
ADL Conversion Utilities for DBDs and PSBs
For the Adabas Bridge for DL/I to be able to process a DL/I call, it must be aware of the original DL/I
structures and the rules according to which they were defined, and how the data is structured under
Adabas. This information is in ADL control blocks stored in the ADL directory file. The control blocks
are created during the DBD/PSB conversion process, which uses the original DL/I DBD and PSB sources
as input. These are assembled and then processed further by the CBC utility.

For an application program to run against ADL, both the PSB used and the DBDs which it references
must be run through the DBD/PSB conversion process. This section describes the procedure for
generating the necessary ADL control blocks from the DBD/PSB macro source.

This chapter covers the following topics:

Conversion - Overview

Conversion - PSBs and all DBDs except Index DBDs

Conversion - Physical DBDs

Conversion - Index DBDs

Conversion - Logical DBDs

Conversion - Logically Related Physical DBDs

Conversion - HD Databases

Control Statements for the CBC Utility

CBC Utility Output

z/OS Requirements

z/VSE Requirements

Conversion - Overview
To convert a DL/I DBD or PSB into an ADL DBD or PSB, you must perform the following steps:

All PSBs and DBDs except Primary Index DBDs

Step Description

Step 1 Assemble and link edit the original DL/I DBD or PSB source.

1

ADL Conversion Utilities for DBDs and PSBsADL Conversion Utilities for DBDs and PSBs

Step 1

Assemble and link edit the original source of the DL/I DBD or PSB using the ADL macros provided in
the Source Library on the installation tape. You may use the sample JCL contained in the members
ADLDPC1 (z/OS) or ADLDPC1.J (z/VSE) for this. For the special link-edit requirements of an HD
database, see the corresponding topic later in this section.

In addition to the DL/I keywords you can add the “PRINT” keyword to the DBD macro or to the first
PCB macro of a PSB.

PRINT=GEN generates the full assembler listing,

PRINT=NOGEN is the default and generates the short output.

All PSBs and Physical and Logical DBDs

Step Description

Step 2 Run the CBC utility once for each DBD/PSB.

Step 2

Run the CBC utility once for each DBD and PSB processed in Step 1. For z/OS, you may use the sample
JCL contained in the members ADLDPC23 for physical DBDs (contains Step 3 as well) or ADLDPC2 for
PSBs and logical DBDs. z/VSE users should consult members ADLDPC23.J or ADLDPC2.J
respectively.

Sample JCL/JCS requirements for the CBC utility can be found at the end of this section.

The following input must be provided for each DBD or PSB:

The load module produced in Step 1;

One or more control statements, as described later in this section.

The following output is produced:

An ADL DBD or PSB entry in the ADL directory file;

The ADACMP statements for the Adabas file(s) to be used to store the converted data (for physical
DBDs only);

The Adabas User Exit 6 extensions to be used during initial loading of the Adabas file(s) (for
physical DBDs only);

A report describing the original DL/I structure, the new Adabas structure, and the relationship
between the two (for DBDs only).

2

All PSBs and Physical and Logical DBDsADL Conversion Utilities for DBDs and PSBs

DBD/PSB Conversion Steps 1 - 2

3

ADL Conversion Utilities for DBDs and PSBsDBD/PSB Conversion Steps 1 - 2

4

DBD/PSB Conversion Steps 1 - 2ADL Conversion Utilities for DBDs and PSBs

Physical DBDs Only

Step Description

Step 3 Create input decks.

Step 4 Assemble and link-edit the Adabas User Exit 6 extension.

Step 3

The output deck created by the CBC utility contains several members (ADACMP control statements and
the User Exit 6 extensions for each Adabas file). If the CBC utility has generated output control
statements (see the description of the UTI parameter in ADL Parameter Module in the ADL Installation
documentation), you can use one of the IBM utilities IEBUPDTE (z/OS) or LIBR (z/VSE) to create the
members. The control statement output data sets generated by the CBC utility are named according to the
following conventions:

xfffff

The individual identifiers are as follows:

Identifier Explanation

x W for ADACMP control statements I for the Adabas User Exit 6 Extension

fffff The five-digit number of the Adabas file used to store the root segment data.

