9 software AG

Adabas

Installation for z/OS

Version 8.1.4

June 2014

Adabas

This document applies to Adabas Version 8.1.4.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product documentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ADAMF-OS390-INSTALL-814-20140626

Table of Contents

1 Installation for z/OS	1
2 Supported Environments	3
3 Installing Adabas for z/OS	5
Installation Checklist	6
Contents of the Release Tape	7
Preparing to Install Adabas	9
Installing the Release Tape	11
Initializing the Adabas Communication Environment	13
Installing an Adabas Database	2 3
SVC Integrity Validation	30
Requirements for Cross-Memory Services	30
Requirements for Global Resource Serialization	
Using EXCPVR	32
Creating a Shareable ADARUN	33
Storage Above 16 MB	33
Storage Above 2 GB (64-Bit)	34
Applying Zaps	35
Adabas 8 Adalink Considerations	35
Adabas 7 Adalink Considerations	37
4 Installing Adabas with TP Monitors	41
Preparing Adabas Link Routines for IBM Platforms	42
Installing Adabas with IMS TM under Adabas 8	46
General Considerations for Installing Adabas with CICS	48
Installing Adabas with CICS under Adabas 8	50
Installing the CICS High-Performance Stub Routine for Adabas 8	52
Installing Adabas with Com-plete under Adabas 8	76
General Considerations for Installing Adabas with Batch/TSO	
Installing Adabas with Batch/TSO under Adabas 8	80
Establishing Adabas SVC Routing by Adabas Database ID	82
Modifying Source Member Defaults (LGBLSET Macro) in Version 8	92
5 Enabling Universal Encoding Support (UES) for Your Adabas Nucleus	105
Connection Through a Direct TCP/IP Link	106
Activating the TCP/IP Link	107
6 Device And File Considerations	111
Supported z/OS and z/VM Device Types	112
ECKD Devices	113
Adding New Devices	113
Enhanced Backup and Restore Performance in Tape Sequential Files	118
7 Installing The AOS Demo Version	119
AOS Demo Installation Procedure	120
Installing AOS with Natural Security	121
Setting the AOS Demo Version Defaults	122
8 Installing The Recovery Aid (ADARAI)	125

ADARAI Installation Overview	126
ADARAI Installation Procedure	126
9 Installing The Error Handling And Message Buffering Feature	129
10 Adabas Dump Formatting Tool (ADAFDP)	131
ADAFDP Function	132
ADAFDP Output	132
11 Translation Tables	139
Adabas EBCDIC to ASCII and ASCII to EBCDIC	140
Entire Net-Work EBCDIC to ASCII and ASCII to EBCDIC	141
Index	143

1 Installation for z/OS

This document is intended for those who plan or perform Adabas installation on z/OS systems, and for those who manage or maintain an Adabas database system (such as database administrators and systems programming personnel).

Supported Environments
Installing Adabas for z/OS
Installing Adabas With TP Monitors
Enabling Universal Encoding Support (UES) for Your Adabas Nucleus
Device and File Considerations
Installing the AOS Demo Version
Installing the Recovery Aid (ADARAI)
Installing The Error Handling and Message Buffering Feature
Adabas Dump Formatting Tool (ADAFDP)
Translation Tables

Notation *vrs*, *vr*, or *v*: When used in this documentation, the notation *vrs* or *vr* stands for the relevant version of a product. For further information on product versions, see *version* in the *Glossary*.

2 Supported Environments

For information on the support platforms for this release of Adabas, read *Supported Platforms*, in the *Adabas Release Notes*.

3 Installing Adabas for z/OS

■ Installation Checklist	6
Contents of the Release Tape	
Preparing to Install Adabas	
Installing the Release Tape	
■ Initializing the Adabas Communication Environment	
■ Installing an Adabas Database	
SVC Integrity Validation	
Requirements for Cross-Memory Services	30
Requirements for Global Resource Serialization	32
■ Using EXCPVR	32
Creating a Shareable ADARUN	33
Storage Above 16 MB	33
Storage Above 2 GB (64-Bit)	
Applying Zaps	
Adabas 8 Adalink Considerations	35
Adabas 7 Adalink Considerations	37

This chapter describes the installation of Adabas on z/OS systems.

Installation Checklist

The following is an overview of the steps for installing Adabas on a z/OS system.

Important: Be sure that you apply all supplied Adabas 8 maintenance and concatenate Adabas 8 patch-level libraries (L00*n*), as they are delivered to you. This will ensure that your Adabas 8 code remains up-to-date, supporting all Adabas 8 features as they are enhanced and maintained.

Step	Description	Additional Information
	Basic Installation Steps	
1	Allocate DASD space for the Adabas libraries.	The libraries are restored from the installation tape. Refer to the section <i>Disk Space Requirements for Libraries</i> .
2	Allocate DASD space for the Adabas database.	For better performance, distribute the database files over multiple devices and channels. Refer to the section <i>Disk Space Requirements for the Database</i> .
3	Specify the address space for running the Adabas nucleus.	Refer to the section <i>Adabas Nucleus Address Space Requirements</i> .
4	Restore the Adabas libraries from the installation tape.	Use the tape positioning information that accompanies the tape. Refer to the section <i>Installing the Release Tape</i> .
5	Install the Adabas SVC temporarily or permanently.	Refer to the section <i>Initializing the Adabas Communication Environment</i> .
	Database Installation Steps	Steps 6-15 require changes to the setup
6	Allocate and format the Adabas database with the ADAFRM utility job.	definitions as described in section Installing an Adabas Database.
7	Define the global database characteristics with the ADADEF utility job.	
8	Load the demonstration files with the ADALODE, ADALODV, ADALODM, and ADALODP jobs.	
9	Prepare and install the product license file.	
10	Customize and start the Adabas nucleus and test the Adabas communications with the appropriate ADANUC job.	
11	If appropriate, test Adabas address space communications by running ADAREP in MULTI mode with the CPEXLIST parameter.	

Step	Description	Additional Information
12	If appropriate, load the Adabas Online System (AOS) add-on product into a Natural system file by running the AOSINPL job. Alternatively, install the AOS demo version (see section <i>Installing the AOS Demo Version</i>).	
13	Terminate the Adabas nucleus with an ADAEND operator command using the OS Modify command F.	
14	Back up the database by running the ADASAV utility job.	
15	Insert the ADARUN defaults by running the DEFAULTS job.	
	TP Monitor Installation	
16	Install the required TP link routines for Adabas.	See section <i>Installing Adabas With TP Monitors</i> .

Contents of the Release Tape

The following table describes most of the libraries included on the release tape. Once you have unloaded the libraries from the tape, you can change these names as required by your site, but the following lists the names that are delivered when you purchase Adabas for z/OS environments.

Library Name	Description
ACIvrs.LOAD	The load library for the Adabas CICS link routine. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ACIvrs.SRCE	The source library for the Adabas CICS link routine. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ADAvrs.ECnn	The Adabas library containing character encoding members to support various languages and Unicode. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas. The <i>nn</i> letters in the library name represents a number from "00" to "99", assigned by Software AG.
ADAvrs.EMPL	The Employees demo file, containing dummy employee data you can use for testing Adabas. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ADAvrs.ERRN	Error messages for the Adabas Triggers and Stored Procedures Facility. These messages can be viewed using the Natural SYSERR utility. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ADAvrs.INPL	The code for Adabas Online System, Adabas Caching Facility, Triggers and Stored Procedures Facility, and various add-on demo products. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ADAvrs.JOBS	The sample job library for Adabas. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ADAvrs.LOAD	The load library for Adabas. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ADAvrs.MISC	The Miscellaneous demo file, containing dummy miscellaneous data you can use for testing Adabas. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.

Library Name	Description
ADAvrs.PERL	The LOB demo file storing the LOB data referenced by the new Personnel demo file. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ADAvrs.PERS	The Personnel demo file, containing dummy personnel data you can use for testing Adabas. This demo file includes fields that make use of the extended and expanded features of Adabas 8, include large object (LOB) fields. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
	Note: The Personnel demo file must be installed on a UES-enabled database because it includes wide-character format (W) fields.
ADAvrs.SRCE	The source library for Adabas. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
ADAvrs.VEHI	The Vehicles demo file, containing dummy vehicle data you can use for testing Adabas. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
AIIvrs.LOAD	The load library for the Adabas IMS link routine. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
AIIvrs.SRCE	The source library for the Adabas IMS link routine. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
APSvrs.LD00	A Software AG internal library. The <i>vrs</i> in the library name represents the <i>version</i> of the internal library code, which is not necessarily the same as the version of Adabas.
APSvrs.LD17	A Software AG internal library. The <i>vrs</i> in the library name represents the <i>version</i> of the internal library code, which is not necessarily the same as the version of Adabas.
MLCvrs.JOBS	The sample job library for Software AG's common mainframe license check software. The <i>vrs</i> in the library name represents the <i>version</i> of the license check software, which is not necessarily the same as the version of Adabas.
MLCvrs.LOAD	The load library for Software AG's common mainframe license check software. The <i>vrs</i> in the library name represents the <i>version</i> of the license check software, which is not necessarily the same as the version of Adabas.
WALvrs.JOBS	The sample job library for Adabas components shared by Adabas and other Software AG products, such as Entire Net-Work. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
WALvrs.LOAD	The load library for Adabas components shared by Adabas and other Software AG products, such as Entire Net-Work. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
WALvrs.SRCE	The source library for Adabas components shared by Adabas and other Software AG products, such as Entire Net-Work. The <i>vrs</i> in the library name represents the <i>version</i> of Adabas.
WCAvrs.LOAD	The load library for Entire Net-Work Administration, used by some of the Adabas add-on products. The <i>vrs</i> in the library name represents the <i>version</i> of Entire Net-Work Administration.
WCAvrs.SRCE	The source library for Entire Net-Work Administration, used by some of the Adabas add-ons products. The <i>vrs</i> in the library name represents the <i>version</i> of Entire Net-Work Administration.

Adabas is shipped with the code for Entire Net-Work Client (open systems software) and Entire Net-Work Administration (mainframe software). Entire Net-Work Client and Entire Net-Work Administration are Software AG middleware packages used for communication between Adabas or Event Replicator Server databases on the mainframe and open systems software packages such as Adabas Manager (including the Adabas Manager demo) or Event Replicator Administration. Entire Net-Work Administration is a limited version of Entire Net-Work for mainframes and includes the Simple Connection Line Driver.

Note: Entire Net-Work Client requires a license key. A limited license is shipped with your Adabas software to support the Adabas Manager demo. If you purchase a full version of Adabas Manager, you will need a full license of Entire Net-Work Client.

If appropriate Entire Net-Work mainframe and client products are not already installed on your system, install Entire Net-Work Administration on the mainframe and Entire Net-Work Clienton the client side. For complete information on these products, read the Entire Net-Work Administration documentation and Entire Net-Work Client Administration.

Preparing to Install Adabas

The major steps in preparing for Adabas installation are

- checking for the correct prerequisite system configuration; and
- allocating disk and storage space.

This section covers the following topics:

- Disk Space Requirements for Libraries
- Data Sets Required for UES Support
- Disk Space Requirements for Internal Product Data Sets
- Disk Space Requirements for the Database
- Adabas Nucleus Address Space Requirements

Disk Space Requirements for Libraries

The minimum 3390 disk space requirements for the Adabas libraries are as follows:

Library	3390 Cylinders	3390 Tracks	Directory Blocks
Load	10	150	40
Source	4	60	20
JCL	1	15	20

Note: You can isolate user programs from the Adabas load library by creating a separate load library that contains only those modules needed to execute user programs in multi-

user mode and linked with ADAUSER. For Version 8.1, the modules required by user programs are ADAIOR, ADAIOS, ADALNK, ADAMLF, ADAPRF, ADARUN.

Data Sets Required for UES Support

The Software AG internal product libraries (APS - porting platform) are required if you intend to enable a database for universal encoding service (UES) support. These libraries are delivered separately from the product libraries.

For UES support, the following library must be loaded and included in the STEPLIB concatenation, where nn is the load library level and vrs is the number of the latest version of that code delivered on the tape:

```
APSvrs.LDnn

↔
```

If the library with a higher level number is not a full replacement for the lower level load library(s), the library with the higher level must precede those with lower numbers in the STEPLIB concatenation.

Note: If you are using an Adabas load library prior to Version 7.2.2, it contains internal product libraries with an earlier version number and must be ordered below the current internal product libraries in the STEPLIB concatenation.

Also for UES support, the following library must be loaded and included in the session execution ICL:

ADA*vrs*.EC*nn*

For information about setting up connections to UES-enabled databases, see section *Enabling Universal Encoding Support (UES) for Your Adabas Nucleus*, elsewhere in this guide.

Disk Space Requirements for Internal Product Data Sets

The minimum disk space requirements on a 3390 disk for the internal product libraries delivered with Adabas Version 8.1 are as follows (where *vrs* is the latest *version* of the code delivered on the tape):

Library	3390 Cylinders	3390 Tracks	Directory Blocks
ADAvrs.ECnn	20	300	150
APSvrs.LDnn	6	86	55

Disk Space Requirements for the Database

The actual database space needed by Adabas depends on user requirements. The minimum 3390 disk space requirements for the database are as follows:

Database Component	3390 Cylinders	3390 Tracks
ASSOR1 (Associator)	20	300
DATAR1 (Data Storage)	60	900
WORKR1 (Work space)	15	225
TEMPR1 (temporary work space)	15	225
SORTR1 (sort work space)	15	225

Adabas Nucleus Address Space Requirements

The typical Adabas nucleus requires at least 800-1024 kilobytes to operate. The size of the nucleus address space may need to be larger, depending on the ADARUN parameter settings. Parameter settings are determined by the user.

Installing the Release Tape

This section explains how to:

- Copy data set COPY.JOB from tape to disk
- Modify the data set according to your local naming conventions

You can use the modified data set to copy all data sets from tape to disk. You will then need to perform the individual install procedure for each component.

Note: If you are using SMA, please refer to the chapter Installing Software AG Products with SMA in the *System Maintenance Aid* documentation. If you are not using SMA, please follow the instructions below.

- Step 1a: Copy Data Set COPY.JOB from Tape to Disk (SMA Job Number Tnnn)
- Step 1b: Modify COPY.JOB to Local Naming Conventions

■ Step 1c: Submit COPY.JOB

Step 1a: Copy Data Set COPY.JOB from Tape to Disk (SMA Job Number Tnnn)

The data set COPY.JOB (label 2) contains the JCL to unload all other existing data sets from tape to disk. To unload COPY.JOB, use the following sample JCL:

-where

- <hilev> is a valid high level qualifier
- <Tnnnnn> is the tape number
- <*vvvvv* is the desired volser

Step 1b: Modify COPY.JOB to Local Naming Conventions

There are three parameters to set before you can submit this job:

- Set HILEV to a valid high level qualifier.
- Set LOCATION to a storage location.
- Set EXPDT to a valid expiration date.

Step 1c: Submit COPY.JOB

Submit COPY.JOB to unload all other data sets from tape to your disk.

Initializing the Adabas Communication Environment

This section describes the installation of the Adabas router (ADASVC). The router uses cross-memory services for communication between the Adabas nucleus and the Adabas users.

The Adabas z/OS cross-memory communications service comprises two modules:

- the Adabas router (ADASVC); and
- the Adabas subsystem initialization routine (ADASIR).

ADASIR, executed either during IPL or by the Adabas SVC installation program (ADASIP), initializes the router's operating environment, particularly the ID table.

ADASVC installation can be either temporary or permanent:

- The Adabas SVC can be installed temporarily by executing ADASIP. The SVC is then available only until the next IPL.
 - **Note**: Once installed, the Adabas SVC can be re-installed temporarily using the ADASIP REPLACE option. However, no Adabas nucleus can be active during this procedure.
 - **Note:** It is necessary to cycle CICS after executing ADASIP to initialize the SVC.
- The Adabas SVC is installed permanently using regular operating systems procedures. The SVC then requires an IPL to become active.

Typically, the Adabas SVC is first installed temporarily using ADASIP. This makes Adabas available immediately without the need to wait for an IPL. Meanwhile, preparations are usually made for permanent installation at the next IPL.

- SVC Compatibility Issues Between Adabas Releases
- APF Authorization Requirement
- Allocating an SVC Table Entry
- Subsystem Name Requirements
- Page-Fixing the Adabas SVC
- Initializing the Adabas SVC
- Router Installation Overview
- Using ADASIP for Temporary Installations
- Using ADASIR
- Relinking the SVC for Temporary Installation

Relinking the SVC for Permanent Installation

SVC Compatibility Issues Between Adabas Releases

Adabas 8 includes a new Adabas SVC. This SVC is fully backward compatible. In other words, you can use the new Adabas 8 SVC with Adabas 7 (or earlier) databases.

However, you *cannot* use the Adabas SVC from previous Adabas releases with Adabas 8 databases. If you attempt to do this, the Adabas 8 database will not initialize successfully.

The Adabas 8 SVC includes performance improvements and improved error recovery routines. Note that the new SVC uses more efficient operating system interfaces, in particular when posting the user at command completion. This shifts work from SRB-mode routines to TCB-mode routines and also between the user's program and the Adabas nucleus. Take this into account when analyzing Adabas 8 SVC performance. With the new SVC, SRB-mode overhead is largely eliminated and TCB-mode overhead is somewhat increased, but the net result is an overall improvement in SVC performance.

APF Authorization Requirement

The Adabas 8 SVC requires that the Adabas nucleus, as well as other MPM servers (such as Entire Net-Work and the Natural Global Buffer Pool), be APF-authorized. This APF authorization prevents unauthorized use of the ADASVC 0-call. Software AG recommends strongly that you run APF-authorized because of the security risks you can incur if you do not. However, upon request, Software AG does have a zap you can apply that eliminates this requirement. To determine what this zap number is, review the ZAPOPT member in the Adabas source library for a zap entitled "Remove requirement for APF authorization".

Note: Some add-on products require APF authorization to use restricted z/OS services. APF authorization is still required in these cases.

Allocating an SVC Table Entry

Regardless of the installation procedure selected, an available SVC table entry must be allocated to the Adabas router (ADASVC). SVC table entries are defined in the member IEASVCxx of SYS1.PARMLIB.

The SVC table entry in the operating system for an ADASVC must contain the following information:

Offset	Label	Description	
0	SVCEP	SVC entry point address.	
4		CATTR1 Must indicate type 2 SVC (flag bit SVCTP2 set—X'80') or type 3 or 4 SVC (flag bits SVCTP34 set—X'C0'): ADASIR changes a type 1, 5, or 6 SVC to type 2. May indicate that APF-authorization is needed for this SVC (flag bit SVCAPF set—X'08' if set, all targets and users must be APF-authorized.	
6	SVCLOCKS	Must contain all zeros. ADASIR sets SVCLOCKS to zeros.	

Subsystem Name Requirements

The subsystem name contained in the four-character field SUBSYS at ADASVC offset X'28' (the default is "ADAB") must be the same as that specified in the IEFSSN xx member of SYS1.PARMLIB. If the name is not the same, ADASIR ends with an ADAS12 message and condition code 2, and Adabas is not usable.

Page-Fixing the Adabas SVC

If the Adabas SVC is to reside in the fixed LPA, add an entry to an IEAFIXxx member of SYS1.PARMLIB.

Initializing the Adabas SVC

The Adabas SVC should be initialized with ADASIP/ADASIR in order to guarantee full functioning of all Adabas nuclei.

Router Installation Overview

- Temporary Router Installation (SMA Job Number I011)
- Permanent Router Installation (SMA Job Number I010)

Temporary Router Installation (SMA Job Number 1011)

Once you have restored the Adabas installation tape, use a local editor to customize the job JCLLINK (used to link ADASIR, ADASIR, and ADASVC) as follows:

to perform temporary router installation:

- 1 Link ADASIP into an APF-authorized library as an authorized module.
- 2 Link ADASIR and ADASVC into APF-authorized libraries:
 - Place ADASVC in an APF-authorized library in order to run ADASIP.
 - Place ADASIR in an APF-authorized library.

3 Execute ADASIP to install the SVC.

Customize and run the job ADASIP to dynamically add the Adabas SVC without an IPL.

Permanent Router Installation (SMA Job Number 1010)

to perform permanent router installation:

- 1 Link the Adabas SVC (ADASVC) which has been renamed according to the SVC routine renaming rules (for example, type 3 SVCs must have names of IGC00*nnn*, where *nnn* is a signed decimal SVC number) into SYS1.LPALIB as a permanent step for ADASIR.
- 2 Link ADASIR into SYS1.LINKLIB or into an APF-authorized library concatenated to SYS1.LINKLIB with the LNKLST*xx* member of SYS1.PARMLIB.
 - **Note:** ADASIR is not reentrant, and therefore should not be linked into SYS1.LPALIB.
- 3 Customize and run the job JCLUPDT to add a new entry with the correct format.
- 4 IPL z/OS with the CLPA option to install and initialize the Adabas communication environment.

Using ADASIP for Temporary Installations

- ADASIP Functions
- ADASIP Parameters
- Executing ADASIP

ADASIP Functions

ADASIP performs the following functions:

- acquires memory in the specified CSA subpool for the Adabas SVC and a subsystem communication vector table (SSCT)
- loads the Adabas SVC into the acquired CSA space
- modifies the SVC table entry as required by the Adabas SVC
- optionally deletes an SSCT for the same subsystem name from the SSCT chain
- adds the new SSCT to the SSCT chain
- invokes the ADASIR program
- releases CSA acquired by a previously installed SVC

If any error is detected, ADASIP backs out all completed activities and terminates operation with a user abend specifying the error.

When reinstalling an instance of ADASVC using an SVC number that is currently being used by ADASVC, the subsystem name must be the same as the one currently being used. This helps avoid a configuration that may not function correctly. For more information, read *SVC Integrity Validation*, elsewhere in this guide.

A Version 8 ADASIP/ADASIR can be used to install a Version 7 Adabas SVC, but the Version 8 SVC requires the Version 8 ADASIP/ADASIR. Software AG recommends using Version 8 to install all supported releases of the SVC. If an earlier version of ADASIP/ADASIR is used to replace an SVC installed with a later version, some areas of common storage may not be released.

The following JCL links ADASIP, located in ADABAS.ADA vrs.LOAD, into an APF-authorized library as an authorized module:

```
//LNKSIP EXEC PGM=IEWL
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//ADALIB DD DSN=ADABAS.ADAvrs.LOAD,DISP=SHR
//SYSLMOD DD DSN=apflibname,DISP=SHR
//SYSLIN DD *
INCLUDE ADALIB(ADASIP)
SETCODE AC(1)
NAME ADASIP(R)
```

ADASIP Parameters

ADASIP parameters have the following syntax:

```
CONSNAME=c,IDTSPL=i,LEAVE=1,NRIDTES=n,REPLACE=r,SUBSYS=su,
SVCNR=svcn,SVCSPL=svcs
```

-where

С	is the console name to which operator messages are written. If omitted, messages are issued using ROUTCDE=2, master Console Information.
i	is the ID table subpool: see the ADASIR IDTSPL parameter for details.
7	indicates whether ADASIR should display message ADAS11 or ADAS12 on the operator console: see the ADASIR LEAVE parameter for details.
n	is the number of ID table entries: see the ADASIR NRIDTES parameter for details.
r	indicates whether or not an existing SSCT for the same subsystem name is to be replaced. Y for yes or N for no (N is the default). Use this option to replace any type of Adabas SVC (for example, when installing a new SVC version).
su	is the subsystem name. This parameter is required Each instance of the Adabas SVC must have a unique subsystem name.
svcn	is the Adabas SVC number: see the ADASIR SVCNR parameter for details.
svcs	is the Adabas SVC and SSCT subpool: 228 for fixed CSA or 241 for pageable CSA (default: 241).

The following are valid ADASIP parameter abbreviations:

Parameter	Abbreviation
CONSNAME=	C=
IDTSPL=	I =
LEAVE=	L=
NRIDTES=	N=
REPLACE=	R=
SUBSYS=	SU=
SVCNR=	SVCN=
SVCSPL=	SVCS=

All parameters are optional except SUBSYS and SVCNR. If specified, the parameters IDTSPL, LEAVE, NRIDTES, SUBSYS, and SVCNR are passed to ADASIR without being verified.

Executing ADASIP

JCL similar to the following should be used to execute ADASIP:

```
// EXEC PGM=ADASIP,PARM=parameters
//STEPLIB DD ...
//SVCLIB DD ...
//SIRLIB DD ...
```

The data set defined by the STEPLIB DD statement must be an APF-authorized library containing the APF-authorized program ADASIP. Since ADASIP is neither reentrant nor refreshable, the data set cannot be SYS1.LPALIB.

The data set defined by the SVCLIB DD statement must be an APF-authorized library containing the Adabas SVC with either the name or alias ADASVC.

The data set defined by the SIRLIB DD statement must contain the ADASIR program. Since ADASIR is neither reentrant nor refreshable, the data set may not be SYS1.LPALIB.

ADASIP terminates with a U0481 abend if the parameter input is incorrectly specified.

The IBM job control convention for continuing the PARM parameter is:

```
// EXEC PGM=ADASIP,PARM=('parameters ....', X
// 'parameters')
```

—where X in column 72 is a continuation character. The following restrictions also apply to JCL statements:

- a comma is required after the end-quote on a line that is to be continued
- a non-blank continuation character is required in column 72 of each line that is to be continued, and the continuation line must start within columns 4-16
- a comma is not permitted between the last parameter and the end-quote on the line to be continued because JCL automatically inserts a comma between parameters when concatenating continuation strings:

```
// ...PARM=('CONSID=3', X
// 'SUBSYS=ADAB', X
// 'SVCNR=249')
```

-results in an equivalent line of

```
CONSID=3, SUBSYS=ADAB, SVCNR=249
```

Using ADASIR

- ADASIR Functions
- Relinking ADASIR
- ADASIR Parameters
- Executing ADASIR

ADASIR Functions

The ADASIR program is invoked

- by the ADASIP program to install the Adabas SVC temporarily, or
- by z/OS to install the Adabas SVC permanently.

ADASIR receives control during either master scheduler initialization or ADASIP execution. The operator is prompted for any value that has been incorrectly zapped or assembled (refer to the *Adabas Messages and Codes* for specific message descriptions). If an error is found during the processing of parameters specified in the IEFSSN*xx* member or passed by ADASIP, the operator is prompted for all of the values.

If the SVC table entry is incorrect, ADASIR prompts the operator for permission to change the entry (if SVCTAB=P, the default, is specified). If any errors are detected, they must be corrected and either another IPL must be done or ADASIP must be rerun before the Adabas SVC can be used.

Relinking ADASIR

The ADASIR module must be linked into an APF-authorized library.

The following JCL links ADASIR, located in ADABAS.ADA vrs.LOAD, into SYS1.LINKLIB:

```
//LNKSIR EXEC PGM=IEWL
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=3350
//ADALIB DD DSN=ADABAS.ADAvrs.LOAD,DISP=SHR
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSLIN DD *
INCLUDE ADALIB(ADASIR)
SETCODE AC(1)
NAME ADASIR(R)
```

ADASIR Parameters

ADASIR parameters have the following syntax:

IDTSPL=i, LEAVE=1, NRIDTES=n, SVCNR=svcn, SVCTAB=svct

Variable	Description
i	The ID table subpool: 228 for fixed CSA or 241 (the default) for pageable CSA.
7	Indicates whether message ADAS11 or ADAS12 is to be displayed on the operator console: Y for yes or N (the default) for no.
n	The ID table entry count, which can range from 1 to a maximum specified at offset X'146' in the CSECT IEAVESVT of the z/OS nucleus (see section <i>Requirements for Cross-Memory Services</i>).
svcn	The Adabas SVC number (200-255).
svct	Indicates whether or not the operator should be prompted for permission to update the SVC table entry. Enter P (the default) to receive a prompt, or N for no prompt. P is recommended if a possibility exists that the SVC table entry will not be what ADASIR expects.

