5 software~

Adabas

User, Hyperdescriptor, and Collation Descriptor Exits

Version 8.1.4

June 2014

Adabas

This document applies to Adabas Version 8.1.4.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ADAMF-EXITS-814-20140626

Table of Contents

PTOACE ..t v
1 CONVENLIONS ...ovviiiiiiiiiiicci s 1
2 User Exit 1 (General Processing)cccceeiiiiiiiiiiiiiiiiiiiiiciicciicceccec e 3
3 User Exit 2 (Dual Log Processing)cccovveiviiiiiiiiiiiiiciccecece e 5
User Exit 2 Calling SEqUENCEccocuiiiiiiiiiiiiiiiiiiieicceccecee e 7
Input Parametersccooiiiiiiiiiiiiiii 9
Output Parametercccooiiiiiiiiiiiiiiiii 11
BS2000 Options for Invoking User Exit 2ccccooviiiiiiiiiiiiiiiiiiiiiii 11
4 User Exit 3 (User-Defined Phonetic Processing)cccoceviiiiiiiiiiiiiiiiiiiiiiicie 13
Input Parameterscccoooiviiiiiiiiiiii 14
5 User Exit 4 (User-Generated Log Data)cccccooeiiiiiiiiiiiiiiiiiiiiiic 15
Command Log FOrmatcccooiiiiiiiiiiiiiiiicciccceeccec e 16
6 User Exit 5 (Adabas Review Hub Event Handler)cccccccoooiiiiiiniiininins 21
Input Parameterscccocviiiiiiiiiiii 22
Output Parameterscocviiiiiiiiiiiiiii 23
7 User Exit 6 (User Processing Before Data Compression)c.cccccocveviiiiiiieniieicnnnnne 25
ADACMP Header Processingcccocuiiouiiiiiiiiiiiiiiiiiiic e 28
Input Parameterscccoooiiiiiiiiiiii 29
Output Parametersccociiiiiiiiiiiiiiiiiii 29
8 User Exit 8 (Operator Interface)ccccoviiiiiiiiiiiiiiiiiiiice 31
Input Parameters ..ot 33
9 User EXit 9 (ADAULD)uuiiiiiieiiieteet ettt e e e ettt e e e e s e eeseeeeee 35
10 User Exit 11 (General Processing)ccccccueviiiiiiiiiiiiiiiiiiiiiieccececc 37
Input and Output Parametersc.ccocveviiiiiiiiiiiiiiiiiiicccce e 39
11 User Exit 12 (Multiple Data Set Log Processing)ccccoevevenviiniiiiiiciicnicicene 41
User Exit 12 Calling SEQUENCEoovuiiiiiiiiiiiiiiie it 43
User Exit INterfacecccoovviiiiiiiiiiiic 44
Output Parameter ..o 47
Activating the Sample User EXitccccociiiiiiiiiiiiiiiiiiic, 47
12 Hyperdescriptor Exits 01 = 31c.cociiiiiiiiiiiiiiieiccececec e 51
Main Parameter ATEac.ccceiiiiiiiiiiiiiiiiiccicc 53
Input Parameter Area (Pointed to by Third Parameter Address)cc.ccceeneenne. 54
Output Parameter Areacccocviiiiiiiiiiiiiiiiiii i 56
Null Value Optionccciiiiiiiiiiiiiiiiiiiiic 57
Hyperexit Initialization Callccccoooiiiiiii 58
Hyperexit STUDccciiiiiiiiiiii 58
13 Collation Descriptor Exits 01 - 08ccccciiiiiiiiiiiiiiiiicceececee e 61
Collation Descriptor Exit Interfaceccccoecviviiiiiiiiiiniiiiiiiicicicceccee, 62
IIA@X ittt st 65

Preface

This document refers to the user exits activated by the ADARUN parameters UEXn, HEXnn, and
CDXnn (see the Adabas Operations documentation for descriptions of the ADARUN parameters).

The user exits documented in this document are as follows:

User Exit ADARUN |Use

User Exit 1 |[UEX1 |Command processing (Adabas nucleus) -- being retired.

User Exit 2 |{UEX2 |Dual log processing

User Exit 3 |UEX3 |User-defined phonetic processing
User Exit4 |UEX4 |User-generated log data

User Exit5 |UEX5 |Adabas Review hub event handler
User Exit 6 |UEX6 |Data compression (ADACMP)
User Exit 8 |UEX8 |Operator interface

User Exit 9 |{UEX9 |Data unload (ADAULD)

User Exit 11|UEX11 |Command processing (Adabas nucleus) -- new.

User Exit 12|UEX12 |Multiple log processing

Hyperdescriptor Exit| ADARUN Use

1..31 HEXO01 . . HEX31|User-supplied algorithm to create hyperindex values . . .

Collation Descriptor Exit| ADARUN Use

1..8 CDXO01 .. CDX08|User-supplied algorithm to encode and decode values for the
corresponding collation descriptors . .

Other Exits Supported by Adabas

Other user exits supported by Adabas include the following;:

Entry Name |Use

ADACDCUX|Allows you to obtain control at strategic points during ADACDC utility processing. See the
Adabas Utilities documentation.

ADACSHUX | Allows you to obtain control at strategic points during Adabas Caching Facility processing.
See the Adabas Caching Facility documentation.

ADASMXIT |Allows you to supply parameters to a PIN routine or examine a condition when it is
encountered before the PIN routine is invoked so that recovery actions other than those

Preface

Entry Name |Use
provided by Adabas can be implemented. See Adabas Online System Demo Version in the DBA
Tasks documentation..

DSFEX1 Automatically submits the necessary job to prevent overflow of the DLOG area. See the
Adabas Delta Save Facility documentation.

UEXITA Linked with Adalink for Adabas 7: receives control after a command is processed by a target,
the router, or Adalink itself. See the Adabas Installation documentation .

UEXITB Linked with Adalink for Adabas 7: receives control before a command is passed to a target
with the router 04 call. See the Adabas Installation documentation .

UEXIT1 Linked with Adalink for Adabas 8: receives control before a command is passed to a target
with the router 04 call. See the Adabas Installation documentation .

UEXIT2 Linked with Adalink for Adabas 8: receives control after a command is processed by a target,
the router, or Adalink itself. See the Adabas Installation documentation .

UEXRAI Allows you to change automatically generated ADARAI RECOVER JCL before it is written
to DDJCLOUT. See the Adabas Utilities documentation.

Vi User, Hyperdescriptor, and Collation Descriptor Exits

1 Conventions

Notation vrs, vr, or v: When used in this documentation, the notation vrs or vr stands for the
relevant version of a product. For further information on product versions, see version in the

Glossary.

2 User Exit 1 (General Processing)

With the introduction of user exit 11, support for user exit 1 is dropped. However, to ease the mi-
gration, a sample user exit, UEX11UX1, is supplied that you can insert in front of your existing
user exit 1 to have it invoked as user exit 11. This sample will only work for direct calls made using
the ACB direct call interface; it will not work for direct calls made using the Adabas 8 ACBX direct
call interface. The exit is still subject to exit 11 constraints, as described in User Exit 11, elsewhere
in this guide. In particular, changes are allowed only to the file number (CQXFNR), Additions 2
(ACBADD?2), Additions 3 (ACBADD3), and user area (ACBUSER) fields. The nucleus will ignore
changes in any other ACB field and all other changes to the CQX. Please refer to comments in the
sample user exit for more details, including how to link it with an existing user exit 1. Adabas
nucleus support for this transition aid will be withdrawn in a future Adabas release.

3 User Exit 2 (Dual Log Processing)

B User EXit 2 CalliNg SEQUENCEvviiiiiiiee e 7
I T TT LA e [1o (T PP P PP PP PPPPPPPPPPPPPPPN 9
B OUIPUL ParamMIBIET ...ttt e e e e e e e e 1

11

= BS2000 Options for INVOKING USEr EXIT 2cccuviiiiiiie s

User Exit 2 (Dual Log Processing)

This user exit is given control by the Adabas nucleus during a switch from one dual log to the al-
ternate dual log for the purpose of copying the log before it is reused by Adabas. This switch occurs
only if dual data protection logging or dual command logging is in effect for the session.

The user exit routine must invoke a procedure whereby the appropriate function of the ADARES
utility (CLCOPY or PLCOPY) is executed.

