences which were originally
present in the DL/l database have been physically deleted, but are still accessible via a logical path. This
may occur in one of two situations:

19

ADL Data Conversion Utilities Standard Procedure

e \With segment occurrences which have been physically deleted but which are still accessible via a
logical child segment.

The physical unload performed in the unload procedure does not unload these physically deleted segment
occurrences. Logical child segment occurrences may thus be present in the converted database(s), even
though no matching logical parent segment occurrences exist (even the parents of these logical parents
may be missing). The missing segment occurrences have to be added to the Adabas files in such a way as
to be accessible via logical, not physical, paths.

® Segment occurrences which are variable intersection data may no longer be accessible via their
physical parents but may still be accessible via a logical child segment.

Again, the physical unload performed in the unload procedure does not unload these segment occurrences.
The missing segment occurrences have to be added to the Adabas files in such a way that they are only
accessible via the logical child.

All missing segments are reinserted during@A& ELOREuns using the Standard procedure.
The two situations listed above are explained in the set of examples following.

Physical DBDs and their Logical Relationships

20

Standard Procedure ADL Data Conversion Utilities

DBED4

D4A
| DBDS

[|
D4B D4C DSA
D4D D4E D4F DSB D5C
D4G D4H
D4l

In the example above, the two DB D4andDBDS are involved in two logical relationships:

e A unidirectional logical relationship between the logical child segidi&and the logical parent
segmenD4l within DBD4

® A bidirectional logical relationship betwe@&BD4andDBD5with the logical child segmenB34F
andD5B and the logical parent segmebB4CandD5A

Certain segments may be physically deleted but still logically accessible. This depends on the setting of
the delete rules for the segments involved in the logical relationships and on the logic of the application
programs.

Segment®4A DAC D4F, DAG andD4l may have been physically deleted but may still be accessible
via the logical child segmem4B. The segment occurrences will not have been unloadedBit and
will need to be inserted during tbAZELOREun forD4B.

SegmentPH4A andD4Cmay have been physically deleted but may still be accessible via the logical child
segmenD5B. The segment occurrences will not have been unloadedBii¥ and will need to be
inserted during thBAZELOREun for D5B.

SegmenD5A may have been physically deleted but may still be accessible via the logical child segment
D4F. The segment occurrences will not have been unloadedBil¥§ and will need to be inserted
during theDAZELOREun forD4F.

21

ADL Data Conversion Utilities Standard Procedure

In addition, segmeni®4G D4HandD4l may no longer be accessible via their physical pdyéft but
may still be accessible vi25B. The segment occurrences will not have been unloadedBil, and
will need to be inserted during tDAZELOREun forD5B.

Sep 8: Creating a Sandard Connect PSB

The Standard connect PSB must contain four PEB81, PCB2, PCB3 andPCB4 All these PCBs
must specify processing option "APCBlandPCB3must also specify processing option "P" for path
calls.

PCB1

PCBLlis based on the converted DBD and references the logical child segment and all its parent segments
only. The PCB must be based on the physical DBD. For this reason, the sensitive sBERSEG
describing the logical child segment cannot describe the concatenated segment.

PCB2

PCB2is based on the converted DBD and references the logical child segment, all its parent segments,
and all the parent segments of the logical parent in the inverted structure. The PCB has to be based on the
logical DBD. TheSENSEGIescribing the logical child segment must describe the concatenated segment.
Where the logical child segment is a bidirectional logical child and the paired logical child segment has
dependents (i.e. variable intersection data segments), the latter must be included as dependents of the
logical child as well.

PCB3

PCB3is based on the converted DBD and references the logical parent segment and all its parent
segments only. The PCB has to be based on the physical DBD.

PCB4

PCBA4is only needed where the logical child segment is a bidirectional logical child and its paired logical
child segment has dependents. In all other cases it may be of®Bdis based on the converted DBD

and references the logical child segment and all its parent segments. It must also reference all variable
intersection data segments as dependents of the logical child. The PCB must be based on the logical DBD.
The SENSEGIescribing the logical child segment must describe the concatenated segment.

The Standard connect PSB must be run through theRBBIGENand the CBC utility (see the section
ADL Conversion Utilities for DBDs and PSBs in this documentation).

The following figures illustrate this in more detail.

Logical DBDs based on DBD4 and DBD5

22

Standard Procedure

ADL Data Conversion Utilities

D4L4C D4H

D4L1 D4A
D4L2AC D4B | * D4L2B D4C
D4l
I
I I I I
D4L3A D4D | | D4L3B D4G D4L3C D4E D4L3DC D4F
D5A
I
I
D4L4A D4F D4L4B D4G
DBA
D4L5A D4C D4L5B D4l
D4LsA D4A
D5L1 D5A
I
I |
D5L2AC D5B | * D5L2B D5C
D4C
I
I I I |
D5L3A D4E D5L3B D4A D5L3C D4G D5L3D D4H

D4L4A D4l

23

ADL Data Conversion Utilities

* concatenated segments

Standard Connect PSB for Logical Child D4B

PCB1 PCB2

D4A D4L1

D4B D4L2AC

D4L3B

D4L4A

D4L5A

D4L6A

Standard Connect PSB for Logical Child D4F

24

PCB3

D4A

D4F

D4G

D4l

Standard Procedure

PCB4

Not applicable

Standard Procedure

ADL Data Conversion Utilities

PCB1 PCB2 PCB3 PCB4
D4A D4L1 D5A Not required
D4C D4L2B
D4F D4L3DC
Standard Connect PSB for Logical Child D5B
PCB1 PCB2 PCB3 PCB4
D5A D5L1 D4A D5L1
D5B DSL2AC D4C DSLZ2AC
|
I | I |
D5L3B D5L3C DSL3D D5L3C D5L3D
DSL4A D5L4A

Establishing a Logical Relationship (Standard Procedure)

25

ADL Data Conversion Utilities Standard Procedure

DL
Database

Control
Cards

DAZELORE

Report

Database

Sep 9: Establishing Logical Relationship - Sandard Procedure

Logical children and parents are connected by running the ADL Establish Logical Relationships utility,
DAZELOREIn the Standard procedui2AZELOREs executed as a mixed mode program (see the
sectionBatch Installation and Operation in the ADL Interfaces documentation) using a mixed mode
control statement with the following layout:

ELO,DAZELORE,psbname
wherepsbname is the name of the Standard connect PSB.