The following are valid abbreviations for ADASIR parameters:

Parameter	Abbreviation
IDTSPL=	I=
LEAVE=	L=
NRIDTES=	N=
SVCNR=	SVCN=
SVCSPL=	SVCS=

Executing ADASIR

Note: The ADASIR module must be linked into an APF-authorized library.

To prepare for permanent SVC installation, an entry must be made in either a new or existing member having the name IEFSSNxx in SYS1.PARMLIB. This entry is an 80-character record with the following format:

```
SUBSYS SUBNAME(cccc) CONSNAME(consname) INITRTN(ADASIR) ↔
INITPARM('parameters') comments
```

-where

	The 1- to 4-character subsystem name. This name and the name specified in the Adabas SVC at offset X'28' must be the same. The name provided in the SVC is ADAB; any other name must first be zapped into the SVC before being specified for cccc.
consname	The name of the console to which ADASIR will direct any messages. If omitted messages will be issued with ROUTCDE=2, Master Console Information.
'parameters'	ADASIR parameters. If there is more than one parameter, values must be enclosed in single quotation marks and a comma placed between the parameters.
comments	Comments are optional and must be preceded by at least one space.

If the subsystem name does not match, ADASIR abends with an ADAS12 message and condition code 2; the Adabas z/OS communication environment is not initialized. Re-IPL z/OS, specifying SSN=xx if necessary. If this is the first IPL with a type 3 or 4 Adabas SVC, specify CLPA as one of the SET parameters.

If an error is encountered while processing any of the parameters obtained from the IEFSSN*xx* member or passed from ADASIP (message ADAS05), the operator is prompted to reenter all of the parameters. If the SVC table entry is not correct (message ADAS09) then, depending on the value of the SVCTAB parameter, either the operator is prompted (message ADAS10) for permission to change the SVCTAB parameter, or it is simply changed (message ADAS15).

A Version 8 ADASIR can be used to install a Version 7 Adabas SVC, but the Version 8 SVC requires the Version 8 ADASIR. Software AG recommends using Version 8 to install all supported releases of the SVC.

The ADASIR messages and their meanings are described in the Adabas Messages and Codes.

Relinking the SVC for Temporary Installation

Link the Adabas SVC with the name or alias ADASVC into an APF-authorized library. ADASVC must be linked with AMODE=31 and RMODE=24, the default.

The following example shows how to link the SVC:

```
// (job card)
//LKED EXEC PGM=IEWL,
// PARM='XREF,LIST,NCAL,LET,MAP,RENT,REFR,REUS'
//SYSPRINT DD SYSOUT=X
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR <--Target loadlib
//ADALIB DD DSN=user.loadlib,DISP=SHR <--ADASVC loadlib
//SYSLIN DD *
MODE AMODE(31),RMODE(24)
INCLUDE ADALIB(ADASVC)
NAME ADASVC(R)
/*</pre>
```


Note: If the SVC is linked with a name other than ADASVC when preparing to upgrade to a permanent installation, the SVC must have an alias of ADASVC. When dynamically loading the Adabas SVC, ADASIP searches for the module ADASVC in the library specified by the SVCLIB DD statement.

Relinking the SVC for Permanent Installation

Software AG recommends using a type 3 or 4 SVC for the Adabas SVC.

SVC types 1 and 6 are not supported.

- Type 2 SVC
- Type 3 or 4 SVC

Type 2 SVC

If the Adabas SVC is to be type 2, link it into SYS1.NUCLEUS as the system nucleus IEANUC0x.

This nucleus must contain an SVC table entry for an enabled type 2 SVC, which must be defined during SYSGEN.

Then include linkage editor control statements similar to the following with those needed to link a nucleus:

```
CHANGE ADASVC(IGCnnn) ---> nnn is the SVC number in decimal INCLUDE ADALIB(ADASVC) ---> ADALIB contains the Adabas SVC
```

Type 3 or 4 SVC

To install the Adabas SVC as type 3 or 4, link the Adabas SVC with the appropriate name into SYS1.LPALIB. ADASVC must be linked with AMODE=31 and RMODE=24 (the default).

The following example shows how to relink the SVC:

```
// (job card)
//LKED EXEC PGM=IEWL,
// PARM='XREF,LIST,NCAL,LET,MAP,RENT,REFR,REUS'
//SYSPRINT DD SYSOUT=X
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=SYS1.LPALIB,DISP=SHR <--Target Loadlib
//ADALIB DD DSN=ADABAS.ADAvrs.LOAD,DISP=SHR <--ADASVC loadlib
//SYSLIN DD *
MODE AMODE(31),RMODE(24)
CHANGE ADASVC(IGCOOnnp) <- where nn are the first two digits of the SVC in decimal and INCLUDE ADALIB(ADASVC) p is the character corresponding to the x'Cn'
NAME IGCOOnnp(R) ----> (n is the last digit of the SVC number in decimal)
*
/*
```

Installing an Adabas Database

Once you have restored the Adabas installation tape and have installed the ADASVC, you can:

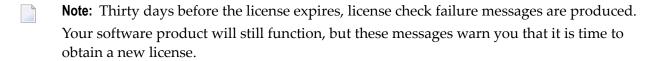
- Migrate an existing Adabas database to the new version; or
- Install a new version of the Adabas database.

Messages or codes that occur during the installation are described in the *Adabas Messages and Codes*; utilities are described in the *Adabas Utilities*.

Migrate an Existing Database

Database Installation Steps

Migrate an Existing Database


Use the ADACNV utility to migrate existing databases to new releases of Adabas (SMA job number I051). See *Adabas Utilities* for more information.

Database Installation Steps

- Step 1: Check, Prepare, and Install the Product License File (SMA job number 1007)
- Step 2: Allocate and Format the Adabas Database (SMA Job Number 1030)
- Step 3: Define the Global Database Characteristics (SMA Job Number I030)
- Step 4: Load the Demonstration Files (SMA Job Number 1050)
- Step 5: Customize and Start the Adabas Nucleus and Test Adabas Communications (SMA Job Number 1040)
- Step 6: Test Adabas Address Space Communications, If Appropriate
- Step 7: Load Adabas Online System Add-On Product, If Appropriate (SMA Job Number 1061)
- Step 8: Terminate the Adabas Nucleus
- Step 9. Back Up the Database
- Step 10: Insert the ADARUN Defaults
- Step 11: Install the Required TP Link Routines for Adabas

Step 1: Check, Prepare, and Install the Product License File (SMA job number 1007)

You must install a valid license file on all mainframe platforms in which your Software AG mainframe product is installed. The license file is provided as an XML document (encoding is US-ASCII) and must remain in that format -- even on the mainframe. It must not be modified. Any modification of the license file will invalidate the digital signature and the license check will fail. If the check fails, you will not be able to run the product. In the event of a check failure, please contact your Software AG technical support representative.

In this step, you will prepare the license file (obtain it from e-mail or the installation tape and store it on your z/OS system) and then install it:

Preparing the Product License File

■ Installing the Product License File

Preparing the Product License File

The product license file is supplied on the individual customer installation tape or separately via an e-mail attachment. Before you can install the license, you must transfer it from e-mail or the installation tape and store it on a z/OS system. This section describes how to do this for a license distributed either by e-mail or on the installation tape.

To prepare the license file from an e-mail attachment, complete the following steps:

- 1 Transfer the license to z/OS, as described in *Transferring a License File from PC to a z/OS Host Using FTP*, in *Adabas Operations Manual*.
- 2 Verify that the transferred license file is stored in an Adabas source library (with RECFM=F or FB and LRECL=80), taking care to preserve its format as ASCII.

To prepare the license file from the installation tape, complete the following steps:

■ Verify that the license file is stored from the tape into an Adabas source library (with RECFM=F or FB and LRECL=80), taking care to preserve its format as ASCII.

Installing the Product License File

Once the license file has been prepared, you can install it in one of two ways:

- You can convert the license to a load module (ADALIC) that is then loaded by the Adabas nucleus.
- You can reference the license file in the Adabas nucleus startup job by DD statement.

This section describes both methods.

To convert the license file to a load module, complete the following steps:

- 1 Review and modify sample job ASMLICAM, as follows:
 - Change the STEPLIB DD statement to point to the license load library (MLCvrs.LOAD).
 - Change the SYSUT1 DD statement to point to the data set containing the Adabas license file you transferred to z/OS earlier.
 - Specify an appropriate user load library for the L.SYSLMOD DD statement.
 - **Note:** This user load library must also be included in the STEPLIB concatenation for the Adabas nucleus (ADANUC).

- 2 Submit sample job ASMLICAM. This job runs the MAKE function of the LICUTIL utility to convert the license text file to an assembler source module. ASMLICAM then links and assembles the assembler source to generate a load module called ADALIC, which is stored in the specified user load library (L.SYSLMOD DD statement). For more information about the LICUTIL utility, read *Using The License Utility: LICUTIL*, in *Adabas Operations Manual*
- 3 Update your Adabas ADANUC nucleus job to reference the user load library so ADALIC will be loaded by the Adabas nucleus, as described in *Step 5: Customize and Start the Adabas Nucleus and Test Adabas Communications*.

To reference the license file in the Adabas nucleus startup job, complete the following steps:

- Make sure any previously-created ADALIC load module is inaccessible to the Adabas load library being used by your nucleus job. Adabas first tries to load ADALIC and, if unsuccessful, it reads from a DDLIC data set referenced in ADANUC.
- 2 Update your Adabas ADANUC nucleus jobs to reference the license, as described in *Step 5: Customize and Start the Adabas Nucleus and Test Adabas Communications*.

Step 2: Allocate and Format the Adabas Database (SMA Job Number 1030)

Customize and run the ADAFRM utility job to allocate and format the Adabas database. The following must be customized:

- Data set names for the database and libraries;
- Volumes for libraries and data sets for the database;
- Space allocation for data sets for the database;
- The Adabas SVC number, the database ID, and database device type(s);
- Sizes of the data sets for each ADAFRM statement.

Step 3: Define the Global Database Characteristics (SMA Job Number 1030)

Customize and run the ADADEF utility job to define the global definition of the database. The following must be customized:

- Data set names of the database and libraries;
- The Adabas SVC number, the database ID, and database device type(s);
- ADADEF parameters.

Step 4: Load the Demonstration Files (SMA Job Number 1050)

Customize and run the job:

- ADALODE to load the sample demo file EMPL;
- ADALODV to load the sample demo file VEHI;
- ADALODM to load the sample demo file MISC; and
- ADALODP to load the sample demo file PERS and its associated LOB demo file, PERL.
 - **Note:** The Personnel demo file must be installed on a UES-enabled database because it includes wide-character format (W) fields.

For each job, the following items must be customized:

- Data set names for the database and libraries;
- The Adabas SVC number, the database ID, and database device type(s);
- ADALOD parameters.

Step 5: Customize and Start the Adabas Nucleus and Test Adabas Communications (SMA Job Number 1040)

Customize and run an appropriate ADANUC job to start the Adabas nucleus. (This processing will also test basic Adabas communications.) The following modifications to the ADANUC job must be made:

- 1. Software AG licensing requires that the modules LICMAIN and LICUTIL be loaded when your nucleus starts up. These modules are distributed in the MLC vrs.LOAD library. You must either:
 - Copy LICMAIN and LICUTIL into ADAvrs.LOAD; or
 - Concatenate MLCvrs.LOAD with ADAvrs.LOAD. A sample job, ADANUCS, demonstrates how to do this.
- 2. Verify that the license file is correctly referenced in the ADANUC job. Do either of the following:
 - Verify that the ADALIC load module, installed in *Step 1: Check, Prepare, and Install the Product License File*, is stored in a load library that is accessible to the Adabas load library. Add the user load library in which ADALIC resides to the STEPLIB concatenation of the Adabas nucleus job or copy the ADALIC library into ADA*vrs*.LOAD.
 - Verify that there is no ADALIC load module accessible to the Adabas load library and that the following DD statement is included in the ADANUC job:

//DDLIC DD DISP=SHR, DSN=dsn

where *dsn* is the data set name of the license file loaded from the tape (in ASCII format). Note that *dsn* could reference a member in a partitioned data set.

- **Note:** Adabas first tries to load ADALIC and, if unsuccessful, it reads from the DDLIC data set.
- 3. Data set names for the database and libraries must be customized for your installation.
 - **Note:** Be sure to include appropriate user load libraries.
- 4. The Adabas SVC number, the database ID, and database device type(s) must be customized for your installation.
- 5. ADARUN parameters must be customized for your installation.

Step 6: Test Adabas Address Space Communications, If Appropriate

Customize and run the job ADAREP in MULTI mode with the CPEXLIST parameter to test Adabas address space communications. The following must be customized:

- Data set names for the database and libraries;
- The Adabas SVC number, the database ID, and database device type(s);
- ADAREP parameters.

Step 7: Load Adabas Online System Add-On Product, If Appropriate (SMA Job Number 1061)

Customize and run the job AOSINPL to load the Adabas Online System (AOS) into a Natural system file using a batch version of Natural 3.1 or above. The following items must be customized:

- Data set names of the database and libraries;
- The Adabas SVC number, the database ID, and device type(s);
- The Natural INPL parameters and system file number.

Alternatively, install the AOS demo version delivered with Adabas: see the section *Installing the AOS Demo Version*.

Step 8: Terminate the Adabas Nucleus

Communicate with the Adabas nucleus to terminate the session either with an ADAEND operator command using the OS Modify command:

F jobname, ADAEND

-or

P jobname

where *jobname* is the job or task name of the started nucleus.

Step 9. Back Up the Database

Customize and run the ADASAV utility job to back up the database. The following must be customized:

- Data set names of the database and libraries;
- The Adabas SVC number, the database ID, and device type(s);
- ADASAV parameters.

Step 10: Insert the ADARUN Defaults

The member DEFAULTS in the Adabas JCL library can be modified to set the ADARUN defaults. The following must be customized:

- Data set names of the database and libraries;
- ADARUN user defaults:
 - Device type(s) (default: 3390)
 - SVC number (default: 249)
 - Database ID (default: 1)

Customize and run the DEFAULTS job to set the ADARUN defaults using the OS ZAP utility.

Step 11: Install the Required TP Link Routines for Adabas

Refer to the section *Installing Adabas With TP Monitors* for a description of the TP link routine procedure.

SVC Integrity Validation

In the past, the presence of multiple SVCs with the same subsystem ID has resulted in a single ID table being used by different SVCs. This has caused problems, some of them serious (abnormal nucleus termination or corruption of the database).

To eliminate this danger, the Version 8 SVC checks to ensure that the SVC accessing the ID table is the same as the one that was used by ADASIP/ADASIR to initialize the table. If the SVCs are not the same, an abend 650 occurs.

Abend 650 occurs when an incorrect SVC number is specified in the ADARUN parameters for a nucleus. It can occur during Adabas initialization, during the first Adabas call from a user program, or when the ID table is queried by another Software AG server such as Entire Net-Work.

ADASIP has been enhanced to prevent this from arising. If you attempt to install an instance of ADASVC using an SVC number that is presently associated with another subsystem name, ADASIP will terminate with abend 435.

Requirements for Cross-Memory Services

Due to the implementation of cross-memory services in z/OS, the following points should be noted when running an Adabas nucleus in MULTI mode:

- a maximum of one step of a job can establish the cross-memory environment. This means that a job can include at most one step that is a target (for example, an Adabas nucleus).
- cross-memory accesses may not be made to a swapped-out address space. Therefore, the address space of an Adabas nucleus is set to "nonswappable" for the duration of the nucleus session. This can increase the installation's real storage requirements. This behavior is documented in the IBM manual Extended Addressability Guide, chapter Synchronous Cross-Memory Communication.
- when a nucleus with an active cross-memory environment terminates either normally or abnormally, the entire address space including any initiator is also terminated.

The ASID representing this address space is not reassigned until the next IPL. Therefore, you should choose a sufficiently high value for the MAXUSERS parameter in the active IEASYSxx member of SYS1.PARMLIB or—if your system supports it—the RSVNONR parameter in the same member can be adjusted accordingly. Also, the Adabas nucleus should not be stopped and started without good reason.

This is described in the manuals referred to in the topics Recovery Considerations and Resource Management. Additional information can be found in IBM APARs OZ61154, OZ61741, and OZ67637.

To make its services available to all address spaces in the system, the Adabas nucleus must obtain a system linkage index (LX) from z/OS. The LX is a reserved slot in the linkage space of all address spaces, and permits system-wide linkage to all address spaces.

If your configuration is using z/OS 1.6 or later and your hardware supports the Address Space and LX Reuse Facility (ALRF), the version 8 ADASVC will make use of reusable system LXs. Otherwise, a non-reusable system LX will be used as in previous releases. Reusable system LXs resolve the constraints imposed by non-reusable LXs. The remainder of this section discusses these constraints.

The number of non-reusable LXs set aside by z/OS for system use is rather small (usually 165 out of a possible 2048).

Because of the way z/OS use cross-memory services, non-reusable system LXs obtained by Adabas cannot be returned to z/OS until the next IPL. However, the system that owns the LXs can reuse them, even for a different address space. Adabas makes use of this feature by identifying used LXs in a table in CSA, where they are available to future nuclei.

The number of non-reusable system LXs can be specified in the member IEASYSxx contained in SYS1.PARMLIB, using the NSYSLX parameter. If you change this value, you must perform an IPL to make the change effective.

To determine an appropriate NSYSLX value, consider the following points:

- some LXs are probably already being used by other system functions. Therefore, the chances of creating an LX shortage for other users is small.
- Adabas requires one system LX for each Adabas nucleus (or any other target) that will be active concurrently. A value of decimal 64 would allow concurrent execution of up to 64 Adabas nuclei or other targets with little chance of restricting other components using LXs.
- Entire Net-Work Version 5 uses only one LX and one ID table entry, regardless of how many remote databases it must represent. This is unlike the pseudo-MPM concept of earlier Entire Net-Work versions.
- whenever ADASIP is executed with the REPLACE option, all LXs saved in the current ID table are lost until the next IPL.

Likewise, if a session ends either normally with the FORCE operator command or abnormally during ESTAE processing (for example, by an S222 operator cancel or by a S722 spool limit exceeded abend during a snap dump), the LX also cannot be recovered until the next IPL.

Any commands sent to these targets receive an S0D6 abend. Any attempt to restart the nucleus results in an ADAM98 message DUP ID (LOCAL), followed by an abend. To resolve both of these problems, restart the nucleus with the ADARUN FORCE=YES and IGNDIB=YES parameters.

The first target that tries to obtain a system LX when none is available ends with an S053 abend code and reason code 0112. No additional targets can be started until the next IPL.

Requirements for Global Resource Serialization

Adabas uses Global Resource Serialization (GRS) to synchronize the execution of Adabas nuclei and utilities at certain points in their processing. It is vital that GRS be set up correctly in the system so that GRS requests by Adabas will be effective.

When setting up GRS, consider the following:

- Adabas uses the GRS macros ENQ and DEQ with systems-wide scope (SCOPE=SYSTEMS) and major name 'ADABAS' (QNAME).
- if the database resides on disks that are shared between multiple images of the operating system (multiple LPARs or machines) and Adabas nuclei or utilities may be run against the database from several of these images, make sure that GRS is installed in a way that systems-wide ENQ requests are effective on all of these system images.

Using EXCPVR

Adabas performance and system throughput are improved when you use EXCPVR rather than EXCP, due to a reduction in channel program translation overhead.

For Adabas to invoke EXCPVR, the following conditions must be met:

- The Adabas modules must reside in an APF-authorized library.
- ADARUN must be linked with SETCODE AC(1).

Running the Adabas nucleus and utilities APF-authorized is now a standard. For more information, read *APF Authorization Requirement*, elsewhere in this guide.

Prior versions of Adabas tied the use of EXCP or EXCPVR for database I/Os to the APF-authorization of the load library. EXCP was always used when running non-APF-authorized; EXCPVR was always used when running APF-authorized. If you wanted to use EXCP when running APF-authorized, you were required to apply special A\$- or AY- zaps.

Adabas 8 introduces a new ADARUN parameter, EXCPVR, available in z/OS environments. Using this parameter, you can specify whether EXCP or EXCPVR is used when running APF-authorized. If the EXCPVR parameter is set to "YES", EXCPVR is used; if it is set to "NO", EXCP is used. If the EXCPVR parameter is set to "YES" when running from a non-APF-authorized load library, the EXCPVR parameter is ignored. For complete information on the use of this parameter, read EXCPVR: Control EXCP or EXCPVR Use, in Adabas Operations Manual.

In addition to the EXCPVR parameter, another ADARUN parameter, PGFIX, affects EXCPVR use. When EXCPVR is used on z/OS systems, the PGFIX parameter controls whether pages containing

I/O control blocks are released after I/O processing is completed or after the job has ended. This parameter is valid only for z/OS users of EXCPVR. When the PGFIX parameter is set to NO, pages containing the I/O control blocks are fixed only for the duration of the I/O processing; when it is set to YES, pages containing the I/O control blocks are fixed for the duration of the job. For complete information on the use of this parameter, read *PGFIX*: *EXCPVR Page Fixing Control*, in *Adabas Operations Manual*.

Creating a Shareable ADARUN

The ADARUN module delivered in the Adabas load library is not reusable. If you need a shareable ADARUN, you will need to relink it with the REUS=YES link-edit attribute.

Linking ADARUN with the reusable option permits several programs running in the same address space to share the same ADARUN and ultimately, the same copy of ADALNK. This is important when it is necessary to have only one Adabas user ID for the different programs, and is also needed if single copies of ADALNK user exits are required.

To create a shareable ADARUN, use the sample job JCLLINRR in the JOBS library to relink it with the REUS attribute.

If both nonreusable and reusable versions of ADARUN are required, they must be located in different load libraries since both must be loadable using the name ADARUN.

Storage Above 16 MB

Adabas can acquire a number of its required areas, including buffer space, above the 16-MB addressing limit, allowing Adabas to increase the buffer pool size.

To reverse the space allocation to be below the 16-MB limit, set the AMODE value in the MODE statement in the example below to AMODE(24):

```
//LINKRUN EXEC PGM=IEWL,PARM='REUS'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//ADALIB DD DSN=user.loadlib,DISP=SHR
//SYSLMOD DD DSN=user.loadlib,DISP=SHR <=APF-authorized library
//SYSLIN DD *
MODE AMODE(24),RMODE(24)
SETCODE AC(1)
INCLUDE ADALIB(ADARUN)
NAME ADARUN(R)</pre>
```

In addition, Adabas must be run with a sufficient REGION specification, either on the JOB or EXEC statement or as an installation default. For example:

//BIG JOB ..., REGION=30M,...

Storage Above 2 GB (64-Bit)

- Real Storage
- Virtual Storage

Real Storage

Adabas can exploit storage occupying real pages above the 2-gigabyte line. This capability allows Adabas I/Os to use 64-bit real addresses.

Support for 64-bit real storage is available whether you are running APF-authorized (using EX-CPVR) or not (using EXCP). The run mode is indicated in the ADAI65 message:

ADAI65 EXCPVR IS {BEING | NOT BEING} USED FOR THIS RUN IN ESA64 MODE

Support for 64-bit real storage requires either

- z/OS R10 in ARCHLEVEL=2 (that is, z/architecture mode); or
- z/OS 1.2 or above

on a processor of the IBM 2064 family with an LPAR greater than 2 gigabytes for real storage allocation.

Virtual Storage

IBM supports 64-bit virtual storage only for z/OS 1.2 or above.

Software AG provides support for IBM's 64-bit virtual storage with the product Adabas Caching Facility (ACF). Contact your Software AG representative for more information.

A demo of Adabas Caching Facility is delivered in the ADA vrs. ALLINPL file (where vrs is the number of the latest Adabas version delivered on the tape).

Applying Zaps

Use the z/OS AMASPZAP utility to apply zaps in the respective operating system; this method verifies (VER) and replaces (REP) data. The following sample JCL executes AMASPZAP:

```
//ADAZAP JOB
//STEP1 EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=X
//SYSLIB DD DSN=ADABAS.ADAvrs.LOAD,DISP=SHR
//SYSIN DD *
(zap control statements)
/*
//
```

—where the following are examples of zap control statements:

```
NAME membername csectname
VER displacement data
REP displacement data
IDRDATA (up to eight bytes of user data)
* (comment)
```


Note: In VER and REP statements, spaces must be used to separate command, displacement, and data. Commas are acceptable data separators; however, commas with spaces or spaces alone are not, and may cause errors.

Adabas 8 Adalink Considerations

Note: For information about connecting a database that is enabled for data conversion using the universal encoding service (UES), see the section *Enabling Universal Encoding Support* (UES) for Your Adabas Nucleus.

This section covers the following topics:

■ Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)

ADAUSER Considerations

Link Routine User Exit 1 (Pre-Command) and User Exit 2 (Post-Command)

One or two user exits may be linked with an Adalink routine:

Link routine user exit 1, LUEXIT1, receives control *before* a command is passed to a target with the router 04 call.

Note: Special commands emanating from utilities and from Adabas Online System are marked as physical calls. These calls must be bypassed in user exits. These calls have X'04' in the first byte (TYPE field) of the command's Adabas control block (ACBX). LUEXIT1 must check this byte and return if it is set to X'04'. Be sure to reset R15 to zero on return.

Link routine user exit 2, LUEXIT2, receives control after a command has been completely processed by a target, the router, or by the Adalink itself.

At entry to the exit(s), the registers contain the following:

Register	Contents
1	Address of the UB.
	If the flag bit UBFINUB is reset, the contents of the halfword at Adabas + $X'86'$ have been moved to UBLUINFO. If those contents are greater than zero, the two bytes starting at UBINFO (UB+ $X'40'$) have been set to zero.
	If UBFINUB is set, no changes can be made to the UB or ACB (except for ACBRSP).
2	Address of an 18-word format 1 register save area
13	For CICS, on entry to the link user exit, R13 points to the CICS DFHEISTG work area at $xxxxxxxxxx$.
	For batch/TSO, R13 points to the link routine's work area.
14	Return address
15	Entry point address: LUEXIT1 or LUEXIT2

Any registers except register 15 that are modified by the user exits must be saved and restored; the address of a save area for this purpose is in register 13.

If at return from LUEXIT1, register 15 contains a value other than zero (0), the command is not sent to the target but is returned to the caller. The user exit should have set ACBXRSP to a non-zero value to indicate to the calling program that it has suppressed the command: response code 216 is reserved for this purpose.

The LUEXIT1 exit may set the UB field UBLUINFO to any lesser value, including zero; an abend occurs if the user exit sets UBLUINFO to a greater value. The UBLUINFO length cannot be changed when any other exit is used.

The user information received by a LUEXIT2 exit may have been modified; this modification may include decreasing its length, possibly to zero, by any of the Adalink user exits.

An Adalink routine can return the following non-zero response codes in ACBXRSP:

Response Code	Description
213	No ID table
216	LUEXIT1 suppressed the command
218	No UB available

ADAUSER Considerations

ADAUSER is a program that links the user to Adabas. It is specific to an operating system and is independent of release level and mode. It can be used in batch and in some TP environments.

ADAUSER contains the entry point ADABAS and should be linked with all user programs that call Adabas. No other programs containing the CSECT or entry point name ADABAS can be linked in these load modules.

On the first Adabas call, ADAUSER loads the latest version of ADARUN. This makes the calling process release-independent. Subsequent Adabas calls bypass ADARUN.

ADARUN processes its control statements. For the ADARUN setting PROGRAM=USER (the default), ADARUN loads the non-reentrant Adalink modules. To load a reentrant batch link routine, use the ADARUN parameter PROGRAM=RENTUSER. This makes the calling process mode-independent.