User exit 2 is invoked:

® during Adabas nucleus startup if a PLOG/CLOG has to be copied;
® whenever a dual command or dual protection log switch occurs between two log data sets;

® during Adabas nucleus shutdown.
The user exit is provided with information about the status of the dual log data sets.
The user exit can decide which action is to be taken:

= Ignore the call;
® Submit a job to copy the log data set just filled up (ADARES utility);
" Wait for completion of the copy job just submitted.

If the data set to be overwritten contains data, console message ADAN46 Function not executable
is issued.

An example of user exit 2 is supplied with the Adabas installation procedure. Refer to the Adabas
Installation documentation for more information.

The call to the user exit is made using a standard BASR 14,15 Assembler instruction. All registers
must be saved when control is received and restored immediately prior to returning control to
Adabas. Register 15 contains an action code as described in Output Parameter, elsewhere in this
chapter.

6 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 2 (Dual Log Processing)

User Exit 2 Calling Sequence

User, Hyperdescriptor, and Collation Descriptor Exits 7

User Exit 2 (Dual Log Processing)

Dual Log Processing Flow

8 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 2 (Dual Log Processing)

Input Parameters

R1

> +0
+4
+8
+12
+16

Address List
(A) Ind/Flags

{4 Timer 1

{A) Timer 2

{A) PLOG/IDEID

(A) PLOGNUM

+I'_'I'.

+1

+2
+3

+I'_'I'.

+2

+I'_'I'.

+2

Dual Log Processing User Exit (2) Parameters

Indicator

Flag 1

Flag 2

Session Status

TIMER 1

' TIMER 2

PLOG

DBID

PLOG 1

PLOG 2

The input parameters for the address list are as follows:

'C--CLOG, ‘P--PLOG
CLOGR1/PLOGR1 —Flags
CLOGR2/PLOGR2 —Flags

Parameter| A fullword address of . ..

0 (R1) the C/PLOG indicators and flag 1/2.

4 (R1) [|the four-byte timer 1 field.

8 (R1) |the four-byte timer 2 field.

12 (R1) |the current session's PLOG number, followed by the database ID.

16 (R1) |a four-byte area where the first two bytes contain the number of PLOGI, and the second two

bytes hold the number of PLOG2.

Other input parameters are explained in the following table:

User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 2 (Dual Log Processing)

Parameter Usage
Flag 1 Status flags for DD/PLOGR1 and DD/CLOGR]1; and
Flag 2 Status flags for DD/PLOGR?2 and DD/CLOGR?2:

B1.....": Data set being written by nucleus

B.1...": Data set has been completed by nucleus

B.11....": Being copied by ADARES

B'0000 0000 : Data set is empty (or copied) and reusable for the
nucleus.

All other flag 1/2 field values are reserved. For DD/CLOGR1/2 only: X'08' for
CLOGLAYOUTS=5. Flag 1/2 bit settings can be combined (X'40' and X'20' as X'60', for
example).

If OPENOUIT is specified, these flags are set after OPEN is issued for the output data set;
otherwise, the flags are set before the OPEN is issued.

Session Status

Contains information about the status of the nucleus when the exit was called:

X's' Called during nucleus session startup.

XT Called while terminating the nucleus session.

X'W' Called following a dual protection log switch.

TIMERn

Time-stamp (highest four bytes of a STCK instruction) for the time the first block of the log
data set has been written. TIMER1 for DD/PLOGR1 and DD/CLOGR1, and TIMER2 for
DD/PLOGR?2 and DD/CLOGR2

PLOG

Current session protection log number (two bytes). This value is set for PLOG only; the field
contains X'00' for CLOG.

DBID

Database ID (two bytes).

PLOG1/2

Two 2-byte PLOG numbers found on PLOG 1 and PLOG 2. If the previous nucleus session
ended abnormally, these four bytes contain that session's PLOGNUM value, which can be
used in the initial user exit 2 call to copy that session's PLOG. During any subsequent session,
these bytes contain the current PLOGNUM value. If the preceding session ends abnormally,
these four bytes contain the ended session's PLOG numbers during the nucleus start phase.
This PLOG information is needed during the start phase to assign the correct PLOG numbers
to the PLOG areas to be copied. During subsequent exit calls, the current PLOG values are
in these fields.

10

User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 2 (Dual Log Processing)

Output Parameter

Parameter |Usage

R15=0 |Nucleus continues processing.

R15>0 |R15is treated as the number of seconds to wait before calling user exit 2 again. During this time,
the nucleus is in a "hard" wait. No commands are processed during the wait.

BS2000 Options for Invoking User Exit 2

When using user exit 2 with BS2000 systems, the name of the ADARES CLCOPY or PLCOPY job
is no longer "hard-coded" in the user exit as in previous releases. Therefore, there are now two
ways of specifying the /ENTER job:

Method 1

Create a job variable containing the complete "enter job" command. For example:

/DCLJV ENTER.ADARES.PLCOPY, LINK=*DDJBPLC
/SETJV *DDJBXLC,C"ENTER JOB.ENTER.ADARES.PLCOPY,ST=IMM'

Note that all operands of the /ENTER command may be used. The presence of the /DCL]JV statement
overrides the other possibilities. If necessary, the content of the job variables can be changed during
a nucleus session.

Use the link names "*DDJBPLC" for assigning the ADARES PLCOPY job, and "*DDJBCLC" for
assigning the ADARES CLCOPY job.

Method 2

Omit the JV specification. The user exit 2 will then issue the following command:

"ENTER ~ RES.E.xLCO'

Note: For BS2000 systems, user exit 2 is delivered as a source element only.

User, Hyperdescriptor, and Collation Descriptor Exits 1

12

4 User Exit 3 (User-Defined Phonetic Processing)

= |nput Parameters

13

User Exit 3 (User-Defined Phonetic Processing)

This user exit may be used to perform user-defined phonetic processing. It is given control by the
ADACMP utility or the Adabas nucleus whenever phonetic processing is required.

The user exit must develop a three-byte phonetic key using the value supplied. The address of
the resulting phonetic key must be placed at 8(R1) before control is returned.

Input Parameters

Register 1 contains the address of the following parameter list:

Address List
R1—» +0 | (A)Length P Length (fullword)
+4 | (A) Value addr. p (A} Value
*8 (A) Key® [Value The value to be phoneticized
> [uncompressed)
* The address of the key
must be placed in (R1)+8 . > Key 3-byte phonetic key
before control is returned. computed by the user exit

User-Defined Phonetization User Exit (3) Parameters

Parameter | A fullword address of . ..

O(R1) the four-byte length for the value to be phonetically processed.

4(R1) the address of the value to be phonetically processed.

8(R1) a three-byte location to contain the phonetic key. This address is set to zero before the user exit
and must be set to the actual address during the user exit.

The call to the user exit is made using a standard BASR 14,15 assembler instruction. All registers
must be saved when control is received and restored immediately prior to returning control to
Adabas. The content of R15 is ignored.

14 User, Hyperdescriptor, and Collation Descriptor Exits

5 User Exit 4 (User-Generated Log Data)

= Command Log Format

15

User Exit 4 (User-Generated Log Data)

User exit 4 is called immediately before an Adabas command log record is to be written. It may
be used to generate any required user log data (SMF records) special statistics, or to suppress
writing a log record.

| Note: User exit 4 is still called even if ADARUN LOGGING=NO. The only way to disable
user exit 4 is to remove the ADARUN UEX4 parameter from the Adabas run.

Command Log Format

Adabas supports two different command log formats. The ADARUN CLOGLAYOUT parameter
determines which format is used:

® CLOGLAYOUT=5 (the default) is supported only in Adabas versions 5.2 and above.

® CLOGLAYOUT=S8 specifies the new format, which is supported only in Adabas versions 8 and
above.

Both formats are described in Command Log Formats, in Adabas DBA Tasks Manual.

Ensure that your user exit and command log evaluation programs recognize the format in use
before switching to it.

16 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 4 (User-Generated Log Data)

Address List)
; ; Action to be taken on return
R1-—» +0 (A)Code 1 P | +00 | =x'00' - log the record (default)
1

i +0 >X'00' -- do not log
+4 | (A} Record +02
+8 (A)Rec.End -
+12 | (A) CQX
' <« ADALOG I/0 area >
T - - .
: Record to be logged [\
A
h 4
cax
+1C | CaXAUl (A) Address of user info buffer
+48 COXACBX (A) Address of ACEX copy - » ACBX copy |
+4C | CQXACE (A) Address of ACB copy or zero' - > readonly ACE copy I
+50 | COXPMNBD (&) Address of 4-byle number of ABDs — > fullword number I
+54 | COXPABD (A) Address of the first .n“.BI:.'!2 . h'. ABD1
ABD2
ABD

User-Generated Log Data User Exit (4) Parameters

' Address of ACB Copy: This address should be set to zero if the command is using an ACBX interface
direct call.