DAZELOREalso needs a control statement to indicate which logical child segment should be connected.
The syntax of this control statement must be as follows:

LC=lognam,MODE=STANDARD
wherelognam is the name of the logical child segment in the physical DBD.
The specification of theC parameter is mandatory and it must be the first parameter specified.

Where a DBD is involved in more than one logical relationship, seR&ZELOREobs need to be run.

The order for this is only important where variable intersection data segments exist and at least one of
them is a logical parent. In this case, IeZELOREuUn which may cause variable intersection data
segments to be inserted, must be run befor®&EELOREuUNS connecting the logical child segments to

26

Simplified and Special Procedures ADL Data Conversion Utilities

the variable intersection data segments which are logical parent segments.

In the case of the examples given on the previous pages, the order in which the jobs have to be run is as
follows:

1. The DAZELORE run for segment D5B.

This is because segmddd| is both a variable intersection data segment and a logical parent, and
during this rurD4l segment occurrences may be inserted.

2. The order of the two remainilPAZELOREuns (forD4B andD4F) is irrelevant.

Because segment occurrences may be inserted ddAAgLOREuns, the situation may arise in which

logical child segment occurrences are inserted althougbAZ&L OREun for the logical child segment

has already been performed. To establish whether this is the case, look at the report which is printed out at
the end of eacDAZELOREun and which gives all the segment occurrences inserted during that run. If a
segment occurrence has been inserted, reruDAZ& L ORHRutility for that logical child segment.

For example, let us assume that, in the illustrations given previousAIHELOREuns forD5B and
D4F have been successfully performed. THeZELOREun forD4B may have triggered the insertion of
D4F segment occurrences. If this is the caseDIREELOREun forD4F must be repeated.

Simplified and Special Procedures

The Simplified and Special procedures may be used in all cases in which the original DL/l database did
NOT contain any segment occurrences which have since been physically deleted but which are still
accessible via a logical path.

The Special procedure only differs from the Simplified procedure for bidirectional logical relationships. It
can only be used if all logical child segment occurrences have a matching paired logical child occurrence
and vice versa, i.e. if both logical access paths are always present for any logical child-logical parent link.
This fact has to be ensured by the user, for example by checking whether the numbers of unloaded records
of the paired segments in tBAZUNDLIreport are equal. The special procedure creates the paired logical
child segments in accordance with the information extracted from the real logical child segment. Note that
for the special procedure the logical child segment for WhiBEELOREs run has to be theal logical

child segment.

The advantages of the Special procedure are that the Mass Update step is not required during loading of
the data in Adabas files (see Steplass Update for Paired Logical Child Segments), and that only one
DAZELOREun is needed to establish the bidirectional logical relationship. This 8iAglEL OREun

also has certain performance advantages over that used in the Simplified procedure.

If a logical child segment occurrence which does not have a matching logical parent is encountered during
the run, the following error message is produced.

ADL0612: Unexpected DP status code for DAZELORE procedure used
The job then terminates. In this case, rdDAZELORHIsing the Standard procedure.

Sep 8: Creating a Smplified or Special Connect PSB

27

ADL Data Conversion Utilities Simplified and Special Procedures

Simplified and Special connect PSBs contain a single PCB based on the converted DBD and referencing
the logical child segment and all its parent segments only. The PCB has to be based on the physical DBD.
For this reason, thBEENSEGIescribing the logical child segment cannot describe the concatenated
segment. This PCB is identical to the PCB1 described in the s€riating a Sandard Connect PSB. It

must specify processing optidAP" .

Simplified or Special connect PSBs must be run through the CBC utility (see the aEdti@onversion
Utilities for DBDs and PSBs in this documentation).

Establishing a Logical Relationship (Simplified and Special Procedures)

Control
Cards Adabas
Database

DAZELORE

s, =

Adabas
Database

Sep 9: Establishing a Logical Relationship - Smplified or Special Procedure

This is done by runninPAZELOREIn the Simplified and Special procedurP®\ZELOREHEs executed as
a normal mode program (see the secBaich Installation and Operatiam the ADL Interfaces
documentation). The control statement parameters must have the following layout:

ELO,DAZELORE,psbname
wherepsbname is the name of the Simplified or Special connect PSB.

DAZELORElso needs a control statement to indicate which logical child segment should be connected.
The syntax of the control statement for the Simplified procedure is as follows:

LC=logham,MODE=SIMPLIFIED

28

Turbo Procedure ADL Data Conversion Utilities

and that for the Special procedure is:

LC=lognam,MODE=SPECIAL
wherelognam is the name of the logical child segment in the physical DBD.

You may use the sample JCL (JCS) in the merAldrtDBCYADLDBC9.J) as an example of a
DAZELOREun under z/OS (z/VSE).

Turbo Procedure

The Turbo procedure is the fastest way to build up the logical relationships. Whenever possible it is
recommended to use the Turbo procedure.

The Turbo procedure can only be used if the following issues are satisfied:
® The pre-requisites of the Special Procedure are fulfilled. See the previous section for details.