Adabas 7 Adalink Considerations

Note: For information about connecting a database that is enabled for data conversion using the universal encoding service (UES), see the section *Enabling Universal Encoding Support* (UES) for Your Adabas Nucleus.

User Exit B (Pre-Command) and User Exit A (Post-Command)

One or two user exits may be linked with an Adalink routine (SMA job number I088):

■ UEXITB receives control before a command is passed to a target with the router 04 call.

Note: Special commands emanating from utilities and from Adabas Online System are marked as physical calls. These calls must be bypassed in user exits. These calls have X'04' in the first byte (TYPE field) of the command's Adabas control block (ACB). UEXITB must check this byte and return if it is set to X'04'. Be sure to reset R15 to zero on return.

UEXITA receives control after a command has been completely processed by a target, the router, or by the Adalink itself.

At entry to the exit(s), the registers contain the following:

Register	Contents
1	Address of the UB (user buffer).
	If the flag bit UBFINUB is reset, the contents of the halfword at Adabas + X'86' have been moved to UBLUINFO. If those contents are greater than zero, the two bytes starting at UBINFO (UB+X'40') have been set to zero.
	If UBFINUB is set, no changes can be made to the UB or ACB (except for ACBRSP).
2	Address of a 16-word save area (for ADALNC only)
13	Address of an 18-word save area (for non-CICS Adalink exits)
14	Return address
15	Entry point address: UEXITB or UEXITA

Any registers except register 15 that are modified by the user exits must be saved and restored; the address of a save area for this purpose is in register 13 (or register 2 for ADALNC).

If at return from UEXITB register 15 contains a value other than zero, the command is not sent to the target but is returned to the caller. The user exit should have set ACBRSP to a non-zero value to indicate to the calling program that it has suppressed the command: response code 216 is reserved for this purpose.

The UEXITB exit may set the UB field UBLUINFO to any lesser value, including zero; an abend occurs if the user exit sets UBLUINFO to a greater value. The UBLUINFO length cannot be changed when any other exit is used; for example, Adabas Review or Adabas Fastpath.

The user information received by a UEXITA exit may have been modified; this modification may include decreasing its length, possibly to zero, by any of the Adalink user exits.

An Adalink routine can return the following non-zero response codes in ACBRSP:

Response Code	Description
213	No ID table
216	UEXITB suppressed the command
218	No UB available

At least the following three equates, described at the beginning of the source, can be modified before an Adalink routine is assembled. In some Adalink routines, however, the corresponding information can be zapped:

Equate	Description
LOGID	The default logical ID, ranging in value from 1 to 65535. The default is 1.
LNUINFO	The length of the user information to be passed to Adalink user exits, ranging in value from 0 to 32767. The default is 0.
SVCNR	The Adabas SVC number; its range of values and the default depend on the operating system. This value can be provided as SYSPARM value for assembly of the following Adalink routine:
	//EXEC PGM=ass,PARM=',SYSPARM(<i>svcnr</i>)'

The first 152 (X'98') bytes of all Adabas Adalinks must maintain the following structure:

Offset	Label	Contents	Meaning
00	ADABAS		Entry code
12		CL6'ADALN <i>x</i> '	Program name
18		XL4'yyyymmdd'	Assembly date
1C		A(ZAPTAB)	Address of zap table
20	PATCH	XL96'00'	Patch area
80	LNKLOGID	AL2(LOGID)	Default logical ID (default: 1)
82		82 XL2′00′	Reserved
84	LNKSVC	SVC SVCNR	Executable SVC instruction for Adabas SVC (default: operating-system-dependent)
86	LUINFO	Y(LNUINFO)	Length of user information (default: 0)
88	VUEXITA	V(UEXITA)	Address of user exit after call (weak)
8C	VUEXITB	V(UEXITB)	Address of user exit before call (weak)
90	ADABAS51	CL8'ADABAS51'	IDT ID

ADAUSER Considerations

ADAUSER is a program that links the user to Adabas. It is specific to an operating system and is independent of release level and mode. It can be used in batch and in some TP environments (such as TSO).

ADAUSER operates in the following way:

- ADAUSER contains the entry point ADABAS and should be linked with all user programs that call Adabas. No other programs containing the CSECT or entry point name ADABAS can be linked in these load modules/phases.
- on the first call to Adabas, ADAUSER loads the latest version of ADARUN. This makes the calling process release-independent. Subsequent Adabas calls bypass ADARUN.
- ADARUN processes its control statements. If the ADARUN PROGRAM parameter has the (default) value USER, ADARUN loads ADAIOR and, depending on whether the ADARUN MODE para-

meter specifies MULTI or SINGLE, loads the appropriate TP Adalink or ADANUC, respectively. This makes the calling process mode-independent.

4 Installing Adabas with TP Monitors

■ Preparing Adabas Link Routines for IBM Platforms	42
■ Installing Adabas with IMS TM under Adabas 8	46
General Considerations for Installing Adabas with CICS	48
■ Installing Adabas with CICS under Adabas 8	50
■ Installing the CICS High-Performance Stub Routine for Adabas 8	52
■ Installing Adabas with Com-plete under Adabas 8	76
General Considerations for Installing Adabas with Batch/TSO	78
■ Installing Adabas with Batch/TSO under Adabas 8	80
Establishing Adabas SVC Routing by Adabas Database ID	82
■ Modifying Source Member Defaults (LGBLSET Macro) in Version 8	

This chapter provides information needed to install Adabas in batch mode and with its teleprocessing (TP) monitors.

Preparing Adabas Link Routines for IBM Platforms

This section describes the preparation of Adabas link routines for TP monitors for IBM platforms. The source modules for Adabas 8 link routines are not provided in the Adabas 8 base source library. The Adabas 8 link routines can only be tailored via zap or using a link globals table.

- Addressing Mode Assembly Directives in Adabas Link Routines
- UES-Enabled Link Routines

Addressing Mode Assembly Directives in Adabas Link Routines

All Adabas 8 link routines include AMODE and RMODE assembly directives. These assembly directives allow the linkage editor to produce warning messages when conflicting AMODE or RMODE linkage-editor control statements are encountered in the link JCL, JCS, or EXECs.

These assembly directives also serve to document the preferred AMODE and RMODE for each link routine. It is important to note that in and of themselves, these directives do not alter the actual addressing mode of the link routine during execution.

Re-linking Adabas 8 Link Routines

When re-linking the Adabas 8 link routines with certain AMODE and RMODE combinations, a warning message may be generated by the linkage editor. This may be safely ignored as long as it pertains to a conflict of AMODE or RMODE in the ESD record of one or more of the load modules that comprise the link routine, and as long as the resulting module has the proper AMODE and RMODE attributes for execution with the intended calling application programs.

Care must be taken to ensure that AMODE(24) applications will operate properly when invoking the link routine with the attributes chosen when it is re-linked. This is particularly important if the RMODE(ANY) attribute is associated with a link routine that will be loaded dynamically but invoked by a program that is AMODE(24). In this case, the link routine should be re-linked AMODE(31),RMODE(24) to avoid addressing exception ABENDs because the AMODE(24) application cannot correctly invoke the link routine if it resides above the 16-megabyte line.

The Adabas 8 link routines all run AMODE(31) after initialization, but they will return to the caller in the caller's AMODE.

Note: Under CICS, the version 8 links run AMODE (31), but the Dataloc RDO parameter governs the AMODE and RMODE of the running CICS transaction.

The batch/TSO non-reentrant link routine, ADALNK, has been assembled and linked with AMODE(31),RMODE(24), and that is the recommended configuration to support AMODE(24) or

RMODE(24) application programs. It may be re-linked AMODE(31), RMODE(ANY) if desired, but this should only be done if it is certain that all calling programs are AMODE(31).

The ADALNKR batch TSO reentrant link routine has been assembled and link-edited with AMODE(31),RMODE(ANY). If it is loaded by an application that is AMODE(24), it should be relinked AMODE(31),RMODE(24).

The z/OS Com-plete module ADALCO has been assembled and linked AMODE(31),RMODE(ANY). The Com-plete TP monitor ensures proper AMODE switching between AMODE(24) or RMODE(24) programs that invoke ADALCO through the Com-plete Adabas interface routine, TLOPADAB.

All of the V8 CICS link routine modules - ADACICS, ADACICT, ADACICO and ADACIRQ - have been assembled and link-edited AMODE(31),RMODE(ANY). CICS manages the loading of programs and their invocation depending on the DATALOC values associated with their program and transaction definitions.

The Adabas IMS interface link routine ADALNI has been assembled and link-edited AMODE(31),RMODE(ANY). This is the preferred configuration for modern IMS applications, but if there are still AMODE(24) IMS applications executing at your installation, ADALNI may be re-linked AMODE(31),RMODE(24).

ADAUSER AMODE/RMODE Considerations

Software AG recommends that all batch applications invoke Adabas calls through the ADAUSER module. This module is normally link-edited with the application program and it then loads the appropriate link routine as well as ADARUN and ADAIOR/ADAIOS. The source member has the AMODE and RMODE directives coded as AMODE 31, RMODE ANY. This is the most flexible configuration for assembling and linking ADAUSER with the widest variety of application programs. However, if ADAUSER is dynamically loaded, either the RMODE assembler directive should be changed to RMODE 24 before re-assembling it or the ADAUSER module should be re-linked AMODE (31),RMODE (24) to ensure that AMODE 24 application programs may invoke it properly below the 16-megabyte line.

UES-Enabled Link Routines

The source code for the Adabas 8 batch and TSO link routines is not included with Adabas 8. These modules are delivered with LNKUES along with the ASC2EBC and EBC2ASC translation tables. Please run with these UES components for this version of Adabas 8. The link routine will detect if a Version 8 target database is not UES-enabled, and will provide an Adabas response 228 if the call is from a client requiring UES translation.

The Adabas 8 Com-plete link routine determines whether UES support is required from the settings in the LCOGBL module that you modify and assemble when installing Adabas with Com-plete. For complete information, read *Installing Adabas with Com-plete*, elsewhere in this guide.

This section covers the following topics:

- Default or Customized Translation Tables
- Calling LNKUES and LNKUES7
- Adabas 8 Jobs for z/OS Universal Encoding Support
- Disabling UES Support for Adabas 8 Routines

Default or Customized Translation Tables

By default, the load modules for all Adabas 8 link routines have been linked with LNKUES and the default translation tables.

LNKUES converts data in the Adabas buffers and byte-swaps, if necessary, depending on the data architecture of the caller.

The two standard translation tables are:

- ASC2EBC: ASCII to EBCDIC translation; and
- EBC2ASC: EBCDIC to ASCII translation.

The Adabas translation table pair is provided in the section *Translation Tables*.

You may use the load modules with the default translation tables linked in, or you may prepare your own customized translation tables, re-assemble the tables, and link them with the LNKUES or LNKUES7 module that is delivered.

Notes:

- 1. It should only be necessary to modify these translation tables in the rare case that some country-specific character other than "A-Z a-z 0-9" must be used in the Additions 1 (user ID) or Additions 3 field of the control block.
- The LNKUES module is functionally reentrant; however, it is not linked that way in the Adabas load library.
- 3. When linking the LNKUES load module and the translation tables, the linkage editor may produce warning messages concerning the reentrant or reusability status of the linked module. These warning messages can be ignored.
- 4. If relinking an Adabas 8 link routine for UES support, the LNKUES module must be included. This will ensure that your new Adabas 8 applications have support for Adabas 8 direct calls and control blocks.

Calling LNKUES and LNKUES7

LNKUES is called only on Adabas link routine request (X'1C') and reply (X'20') calls if the first byte of the communication ID contains X'01' and the second byte does not have the EBCDIC (X'04') bit set. In Adabas 8 requests, LNKUES receives control before UEXIT1. In Adabas 8 replies, LNKUES receives control after UEXIT2.

Adabas 8 Jobs for z/OS Universal Encoding Support

The following lists the sample jobs provided to manage universal encoding support in Adabas link routines in z/OS environments:

Sample Job	Description
LNKGCICS	Assembles and links the CICS globals table with LNKUES and the default translation tables ASC2EBC and EBC2ASC.
LNKLCO8	Links the Com-plete link globals table with LNKUES and the default translation tables ASC2EBC and EBC2ASC.
LNKLNI8	Links the IMS link routine with the LNIGBL link globals table, LNKUES, and teh default translation tables ASC2EBC and EBC2ASC.
LNKLNK8	Links the batch link routine with the LNKGBLS link globals table, LNKUES, and the default translation tables ASC2EBC and EBC2ASC.
LNKLNKR8	Links the reentrant batch link routine with the LNKRGBL link globals table, LNKUES, and the default translation tables ASC2EBC and EBC2ASC.

Before you can use any of these jobs, they should be edited to prepare the JOB card, update the load library names, and make other changes as necessary for your environment. Refer to the comments in the jobs themselves for more information.

Disabling UES Support for Adabas 8 Routines

This section describes how to disable UES support in the Adabas 8 IMS TM, Com-plete, and batch/TSO link routines, if for some reason you feel it is necessary.

To disable UES support in link routines:

- Edit the link globals table for the associated link routine. Set the UES parameter setting to NO.
- 2 Assemble the link globals table after making any other necessary modifications to the equates and other directives in the source module as required by your installation.
- 3 Link the Adabas link routine with the newly assembled link globals table and do not include any of the UES components (that is, LNKUES, ASC2EBC, or EBC2ASC).

For more information about the specific link routines, read *Installing Adabas with IMS TM under Adabas 8, Installing Adabas with Com-plete under Adabas 8,* and *Installing Adabas with Batch / TSO under Adabas 8,* elsewhere in this guide.

Installing Adabas with IMS TM under Adabas 8

This section describes installation of the Adabas link routine for the IMS TM TP monitor with Adabas 8.

IMS requires an Adabas link routine if it is to communicate with Adabas databases. The Adabas Version 8 executable default link routine is delivered in member ADALNI of the AII vrs.LOAD library (where vrs is the number of the latest Adabas version delivered on the tape). If you want to modify this link routine, use member ADALNI8 to do so. ADALNI8 must be linked with a link globals module you prepare and with any link routine exits you require to create the final ADALNI load module that is loaded by the IMS message processing program (MPP) regions when an application calls them. Members ADALNI and ADALNI8 are provided with some default settings.

This section covers the following topics:

- IMS TM Link Routines for Adabas 8
- Obtaining the Adabas User ID
- Obtaining the SAF ID
- Installation Procedure under Adabas 8

IMS TM Link Routines for Adabas 8

These are Adabas 8 link routines for IMS TM:

- ADALNI is the executable default module for message processing programs (MPPs). If you require no changes to the defaults provided in the link routine, use this module.
- Use ADALNI8 as the base module for message processing programs (MPPs). If you need to tailor ADALNI for your installation, use ADALNI8 to generate an updated ADALNI.
- ADALNK is the batch Adabas link routine for batch message processing (BMP) programs, batchoriented BMP programs, and batch processing programs (DLIBATCH).

ADALNI and ADALNK use the CSECT name and ENTRY directive ADABAS by default.

The Adabas Version 8 ADALNI and ADALNK are UES-enabled as distributed. See the section *Enabling Universal Encoding Support (UES) for Your Adabas Nucleus* for more information.

This section describes using ADALNI and ADALNI8 only. For information on using ADALNK, read *General Considerations for Installing Adabas with Batch/TSO*, elsewhere in this guide.

Obtaining the Adabas User ID

The Adabas user ID is obtained at execution time by the ADALNI load module from the LTERM field (first eight bytes) of the IOPCB. The user ID is stored in the Adabas user block field UBUID and will be used for the last eight bytes of the Adabas communication ID.

Obtaining the SAF ID

The SAF ID is supported for use by Adabas SAF Security (ADASAF) if an external security package such as IBM's RACF or CA's ACF2 is present. The SAF ID is obtained at execution time by the ADALNI load module from the user ID field (bytes 33-40) in the IOPCB. To get a valid SAF user ID, SAF sign-on must be active in your IMS installation and the user must have performed an IMS /SIGN command to log onto an IMS terminal.

Installation Procedure under Adabas 8

- To modify the default settings and prepare the Adabas 8 link routine for IMS:
- 1 Copy the sample member LNIGBL provided in the Adabas 8 AII vrs.SRCE library to any appropriate user source library where they can be modified. These modules contain LGBLSET parameters that are used to create default settings for link components. A complete description of LGBLSET parameters can be found in *Modifying Source Member Defaults (LGBLSET Macro) in Version 8*, elsewhere in this guide.
- 2 Modify the LNIGBL member in the user source library.
 - **Note:** The OPSYS parameter must be set to ZOS.
- 3 Modify and run sample job ASMGBLS as described at the top of the job. ASMGBLS can be found in the Adabas 8 ADA vrs. JOBS library. When fully modified, the SET statement in the job should reference the LNIGBL member you prepared in the previous step and the NAME link edit control statement should reference the name specified by the GBLNAME parameter in the LNIGBL member.
 - Once modified, submit the ASMGBLS job to assemble and link-edit the link globals module.
 - A new link globals module (with the name specified by the GBLNAME parameter in LNIGBL) will be generated in the user load library identified in the ASMGBLS job.
- 4 Copy sample job LNKLNI8 to a user source library and modify it to link the new link globals module you created in the previous step and any required exits with the ADALNI8 base module. Instructions for modifying the sample job are described at the top of the job. Be sure to direct the output from this job to an appropriate user load library. LNKLNI8 can be found in the Adabas 8 AII*vrs*.SRCE library.

The module resulting from this job is ADALNI.

5 Place the ADALNI module in a load library available for IMS MPP regions.

The Adabas 8 link routine is prepared.

General Considerations for Installing Adabas with CICS

The macro-level link routine ADALNC is no longer supported for all levels of CICS running under z/OS. These environments must run a current version of Adabas and use the supplied command-level link component.

The Adabas command-level link routine supports the CICS transaction server (CTS) environment.

Notes:

- 1. The OPID option for the USERID field is not supported under CICS/TS 1.1 and above; therefore, it is not provided with the command-level link routine.
- 2. The CICS components from Adabas 7.4 or later are required when running with an Adabas 8 SVC.

The following sections describe specific points of Adabas/CICS installation and operation from the CICS perspective:

- Adabas Bridge for VSAM Considerations
- CICS MRO Environment Requirements
- Using CICS Storage Protection
- Sample Resource Definitions

Adabas Bridge for VSAM Considerations

If you are running Adabas Bridge for VSAM 4.2 or 5.1 under CICS, you must run CICS 3.3 or above and the Adabas Version 7.1 or above command-level link routine.

CICS MRO Environment Requirements

If you run the Adabas CICS command-level link routine with the CICS multiple region option (MRO), you must set the MRO parameter to "YES" and use the default for the NETOPT parameter. In an Adabas 8 installation, these parameters are supplied via the LGBLSET macro (read *Modifying Source Member Defaults* (*LGBLSET Macro*) *in Version 8*, elsewhere in this section).

You can use the LGBLSET NTGPID parameter to provide a 4-byte literal for the Adabas communication ID to be used by the Adabas SVC when applications that call Adabas span multiple application regions.

Alternatively, you can create a user exit for the link routine that:

- sets UBFLAG1 (byte X'29' in the UB DSECT) to a value of X'08' (UBF1IMSR); and
- places a 4-byte alphanumeric value in the UB field UBIMSID.

This exit is link user exit 1 (LUEXIT1). The exit then allows the Adabas SVC to provide a proper Adabas communication ID in the Adabas command queue element (CQE) even when transactions originate in multiple regions.

Using CICS Storage Protection

The storage protection mechanism (STGPROT) was introduced under CICS/ESA 3.3. Storage protection permits resources to access either CICS or user storage by using the storage protection keys.

- User keys may not overwrite CICS storage, thus affording a degree of protection to CICS.
- CICS keys may read or write either CICS or user key storage, affording the highest degree of access to CICS resources.

Transaction isolation is an extension of the storage protection mechanism. It further protects CICS resources by isolating them in subspaces. This protects user key resources from one another, and protects CICS key resources from the CICS kernel. Transaction isolation can be enabled globally through the CICS TRANISO system initialization (SIT) parameter, and for each CICS transaction with the new resource definition ISOLATE keyword. Transaction isolation places some restrictions on CICS resources that must be available both during the life of the CICS system and to all transactions running in the CICS system.

In Adabas 8 installations, the CICS link routine always uses a task-related user exit, module ADACICT, so storage isolation is supported by default.

Sample Resource Definitions

Under CICS/TS 1.1 and above for z/OS and VSE, the preferred method for defining and installing CICS programs and transactions is RDO (resource definition online). The CICS documentation no longer recommends the assembly of PPT and PCT entries to define resources.

Modify and use the sample DEFINE statements located in member DEFADA8 as input to the IBM DFHCSDUP utility to define the Adabas CICS command-level components. Consult the appropriate IBM CICS documentation for information on the DFHCSDUP utility. The DEFADA8 member can be found in the Adabas 8 CICS command-level source library (ACI*vrn*.SRCE).

Installing Adabas with CICS under Adabas 8

- Supplied Modules
- Installation Procedure Under Adabas 8
- Preparing DDLINK Input for CICS

Supplied Modules

The following table lists the modules supplied in your Adabas installation to support the installation of Adabas with CICS under Adabas 8.

Module	Description
ADACICS	CICS command-level module.
ADACICT	CICS task-related user exit (TRUE) module.

Installation Procedure Under Adabas 8

To install the Adabas 8 CICS link routine components, complete the following steps:

- 1 Copy the Adabas 8 CICS load modules from the Adabas distribution library to a load library that will be in the CICS DFHRPL concatenation (see sample member CPYCICSM in the Adabas 8 ADA vrn. JOBS library).
- 2 Modify the sample CICSGBL member found in the Adabas 8 ACIvrn.SRCE library. This member contains sample default installation (LGBLSET) parameter settings. For more information about what to modify in this member, read *Modifying Source Member Defaults* (LGBLSET *Macro) in Version 8*, elsewhere in this section.
 - **Note:** The OPSYS parameter must be set to ZOS.
- 3 Save the modified CICSGBL member with a unique name in an appropriate user source library.
- 4 Modify and run sample job ASMGBLS as described at the top of the job. ASMGBLS can be found in the Adabas 8 ADA vrs. JOBS library. When fully modified, the SET statement in the job should reference the CICSGBL member you prepared in the previous step and the NAME link edit control statement should reference the name specified by the GBLNAME parameter in the CICSGBL member.
- Review and run the LNKGCICS member in the ACI*vrn*.SRCE library to link the newly assembled globals table from the previous step with any user or Software AG product exits. (For information about specific Software AG product exits, read the installation documentation for the product.) The LNKGCICS member provides specific instructions. Be sure to link the globals table into a load library that will be made available to CICS in the DFHRPL library

- concatenation. Note that any user or Software AG link routine exits should be link-edited with this load module.
- 6 Modify the DEFADA8 member to provide the correct name of the link routine globals default table created in the previous step (Step 4). The default module name is CICSGBL. Tailor this member for any other CICS installation values as required.

Note: The Adabas 8 CICS program names, other than the name of the link globals table, are predefined and cannot be changed (for example, ADACICS, ADACICT, ADACIRQ, and ADACICO).

- 7 Run the IBM DFHCSDUP utility to update the CICS CSD file for the desired CICS using the modified DEFADA8 member as input.
- Modify the CICS PLTPI table to add the entries that will enable and start the Adabas CICS task-related user exits (TRUE). Use member ADAPLTXX from the Adabas 8 ACI*vrn*.SRCE library as a sample for enabling and starting a legacy Adabas TRUE and the new Version 8 TRUE in the second phase of the PLT.
- 9 Assemble and link the modified PLTPI table into a library that will be available to the desired CICS region.
- 10 Modify the CICS startup JCL to include the DDLINK DD statement that provides the name of the link globals table prepared in Step 4. For more information on doing this, read *Preparing DDLINK Input for CICS*, elsewhere in this section.
- 11 Start the CICS and note any messages relating to the installation of the Adabas TRUE modules that appear on the console.

Preparing DDLINK Input for CICS

Operation of the Adabas 8 CICS link routines may be tailored for each CICS address space by assembling and linking a link globals defaults table and making that table available to CICS at execution. The table may have any legal load module name that is acceptable to CICS and that does not conflict with existing load module names used in the CICS region.

The globals table must be defined to CICS as a program. Review the provided sample DEFADA8 member found in the Adabas 8 ACI*vrn*.SRCE library to see a definition of the sample called CIC-SGBL. The DEFADA8 member should be modified as necessary and provided as input to the DFHCSDUP utility to define the Adabas 8 components in the CICS CSD. This process is also described as part of the installation procedure under Adabas 8. Consult the IBM CICS documentation for information on the DFHCSDUP utility.

Each link routine globals table for a CICS region may have a unique name. The Adabas 8 CICS link routines are provided this name through an external transient data queue. The queue-name is ADAI and its definition is also provided in the DEFADA8 member.

When the Adabas 8 task-related user exit (TRUE) is enabled via the ADACICO program, either at CICS startup or with the ADAO transaction, the ADACIRQ module is invoked and reads the ADAI transient data queue. The data read is provided in a file, or a partitioned data set member, or as system input through the DDLINK DD statement. The CICS JCL must be modified to provide this DD statement or the default link globals table name "CICSGBL" will be used. If no link globals table is located, the Adabas 8 TRUE will not be enabled and started.

The format of the input data to be read is:

Content	Description
ADALNK	This keyword must appear in columns 1 through 6.
space	A blank space must appear in column 7.
LGTNAME=	The keyword LGTNAME or LGT, followed by an equals sign (=) must appear after the space in column 7, starting in column 8.
or	
LGT=	
module-name	The module name of the prepared link globals table must appear after the equal sign that follows the LGTNAME or LGT keyword.

For example, the following might be added to the CICS JCL:

```
//DDLINK DD DISP=SHR,DSN=dsname
/*
```

Then, the following input data would be stored within the data set dsname:

```
ADALNK LGTNAME=LNKGBLS
```

In this example, the link default globals table named "LNKGBLS" must be prepared, assembled, link-edited, and defined to this CICS.

Installing the CICS High-Performance Stub Routine for Adabas 8

This section describes installation of the CICS high-performance stub routine with Adabas 8. The modules and installation described here are provided so your existing Adabas 8 applications can continue to function as usual.

The Adabas high-performance stub routine extends the direct call interface (DCI) facility that is available with the Adabas CICS command-level link component to applications written in languages other than Software AG's Natural (for example, Assembler, COBOL, PL/I).

Note: The stub routine must be used with the Adabas CICS command-level link component. The stub routine will not function properly with the Adabas CICS/VSE macro-level link

component. The LNCSTUB module delivered in the Adabas Version 8 library will also function properly with Adabas Version 7.4 CICS link routines.

The DCI enables a CICS/TS application to call Adabas through the Adabas command-level link routine. The overhead incurred when the EXEC CICS LINK and EXEC CICS RETURN command set is used to transfer program control is thus avoided. Once the proper environment has been established with the initial call (IC) command from the high-performance stub or Natural 3.1 or above, the DCI permits a BALR interface to be used.

The high-performance stub routine is written in Assembler language. When linked with the application program, it serves as an interface between the application and the Adabas CICS command-level link component. The application program can then issue CALL statements to access the stub routine when executing an Adabas command.

An application at CICS/TS 1.1 level or above derives the following advantages from the high-performance stub:

- improved performance and throughput when issuing Adabas commands under CICS/TS 1.1 or above due to the reduced use of CICS services related to the CICS LINK and RETURN program control mechanism.
- a call mechanism for Adabas requests under CICS/TS 1.1 or above which is simpler than the methods normally employed to pass control with information from one program to another in the CICS environment.