?Address of the first ABD: The Adabas buffer descriptions (ABDs) are in a contiguous array. For
complete information about locating ABDs in this array, read Locating the Correct ABD, elsewhere
in this section.

User, Hyperdescriptor, and Collation Descriptor Exits 17

User Exit 4 (User-Generated Log Data)

Parameter |Address of . . .

O(R1) a byte containing a logging action code. This byte contains:

= +00 -- action code to log the record upon each call. If changed to a nonzero value, this record
will not be written to DDLOG.

= +01] -- reserved for future use

= +02 -- two-byte database ID.

4(R1) the record to be logged. This address is zero if the exit is called at the end of the nucleus session.

8(R1) the end of the Adabas I/O area. This address is zero if the exit is called at the end of the nucleus
session.

12(R1) |the command queue element (CQX). This address is zero if the exit is called at the end of the
nucleus session.

The record to be logged may be modified by the user exit. The record's address in 4(R1) may also
be modified. The logging action code must always be specified before returning to the Adabas
nucleus.

(Caution: When modifying the record, do not exceed the end address of the ADALOG I/O
area contained in 8(R1).

Locating the Correct ABD

Internally, Adabas 8 only uses extended Adabas control blocks (ACBX) and Adabas buffer descrip-
tions (ABDs). Direct calls made using the classic Adabas control block (ACB) and buffer definitions
have their data structures converted to ACBX calls and ABDs by ADASVC before the nucleus sees
the call. Thus, the protocol for locating and accessing buffers in user exits, such as this one, has
changed as of Adabas 8.

The Adabas buffer descriptions (ABDs) are now in a contiguous array. However, the internal
representation of the ABD may not have the same length as the base ABD, as defined by the value
of the ABDXQLL symbol in the ADABDX DSECT, although the first ABDXQLL bytes continue
to be mapped by ADABDX. This means that you should not use the ABDXQLL value in the AD-
ABDX DSECT to locate the next ABD in the ABD array. Instead, you should use the value of the
two-byte ABDXLEN field at offset +x' 00" of the ABD to determine the end of that ABD and the
start of the next ABD in the array. Do not assume that all internal ABD representations have the
same length: each must be located in turn by applying its predecessor's ABDXLEN value.

In addition, the order of the ABDs is not defined and my change over time or from command to
command, although within the array all ABDs of a given type (format buffer, record buffer, etc.)
are contiguous. There will be an ABD for every buffer provided by the user that is documented
as an input or output buffer for the specific command. There may also be additional buffers created
by other components. When there are multiple instances of format, record and (optional) multifetch
buffers, they are related based on their position: the first format buffer is associated with the first
record (and optional multifetch) buffer, the second with the second, and so forth. If the caller

18 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 4 (User-Generated Log Data)

provides an unequal number of format, record and (optional) multifetch buffers, dummy descriptors
with a zero buffer length are created to bring about equal quantities. When multifetch is used with
a classic ACB call, certain commands (L1/2/3/4/9) will have their ISN buffer converted into a
multifetch buffer. Here are some examples:

If a caller (using either an ACB or ACBX call) issues an OP command and provides a record
buffer and search buffer, the array of ABDs will have one record buffer ABD and one dummy
format buffer ABD (to satisfy the internal requirement that there be equal numbers of format
and record buffers). There isno ABD for the search buffer because that is not a documented input
or output buffer for the OP command.

If a caller uses an ACBX call to issue an L1 command and provides two format buffers and three
record buffers, the array of ABDs will have three record ABDs and three format ABDs, the last
one of which is a dummy format ABD. The first record buffer is associated with the first format
buffer; the second record buffer is associated with the second format buffer; and the third record
buffer is associated with the third (dummy) format buffer.

Suppose a caller uses an ACB call to issue an L3 command with Command Option 1 set to "M"
(multifetch) and Command Option 2 set to "A" (ascending retrieval from a specified value). In
addition, the caller provides a format buffer, a record buffer, an ISN buffer, a search buffer and
a value buffer. In this case, the array of ABDs will have one format buffer ABD, one record
buffer ABD, one multifetch buffer ABD, one search buffer ABD, and one value buffer ABD. The
caller's ISN buffer will have been converted to a multifetch buffer.

User, Hyperdescriptor, and Collation Descriptor Exits 19

20

6 User Exit 5 (Adabas Review Hub Event Handler)

B NPUL PArAMEIEIS ..ot e et e e e e e aeaaas
B QUIPUE PArAMELEIS ...ttt e e e e e

21

User Exit 5 (Adabas Review Hub Event Handler)

User exit 5 is called by the Adabas nucleus when an event occurs with the Adabas Review hub.
User exit 5 must be specified in ADARUN parameter UEX5 in the Adabas nucleus startup job. An
event is defined as:

" a connection made with the Adabas Review hub during Adabas session open;

" a connection ended with the Adabas Review hub during Adabas session close; or

" anon-zero return code received from the send operation for a command log record. When
buffering is active, this return code is provided once for a whole buffer and it is possible that
only parts of the buffer are not transferred correctly.

The exit is invoked with AMODE=31 and should return control in the same state.

The exit is required to process logging errors. It determines how the failure is handled. The parts
of the buffer that were not logged and the response code received from the Adabas Review hub
logging request are provided to assist in making the determination.

Input Parameters

On entry, the register 1 points to the following parameter list:

R1 +0 Call Type
+1 Operation Code
+2 Response Code
+4

Wait Time (in seconds)

+8 A (Command Log) > CLOG Record

Parameter |Usage

O(RT) Exit call indication. The value of this byte can be:

@) connection with Adabas Review hub opened;
C connection with Adabas Review hub closed; or
L sending logging error to Adabas Review hub.
I(RT) Action to handle a logging error (ignored for open and close). The exit must provide one of the

following values for this field in the parameter list for a logging error:

4 wait a specified time and then retry;

22 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 5 (Adabas Review Hub Event Handler)

Parameter |Usage
R ‘retry logging operation immediately; or
I ignore the logging failure and continue without
consequence.
2(R1) Response code for logging errors. This response code is the same as the Adabas response code

found in the Adabas Messages and Codes.

4(R1) Fullword where the exit must provide a wait time (in seconds) for the logging failures that are
to be retried after waiting.
8(R1) Address of the command log record that the Adabas nucleus was attempting to send to the

Adabas Review hub.

Other Register Values at Entry

R13|save area of calling Adabas nucleus routine

R14 |return address in Adabas nucleus

R15|entry point address for exit

Output Parameters

* For logging errors, the exit is required to set a value in the ‘operation' field. If the wait value
(W) is chosen, the exit is also required to provide a non-zero time value.

" Register 15 should be set to zero. All other registers should be returned intact.

User, Hyperdescriptor, and Collation Descriptor Exits 23

24

7 User Exit 6 (User Processing Before Data Compression)

B ADACMP HEAAET PrOCESSINGvvteeeisitit ettt ettt e e e e

= |nput Parameters ...

= Qutput Parameters

25

User Exit 6 (User Processing Before Data Compression)

This user exit can be used to perform user processing on a record before it is processed by the
ADACMP COMPRESS utility. It can also be used to control the sequence and contents of the de-
compressed records that are output from the ADACMP DECOMPRESS utility; when used in this

way, the user exit controls which decompressed records ADACMP writes to the DDAUSBA data
set.

The user exit program can be written in Assembler language or COBOL. The ADACMP utility job
must specify the ADARUN UEX6=program parameter, where programis the name of the user
program and parameter is a parameter passed to that program.

User exit 6 is called by the ADACMP COMPRESS utility function immediately after one of the
following occurs so that it can append records to the input:

= A record has been read from DDEBAND.
® An end-of-file condition has occurred on DDEBAND.

26 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 6 (User Processing Before Data Compression)

g:

o
-
i

User, Hyperdescriptor, and Collation Descriptor Exits 27

User Exit 6 (User Processing Before Data Compression)

Address List

B1—# +0 | {A) Input Rec. p= | Input record as read from DOEBAKND
+4 | (A) Rec. Leng.