Step 4

Assemble the Adabas User Exit 6 Extension (i.e. the output from Step 3) and link edit this with the fixed
part, DAZUEX06. You may use the sample JCL in the Source Library member ADLDPC4 (z/OS) or
ADLDPC4.J (z/VSE) as an example.

DBD/PSB Conversion Steps 3 - 4

5

ADL Conversion Utilities for DBDs and PSBsPhysical DBDs Only

6

DBD/PSB Conversion Steps 3 - 4ADL Conversion Utilities for DBDs and PSBs

The control blocks to be converted are of different types, such as PSBs, physical DBDs and logical DBDs.
Not all the steps in the DBD/PSB conversion process need to be performed for all control block types. The
table below provides an overview of which steps are required for which control blocks and is followed by
more detailed explanations.

Type of PSB/DBD Step 1 Step 2 Step 3 Step 4

Physical DBD YES YES * YES * YES

Primary Index DBD NO NO NO NO

Secondary Index DBD YES NO NO NO

Logical DBD YES YES NO NO

PSB YES YES NO NO

* Note that the sample JCL(JCS) in member ADLDPC23 (ADLDPC23.J) enables both steps to be run in a
single job.

It is recommended to convert all PSB and logical DBD control blocks once, whether the physical DBDs
referenced by them are already converted or not. ADL will automatically detect when a physical DBD is
not yet converted and will direct the corresponding database call to DL/I.

This prevents you from monitoring which PSB in detail references which DBD. The only thing you have
to do when you convert a further database is to convert the corresponding DBD control block. In a CICS
environment, you will have to repeat some of the steps described in the topic Generating the Runtime
Control Tables in the ADL Interfaces documentation.

Conversion - PSBs and all DBDs except Index DBDs
Assemble and link edit all DBDs, except for primary index DBDs, and all PSBs using the ADL macros
provided in the ADL Source Library on the installation tape. You may use the sample JCL(JCS) contained
in the members ADLDPC1 (ADLDPC1.J) for this. Primary index DBDs and PSBs which do not contain
DB-PCBs are not used by ADL and may, therefore, be omitted from the DBD/PSB conversion process.
After this, run all DBDs and PSBs except secondary index DBDs through the CBC utility.

If you do not intend to convert all DL/I databases at once, you need to convert only those DBDs
describing the databases being converted. Likewise, you need to convert only those PSBs which reference
converted data.

PSBs that reference both converted and non-converted databases are used in the mixed mode
environment.

Conversion - Physical DBDs
If a physical DBD is to be run through the CBC utility more than once, you must delete it from the ADL
directory file first. This must be done to ensure that the latest version of the DBD is taken (i.e. the version
in the Load Library and not the one stored in the ADL directory file).

7

ADL Conversion Utilities for DBDs and PSBsConversion - PSBs and all DBDs except Index DBDs

You may delete control blocks for a physical DBD stored in the ADL directory file using the DELDBD
function described later in this section, or with the ADL Online Services.

For physical DBDs, Steps 3 and 4 must also be performed in order to complete the conversion process.

Conversion - Index DBDs
All index DBDs, except for the primary index DBD for HIDAM or HISAM databases, need to be run
through the assembly and link edit process described in Step 1. No further steps need to be performed.

The index DBD control blocks are automatically processed and stored in the ADL directory file when the
physical DBD for which the secondary index has been defined is run through the CBC utility. This means
that you must run all secondary index DBDs through the assembly and link edit process described in Step
1 before you can successfully run a DBD containing secondary indices through the CBC utility. Each
secondary index definition will result in the generation of an Adabas descriptor as part of the Adabas file
description for the file containing the source segment data.

If an index DBD contains user data fields, Adabas fields will automatically be generated as part of the
Adabas file description of the file containing the source segment data.