This section covers the following topics:

- Restrictions and Requirements
- Stub Components
- Installation Overview
- Performance Using LNCSTUB
- Modifying Source Member Defaults (ADAGSET Macro)

Restrictions and Requirements

The following restrictions and requirements apply to the high-performance stub routine:

1. CICS/TS 1.1 or above required

The Adabas high-performance stub routine is supported under CICS/TS 1.1 or above.

A CICS transaction work area (TWA) of at least 24 bytes or a CICS COMMAREA of at least 32 bytes must be provided to the application for the proper execution of the high-performance stub routine. The Adabas 8 LNCSTUB module and the Adabas 8 installation verification programs now use the CICS COMMAREA instead of the CICS TWA to pass data between the IVP programs, LNCSTUB, and the CICS link routines. The use of the CICS COMMAREA has the following advantages over the use of the CICS TWA:

- The size of the COMMAREA can be set on a call-by-call basis by the application program, while the TWA size is set when the CICS transaction is defined.
- Applications using the CICS COMMAREA may run in stages II or III of the CICS PLTPI. The CICS TWA is not available during PLTPI processing.
- The dynamic sizing of the CICS COMMAREA is better suited to the unbounded format of the Adabas 8 ACBX direct call, ACBX control block, and Adabas Buffer Descriptions (ABDs). For mor information on the Adabas Version 8 direct call interface and the data structures it uses, read the *Adabas Command Reference Guide*

2. CICS Command-Level Link Required

The application program must be written using the CICS command-level interface and instructions, and may not issue any CICS macro level commands.

3. Supported Programming Languages

The application program may be written in ALC (Assembler language), VS/COBOL, COBOL II, COBOL/LE, PL/I, or C. Installation verification programs (IVPs) are provided in ALC and COBOL in the Adabas source libraries.

Additional requirements for specific programming languages are discussed later in the sections relating to each language.

Stub Components

Туре	Member	Description
Source	ALCSIVP COBSIVP	macro required for assemblink LNCSTUB and ALCSIVP source for the ALC install verification source for the COBOL install verification source for the high-performance stub
Job control	JCLALCI JCLCOBI JCLLNCS	sample JCL for ALC install verification sample JCL for COBOL install verification sample JCL for LNCSTUB (high-performance stub)

Installation Overview

Use the following procedure to install the Adabas CICS high-performance stub routine:

- 1. Edit, preprocess, assemble and link the LNCSTUB module.
- 2. Define the application programs, optional IVPs and CICS link components to CICS using RDO or the DFHCSDUP utility.
- 3. (Optional) Modify, preprocess, compile or assemble, link, and execute the desired installation verification program (IVP).
- 4. Modify, preprocess, compile or assemble, link, and execute the application programs.

This procedure is described in the following steps:

- Step 1: Install the LNCSTUB Module
- Step 2: (Optional) Install and Execute an IVP
- Step 3: Link and Execute the Application Program

Step 1: Install the LNCSTUB Module

The Adabas CICS high-performance stub routine is an Assembler language module provided in source form on the distribution tape in member LNCSTUB.

Step 1 has the following substeps:

- Edit the ADAGSET Macro
- (Optional) Set the LNCSTUB Entry-Point Alias
- Modify Member JCLLNCS
- Preprocess, Assemble, and Link the LNCSTUB Module
- Make the LNCSTUB Available to Application Programs

Edit the ADAGSET Macro

Note: For information about editing the ADAGSET macro, refer to the section *Modifying Source Member Defaults (ADAGSET Macro)*, elsewhere in this section.

Edit the ADAGSET macro in a library that will be available in the SYSLIB concatenation when LNCSTUB is assembled.

Both the LNCSTUB and the ALCSIVP IVP modules now take values from the following ADAGSET keywords:

- LOGID, which identifies the database ID
- PARMTYP, which determines whether the TWA or COMMAREA is used by the LNCSTUB and the ALCSIVP programs to pass data
- ENTPT, which specifies the name of the CICS link routine or CICS stub to be invoked by the LNCSTUB and ALCSIVP programs. If your Adabas CICS command-level link component program has been linked with a name other than ADACICS, change the value of the ENTPT keyword in the ADAGSET macro. The value in this field is used in the priming EXEC CICS LINK command issued by LNCSTUB.
- TRUENM, which specifies the name of the Adabas TRUE to use

(Optional) Set the LNCSTUB Entry-Point Alias

The Adabas 8 LNCSTUB module provides an assembler GBLC variable (&STBNAME) that sets an entry-point alias that can be used by calling programs. Modify the SETC statement near the top of the LNCSTUB source member to set an alias if desired. The application program can then either issue its call using "LNCSTUB" or the entry-point alias coded in this SETC statement.

Modify Member JCLLNCS

Member JCLLNCS is used to preprocess, assemble, and link the LNCSTUB module. To modify this JCL to meet your site requirements, change the JOB card in the member and the symbolic values as indicated in the following table:

Value	Description	
&SUFFIX	Suffix value used for the CICS translator. The default value is "1\$".	
&ASMBLR	Assembler program used to assemble the LNCSTUB source (ASMA90).	
&M	Member name to be processed; code LNCSTUB or ALCSIVP.	
&STUBLIB	A load library to contain the LNCSTUB load module. This library should be available to application programs when they are linked.	
&INDEX	High-level qualifier for the CICS macro library used in the SYSLIB DD statement for the assembler.	
&INDEX2	High-level qualifier for the CICS load library to use for the translator STEPLIB DD statement, and for the SYSLIB in the link step.	
&ADACOML	Adabas command-level source library containing the ADACB, ADAGDEF, ADAGSET, and LNCDS copy code and macros.	
&ADASRCE	Adabas source library used for additional copy code or macro expansion.	
&STBSRCE	Source library containing the distributed Adabas CICS high-performance stub LNCSTUB.	
&MAC1	Primary system macro library, usually SYS1.MACLIB.	
&OUTC	Output class for messages, SYSPRINT, SYSOUT.	
®	Step region size.	
&NCAL	Value for the linkage editor NCAL parameter. The recommended value is NCAL.	
&LSIZE	Primary and secondary table sizes used by the linkage editor.	
&WORK	DASD device type to use for temporary and utility data sets.	

Preprocess, Assemble, and Link the LNCSTUB Module

Because of the use of 31-bit instructions, the high-level assembler (ASMA90) should be used to assemble the LNCSTUB module after CICS preprocessing.

Note: The LNCSTUB module can be linked reentrant or reusable. If it is linked reentrant, it is automatically reusable; if it is linked reusable, it is not automatically reentrant.

In addition to the CICS macro library, the Adabas CICS command-level source library and standard Adabas source library must be provided to the SYSLIB DD statement in the assembly step:

- Do not concatenate any CICS load libraries in the SYSLIB DD statement when linking the LNCSTUB load module.
- In the SYSLIN data stream after the LNCSTUB object deck, use just the control statement

NAME LNCSTUB(R)

- Do not include the CICS stub modules DFHEAI0 & DFHEAI1 with the LNCSTUB load module. As a result, however, the following occurs:
 - The linkage editor issues IEW462 or similar messages indicating that DFHEAI1 is an unresolved external reference;
 - The LNCSTUB module may be marked NOT EXECUTABLE by the linkage editor;
 - A condition code of 8 may be set in the link step.

When the application program is linked with LNCSTUB, all the external references are resolved. Use of the link-edit parameters LET and NCAL are recommended so the missing CICS stub pieces result in a condition code of '04' from the link-edit of LNCSTUB.

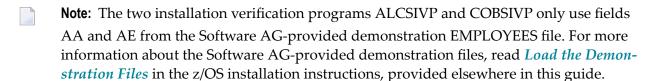
Make the LNCSTUB Available to Application Programs

The LNCSTUB module has an entry name of ADABAS, which can be used by the application program as the object of a CALL statement to pass control to LNCSTUB with a list of parameters. The language-specific calling conventions for LNCSTUB are discussed later in this section.

The LNCSTUB module has either an entry name of LNCSTUB or the alias entry name as coded in the SETC statement to set the value of &STBNAME. Either value may be used by the application program as the object of a CALL statement to pass control to LNCSTUB with a list of parameters. The language-specific calling conventions for LNCSTUB are discussed later in this section.

The LNCSTUB load module must be available to the link step of the application program that is to use the DCI facility.

Note: In the same step, the CICS load library should be available; otherwise, the external references to the CICS stub modules will not be resolved.


Place the LNCSTUB load module in a library available to your application language assembler or compiler so that it will be included when the application programs are linked.

Step 2: (Optional) Install and Execute an IVP

Two installation verification programs (IVPs) are provided in source form: one for Assembler language, and one for COBOL/VS. These programs are samples for implementing the Adabas high-performance stub routine in your applications. They also provide a way of verifying the proper installation of the LNCSTUB module.

This section describes each of these IVPs:

- Install and Execute the Assembler IVP: ALCSIVP
- Install and Execute the COBOL IVP: COBSIVP

Install and Execute the Assembler IVP: ALCSIVP

The source member ALCSIVP is provided to demonstrate and verify the use of the Adabas DCI using the LNCSTUB module. This program issues a series of Adabas commands using the conventional CICS LINK/RETURN mechanism, produces a partial screen of output data, then reexecutes the same call sequence using the Adabas DCI and the LNCSTUB subprogram.

To install and execute the Assembler IVP, ALCSIVP:

- 1 Modify the source member ALCSIVP:
 - Edit the file number field DBFNR to be sure it matches the value needed to access the EM-PLOYEES file on the Software AG-provided demonstration database you intend to use. For more information about the Software AG-provided demonstration files, read *Load the Demonstration Files* in the z/OS installation instructions, provided elsewhere in this guide.

The ALCSIVP program will take the database-id from the LOGID keyword specified in the **ADAGSET macro**.

- Check the fields FBUFF, SBUFF and VBUFF for values consistent with your EMPLOYEES file's FDT and data content.
- Check the name used in the EXEC CICS LINK statement to be sure it matches the name of your Adabas CICS command-level link component program. The field LNCNAME is now used and it derives its value from the ENTPT keyword of the ADAGSET macro.

The entry-point alias of the LNCSTUB module can be tested in ALCSIVP by changing the SETC statement for the field &STUBNM to match the entry-point name coded in the LNCSTUB source module using its SETC fieldname &STBNAME.

Note: The ALCSIVP program will use the value of the ADAGSET keyword PARMTYP to determine whether to use the CICS TWA or CICS COMMAREA to pass data between itself and the Adabas CICS link routine during the first part of its processing when it uses the CICS LINK command to invoke the Adabas CICS link routine. If PARMTYP=TWA is coded in the ADAGSET macro used when ALCSIVP is assembled the CICS TWA is used, otherwise the CICS COMMAREA is used on the EXEC CICS LINK commands.

- 2 Modify the sample job stream, JCLALCI:
 - Member JCLALCI is used to preprocess, assemble, and link the installation verification program ALCSIVP. Place the load module in your CICS DFHRPL library concatenation..
 - To modify this JCL to meet your site requirements, change the JOB card in the member and the symbolic values as indicated in the table used in step 1 (see *Step 1, Modify Member JCLLNCS*).

The JCLALCI member uses one additional symbolic parameter: &CICSLIB. This is the name of your CICS RPL library.

- 3 Using the modified sample JCLALCI member, preprocess, assemble, and link ALCSIVP.
- Add the following RDO entries to your CICS system, or use the RDO facility to add the STB1 transaction to run the ALCSIVP program:

```
DEFINE PROGRAM(ALCSIVP) GROUP(ADABAS)

DESCRIPTION(ADABAS & ASSEMBLER IVP FOR HIGH-PERFORMANCE STUB)

LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)

USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)

EXECKEY(USER) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(STB1) GROUP(ADABAS)

DESCRIPTION(TRANSACTION TO EXECUTE THE ASSEMBLER IVP FOR HIGH-PERFORMANCE STUB)

PROGRAM(ALCSIVP) TWASIZE(32) PROFILE(DFHCICST) STATUS(ENABLED)

TASKDATALOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)

RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)

PRIORITY(1) TRANCLASS(DFHTCLOO) DTIMOUT(NO) INDOUBT(BACKOUT)

RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)

RESSEC(NO) CMDSEC(NO)
```

5 Run the STB1 transaction to execute ALCSIVP. Executing ALCSIVP verifies the LNCSTUB module.

Install and Execute the COBOL IVP: COBSIVP

Member COBSIVP illustrates the use of the Adabas DCI with a COBOL program. COBIVP produces a screen showing output lines produced by a series of Adabas calls executed by the CICS LINK/RETURN facility, followed by the reexecution of these Adabas commands using the DCI.

To install and execute the COBOL IVP, COBSIVP:

- 1 Modify the source member, COBSIVP:
 - Edit the fields WORK-DBID and WORK-FNR to place the desired database ID and file number in the VALUE clauses to access the EMPLOYEES file on the Software AG-provided demonstration database you intend to use. For more information about the Software AGprovided demonstration files, read *Load the Demonstration Files* in the z/OS installation instructions, provided elsewhere in this guide.
 - Ensure that the value in the field LINK-NAME matches the name used in your Adabas CICS command-level link component program.
 - Ensure that the values (literals in the PROCEDURE DIVISION) in the following fields are consistent with the requirements of the EMPLOYEES file FDT and data content you are using:

```
ADABAS-FORMAT-BUFFER,
ADABAS-SEARCH-BUFFER, and
ADABAS-VALUE-BUFFER
```

- 2 Modify the sample job stream, JCLCOBI:
 - Member JCLCOBI is used to preprocess, compile, and link the COBSIVP installation verification program. To modify the JCLCOBI example to meet site requirements, change the JOB card in the member and provide values for the symbolic procedure variables as described in the following table:

Value	Description
&ADALIB	Adabas load library used to provide the ADASTWA load module for the linkage editor.
&MEM	Member name to be processed; in this case, COBSIVP.
&CICSLIB	CICS RPL library where the COBSIVP load module is placed for execution under CICS.
&COBLIB	COBOL compiler STEPLIB.
&INDEX	High-level qualifier for the CICS macro library used in the SYSLIB DD statement for the compiler.
&INDEX2	High-level qualifier for the CICS load library to use for the translator STEPLIB DD statement, and for the SYSLIB in the link step.

Value	Description
&LINKLIB	COBOL LINKLIB.
	Source library containing the distributed Adabas CICS high-performance stub LNCSTUB.
	A load library to contain the LNCSTUB load module. This library should be available to your application programs when they are linked.
&SYSMSG	Output class for translator messages.
&SYSOUT	Output class for SYSOUT and SYSPRINT messages.
&WORK	DASD device type to use for temporary and utility data sets.

- 3 Preprocess, compile, and link COBSIVP:
 - Use the modified JCLCOBI job to preprocess, compile, and link the COBSIVP program. Assemble ADASTWA into a library available to COBOL programs when they are linked. Include the ADASTWA load module in the link of COBSIVP.

Use the modified JCLCOBI job to preprocess, compile, and link the COBSIVP program. COBSIVP now uses the CICS COMMAREA to pass data to the Adabas CICS link routine, so it is not necessary to link the ADASTWA program with COBSIVP for Version 8.

The LNCSTUB subroutine does not use ADASTWA because it places the passed Adabas parameters in the TWA. Thus, the ADASTWA routine is not required when linking COBOL applications that utilize the Adabas DCI through the LNCSTUB module.

- Link the COBSIVP program with the LNCSTUB load module and make the LNCSTUB load module available to the linkage editor to be included with the COBSIVP load module.
 - **Note:** The CICS stub modules are also resolved in the link step.
- 4 Add the following RDO entries to your CICS system, or use the RDO facility to add the STB2 transaction to run the COBSIVP program:

```
DEFINE PROGRAM(COBSIVP) GROUP(ADABAS)

DESCRIPTION(ADABAS s COBOL IVP FOR HIGH-PERFORMANCE STUB)

LANGUAGE(COBOL) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)

USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)

EXECKEY(USER) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(STB2) GROUP(ADABAS)

DESCRIPTION(TRANSACTION TO EXECUTE THE COBOL IVP FOR HIGH-PERFORMANCE STUB)

PROGRAM(COBSIVP) TWASIZE(32) PROFILE(DFHCICST) STATUS(ENABLED)

TASKDATALOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)

RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
```

```
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)
```

5 Run the STB2 transaction to execute COBSIVP. Executing COBSIVP verifies the LNCSTUB module.

Step 3: Link and Execute the Application Program

Once the IVP programs have been successfully executed, the Adabas DCI is ready to be used with real application programs. In step 3, the application program interface (API) is coded to utilize the LNCSTUB subprogram.

Step 3 has the following substeps:

- Modify the application programs that will utilize the Adabas CICS high-performance stub routine in accordance with the guidelines described in the following section.
- Preprocess, compile or assemble, and link the application programs to include the LNCSTUB module.
- Execute the application programs using the Adabas CICS high-performance stub.

Guidelines for Modifying the Application Program

The LNCSTUB load module must be linked with your application program. The application program invokes the DCI interface using a standard batch-like call mechanism. The LNCSTUB module makes any additional CICS requests required to pass data to the Adabas CICS command-level link component.

Programming Languages Supported by LNCSTUB

The LNCSTUB program functions with application programs written in Assembler language, VS/COBOL, COBOL II, COBOL/LE PL/I, and C.

Use of the CICS Transaction Work Area

A transaction that uses the Adabas DCI or the Adabas CICS command-level link component may provide a transaction work area (TWA) at least 28 bytes long. Failure to provide an adequate TWA will result in an abend U636 (abnormal termination of the task).

Use of the CICS COMMAREA

With the Adabas Version 8 CICS link routines and the Adabas 8 LNCSTUB module, use of a CICS COMMAREA to pass data on EXEC CICS LINK commands is strongly recommended. The CICS COMMAREA must be at least 32 bytes in length and the first 8 bytes of the COMMAREA must contain the string "ADABAS52" or "ADABAS8X". The string "ADABAS8X" is for applications that exclusively use the new Adabas Version 8 ACBX direct call interface and its parameter list.

Reentrant Requirement

The application program may or may not be reentrant. The LNCSTUB module has been written to be reentrant, but using linkage editor parameters to mark the LNCSTUB load module as reentrant is not recommended unless the application program will also be marked as reentrant.

CICS Requests Issued by LNCSTUB

The LNCSTUB module issues the following command-level CICS requests whenever it is invoked:

```
EXEC CICS ADDRESS EIB
EXEC CICS LINK
```

If the TWA is used to pass data to the Adabas command-level link:

```
EXEC CICS ADDRESS TWA
EXEC CICS ASSIGN TWALENG
```

DCI Entry Point Address

An EXEC CICS LINK command is issued by LNCSTUB at least once to acquire the DCI entry point from the Adabas CICS command-level link component program. This address is then used for BALR access on all subsequent Adabas calls for a transaction. Thus, the calling application program must provide a fullword (4-byte) field to hold the DCI entry point address obtained by LNCSTUB. This 4-byte field is the first parameter passed to the LNCSTUB module by the call mechanism. The remaining parameters comprise the Adabas parameter list needed to execute an Adabas request. (Either a version 7 or verion 8 parameter list may be used)

DCI Parameter List

The Adabas DCI parameter list expected by the LNCSTUB program is composed of a pointer to the DCI entry point in the Adabas CICS command-level link component followed by the six pointers to the Adabas control block and buffers: format, record, search, value, and ISN.

For information on coding the standard Adabas control block and buffers, refer to the *Adabas Command Reference*.

The Adabas 7 parameter list offsets are summarized in the table below:

Offset	Pointer to the
0	DCI entry point in the Adabas command-level link component
4	Adabas control block
8	Adabas format buffer
12	Adabas record buffer
16	Adabas search buffer
20	Adabas value buffer

Offset	Pointer to the
24	Adabas ISN buffer

All of the parameters except the first (the DCI entry point) are built and maintained by the application program in accordance with the requirements of an Adabas call.

The DCI entry point parameter should be set to binary zeros at the beginning of a task, and should not be modified by the application program thereafter. Software AG strongly recommends that the fields comprising the parameter list be placed in CICS storage (WORKING-STORAGE for COBOL and the DFHEISTG user storage area for Assembler) to maintain pseudo-reentrability.

The following is a sample parameter list for an assembler language program:

```
DFHEISTG DSECT
PARMLIST DS OF
DS A(DCIPTR)
DS A(ADACB)
DS A(ADAFB)
DS A(ADARB)
DS A(ADASB)
DS A(ADAVB)
DS A(ADAIB)
DCIPTR DS F
ADACB DS CL80
ADAFB DS CL50
ADARB DS CL250
ADASB DS CL50
ADAVB DS CL50
ADAIB DS CL200
DFHEIENT CODEREG=(R12), EIBREG=(R10), DATAREG=(R13)
LA R1, PARMLIST
L R15,=V(LNCSTUB)
BALR R14, R15
END
```


Note: The DFHEIENT macro in the Assembler example uses a DATAREG parameter of register 13. This is a strict requirement of the LNCSTUB program. When the LNCSTUB program is invoked, register 13 should point to the standard CICS save area (DFHEISA) and register 1 should point to the parameter list. The best way to ensure this standard is to code the Assembler application with a DFHEIENT macro like the one in the example.

The following is a sample parameter list for a COBOL language program:

```
WORKING-STORAGE SECTION.
01 STUB-DCI-PTR PIC S9(8) COMP VALUE ZERO.
01 ADACB PIC X(80).
01 ADAFB PIC X(50).
01 ADARB PIC X(250).
01 ADASB PIC X(50).
01 ADAVB PIC X(50).
01 ADAIB PIC X(200).
PROCEDURE DIVISION.
CALL 'LNCSTUB' USING STUB-DCI-PTR,
ADACB,
ADAFB,
ADARB,
ADASB,
ADAVB,
ADAIB.
EXEC CICS RETURN END-EXEC.
GOBACK.
```

Restrictions on Application Program Coding

In all other respects, the application program should be coded like a standard CICS command-level routine. As long as the DCI parameter list is correct when LNCSTUB is called, there are no restrictions on the CICS commands that an application can issue.

Standard Batch Call Mechanism Used

As shown in the Assembler and COBOL language program parameter list examples above, the call to the LNCSTUB entry point is accomplished like a batch application. Likewise, calls for the other supported languages should be coded with their standard batch call mechanisms.

Link the Application Programs to Include the LNCSTUB Module

To properly link the LNCSTUB module with application programs, link the application program to include the LNCSTUB module and the CICS stub modules. The method for doing this varies with the programming language used for the application:

- Assembler language programs should include the DFHEAI and DFHEAI0 CICS modules;
- COBOL applications should include DFHECI and DFHEAI0.

To avoid a double reference to the DFHEAI0 module, code the linkage editor REPLACE DFHEAI0 control statement at the beginning of the SYSLIN data deck.

For linking Assembler language programs:

■ For an Assembler program, the SYSLIN input is similar to:

```
INCLUDE DFHEAI
```

The Assembler object input is similar to:

```
REPLACE DFHEAIO
INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAIO)
NAME ALCSIVP(R)
```

When examining the cross-reference from the linkage editor, the symbol "entry-name" must have the same starting location as the LNCSTUB module in the link map.

For linking COBOL language programs:

■ For a COBOL program, the SYSLIN input is similar to:

```
REPLACE DFHEAIO
INCLUDE SYSLIB(DFHECI)
```

The COBOL object input is similar to:

```
INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAIO)
NAME COBSIVP(R)
```

When examining the cross-reference from the linkage editor, the symbol "entry-name" must have the same starting location as the LNCSTUB module in the link map.

For linking PL/I and C language programs:

■ Refer to the IBM manual *CICS System Definition Guide* for information about linking PL/I and C applications under CICS.

Performance Using LNCSTUB

To obtain the best performance from applications using the Adabas direct call interface (DCI), examine how the DCI interface functions at the logical level.

A CICS application using the standard LINK/RETURN mechanism to access the Adabas link routines invokes the CICS program control service for every Adabas request made to the link routine. The LNCSTUB module permits a BALR interface to be used. A BALR interface can substantially reduce the CICS overhead required to pass control from the application program to the Adabas CICS command-level link component.

The LNCSTUB module accomplishes this by using the standard EXEC CICS LINK/RETURN mechanism to make an Initial Call (IC) to the Adabas CICS command-level link routine. The link routine recognizes this call, and returns the entry point address of the DCI subroutine to LNCSTUB. LNCSTUB must then save this address in a location that can be assured of existence throughout the duration of the invoking task. This is why the calling program must provide the 4-byte field to hold the DCI entry point address. After the DCI address has been obtained, and for as long as LNCSTUB receives this address as the first parameter passed to it on subsequent Adabas calls, LNCSTUB utilizes the BALR interface to pass control to the Adabas CICS command-level link component program.

As a consequence of this logic, the more Adabas requests made between ICs, the more efficient the application in terms of passing data to and from Adabas under CICS. In fact, pseudo-conversational applications that issue one Adabas call each time a task is invoked should not be coded to use the DCI because there will be an IC request for each Adabas command issued by the calling program.

An additional performance improvement can be realized by taking advantage of the fact that the Adabas CICS command-level link component program must be defined as resident in CICS. This fact should allow the DCI entry point to be stored across CICS tasks, making it possible for different programs to call the LNCSTUB module with a valid DCI entry point. The IC at each program startup is thus avoided. When this procedure is used, however, any change to the CICS environment that invalidates the entry point address (such as a NEWCOPY) will lead to unpredictable and possibly disastrous results.

It is imperative that at least one IC be made to the Adabas CICS command-level link component program using CICS services. This call is used to trigger the acquisition of shared storage for the Adabas user block (UB) and an array of register save areas. If no IC request is made, Adabas calls will not execute due to a lack of working storage, and to the fact that critical control blocks used by the link routines and the Adabas SVC are not built.

Modifying Source Member Defaults (ADAGSET Macro)

Caution: In Adabas 8, the ADAGSET macro found in the Adabas 8 ACI*vrn*.SRCE library, should only be used for generating default values for the Adabas 8 CICS high-performance stub routine.

To facilitate the assembly of the Adabas CICS high-performance stub routine, Software AG recommends that you program the ADAGSET macro with site-specific default values and put it in a source library that is available in the SYSLIB concatenation during assembly.

The ADAGSET parameter options with their default values (underlined) are described below:

- AVB: Adabas VSAM Bridge Support
- ENABNM: Entry Point Name for Program to Enable Adabas TRUE
- ENTPT: Name of the Adabas CICS Command-Level Link Routine
- LOGID: Default Logical Database ID
- LRINFO: Length of Adabas Review Data Area
- LUINFO: Length of User Data passed to Adabas LNKUEXIT1 and LNKUEXIT2
- LUSAVE: Size of User Save Area for Adabas LNKUEXIT1 and LNKUEXIT2
- LXITAA: Length of Work Area provided to LNKUEXIT2
- LXITBA: Length of Work Area for LNKUEXIT1
- MRO: Multiple Region Option
- NETOPT: Method Used to Create User ID
- NTGPID: Natural Group ID
- NUBS: Number of User Blocks Created By CICS Link Routine
- PARMTYP: Area for Adabas Parameter List
- PURGE: Purge Transaction
- RMI: Resource Manager Interface
- SAF: Adabas SAF Security
- SAP: SAP Application Support
- SVCNO: Adabas SVC number
- TRUE: Adabas Task-Related User Exit
- TRUENM: Name of Adabas Task-Related User Exit
- UBPLOC: User Block Pool Allocation

■ XWAIT: XWAIT Setting for CICS

AVB: Adabas VSAM Bridge Support

Parameter	Description	Syntax
AVB	Indicates whether or not Software AG's Adabas Bridge for VSAM is to be supported by this command-level link routine.	AVB={ <u>NO</u> YES }
	 AVB=YES: Adabas VSAM Bridge is to be supported. AVB=NO: Adabas VSAM Bridge is not to be supported. 	