+8 R Ee , > Input Record Length
+12 {A) Output Len. {fullword)

+16 (A) FILE=Value

- Cutput Record Length
(record to be compressed)

- COuiput Record Length
(fulbwsord)

P FILE=value “alue of the ADACMP

FILE parameter {fulbword)

ADACMP User Processing User Exit (6) Parameters

ADACMP Header Processing

When ADACMP is run with the parameter HEADER=YES, all input records for ADACMP
COMPRESS and output records for ADACMP DECOMPRESS are preceded by 32-byte ADAH
and ADAC headers that describe the grouping of physical records into logical records that may
be larger than 32 KB. DSECTs for the ADAH and ADAC headers can be found in members ADAH
and ADAC in the distributed Adabas 8 SRCE library. These headers identify how one logical record
containing uncompressed data is composed of one or more physical records.

When ADACMP is run with user exit 6 and HEADER=YES, ADACMP will pass each physical
record to user exit 6. The user exit application may need to use these headers to determine the re-
lationship between the physical and logical records.

For more information about the ADACMP headers and record segmenting, read Segmented Record
Considerations, in Adabas Utilities Manual.

28 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 6 (User Processing Before Data Compression)

Input Parameters

Parameter

Usage

0 (R1)

Address of an input record. The length field preceding the variable record is skipped. The address
is of a fullword containing -1 (X'FFFF FFFF') if the user exit is called after ADACMP detects
end-of-file in DD/EBAND.

4 (R1) |Address of the field containing the input record length. For fixed records, this is a logical record
length. For variable records, this is the length of the actual data only (excluding the length field
itself). The address points to a fullword containing minus 1 (X'FFFFFFFF') if the user exit is called
after ADACMP detects end-of-file in DD/EBAND.

8 (R1) Contains binary zeros on entry to the user exit (see Output Parameters).

12 (R1) |Contains binary zeros on entry to the user exit (see Output Parameters).

16 (R1) |Address of the FILE parameter value specified by the ADACMP COMPRESS utility job. The

address is in the rightmost/low-order two bytes. The location and content of this fullword must
remain unchanged during the time of the user exit. If ADACMP COMPRESS did not specify the
FILE parameter, the fullword is X*00000000'.

Output Parameters

Parameter

Usage

8 (R1)

Address of the user exit output record. This record will be used as input to the ADACMP
compression algorithm. The address of this record must be placed into 8 (R1) each time the user
exit is called. If this field contains binary zeros on return, ADACMP will ignore the input record
and will continue processing.

12 (R1)

Address of a 4-byte field containing the length of the returned record. The address of this field
must be placed into 12 (R1) each time the exit is called. If this field contains binary zeros on return,
ADACMP will ignore the record and will continue processing. Though the length field pointed
to by 12 (R1) has a length of 4 bytes, only the low-order/rightmost halfword is used (bytes 3 and
4). If byte 2 contains a X'01' on return, the exit is recalled before the next record is read from
DDEBAND. This enables the user to return more than one record to ADACMP for each record
read from DD/EBAND.

User, Hyperdescriptor, and Collation Descriptor Exits 29

30

8 User Exit 8 (Operator Interface)

= |nput Parameters

31

User Exit 8 (Operator Interface)

This user exit receives control from the Adabas nucleus whenever the nucleus starts or stops, or
whenever the nucleus or an Adabas utility receives a message from or sends a message to the
operator. User exit 8 can be used to provide specific instructions to the operator

® when the nucleus starts and (normally) stops operation;

® as added information when Adabas sends console messages to the operator;

" to confirm commands entered by the operator.
User exit 8 is invoked
* (MODE=MULTI only) after Adabas startup, as soon as the nucleus is able to answer calls from

user programs. At this point, the nucleus is now active.

* immediately after the Adabas nucleus or utility issues a console operator message. The user exit
call is in addition to the standard message processing; the message itself cannot be changed
during the user exit.

® after the Adabas nucleus or utility receives an operator command. The exit is called before the
command is actually processed, and can reject or replace the command. The command cannot
be modified in its original area.

* before a normal Adabas nucleus stop. At this point, the nucleus is no longer active; any more
nucleus calls result in response code 148. This exit is not called if the nucleus ends abnormally.

Address List

R1— +0 | (A) Indicator » Call Type (STOW) Indicator
+4 (A)DBID
+8 | (A} Info.
p Database D

p Function-dependent
Information

Operator Interface User Exit (8) Parameters

32 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 8 (Operator Interface)

Input Parameters

Parameter |Usage

0 (R1) Address of the byte containing the call type ("STOW") indicator:

S called at nucleus start

T called at normal nucleus termination

O called with an operator message to the nucleus/utility
W called with a nucleus/utility message to the operator

4 (R1) Address of the fullword containing the database ID.

8 (RT) Address of variable-length message-related information for "O" and "W" type calls. The
information at this address has the following format: Call format:

@) The one-byte message length, followed by the alphanumeric message.
The length excludes the length byte itself. If the message is to be
changed, location 8(R1) must point to the new message on return.
This message is structured as described above. If the message is to be
suppressed, location 8(R1) must point to a two-byte field containing
X'0140'.
W 8(R1) points to the message, which has the

following structure:
DC H'message-length+4'
DC H'0'
DC C'message-text' ©

User, Hyperdescriptor, and Collation Descriptor Exits 33

34

O Userexit (ADAULD)

User exit 9 is called by ADAULD whenever a compressed record is ready to be written. The user
exit decides whether a record is written to DD/OUT1, DD/OUT2, both, or neither.

Address List
I . I Mumber of output data sets (fulbaword):
R1-»+0 (A)Dataset Cnt. » Count 1 - only DDOUTA
+4 | (A) Resp. Code | - : 2 = both DDOUT1 and 2
+3 | (A) Record E

Response of user exit 9 (single character):
| I'--ignore record

1" == write to DDOUT1

2" -- write to DDOUTZ2

"3 -- write to DDOUT1 and 2

If this value is not set before returm
to ADALULD, a1 is assumed.

> | | Compressed record
E—|

ADAULD User Exit (9) Parameters

D Notes:

1. DDOUT1 & 2 must have the same block size, or an ADAULD error occurs.

The compressed record pointed to by the third address has the following structure:

35

User Exit 9 (ADAULD)

AL2 (L1) total Tength (inclusive)
AL2 (L2) record length (inclusive)
AL4 (ISN)

XL (L2 - 8) '...compressed fields...'
XL (L1 - L2 - 2) "...DVT entries...'

o4
v

Read next
ssed record from
ADABAS nucleus
T

Y

YeS Endoffile?

Mo [
k.
Call User Exit 9

¥

Yes
Exit-9 RSP="1'?

Mo
Y

Yes
Exit-9 RSP="2'?

Mo |
h J

Yes
Recall exit?

No |

A J

User Exit 9 Output Control Flow

Write to DDOUT2

Write to DDOUTA
and DDOUTZ2

Write to DDOUTA

L

F -9

-9

The call to the user exit is made via a standard BASR 14,15 assembler instruction. All registers
must be saved when control is received and restored immediately prior to returning control to

ADAULD. The content of R15 is ignored.

36

User, Hyperdescriptor, and Collation Descriptor Exits

10 User Exit 11 (General Processing)

= |nput and Output Parameters

37

User Exit 11 (General Processing)

This user exit is given control by Adabas immediately after a command is received by the Adabas
nucleus. The command itself has yet to be processed except for the determination of the type of
command (simple access, complex access, update).

One of the most common applications of this user exit is to insert a security password or a cipher
code into the ACBX.

This user exit functionality largely matches that of the classic user exit 1, except for the fact that
edited copies of the CQX and ACBX data structures are used during user exit 11 processing, rather
than the actual structures used by user exit 1. In addition, support for user exit 1 is dropped in
Adabas 8 (or later).

Only certain fields in the ACBX may be changed by the exit: ACBXFNR (file number), ACBXADD2
(Additions 2), ACBXADD3 (Additions 3), and ACBXUSER (user area). The nucleus will ignore
changes in any other ACBX fields and all changes to the CQX. DSECT EX11PARM maps the user
exit 11 parameter list. In addition, a sample user exit 11 skeleton called UEX11 is provided. Both
the DSECT and the user exit skeleton are provided in the Adabas source library.

The call to the user exit is made using a standard BASR 14,15 assemb]er instruction. Register 1
contains the address of a parameter list. All registers must be saved when control is received and
restored immediately prior to returning control to Adabas, with the exception of Register 15 which
contains the return code. A non-zero value means that the command should not be executed and
returns response code 22.

Notes:

1. All user exits must return the same program status word (PSW) fields to the calling program
that were active when the user exit was called. This applies in particular to the addressing mode
(AMODE), program mask, problem state flag, PSW key, and address space control setting. The
condition code need not be preserved. If any of these PSW fields is changed by the user exit,
one way to ensure that their previous values are returned is to envelope the code where the
change is in effect with a pair of the BAKR ... PR instructions.

2. The file number specified in the original ACBX for the call cannot be changed. If it is necessary
to change a file number with the user exit, change the field ACBXFNR field in the copy of the
ACBX that is made for the exit.

3. The command code field in the Adabas control block cannot be changed; a response code is
returned if you attempt to do so.

4. The length of an Adabas buffer in any Adabas buffer description (ABD) used by the call cannot
be changed.

38 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 11 (General Processing)

Input and Output Parameters

_ EX11PARM Parameters Indicators’
R1 »+0 Ex11PUsr (A) User Fullword Address - » 00 [0 [0 | 0o
+4 Ex11PLen (F) Parmlist length (in bytes)®
+8 Ex11PCOX (A) Address of readonly CQX copy - » readonly CQX copy
+12 Ex11PACX (A) Address of ACBX copy - - ACEX copy
+15 Ex11PACE (A) Address of ACB copy or zero 3 I'-. readonly ACE copy
+20 Ex11PNBD (&) Address of 4-byte number of ABDs — Il-- fullword number
+24 | Ex11PABD (&) Address of the first ABD 4 E P'. ABD1
ABDZ
AE-I}.'m

General Processing User Exit (1) Parameters

ndicators: Before calling user exit 11, the fullword indicator areas are set to zero.
*Parmlist length: The EX11PARM parameter list length is at least 28 bytes.

*Address of ACB Copy: This address should be set to zero if the command is using an ACBX interface
direct call.

*Address of the first ABD: The Adabas buffer descriptions (ABDs) are in a contiguous array. For
complete information about locating ABDs in this array, read Locating the Correct ABD, next in this
section.

Locating the Correct ABD

Internally, Adabas 8 only uses extended Adabas control blocks (ACBX) and Adabas buffer descrip-
tions (ABDs). Direct calls made using the classic Adabas control block (ACB) and buffer definitions
have their data structures converted to ACBX calls and ABDs by ADASVC before the nucleus sees
the call. Thus, the protocol for locating and accessing buffers in user exits, such as this one, has
changed as of Adabas 8.

The Adabas buffer descriptions (ABDs) are now in a contiguous array. However, the internal
representation of the ABD may not have the same length as the base ABD, as defined by the value
of the ABDXQLL symbol in the ADABDX DSECT, although the first ABDXQLL bytes continue

User, Hyperdescriptor, and Collation Descriptor Exits 39

User Exit 11 (General Processing)

to be mapped by ADABDX. This means that you should not use the ABDXQLL value in the AD-
ABDX DSECT to locate the next ABD in the ABD array. Instead, you should use the value of the
two-byte ABDXLEN field at offset +x' 00" of the ABD to determine the end of that ABD and the
start of the next ABD in the array. Do not assume that all internal ABD representations have the
same length: each must be located in turn by applying its predecessor's ABDXLEN value.

In addition, the order of the ABDs is not defined and my change over time or from command to
command, although within the array all ABDs of a given type (format buffer, record buffer, etc.)
are contiguous. There will be an ABD for every buffer provided by the user that is documented
as an input or output buffer for the specific command. There may also be additional buffers created
by other components. When there are multiple instances of format, record and (optional) multifetch
buffers, they are related based on their position: the first format buffer is associated with the first
record (and optional multifetch) buffer, the second with the second, and so forth. If the caller
provides an unequal number of format, record and (optional) multifetch buffers, dummy descriptors
with a zero buffer length are created to bring about equal quantities. When multifetch is used with
a classic ACB call, certain commands (L1/2/3/4/9) will have their ISN buffer converted into a
multifetch buffer. Here are some examples:

= If a caller (using either an ACB or ACBX call) issues an OP command and provides a record
buffer and search buffer, the array of ABDs will have one record buffer ABD and one dummy
format buffer ABD (to satisfy the internal requirement that there be equal numbers of format
and record buffers). There isno ABD for the search buffer because that is not a documented input
or output buffer for the OP command.

*® If a caller uses an ACBX call to issue an L1 command and provides two format buffers and three
record buffers, the array of ABDs will have three record ABDs and three format ABDs, the last
one of which is a dummy format ABD. The first record buffer is associated with the first format
buffer; the second record buffer is associated with the second format buffer; and the third record
buffer is associated with the third (dummy) format buffer.

" Suppose a caller uses an ACB call to issue an L3 command with Command Option 1 set to "M"
(multifetch) and Command Option 2 set to "A" (ascending retrieval from a specified value). In
addition, the caller provides a format buffer, a record buffer, an ISN buffer, a search buffer and
a value buffer. In this case, the array of ABDs will have one format buffer ABD, one record
buffer ABD, one multifetch buffer ABD, one search buffer ABD, and one value buffer ABD. The
caller's ISN buffer will have been converted to a multifetch buffer.

40 User, Hyperdescriptor, and Collation Descriptor Exits

11 User Exit 12 (Multiple Data Set Log Processing)

m User Exit 12 CalliNg SEQUENCEevieiiiiiiei i 43
B USE EXIt INEEITACE ... s 44
B OUIPUL ParamMIBIET ...ttt e e e e e e e e 47
= Activating the Sample USEr EXItcoueriiiii e 47

41

User Exit 12 (Multiple Data Set Log Processing)

| Note: UEX2 and UEX12 are mutually exclusive for an Adabas nucleus session: only one can
be specified.

This user exit is given control by the Adabas nucleus during a switch from one multiple log data
set to another for the purpose of copying the log data set before it is reused by Adabas. This switch
occurs only if multiple data set data protection logging and/or multiple data set command logging
is in effect for the session.

The user exit routine is designed to invoke a procedure that will execute the appropriate function
(CLCOPY or PLCOPY) of the ADARES utility.

User exit 12 is invoked

® during Adabas nucleus startup if a multiple PLOG/CLOG data set has to be copied;
® whenever a switch to another log data set occurs;
® during Adabas nucleus shutdown.

The user exit is provided with information about the type of log (PLOG or CLOG) and the status
of the multiple log data sets.

The user exit can decide which action is to be taken:

® Ignore the call and allow Adabas to proceed;
® Submit a job to copy and mark as empty the log data set just filled (ADARES utility);

* Direct Adabas to wait for a specified interval, then call the user exit again with updated
PLOG/CLOG data set status information. During the wait interval, no commands that may
produce log records for the log type being processed are allowed to proceed.

An example of user exit 12 is supplied with the Adabas installation procedure. Refer to the Adabas
Installation documentation for more information.

The call to the user exit is made using a standard BASSM R14,R15 Assembler instruction. All re-
gisters must be saved when control is received and restored immediately prior to returning control
to Adabas. Register 15 contains an action code as described in the user exit 2 section Output
Parameter, elsewhere in this guide.

| Note: User exit 12 must return the same AMODE value to the calling program that was

active when user exit 12 was called. The recommended Assembler instruction to return is
BSM 0,R14.

42 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 12 (Multiple Data Set Log Processing)

User Exit 12 Calling Sequence

Start)
>
L J
Yes

User exit 12
present?

|
Mo

b J
Y Dataseat
?E . o be overwritten
contains data?

'Nn

v
-

v
\Write message
‘Mow it's too |ate
to copy DDXLOGRN'

Mo

Multiple Log Processing Flow

L -4
A

Obtain information about

log dataset (flags, time
5) and create a

rameter list from these

ciual values.

v

Call user exit 12

|
hd

Yes
r R15=07%

Na

v
Wait the number of

ass
in R1

to be overwritten
contains data?