Once stored in the ADL directory file, the control blocks for an index DBD may be deleted like any other
DBD. If you delete a physical DBD with the ADL Online Services, you should also delete all related
index DBDs in order to avoid problems which could arise during regeneration.

Where a physical DBD containing secondary indices is to be run through the CBC utility more than once,
the ADL control blocks for the secondary index DBDs will be deleted and re-created automatically.

Conversion - Logical DBDs
You must run all logical DBDs through the assembly and link edit process as described in Step 1 and then
through the CBC utility as described in Step 2. The only parameter required for the CBC utility is the
name of the logical DBD to be converted. All other parameters will be ignored.

No ADACMP statements or Adabas User Exit 6 extensions are generated for logical DBDs. This is because
logical DBDs are based on database(s) which are described by physical DBDs, and these have to be run
through the complete conversion process separately. All ADACMP statements and Adabas User Exit 6
extensions needed are generated then.

Once stored in the ADL directory file, the control blocks for a logical DBD may be deleted in the same
way as any other DBD.

Conversion - Logically Related Physical DBDs
Logically related physical DBDs reference each other using definitions of logical child and logical parent
segment types. When processing a physical DBD, the CBC utility needs access to all other physical DBDs
which are logically related to the DBD being processed. The CBC utility first tries to locate a related DBD
in the ADL directory file. If this fails, the CBC utility tries to load the related DBD as a load module from
the Load Library. If this also fails, the CBC utility reports an error.

8

Conversion - Index DBDsADL Conversion Utilities for DBDs and PSBs

This means that before you can successfully run a DBD containing logical relationships through the CBC
utility, you have to run all other related physical DBDs through the assembly and link edit process
described in Step 1 at the beginning of this section.

Running a physical DBD containing logical relationships through the CBC utility stores both the physical
DBD being processed and all other logically related physical DBDs in the ADL directory file. However,
this does not complete processing of these ADL control blocks; you still have to run each one of them
separately through the CBC utility. You can see whether processing has been completed for all DBDs
referenced by the DBD being run through the CBC utility by consulting the list provided at the end of the
CBC utility report.

If a physical DBD is logical related to other DBDs, you must specify the LOGID parameter at the
GENDBD function for a unique identification of the DBD’s data.

If a physical DBD is to be run through the CBC utility more than once, you must first delete it and all
other logically related physical DBDs from the ADL directory file. Then re-convert them all again
(without further intermediate deletion). This ensures that the latest version of the DBDs is used (that is,
the version in the Load Library and not that stored in the ADL directory file).

Conversion - HD Databases
For HD databases an alternate sequence is defined by the ACCESS macro, which replaces the secondary
index DBDs. When such a DBD source is assembled, the result is one module containing the physical
DBD as well as the secondary index DBDs. Since ADL expects the secondary index DBDs on separate
members, this module must be split up, as described below. The remaining steps 2 - 4 of the conversion
can be performed in the common way, as described earlier in this section.

z/OS Requirements

Add the following entries to the link-edit for the physical DBD:

ENTRY dbdname
REPLACE secname-1
.
. for each secondary index
.
REPLACE secname-n
INCLUDE OBJMOD
NAME dbdname(R)

for each secondary index add the following entry:

ENTRY secname-x
REPLACE dbdname
REPLACE secname-1
.
. all secondary indices, but not secname-x
.
REPLACE secname-n
INCLUDE OBJMOD
NAME secname-x(R)

9

ADL Conversion Utilities for DBDs and PSBsConversion - HD Databases

z/VSE Requirements

Assemble the DBD with option “DECK” to create an OBJ module and then add the following entries to
the link-edit for a physical DBD:

PHASE dbdname,*,NOAUTO
INCLUDE dbdname,(dbdname)

and for each secondary index add the following entry:

PHASE secname-x,*,NOAUTO
INCLUDE dbdname,(secname-x)

Control Statements for the CBC Utility
As mentioned earlier, you must provide a control statement for each DBD and PSB processed using the
CBC utility. Each control statement must have the following format:

function p1,p2... comments

The individual parameters are as follows:

Parameter Explanation

function A function keyword. It must start in the first column of a statement.

p1,p2... Parameters for the function given. They must follow the function and be separated from
it by at least one blank. No blanks should be left between parameters.

comments Comment statements. Comments can be made on statements by leaving at least one blank
after the last parameter, or by inserting an asterisk ("*") in the first column of a
statement.