ENABNM: Entry Point Name for Program to Enable Adabas TRUE

Parameter	Description	Syntax
ENABNM	The entry point name for the program that is run to enable the Adabas	ENABNM={'ADAENAB' ↔
	TRUE during CICS PLTPI processing. The value must be a valid	'name' }
	program name that matches the module name specified in the DFHPLT	
	table at your site. The default value is ADAENAB.	
	This parameter is ignored if TRUE=NO is specified.	

ENTPT: Name of the Adabas CICS Command-Level Link Routine

Parameter	Description	Syntax
	The name given to the Adabas CICS high-performance stub link routine. This name is used in EXEC CICS LINK commands to invoke Adabas services from CICS application programs.	
	See also notes 1 and 2 in the installation procedure.	

LOGID: Default Logical Database ID

Paramete	r Description	Syntax	
LOGID	The value of the default logical database ID. Valid ID numbers are 1-65535.	LOGID=	nnn

LRINFO: Length of Adabas Review Data Area

Parameter	Description	Syntax
LRINFO	The length (in bytes) of the Adabas Review data area to be used by the	LRINFO={ <u>0</u> 256}
	REVEXITB program. The default is zero (Adabas Review is not being	
	used). The minimum (and recommended) value is 256, the size Adabas	
	Review expects when the REVEXITB program is invoked. See the Adabas	
	Review documentation for more information.	

LUINFO: Length of User Data passed to Adabas LNKUEXIT1 and LNKUEXIT2

Parameter	Description	Syntax
LUINFO	Length of the user data to be passed from the CICS link routine to Adabas LNKUEXIT1 and LNKUEXIT2.	LUINFO={ $\underline{0} \mid length$ }
	If LUINFO is not specified, the default is zero (no user save area is passed).	

LUSAVE: Size of User Save Area for Adabas LNKUEXIT1 and LNKUEXIT2

Parameter	Description	Syntax
	Size of the user save area to be used by Adabas user exits LNKUEXIT1 and LNKUEXIT2. If LUSAVE is specified, a value of 72 or higher must be specified.	
	If LUSAVE is not specified, the default is zero (no user data is passed).	

LXITAA: Length of Work Area provided to LNKUEXIT2

Parameter	Description	Syntax
LXITAA	Length of the work area provided to the LNKUEXIT2 user exit program.	$\begin{array}{c} LXITAA = \{ & \underline{0} \iff \\ l & nn \} \end{array}$
	Values from 0 (the default) to 32767 may be specified. 0 indicates that no LNKUEXIT2 program is linked with the Adabas command-level link routine and no data is passed to LNKUEXIT2.	,
1	Note: This parameter is not yet fully implemented. It is provided for future use by the CICS user exit A program linked with LNKOLM.	

LXITBA: Length of Work Area for LNKUEXIT1

Parameter	Description	Syntax
LXITBA	Length of the work area provided to the LNKUEXIT1 user exit program.	LXITBA={ <u>0</u> ↔ nn}
	Values from 0 (the default) to 32767 may be specified. 0 indicates that no LNKUEXIT1 program is linked with the Adabas command-level link routine and no data is passed to LNKUEXIT1.	,
	Note: This parameter is not yet fully implemented. It is provided for future	
	use by the CICS user exit A program linked with LNKOLM.	

MRO: Multiple Region Option

Parameter	Description	Syntax
MRO	The MRO parameter is used to indicate whether or not the CICS multiple region option is to be used.	MRO={ <u>NO</u> ↔ YES }
	If you run the CICS command-level link with the CICS multiple region option (MRO), set $MR0=YES$; otherwise, use the default value $MR0=N0$.	
	If MRO=YES, NETOPT must be set to NETOPT=NO (the default) to prevent non-unique LU names from multiple application regions.	
	If NETOPT=YES and MRO=YES are specified, an assembler MNOTE and a return code of 16 are produced from the assembly step.	

NETOPT: Method Used to Create User ID

Parameter	Description	Syntax
NETOPT	If NETOPT=YES is specified, an 8-byte user ID will be constructed from the	NETOPT={ <u>NO</u> ←
	VTAM LU name. If NETOPT=NO is specified, the user ID is created from the	YES }
	constant CICS plus the four-byte CICS terminal ID (TCTTETI) for terminal	
	tasks. For non-terminal tasks, the user ID comprises the constant CIC plus the	
	CICS task number.	
	If you run with the CICS multiple region option (MRO), you must use the	
	default value for this option. If NETOPT=YES and MRO=YES are specified, an	
	assembler MNOTE and a return code of 16 are produced from the assembly	
	step.	

NTGPID: Natural Group ID

Parameter	Description	Syntax
NTGPID	This parameter is used to specify a 4-byte Natural group ID as required for unique Adabas user ID generation in the CICSplex environment with Natural Version 2.2.8 and above. The value is associated with all users who call the Adabas command-level link routine assembled with the specified value.	NTGPID=4-byte-value
	There is no default value. If no value is specified, the Adabas internal user ID is built in the conventional manner.	
	Any 4-byte alphanumeric value may be specified, but it must be unique for each Adabas command-level link routine running in a CICSplex, or z/OS image. If more than one NTGPID is required (for example, both test and production Natural 2.2.8), more than one Adabas command-level link routine with associated TRUE must be generated.	
	If you run with the CICS multiple region option (MRO), you may use NTGPID to provide a 4-byte literal for the Adabas communication ID to be used by the Adabas SVC when multiple application regions call Adabas.	

NUBS: Number of User Blocks Created By CICS Link Routine

Parameter	Description	Syntax
NUBS	The number of user blocks (UBs) to be created by the CICS link routine.	NUBS={ <u>50</u> ↔
	The number of blocks must be large enough to handle the maximum	blocks }
	possible number of concurrent Adabas requests.	
	Note: The Adabas 6.2 and above command-level link routine obtains	
	storage for the user blocks (the UB pool) above the 16-megabyte line.	

PARMTYP: Area for Adabas Parameter List

Parameter	Description	Syntax
PARMTYP	The area which is to contain the Adabas parameter list. TWA picks up the parameter list in the first six fullwords of the transaction work area (TWA). When PARMTYP=COM, the Adabas parameters are supplied in the CICS COMMAREA provided by the calling program with the EXEC CICS LINK command. The COMMAREA list for an ACB call must be at least 32 bytes	PARMTYP={ <u>ALL</u> ↔ COM TWA }
	long and begin with the label "ADABAS52". PARMTY P=ALL (the default) uses both the COMMAREA and TWA to pass the Adabas parameters; in this case, the COMMAREA is checked first. PARMTY P=ALL or PARMTY P=COM must be used if the TRUE=YES option is specified.	1

PURGE: Purge Transaction

Parameter	Description	Syntax
	The PURGE parameter is used when assembling with CICS 3.2 or above. If PURGE=YES is specified, the CICS WAIT EXTERNAL will contain PURGEABLE as one of its parameters, allowing the transaction to be purged by CICS if the DTIMOUT value is exceeded and PURGE is specified. If PURGE=N0 (the default) is specified, the NONPURGEABLE option is generated.	YES }

RMI: Resource Manager Interface

Parameter	Description	Syntax
RMI	The RMI parameter is used to indicate whether or not the CICS Resource Manager Interface is to be used.	RMI={ <u>NO</u> ↔ YES }
	If RMI=YES is specified, the Adabas task-related user exit (TRUE) will be executed as a resource manager (RM) using the CICS Resource Manager Interface (RMI).	
	RMI=YES is valid only when the Adabas Transaction Manager is installed, enabled, and available to users executing in the CICS environment. Consult the Adabas Transaction Manager documentation for additional instructions related to the installation of the Adabas TRUE.	

SAF: Adabas SAF Security

Parameter	Description	Syntax
SAF	Indicates whether or not the Adabas SAF Security (ADASAF) is to be used. If you are using ADASAF, you must set SAF=YES.	SAF={ <u>NO</u> ↔ YES }
	YES: Adabas SAF Security is to be used.NO: Adabas SAF Security is not to be used.	
	ADASAF requires the Adabas task-related user exit (TRUE) when running under CICS/TS 1.1 or above. When <code>SAF=YES</code> and <code>TRUE=YES</code> , the task-related user exit passes the user's external security ID (sign-on) to Adabas.	
	If TRUE=YES is not specified in this case, the ADAGSET macro terminates the LNKOLSC, LNKTRUE, or LNKENAB assembly process with an MNOTE and a return code of 16.	
	TRUE=YES is not required when running ADASAF under CICS/ESA 3.3 or below. The combination SAF=YES and TRUE=NO is valid in such cases.	

SAP: SAP Application Support

Parameter	Description	Syntax
	The SAP parameter is used to indicate whether or not Adabas support for the SAP application system is required.	SAP={ <u>NO</u> YES ↔ }
	If SAP=YES is specified, the LNKOLSC program will detect a SAP initialization call and set the user ID for SAP applications from the constant provided on the initialization call, plus the field ACBADD2.	
	For more information, refer to the supplementary information provided to customers using the SAP application system.	

SVCNO: Adabas SVC number

Parameter	Description	Syntax
SVCNO	The SVCNO parameter is used to specify the value of the Adabas SVC	$SVCNO=\{ \underline{0} \mid nnn \}$
	number.	

TRUE: Adabas Task-Related User Exit

Parameter	Description	Syntax
TRUE	The TRUE parameter is used to indicate whether or not the Adabas task-related user exit is to be used.	TRUE={ NO YES }
	If TRUE=YES is specified, LNKOLSC will use the Adabas task-related user exit ADACICT.	
	If TRUE=YES is specified, the parameter settings PARMTYP={ALL COM} and TRUENM='name' must also be specified.	

TRUENM: Name of Adabas Task-Related User Exit

Parameter	Description	Syntax
	The TRUENM parameter is used to specify the name of the Adabas task-related user exit.	TRUENM= {' <i>name</i> ' ↔ ' <u>ADACICT</u> ' }
	This parameter is required if TRUE=YES is specified.	
	See also notes 1 and 2 in the installation procedure.	

UBPLOC: User Block Pool Allocation

Parameter	Description	Syntax
UBPLOC	The UBPLOC parameter is used to specify whether the user block (UB) pool	
	is to be obtained above (the default) or below the 16-megabyte line in CICS.	BELOW}
	The ECB used by the EXEC CICS WAIT WAITCICS or the EXEC CICS	
	WAIT EXTERNAL is included in the UB pool.	
	The UBPLOC=BELOW setting supports versions of CICS that do not allow	
	ECBs above the 16-megabyte line; that is, CICS/ESA 3.2 or below.	
	Refer to the IBM manual CICS Application Programming Reference for more	
	information.	

XWAIT: XWAIT Setting for CICS

Parameter	Description	Syntax
XWAIT	The XWAIT parameter is used to specify whether a standard EXEC CICS WAITCICS (XWAIT=N0) or a WAIT EVENTS EXTERNAL (XWAIT=YES) will be generated into the command-level link component by the assembler process in the LNKOLSC module. XWAIT=YES is the default. The CICS WAIT EVENTS EXTERNAL (XWAIT=YES) is the recommended interface for CICS/TS 1.1 and above.	XWAIT={ NO ↔ <u>YES</u> }
	The CICS WAITCICS statement (XWAIT=N0) is provided for use with CICS/MVS 2.1.2 and for CICS/VSE 2.1 through 2.3. It may also be used for CICS/TS 1.1 and above, but may result in poor CICS transaction performance or unpredictable transaction results in busy CICS environments.	
	Note: If XWAIT=N0 is specified for use under CICS/ESA 3.3, IBM APAR PN39579 must be applied to the CICS/ESA 3.3 system. For CICS/TS 1.1 and above, this APAR is not required.	

Notes:

- 1. The default for the XWAIT parameter is XWAIT=YES to conform with IBM usage.
- 2. If XWAIT=NO is specified, the LNKOLSC module issues an EXEC CICS WAITCICS command instead of the EXEC CICS WAIT EVENT command. This conforms with recommended IBM usage of the WAIT and ECB lists in a high-transaction volume CICS system with CICS/TS Version 1.1 and above.
- 3. All EXEC CICS commands are processed by the CICS preprocessor; the ADAGSET parameters cause the subsequent assembly step to skip some of the statements.

XWAIT Posting Mechanisms

CICS WAITCICS (XWAIT=N0) can support a soft post of the specified ECB. This has the disadvantage of becoming a low priority dispatchable unit of work in a CICS/TS environment, since the hand-postable work is not processed by CICS on every work cycle.

EXEC CICS WAIT EXTERNAL (XWAIT=YES), on the other hand, allows CICS to make use of its special post exit code, and will always be checked and processed (if posted) on every CICS work cycle.

For more details on the differences between the various CICS WAIT commands and their relationship to hard and soft posting mechanisms, consult the IBM *CICS/TS Application Programming Reference* and the texts accompanying IBM APAR PN39579 or Item RTA000043874 on the IBM InfoLink service.

XWAIT and the Adabas SVC / Router

The Adabas SVC is fully compatible with the XWAIT=YES setting. The SVC performs the necessary hard post for Adabas callers under CICS/TS using the Adabas 6 command-level link routine. The same SVC performs a soft post for batch callers where the hard post is not required.

Installing Adabas with Com-plete under Adabas 8

Certain Adabas parameters are required by Com-plete, Software AG's TP monitor, when installing Adabas. For more information, see the *Com-plete System Programmer's* manual.

Software AG's TP monitor, Com-plete requires an Adabas link routine if it is to communicate with Adabas databases, use Software AG's Entire Net-Work product, or use products like Entire System Server running under Com-plete. At this time, Com-plete does not support a mixed Adabas 7 and Adabas 8 link routine environment; thus Com-plete must be run with either an Adabas 7 link routine or an Adabas 8 link routine.

The Adabas Version 8 link routine is delivered in member ADALCO of the Adabas 8 z/OS load library. This member must be linked with a link globals module you prepare and with any link routine exits you require to create the final ADALCO load module that is loaded by Com-plete when Com-plete is initialized. The final ADALCO load module and any exits linked with it must be reentrant.

The following table lists the modules supplied in your Adabas installation to support the installation of Adabas with Com-plete under Adabas 8.

Module	Description
ADALCO8	Base module
ADALCO	Executable default module

To prepare the Adabas 8 link routine:

- Copy sample member LCOGBL provided in the Adabas 8 ADA vrs.SRCE library to any appropriate user source library where it can be modified (where vrs is the number of the latest Adabas version delivered on the tape). LCOGBL is a module containing LGBLSET parameters that are used to create default settings for command-level link components. A complete description of LGBLSET parameters can be found in Modifying Source Member Defaults (LGBLSET Macro) in Version 8, elsewhere in this guide.
- 2 Modify the LCOGBL member in the user source library.

At a minimum supply values for the following LGBLSET parameters in LCOGBL:

Parameter	Specify	
LOGID	The default database or target ID. This should be a numeric value between "1" and "65535". The default value is "1".	
	Note: Specifying default values for LOGID and SVCNO under Com-plete is for	
	documentation purposes only. The ADASVC Com-plete runtime control statements will provide the supported database ID/Adabas SVC combinations to be used in running Com-plete. For more information, read the Com-plete documentation.	
SVCNO	The default Adabas SVC number. For z/OS, this number should be between "200" and "255".	
	Note: Specifying default values for LOGID and SVCNO under Com-plete is for	
	documentation purposes only. The ADASVC Com-plete runtime control statements will provide the supported database ID/Adabas SVC combinations to be used in running Com-plete. For more information, read the Com-plete documentation.	
OPSYS	The three-character abbreviation for the operating system under which Com-plete executes. Valid values include "ZOS" and "VSE".	
	Note: The OPSYS parameter must be set to ZOS.	
TPMON	COM. This keyword specifies the three-character TP monitor abbreviation. For Com-plete, this value should be "COM".	
RENT	YES. This keyword indicates whether or not the module is serially reentrant. For Com-plete, this value should be "YES".	
GEN	CSECT. This keyword indicates whether a CSECT or DSECT is generated. CSECT must be specified so an object module is generated that can be linked as the link routing globals load module.	

Parameter	Specify	
	Whether Adabas Universal Encoding Support (UES) should be enabled. The defais YES. For more information, read <i>Enabling Universal Encoding Support (UES) Your Adabas Nucleus</i> , elsewhere in this guide.	
	Whether any other exits are to be active, and in the case of user exits you provide, specify the user exit module names. Specify this information in other parameters of LGBLCOM, as described in <i>Modifying Source Member Defaults</i> (<i>LGBLSET Macro</i>) <i>in Version 8</i> , elsewhere in this guide.	

Modify and run sample job ASMGBLS as described at the top of the job. ASMGBLS can be found in the Adabas 8 ADA vrs. JOBS library. When fully modified, the SET statement in the job should reference the LCOGBL member you prepared in the previous step and the NAME link edit control statement should reference the name specified by the GBLNAME parameter in the LCOGBL member.

Once modified, submit the ASMGBLS job to assemble and link-edit the link globals module.

A new link globals module (with the name specified by the GBLNAME parameter in LCOGBL) will be generated in the user load library identified in the ASMGBLS job.

- 4 Copy sample job LNKLCO8 to a user source library and modify it to link the new link globals module you created in the previous step and any required exits with the ADALCO8 base module. Instructions for modifying the sample job are described at the top of the job. Be sure to direct the output from this job to an appropriate user load library. LNKLCO8 can be found in the Adabas 8 ADAvrs.JOBS library.
 - The module resulting from this job is called ADALCO.
- 5 Place the ADALCO module in a load library available in the job step that will start Com-plete.

 The Adabas 8 link routine is prepared.

General Considerations for Installing Adabas with Batch/TSO

When installing Adabas 8 on TSO systems, Adabas-TSO communication is provided by the batch link routines ADALNK8 (non-reentrant) and ADALNKR8 (reentrant).

The Adabas Version 8.1 ADALNK routines are UES-enabled as distributed. See the section *Enabling Universal Encoding Support (UES) for Your Adabas Nucleus* for more information.

However, it is important to note that user programs linked with ADAUSER also load ADARUN. ADARUN, in turn, loads other modules.

To start a user program linked with ADAUSER, the following modules must all be available from the defined load libraries for that specific TSO user at execution time:

ADAIOR ADAMLF ADAIOS ADAPRF ADALNK ADARUN

This section covers the following topics:

- Non-reentrant ADALNK Batch Routine Operation
- ADALNKR: Reentrant Batch Link Routine

Non-reentrant ADALNK Batch Routine Operation

The ADALNK module in the Adabas 8 load library operates in a Adabas 7-compatible manner when the following conditions are met:

- The calling application must be linked with ADAUSER. If the calling application is not linked with ADAUSER, the ADALNK will not work.
- The ADARUN module from the most recent Adabas 8 load library must be used.
- The database ID and Adabas SVC number must be provided as input through DD statements. Otherwise, the values in the link globals table will override these values.

If all three of these conditions are met, the default database ID and Adabas SVC number will be overridden by the values provided in the DD statement input and passed to the link routine by ADARUN.

Operating in this fashion requires the fewest changes on the part of your data base administrator (DBA) and application programmer. This is also the recommended mode of operation when executing Adabas utilities.

ADALNKR: Reentrant Batch Link Routine

Several Software AG products require the use of a reentrant batch link routine and the ADALNKR load module is provided in the Adabas load library to support them. The Adabas 8 ADALNKR source module is not provided.

You can change default values for these reentrant batch link routines. For more information, read one of the following sections, elsewhere in this section:

- Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules
- Zapping the Default Values for the Adabas 8 ADALNK or ADALNKR Modules

Software AG recommends that batch application programs be linked with the ADAUSER module, not ADALNK or ADALNKR. The ADAUSER load module is not reentrant, but the reentrant link routine module may be linked with it as long as the application program conforms to the calling requirements described in *Adabas 8 Batch/TSO Reentrant Link Routine (ADALNKR) Calling Require*

ments(in *Adabas Operations Manual*) and the PROG=RENTUSER ADARUN parameter is provided in DDCARD input instead of the keyword parameter PROG=USER.

When using the latest Adabas 8 ADALNKR module to obtain reentrant operation under batch or TSO, you must prepare the ADALNKR module in advance. It must be linked with a customized link globals table that provides defaults for the database ID, Adabas SVC number, and other requirements. Any reentrant exits should also be linked with it as required.

Installing Adabas with Batch/TSO under Adabas 8

When installing Adabas 8 on TSO systems, the standard Adabas 8 batch link routine (ADALNK) provides Adabas/TSO communication (SMA job number I056).

This section covers the following topics:

- Supplied Modules
- Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules
- Zapping the Default Values for the Adabas 8 ADALNK or ADALNKR Modules

Supplied Modules

The following table lists the modules supplied in your Adabas installation to support the installation of Adabas with batch/TSO under Adabas 8.

Module	Description	
ADALNK8	ADALNK8 Base module	
ADALNKR8	ADALNKR8 Base reentrant module	
ADALNK	ALNK Executable default module	
ADALNKR Executable default reentrant mod		

Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules

You can change default values for various link routine parameters used by the Adabas 8 ADALNK and ADALNKR modules.

To change default values, complete the following steps:

1 Copy the sample member LNKGBLS (for non-reentrant links) or LNKRGBL (for reentrant links) members provided in the Adabas 8 ADA vrs (where vrs is the number of the latest Adabas version delivered on the tape). SRCE library to any appropriate user source library where they can be modified. These modules contain LGBLSET parameters that are used to create default settings for link components. A complete description of LGBLSET parameters

can be found in *Modifying Source Member Defaults* (*LGBLSET Macro*) *in Version 8*, elsewhere in this guide.

2 Modify the LNKGBLS or LNKRGBL member in the user source library. Provide values for the LOGID, SVC, and other keywords to suit your installation requirements.

Note: The OPSYS parameter must be set to ZOS.

3 Modify and run sample job ASMGBLS as described at the top of the job. ASMGBLS can be found in the Adabas 8 ADA*vrs*. JOBS library. When fully modified, the SET statement in the job should reference the LNKGBLS or LNKRGBL member you prepared in the previous step and the NAME link edit control statement should reference the name specified by the GBL-NAME parameter in the LNKGBLS or LNKRGBL member.

Once modified, submit the ASMGBLS job to assemble and link-edit the link globals module.

A new link globals module (with the name specified by the GBLNAME parameter in the LNKGBLS or LNKRGBL member) will be generated in the user load library identified in the ASMGBLS job.

4 Copy sample job LNKLNK8 or LNKLNKR8 (reentrant) to a user source library and modify it to link the new link globals module you created in the previous step and any required exits with the appropriate ADALNK8 or ADALNKR8 (reentrant) base module. Instructions for modifying the sample job are described at the top of the job. Be sure to direct the output from the job to an appropriate user load library. LNKLNK8 and LNKLNKR8 can be found in the Adabas 8 ADAvrs.SRCE library.

The module resulting from this job is called ADALNK or ADALNKR (as appropriate).

- 5 Tailor the ADARUN DDCARD input for the job steps that will use the Adabas 8 batch/TSO link routines. The DDCARD input should include the following updates:
 - Specify the ADARUN PROG=USER parameter for a non-reentrant link routine, or specify ADARUN PROG=RENTUSER to use a reentrant link routine in the job step. For more information about the PROG parameter, read PROGRAM: Program to Run in Adabas Operations Manual.
- Make sure the appropriate load libraries are made available to the job step. These may be STEPLIB, TASKLIB, JOBLIB, or, for reentrant modules, the LPA or LINKLIB.

Zapping the Default Values for the Adabas 8 ADALNK or ADALNKR Modules

You can change default values for various link routine parameters used by the Adabas 8 ADALNK and ADALNKR modules.

Changes to some default values for the Adabas 8 batch/TSO link routines, ADALNK and ADALNKR, may occur with a zap to either the ADALNK or ADALNKR module. This includes the default values for the database ID and the Adabas SVC number. All other default values should be set using the link globals table, as described in *Changing Default Values for the Adabas 8 ADALNK or ADALNKR Modules*, earlier in this section.

Use the following IMASPZAP control statements to change default values in ADALNK or ADALNKR (as appropriate):

```
NAME ADALNK ADALNK8
                              Default DBID
VER 0080 0001
REP 0080 ####
                              Site-specific DBID
VER 0084 0AF9
                              Default Adabas SVC number
REP 0084 0A##
                              Site-specific Adabas SVC number
NAME ADALNKR ADALNKR8
VER 0080 0001
                              Default DBID
REP 0080 ####
                              Site-specific DBID
VER 0084 0AF9
                              Default Adabas SVC number
REP 0084 0A##
                              Site-specific Adabas SVC number
```

Establishing Adabas SVC Routing by Adabas Database ID

Your application programs that use Adabas link routines in z/OS and VSE environments can route database calls through specific Adabas SVCs, based on the database ID used in the call. SVC routing is managed through the use of a DBID/SVC routing table you supply. Up to 1000 database IDs may be specified in the table and associated with any number of valid SVC numbers installed in the z/OS or VSE system. The DBID/SVC routing table is created using the MDBSVC macro.

Duplicate database IDs are not allowed in the DBID/SVC routing table as there is no reliable way for the link routine to determine which SVC should be used for a database ID if it is listed more than once. If duplicate database IDs are found while the table is being assembled, they are flagged with an assembler MNOTE and a return code of 16 is returned for the assembly attempt.

Notes:

1. Adabas client-based add-ons, such as Adabas Transaction Manager, are not compatible with this feature since for client-based functionality to work, it must be channeled through only a single router for any given session, not across routers. To avoid problems if the dynamic SVC by DBID routing feature in enabled for these products, error messages are issued, the assembly

- step of the globals table will receive return code 16, and the globals table load module will not be generated.
- 2. ADALNK linked with the ADASVCTB should only be used by application programs and should not be made available to the Adabas nucleus or to Entire Net-Work.
- **Caution:** This feature should be used with caution. Transactional integrity is not guaranteed. If an application makes calls to multiple databases that are routed to more than one Adabas SVC, it becomes possible to issue ET, BT, OP, CL, RC, or other Adabas commands that may affect the transaction on one database, but not on the other databases running on different Adabas SVCs that were accessed previously. It therefore is the responsibility of the application program to ensure that all necessary logic is included to ensure transactional integrity across multiple databases where multiple Adabas SVCs are employed.

This section covers the following topics:

- Installing the Adabas DBID/SVC Routing Feature
- General Operation
- Using the MDBSVC Macro

Installing the Adabas DBID/SVC Routing Feature

The general steps for installing the Adabas DBID/SVC routing feature are:

- Define the DBID/SVC routing table in a library member using MDBSVC macro statements. For more information about the DBID/SVC routing table and the MDBSVC macro, read *Using the MDBSVC Macro*, elsewhere in this section.
- 2. Assemble and link-edit the DBID/SVC routing table member to create a load module or PHASE that will be made available to the operating environment where the SVC routing feature will be used.
- 3. Modify a link globals table for the operating environment, specifying the LGBLSET keywords DYNDBSVC=YES and DBSVCTN=name, where name is the name of the DBID/SVC routing table load module that should be used by the link routine. Assemble and link-edit the updated link globals table as required for the operating environment. For more information about the link globals table and the LGBLSET macro, read *Modifying Source Member Defaults (LGBLSET Macro) in Version 8*, elsewhere in this guide. For information on assembling and link-editing the link globals table once the table is updated, refer to the instructions for each z/OS or VSE TP monitoring environment, provided elsewhere in this section.
- 4. Make the prepared DBID/SVC routing table available in a load library that is accessible by the application program's job step, so it can be loaded by the link routine when it runs.
- 5. Except for CICS systems, you will need to relink ADALNK or ADALNKR making sure that the INCLUDE statements for the LNKDSL and DEPRTR (or RTRVSE on VSE) modules are included in the job.

This section covers the following topics:

- Installing DBID/SVC Routing under z/OS Batch, TSO and IMS
- Installing DBID/SVC Routing under z/VSE Batch
- Installing DBID/SVC Routing under CICS

Installing DBID/SVC Routing under z/OS Batch, TSO and IMS

The installation steps for the Adabas SVC routing feature under z/OS batch, TSO, and IMS are the same.