Start-up? . Yas

L0020 ABEND and
parm emor 52

Ma

User, Hyperdescriptor, and Collation Descriptor Exits

43

User Exit 12 (Multiple Data Set Log Processing)

User Exit Interface

Optionally, the user exit may initialize its operation. It may store any value in field EX12USER of
the EX12PARM parameter block to keep track of its resources. This field is considered as "owned"
by the user exit and is supplied again for all subsequent executions of the exit. It is set to zero
when the exit is first called and is not modified by Adabas thereafter.

The user exit is called again during termination to do any necessary finishing or 'cleanup' work.

44 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 12 (Multiple Data Set Log Processing)

Parameters

Address List EX12PARM
R4 —# +0 (A} Parameter Block p Header section

Log datazet entry
Log dataset entry

User Exit 12 Parameters

DSECT of the EX12PARM Parameter Block

MACRO
EX12PARM

R R R R R e b b R b R I b b I b b R e e b b R e b S i b R e e b b R e b b R S e i b R e S b b e b b Y

Name Ex12Parm

Component ADABAS User Exit

Function Parameter 1list for User Exit 12
(replacement for User Exit 2 for use when there are
more than 2 PLOGs or CLOGS)

Parameters None

Restrictions None

Notes None

P S S T . e S S S . S R I R
P S S S S, S S S P S P S

Ahkkkhkkhkhkhkhkkhkhhhkhkhkkhhkhhhkhhhhhkhhhhhhkhhhhkhkkhhhhhkkhhhhkhkkhhhhkkhkkhhrhkkhkhhrhkkhkhhrrxkkhkhrx

*

EX12PARM DSECT , User Exit 12 Parameter List

*

EX12HDR DS 0F Common header section

*

EX12USER DS F Reserved for the user. This field

is initialized to zero before the
exit is called the first time, and
will not be altered by ADABAS after
that. It can be used to maintain
information across invocations.

+ 4+ + +

*

EX12LOGT DS X Log type
EX12PLOG EQU (P PLOG
EX12CLOG EQU (. CLOG

*

User, Hyperdescriptor, and Collation Descriptor Exits 45

User Exit 12 (Multiple Data Set Log Processing)

EX12TYPE DS X Call type
EX12TBEG EQU c'S' Nucleus start
EX12TSW EQU C'W' Log switch
EXI2TEND EQU C'T' Nucleus termination
DS XL2 Reserved
*
EX12NLOG DS F Number of logs
EX12DBID DS F Database ID
EX12NUCI DS F NucTeus ID
*
EXI2PLGN DS F Current session PLOG number +
(zero for CLOGS)
EXI2NCMP DS F Log just completed
EX12STAT DS X Flags of next Tog in sequence
EX12WNUC EQU X'80" Being written by the nucleus
EX12FULL EQU X'40' Completed by the nucleus
EX12RES EQU X'20" Being copied by ADARES
EX12CL5 EQU X'08' CLOGLAYOUT=5
EX12UNUS EQU X'00" Unused and/or copied
DS XL3 Reserved
DS 4F Reserved
*
EX12HDRL EQU *-EX12HDR Length of header section

*

EX12ENT DSECT ,

EX12L0G DS OF Start of individual Tog data set +
entries. This section is repeated +
for the number of Togs specified in +
field EX12NLOG

*

EX12LTIM DS XL8 Time stamp of write to log data set
EX12LNUM DS F Number of log data set
EX12LFLG DS X Flags (mapped as in EX12STAT)
DS XL3 Reserved
DS 4F Reserved
*
EX12L0GL EQU *-EX12L0G Length of a log data set entry
*
*
MEND

46 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 12 (Multiple Data Set Log Processing)

Output Parameter

Parameter |Usage

R15=0 |Nucleus continues processing.

R15>0 |R15is treated as the number of seconds to wait before calling user exit 12 again with updated

status for all log data sets. During this time, no commands that may create log entries are
processed.

Activating the Sample User Exit

The sample user exit is written in Assembler language. It performs the following functions:

Issues a message identifying the reason and the type of log for which it was called.
Issues a message with the status and timestamp of all log data sets that are not empty.

If any log data set is full and at least one log data set has a status that is different from the last
time the exit was called, the exit reads 80-byte records from an input file and writes them to an
output file. It replaces all occurrences of the character "?" with either "P" or "C", depending on
whether the exit was invoked to process a PLOG or CLOG event, respectively. This allows the
input file to accommodate an event for either log type. Normally, the input file contains job
control statements and the output file is directed to a job execution queue.

If at least one log data set is not full, the exit returns to the caller with R15 zero, which allows
Adabas to proceed.

If all log data sets are full, the exit returns to the caller with R15 nonzero, which directs Adabas
to wait for the number of seconds in R15, then call the exit again with an updated status of all
log data sets. The default delay time is 30 seconds.

= Activating in z/OS
= Activating in VSE

User, Hyperdescriptor, and Collation Descriptor Exits 47

User Exit 12 (Multiple Data Set Log Processing)

= Activating in BS2000
Activating in z/0S

The sample user exit UX12SAMP is delivered on z/OS as source and as a load module that can be
used without change or reassembly.

The source and load forms of the user exit are delivered in the Adabas source and load libraries,
respectively. The job to assemble the user exit UX12ASML is located in the Adabas jobs library.
The jobs library also contains a sample job UX12CJOB to be customized and submitted by the user
exit that invokes the ADARES utility PLCOPY or CLCOPY function.

Activate the sample user exit as follows:

1. In addition to ADARUN NxLOG={2-8}, specify ADARUN UEX12=UX12SAMP for the Adabas
nucleus.

2. Supply the job control model that the user exit is supposed to submit under the DDNAME
COPY]JOB.

Provide the following DD statement:

//INTRDRZ2 DD SYSOUT=(*,INTRDR)

Note: The same DD statement is used by the sample user exit 2 or 12 for submitting PLCOPY
or CLCOPY jobs.

Activating in VSE

The sample user exit UX12SAMP is delivered on VSE as source and as a phase that can be used
without change or reassembly.

The source A.book and phase are delivered in the Adabas VSE sublibrary. The job to assemble the
user exit UX12ASML.X is also provided in the Adabas sublibrary. The sample job UX12CJOB.X
is to be customized and submitted by the user exit that invokes the ADARES utility PLCOPY or
CLCOPY function.

Activate the sample user exit as follows:

1. In addition to ADARUN NxLOG={2-8}, specify ADARUN UEX12=UX12SAMP for the Adabas
nucleus.

2. Supply the job control model that the user exit is supposed to submit under the DLBL COPYJOB.

48 User, Hyperdescriptor, and Collation Descriptor Exits

User Exit 12 (Multiple Data Set Log Processing)

Activating in BS2000

The sample user exit UEX12 is delivered on BS2000 as source and can be assembled using the
sample job ASMBS2.as an object module that can be used without change or reassembly.

To activate the sample user exit:

1. In addition to ADARUN NxLOG={2-8}, specify ADARUN UEX12=UEX12 for the Adabas nuc-
leus.

2. Use one of the following methods to set up the Adabas nucleus job appropriately:

= Method 1 - With Job Variables
= Method 2 - Without Job Variables

Method 1 - With Job Variables
If the machine can process job variables, place the following statement in the Adabas nucleus job:

/DEL-JV ENTER.ADARES.XxLCOPY

/SET-J0B-STEP

/CRE-JV ENTER.ADABAS.XxLCOPY

/SET-JV-LINK *DDJBx12,ENTER.ADABAS.xLCOPY

/MOD-JV LINK(*DDJBx12), -

/ SET-VAL="ENT-PROC (srclib,uxIl2cjbx,DB=dbid,J-N=X12COPY"

or, in ISP format:

/DCLJV ENTER.ADARES.XxLCOPY, LINK=*DDJBx12
/SETJV *DDJBx12,C"ENTER-PROC(srclib,uxl2cjbx),(DB=dbid),J-N=X12COPY"

X is either "P" for a PLCOPY job or "C", for a CLCOPY job
srclib isthe library where the UX12CJBx is stored
uxl2cjbx is the element name of the respective procedure job.

dbid is the database ID of this nucleus.

Method 2 - Without Job Variables

If the machine cannot process job variables, place the following statement in the Adabas nucleus
job:

User, Hyperdescriptor, and Collation Descriptor Exits 49

User Exit 12 (Multiple Data Set Log Processing)

ENTER-PROC (ADABAS.SRC,UX12CJdBx), (DBID=dbid),Jd-N=X12xCOPY

Be sure to set x to "P" for a PLCOPY job or "C" for a CLCOPY job. Also set dbid to the calling DBID
(UX12CJBC and UX12CJBP examples can be taken from the ADARESCC and ADARESCP examples

respectively).

50 User, Hyperdescriptor, and Collation Descriptor Exits

12

Hyperdescriptor Exits 01 - 31

Main Parameter Area ..

Input Parameter Area (Pointed to by Third Parameter Adress)cccuvveeiiiiiiiiiiiiie e

Output Parameter Area

Null Value Option

Hyperexit INitialization Calloooiiiiii e

Hyperexit Stub

51

Hyperdescriptor Exits 01 - 31

The hyperdescriptor exits (hyperexits) 1 through 31 (HEX01...HEX31) are required to define the
algorithm for user-supplied descriptor values (see the Adabas Utilities Manual documentation). A
hyperexit is called by the ADACMP utility or the Adabas nucleus whenever a hyperdescriptor
value is to be generated. ADACMP always uses the hyperdescriptor exit specified in its own
ADARUN statement. When the ADAINYV utility specifies a hyperdescriptor exit, the exit used is
the one specified in the Adabas nucleus' ADARUN statement.

Address List
R1—m +0 | reserved
+4 00000000
+8 | (A) INPUT -
+C | (AYOUTPUT

The address of the output must
be insenad by the user exil.

Hyperdescriptor Exit Parameters

J Notes:

24-[16-byte Elements
» Header Element

Parent Element [Fypt
i ’ parameter
area
' Parent Element

F Hzader Element

\alue Element Output
r T parameter
area
Value Element

1. Hyperexits must return the same AMODE value to the calling program that was active when

the hyperexit was called.

2. If Adabas 8 (or later) is installed and your hyperexit has not been updated to use the new
parameter list, the Hyperexit Stub can be linked to your hyperexit to provide the necessary
parameter list changes and input parameter conversion. The Hyperexit Stub does not provide
extended MU or PE support. For more information, read HyperExit Stub, elsewhere in this

chapter.

3. An initialization call is made to each loaded hyperexit during Adabas nucleus or ADACMP
startup. For more details, read Hyperexit Initialization Call, elsewhere in this chapter.

52

User, Hyperdescriptor, and Collation Descriptor Exits

Hyperdescriptor Exits 01 - 31

Main Parameter Area

Parameter |Content

0 (R1) Reserved (must not be changed)

4 (R1) |Fullword of zeros (must not be changed)

8 (R1) |Address of the beginning of the input parameter area.

12 (R1) |Address of the beginning of the output parameter area. This address must be inserted by the
user-written program. An output parameter area must always be returned by the user hyperexit.
If no values are to be returned, the address will point to a Header Element with a total length
that indicates no Value Elements exist.

User, Hyperdescriptor, and Collation Descriptor Exits 53

Hyperdescriptor Exits 01 - 31

Input Parameter Area (Pointed to by Third Parameter Address)

+0 L |+2 oooo |+4 o000 |+s FNR
Header Element +8 00000000 +12 IS
+16 HM +18 F |+18 Q000000
+0 Fi +2 00 |+3 L|+4 |
Farent Element
+8 YVAaLADDR +12 Q0000000
+0 FN |+2 m|+3 |_|+4 |
Farent Element
+B VALADDR |+1z 00000000

Header Element Fields

LL |Total length of the input parameter area, including this length field
FNR |File number

ISN |ISN assigned to the record

HN |Name of the hyperdescriptor
F |Flag byte:

= X'02' indicates file with extended MU or PE fields

= X'80' indicates initialization call

Parent Element Fields

FN Name of the parent field
L Length of the value pointed to by VALADDR if the parent field is defined with the FI option.
I Four-byte periodic group index of the parent field. If the parent field is not part of a PE group,

these bytes contain zeros.

VALADDR |Address of the value of the parent field. The format of the value depends on the options of the
fields. If the parent field is defined with the NU (null value suppression) option and the value
for this field is suppressed, no input parameter element is created.

54 User, Hyperdescriptor, and Collation Descriptor Exits

Hyperdescriptor Exits 01 - 31

The following examples show formats for the value pointed to by VALADDR for parent fields
with combinations of the FI (fixed storage) and MU (multiple-value) options:

Fields without Fl and without MU option:

VALADDR —— | *L value

Fields with FI and without MU option:

VALADDR ——p» | value

Fields without FI and with MU option:

VALADDR —— | C | *Lvalue

*L,value

*L,value

Repeated C times

Fields with FI and MU option:

VALADDR —I-|G valve | value

value

Repeated C times

Fields without Fl and with MU option when extendad count is present:

VALADDR ——» | ¥ CO02nnnn’

*L,walus

* value |' u | * value |

where:

Repeated nnnn times

User, Hyperdescriptor, and Collation Descriptor Exits

95

Hyperdescriptor Exits 01 - 31

C A one-byte value representing the MU count. If the MY value is for a file defined with extended MU or
PE fields, an extended count may be present. For more details on the extended count, read Identifying
MU and PE Occurrences Greater Than 191 in Compressed Records , found in the ADACMP documentation
in Adabas Utilities Manual.

*L A hexadecimal value length, including this one- or two-byte length value. For lengths from 1 through
127, only a single byte is required. For lengths ranging 128 to 255, two bytes are needed: the first byte
is set to X80, and the second byte is set to the actual length value (see the following example table):

Length |Byte 1 |Byte 2

L=127: [x 7F' |(x'80")
L=128:(x'80' |x'80'
L=255: [x'80' |x'FF'

Output Parameter Area

This area must be allocated and filled within the hyperdescriptor user exit. The address of this
area must be placed into the second position of the main parameter area.

This area consists of a 8-byte header followed by the generated hyperdescriptor values in com-
pressed format.

Header Element 40 LL +2 0000 |+4 RC
+8 CO000000 +12 ISH

followed by 0, 1, or +0 L |+1 Value
'n' value elements +0 L |+1 Value

Header Element

LL |Total length of the output parameter area, including this length field. If no values are returned, the
total length is set to the length of the Header Element.

00 |Reserved space. This must be set to zeros.

RC |Return code. The hyperexit may set a non-zero value here to indicate the call is rejected; a value of
"16" is recommended. If this field is non-zero, the call will fail with response code 79.

ISN|The ISN to be assigned to the descriptor values. If the original ISN is to be changed, the new ISN must
be inserted here. If these four bytes contain zero on return to the Adabas nucleus, the original ISN is
used. This is a four-byte binary value.

56 User, Hyperdescriptor, and Collation Descriptor Exits

Hyperdescriptor Exits 01 - 31

| Note: If the hyperexit returns an ISN in the ISN field of the header element, the file must be
defined with USERISN=YES to prevent ISN reassignment when the file is later reloaded.

Value Elements

L Length of the following value, including this length byte. The maximum length depends on the
format in use for the hyperdescriptor.

Value | The descriptor value to be inserted into the index. The value must follow the rules in effect for the
format assigned to this hyperdescriptor. If the hyperdescriptor is defined with the PE option, one
byte containing the one-byte PE index must immediately follow the value and be included in length
L. If the hyperdescriptor defined with the PE option is for a file defined with extended MU or PE
fields, two bytes containing the two-byte PE index must immediately follow the value and be included
in length L. The nucleus checks values of packed or numeric format for validity. Valid signs for
packed fields are A,C,E,F (positive) and B,D (negative). The nucleus changes all signs to F or D.

Examples:

L |Value Notes

04[RED

06{BLUEQ2 |where X'02'is a PE index

03|123F packed 123

04|123F01 packed 123 in PE group with index 1

07|B L U E0002 |where X'0002' is a PE index for a file defined with extended MU or PE fields
05|123F010A |packed 123 in extended PE group with index 266

Null Value Option

The NU (null value) option is possible for the hyperdescriptor or parent fields. The possible com-
binations are as follows:
® The hyperdescriptor is not NU:

® The parent field is not NU and the value is null, the hyperexit is called and the null value is
passed.

® The parent field is NU and the value is null, the hyperexit is called and no input parameter
element is created for this parent field.

= All parent fields are NU and all values are null, the hyperexit is called and no input parameter
element is created for any parent field.

® The hyperdescriptor is NU:

User, Hyperdescriptor, and Collation Descriptor Exits 57

Hyperdescriptor Exits 01 - 31

® The parent field is not NU and the value is null, the hyperexit is called and the null value is
passed.