The various function keywords are as follows:

Function Parameters

GENDBD NAME=DBD-name, LOGID=logical-Id, DBID=dbid, FNR=file-number,
TYPE=conversion-type, CONSI=YES/NO

GENSEG NAME=segment-name, LOGID=logical-Id, FNR=file-number,
ADANAME=Adabas-short-name, BACKW=YES/NO

DELDBD NAME=DBD-name

GENPSB NAME=PSB-name

DELPSB NAME=PSB-name

These functions are described in more detail in the following topics:

GENDBD Function

10

Control Statements for the CBC UtilityADL Conversion Utilities for DBDs and PSBs

GENSEG Function

DELDBD Function

GENPSB Function

DELPSB Function

GENDBD Function

The GENDBD function initiates the processing of the DBD to be converted. Its parameters are as follows:

11

ADL Conversion Utilities for DBDs and PSBsGENDBD Function

Parameter Description

NAME The name of the ADL DBD to be converted. It can be between 1 and 8 alphanumeric
characters long; the first character must be a letter. The name specified must be the
same as the original DL/I name of the DBD.

LOGID (for physical DBDs only) The default logical ID of the DBD. If the DBD is involved
in logical relationships, the LOGID given must be different from the LOGIDs of the
other DBDs.
Possible values: 1 - 25
Default: 1

DBID (for physical DBDs only) The Adabas database ID for the database which will be
used to store the converted data. If it is omitted, the DBID of the ADL directory will
be used. If the DBID is the same as the DBID of the ADL directory, it is
recommended to omit the DBID parameter. This eases the creation of mirror
databases.
Possible values: 1 - 65535
Default: none

FNR (for physical DBDs only) The default Adabas file number for the file which will be
used to store the converted data for all segment types not affected by a GENSEG
function.
Possible values: 1 - 65534
Default: none

TYPE (for physical DBDs only) This parameter is used to indicate whether the database
being processed is to be converted to Adabas or not.
Possible values:
ADA the database will be converted
DLI the database will reside under DL/I
Default: ADA

CONSI (for physical DBDs only) This parameter specifies whether the converted DBD may
be accessed by Natural/Adabas applications via the ADL Consistency Interface or
not. The assignment can be modified later using the ADL Online Services. The
CONSI parameter must be set to YES if the DBD is accessed by both DL/I and
Natural/Adabas applications. For more information, refer to the section Consistency
DBD Maintenance in the section ADL Online Services in the ADL Interfaces
documentation .
Possible values:
YES = DBD used by ADL Consistency Interface
NO = DBD not used by ADL Consistency Interface.
Default: YES

Note:
If the DBD was originally converted with ADL version 2.2 or before, the LOGID should specify the same
value as the ADL 2.2 FNR parameter.
The SEQ (processing sequence) parameter of ADL 2.2 has become obsolete. The new layout of the ADL
internal pointer field has the same performance advantages as the previous "SEQ=SEG" setting.
To avoid conflicts with the logical files settings (LFILE) of Natural, it is recommended not to use
DBID=255.

12

GENDBD FunctionADL Conversion Utilities for DBDs and PSBs

GENSEG Function

The GENSEG function is used to control DBD conversion for a DL/I segment. It may be specified for each
segment of a physical DBD but not for virtual logical child segments. If no GENSEG function is specified
for a particular segment, then the default parameter values are used.

The function parameters are explained below.

Parameter Description

NAME The name of the segment in the DBD currently being processed. This may be between 1
and 8 alphanumeric characters long. The first character must be a letter.

LOGID The logical ID of the segment. The number given will be used as default for all
dependent segment types. If the DBD is involved in logical relationships, the LOGID
given must be different from the LOGIDs of the other DBDs.