® |t can only be used for bi-directional logical relationships. Uni-directional relationships are currently
not supported.

e All parent segments on the logical and physical path up to and including the root segments must have
unique sequence fields.

Note that for the Turbo procedure the logical child segment for ibWELORES run has to be theal
logical child segment.

Like the Special procedure, the Mass Update step is not required during loading of the data in Adabas files
(see Step Mass Update for Paired Logical Child Segments), and only on®AZELOREun is needed to
establish the bidirectional logical relationship.

If a logical child segment occurrence which does not have a matching logical parent is encountered during
the run, the following error message is produced.

ADL0612: Unexpected DP status code for DAZELORE procedure used
The job then terminates. In this case, rdbAZELORHIsing the Standard procedure.
The Turbo procedure has the following performance advantages:

® |t does not read the hierarchy to access the logical child segment data. Instead it uses the ADL
internal pointer field to read the child segment data directly.

e TheADARUN MULTIFETCHeature can be used, when reading the logical child segments. It is
recommended to use oNJLTIFETCHbuffer with maximum size which will contain the sequential
reads of the logical child segment data.

e ADL (like DL/I) maintains for each logical child a counter at its physical parent and at its logical
parent. The other procedures update these counters whenever a logical child is processed. The Turbo
procedure updates the physical parent counter only once when all its children are processed. The
logical parent counters are kept in an online talid® (counter table”) and updated at the end
of the run. If a counter in the DP counter table is bigger than 127, the corresponding counter in the
database is updated and the counter is reset. Thus for every 128th logical child the counter of the
logical parent is updated (and not for every logical child).

29

ADL Data Conversion Utilities Turbo Procedure

® The update of a logical parent counter in the sequence of the corresponding logical children (as done
with the other procedures) is a “random” update and therefore very time consuming because usually every
update requires a physical I/0. The Turbo procedure does not only collect the updates (as described
before) but it makes also the final update in ISN sequence.

For a better performance it is recommended t0'R&START=NO"with the Turbo procedure.
Step 8: Creating a Turbo Connect PSB

The Turbo connect PSB contains a single PCB based on the converted DBD and referencing the logical
child segment and all its parent segments only (i.e. same as the Special connect PSB). The PCB has to be
based on the physical DBD. For this reason SB&ISEGIescribing the logical child segment cannot

describe the concatenated segment. This PCB is identical to the PCB1 described in th€rsatigra

Sandard Connect PSB. It must specify processing optitAP" .

If RESTART=YESs specified for th® AZELOREun, theKFB (key-feedback area) length in the PCB
must be at least 8 bytes long. If it is shorter, set it to 8 bytes.

The Turbo connect PSBs must be run through the CBC utility (see thé\lpiConversion Utilities for
DBDs and PSBs in this documentation).

Step 9: Establishing a Logical Relationship - Turbo Procedure

30

DAZELORE Run Report ADL Data Conversion Utilities

Control
Cards Adabas
Database

DAZELORE

Report i T
Adabas
Database

This is done by runninPAZELOREIn the Turbo procedur®AZELORES executed as a normal mode
program (see the secti®atch Installation and Operation in the ADL Interfaces documentation). The
control statement parameters must have the following layout

ELO,DAZELORE,psbname
wherepsbname is the name of the Turbo connect PSB.

DAZELORElso needs a control statement to indicate which logical child segment should be connected.
The syntax of the control statement for the Turbo procedure is as follows:

LC=lognam,MODE=TURBO,MAXDPISN=n

wherelognam is the name of the logical child segment in the physical DBDnasdhe size of the DP
counter table as described later in detalils.

You may use the sample JCL (JCS) in the merAlitDBCYADLDBC9.J) as an example of a
DAZELOREun under z/OS (z/VSE).

DAZELORE Run Report

EachDAZELOREun produces a report. Such reports can be divided into two parts: a first part which is
produced before any of the logical child segments are processed, and a second part which is produced at
the end of a normally terminated run.

31

ADL Data Conversion Utilities DAZELORE Run Report

The first part of the report has the following layout and contains the following information:

CONNECT LOGICAL CHILD TO ITS LOGICAL PARENT

PROCEDURE......................... procedure
LOGICAL CHILD DBD................. LCDBD
LOGICAL CHILD SEGMENT............: LCseg
LOGICAL PARENT DBD................ LPDBD
LOGICAL PARENT SEGMENT.......... LPseg
where

procedure |is the procedure (Standard, Simplified or Special) used.

LCDBD is the name of the DBD of the logical child segment.

LCseg is the name of the logical child segment.

LPDBD is the name of the DBD of the logical parent segment.

LPseg is the name of the logical parent segment.

The second part of the report that is produced at the end of a successful run can have a variety of layouts
and contain a variety of information.

If, during the processing of a logical child segm@&aZELOREinds that the destination parent segment
has been physically deleted and subsequently reinserted, the following message is produced:

PHYSICALLY DELETED SEGMENTS HAVE BEEN REINSERTED

This message is followed by a list of all the segment types and the humber of segment occurrences
inserted, as shown below.

SEGMENT QUANTITY

Alternatively, if no such situation has been encountered, the following message is produced:

NO PHYSICALLY DELETED SEGMENTS HAVE BEEN FOUND

Where a bidirectional logical child is being processed and the paired logical child segment has dependents
(variable intersection data), variable intersection data segments may have been inserted during the run. In
this case the following message is produced:

VARIABLE INTERSECTION DATA SEGMENTS HAVE BEEN INSERTED
It is followed by a list of segment types and quantities similar to that mentioned above.

Where no such segments were encountered, the following message is produced:

NO VARIABLE INTERSECTION DATA SEGMENTS HAVE BEEN INSERTED

32

Restart Considerations ADL Data Conversion Utilities

Where a segment occurrence that is a logical child segment was inserted dubAg Bi€OREun, the
following eye catcher is printed behind the segment name and quantity, to indic&taZIEAiOREeeds
to be rerun for this segment type.

LOGICAL CHILD RE-INSERTED, RE-RUN DAZELORE

The following five messages appear at the end of the report:

THIS RUN PROCESSED NO....... LOGICAL CHILDREN

This message states the total number of logical child segment occurrences processed in the run. Itis
followed by the next message:

OF WHICH NO....... LOGICAL CHILDREN WERE ALREADY CONNECTED

which states the total number of logical child segment occurrences found to have been already processed
in previous runs.

The third message states the total number of destination parent segment occurrences found to have been
physically deleted.

....... NO....... DESTINATION PARENT SEGMENTS WERE FOUND TO BE MISSING

Where the logical child segment being processed is a bidirectional logical child, the message below is
produced. It states the total number of paired logical child segment occurrences found to have been
physically deleted.

....... NO....... PAIRED LOGICAL CHILD SEGMENTS WERE FOUND TO BE MISSING

TheDAZELORH urbo procedure reports additionally the high2BtISN found and how many DP ISNs
are bigger thaMAXDPISN

The following message is produced last.

LOGICAL RELATIONSHIP SUCCESSFULLY ESTABLISHED

Restart Considerations

The Establish Logical Relationship utilith AZELOREmMay be run with checkpoints in order to make it
restartable by specifyintRESTART=YES” asDAZELORBparameter. The number of logical child
segment occurrences to be processed before a checkpoint is taken are defined WitERhearameter.
When checkpoints are being used amdP& ELOREun is terminated abnormally, it may be restarted
from any checkpoint which has been successfully issued. The procedure for taking checkpoints and
restarting runs is the same as that used for all normal batch jobs issuing restart and symbolic checkpoint
calls (see the sectidRecovery and Restart Procedures in the ADL Interfaces documentation for more
details). For every checkpoint, an Adabas unsynchronized checkp@ihtcél) is taken and a message is
written toDAZOUTInaming the checkpoint ID. An abnormally terminaleB®ZELOREun may be
restarted after the Adabas file(s) involved have been restored to the situation as represented by the
checkpoint from which it is to be restart€@RZELOREwill reposition itself automatically when restarted
from a checkpoint.

A restart is not possible in case of runnPWZELOREvith MODE=STANDARDa z/VSE system.

33

ADL Data Conversion Utilities Restart Considerations

For extremely londpDAZELOREuns, it is possible to limit the total number of logical child segment
occurrences to be processed in one particular run and to use the restart capabilities to continue processing
in a subsequent run. For this limitatitfRESTART=YES” must be used and both thdTER and the
NUMCParameters must be specified. As described abovi\ TR parameter specifies the number of

logical child segment occurrences to be processed before a checkpoint is taken whilgddRe

parameter specifies the number of checkpoints to be written before the program ends. The total number of
processed logical child segment occurrences is therefore the product of both par&idisB:

INTER. When the checkpoints specified with tHeMCRparameter are writteDAZELOREeNds. This
termination ofDAZELOREKloes not delete the checkpoint entries in the ADL directory file. This means

that a subsequeIAZELOREuUN may be restarted from the last checkpoint without the Adabas files
involved being restored, as no Adabas calls were issued after the last checkpoint. For the restart use
“CPID=cccc” asDAZIFP parameter where cccc is the last checkpoint Id.

When all logical child occurrences have been proceS#AELORENds normally and deletes all
checkpoints from the ADL directory.

The additional keyword parameters RAZELOREnNay be specified in the parameter statement as
follows:

LC=LCname,MODE=mode,keyword

Parameters for DAZELORE

34

Restart Considerations

ADL Data Conversion Utilities

Keyword

Explanation

Possible
values:

Default:

RESTART

Specifies whether DAZELORE can be restarted or not.

If "YES" is specified, DAZELORE can be restarted. The
parameters INTER and NUMCP can be specified.
DAZELORE issues XRST and CHKP calls. The ADL
Directory file is used in exclusive mode, i.e. no other usg
can work on it simultaneously.

If "NO" is specified, DAZELORE cannot be restarted. In
case of an unexpected failure, the utility must be started
from the very beginning. The ADL Directory file is not us
in exclusive mode.

YES

NO

YES

INTER

Specifies the number of processed logical child segmen
occurrences before a checkpoint is issued. The parame
can only be specified for RESTART=YES. For

MODE=TURBO, checkpoints are issued after all logical
child segments belonging to one parent segment have |
processed. That means that the real number of process
logical child segment occurrences can be slightly higher
than specified with thtNTER parameter.

1-
214748364

21474836471

NUMCP

Specifies the number of checkpoints issued by DAZELQ
As soon as DAZELORE has reached this number, it is
stopped and can be restarted later. At the restart the las
checkpoint Id must be given as DAZIFP CPID paramete
TheNUMCRarameter can only be specified for
RESTART=YES and if th&\TER parameter has been
specified. The total number of processed logical child
segment occurrences SUUMCP INTER.

1-
2147483641

MAXDPISN

Specifies the length (in bytes) of the table of the destina]
parent (DP) counters (the destination parent is the logic
parent in the logical relationship). As far as possible the
table should be as big as the maximum ISN of the
destination parent data. The counters of DPs with ISNs
higher than MAXDPISN are updated immediately and le
therefore to a poorer performance. The report of
DAZELORE outlines the highest DP ISN found and how
many DP ISNs are bigger than MAXDPISN. The
REGION/PARTITION of the job should be adjusted
accordingly so that the table can be allocated. This
parameter can only be specified for MODE=TURBO.

1-
16777215

65536

Example

Where the total number of logical child segment occurrences is 5,312,726, and it has been decided to
process them in 3 runs, with a checkpoint to be taken every 10,000th logical child segment occurrence, the
following parameter setting is required:

35

ADL Data Conversion Utilities z/0OS JCL Requirements

run INTER NUMCP Processed LCs
1 10,000 200 2,000,000
2 10,000 200 2,000,000
3 10,000 200 1,312,726

z/OS JCL Requirements

The following examples illustrate the z/OS JCL requirements for the utility runs described in this section.
They include the requirements for thdZUNDLI, DAZUNLODandDAZREFORutilities, for the
ADACMBtep during data loading, and foAZELORE

o DAZUNDLI
e DAZUNLOD
o DAZREFOR
® [oading the Data

e DAZELORE

DAZUNDLI

The table below lists the data sets used by the Unload UBiktgZ|UNDLL

DDname Medium Description
DAZIN1 Reader |Control input for DAZUNDLI. *
DAZIN2 Reader |Control input for batch monitor in mixed mode.
DAZIN3 Tape/Disk |Root sequence field values. **
DAZOUT1 Printer Report, messages and codes.
DAZOUT3 Tape/Disk |The unloaded database.

* Set to dummy if no keyword is specified.

** Only required if the ROOTKEYS=SEQ is set.

Example

/JUNDLI EXEC DLIBATCH,PSB=PSB4CON,MBR=DAZIFP 1)
/ISTEPLIB DD

Il DD

Il DD DSN=ADL vr s.LOAD,DISP=SHR

Il DD DSN=ADABAS.LOAD,DISP=SHR

1*

/I* DATASETS DESCRIBING DL/I| DATABASES
1*

/IG.file DD ..

1*

/I ADARUN CARDS

36

DAZUNLOD ADL Data Conversion Utilities

1*

/IG.DDCARD DD *

ADARUN PROGRAM=USER,...

1*

/I* ADABAS DL/I BRIDGE DATASETS
1*

/IG.DAZIN1 DD *
MODE=CHECKNUM

/IG.DAZIN2 DD *
UNL,DAZUNDLI,PSB4CON
/IG.DAZOUT1 DD SYSOUT=X
/IG.DAZOUT3 DD DSN=ADL.DBD4.UNLOAD,DISP=0OLD

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

DAZUNLOD
The following table lists the data sets used by the Unload ubl&Z UNLOD
DDname Medium Description
DAZOUT1 Printer Report, messages and codes.
DAZOUT3 Tape/Disk The unloaded database.
Example

//IUNLOD EXEC DLIBATCH,PSB=PSB4CON,MBR=DAZUNLOD 1)
/IG.STEPLIB DD

I DD

I DD DSN=ADL vr s.LOAD,DISP=SHR
1*

/I* DATASETS DESCRIBING DL/I| DATABASES

1*

/IG.file DD ..

I*

/I* ADABAS DL/I BRIDGE DATASETS

I*

/IG.DAZOUT1 DD SYSOUT=X

/IG.DAZOUT3 DD DSN=ADL.DBD4.REFOR,DISP=0OLD

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

DAZREFOR

The following table lists the data sets used by the Reformat uDIRY REFOR

DDname Medium Description

DAZIN3 Tape/Disk The data to be reformatted.
DAZOUT1 Printer Report, messages and codes.
DAZOUT3 Tape/Disk The unloaded database.

37

ADL Data Conversion Utilities Loading the Data

Example

/IREFOR EXEC PGM=DAZIFP,PARM="REF,DAZREFOR,PSB4CON’
/ISTEPLIB DD DSN=ADL vr s.LOAD,DISP=SHR

1 DD DSN=ADABAS.LOAD,DISP=SHR

/IDAZIN3 DD DSN=ADL.DBD4.REFOR,DISP=0OLD

/IDAZOUT1 DD SYSOUT=X

/IDAZOUT2 DD SYSOUT=X

/IDAZOUT3 DD DSN=ADL.DBD4.UNLOAD,DISP=0OLD

/IDDCARD DD *

ADARUN PROGRAM=USER,...

Loading the Data

The table below lists the data sets used during the first step of the data loading process, which uses the
Adabas Compression utilitADACMP

DDname Medium Description
DAZIN1 Reader | Control input for the Adabas User Exit 6, DAZUEXO06.

DAZOUT1 Printer |Report, messages and codes.

Examples

1. ADACMP run for aninitial load of DBD4 on DBID=9,FNR=34

/IADACMP EXEC PGM=ADARUN

/ISTEPLIB DD DSN=ADABAS.LOAD,DISP=SHR

Il DD DSN=ADL vr s.LOAD,DISP=SHR

/IDDEBAND DD DSN=ADL.DBD4.UNLOAD,DISP=OLD

/IDDAUSBA DD DSN=ADL.DBD4.LOAD,DISP=0OLD

/IDDFEHL DD DSN=&&FEHL,UNIT=SYSDA,SPACE=(CYL,(1,1)),DISP=(,PASS)
/IDDDRUCK DD SYSOUT=X

/IDDPRINT DD SYSOUT=X

/IDDCARD DD *

ADARUN PROGRAM=ADACMP,DB=9,SVC=svc,DE=3390,UEX6=100034

/IDDKARTE DD * 1)

ADACMP USERISN

ADACMP FNDEF="01,Z0,A,DE,MU,UQ,NU’ Z1 INVERTED (INSERT LAST)
ADACMP FNDEF="01,Z1,A,DE,MU,UQ,NU’ MAIN DESCRIPTOR FIELD UP22

ADACMP FNDEF='01,22,004,B,NU’ ROOT ISN (NON ROOT SEGS)

[

/IDAZIN1 DD *
FNR=034,MODE=LOAD
/IDAZOUT1 DD SYSOUT=X
I

I EXEC PGM=IEBGENER
/ISYSPRINT DD SYSOUT=X
/ISYSUT1 DD DSN=&&FEHL,DISP=(OLD,DELETE)
/ISYSUT2 DD SYSOUT=X
/ISYSIN DD *

/*

(1) TheADACMRtatements generated by tBCutility as member W00034.

38

DAZELORE

ADL Data Conversion Utilities

2. ADACMP run for a mass update of the logical child D5B

/IADACMP EXEC PGM=ADARUN

/ISTEPLIB DD DSN=ADABAS.LOAD,DISP=SHR
I DD DSN=ADL
/IDDEBAND DD DSN=ADL.DBD5.UNLOAD,DISP=OLD

/IDDAUSBA DD DSN=ADL.DBD4.MASS,DISP=0OLD

/IDDFEHL DD DSN=&&FEHL,UNIT=SYSDA,SPACE=(CYL,(1,1)),DISP=(,PASS)
/IDDDRUCK DD SYSOUT=X

/IDDPRINT DD SYSOUT=X

/[IDDCARD DD *
ADARUN PROGRAM=ADACMP,DB=9,SVC=svc,DE=3390,UEX6=100035
/IDDKARTE DD *

vr s.LOAD,DISP=SHR

1)

ADACMP FNDEF=01,Z0,A,DE,MU,UQ,NU’ Z1 INVERTED (INSERT LAST)
ADACMP FNDEF=01,Z1,A,DE,MU,UQ,NU’ MAIN DESCRIPTOR FIELD UP22
ADACMP FNDEF=01,72,004,B,NU’ ROOT ISN (NON ROOT SEGS)

/*

/IDAZIN1 DD *
FNR=034,LC=D5B,MODE=MASS
/IDAZOUT1 DD SYSOUT=X

I*

I EXEC PGM=IEBGENER

/ISYSPRINT DD SYSOUT=X

/ISYSUT1 DD DSN=&&FEHL,DISP=(OLD,DELETE)
/ISYSUT2 DD SYSOUT=X

/ISYSIN DD *

/*

(1) TheADACMRtatements generated by tBCutility as membeW00034 without theUSERISN

option.

DAZELORE

The table below lists the data sets used by the Establish Logical RelationshipDAilifyl ORE

DDname Medium Description
DAZIN1 Reader |Control input for DAZELORE and for the batch monitor in normal
mode.
DAZIN2 Reader |Control input for the batch monitor in mixed mode. *
DAZOUT1 Printer | Report, messages and codes.

* Only required ifDAZELORES run in mixed mode, i.e. whédnODE=STANDAR®specified for the
conversion of an original DL/I database.

Examples

1. DAZELORE run with MODE=STANDARD

//ELORE

//IG.STEPLIB DD

) DD

I DD DSN=ADL
I DD DSN=ADABAS.LOAD,DISP=SHR

I*

EXEC DLIBATCH,PSB=PSB4BI,MBR=DAZIFP (1)

vr s.LOAD,DISP=SHR

39

ADL Data Conversion Utilities z/VSE JCS Requirements

/I* DATASETS DESCRIBING DL/I| DATABASES DBD4 AND DBD5
I*

/IG.FILE DD ...

I*

/* ADARUN CARDS

I*

//IG.DDCARD DD *

ADARUN PROGRAM=USER,...

I*

/I* ADABAS DL/I BRIDGE DATASETS
I*

/IG.DAZIN1 DD *
LC=D4F,MODE=STANDARD
/IG.DAZIN2 DD *
ELO,DAZELORE,PSB4BI
/IG.DAZOUT1 DD SYSOUT=X

(1) The standard batch procedure provided by IBM as part of the IMS/DB installation.

2. DAZELORE run with MODE=TURBO

I EXEC PGM=DAZIFP,PARM="ELO,DAZELORE,INSTELO’
/ISTEPLIB DD DSN=ADL vrs.LOAD,DISP=SHR

I DD DSN=ADABAS.LOAD,DISP=SHR

/IDAZOUT1 DD SYSOUT=X

/IDDCARD DD *

ADARUN PROGRAM=USER,...

/IDAZIN1 DD *
LC=COURSEP,MODE=TURBO,RESTART=NO,MAXDPISN=5000000

z/VSE JCS Requirements

The following examples illustrate the JCS requirements for the utility runs described in this section. They
include the requirements for tBBAZUNDL| DAZUNLORNdDAZREFORitilities, for theADACMRBtep
during data loading, and f&*AZELORE

e DAZUNDLI

DAZUNLOD

DAZREFOR

Loading the Data

DAZELORE

DAZUNDLI

The following table lists the files used by the Unload utidAZUNDLLI in mixed mode.

40

DAZUNDLI ADL Data Conversion Utilities

DTF Logical Unit Medium Description
DAZIN1 SYSIPT Reader |Control input for DAZUNDLI. *
DAZIN2 SYSIPT Reader |Control input for batch monitor.

DAZIN3D SYS014 Disk Root seq. field value **/***
DAZIN3T SYS014 Tape Root seq. field value **/***
DAZOUT1 SYSLST Printer | Report, messages and codes.
DAZOT3D SYSO013 Disk The unloaded database. **
DAZOT3T SYS013 Tape The unloaded database. **

* Only required if any keyword has been specified.

** Only one of either disk or tape is required. The logical unit indicated is the default logical unit. To
change it, specify thBQparameter either in the ADL parameter module or as a dynamic parameter, for
example: SQ=(5,)

*** Only required if th(ROOTKEY S=SEKeyword has been specified.

The control input for the batch monitdAZIFP), for ADARUNfor DAZUNDL] and for the DL/I
initialization programpPLZRRCOQ are all read fronsYSIPT. The control statements must be specified
in the following order:

DLI,DAZIFP,psbname,... input for DLZRRCO00
UNL,DAZUNDLI,psbname,... input for DAZIFP

ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*

MODE=CHECKNUM input for DAZUNDLI
Examples

1. DAZUNDLI run unloading a database on disk

/I ASSGN SYS013,DISK,VOL=volser,SHR

// DLBL DAZOT3D,'ADL.DBD4.UNLOAD,0,SD’
/Il EXTENT SYS013,volser,1,0,.......

/l EXEC DLZRRCO00

DLI,DAZIFP,PSB4CON
UNL,DAZUNDLI,PSB4CON

ADARUN PROGRAM=USER,...

/*

2. DAZUNDLI run unloading a database on tape

/I ASSGN SYS005, TAPE

/l TLBL DAZOT3T, ADL.DBD4.UNLOAD,0,SD’
/I EXEC DLZRRC00

DLI,DAZIFP,PSB4CON
UNL,DAZUNDLI,PSB4CON,SQ=(5,)
ADARUN PROGRAM=USER,...

/*

41

ADL Data Conversion Utilities DAZUNLOD

DAZUNLOD

The table below lists the files used by the Unload utib#%ZUNLOD

DTF Logical Unit Medium Description
DAZOUT1 SYSLST Printer Report, messages and codes.
DAZOT3D SYS014 Disk The unloaded database. *
DAZOT3T SYS014 Tape The unloaded database. *

* Only one of the two is required. The logical unit indicated is the default logical unit. To change it,
specify theSQparameter either in the ADL parameter module or as a dynamic parameter, for example:

SQ=(5,)

Example

/I ASSGN SYSO013,DISK,VOL=volser,SHR

/I DLBL DAZOT3D,’ADL.DBD4.REFOR,0,SD’
/I EXTENT SYSO013,volser,1,0,.......

/I EXEC DLZRRCO00
DLI,DAZUNLOD,PSB4CON

/*

DAZREFOR
The following table lists the files used by the Reformat utiithZREFOR
DTF Logical Unit | Medium Description
DAZIN1 SYSIPT Reader |Control input for batch monitor.

DAZOUT1 | SYSLST Printer |Report, messages and codes.
DAZIN3D SYS014 Disk The unloaded database. *
DAZIN3T SYS014 Tape The unloaded database. *
DAZOT3D | SYSO013 Disk The unloaded database. *
DAZOT3T SYS013 Tape The unloaded database. *

* Only one of either tape or disk is required. The logical unit indicated is the default logical unit. To
change it, specify thBQparameter either in the ADL parameter module or as a dynamic parameter, for
example:SQ=(5,)

The control input for the batch monit@AZIFP) and forADARUNSs read fronSYSIPT. The control
statements must be specified in the following order:

REF,DAZREFOR,psbname,... input for DAZIFP

ADARUN DB=dbid, MO=MULTI,PROGRAM=USER,... input for ADARUN
/*

42

Loading the Data ADL Data Conversion Utilities

Example

/I ASSGN SYS014,DISK,VOL=volser,SHR

/I DLBL DAZIN3D,’ADL.DBD4.REFOR,0,SD’

/I EXTENT SYSO014,volser,1,0,.......

/I ASSGN SYS013,DISK,VOL=volser,SHR

/I DLBL DAZOT3D,’ADL.DBD4.UNLOAD,0,SD’
/I EXTENT SYSO013,volser,1,0,.......

/I EXEC DAZIFP

REF,DAZREFOR,PSB4CON

ADARUN PROGRAM=USER,...

/*

Loading the Data

The table below lists the files used during the first step of the data loading process, which uses the Adabas
Compression utilityADACMP

DTF Logical Unit | Medium Description
DAZIN1 SYSIPT Reader |Control input for the Adabas User Exit 6, DAZUEXO06.
DAZOUT1 SYSLST Printer |Report, messages and codes.

The control input for the Adabas User ExXIDRAZUEXO06 for ADARUNnd for the Adabas Compression
utility, ADACMPare all read fron®YSIPT. The control statements must be specified in the following
order:

ADARUN DB=dbid,MO=MULTI,PROGRAM=ADACMP input for ADARUN
/*

ADACMP USERISN,RECFM=VB,LRECL=8196 input for ADACMP
ADACMP FNDEF='01,Z20,.....’

/*
FNR=fnr, MODE=LOAD input for DAZUEX06
/*

Examples

1. ADACMP run for aninitial load of DBD4, DBID=9,FNR=34

/I ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL EBAND,’ADL.DBD4.UNLOAD,0,SD’
/I EXTENT SYS010,volser,1,0.,.......

/I ASSGN SYS012,DISK,VOL=volser,SHR
// DLBL AUSBA,’ADL.DBD4.LOAD,0,SD’

/I EXTENT SYS012,volser,1,0.,.......

/I ASSGN SYS014,IGN

/I EXEC PROC=ADLLIBS

/I EXEC ADARUN,SIZE=4K

ADARUN PROGRAM=ADACMP,SVC=svc,DE=3390,UEX6=100034
/*

ADACMP USERISN,LRECL=8196,RECFM=VB 1)
ADACMP FNDEF=01,Z0,A,DE,MU,UQ,NU’ Z1 INVERTED (INSERT LAST)
ADACMP FNDEF=01,Z1,A,DE,MU,UQ,NU’ MAIN DESCRIPTOR FIELD

ADACMP FNDEF='01,72,003,B,NU’ ROOT ISN (NON ROOT SEGS)

43

ADL Data Conversion Utilities DAZELORE

/*
FNR=034,MODE=LOAD
/*

(1) TheADACMRtatements generated by tBCutility as membeW00034.

2. ADACMP run for a mass update of the logical child D5B

/I ASSGN SYS010,DISK,VOL=volser,SHR

// DLBL EBAND,’ADL.DBD5.UNLOAD,0,SD’

/I EXTENT SYSO010,volser,1,0,.......

/I ASSGN SYS012,DISK,VOL=volser,SHR

/I DLBL AUSBA,’ADL.DBD4.MASS,0,SD’

/I EXTENT SYSO012,volser,1,0,.......

/I ASSGN SYS014,IGN

/I EXEC PROC=ADLLIBS

/I EXEC ADARUN,SIZE=4K

ADARUN PROGRAM=ADACMP,SVC=svc,DE=3390,UEX6=100034

/*

ADACMP LRECL=8196,RECFM=VB (1)

ADACMP FNDEF='01,20,A,DE,MU,UQ,NU’ Z1 INVERTED (INSERT LAST)
ADACMP FNDEF='01,21,A,DE,MU,UQ,NU’ MAIN DESCRIPTOR FIELD
ADACMP FNDEF='01,Z2,003,B,NU ROOT’ ISN (NON ROOT SEGS)

/*
FNR=34,MODE=MASS,LC=D5B
/*

(1) TheADACMRtatements generated by thBCutility as membekV00034 without theUSERISN
option.

DAZELORE

The following table lists the files used by the Establish Logical Relationship Ulikt¥ELORE

DTF Logical |Medium Description
Unit

DAZIN1 SYSIPT | Reader|Control input for DAZELORE and for the batch monitor in
normal mode.

DAZIN2 SYSIPT | Reader|Control input for the batch monitor in mixed mode. *
DAZOUT1| SYSLST | Printer | Report, messages and codes.

* Only required ilDAZELORES run in mixed mode, i.e. whénODE=STANDAR®specified for the
conversion of an original DL/I database.

The control input for the batch monit@AZIFP, for DAZELOREtself, for ADARUNand for the DL/I
initialization programPLZRRCO0Q is read fronSYSIPT. The control statements must be specified in the
following order:

44

DAZELORE
DLI,DAZIFP,psbname,... input for DLZRRCO0O *
ELO,DAZELORE,psbname,... input for batch monitor

/*

ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*

LC=Ichname,MODE=STANDARD input for DAZELORE

/*

* Only required when DAZELORE is run in mixed mode.

Examples

1. DAZELORE run with MODE=STANDARD

/I EXEC DLZRRCO00
DLI,DAZIFP,PSB4CON
ELO,DAZELORE,PSB4CON

/*

ADARUN PROGRAM=USER,...
/*
LC=D4F,MODE=STANDARD
/*

2. DAZELORE run with MODE=TURBO

I/l EXEC DAZIFP

ELO,DAZELORE,INSTELO

/*

ADARUN PROGRAM=USER,...

/*
LC=COURSEP,MODE=TURBO,RESTART=NO,MAXDPISN=5000000
/*

ADL Data Conversion Utilities

45

	ADL Data Conversion Utilities
	Overview
	Data Unload with the ADL Unload Utility
	Step 1: Convert the Physical DBD
	Step 2: Create an ADL Unload PSB
	Data Base Conversion Overview

	Step 3: Create a DL/I Unload PSB
	Step 4: Unload the Data
	Database Conversion Unload (Automated Procedure)

	Data Validation
	Limited Data Unload
	Restrict the Unload Segment Types
	Specify an Alternate Unload Sequence
	Limit the Unloaded Records
	Example:

	Limit the Unloaded Root Segment Occurrences
	Example:

	Unload a Specific Range of Values
	Unloading Specific Values

	Unloading a HDAM Database
	Control Statements for the ADL Unload Utility
	Data Unload With the ADL Customized Utility
	Step 1: Convert the Physical DBD
	Step 2: Create a DL/I Unload PSB
	Step 3: Create an ADL Reformat PSB
	Step 4: Unload Data
	Data Base Conversion Unload (Manual Procedure)

	ADL Request Handler (DAZBRQH)
	Save and Work Areas
	Requests
	Files
	Sample Program/DAZBRQH

	Step 5: Reformat the Data

	Converting Data - Load
	Step 6: Initial Load of the Adabas File(s)
	Data Base Conversion Initial Load
	Adabas User Exit 6

	Step 7: Mass Update for Paired Logical Child Segments
	Data Base Conversion Mass Update

	Establishing Logical Relationships
	Standard Procedure
	Physical DBDs and their Logical Relationships
	PCB1
	PCB2
	PCB3
	PCB4
	Logical DBDs based on DBD4 and DBD5
	Standard Connect PSB for Logical Child D4B
	Standard Connect PSB for Logical Child D4F
	Standard Connect PSB for Logical Child D5B
	Establishing a Logical Relationship (Standard Procedure)

	Simplified and Special Procedures
	Establishing a Logical Relationship (Simplified and Special Procedures)

	Turbo Procedure
	Step 8: Creating a Turbo Connect PSB
	Step 9: Establishing a Logical Relationship - Turbo Procedure

	DAZELORE Run Report
	Restart Considerations
	Parameters for DAZELORE
	Example

	z/OS JCL Requirements
	DAZUNDLI
	Example

	DAZUNLOD
	Example

	DAZREFOR
	Example

	Loading the Data
	Examples

	DAZELORE
	Examples

	z/VSE JCS Requirements
	DAZUNDLI
	Examples

	DAZUNLOD
	Example

	DAZREFOR
	Example

	Loading the Data
	Examples

	DAZELORE
	Examples