® The parent field is NU and its value is null, the hyperexit is called and no input parameter
element is created for this parent field.

= All parent fields are NU and all values are null, the hyperexit is not called.

Hyperexit Initialization Call

During Adabas nucleus or ADACMP startup, each loaded hyperexitis called with an initialization
call. The main parameter area must be used as documented. The third parameter address will
point to an input parameter area with a header length indicating that no values follow. The flag
byte will be set to x'80' to indicate the initialization call. Upon return, the hyperexit must set the
fourth parameter address to an output parameter area with a header length indicating that no
values are returned.

Hyperexit Stub

The Hyperexit Stub is provided to allow earlier hyperexits to use the Adabas 8 parameter list
without change. The Hyperexit Stub is intended as a temporary solution for those customers who
do not wish to immediately update their hyperexits to use the new parameter areas. The Hyperexit
Stub will not function for files that are defined with extended MU or PE fields; a response code
will be given when the Hyperexit Stub is called for such files. Hyperexits linked with the Hyperexit
Stub may be used with earlier versions of Adabas, however, the Hyperexit Stub must not be used
with hyperexits that use the Adabas 8 parameters.

Sample job LNKHEXS in the JOBS data set provides an example for linking the Hyperexit Stub to
your hyperexit.

In z/VM environments, use the following procedure to build your hyperexit with the hyperexit
stub:

1. Edit the file INPUT TEXT provided on the distribution tape. On the third line (NAME HEXn-
nMOD), change the name to your hyperexit. The same name should be set in the ADARUN
HEXnn parameter. Do not change any other lines. Save the file.

58 User, Hyperdescriptor, and Collation Descriptor Exits

Hyperdescriptor Exits 01 - 31

INCLUDE LIBDEF(HEXV87,HEXOLD)
INCLUDE TXTDEF
NAME HEXnnMOD

2. Generate the hyperexit with the following commands:
® FILEDEF LIBDEF DISK ADAV813 TXTLIB x (where x is the filemode containing ADAV813
TXTLIB)
® FILEDEF TXTDEF DISK HEXnn TEXT x (where HEXnnis your hyperexit, and x is the filemode
where it resides)
® LKED INPUT (LIBE HEXnn) (where HEXnn is the name of the new LOADLIB containing the
hyperexit)
3. Before starting the Adabas nucleus, specify GLOBAL LOADLIB HEXnn.

User, Hyperdescriptor, and Collation Descriptor Exits

59

60

13 Collation Descriptor Exits 01 - 08

= Collation Descriptor Exit Interface

61

Collation Descriptor Exits 01 - 08

The collation descriptor exits 1 through 8 (CDX01 through CDX08) are used for encoding and de-
coding values for the corresponding collation descriptors.

A collation descriptor may be defined for a field with alphanumeric or wide format. Its values are
stored in the index, not in the record itself. The number of the collation descriptor exit used to
derive the values is associated with the collation descriptor.

A sample collation descriptor exit CDXE2A is provided in the Adabas source data set. It converts
EBCDIC to ASCII for the encoding function and the reverse (ASCII to EBCDIC) for the decoding
function.

The Collation Exit implements three function entry points which are called on the following events:
INITIALIZE function

® nucleus session start

= utility initialization when collation exits have been defined (ADARUN parameters)
ENCODE function

" update/insert/delete of the parent's value (Nucleus)
" Search specifying the collation descriptor with the search value (Nucleus)

" compression of a record (ADACMP)
DECODE function

® Read Index (L9) by Collation DE, only if the exit supports the DECODE function (Nucleus)

Collation Descriptor Exit Interface

The collation descriptor exit interface is defined in the CDXPARM DSECT in the Adabas source
data set. The interface has three functions:

" initialization

" encoding

® decoding (optional)

62 User, Hyperdescriptor, and Collation Descriptor Exits

Collation Descriptor Exits 01 - 08

Initialization Parameters

R1 points to a list of addresses that point to five storage areas of the caller. The collation descriptor
exit must set the five areas as follows:

CDXSpPC

default space character; a maximum of 4 bytes

CDXSPCL

fullword containing the size of the space character

CDXENC

address of encoding function

CDXDEC

collation descriptor cannot then be used for L9 processing.

address of decoding function If the returned address is zero, decoding is not supported. The

CDXVER

address of zero-byte delimited version string

R1 —»

Encoding/

R1 points

COXSPC
COXSPCL
COXENC
COXDEC
COXVER

Decoding Parameters

to a list of five fullword-sized parameters:

CDXIA

address of the input string

CDXIL

length of the input string

CDXOA

address of the output string

CDXOL

size of the output area

CDXARL

address of the length of the returned output string

The collation descriptor exit stores

® the output string in the area at the address specified by CDXOA; and

" the input string length in the fullword at the address specified by CDXARL.

User, Hyperdescriptor, and Collation Descriptor Exits

63

Collation Descriptor Exits 01 - 08

R1 | CDXIA
CDXIL
CDXOA
CDXOL
CDXARL RL
64 User, Hyperdescriptor, and Collation Descriptor Exits

Index

A

Adabas Review

hub event handler user exit 5, 21
ADAULD utility

user exit 9 processing, 35

BS2000
options for user exit 2, 11

C

cipher code

program to insert in ACBX, 38
collation descriptor exits, 61
command log

dual data set user exit, 6
command log (CLOG)

format, 16

multiple data set user exit, 41

user exit 4 processing, 15
command processing user exit, 3, 37

D

data compression
user exit 6 processing before, 25
dual log processing, 5

E

exit1, 3
exit 11, 37
exit 12, 41
exit2, 5
exit 3, 13
exit 4, 15
exit 5, 21
exit 6, 25
exit 8, 31
exit 9, 35

H

hyperdescriptor
user exit, 51

description, v

L

logs
dual data set user exit 2 processing, 5
multiple data set user exit, 41

0]

operator
program to provide instructions to, 32
operator interface user exit, 31

P

password

program to insert in ACBX, 38
phonetic processing

processing with user exit 3, 13
protection log

dual data set user exit, 6
protection log (PLOG)

multiple data set user exit, 41

U

user
log data processing, 16
user exit
exit 12, 44
user exits
BS2000 user exit 2 options, 11
descriptions, v
exit1, 3
exit 11, 37
exit 12, 41
exit2,5
exit 3, 13
exit4, 15
exit 5, 21
exit 6, 25
exit 8, 31
exit 9, 35
overview, v

65

66

	User, Hyperdescriptor, and Collation Descriptor Exits
	Table of Contents
	Preface
	1 Conventions
	2 User Exit 1 (General Processing)
	3 User Exit 2 (Dual Log Processing)
	User Exit 2 Calling Sequence
	Input Parameters
	Output Parameter
	BS2000 Options for Invoking User Exit 2
	Method 1
	Method 2

	4 User Exit 3 (User-Defined Phonetic Processing)
	Input Parameters

	5 User Exit 4 (User-Generated Log Data)
	Command Log Format

	6 User Exit 5 (Adabas Review Hub Event Handler)
	Input Parameters
	Other Register Values at Entry

	Output Parameters

	7 User Exit 6 (User Processing Before Data Compression)
	ADACMP Header Processing
	Input Parameters
	Output Parameters

	8 User Exit 8 (Operator Interface)
	Input Parameters

	9 User Exit 9 (ADAULD)
	10 User Exit 11 (General Processing)
	Input and Output Parameters

	11 User Exit 12 (Multiple Data Set Log Processing)
	User Exit 12 Calling Sequence
	User Exit Interface
	Parameters
	DSECT of the EX12PARM Parameter Block

	Output Parameter
	Activating the Sample User Exit
	Activating in z/OS
	Activating in VSE
	Activating in BS2000
	Method 1 - With Job Variables
	Method 2 - Without Job Variables

	12 Hyperdescriptor Exits 01 - 31
	Main Parameter Area
	Input Parameter Area (Pointed to by Third Parameter Address)
	Header Element Fields
	Parent Element Fields

	Output Parameter Area
	Header Element
	Value Elements

	Null Value Option
	Hyperexit Initialization Call
	Hyperexit Stub

	13 Collation Descriptor Exits 01 - 08
	Collation Descriptor Exit Interface
	Initialization Parameters
	Encoding/Decoding Parameters

	Index