Possible values: 1 - 255

Default: LOGID of parent segment or LOGID of GENDBD function for the root
segement

FNR The Adabas file number for the file which will be used to store the converted data of
this segment type. The number given will be used as the default for all dependent
segment types.

Possible values: 1 - 65534

Default: none

ADANAME The Adabas short name to be used as the name of the Adabas field group which will
store the segment data. If the ADANAME parameter is not specified, then ADL generates
the Adabas group names automatically.

BACKW Used to specify whether the Adabas descriptor used for internal reading backwards is to
be maintained for the segment being generated. This is done in order to optimize
retrieval of the last segment occurrence in a twin chain.
Possible values:
YES = indicates that the descriptor will be maintained;
NO = indicates that it will not.
The descriptor is maintained automatically where the physical insert rule is either HERE
or LAST.

Note:
If the DBD was originally converted with ADL version 2.2 or before, the LOGID should specify the same
value as the original FNR parameter. Otherwise it is not required to specify LOGIDs for segments even if
the DBD data is saved on multiple Adabas files.

DELDBD Function

The DELDBD function deletes an existing DBD from the ADL directory file.

13

ADL Conversion Utilities for DBDs and PSBsGENSEG Function

The function parameter is as follows:

Parameter Description

NAME The DL/I name of the DBD to be deleted. This may be 1 to 8 alphanumeric characters
long. The first character must be a letter.

GENPSB Function

The GENPSB function initiates processing of the PSB specified.

The function parameter is as follows:

Parameter Description

NAME The DL/I name of the PSB to be converted. This may be 1 to 8 alphanumeric
characters long. The first character must be a letter.

DELPSB Function

The DELPSB function deletes an existing PSB from the ADL directory file.

The function parameter is as follows:

Parameter Description

NAME The DL/I name of the PSB to be deleted. This may be 1 to 8 alphanumeric characters
long. The first character must be a letter.

CBC Utility Output
The CBC utility produces up to four different types of output:

1. ADL control blocks on the ADL directory file.

The CBC utility stores and updates the ADL DBDs and PSBs on the ADL directory file.

2. Output deck containing ADACMP statements and the Adabas User Exit 6.

This output is only produced when the CBC utility is processing a physical DBD. The ADACMP
statements for all files used to store the data and the Adabas User Exit 6 extension for loading the
data into the Adabas file(s) are produced as one output deck. Each set of records in the deck is
separated from the others by control statements. These can be interpreted by an IBM utility (LIBR
for z/VSE and IEBUPDTE for z/OS) to create separate members in a library.

Note that the generation of output control statements by the CBC utility can be suppressed by
specifying the parameter UTI=(,N). See the chapter The ADL Parameter Module in the ADL
Installation Manual for further details.

14

CBC Utility OutputADL Conversion Utilities for DBDs and PSBs

3. Control print output.

A print file giving the input control statements for the CBC utility and the action taken. It has the
following format:

nnnnn FUN input statement ACT message

where nnnnn is the number of the input statement.

The input statements are followed by information on the run, including the number of report pages
produced and the number of input statements.

4. Report (physical and logical DBDs only).

In the case of physical DBDs, the report contains a complete overview of the DL/I and Adabas
structures involved. A list of all DBDs referenced by the DBD just processed, i.e. secondary index DBDs
and other physical DBDs related via logical relationships, is given at the end of the report. The list also
indicates whether processing of the DBDs referenced has been completed or not.

z/OS Requirements
The following table lists the data sets used by the CBC utility DAZCCGEN.

DDname Medium Description

DAZIN1 Reader Control input for the ADL batch monitor, DAZIFP.

DAZOUT1 Printer Messages and codes.

DAZOUT2 Printer Report.

DAZOUT4 Disk ADACMP statements and Adabas User Exit 6 extension.