To install the Adabas DBID/SVC routing feature under z/OS batch, TSO, or IMS, complete the following steps:

- Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a library member. Sample member ADASVCTB is provided in the ADA*vrs*.SRCE library as a template for preparing this member. For more information about using the MDBSVC macro, read *Using the MDBSVC Macro*, elsewhere in this section.
- Assemble and link-edit the DBID/SVC routing table member to create the table as a load module that you can make available to the application execution job step. The load module should be linked non-reusable and non-reentrant because the link routine subprogram LNKDSL will need to store the addresses of the Adabas SVC IDT headers in the DBID/SVC module to reduce the operating overhead on multiple commands accessing the same Adabas SVC.
- 3 Define or modify a link globals table for the execution environment. The following LGBLSET keywords are required to support the Adabas SVC routing feature:

LGBLSET Keyword Setting	Description
DYNDBSVC=YES	This keyword and setting indicate that Adabas SVC routing is active for this job step.
DBSVCTN=name	This keyword specifies the name of the DBID/SVC table for this job step. This name must match the name of the load module created to ensure the proper table is loaded when the link routine runs.

- Assemble and link-edit the updated link globals table, as described for the appropriate TP monitor. For batch/TSO, read *Installing Adabas with Batch/TSO under Adabas 8*, in *Adabas Installation for z/OS*; for IMS, read *Installing Adabas with IMS TM under Adabas 8*, in *Adabas Installation for z/OS*.
- 5 Relink ADALNK or ADALNKR, making sure that the INCLUDE statements for the LNKDSL and DEPRTR modules are included in the job. Samples of the jobs used to relink ADALNK and ADALNKR are listed in the following table:

Link Routine	Sample Job		
	z/OS batch	TSO	IMS
ADALNK	LNKLNK8	LNKLNK8	
ADALNKR	LNKLNKR8	LNKLNKR8	
ADALNI8			LNKLNI8

Installing DBID/SVC Routing under z/VSE Batch

To install the Adabas DBID/SVC routing feature under z/VSE batch, complete the following steps:

- Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a library member. Sample member ADASVCTB.A is provided in the sublibrary SAGLIB.ADA*vrs* as a template for preparing this member. For more information about using the MDBSVC macro, read *Using the MDBSVC Macro*, elsewhere in this section.
- Assemble and link-edit the DBID/SVC routing table member to create the table as a PHASE that you can make available to the application execution job step. The PHASE should be linked non-reusable and non-reentrant because the link routine subprogram LNKDSL will need to store the addresses of the Adabas SVC IDT headers in the DBID/SVC module to reduce the operating overhead on multiple commands accessing the same Adabas SVC.
- 3 Define or modify a link globals table for the execution environment. The following LGBLSET keywords are required to support the Adabas SVC routing feature:

LGBLSET Keyword Setting	Description
DYNDBSVC=YES	This keyword and setting indicate that Adabas SVC routing is active for this job step.
DBSVCTN=name	This keyword specifies the name of the DBID/SVC table for this job step. This name must match the name of the PHASE created to ensure the proper table is loaded when the link routine runs.

- 4 Assemble and link-edit the updated link globals table, as described for the appropriate TP monitor. For batch/TSO, read *Installing Adabas with Batch under Adabas 8*, in the *Adabas Installation for z/VSE*.
- 5 Relink ADALNK.PHASE or ADALNKR.PHASE, making sure that the INCLUDE statements for the LNKDSL and RTRVSE object modules are included in the job. Samples of the jobs used to relink ADALNK and ADALNKR are listed in the following table:

Link Routine	Sample Job	
ADALNK.PHASE	ALNKLNK8.X	
ADALNKR.PHASE	ALNKLNR8.X	

Installing DBID/SVC Routing under CICS

To install the Adabas DBID/SVC routing feature under CICS, complete the following steps:

- Define or modify the DBID/SVC routing table by coding a series of MDBCSVC macros in a library member. Sample member ADASVCTB is provided in the ADA*vrs*.SRCE library as a template for preparing this member. For more information about using the MDBSVC macro, read *Using the MDBSVC Macro*, elsewhere in this section.
- Assemble and link-edit the DBID/SVC routing table member to create the table as a load module and place it in a library that will be part of the CICS DFHRPL concatenation. The load module should be linked non-reusable and non-reentrant because the link routine subprogram LNKDSL will need to store the addresses of the Adabas SVC IDT headers in the DBID/SVC module to reduce the operating overhead on multiple commands accessing the same Adabas SVC.
- 3 Define the load module as a program to CICS using RDO, or the DFHCSDUP utility. See member DEFADA8 in the ACI vrs. SRCE libarary for sample DFHCSDUP definition statements. The program attributes should be Reload(No), Resident(Yes), Dataloc(Any), and Execkey(CICS).
- Define or modify a link globals table for the execution environment. The following LGBLSET keywords are required to support the Adabas SVC routing feature:

LGBLSET Keyword Setting	Description
DYNDBSVC=YES	This keyword and setting indicate that Adabas SVC routing is active for this job step.
DBSVCTN=name	This keyword specifies the name of the DBID/SVC table for this job step. This name must match the name of the load module created to ensure the proper table is loaded when the link routine runs.

Assemble and link-edit the updated link globals table, as described in *Installing Adabas with CICS under Adabas 8* for z/OS installations or *Installing Adabas with CICS under Adabas 8* for z/VSE installations.

General Operation

When the Adabas SVC routing feature is installed, as described earlier in this section, it is loaded as described below:

- In batch, TSO, or IMS environments, the DBID/SVC routing table is loaded when the link routine initializes if the LGBLSET DYNDBSVC parameter is set to YES in the link globals table. The address of the routing table is kept in the link routine work area for use by all subsequent calls.
- In CICS environments, the Adabas 8 initialization module ADACIC0, normally run during PLTPI processing, loads and validates the DBID/SVC routing table, if the LGBLSET DYNDBSVC parameter was set to YES in the link globals table for the CICS region. The address of the routing table is kept in the global work area associated with the Adabas 8 task-related user exit (TRUE) module, ADACICT, and is made available on each application call to the TRUE by the Adabas command-level module ADACICS/ADADCI.

When an application call is made, the DBID/SVC routing table is searched by the LNKDSL subroutine which is linked with the appropriate link routine for each operating environment. LNKDSL is called after any LUEXIT1 (link routine user exit 1) is invoked, in case the pre-Adabas call user exit modifies the command's database ID for subsequent processing. The call to LNKDSL is made before any monitoring or Adabas Fastpath exits are called, so the monitoring product, such as Adabas Review, Adabas Fastpath, or Adabas Transaction Manager, will perform their processing based on the appropriate Adabas SVC found in the DBID/SVC routing table.

If the database ID associated with a particular call is not found in the DBID/SVC routing table, the default value for the Adabas SVC as specified by the MDBSVC macro's TYPE=INIT parameter is used. If the SVC located is not an Adabas SVC, or if it is not installed on the z/OS system, an Adabas response code of 213 with subcode 16 or 20 is returned to the application. If the calling database is not active for an SVC number, an Adabas response code of 148 is returned to the application.

Duplicate database IDs are not allowed in the DBID/SVC routing table as there is no reliable way for the link routine to determine which SVC should be used for a database ID if it is listed more than once. If duplicate database IDs are found while the table is being assembled, they are flagged with an assembler MNOTE and a return code of 16 is returned for the assembly attempt.

Using the MDBSVC Macro

Use the MDBSVC macro to define various aspects of the Adabas DBID/SVC routing table. Several MDBSVC macros are coded together using TYPE=INIT, TYPE=GEN, and TYPE=FINAL keywords to comprise a source module or member. This source module or member is then assembled and link-edited to build the DBID/SVC routing table load module. Sample member ADASVCTB in ADA vrs.SRCE can be used as a template for creating site-specific versions of the DBID/SVC routing table source module. Here is a sample DBID/SVC routing table source member that uses the CSECT name TESTDBT; when the table is assembled, its load module name will be TESTDBT:

```
TESTDBT CSECT

MDBSVC TYPE=INIT,SVC=249,DBID=001

MDBSVC TYPE=GEN,SVC=237,DBID=(2,10,21,33,175,1149), X

DBID2=(100,101,102,13500)

MDBSVC TYPE=GEN,SVC=231,DBID=(226,899)

MDBSVC TYPE=GEN,SVC=206,DBID=(15,16,69,99,500,12144)

MDBSVC TYPE=GEN,SVC=248,DBID=(14,54,111,177,1213,5775)

MDBSVC TYPE=GEN,SVC=249,DBID=(17,19,25,35,42,44,61,76)

MDBSVC TYPE=FINAL

END
```

When coding keyword values of MDBSVC macro statements, the assembler rules for continuing lines, identifying lists, and providing keyword values must be followed or assembly errors will result. Keywords and values with lists coded as objects of keywords must be separated by commas. There are no positional parameters used with the MDBSVC macro.

The MDBSVC macro can include the following four types of statements, as described in the following table:

MDBSVC Statement Type	Description	Number Allowed
TYPE=INIT	Only one MDBSVC TYPE=INIT statement can be included in the DBID/SVC routing table source member and it must be the first MDBSVC statement in the member. This statement identifies the beginning of the DBID/SVC routing table. The MDBSVC TYPE=INIT statement may also provide the default database ID and Adabas SVC number used for a call.	1
TYPE=GEN	Any number of MDBSVC TYPE=GEN statements can be included in the DBID/SVC routing table source member. These statements specify the lists of Adabas database IDs associated with specific valid Adabas SVC numbers.	any number, as needed.
TYPE=FINAL	Only one MDBSVC TYPE=FINAL statement can be included in the DBID/SVC routing table source member and it must be the last MDBSVC statement in the member before the assembler END statement. This statement identifies the end of the DBID/SVC routing table.	1
TYPE=DSECT	This statement type is reserved for Software AG internal use only. Do not use this statement type.	0

The MDBSVC TYPE=INIT statement can be preceded by a named CSECT statement and named AMODE and RMODE statements. If the CSECT, AMODE, or RMODE statements are included, the name used in them must agree with the name for the DBID/SVC routing table, as coded in the TABNAME parameter on the MDBSVC TYPE=INIT statement and as specified in the DBSVCTN keyword of the LGBLSET macro used for creating the link globals table.

This section covers the following topics:

- MDBSVC TYPE=INIT Syntax
- MDBSVC TYPE=GEN Syntax

- MDBSVC TYPE=FINAL Syntax
- MDBSVC Parameters

MDBSVC TYPE=INIT Syntax

The syntax for the MDBSVC TYPE=INIT statement is:

```
MDBSVC TYPE=INIT [,SVC=svcno] [,DBID=dbid] [,TABNAME={name|<u>ADBSVCT</u>}] ↔ [,OPSYS={<u>ZOS</u>|VSE}]
```

The parameters you can code on the MDBSVC TYPE=INIT statement are described in *MDBSVC Parameters*, elsewhere in this section.

MDBSVC TYPE=GEN Syntax

The syntax for the MDBSVC TYPE=GEN statement is:

```
MDBSVC TYPE=GEN [,SVC=svcno] [,DBID=id[, id]...][,DBID2=id[, id]...]
```

The parameters you can code on the MDBSVC TYPE=GEN statement are described in *MDBSVC Parameters*, elsewhere in this section.

MDBSVC TYPE=FINAL Syntax

The syntax for the MDBSVC TYPE=FINAL statement is:

```
MDBSVC TYPE=FINAL
```

No parameters are valid on the MDBSVC TYPE=FINAL statement.

MDBSVC Parameters

The parameters that can be specified on various MDBSVC statements are as follows:

DBID

The DBID parameter can be coded on both the MDBSVC TYPE=INIT and MDBSVC TYPE=GEN statements.

- When specified on the MDBSVC TYPE=INIT statement, it lists the default database ID associated with the SVC specified in the SVC parameter. In this case, only one database ID can be listed in the DBID parameter on a TYPE=INIT statement.
- When specified on a MDBSVC TYPE=GEN statement, it lists the database IDs associated with the SVC specified in the SVC parameter. If more than one database ID is listed, they should be enclosed in parentheses and separated by commas.

Database IDs listed in the DBID parameter must be numeric and must correspond to the IDs of installed Adabas databases. In z/OS environments, database IDs must range from 1 to 65535. The same database ID cannot be specified on multiple MDBSVC statements; they must be

unique across all of the DBID and DBID2 statements in the DBID/SVC routing table. Duplicate values are flagged with an MNOTE, which causes the assembly of the DBID/SVC routing table to stop with return code 16.

The following is an example of some DBID parameters on various MDBSVC statements. Note that two MDBSVC statements list database IDs associated with SVC 237. This allows more database IDs to be coded for the same SVC number. Compare the way this is coded to the way the same example is coded for the DBID2 parameter. Both codings produce the same end result.

```
MDBSVC TYPE=INIT,SVC=249,DBID=1

MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)

MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)

MDBSVC TYPE=GEN,SVC=242,DBID=(3,18)

MDBSVC TYPE=FINAL

END
```

DBID2

The DBID2 parameter can be coded only on MDBSVC TYPE=GEN statements. It lists additional database IDs to be associated with an Adabas SVC specified in the SVC parameter. The DBID2 parameter is optional, but when it is specified, it must follow a DBID parameter.

Database IDs listed in the DBID2 parameter must be numeric and must correspond to the IDs of installed Adabas databases. In z/OS environments, database IDs must range from 1 to 65535. The same database ID cannot be specified on multiple MDBSVC statements; they must be unique across all of the DBID and DBID2 statements in the DBID/SVC routing table. Duplicate values are flagged with an MNOTE, which causes the assembly of the DBID/SVC routing table to stop with return code 16.

The following is an example of some MDBSVC statements that includes a DBID2 parameter. Compare the way this example is coded to the way the same example is coded for the DBID parameter. Both codings produce the same end result.

OPSYS

The OPSYS parameter is an optional parameter that can be coded only on the MDBSVC TYPE=INIT statement. This parameter identifies the operating system where the DBID/SVC routing table is assembled. Valid values for the OPSYS parameter are "ZOS" and "VSE"; the default is "ZOS".

PREFIX

The PREFIX parameter can only be coded only on the MDBSVC TYPE=DSECT statement, which is reserved for internal use by Software AG. Do not use this parameter.

SVC

The SVC parameter can be coded on both the MDBSVC TYPE=INIT and MDBSVC TYPE=GEN statements.

- When specified on the MDBSVC TYPE=INIT statement, it specifies the default Adabas SVC number to be used when the calling application provides a database ID that is not found in the DBID/SVC routing table.
- When specified on a MDBSVC TYPE=GEN statement, it specifies the Adabas SVC number to be associated with the Adabas databases identified by the DBID and DBID2 parameters.

The SVC number listed in the SVC parameter must be numeric and must correspond to the SVC number of an installed Adabas SVC. In z/OS environments, the SVC number must range from 200 to 255. Duplicate SVC values can be coded on multiple MDBSVC statements; this allows you to code long lists of database IDs and associate them with the same Adabas SVC.

In the following example, notice that there are two MDBSVC statements for SVC 249. It is the default SVC for the link routine and is also used for database 1, 3, and 18. There are also two MDBSVC statements for SVC 237; the two statements are used to list nine databases associated with SVC 237 (2, 4, 10, 16, 21, 33, 175, 1149, and 1221).

```
MDBSVC TYPE=INIT,SVC=249,DBID=1

MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)

MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)

MDBSVC TYPE=GEN,SVC=249,DBID=(3,18)

MDBSVC TYPE=FINAL

END
```

TABNAME

The TABNAME parameter is an optional parameter that can be coded only on the MDBSVC TYPE=INIT statement. This parameter specifies the name of the DBID/SVC routing table when the source member does not include a separate (and previously coded) CSECT statement. In this case, the name you specify on the TABNAME parameter is used to generate a named CSECT statement and named AMODE and RMODE directives.

The DBID/SVC routing table name that you specify should be between 1 and 8 alphanumeric characters long. In the following example, a DBID/SVC routing table with the name TESTDBT is coded.

```
MDBSVC TYPE=INIT,SVC=249,DBID=1,TABNAME=TESTDBT

MDBSVC TYPE=GEN,SVC=237,DBID=(2,4,10,16,21,33)

MDBSVC TYPE=GEN,SVC=237,DBID=(175,1149,1221)

MDBSVC TYPE=GEN,SVC=249,DBID=(3,18)

MDBSVC TYPE=FINAL

END
```

Modifying Source Member Defaults (LGBLSET Macro) in Version 8

The Adabas 8 LGBLSET macro is used to set default installation values for the Adabas link routines. It is used to prepare an object module which may either be link-edited with the Adabas 8 link routines or provided to the link routines in the job step where they are run. Your Adabas libraries include sample members provided to support the various teleprocessing (TP) monitors in each environment. Each of these sample members may be copied to an appropriate library and modified to provide the necessary customization required for the link routine that is intended to run in a given environment.

The LGBLSET parameter options with their default values (underlined) are described in the rest of this section:

- ADL: Adabas Bridge for DL/I Support
- AVB: Adabas Bridge for VSAM Support
- CITSNM: Adabas CICS TS Queue Name
- COR: SYSCOR Exit Support
- DBSVCTN: DBID/SVC Routing Table
- DYNDBSVC: DBID/SVC Routing Table
- ENTPT: Name of the Adabas CICS Command-Level Link Routine
- GBLNAME: Name of Link Globals Module
- GEN: Generate CSECT or DSECT
- IDTNAME: BS2000 IDT Common Memory Name
- IDTUGRP: BS2000 Memory Pool User Bound
- LOGID: Default Logical Database ID
- LUINFO: Length of User Data passed to Adabas LUEXIT1 and LUEXIT2
- LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2
- LX1NAME: User Exit 1 Module Name
- LX2NAME: User Exit 2 Module Name
- MRO: Multiple Region Option
- NETOPT: Method Used to Create User ID
- NTGPID: Natural Group ID
- NUBS: Number of User Blocks Created By CICS Link Routine
- OPSYS: Operating System
- PARMTYP: Area for Adabas Parameter List
- PRE: DSECT Data Prefix
- PURGE: Purge Transaction
- RENT: Reentrant Module Flag
- RETRYX: Retry Command Exit Flag
- REVIEW: Adabas Review Support
- RMI: Resource Manager Interface
- RTXNAME: Command Retry Exit Name
- SAF: Adabas Security Interface Flag
- SAP: SAP Application Support

- SAPSTR: SAP ID String
- SVCNO: Adabas SVC number
- TPMON: Operating Environment
- TRUENM: CICS TRUE Name
- UBPLOC: User Block Pool Allocation
- UES: Universal Encoding Support
- USERX1: User Exit 1 Flag
- USERX2: User Exit 2 Flag
- XWAIT: XWAIT Setting for CICS

ADL: Adabas Bridge for DL/I Support

Parameter	Description	Syntax
ADL	Indicates whether or not the Consistency Interface of Software AG's Adabas Bridge for DL/I is to be supported by this command-level link routine.	ADL={ <u>NO</u> YES}
	 ADL=YES: Adabas Bridge for DL/I Consistency Interface is to be supported. ADL=NO: Adabas Bridge for DL/I Consistency Interface is <i>not</i> to be supported. 	

AVB: Adabas Bridge for VSAM Support

Parameter	Description	Syntax
AVB	Indicates whether or not Software AG's Adabas Bridge for VSAM is to be supported by this command-level link routine.	$AVB = { \underline{NO} YES }$
	■ AVB=YES: Adabas Bridge for VSAM is to be supported.	
	■ AVB=N0: Adabas Bridge for VSAM is <i>not</i> to be supported.	

CITSNM: Adabas CICS TS Queue Name

Parameter	Description	Syntax
CITSNM	Specifies the 16-byte string that represents the CICS TS queue name	CITSNM= <u>{ADACICS</u> qname}
	for Adabas. The default is "ADACICS".	

COR: SYSCOR Exit Support

Parameter	Description	Syntax
COR	Indicates whether or not Adabas System Coordinator (SYSCOR), Adabas Transaction Manager, and Adabas Fastpath exits are installed and active.	
	 COR=YES: The exits are installed and active. COR=NO: The exits are <i>not</i> installed and active. 	

DBSVCTN: DBID/SVC Routing Table

Parameter	Description	Syntax
DBSVCTN	Provides the name of the DBID/SVC routing table that should be used by the link routine during its execution, if any.	DBSVCTN={name ADASVCTB}
	The routing table name must conform to names for z/OS standard load modules. It is used by a z/OS LOAD macro/SVC during batch, TSO, or IMS operation or by an EXEC CICS LOAD PROGRAM command during CICS operation.	
	If the load module listed is not found, or if it is found to contain invalid header information, user abend U657 is issued in batch, TSO, or IMS environments.	
	If the load module is not defined to CICS or not found in the CICS DFHRPL concatenation, the Adabas CICS link routine environment is not initialized.	
	Note: If the DYNDBSVC parameter is set to NO, this parameter setting is ignored.	
	For more information about SVC routing by database ID in z/OS environments, read <i>Establishing Adabas SVC Routing by Adabas Database ID</i> , in the <i>Adabas z/OS Installation GuideS</i> documentation.	
	Note: Adabas client-based add-ons, such as Adabas Transaction	
	Manager, are not compatible with this feature since for client-based functionality to work, it must be channeled through only a single router for any given session, not across routers. To avoid problems if the dynamic SVC by DBID routing feature in enabled for these products, error messages are issued, the assembly step of the	
	globals table will receive return code 16, and the globals table load module will not be generated.	

DYNDBSVC: DBID/SVC Routing Table

Parameter	Description	Syntax
	Indicates whether Adabas SVC routing by database ID should be enabled for the link routine. DYNDBSVC=YES enables Adabas SVC routing by database ID; DYNDBSVC disables it. The default is NO.	DYNDBSVC={YES NO}
	For more information about SVC routing by database ID in z/OS environments, read <i>Establishing Adabas SVC Routing by Adabas Database ID</i> , in the <i>Adabas z/OS Installation GuideS</i> documentation.	

ENTPT: Name of the Adabas CICS Command-Level Link Routine

Parameter	Description	Syntax
	The name given to the Adabas CICS command-level link routine. This name is used in EXEC CICS LINK commands to invoke Adabas services from CICS application programs.	ENTPT={ADACICS name}
	See also notes 1 and 2 in the installation procedure.	

GBLNAME: Name of Link Globals Module

Parameter	Description	Syntax
GBLNAME	The name of the link globals module.	GBLNAME={ LNKGBLS name}

GEN: Generate CSECT or DSECT

Parameter	Description	Syntax
GEN	Indicates whether a CSECT or DSECT is generated.	GEN={ <u>CSECT</u> DSECT }

IDTNAME: BS2000 IDT Common Memory Name

Parameter	ameter Description	
IDTNAME	The common memory pool name of the BS2000 IDT.	IDTNAME=name

IDTUGRP: BS2000 Memory Pool User Bound

Parameter	Description	Syntax
IDTUGRP	Indicates whether the common memory pool is user bound (BS2000)	IDTUGRP={NO YES}

LOGID: Default Logical Database ID

Parameter	Description	Syntax
LOGID	The value of the default target database ID. Valid ID numbers are 1-65535.	LOGID={ nnn <u>1</u> }
	The default is "1".	

LUINFO: Length of User Data passed to Adabas LUEXIT1 and LUEXIT2

Parameter	Description	Syntax
	The length of the user data to be passed to target user exit 4. Valid values	LUINFO= $\{\underline{0} \mid length\}$
	are numbers from zero (0) through 32,767.	
	If LUINFO is not specified, the default is zero (no user data is passed).	

LUSAVE: Size of User Save Area for Adabas LUEXIT1 and LUEXIT2

I	Parameter	Description	Syntax
	LUSAVE	The size of the user save area to be used by Adabas user exits LUEXIT1	LUSAVE={ <u>72</u> <i>size</i> }
		and LUEXIT2. Valid values range from zero (0) through 256. The default is "72".	
		If LUSAVE is not specified, the default is zero (no user save area is passed).	

LX1NAME: User Exit 1 Module Name

Parameter	Description	Syntax
LX1NAME	The name of the link user exit 1 module	LX1NAME={ <u>LUEXIT1</u> <i>name</i> }

LX2NAME: User Exit 2 Module Name

Parameter	Description	Syntax
LX2NAME	The name of the link user exit 2 module	LX2NAME={ <u>LUEXIT2</u> name}

MRO: Multiple Region Option

Parameter	Description	Syntax
MRO	Indicates whether or not the CICS multiple region option (MRO) support is required.	MR0={ <u>N0</u> YES}
	If you run the CICS command-level link with the CICS MRO, set this to MRO=YES; otherwise, use the default value MRO=NO.	
	If MRO=YES, NETOPT must be set to NETOPT=NO (the default) to prevent non-unique LU names from multiple application regions.	
	If NETOPT=YES and MRO=YES are specified, an assembler MNOTE and a return code of 16 are produced from the assembly step.	

NETOPT: Method Used to Create User ID

Parameter	Description	Syntax
NETOPT	If NETOPT=YES is specified, an 8-byte user ID will be constructed from the	NETOPT={NO YES}
	VTAM LU name. If NETOPT=NO is specified, the user ID is created from the	
	constant CICS plus the four-byte CICS terminal ID (TCTTETI) for terminal	
	tasks. For non-terminal tasks, the user ID comprises the constant CIC plus	
	the CICS task number.	
	If you run with the CICS multiple region option (MRO), you must use the	
	default value for this option. If NETOPT=YES and MRO=YES are specified, an	
	assembler MNOTE and a return code of 16 are produced from the assembly	
	step.	

NTGPID: Natural Group ID

Parameter	Description	Syntax
NTGPID	Specifies a four-byte Natural group ID as required for unique Adabas	NTGPID=4-byte-value
	user ID generation in the CICSplex environment with Natural Version	
	2.2.8 and above. The value is associated with all users who call the	
	Adabas command-level link routine assembled with the specified value.	
	There is no default value. If no value is specified, the Adabas internal user ID is built in the conventional manner.	

Parameter	Description	Syntax
	Any four-byte alphanumeric value may be specified, but it must be unique for each Adabas command-level link routine running in a CICSplex, or z/OS image. If more than one NTGPID is required (for example, both test and production Natural 2.2.8), more than one Adabas command-level link routine with associated TRUE must be generated. If you run with the CICS multiple region option (MRO), you may use	
I	NTGPID to provide a 4-byte literal for the Adabas communication ID to be used by the Adabas SVC when multiple application regions call Adabas.	

NUBS: Number of User Blocks Created By CICS Link Routine

Parameter	Description	Syntax
	The number of user blocks (UBs) to be created in the user block pool by the CICS link routine. The number of blocks must be large enough to handle the maximum possible number of concurrent Adabas requests. Note: The Adabas 6.2 and above command-level link routine obtains	NUBS={100 blocks}
	storage for the user blocks (the UB pool) above the 16-megabyte line.	

OPSYS: Operating System

Parameter	Description	Syntax
OPSYS	The operating system in use.	OPSYS={ <u>ZOS</u> VSE CMS BS2}

PARMTYP: Area for Adabas Parameter List

Parameter	Description	Syntax
PARMTYP	The CICS area which is to contain the Adabas parameter list. "TWA" picks	
	up the parameter list in the first six fullwords of the transaction work area (TWA).	IWA }
	(IVVA).	
	When PARMTYP=COM, the Adabas parameters are supplied in the CICS	
	COMMAREA provided by the calling program with the EXEC CICS LINK	
	command. The COMMAREA list for an ACB call must be at least 32 bytes	
	long and begin with the label "ADABAS52". The COMMAREA list for an	
	ACBX call must be at least 24 bytes long and begin with the label	
	"ADABAS8X". In addition, the last ABD in the COMMAREA list for an	
	ACBX call must be indicated by setting the VL-bit in other words, the	
	high bit in the address must be on (X'80').	

Parameter	Description	Syntax
	PARMTYP=ALL (the default) uses both the COMMAREA and TWA to pass the Adabas parameters; in this case, the COMMAREA is checked first.	
	We do not recommend that you attempt to map the CICS TWA to the Adabas 8 ACBX direct call. This is because the TWA is of finite size per transaction and because the TWA in not available at CICS startup. We therefore recommend that CICS programs using the Adabas 8 CICS link routines use the COMMAREA only for passing data.	

PRE: DSECT Data Prefix

Parameter	Description	Syntax
PRE	The two-byte string to be used as the DSECT data prefix. The default is "LG".	PRE={ <u>LG</u> <i>prefix</i> }

PURGE: Purge Transaction

Parameter	Description	Syntax
PURGE	The PURGE parameter is used when assembling with CICS 3.2 or above. If	PURGE={NO YES}
	PURGE=YES is specified, the CICS WAIT EXTERNAL will contain PURGEABLE	
	as one of its parameters, allowing the transaction to be purged by CICS if the	
	DTIMOUT value is exceeded and PURGE is specified.	
	If PURGE=NO (the default) is specified, the NONPURGEABLE option is generated.	

RENT: Reentrant Module Flag

Parameter	Description	Syntax
RENT	Indicates whether the globals module is reentrant.	RENT={ NO YES}

RETRYX: Retry Command Exit Flag

Parameter	Description	Syntax
RETRYX	Indicates whether the retry command exit is active.	RETRYX={NO YES}

REVIEW: Adabas Review Support

Parameter	Description	Syntax
	Indicates whether or not Software AG's Adabas Review performance monitor is installed and active. When REVIEW=YES is specified, a work area of 512 bytes is set up for use by Adabas Review.	

RMI: Resource Manager Interface

Parameter	Description	Syntax
RMI	The ${\tt RMI}$ parameter is used to indicate whether or not the CICS Resource Manager	$RMI = { NO YES }$
	Interface is in use.	
	If RMI=YES is specified, the Adabas task-related user exit (TRUE) will be executed	
	as a resource manager (RM) using the CICS Resource Manager Interface (RMI).	
	RMI=YES is valid only when the Adabas Transaction Manager is installed,	
	enabled, and available to users executing in the CICS environment. Consult the	
	Adabas Transaction Manager documentation for additional instructions related	
	to the installation of the Adabas TRUE.	

RTXNAME: Command Retry Exit Name

Parameter	Description	Syntax
RTXNAME	The name of the command retry exit module.	RTXNAME={ <u>LUEXRTR</u> <i>name</i> }

SAF: Adabas Security Interface Flag

Parameter	Description	Syntax
SAF	Indicates whether Software AG's Adabas SAF Security support is required.	$SAF = { NO YES }$

SAP: SAP Application Support

Parameter	Description	Syntax
SAP	Indicates whether or not SAP user ID generation is supported.	$SAP = \{ NO \mid YES \}$
	If SAP=YES is specified, the program will detect a SAP initialization call and set the user ID for SAP applications from the constant provided on the initialization call, plus the field ACBADD2.	
	For more information, refer to the supplementary information provided to customers using the SAP application system.	

SAPSTR: SAP ID String

Parameter	Description	Syntax	
SAPSTR	The four-byte SAP ID string to use.	SAPSTR={ <u>'SAP*'</u> string}	

SVCNO: Adabas SVC number

Parameter	Description	Syntax
SVCNO	The value of the Adabas SVC number.	SVCNO=nnn
	On z/OS systems, valid values range from 200-255 and the default is "249".	
	On z/VSE systems, valid values range from 32-128 and the default is "45".	

TPMON: Operating Environment

Parameter	Description	Syntax
TPMON	The TP monitor operating environment. Valid values should be specified as follows:	TPMON={BAT CICS COM IMS}
	■ Specify "BAT" to use batch.	
	■ Specify "CICS" to use CICS.	
	■ Specify "COM" to use Com-plete.	
	■ Specify "IMS" to use IMS.	
	■ Specify "TSO" to use TSO.	
	■ Specify "UTM" to use UTM.	
	Caution: Be sure to specify a TP monitor operating environment	
	that is supported on the operating system you selected in the OPSYS parameter. In addition, if OPSYS=CMS is specified, the TPMON parameter should not be specified.	

TRUENM: CICS TRUE Name

Para	meter	Description	Syntax
TRU	ENM	Specifies the module name of the Adabas CICS task-related user exit	TRUENM={ <u>ADACICT</u> name}
		(TRUE). The default is ADACICT.	

UBPLOC: User Block Pool Allocation

Parameter	Description	Syntax
UBPLOC	Specifies whether the user block (UB) pool is to be obtained above (the default) or below the 16-megabyte line in CICS.	UBPLOC={ <u>ABOVE</u> BELOW}
	The ECB used by the EXEC CICS WAIT WAITCICS or the EXEC CICS WAIT EXTERNAL is included in the UB pool.	
	The UBPLOC=BELOW setting supports versions of CICS that do not allow ECBs above the 16-megabyte line; that is, CICS/ESA 3.2 or below.	
	Refer to the IBM manual CICS Application Programming Reference for more information.	

UES: Universal Encoding Support

Parameter	Description	Syntax
UES	Indicates whether or not Universal Encoding Support (UES) is required.	UES={NO <u>YES</u> }

USERX1: User Exit 1 Flag

Parameter	Description	Syntax
USERX1	Indicates whether or not user exit 1 is active.	USERX1={NO YES}

USERX2: User Exit 2 Flag

Parameter	Description	Syntax
USERX2	Indicates whether or not user exit 2 is active.	USERX2={NO YES}

XWAIT: XWAIT Setting for CICS

Parameter	Description	Syntax
	Indicates whether a standard EXEC CICS WAITCICS (XWAIT=N0) or a WAIT	$XWAIT={NO \underline{YES}}$
	EVENTS EXTERNAL (XWAIT=YES) will be executed by the Adabas 8	
	task-related user exit (TRUE). $XWAIT=YES$ is the default.	
	The CICS WAIT EVENTS EXTERNAL (XWAIT=YES) is the recommended interface for CICS/TS 1.1 and above.	
	The CICS WAITCICS statement (XWAIT=N0) is provided for use with CICS/MVS 2.1.2 and for CICS/VSE 2.1 through 2.3. It may also be used for	

Parameter	Description	Syntax
	CICS/TS 1.1 and above, but may result in poor CICS transaction performance or unpredictable transaction results in busy CICS environments.	
	Note: If XWAIT=NO is specified for use under CICS/ESA 3.3, IBM APAR	
	PN39579 must be applied to the CICS/ESA 3.3 system. For CICS/TS 1.1 and above, this APAR is not required.	

Notes:

- 1. If XWAIT=NO is specified, the ADACICT (Adabas 8 TRUE) module issues an EXEC CICS WAIT-CICS command instead of the EXEC CICS WAIT EVENT command. XWAIT=YES conforms with recommended IBM usage of the WAIT and ECB lists in a high-transaction volume CICS system with CICS/TS Version 1.1 and above.
- 2. All EXEC CICS commands are processed by the CICS preprocessor; the LGBLSET parameters cause the subsequent assembly step to skip some of the statements.

XWAIT Posting Mechanisms

CICS WAITCICS (XWAIT=N0) can support a soft post of the specified ECB. This has the disadvantage of becoming a low priority dispatchable unit of work in a CICS environment, since the hand-postable work is not processed by CICS on every work cycle.

EXEC CICS WAIT EXTERNAL (XWAIT=YES), on the other hand, allows CICS to make use of its special post exit code, and will always be checked and processed (if posted) on every CICS work cycle.

For more details on the differences between the various CICS WAIT commands and their relationship to hard and soft posting mechanisms, consult the IBM CICS Application Programming Reference and the texts accompanying IBM APAR PN39579 or "Item RTA000043874" on the IBM InfoLink service.

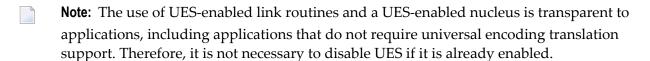
XWAIT and the Adabas SVC / Router

The Adabas SVC is fully compatible with the XWAIT=YES setting. The SVC performs the necessary hard post for Adabas callers under CICS using the Adabas command-level link routine. The same SVC performs a soft post for batch callers where the hard post is not required.

5 Enabling Universal Encoding Support (UES) for Your Adabas

Nucleus

Connection Through a Direct TCP/IP Link	10	06
Activating the TCP/IP Link	10	07


Prior to Adabas Version 7, Entire Net-Work converted all data for mainframe Adabas when necessary from ASCII to EBCDIC. Starting with Version 7, Adabas is delivered with its own data conversion capability called *universal encoding support (UES)*. Entire Net-Work detects when it is connected to a target database that converts data and passes the data through to Adabas without converting it.

Universal encoding support must be activated in:

- The Adabas nucleus.
- The Adabas link routines. For Adabas Version 7, UES is enabled by default for the link routines ADALNK, ADALNKR, and ADALCO. For Adabas 8, UES is enabled by default for *all* link routines. For information on altering UES enablement in the link routines read appropriate sections of *Installing Adabas With TP Monitors*, elsewhere in this guide, starting with the section *UES-Enabled Link Routines*.

UES-enabled databases can be connected to machines with different architectures through Complete, Software AG internal product software (APS), Entire Net-Work (WCP), and optionally in a z/OS environment through a direct TCP/IP link to the Adabas nucleus from web-based applications or from PC-based applications such as Software AG's Jadabas. Connections through Com-plete or the Software AG internal product software (APS) use the Adabas Com-plete link routines; connections through Entire Net-Work use the Adabas batch link routines. Connections through a direct TCP/IP link are described in this chapter.

■ The Adabas database. A sample startup job for a UES-enabled nucleus is provided in member ADANUCU of the ADAvrs.JOBS data set. For more information, read JCL Required for UES Support (z/OS) and JCL Required for UES and TCP/IP Support (z/OS), in the Adabas Operations Manual. In addition, read Universal Encoding Support (UES) in Adabas DBA Tasks Manual as well as ADADEF Utility: Define a Database and ADACMP Utility: Compress-Decompress Data in Adabas Utilities Manual for more information.

Connection Through a Direct TCP/IP Link

A TCP/IP link requires in addition that you link a reentrant ADALNKR module with customized and reassembled translation tables and that you make the result available in the Adabas steplib. The Adabas 8.1.3 ADALNKR module is supplied with the LNKUES module and the default translation tables ASC2EBC and EBC2ASC.

UES-enabled databases are connected directly through TCP/IP using the Adabas reentrant batch or TSO link routine ADALNKR. The sample jobstream to link the ADALNKR module with your modified translation tables is ALNKUESR.

- Step 1: Assemble the Two Translation Tables into the Adabas Load Library (SMA Job Number 1056)
- Step 2: Link the Translation Tables and LNKUES into ADALNKR
- Step 3: Make ADALNKR Available to the Adabas Nucleus

Step 1: Assemble the Two Translation Tables into the Adabas Load Library (SMA Job Number 1056)

Assemble the ASCII to EBCDIC and EBCDIC to ASCII translation tables, either default or customized. Use job ALNKUESR in the ADA *vrs*. JOBS library as a guide for customizing site-specific JCL.

Step 2: Link the Translation Tables and LNKUES into ADALNKR

It is now necessary to (re)link ADALNKR with LNKUES and your customized and reassembled translation tables.

Link the ADALNKR, ASC2EBC, EBC2ASC, LNKUES, and other user exit modules into a final ADALNKR module that is UES-enabled. Place this load module into a "USER.LOAD" library. Sample job LNKLNKR8 is provided as a guide in the ADA vrs.JOBS library.

Step 3: Make ADALNKR Available to the Adabas Nucleus

The (re)linked ADALNK must be made available to the Adabas nucleus.

If you are calling Adabas Version 8 directly through a TCP/IP link and the correct ADALNKR is not available to the Adabas nucleus, Adabas produces unexpected results, such as response code 148 and empty buffers.

Activating the TCP/IP Link

- To activate a direct TCP/IP link to the Adabas nucleus:
- 1 Set the ADARUN parameter TCPIP=YES.
- 2 Specify a universal resource locator (URL).

Specifying a URL

The URL is a 20-byte address that conforms to the RFC specification for URLs.

You can specify the URL required to activate the direct TCP/IP link in the ADARUN parameter TCPURL as follows:

```
ADARUN PROG=ADANUC, TCPIP=YES, TCPURL=api-name://stackid:port-number
```

where:

- *api-name* is a 1-3 character value identifying the application programming interface (API) to use. The APIs for the IBM TCP/IP stack (HPS, OES) are currently supported.
- stackid is a 1-8 character value identifying the stack to use: for the HPS API, this is the name of the TCP/IP started task. for the OES API, no value is needed. for the ILK API, this is the subsystem identifier.
- port-number is a 1-5 character number in decimal notation.

Examples

```
ADARUN PROG=ADANUC, TCPIP=YES, TCPURL=HPS://STACKNAME:1234
ADARUN PROG=ADANUC, TCPIP=YES, TCPURL=OES://:1234
ADARUN PROG=ADANUC, TCPIP=YES, TCPURL=ILK://ILZ5:1234
```

Managing URLs

Optionally, you can specify the first and additional URLs using the operator command TCPIP:

```
TCPIP={ OPEN=ur1|CLOSE=ur1 | CLOSE }
```

where *url* is the URL for the TCP/IP link you want to open or close and has the same format as the ADARUN TCPURL parameter:

```
api-name://stackid:port-number
```

The command allows you to open or close a TCP/IP link to the Adabas nucleus or to close all links. It can only be used when ADARUN TCPIP=YES and all conditions for that setting have been met. This command can be used to close the URL set in the ADARUN TCPURL parameter, or to open/close additional TCP/IP links.

Examples

TCPIP=OPEN=ILK://ILZ5:1234
TCPIP=CLOSE=ILK://ILZ5:1234

To close all open URLs: TCPIP=CLOSE

Device And File Considerations

Supported z/OS and z/VM Device Types	112
ECKD Devices	113
Adding New Devices	113
Enhanced Backup and Restore Performance in Tape Sequential Files	

This section provides information on device and system file topics.

Supported z/OS and z/VM Device Types

The standard characteristics of the device types supported by Adabas on z/OS and z/VM are summarized in the following table. Adabas block sizes and RABNs per track are provided for each Adabas component for each device type.

Device	Trks/Cyl	ASSO	DATA	WORK	PLOG/RLOG	CLOG	TEMP/SORT/DSIM	Notes
0512	16	2044:8	4092:4	8192:2	8192:2	8192:2	8192:2	
3310	11	2044:8	4092:4	4096:4	4096:4	4096:4	8192:2	
3330	19	1510:8	3140:4	4252:3	4252:3	3156:4	3140:4	
3340	12	1255:6	2678:3	3516:2	3516:2	3516:2	3500:2	
3350	30	1564:11	3008:6	4628:4	4628:4	3024:6	3008:6	
3370	12	2044:15	3068:10	5120:6	5120:6	3072:10	7680:4	
3375	12	2016:15	4092:8	4096:8	4096:8	4096:8	8608:4	
3380	15	2004:19	4820:9	5492:8	5492:8	4820:9	7476:6	3
3390	15	2544:18	5064:10	5724:9	5724:9	5064:10	8904:6	3
8345	15	4092:10	22780:2	22920:2	22920:2	22920:2	22920:2	
8350	30	3008:6	6232:3	9442:2	9442:2	9442:2	9442:2	1
8380	15	3476:12	6356:7	9076:5	9076:5	9076:5	9076:5	1
8381	15	3476:12	9076:5	11476:4	11476:4	9076:5	9076:5	1
8385	15	4092:10	23292:2	23468:2	23468:2	23468:2	23468:2	1
8390	15	3440:14	6518:8	10706:5	10706:5	8904:6	8904:6	1
8391	15	4136:12	10796:5	13682:4	13682:4	8904:6	18452:3	1
8392	15	4092:12	12796:4	18452:3	18452:3	18452:3	18452:3	1
8393	15	4092:12	27644:2	27990:2	27990:2	27990:2	27990:2	1
9332	6	2044:10	4092:5	5120:4	5120:4	10240:2	10240:2	2
9335	6	2556:14	3580:10	5120:7	5120:7	7168:5	7168:5	
9345	15	4092:10	7164:6	11148:4	11148:4	22920:2	22920:2	3

Notes:

- 1. The 8350, 838 *n*, and 839 *n* are pseudodevice types physically contained on a 3350, 3380, and 3390 device, respectively, but for which some or all of the standard block sizes are larger.
- 2. The number of tracks per cylinder listed here is artificial.
- 3. The IBM RAMAC 9394 emulates devices 3390 Model 3, 3380 Model K, or 9345 Model 2.

ECKD Devices

Adabas supports ECKD DASD devices such as the IBM 3390 with the 3990 controller and ESCON channels.

During an open operation, ADAIOR determines which DASD device types are being used for the ASSO, DATA, WORK, SORT, and TEMP data sets. At that time, Adabas issues an informational message for each Adabas database component, where type is the component:

ADA164 ... FILE DDtype HAS BEEN OPENED IN ckd/eckd MODE - RABN SIZE rabn-size

Note: Software AG strongly recommends that you avoid mixing ECKD and CKD extents within a file, because the file will be opened only in CKD mode. Mixing extents could degrade performance when file I/O operations are performed.

Adding New Devices

Support for new device types that include user-defined block sizes can be implemented in ADAIOR by modifying one of the table of device-constant entries (TDCEs) reserved for this purpose.

A TDCE is X'40' bytes long and the first free TDCE can be identified by X'0000' in its first two bytes (TDCDT).

For all versions of Adabas prior to version 6.2, the address of the first TDCE is at offset ADAIOR+ X'34'.

For Adabas Version 6.2, TDCE entries are in the ADAIOR CSECT TDCON: the first TDCE entry is at offset 0; the first free TDCE entry is at offset X'400'.

For Adabas Version 7.1, TDCE entries are in the ADAIOS CSECT TDCON: the first TDCE entry is at offset 0; the first free TDCE entry is at offset X'580'.

This information is valuable when adding an additional TDCE entry.

- Information to be Zapped into the First Free ADAIOR TDCE
- General Rules for Defining Device Block Sizes
- Maximum Sequential Block Size
- Rules for Associator and Data Storage Block Sizes
- Rule for Work Data Set Block Size
- Rules for TEMP/SORT Data Set Block Sizes
- Rules for PLOG or SIBA Block Sizes

■ Sequential Protection Log Block Size in I_PTT

Information to be Zapped into the First Free ADAIOR TDCE

The information in the following tables must be zapped into the first free TDCE. The rules described in the section *General Rules for Defining Device Block Sizes* must be followed when changing the TDCE.

Label	Offset	Contents
TDCDT	00	Device type in unsigned decimal (X'3385'), must be numeric, and unique among all TDCEs.
TDCKSN	02	Constant set number: must be uniquely chosen from the values X'2B' or X'2E'.
TDCF	03	The flag bit must be set—TDCFCKD (X'40') for CKD devices, TDCFECKD (X'60') for ECKD devices or TDCFECKD (X'61') for ECKD, not user defined devices.
TDCDT1	04	(see note 1)
TDCDT2	05	(see note 1)
TDCDT3	06	(see note 1)
TDCDT4	07	(see note 1)
TDCMSBS	08	Refer to the section Maximum Sequential Block Size.
TDCTPC	0A	Number of tracks per cylinder.
TDCCIPT	0C	(see note 2)
TDCBPCI	0E	(see note 2)
TDCABPT	10	Number of Associator blocks per track.
TDCABS	12	Associator block size.
TDCACPB	14	(see note 2)
TDCDBPT	16	Number of Data Storage blocks per track.
TDCDBS	18	Data Storage block size.
TDCDCPB	1A	(see note 2)
TDCWBPT	1C	Number of Work blocks per track.
TDCWBS	1E	Work block size.
TDCWCPB	20	(see note 2)
TDCTSBPT	22	Number of TEMP or SORT blocks per track
TDCTSBS	24	TEMP or SORT block size.
TDCTSCPB	26	(see note 2)
TDCPBPT	28	Number of PLOG blocks per track.
TDCPBS	2A	PLOG block size.
TDCPCPB	2C	(see note 2)
TDCCBPT	2E	Number of CLOG blocks per track.
TDCCBS	30	CLOG block size.

Label	Offset	Contents
TDCCCPB	32	(see note 2)

Notes:

- 1. One or more operating-system-dependent codes for identifying the device type: z/OS, the UCB unit type from UCBTBYT4.
- 2. Not used for z/OS operating systems.

General Rules for Defining Device Block Sizes

The following general rules must be followed when defining Adabas device block sizes:

- All block sizes must be multiples of 4.
- A single block cannot be split between tracks (that is, the block size must be less than or equal to the track size).

Maximum Sequential Block Size

When adding new devices, the maximum sequential block size must also be specified. The value to be set to the maximum sequential block size is TDCMSBS, located at offset X'08' from the beginning of the ADAIOR TDCE table.

Depending on the device type, the TDCMSBS value should be as follows:

Device Type	Maximum Block Size
0512	32760
3310	32760
3330	13030
3340	8368
3350 (8350)	19069
3370	32760
3375	17600
3380 (8380/81)	23476
339 <i>n</i>	27998
8380/1/5	23476
839 <i>n</i>	27998
9332	32760
9335	32760

Note: On some devices, it may be most efficient to use smaller block sizes (for example, to specify 23476 for the 3380, but with two blocks per track).

Rules for Associator and Data Storage Block Sizes

The following rules apply for Associator and Data Storage block sizes:

- Associator block size must be greater than one-fourth the size of the largest FDT, and should be large enough to accept definitions in the various administrative blocks (RABN 1 - 30) and in the FCB;
- The block sizes for Associator and Data Storage should be a multiple of 256, less four bytes (for example, 1020) to save Adabas buffer pool space.
- The Associator and Data Storage block sizes must be at least 32 less than the sequential block size.
- Data Storage block size must be greater than: (maximum compressed record length + 10 + padding bytes).

Rule for Work Data Set Block Size

The Work block size must be greater than either (maximum compressed record length + 110) or (Associator block size + 110), whichever is greater.

Rules for TEMP/SORT Data Set Block Sizes

If ADAM direct addressing is used:

```
size > (maximum compressed record length + ADAM record length + 24);
size > 277 (maximum descriptor length + 24)
```

However, TEMP and SORT are generally read and written sequentially; therefore, the larger the TEMP/SORT block size, the better.

Block sizes for TEMP and SORT must be greater than the block sizes for Data Storage.

Rules for PLOG or SIBA Block Sizes

Note: The use of 3480/3490 tape cartridge compression (IDRC) is not recommended for protection log files. The ADARES BACKOUT function will run at least twice as long under z/OS when processing compressed data.

The following rules apply for PLOG or SIBA block sizes:

- The PLOG or SIBA block size must be greater than either (maximum compressed record length + 110) or (Associator block size + 110), whichever is greater.
- It is also recommended that PLOG/SIBA be defined larger than the largest Data Storage block size. This avoids increased I/O caused by splitting Data Storage blocks during online ADASAV operations.

The block size (BLKSIZE) of a sequential file is determined as follows:

```
if PTTF(JCL) then BLKSIZE is taken from file assignment statement or label;
if PTTMBS > 0 then BLKSIZE = PTTMBS;
if PTTMBS = 0 then
if tape then BLKSIZE = 32760;
else BLKSIZE = TDCMSBS;
else if BLKSIZE in file assignment statement or label then use it;
if PTTF(OUT) then
if QBLKSIZE > 0 then BLKSIZE = QBLKSIZE;
if tape then BLKSIZE = 32760;
else BLKSIZE = TDCMSBS;
else error.
```

Note: QBLKSIZE is an ADARUN parameter.

Sequential Protection Log Block Size in I_PTT

In addition, the sequential protection log block size may have to be increased in the corresponding PTT entry in CSECT I_PTT of the load module ADAIOS.

PTT entries begin at offset 0 into CSECT I_PTT.

Each PTT entry is X'10' bytes long and has the structure given below:

Label	Offset	Contents	
PTTPN	00	Program number	
PTTFT	01	File type	
PTTN	02	DD name characters 2 - 8	
PTTF	08	Flags:	
		OUT (X'80') output	
		BSAM (X'40') BSAM	
		BACK (X'20') read backwards	
		JCL (X'10') BLKSIZE/LRECL/RECFM taken from DATADEF statement or label	
		UNDEF (X'04') undefined record format	
		VAR (X'02') variable record format	
-	09	Reserved	
PTTMBSZ	0C	Maximum block size	

The PTT entry for the sequential protection log can be identified by X'12F1' in its first two bytes.

Enhanced Backup and Restore Performance in Tape Sequential Files

Adabas exploits IBM's large block (more than 32,760 bytes) support for sequential access methods BSAM and QSAM under z/OS version 2 release 10 and above. ADAIOR supports tape drives with a block size of up to 256K for 3590 devices and 64K for 3490/3490E devices.

This support can provide performance benefits for any utility writing to tape (for example, ADASAV). Users must ensure that they have applied the PTF for their environment that fixes IBM APAR OW55220. Without this fix, ADARES BACKOUT from a tape file written with large block support will fail.

Caution: If you choose to write tape files with large block sizes (for example, for database backups), these files will not be transportable to systems where support for large blocks is not available. This might include a site being used as a backup facility for disaster recovery.

7 Installing The AOS Demo Version

AOS Demo Installation Procedure	12	2(
Installing AOS with Natural Security	12	2
Setting the AOS Demo Version Defaults	12	2:

This section describes how to install the Adabas Online System (AOS) demo version on a z/OS or FACOM MSP system. To install AOS on systems that use Software AG's System Maintenance Aid (SMA), refer to the section of this document describing installation of Adabas in your operating environment. For information about SMA, see the *System Maintenance Aid* documentation.

Notes:

- 1. To install the full version of AOS, see the *Adabas Online System* documentation.
- 2. Demo versions of Adabas Vista (AVI), Adabas Fastpath (AFP), Adabas SAF Security (AAF), and Adabas Transaction Manager (ATM) are automatically installed when you install either the demo or full version of AOS.

The AOS demo version requires Natural version 4.1 or above.

AOS Demo Installation Procedure

To install the AOS demo version without the System Maintenance Aid

- For a Com-plete or CICS environment, link the correct object module with the Natural TP nucleus.
 - If a split Natural nucleus is to be installed, the AOSASM module must be linked to the shared portion of the nucleus and not to the thread portion.
- 2 Perform a Natural INPL.

The tape containing the AOS demo version contains an INPL-formatted data set in Natural 4.1. The programs for the AOS demo version are stored in library SYSAOS.

The distributed INPL jobs (both the sample jobs and the SMA-generated jobs) that you use to load the Adabas INPL library load it in a date-sensitive manner. In other words, the load process will now check the dates of your existing INPL library and will not allow older members to overwrite members with newer dates. However, if you use your own Natural batch jobs to load the Adabas INPL library, you will need to modify them to be date-sensitive. To do this, specify the following CMSYNIN primary command input in your job (this setting assumes the Natural input parameters in the job are specified in comma-delimited mode, or IM=D):

B,,,,,,

The "B" setting indicates that the INPL action should load everything; the next six fields (comma-delimited) are defaults, the eighth field is specified as "Y" to indicate that dates in the INPL library should be checked, and the ninth field is not included in the specification because the default for that field will be used. For more information about Natural CMSYNIN input, refer to your Natural documentation.

Note: When migrating an Adabas 7.4 installation, this procedure does not apply. Instead, you should replace the 7.4 INPL library members with the latest Adabas 8 INPL library members, regardless of the dates of the members, to avoid creating a library containing members from both releases.

3 Load the ADA error messages using the Natural utility ERRLODUS.

The error messages are stored in an ERRN-formatted data set included on the tape.

See the Natural Utilities documentation for information about the ERRLODUS utility.

4 Execute the AOS demo version by logging on to the application library SYSAOS and entering the command MENU.

Installing AOS with Natural Security

If Natural Security is installed, define at least the library SYSAOS to it.

Define the following libraries as needed:

- For Adabas Vista: SYSAVI and SYSMV vrs
- For Adabas Fastpath: SYSAFP and SYSMW vrs
- For Adabas SAF Security: SYSAAF and SYSMX vrs
- For Adabas Transaction Manager: SYSATM and SYSMT vrs

Software AG recommends you define SYSAOS and any other libraries you may define as protected.

Specify the startup program for SYSAOS as MENU. Do not specify a startup program name for the other libraries.

Natural Security must be installed before implementing Adabas Online System Security. See the *Adabas Security* documentation for more information. For information about installing Natural Security for use with AOS Security, see the *Natural Security* documentation.

Natural Security includes the ability to automatically close all open databases when the Natural command mode's LOGON function of the AOS demo version is invoked.

Setting the AOS Demo Version Defaults

Parameters that control the operation of the AOS demo version can be set at installation time by changing the defaults in the Natural program AOSEX1. The table below lists the parameters and possible values. Default values are underlined:

Parameter	Valid Values / Default	Function
ADMIN-LEVEL (N1)	0-9/(6)	Administration level: Allows access to certain functions that can cause error conditions in the ADABAS environment. When set to 8 or higher, it allows the "CATCH RSP-CODE" direct command to occur, and when set to 9, it allows the "ZAP" function to be issued.
AOS-END-MSG	Yes (<u>Y</u>) / No (N)	Display AOS end-of-session message?
AOS-LOGO	Yes (<u>Y</u>) / No (N)	Display AOS logo?
BATCH-ERROR (A1)	Yes (<u>Y</u>)/No (N)	Batch job cond code: When AOS is executing from a batch job and has an error condition, and if BATCH-ERROR is set to "Y", AOS will terminate with a condition code of 8. This function will be fully implemented over time, as all AOS programs must be modified for this.
BLK-CYL	Cylinder (C) Block (<u>B</u>)	Space control by block or cylinder
CMD-INT	Natural (N) AOS (<u>A</u>)	Pass-through control for invalid AOS commands: "N" passes invalid commands to Natural; "A" displays an error message for invalid commands.
CPEXLIST	No (<u>N</u>): normal list Yes (Y): extended	Display extended checkpoint list?
EXF-UTI	E: EXF exception <u>U</u> : UTI exception	UTI or EXF file lock exception
MAX-AC-IOS	0-999999 (<u>150</u>)	AC read converter block threshold value
MAXANZ	1-99999999 (<u>100</u>)	Maximum displayed user queue elements
NR-EXT	1, 2, 3, 4, 5, 6, 7, 8, 9	"Critical" extent threshold for listing file
NR-PERCENT(N3)	1-99 / (89)	Report function: NR-PERCENT is a threshold value for the display of critical files concerning the percentage full of the extents reached in AC/UI/NI/DS table type. A value greater than NR-PERCENT will be highlighted.
PURGE-UQE	Yes (Y) / No (<u>N</u>)	Remove user queue element?
SAVEFDT	Yes (Y) / No (<u>N</u>)	Keep deleted file's FDT?
STATINTV	1-9999 seconds (<u>60</u>)	Statistics-gathering interval

Parameter	Valid Values / Default	Function
TID-DISPLAY		Control display for TID in "display user queue" function: "B" = binary TID display; "A" = alpha TID display; "I" = alpha for A-Z/0-9, otherwise binary.
TIMELA	0-99999999 seconds ($\underline{0}$: no limitations)	Display user queue elements with activity during the last "n" seconds.
TIN-JOBN	T (time-in) J (jobname)	Display either jobname or time-in in "display command queue" function

To change the defaults, you must edit the Natural AOSEX1 program and make the changes directly within the program listing in the defaults area, as shown by the following example:

```
DEFINE DATA PARAMETER USING P-AOSEX1
END-DEFINE
* SET THE DEFAULTS
ADMIN-LEVEL = '6'
                     (Allows access to certain functions that can cause error \leftarrow
conditions in the ADABAS environment)
AOS-END-MSG = 'Y'
                     (Display end-of-session message)
AOS-LOGO = 'Y'
                     (Adabas Online System logo display-set to 'N' for no logo ↔
display)
BATCH-ERROR = 'N'
                     (If BATCH-ERROR is set to "Y", AOS will terminate with a ↔
condition code of 8 if an error occurs.)
BLK-CYL = 'B'
                     (Space allocation default-set to 'C' for cylinders)
CMD-INT = 'A'
                     (Pass invalid Adabas commands to (N)atural, or intercept (A))
CPEXLIST = 'N'
                    (Checkpoint list control-set to 'Y' for extended checkpoint list)
EXF-UTI = 'U'
                    (File locking exception-set to 'E' to except files in EXF status)
                    (Maximum user queue elements displayed. range: 1 - 99,999,999 ↔
MAXANZ = 100
elements)
NR-EXT = 4
                     (Critical extent threshold-1, 2, 3, 4, 5, 6, 7, 8 or 9)
NR-PERCENT = '89'
                     (NR-PERCENT is a threshold value for the display of critical \leftarrow
files)
                     (AC read converter block threshold)
MAX-AC-IOS = 150
PURGE-UQE = 'N'
                     (Remove element from user queue. Pre-5.1 default is "Y")
                     (Keep old FDT for SAVE operation-set to 'Y' to save FDTs)
SAVEFDT = 'N'
                     (Statistic-gathering time. range: 1 - 9999)
STATINTV = 60
TID-DISPLAY = 'I'
                     (TID display control: B=binary, A=alpha, I=normally alpha, \leftarrow
special characters as binary)
TIMELA = 0
                    (Include activity in last 'n' seconds. range: "all" (0) -last ↔
99,999,999 seconds)
TIN-JOBN = 'J'
                    (Command queue display-"J" for jobname, "T" for "time in queue" )
END
```

8 Installing The Recovery Aid (ADARAI)

ADARAI Installation Overview	126
ADARAI Installation Procedure	126

This section describes how to install the Adabas Recovery Aid (ADARAI).

ADARAI Installation Overview

To install the Adabas Recovery Aid, it is necessary to:

- allocate the recovery log;
- customize the skeleton job streams for your installation (see the Adabas Operations documentation for more detailed information);
- update the necessary nucleus run/utility job control to include the Recovery Aid data definition statements:
- install the Adabas/ADARAI utility configuration; and
- run ADARAI PREPARE and a save operation to begin a logging generation.

ADARAI Installation Procedure

Except for customizing the skeleton job stream, the specific installation steps are as follows:

To install the Adabas Recovery Aid:

1 Define and format the DDRLOGR1 file.

Use the ADAFRM RLOGFRM function to format the RLOG.

Add DDRLOGR1 DD or DLBL statements to the nucleus job stream and to any utilities that update or save the database and thus write to the RLOG file.

Whenever these utilities are executed while ADARAI is active in the database (that is, after the PREPARE function has been executed), the DDRLOGR1 or DDDLBL statements must be included.

The following utilities update the database and therefore write to the RLOG:

```
ADAORD (all STORE and REORDER functions)
ADALOD (all functions)
ADAINV (all functions)
ADARES REGENERATE/BACKOUT database
ADASAV RESTORE (all functions) and RESTPLOG
ADADEF NEWWORK
```

The following utilities save the database and therefore write to the RLOG:

ADASAV SAVE (all functions) ADAORD RESTRUCTURE ADAULD

The following utility functions have an impact on recovery and therefore write to the RLOG:

ADARES PLCOPY/COPY ADASAV MERGE

Additionally, the Adabas nucleus writes to the RLOG during startup and termination. The nucleus also writes checkpoint information to the RLOG when ADADBS or Adabas Online System functions are processed, ensuring these events are known to ADARAI for recovery processing.

3 Install ADARAI on the database.

Execute the ADARAI PREPARE function. ADARAI PREPARE updates the ASSO GCBs to indicate that ADARAI is installed. It also creates a control record on the RLOG file with necessary ADARAI information (number of generations, RLOG size, etc.).

4 Create the first ADARAI generation.

Execute ADASAV SAVE (database) to start the logging of RLOG information. See the *Adabas Utilities* documentation for more information.

Once ADARAI is active in the database, protection logging must always be used.

9

Installing The Error Handling And Message Buffering Feature

This section describes how to install the error handling and message buffering feature.

to install the error handling and message buffering feature:

- 1 Specify ADARUN SMGT=YES. If message buffering is to be used, also specify ADARUN MSGBUF with a value greater than zero.
 - When ADARUN SMGT=YES is specified to activate the error handling tool, the initialization module ADAMXI is loaded by ADARUN and is then called during session open:
 - the error handling header/environment is initialized;
 - the message buffer is initialized if ADARUN MSGBUF is specified with a value greater than zero;
 - the error handling modules are loaded into memory by ADAIOR;
 - the Adabas module table is built;
 - any provided error handling user exit is initialized;
 - the default recovery plug-in (PIN) module ADAMXY is installed;
 - the program check and abnormal termination handlers are activated;
 - the error handling flag in the header is raised indicating a successful start;
 - the ADANI2 message is generated to indicate that error handling is active in the nucleus.
- 2 Decide which exits are critical (the default) and issue SMGT, XNOTCRITICAL=exit-code operator commands for those that are not critical.
- 3 Customize ADASMXIT if necessary, particularily if PINRSP or PINAUTOR are to be activated. Re-assemble the exit and ensure that it resides in the Adabas load library or is available in a load library that is available at startup time.
- 4 Decide which PINs to activate.

The following table lists the available PINs and how to activate them:

PIN Routine	To install
PINAUTOR	rename NOAUTOR in the Adabas load library to PINAUTOR
PINOPRSP	rename NOOPRSP in the Adabas load library to PINOPRSP
PINRSP	issue operator command $SMGT$, $ADDPIN=PINRSP$ when the nucleus is active (see note below)
PINUES	issue operator command SMGT, ADDPIN=PINUES when the nucleus is active (see note below)

Note: Since PINRSP and PINUES handle some of the same response codes, perform the ADDPIN function last on the module that is to acquire control. For example, PINRSP and PINUES both handle a response code 55. If PINUES is to acquire control, the ADDPIN must be done on PINUES after PINRSP.

At this point error handling is fully operational and SMGT operator commands may be issued.

10 Adabas Dump Formatting Tool (ADAFDP)

ADAFDP Function	132
ADAFDP Output	132

This section describes the use of the Adabas dump formatting tool ADAFDP.

ADAFDP Function

ADAFDP is the address space dump formatting module. During abnormal shutdown of the Adabas nucleus, this module receives control to format and display information that should help you analyze the reason for the error.

During a nucleus shutdown, ADAMPM determines the shutdown reason. If the reason is abnormal termination, ADAMPM loads the ADAFDP module into the address space prior to the 20 call to the Adabas SVC. ADAFDP subsequently receives control to format nucleus information.

If ADAFDP cannot be loaded, message ADAF03 is written to the console and abnormal shutdown continues.

ADAFDP Output

Much of the information formatted by ADAFDP is self-explanatory. However, because the type and amount of information depends on the shutdown situation, a summary of ADAFDP output is provided in this section.

- ADAFDP Messages
- Pool Abbreviations
- User Threads
- Command Information
- RABN Information

ADAFDP Messages

Message	Description
ADAH01 / ADAH02	The message is displayed on the console and written to DDPRINT at the point where the format begins and terminates.
ADAMPM ABEND CODE and PSW	If an Abend code and program status word (PSW) were saved in ADAMPM by the Adabas ESTAE, ADAFDP displays these. In addition, ADAFDP determines the module whose entry point best fits the PSW and calculates the offset within that module. If the ADAMPM abend code and PSW are zero, ADAFDP does not format this information.
ADABAS MODULE LOCATIONS	ADAFDP formats and displays the location of each of the Adabas nucleus modules resident in the address space.
ADDRESS LOCATIONS FOR USER EXITS	ADAFDP formats and displays the location of any user exit loaded with the Adabas nucleus.

Message	Description
ADDRESS LOCATIONS FOR HYPEREXITS	ADAFDP formats and displays the location of any hyperexit loaded with the Adabas nucleus. Hyperexits 10-31 are displayed as A-U, respectively.
ADANCO STANDARD REGISTER SAVE AREA	Registers 0-7/8-F, which are saved in ADANCO. ADAFDP determines if any of these registers contains an address that points at a nucleus pool in storage. If yes, ADAFDP indicates which pool and snaps storage at that address. If the register is 12 and it points to a user thread, ADAFDP snaps the entire thread.
ADANCO ABEND SAVE REGISTERS	Registers 0-7/8-F, which are saved in ADANC0 as a result of a user abend. ADAFDP determines if any of these saved registers contains an address that points at a nucleus pool in storage. If yes, ADAFDP indicates which pool and snaps storage at that location. If the saved register is 12 and it points to a user thread, ADAFDP snaps the entire thread.
ADAMPM SAVE REGISTERS	Registers 0-7/8-F, which were saved in ADAMPM by the Adabas ESTAE. These are the same registers displayed with the ADAM99 message. ADAFDP determines if any of these saved registers contains an address that points within a nucleus pool in storage. If yes, ADAFDP indicates which pool and snaps storage at that location.
BEGIN / ENDING ADDRESSES OF POOLS / TABLES	ADAFDP determines begin/ending address locations for pools and tables for the Adabas nucleus. These addresses are presented for easy location in the actual dump. See <i>Pool Abbreviations</i> for more information.
ADABAS THREADS	ADAFDP formats the physical threads including threads 0 , -1, and -2. The number of lines depends on the value of NT . The thread that was active at the time of the abnormal termination (if any) is marked by a pointer ">".
USER THREADS	For any of the threads -2 to NT that had assigned work to perform, ADAFDP formats and displays information about the status of that thread. See <i>User Threads</i> for more information:
FOLLOWING COMMANDS WERE FOUND IN THE CMD QUEUE	ADAFDP scans the command queue and formats information for any command found in the queue. See <i>Command Information</i> for more information.
POOL INTEGRITY CHECK	ADAFDP check the integrity of several pools within the Adabas nucleus address space. If an error is detected within that pool, ADAFDP indicates which pool and what type of error was encountered. In addition, ADAFDP snaps storage at the location where the error was detected.
FOLLOWING RABNS / FILES ACTIVE IN BUFFER POOL	ADAFDP scans the buffer pool header for RABNs that were active or being updated. See <i>RABN Information</i> for more information.
ADAIOR REGS FOUND AT OFFSET X'080'	Registers 0-7/8-F found saved in ADAIOR at this offset. If ADAFDP determines that any of these register values is pointing within an Adabas pool, it snaps storage at that location.
ADAIOR REGS FOUND AT OFFSET X'0C0'	Registers 0-7/8-F found saved in ADAIOR at this offset. If ADAFDP determines that any of these register values is pointing within an Adabas pool, it snaps storage at that location.
ICCB POINTED FROM X'A0' IN IOR	The ICCB address to which this offset in ADAIOR points.

Message	Description
ADAI22 ADAIOR TRACE	Format of ADAIOR trace table; same as that found with the ADAM99
TABLE	message.

Pool Abbreviations

Pool Abbreviation	Description
LOG	Log area
OPR	Adabas nucleus operator command processing area
CQ	Address of the command queue, which is formatted later by ADAFDP
ICQ	Internal command queue
TT	Thread table
IA1	Software AG internal area 1
SFT	Session file table
FU	File usage table
FUP	File update table
IOT	I/O table for asynchronous buffer flushing
PL2	PLOG area for asynchronous buffer flushing
PET	Table of posted ETs
TPT	Tpost
TPL	Tplatz
UQP	Unique descriptor pool
UHQ	Upper hold queue
HQ	Hold queue
UUQ	Upper user queue
UQ	User queue
FP	Format pool
FHF	File HILF element
PA	Protection area
TBI	Table of ISNs
TBQ	Table of sequential searches
WK3	Work part 3 space allocation table
IA2	Software AG internal area 2
WK2	Work part 2 space allocation table
VOL	VOLSER table
WIO	Work block I/O area
FST	Free space table work area

Pool Abbreviation	Description
UT	User threads
WP	Work pool
AW2	Work block asynchronous I/O area
IOP	I/O pool related to asynchronous buffer flush
IU2	Buffer pool importance header upper 2
IU1	Buffer pool importance header upper 1
BU2	Buffer pool upper header 2
BU1	Buffer pool upper header 1
ВН	Address location of the buffer pool header, information from the buffer pool header is formatted later by ADAFDP
BP	Address location of the physical start of the buffer pool

User Threads

Information	Description
Thread Number	-2 to NT
Status	Indicates the current status of the thread:
	Active: the currently active thread
	■ In Use: thread has been assigned work
	■ Waiting For I/O: waiting for a block not in buffer pool
	■ Waiting For RABN: waiting for a RABN already in use
	■ Waiting For Work-2 Area Block: similar to waiting for I/O
	■ Waiting Workpool Space: provides number of bytes in decimal
	Ready To Run: waiting to be selected for execution
CMD	The Adabas command being executed
Response Code	Response code (if any)
File Number	File number for this command
ISN	Internal sequence number for this command
Sub. Rsp	Subroutine response code (if any)
Last RABN for I/O	Last RABN required by command processing, in decimal
Туре	Last RABN type (A - ASSO, D - DATA)
CQE Addr	Command queue element address for this command
User Jobname	Job name for user who executed this command
ITID	Internal Adabas ID for user who executed this command
User	User ID for user who executed this command

Information	Description
Unique global ID	28-byte ID for user who owns this command
Buffer Addresses	buffer addresses for: control block, format buffer, search buffer, value buffer, ISN buffer
Buffer Lengths	FL: format buffer length RL: record buffer length SL: search buffer length VL: value buffer length IL: ISN buffer length
Snap Thread	The first 144 bytes of the user thread are snapped

Command Information

Information	Description
CQE Address	The address location of this CQE
F	Command queue flag bytes:
	■ First Byte: General Purpose Flag
	X'80': User buffers in service partition, region, address space
	X'40': ET command waiting for 12 call
	X'20': Waiting for 16 call
	X'10': 16 call required
	■ X'08': Attached buffer
	■ X'04': Attached buffer required
	X'02': X-memory lock held (MVS only)
	Second Byte: Selection Flag
	■ X′80′: In process
	■ X'40': Ready to be selected
	X'20': Search for UQE done
	■ X'10': UQE found
	■ X'08': Not selectable during BSS=x'80' status
	X'04': Not selectable during ET-SYNC
	■ X'02': Waiting for space
	■ X'01': Waiting for ISN in HQ
CMD	The command type
File Number	The file number for this command
Job Name	Job name for the user
Addr User	UQE Address of users UQE, if searched for and found
Addr User ASCB	Address location of user's ASCB

Information	Description
Addr ECB	Address location of user's ECB (in user's address space)
Addr User UB	Address of users UB (in user's address space)
Addr User PAL	Address location of user's parameter address list
CQE ACA	ACA field of CQE.
CQE RQST	RQST field of CQE
Abuf/Pal	Address of the attached buffer/parameter address list (PAL) for CMD
Comm Id	28-byte unique user ID for this command

RABN Information

Information	Description
RABN Number	The RABN number in decimal
Туре	Type of block (A - ASSO, D - DATA)
Flag	BP header element flag byte:
	■ AKZ X'40': Active indicator
	■ UKZ X'20': Update indicator
	RKZ X'10': Read indicator
	■ XKZ X'04': Access is waiting for block
	■ YKZ X'02': Update is waiting for block
	SKZ X'01': Write indicator
File	File number that owns this block
Address	Address location of block in storage.

11 Translation Tables

Adabas EBCDIC to ASCII and ASCII to EBCDIC	1	4(
Entire Net-Work EBCDIC to ASCII and ASCII to EBCDIC	1	4	1

This section describes the translation tables which are supplied by Adabas.

Adabas EBCDIC to ASCII and ASCII to EBCDIC

```
cUES2ASC DS OF
c* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
c DC x'000102033F093F7F3F3F3F0B0C0D0E0F' 0.
c DC x'101112133F3F083F18193F3F3F1D3F1F'
c DC x'3F3F1C3F3F0A171B3F3F3F3F3F050607'
c DC x'3F3F163F3F1E3F043F3F3F3F14153F1A'
c DC x'203F3F3F3F3F3F3F3F3F3F2E3C282B3F'
c DC x'263F3F3F3F3F3F3F3F21242A293B5E'
c DC x'2D2F3F3F3F3F3F3F3F7C2C255F3E3F'
c DC x'3F3F3F3F3F3F3F3F603A2340273D22'
c DC x'3F6162636465666768693F3F3F3F3F3F3F
c DC x'3F6A6B6C6D6E6F7071723F3F3F3F3F3F'
c DC x'3F7E737475767778797A3F3F3F5B3F3F'
c DC x'3F3F3F3F3F3F3F3F3F3F3F3F5D3F3F'
c DC x'7B4142434445464748493F3F3F3F3F3F;
c DC x'7D4A4B4C4D4E4F5051523F3F3F3F3F3F'
c DC x'5C3F535455565758595A3F3F3F3F3F3F'
c DC x'303132333435363738393F3F3F3F3F3F3F
c* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
END
cUES2EBC DS OF
c* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
c DC x'00010203372D2E2F1605250B0C0D0E0F' 0.
c DC x'101112133C3D322618193F27221D351F'
c DC x'405A7F7B5B6C507D4D5D5C4E6B604B61'
c DC x'F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F' 3.
c DC x'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6'
c DC x'D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D'
c DC x'79818283848586878889919293949596'
c DC x'979899A2A3A4A5A6A7A8A9C06AD0A107'
c* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
END
```

Entire Net-Work EBCDIC to ASCII and ASCII to EBCDIC

```
NW2ASC DS OF
* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
DC X'000102030405060708090A0B0C0D0E0F' 0.
DC X'101112131415161718191A1B1C1D1E1F'
DC X'20000000000000000005B2E3C282B5D' 4.
DC X'2600000000000000000021242A293B5E'
DC X'2D2F00000000000000007C2C255F3E3F'
DC X'000000000000000000603A2340273D22'
DC X'0061626364656667686900000000000000
DC X'006A6B6C6D6E6F70717200000000000000
DC X'007E737475767778797A00005B000000' A.
DC X'000000000000000000000000005D0000' B.
DC X'7B41424344454647484900000000000000
DC X'7D4A4B4C4D4E4F505152000000000000 D.
DC X'5C7E535455565758595A000000000000000
DC X'303132333435363738397C00000000FF'
* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
NW2EBC DS OF
* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
DC X'000102030405060708090A0B0C0D0E0F' 0.
DC X'101112131415161718191A1B1C1D1E1F'
DC X'405A7F7B5B6C507D4D5D5C4E6B604B61'
DC X'F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F'
DC X'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6' 4.
DC X'D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D'
DC X'79818283848586878889919293949596'
DC X'979899A2A3A4A5A6A7A8A9C06AD0A100'
* .0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F
END
```

Index

A	G
Adabas	GBLNAME parameter, 95
installation for z/OS, 1	GEN parameter, 95
Adabas Bridge for DL/I support, 93	
Adabas Bridge for VSAM support, 93	1
Adabas CICS task-related user exit (TRUE)	•
module name, 101	IDTNAME parameter, 95
Adabas Review support, 100	IDTUGRP parameter, 96
Adabas security interface parameter, 100	installation
Adabas SVC number parameter, 101	for z/OS, 1
Adabas Transaction Manager and Adabas Fastpath exit support, 94	Installing Adabas for z/OS, 5
ADL parameter, 93	
AVB parameter, 93	L
117 b parameter, 70	1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D	length of user data passed to user exit 4, 96
В	LGBLSET macro
BS2000 IDT common memory pool name, 95	AVR parameter, 93
BS2000 memory pool user bound setting, 96	AVB parameter, 93
	CITSNM parameter, 93 COR parameter, 94
C	DBSVCTN parameter, 94
C	DYNDBSVC parameter, 95
CICS command-level link routine name, 95	ENTPT parameter, 95
CICS multiple region option, 97	GBLNAME parameter, 95
CICS purge transaction parameter, 99	GEN parameter, 95
CICS Resource Manager Interface parameter, 100	IDTNAME parameter, 95
CICS user ID creation method, 97	IDTUGRP parameter, 96
CICS XWAIT setting, 102	LOGID parameter, 96
CITSNM parameter, 93	LUINFO parameter, 96
command retry exit name, 100	LUSAVE parameter, 96
COR parameter, 94	LX1NAME parameter, 96
CSECT or DSECT gneration, 95	LX2NAME parameter, 97
_	modifying, 92
D	MRO parameter, 97
DDID 1 00	NETOPT parameter, 97
DBID parameter, 89	NTGPID parameter, 97 NUBS parameter, 98
DBID/SVC routing table, 94-95 source code, 87	OPSYS parameter, 98
DBID2 parameter, 90	PARMTYP parameter, 98
DBSVCTN parameter, 94	PRE parameter, 99
default target database ID, 96	PURGE parameter, 99
DSECT data prefix parameter, 99	RENT parameter, 99
DYNDBSVC parameter, 95	RETRYX parameter, 99
1 '	REVIEW parameter, 100
E	RMI parameter, 100
L	RTXNAME parameter, 100
ENTPT parameter, 95	SAF parameter, 100

SAP parameter, 100 SAPSTR parameter, 101 SVCNO parameter, 101 TPMON parameter, 101 TRUENM parameter, 101 UBPLOC parameter, 102 UES parameter, 102 USERX1 parameter, 102 USERX2 parameter, 102 SERX2 parameter, 102 Link globals module name, 95 LOGID parameter, 96 LUINFO parameter, 96 LUSAVE parameter, 96 LX1NAME parameter, 96 LX2NAME parameter, 97 M MDBSVC macro parameters, 89 statement types, 88 TYPE=FINAL statement syntax, 89 TYPE=GEN statement syntax, 89 TYPE=INIT statement syntax, 89	SAP parameter, 100 SAP user ID generation support parameter, 100 SAPSTR parameter, 101 SVC parameter, 91 SVC routing by database ID, 82 SVCNO parameter, 101 T TABNAME parameter, 91 target database ID default, 96 TP operating environment parameter, 101 TPMON parameter, 101 TRUENM parameter, 101 TYPE=DSECT statement MDBSVC macro, 88 TYPE=FINAL statement MDBSVC macro, 88 syntax, 89 TYPE=GEN statement MDBSVC macro, 88 syntax, 89 TYPE=INIT statement
using, 87	MDBSVC macro, 88
MRO parameter, 97	syntax, 89
N	U
Natural group ID, 97 NETOPT parameter, 97 NTGPID parameter, 97 NUBS parameter, 98 O operating system parameter, 98	UBPLOC parameter, 102 UES parameter, 102 universal encoding support parameter, 102 user block pool allocation parameter, 102 user blocks created by CICS link routine, 98 user exit 1 flag, 102 user exit 1 module name, 96 user exit 2 flag, 102
OPSYS parameter, 90, 98	user exit 2 module name, 97 user exit 4 length of user data passed, 96
parameter list area, 98 PARMTYP parameter, 98	user save area for LUEXIT1 and LUEXIT2, 96 USERX1 parameter, 102 USERX2 parameter, 102
PRE parameter, 99 PREFIX parameter, 90 PURGE parameter, 99	X
	XWAIT parameter, 102

S

R

SAF parameter, 100 SAP ID string parameter, 101

reentrant globals module flag, 99 RENT parameter, 99 retry command exit flag, 99

RETRYX parameter, 99 REVIEW parameter, 100 RMI parameter, 100 routing Adabas calls, 82 RTXNAME parameter, 100