Example:

The following is an example of a job to run the CBC utility:

// EXEC PGM=DAZIFP,PARM=’UTC,DAZCCGEN’
//STEPLIB DD DSN=ADLxxx.LOAD,DISP=SHR
// DD DSN=ADABAS.Vnnn.LOAD,DISP=SHR
//DDCARD DD *
ADARUN PROGRAM=USER,...
//DAZIN1 DD *
DELDBD NAME=COURSEDB
GENDBD NAME=COURSEDB,DBID=009,FNR=034
//DAZOUT1 DD SYSOUT=X
//DAZOUT2 DD SYSOUT=X
//DAZOUT4 DD DSN=&&DECK,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(80,(100,100),RLSE),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//*
// EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=X
//SYSUT2 DD DSN=ADLxxx.SOURCE,DISP=SHR

//SYSIN DD DSN=&&DECK,DISP=(OLD,DELETE)

15

ADL Conversion Utilities for DBDs and PSBsz/OS Requirements

z/VSE Requirements
The following table lists the files used by the CBC utility, DAZCCGEN.

DTF Logical Unit Medium Description

DAZIN1 SYSIPT Reader Control input for the ADL batch monitor, DAZIFP.

DAZOUT1 SYSLST Printer Report, messages and codes.

DAZOUT2 SYS011 Printer Report. *

DAZOT3D SYS013 Disk Report. **

DAZIN3D SYS014 Disk Report. **

DAZOUT4 SYSxxx Disk ADACMP statements and Adabas User Exit 6
extension.

* Only required when more than one logical printer is available. In this case, SYS011 may be used to
assign a second printer to which the report will be routed directly.

** Only required when only one logical printer is available. In this case, the report which is normally
directed to DAZOUT2 as the second print file will be written to disk. At the end of the job it will be read
from disk and routed to DAZOUT1.

The control input for the batch monitor (DAZIFP), for ADARUN, and for the CBC utility itself are all read
from SYSIPT. The control statements for this must be specified in the following order:

UTC,DAZCCGEN,,... input for DAZIFP
/*
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER,... input for ADARUN
/*
DELDBD NAME=dbd input for the CBC utility
GENDBD ...
.
/*

Example:

The following is an example of a job to execute the CBC utility:

// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL DAZOUT4,’punchfile’,0,SD
// EXTENT SYS010,volser,......
// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D,’printfile’,0,SD
// EXTENT SYS013,volser,......
// DLBL DAZIN3D,’printfile’,0,SD
// EXTENT SYS014,volser,......
// EXEC DAZIFP
UTC,DAZCCGEN
/*
ADARUN PROGRAM=USER,..........
/*
DELDBD NAME=COURSEDB
GENDBD NAME=COURSEDB,DBID=9,FNR=34
/*
// DLBL IJSYSIN,’punchfile’

16

z/VSE RequirementsADL Conversion Utilities for DBDs and PSBs

// EXTENT SYSIPT,volser
ASSGN SYSIPT,DISK,VOL=volser,SHR
// EXEC LIBR,PARM=’ACCESS S=SAGLIB.ADL...’
/&
CLOSE SYSIPT,FEC

17

ADL Conversion Utilities for DBDs and PSBsz/VSE Requirements

	ADL Conversion Utilities for DBDs and PSBs
	Conversion - Overview
	All PSBs and DBDs except Primary Index DBDs
	Step 1

	All PSBs and Physical and Logical DBDs
	Step 2

	DBD/PSB Conversion Steps 1 - 2
	Physical DBDs Only
	Step 3
	Step 4

	DBD/PSB Conversion Steps 3 - 4

	Conversion - PSBs and all DBDs except Index DBDs
	Conversion - Physical DBDs
	Conversion - Index DBDs
	Conversion - Logical DBDs
	Conversion - Logically Related Physical DBDs
	Conversion - HD Databases
	z/OS Requirements
	z/VSE Requirements

	Control Statements for the CBC Utility
	GENDBD Function
	GENSEG Function
	DELDBD Function
	GENPSB Function
	DELPSB Function

	CBC Utility Output
	z/OS Requirements
	
	Example:

	z/VSE Requirements
	
	Example:

