
Adabas

DBA Tasks

Version 8.1.4

June 2014

This document applies to Adabas Version 8.1.4.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1971-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ADAMF-DBATASKS-814-20140626

Table of Contents

Preface ... ix
I DBA Roles and Responsibilities .. 1

1 Central Control and Coordination .. 3
2 The DBA in the IS Organization .. 5

Position of the DBA in the Organization ... 6
Necessary Attributes for a DBA ... 6
Management Support ... 192
What Mistakes Are Possible? ... 7

3 Establishing Database Control and Administration ... 9
Establishing Database Procedures and Standards ... 10
Maintaining Procedures and Standards .. 12
Assisting in Database Design ... 12
Educating Users .. 196
Selecting Applications Suitable for the Database System 196
DBA Function Summary .. 13

4 Data Definition and Control .. 15
Planned Approach : Central Control of Data ... 16
Determining Responsibility for Data ... 16
Selecting Applications : Advising on System Development 16
Advising on Data Collection and Validation ... 17
Defining Database Contents .. 17

5 Database Documentation .. 19
Standards .. 20
Description of the Database ... 21
Data Dictionary, Function and Use .. 22
Predict : The Adabas Data Dictionary .. 22
Applications Using the Database ... 23
Description of Data Sources ... 214
Data Access and Manipulation Procedures ... 25
Passwords and User Identification .. 25
Backup Procedures ... 26
Restart and Recovery Procedures .. 27
DBMS Performance and Measurement .. 222

6 Education and Training ... 29
Overview .. 62
Database Concepts ... 30
Database Design ... 31
Programming ... 31
Operating Procedures and Techniques .. 32
Data Entry .. 32
Database Query and Report Generation .. 33

7 The DBA and the User ... 35
Liaison with the User ... 236

iii

Access Requirements .. 37
Application Interface .. 242
Complying with Standards and Controls .. 38

8 The DBA and Application Selection/Development .. 39
Configuration and Applications Planning ... 40
Database Organization ... 40
Understanding Current and Future User Requirements 41
Coordinating Database Activities .. 41
Analyzing Access Requirements .. 41
Establishing Data Availability .. 42
Performance Versus Flexibility .. 42
Advising on Application/Program/Database Design 43
Determining Physical Storage Requirements .. 43
The Test Database and Testing Strategy ... 44

9 The DBA and Computer Operations ... 47
Influence of the Database Administrator ... 48
Scheduling Computer Time ... 48
Operating Procedures .. 251
Restart and Recovery Procedures .. 49
Database Utilities ... 49
Working with Software AG .. 50

II Database Design ... 53
10 Performance Control During System Design .. 55

Methodology for Performance Control in System Design 56
11 File and Record Design .. 59

Multiple-Value Fields and Periodic Groups .. 60
Different Record Types in a Single Adabas File ... 63
Linking Physical Files in a Single Logical File ... 64
Data Duplication .. 65
Adabas Record Design ... 66

12 Data Access Strategies ... 69
Efficient Use of Descriptors .. 70
Collation Descriptor ... 70
Superdescriptor .. 71
Subdescriptor ... 71
Phonetic Descriptor .. 72
Hyperdescriptor ... 111
File Coupling .. 72
User-Assigned ISNs ... 74
Using the ISN as a Descriptor .. 74
ADAM Usage ... 74

13 Disk Space Usage ... 77
Data Compression .. 78
Forward Index Compression .. 118
Padding Factors .. 81

DBA Tasksiv

DBA Tasks

14 Adabas Security ... 83
Security Planning ... 84
Password Security .. 124
Security by Value .. 86
Ciphering .. 86
Adabas SAF Security .. 86
Natural andAdabas Online System Security ... 87

15 Recovery/Restart Design ... 89
Adabas Recovery .. 129
Planning and Incorporating Recoverability ... 91
Matching Requirements and Facilities ... 91
Transaction Recovery ... 92
End Transaction (ET) Command .. 92
Close (CL) Command ... 131
Reading ET Data .. 93
System or Transaction Failure .. 93
Limitations of Adabas Transaction Recovery .. 132
Adabas Checkpoint Commands .. 93
Exclusive File Control .. 94
User Restart Data ... 95

16 The Adabas Recovery Aid ... 97
The Recovery Log (RLOG) ... 98
Starting the Recovery Aid .. 99

17 Multiclient Support .. 101
The Owner Concept ... 136
Superusers .. 103
Program Compatibility .. 104
Support for Soft Coupling .. 104
Data and Index Structures .. 104
Performance Considerations .. 106
User Profile Table ... 107
Possible Adabas Response Codes .. 107
Utility Support for Multiclient Files ... 107

18 Expanded Files ... 111
Defining Expanded Files .. 112
Inserting a Component File .. 114
Removing a Component File .. 114
Deleting Expanded Files .. 115
Inspecting an Expanded File .. 115
Expanded Files and the Adabas Nucleus .. 115
Expanded Files and Adabas Utilities ... 116

III Database Maintenance Tasks ... 119
19 Defining an Adabas Database ... 121

Step 1 : Estimate the Size of the Database .. 122
Step 2 : Allocate Space .. 140

vDBA Tasks

DBA Tasks

Step 3 : Format the Space .. 142
Step 4 : Define Database Parameters .. 143

20 Database Space Management .. 145
Adabas Physical Extents ... 146
Relative Adabas Block Number (RABN) ... 146
Adabas Logical Extents .. 148
Adabas Space Allocation and Deallocation ... 149
Using the Database Status Report to Control Space Use 157
Potential Space Use Problems and Recommended Actions 158

21 Database Monitoring and Tuning .. 161
Monitoring Resource Use ... 162
Reporting on Resource Use .. 162
Monitoring Database Controls ... 162
Performance Management, Statistics, and Tuning ... 163
Adabas Session Statistics .. 164
Command Logging .. 169

22 Error Handling and Message Buffering .. 171
Range of Operations ... 172
Recovery or Plug-In (PIN) Routines ... 173
PIN Routine User Exit .. 183

23 Universal Encoding Support (UES) ... 187
Wide-Character Encodings ... 188
Wide-Character Data Support .. 190

24 Multiple Platform Support .. 193
Encodings ... 194
ADACOX Conversion Exit ... 195
Conversion of High Value in Value Buffer ... 196
Data Translation Restrictions ... 196
Platform Considerations .. 197

25 Getting Started with Large Object (LB) Fields ... 199
IV Adabas Online System Demo Version .. 203

26 Overview .. 205
What You Can Do with the AOS Demo Version .. 207

27 Main Menu Functions .. 209
Specifying the AOS Demo Version Database ... 211
Using Program Function (PF) Keys .. 211
Selecting a Menu Option .. 211
Getting Help ... 212
AOS Demo Version Messages .. 212

28 Session Monitoring .. 213
Display ADARUN Parameters ... 215
Display Hold Queue ... 216
Display System Status and Thread Usage ... 217
Display Maintenance Levels .. 220

29 List Checkpoints .. 221

DBA Tasksvi

DBA Tasks

30 File Maintenance .. 225
31 Database Maintenance ... 229
32 System Operator Command Functions ... 231

Extended Error Recovery ... 232
Display Locked Files .. 235
Stop User(s) .. 236
Terminate a Session Normally (ADAEND) ... 237

33 Database Report ... 239
Display Files ... 240
Display General Database Layout .. 244

V AppendicesAppendix ... 247
A Appendices ... 249

CLOGLAYOUT=5 Record Layout .. 250
CLOGLAYOUT=8 Record Layout .. 251
Command Type Field in CLOGLAYOUT Records .. 251
Remote Nucleus ID Field in CLOGLAYOUT Records 251
Command-Executing Nucleus ID Field in CLOGLAYOUT Records 252
Timestamps in CLOGLAYOUT Records .. 252
PRILOG : Printing the Command Log ... 252
PRILOGC: Printing the Command Log ... 261

B Appendix ... 273
Interoperable Encodings .. 275
Coexistent Encodings ... 277

VI AFPLOOK .. 281
34 AFPLOOK .. 283

Enabling AFPLOOK ... 284
Operational Defaults .. 284
Adjusting the Defaults ... 284
AFPLOOK Parameters ... 285
AFPLOOK Report .. 287

VII AVILOOK ... 291
35 AVILOOK ... 293

Enabling AVILOOK .. 294
SYSAVI – Selecting AVILOOK ... 294
SYSAVI – Using AVILOOK .. 295

Index ... 299

viiDBA Tasks

DBA Tasks

viii

Preface

Note: Data set names starting with DD are referred to in the Adabas documentation with
a slash separating the DD from the remainder of the data set name to accommodate VSE
data set names that do not contain the DD prefix. The slash is not part of the data set name.

This documentation describes the complete range of management and control tasks necessary for
the successful operation of the database environment. This information is organized in the following
parts:

This part reviews the role and functions of the database administrator (DBA).DBA Roles and
Responsibilities

This part provides information on database design. It includes information on
Adabas file structures, multiple value fields and periodic groups, record design,

Database Design

use of keys (descriptors), disk space usage (compression, null-value suppression,
padding factors), security planning, restart and recovery planning, multiclient
files, and expanded files.

This part describes tasks involved in defining and maintaining a database,
including tuning and error handling.

Database Maintenance
Tasks

This part describes the Adabas Online System (AOS) demo version supplied
with Adabas that provides also access to the online services of selected other
Adabas products.

Adabas Online System
Demo Version

This part describes the Adabas Fastpath command analysis sampler (AFPLOOK),
which can be used to determine where the best results may be expected from

AFPLOOK

Adabas Fastpath by reporting on the command constructs that qualify for
Adabas Fastpath.

This part describes the Adabas Vista command analysis sampler (AVILOOK),
which can be used to determine those files which may benefit from Adabas

AVILOOK

Vista’s Partitioning option by reporting on the command constructs used to
access the file.

ix

x

I DBA Roles and Responsibilities

The success of a database environment depends on central control of database design, implement-
ation, and use. This central control and coordination is the role of the database administrator
(DBA).

This part of the DBA documentation describes the roles of the DBA, the authority and responsib-
ility the DBA might have, the skills needed, the procedures, standards, and contacts the DBA may
need to create and maintain.

In the context of this documentation, the DBA is a single person; however, large organizations
may divide DBA responsibilities among a team of personnel, each with specific skills and areas
of responsibility such as database design, tuning, or problem resolution.

This information is organized under the following headings:

Central Control and Coordination

The DBA in the IS Organization

Establishing Database Control and Administration

Data Definition and Control

Database Documentation

Education and Training

The DBA and the User

The DBA and Application Selection/Development

The DBA and Computer Operations

1

2

1 Central Control and Coordination

In a database environment such as Adabas, the same data is used by many applications (users) in
many departments of the organization. Ownership of and responsibility for the data is shared by
departments with diverse and often conflicting needs. One task of the DBA is to resolve such dif-
ferences.

Data security and integrity are no longer bound to a single individual or department, but are in-
herent in systems such as Adabas; in fact, the DBA controls and customized security profiles
offered by such systems usually improve security and integrity.

In the past, application development teams have been largely responsible for designing and
maintaining application files, usually for their own convenience. Other applications wishing to
use the data had to either accept the original file design or convert the information for their own
use. This meant inconsistent data integrity, varied recovery procedures, and questionable privacy
safeguards. In addition, little attention was given to overall system efficiency; changes introduced
in one system could adversely affect the performance of other systems.

With an integrated and shared database, such a lack of central control would soon lead to chaos.
Changes to file structure to benefit one project could adversely influence data needs of other projects.
Attempts to improve efficiency of one project could be at the expense of another. The use of different
security and recovery procedures would, at best, be difficult to manage and at worst, result in
confusion and an unstable, insecure database.

Clearly, proper database management means that central control is needed to ensure adherence
to common standards and an installation-wide view of hardware and software needs. This central
control is the responsibility of the DBA. For these and other reasons, it is important that the DBA
function be set up at the very beginning of the database development cycle.

3

4

2 The DBA in the IS Organization

■ Position of the DBA in the Organization ... 6
■ Necessary Attributes for a DBA .. 6
■ Management Support ... 192
■ What Mistakes Are Possible? .. 7

5

The ability of the database administrator (DBA) to work effectively depends on the skill and
knowledge the DBA brings to the task, and the role the DBA has on the overall Information Systems
(IS) operation. This section describes how best to define the DBA role, discusses the relationship
of the DBA to the IS organization, and makes suggestions for taking advantage of that relationship.

Position of the DBA in the Organization

The DBA should be placed high enough in the organization to exercise the necessary degree of
control over the use of the database and to communicate at the appropriate level within user de-
partments. However, the DBA should not be remote from the day-to-day processes of monitoring
database use, advising on and selecting applications, and maintaining the required level of database
integrity.

The appropriate position and reporting structure of the DBA depends solely on the nature and
size of the organization.

In most organizations, the DBA is best placed as a functional manager with an status equivalent
to the systems, programming, and operations managers. The DBA should have direct responsibility
for all aspects of the continued operation of the database. It is also useful to give the DBA at least
partial control over the programming and IS operation standards, since the DBA must have the
ability to ensure that DBMS-compatible standards are understood and observed.

Necessary Attributes for a DBA

The DBA is an essential resource to the organization: a politician, technician, diplomat, and police-
man. The DBA needs to be a fair-minded person who is able to see both sides of database problems
(that is, the IS department's side and the user's side) without prejudice in favor of either side. The
DBA is expected to resolve problems for the benefit of the organization as a whole.

The DBA also needs

■ administrative skill to set up and enforce the standards and procedures for using the database;
■ technical ability to understand the factors governing hardware performance, with considerable

knowledge both of the operating system software and the DBMS being used;
■ a thorough knowledge of existing and future applications; and
■ skills to produce an efficient database design that meets the application requirements.

In many medium-to-large installations, DBA functions are performed by a team rather than an
individual. In this case, different members of the team specialize in different skills and aspects of
managing database resources.

DBA Tasks6

The DBA in the IS Organization

In a small installation, it may be difficult to justify a team, yet impossible to find an individual
with all the necessary attributes. In this case, a DBA must rely on assistance from other specialists
such as the systems programmer, senior operator, or senior analyst.

Management Support

To be effective, the DBA must be recognized and supported by both IS and user group management.
With an in-depth understanding of the database operation and the service it provides to the organ-
ization, the DBA needs to be recognized as a center of competence for all matters involving the
design or use of the database.

In principle, management should include the DBA in all decisions affecting the database to ensure
that the database environment is not disrupted. Additionally, the DBA may often be able to suggest
more cost-effective solutions that were known to management.

What Mistakes Are Possible?

When establishing the DBA function, the following mistakes should be avoided:

■ Placing the DBA too low in the organization (insufficient authority). To function effectively, the
DBA should be given enough authority to match the DBA's responsibilities. Far from being a
threat to the established scheme of IS management, the DBA should be seen as a necessary adjunct
when working in a DBMS environment. The DBA needs the cooperation, support, and respect
of fellow managers, but will not have it if he or she is denied sufficient authority to perform the
necessary tasks.

■ Placing the DBA too high in the organization (too much authority). The position of the DBA
should ensure the smooth operation of the DBMS environment, not bring it to a standstill under
mounds of paper, unnecessarily restrictive procedures, or overbearing management. It is accepted
that the dividing line between too little and too much authority is narrow, but the line must be
recognized and drawn for each organization.

■ Failing to define all DBA functions and responsibilities. The DBA should be authorized to perform
the necessary functions, as they apply to the DBMS site. These functions need to be defined by
participating managers from both the IS and user areas after careful consideration of the organ-
ization's requirements. Once the functions are defined, the DBA is responsible for establishing
the procedures needed to ensure that they are performed.

■ Failing to select a DBA with sufficient administrative experience. The DBA function is not an
appropriate place to teach administration to a junior manager. The DBA function requires con-
siderable management expertise, particularly in the area of human relations.

7DBA Tasks

The DBA in the IS Organization

8

3 Establishing Database Control and Administration

■ Establishing Database Procedures and Standards ... 10
■ Maintaining Procedures and Standards .. 12
■ Assisting in Database Design .. 12
■ Educating Users .. 196
■ Selecting Applications Suitable for the Database System ... 196
■ DBA Function Summary ... 13

9

When establishing the system for controlling and administering the database environment, the
general responsibilities of the DBA include

■ establishing database procedures and standards;
■ assisting in database design;
■ educating users;
■ selecting applications suitable for the database system;
■ maintaining database documentation; and
■ administering the database.

Establishing Database Procedures and Standards

Standards and procedures are more effectively established as part of the initial planning, rather
than later after problems have arisen. This section discusses the general points to consider when
defining procedures and standards.

Database Procedures

Procedures for effective control of the database environment should be established at the very
beginning of the organization's use of a DBMS.

These procedures are outlined elsewhere in this documentation. Although many installations
adopt the use of a DBMS in a short space of time, the planning aspect of the whole process (partic-
ularly in the design and implementation of administration and control procedures) must not be
sacrificed just to enable startup in a minimum period of time.

Obviously, the implementation of these procedures will involve much discussion, both within IS
and with the users (particularly in regard to what is acceptable, cost effective, etc.), and the first
application of DBMS technology at a particular site may see a parallel development of the DBA
procedures. However, it is essential that the organization's IS and user management be made
aware of the need for such procedures, and (after due discussion) accept them.

DBA Tasks10

Establishing Database Control and Administration

Data Security Procedures

Who decides just how secure a data item must be? The users are too close and too personally in-
volved in the matter. The analysts may miss the organization-wide implications of such a decision.
The final arbitrator must be the DBA. After all, the DBA is the one who must monitor the procedures
and correct the results of violations.

Planning Recovery Procedures

The DBA must establish standard recovery procedures for use at the installation. These procedures
must be adequate for each application before it is implemented. Different approaches (file
save/restore instead of database save/restore, for example) must be chosen; the DBA should parti-
cipate in any decisions made in this area.

Setting Standards

Much of this documentation attempts to define guidelines for a database environment. Not all of
the topics discussed will be relevant to a particular installation. Whether a guideline becomes a
standard or not depends mostly on the size and diversity of the user/developer organization.
Small, homogeneous user groups usually have good communication and do not require an extens-
ive, rigidly defined set of rules.

On the other hand, larger user groups comprising various areas or geographic locations usually
lack the contact necessary for proper controls; such groups may require some rules to avoid incon-
gruous data structures or program development. No one likes rules, unless they see an obvious
benefit in them. And standards are generally rules. So here are some guidelines to consider when
defining standards:

■ Keep standards brief, clear, and to a minimum. However, if a standard could be seen as arbitrary,
give a brief justification. For example, a standard covering the use of temporary data sets in the
Adabas environment might require the following:

Using Temporary Data Sets
To ensure that your job is recovery-/restart-capable, always catalog temporary ↩
data sets.
The Adabas database uses the Adabas Recovery Aid feature to automatically restore ↩
and restart the nucleus,
rebuild failed job streams, and resubmit the rebuilt job. If temporary data sets ↩
are not cataloged, the Recovery
Aid cannot include them in the rebuilt job stream.

■ Review the standards at least as often as you add to them, and remove or revise outdated ones.
Provide an overview of changed/deleted/added standards to users.

If a particular control or administration procedure is deemed to be necessary at a particular site,
it should be defined as a standard.

11DBA Tasks

Establishing Database Control and Administration

Maintaining Procedures and Standards

The maintenance of database documentation should be treated as a natural part of the application
development process. For this reason, the DBA will need to become involved in the development
of each new system that uses the DBMS. The data dictionary is a major tool in this documentation
process.

With a wide knowledge of current database applications, future plans, and responsibility for the
integrity of the database, the DBA should be involved in the design of the data validation procedures
inherent in each system that inputs data to the database. In this way, the DBA can ensure that the
quality of the data in the database is maintained at an acceptable level. The Data Dictionary may
also be used to document such validation requirements.

Assisting in Database Design

The assistance that the DBA provides to the project team in this area is best illustrated by the fol-
lowing questions:

■ Is the logical design a true statement of the problem? A logical database design should not em-
body any limitations/features of a particular DBMS;

■ Does the physical design cause any processing disadvantages? A project team will work in
isolation on a specific problem unless otherwise directed;

■ What about the future? Is the design flexible? The DBA and the organization will have to live
with this design for some time.

As an independent function, the DBA is the only person who can provide such an objective view
of the resulting database design. In some cases, the DBA may even become involved in the design
process itself, and at such times will ensure that the right answers can be supplied to these questions.

Educating Users

Users can be oversold on the benefits which are to be derived from DBMS technology, despite the
efforts of the system analyst or DP resources manager. Such topics as flexibility, program/data
independence and data availability can lead to unjustified expectations and give rise to a false
sense of creative freedom.

It is therefore the responsibility of the DBA to ensure that the user appreciates the problems as
well as the benefits associated with working in a database environment. The DBA should devise,
select and provide introductory training for the user that meets these needs.

DBA Tasks12

Establishing Database Control and Administration

Selecting Applications Suitable for the Database System

When an installation acquires a DBMS, it is only natural that analysts and programmers will be
eager to use it. Every new application suddenly seems to require DBMS technology. Someone has
to take a firm grasp of this situation and control the selection of applications that truly are suitable
for DBMS technology. That person is the DBA.

The DBA should produce a list of the pros and cons of using the DBMS for each application. This
should be done at the feasibility study stage (that is, before too much time and money is spent),
before the system is acquired. The analysis of the proposed application should involve such con-
siderations as:

■ Does the application need DBMS?
■ Will the application disturb our existing environment?
■ Will the proposed system be flexible?
■ Will it be cost effective?
■ Has the problem that led to proposal of the application been fully analyzed?

The DBA, as a center of competence in database matters, is thus the ideal person to oversee the
selection of new database projects.

DBA Function Summary

The following is a summary of the functions for which the DBA is generally responsible:

Standard data definitions
Physical database
Security, privacy and recovery procedures
Support software (if not acquired with the DBMS package)

Designing

Database management system
Performance measurement tools
Tuning aids

Selecting

Effect of changing volumes/new applicationsPredicting

Search strategies
Access methods
Database design
Record relationships
Rules of use of database

Deciding

Analysts and programmers: in database techniques
Operators: in database operating procedures

Training

13DBA Tasks

Establishing Database Control and Administration

Standards for design, documentation, etc.
Quality control
Access rules

Enforcing

Data dictionary creation/maintenance
File conversions
Integrity, security and recovery benchmarks
Acceptance tests
Communication of changes to the users

Organizing/Administering

Hardware performance
Software performance
Database usage statistics

Measuring

System performanceTuning

DBA Tasks14

Establishing Database Control and Administration

4 Data Definition and Control

■ Planned Approach : Central Control of Data .. 16
■ Determining Responsibility for Data .. 16
■ Selecting Applications : Advising on System Development ... 16
■ Advising on Data Collection and Validation ... 17
■ Defining Database Contents .. 17

15

This chapter provides an overview for database administrators in regards to managing their
Adabas databases.

Planned Approach : Central Control of Data

Everyone involved with the database must apply a uniform methodology and standard procedure
for data definition (this overlaps with the task of establishing the data dictionary). The DBA must
formulate, establish, and maintain a consistent set of controls and standards in this area. These
standards must be planned in conjunction with all affected parties: users, IS operations, applications
designers, and the DBMS vendor.

Determining Responsibility for Data

Ultimately, one user department must be given the sole responsibility for maintaining a subset of
the data in the database, ensuring its currency and integrity relative to the remainder of the database.
The decision as to which user this will be is for the DBA to make. It is not only necessary to decide
who shall be responsible; this decision must be made known to (and agreed by) all the other affected
users. This is where the DBA's diplomacy will be called into play. Although it is natural that user
A is responsible now, in a years time, when the use of the database has changed, it may be that
user B is now the appropriate person to accept responsibility for some or all of the data.

Selecting Applications : Advising on System Development

The selection of applications for database implementation should be made by a committee, chaired
by the DBA. The organization should decide whether or not the users should participate in this
process. As a general rule, the user will only be interested in the cost, facilities, feasibility and ex-
tensibility of the system, if the database design team has performed it's data gathering and analysis
tasks adequately. The DBA must be an impartial judge with the DBA's own independent advisers
on the various topics which are likely to be discussed.

As a center of competence, the DBA and the related staff should be in a position to advise on systems
development (but only insofar as to whether the DBMS should be used or not)-advice that can
only be given if the DBA is serving a full and useful role within the database environment and
has the wholehearted support of all interested parties.

As far as involvement in systems development is concerned, the DBA should be responsible for
the process of defining and describing new data entities and relationships, using uniform data
definition procedures. the DBA's is the task of maintaining records of the organization's logical
database and controlling what part of it is and is not implemented.

DBA Tasks16

Data Definition and Control

Advising on Data Collection and Validation

The DBA should be responsible for establishing and enforcing uniform procedures for describing
and defining the attributes of the data entities in the database. The DBA should also introduce
standards for editing and validation of the input to the database.

Besides ensuring that the minimum criteria for data quality are met, it is important that the quality
of the input be uniform so that the database remains as consistent as is practical.

The data dictionary can serve as a tool for the recording and implementation of these edit and
validation rules.

Two types of data should be considered:

That is, data with a defined, single owner. Here, the DBA can only insist that certain
satisfactory data validation procedures and reasonability checks are performed;

Private data

That is, common-usage data. Unless a particular user can be identified who should have
control and is prepared to accept that responsibility, the DBA should accept and exercise
the appropriate level of control over the quality of such data.

Common data

Defining Database Contents

The majority of the documentation requirements for the database environment are supportable
by the data dictionary. The data dictionary is one of the DBA's most important tools. It must be
based upon a set of uniform data definition procedures as indicated above. The dictionary should
record logical data formats and relationships and be broken down into three main areas:

the data and existing natural relationshipsConceptual

how it is used nowUsage

how it is currently stored in the databaseImplementation

Standards are required relating to the use and/or interpretation of specific data entities.

The data dictionary should contain

■ logical data structures;
■ physical storage structures;
■ data attributes;
■ a description of data sources:

■ Where the data comes from

17DBA Tasks

Data Definition and Control

■ How it is obtained
■ How it is edited and validated

■ accuracy and security requirements:
■ What are the accuracy requirements?
■ What are the security requirements?
■ Who may access each data item?
■ Who may update each data item?

■ response requirements: for each application area, what are the retrieval and response require-
ments?

Database Documentation lists these requirements in more detail. The online capability provided
by Predict, the Adabas data dictionary, significantly reduces the effort involved in satisfying
documentation requirements.

DBA Tasks18

Data Definition and Control

5 Database Documentation

■ Standards .. 20
■ Description of the Database .. 21
■ Data Dictionary, Function and Use .. 22
■ Predict : The Adabas Data Dictionary .. 22
■ Applications Using the Database .. 23
■ Description of Data Sources .. 214
■ Data Access and Manipulation Procedures ... 25
■ Passwords and User Identification .. 25
■ Backup Procedures ... 26
■ Restart and Recovery Procedures .. 27
■ DBMS Performance and Measurement .. 222

19

Database documentation includes the recording of the procedures, standards, guidelines and
database descriptions necessary for the proper, efficient and continuing use of the database.

The documentation must be specially prepared for and selectively distributed to

■ end users;
■ DBA function itself;
■ computer operations function;
■ applications development function.

The DBA has the responsibility for providing and maintaining adequate documentation for these
recipients. This chapter discusses the types of documentation that are required. The list given is
not necessarily exhaustive.

Standards

Establish and maintain a consistent set of database controls, particularly in the following areas:

■ Data definition: a uniform methodology should be adopted;
■ Data usage;
■ Ownership of, and responsibility for, identifiable portions of the database;
■ Data access and manipulation: Standards for the way data is accessed and updated in the

database are crucial to ensure data integrity. Standard procedures for coding requests reduce
the possibility of errors. For example, the updating of key values should be strictly controlled;

■ Data edit and validation: The DBA must establish procedures to ensure compliance with the
rules and maintain consistent levels of data quality in the database. The DBA should, therefore,
become involved in systems and acceptance testing of new applications that use the DBMS;

■ Computer operations: The DBA is responsible for ensuring that standard procedures are used
by computer operations personnel when they deal with the database. This includes standard
backup procedures, restart and recovery procedures, and other operations-related activities.

Some personnel will resist the establishment of standards for the database environment. Give
careful consideration to the status of a standard and of areas where standards should be established.
In general, a new standard will require negotiation, arbitration, and compromise before all the
parties concerned will accept it even as a proposed standard. The only way to determine whether
a standard is practical is to implement it.

Standards are subject to change. The process of changing an existing standard must be as tightly
controlled as that of installing a new one. Changes should be formally proposed and communicated
to all the affected users. After a trial period, review the proposed change with users to decide
whether it should become a standard.

DBA Tasks20

Database Documentation

Periodically review the database standards to evaluate their effectiveness and to ensure that they
are being followed. Corrective action may need to follow such a review. The DBA also has the
principal responsibility for ensuring that all personnel who work in the database environment are
aware of, and adequately trained in, the use of the standards.

Because each site has its own procedures and requirements, this documentation does not suggest
a specific set of standards.

Description of the Database

The database description should cover the following main areas:

■ Conceptual database: a formal description of the data to be stored and a definition of its inherent
logical data structures. The DBA should explicitly define data structures which reflect the DBA's
knowledge of foreseeable developments and include the needs of other known or potential
users.

■ Use of the database: information should be recorded at both the application level and the indi-
vidual data item level. This documentation will be of immense value when new systems are
being developed. The information that should be recorded is discussed in the next subsection.

■ Implementation: how the data is currently stored in the database. This is the documentation of
the physical storage structure of the database and it should include (among other items):
■ Implemented data structures (logical data formats and relationships). These are normally a

subset of the conceptual database;
■ Storage structure (physical data formats and relationships), in terms of Adabas, this means

the contents of the Field Definition Tables, coupling relationships and other inherent relation-
ships;

■ Volume of data: number and average size of records in each file;
■ Anticipated growth: by file and field size (and, therefore, record size);
■ Additions and deletions of records: number in an average maintenance run. It is also useful

to keep a note of the distribution of additions and deletions (i.e., are they random across the
file or restricted to a small portion of it), as well as the manner (user program or utility) in
which these additions and deletions are performed.

In addition, the reasons why this particular implementation has been chosen should be recorded.
This information will later prove useful when maintenance or new application design is undertaken.

The DBA is responsible for formally describing the database in the manner discussed above and
maintaining this description on a data dictionary (whether this process is automated or not). The
project team will be required to provide the DBA with all the information the DBA needs to perform
this task.

21DBA Tasks

Database Documentation

Data Dictionary, Function and Use

A data dictionary contains information about the definition, structure and use of data. It does not
store the actual data itself, but rather data about data. Simply stated, the data dictionary contains
the name of each data type (element), its definition (size and type), where and how it is used and
its relationship to other data elements.

A data dictionary enables the DBA to exercise better management and control over the organiza-
tion's data resources. Advanced users of data dictionaries have also found them to be valuable
tools in project management and systems design.

The data dictionary will enable the DBA independently to manage actual data items and the pro-
grams that manipulate and access them. This independence of control results in the substantially
enhanced usefulness of the data. The data dictionary serves to collect the information needed in
order to make the data more useful.

Containing all of the definitions of the data, the dictionary becomes the information repository
for the data's attributes, characteristics, sources, use, and interrelationships with other data. The
data dictionary should provide the following information:

■ The kind of validity tests which have been applied to this data type;
■ What modules, programs, systems and reports use this data type?
■ The level of security which has been applied; Who is allowed to access the data type? Who is

authorized to update this data type?
■ By what other names is the data type known in various application environments?
■ What is the input source for this data type?
■ Textual description of the data type.

Predict : The Adabas Data Dictionary

Predict, the Adabas data dictionary system, is used to establish and maintain an online data dic-
tionary.

Database information may be entered into the dictionary in online or batch mode. The description
of the data in the Adabas dictionary includes information about files, the fields defined for each
file and the relationship between files. The description of use includes information about the
owners and users of the data in addition to the systems, programs, modules and reports that use
the data. Dictionary entries are provided for information about

■ network structures

DBA Tasks22

Database Documentation

■ Adabas databases
■ files, fields, and relationships
■ owners and users
■ systems, programs, modules and reports
■ field verification (processing rules)

Standard data dictionary reports may be used to

■ display the entire contents of the data dictionary
■ print field, file, and relationship information
■ print field information by file

In addition, the dictionary data can also be accessed directly from Natural since it is stored in a
standard Adabas file.

Refer to the Predict documentation for more detailed information about the Adabas data dictionary
system.

Applications Using the Database

For each application using the database, the following information should be recorded:

■ Application characteristics:
■ Description of the function of the application;
■ Mode of use: batch/online, single or multiuser;
■ Frequency of use: standard scheduled times;
■ Type and volume of transactions;
■ Performance considerations: minimum acceptable response time;

■ File requirements:
■ Which files are accessed;
■ How files are accessed (the use of descriptors);
■ Specific data items (fields, subfields, superfields, and so on) used;

■ Security requirements:
■ Ciphering and/or password usage (that is, cipher keys and/or passwords are not to be made

generally available);
■ Authorized users of this system/program/enquiry;
■ Back-up requirements: frequency and content of file backups;

23DBA Tasks

Database Documentation

■ Restart requirements.

Since any database is only a partial implementation of the conceptual database (see previous section)
and user's requirements change with time, new applications of the database will be found as time
passes. Some of these applications may be developed into new systems or additions to existing
systems, but they first arise as a simple user requirement .

Establish procedures for recording unplanned applications of the database; if one becomes relatively
frequent or important, you can often gain a processing advantage by redesigning or reorganizing
the database or files within it. For example, assume that a file was initially loaded in Customer
Number order. Subsequently, applications that process the file by Salesman Number assume
greater significance. You can unload the file and reload it in Salesman Number sequence without
affecting the logical operation of most existing applications, thus achieving an overall reduction
in the processing time needed by all the applications that use the file.

Records of this unplanned use of the database or shift of emphasis in processing priorities, can be
made when a user makes an interactive request for information, whether the user does this in his
or her own department or through the DBA. These records should be regularly reviewed by the
DBA and discussed with the affected users.

Description of Data Sources

For any new application, the data dictionary is the first reference document for determining the
potential sources of information. The description of data sources will be derived during the systems
analysis and design phases of a new project.

Record and retain the following information about each system:

■ The present form and location of data: forms, files, computer storage media;
■ Access techniques to be used to acquire the data;
■ The intended use of the data in relation to its present accuracy, completeness, and timeliness,

including necessary validation or editing;
■ The need for modification of the data before it is stored on the database;
■ The authorized agent for the use of the data;
■ The cost of acquiring the data.

DBA Tasks24

Database Documentation

Data Access and Manipulation Procedures

The DBA must have administrative control over all access to and updating of the data in the
database. Unless this is so, there can be little meaningful control or protection exercised over it.
The lack of such control can result in serious security and integrity problems.

Because authority and responsibility for the database cross organizational boundaries, a corporate
policy covering database usage by and among operating units should be published. Such policy
statements can enhance the administrative control of the DBA and help to promote clear under-
standing of database procedures among users and data processing personnel.

Part of this policy will include statements on

■ the use of DBMS commands-who can and (more important) cannot use the various facilities
provided by the DBMS?

■ database usage-is this to be achieved by user programs? Are standard interfaces such as Natural
or SQL to be used? What error handling procedures should be observed? To whom should dif-
ficulties be reported, and how (for example, a trouble report)?

■ maintenance and update procedures-who will be responsible?

This policy statement should be proposed and drafted by the DBA, and then reviewed and agreed
upon by all the affected parties.

Passwords and User Identification

User ID and password information needs to be stored securely by the DBA, as only the DBA and
the affected users should have access to it. This documentation will include

■ assignment procedures for cipher keys, passwords and user identification;
■ actual assignments: cipher keys (where it is necessary for the DBA to know this), passwords

and user identifications;
■ terminal and data access procedures;
■ access authorities must be established for each data entity. These should define:

■ Who has the right and/or need to know the content of the data, as well as of its existence;
■ Who can read the data from the database, add new occurrences of the data, update existing

values of the data, and/or delete the data from the database.

Once this authority has been established, it is important to set up proper control procedures in
order to ensure that violations of database security do not occur.

25DBA Tasks

Database Documentation

■ database security procedures. The physical protection of the data in the database should be re-
corded, detailing
■ positive human control over the database (communications rooms, access to the computer

and terminals, storage of database backup and log tapes);
■ physical separation of data entities (separate files, separate databases, use of partial mount

and file cluster facilities);
■ secure areas for terminals (lockable terminals, keyholders, leased or dial-up lines, taken offline

when not in use);
■ persons authorized to receive published information about the database.

The DBA uses the Adabas Security utility to implement and control password security (see the
Adabas Security documentation for more information). The DBA must be the only person at an
installation who is permitted to use this utility.

The DBA must implement procedures to physically secure the security utility itself, and all docu-
mentation concerning security.

Backup Procedures

The content of backup files, as either database or file copies (taken by the Adabas ADASAV utility)
should be recorded together with the following information:

■ What state (or point in time) the backup data refers to;
■ Identification of the data which can be backed up;
■ The volume of data that is involved;
■ The backup facilities that should be used in order to reestablish the database to that state;
■ The frequency and schedule of database backup operations.

The DBA should help computer operations personnel to develop procedures for carrying out the
database backup task. Database backup is an essential step in ensuring that the database can be
restored to its proper state in the event of destruction or damage. The decision will have to be
taken (for every application) as to whether the entire database is to be backed up or whether
dumping and restoring of specific files is more appropriate.

Information about developing backup procedures for a particular application is included in the
Adabas Operations documentation.

DBA Tasks26

Database Documentation

Restart and Recovery Procedures

The DBA is responsible for formulating and supervising procedures for

■ restarting the DBMS after failure;
■ recovering the database to a recent checkpoint (if necessary), thus removing the need to repeat

database maintenance work;
■ controlling the priority and sequence of database restoration.

Restart and recovery is an important database protection consideration. The DBA must develop
standards, procedures and rules to provide such a capability. The DBA must be certain that the
standards and rules are being adhered to and enforced. Restart and recovery must be planned for
and designed in conjunction with the implementation of the DBMS. It should not be added as an
afterthought.

Detailed information about Adabas restart and recovery is included in the Adabas Operations
documentation.

DBMS Performance and Measurement

The DBA has a continuing role in maintaining and improving the performance of the database
system.

To do this, the DBA must monitor the performance of the system and try alternative design
strategies to improve it. As work patterns change in the company, both the volume and relative
proportion of types of transactions may change. This may affect performance and design changes
may be necessary to counteract it.

In the longer term it may be possible to predict changes in workload, and plan how to meet them
by redesign or equipment enhancement.

The effect of new hardware or software should also be evaluated, and possible changes should be
cost-justified and incorporated into the long term strategy.

Keeping track of (and measuring) the performance of the DBMS is therefore an important part of
the DBA's function. The DBA should establish and maintain records of

■ the computing resources used, including frequency of use, by each application area;
■ the users who are serviced by a particular application; and
■ DBMS effectiveness with respect to response time and cost.

The DBA will also need to establish and document procedures for

27DBA Tasks

Database Documentation

■ monitoring the frequency of DBMS usage; and
■ DBMS performance management.

It is the responsibility of the DBA to monitor the database environment on a continuing basis, in
order to ensure that an efficient level of service is provided while database integrity is maintained.
This responsibility for monitoring takes the form of a variety of activities and procedures, of which
performance management is but one.

The Adabas Online System provides the DBA with a powerful tool for monitoring the database. See the
Adabas Online Systems documentation for more information.

DBA Tasks28

Database Documentation

6 Education and Training

■ Overview ... 62
■ Database Concepts ... 30
■ Database Design ... 31
■ Programming .. 31
■ Operating Procedures and Techniques .. 32
■ Data Entry ... 32
■ Database Query and Report Generation .. 33

29

This chapter briefly discusses the main features of a training program suitable for the database
environment.

Overview

The DBA is responsible for education and training in database concepts and the procedures and
techniques involved in operating in the database environment. The DBA develops the training
curriculum and selects the content of the training materials to be used. Information systems per-
sonnel must be trained to implement, operate, and maintain the database environment. Users ex-
ternal to the data processing area should receive training in database concepts, data availability,
data entry, report generation, and the use of query facilities.

It is wise to produce a general training program for each type of person who will come into contact
with the database environment. In this program, input (knowledge) expectations and output
(performance) expectations should be recorded together with the training that is to be given, to
ensure that the person meets the output expectations. A person requiring training can then be
readily evaluated with the input criteria and remedial training, or pre-course reading can be pre-
scribed before attending the appropriate training course. This approach will ensure the effectiveness
of training.

The training given should correspond with the work requirements of the individual. The DBA's
training should be carefully planned; it should be timely (i.e., not several months before or after
the DBA is called upon to use it); and it should be immediately followed by a period of reinforce-
ment (i.e., practical use of what the DBA has been taught).

When the DBMS is initially installed, a significant number of people will require training. The
same is true when a new project starts or a new system is installed. Apart from these major require-
ments, ongoing training will be needed (for example, for new employees). For this reason, packaged
training (for example, tape cassettes and workbooks) is recommended for the small numbers of
staff and full courses for the large numbers.

Database Concepts

All personnel who interact with the database environment should have an understanding of the
concepts of database management systems that includes

■ why DBMSs evolved;
■ similarities and differences between conventional data processing systems and DBMSs;
■ advantages and disadvantages of the reduction of data duplication;
■ flexibility inherent in the DBMS;

DBA Tasks30

Education and Training

■ ease of use and accessibility;
■ the end user; differing views of the same data; the logical structuring capability of the DBMS;
■ functions provided by the DBMS;
■ importance of security, data integrity and recovery procedures in the database environment;
■ need for database standards and controls.

Database Design

Database designers need training in the design methodology preferred at the site so that they can
quickly become productive.

A large portion of training time should be spent on practical exercises that teach and give practice
in the use of the site's standards, particularly for documentation. In a public course provided by
Software AG, this may not be possible. In that case, the student should receive training in site
standards immediately after returning to work.

The subjects taught should include

■ a high-level understanding of Adabas facilities, their control and operation;
■ loading files and file definitions; Adabas direct access method (ADAM) files; estimating disk

space requirements;
■ transaction processing; ET/BT logic;
■ integrity; restart/recovery; autobackout; autorestart;
■ security; passwords; ciphering;
■ an overview of the Adabas utilities;
■ program design and efficiency.

Programming

Training for computer programmers should be based on installation procedures and standards.
The training must be as practical as is possible with a large portion of the time spent on exercises.

During the course, students should be expected to write an application program which will actually
be run on a computer. To provide some measure of continuity and reinforcement, provision should
be made for them to complete this exercise after the course has ended.

The subjects taught in this training should include

■ an overview of the Adabas facilities applicable to the applications programmer;

31DBA Tasks

Education and Training

■ Adabas direct mode commands and/or high level programming interfaces (SQL, Natural) facil-
ities available to the programmer;

■ designing an Adabas program for efficiency and ease of maintenance.

Operating Procedures and Techniques

Training provided for computer operations personnel should be based on installation procedures
and standards. It should also be as practical as possible (for example, running application systems,
executing recovery and restart procedures).

The subjects taught should include

■ operating procedures; starting an Adabas session; shutting down an Adabas session; normal
operation; exceptions; problem recovery and restart;

■ running utilities: what they do and what to expect;
■ scheduling computer time; communication with the DBA;
■ performance management;
■ controls and audit trails;
■ error reporting and follow-up.

Obviously, these topics are heavily installation-dependent and as such, the training provided in
this area will need to be given by the installation's own staff.

Data Entry

This form of training will be an essential part of that given to personnel in the user department
when a new application system is installed. As such, it is heavily application system-dependent.
However, it is possible to give some general guidelines.

Training should include

■ input procedures, whether at a terminal or by input document; application rules;
■ standards and control; auditing;
■ what the system does with the input;
■ input errors and their correction.

DBA Tasks32

Education and Training

Database Query and Report Generation

The content of this type of training will depend largely upon whether it is being given to data
processing or user personnel. The former will require training in the commands and facilities of
the query facilities to be used (for example, Natural) together with details of how to construct and
run a request.

The user, on the other hand, will require much more specialized training. It will need to be geared
much more closely to the application system that the DBA is to use.

The subjects that should be covered include

■ how the query facility works (an overview only); for example, Natural or SQL;
■ the standard reports produced by the application system-their contents and adaptability;
■ the query facility commands, functions and use with an emphasis being given to the standards

in force.

33DBA Tasks

Education and Training

34

7 The DBA and the User

■ Liaison with the User .. 236
■ Access Requirements .. 37
■ Application Interface ... 242
■ Complying with Standards and Controls ... 38

35

Before considering the normal database application development cycle and the DBA's role within
it, the DBA must understand what the user requires from the database. The word user in its widest
sense embraces user management and personnel, data processing management, computer opera-
tions, programming, systems, software support and the DBA's section.

The relationship between the DBA and the user community can be delicate, especially if a partic-
ular user actually or apparently must expend more effort or accept a lower level of service than
would be the case outside the database environment.

The users should feel that the DBA is an impartial and unbiased authority whose decisions will
enhance the welfare (and support the policies) of the organization as a whole.

The DBA must be aware of both corporate long-range plans and long-range user needs. The DBA
must reconcile any conflicts that arise between users or between a particular user and any corporate
plans that are affected.

Note that during the development of a new application, the DBA should involve the project group
in any interaction with the end user.

Liaison with the User

Liaison with the user (whether programmer or end user) is the most important and sensitive part
of the DBA's job.

In responding to an end-user request (which will normally be made in terms of retrieval require-
ments), the DBA should check the documentation describing the production database, particularly
the logical data structure, to see whether the request can be readily handled.

Four basic outcomes are possible:

1. The request cannot be fulfilled at present
In this case, the DBA should note the request, and review it at regular intervals to determine
whether the situation (or need) has changed;

2. Preparing a one-time request
Using Natural, it may be possible to satisfy the request from the existing database with minimum
effort. Irrespective of whether the DBA's section actually writes the application to fulfill the
request-indeed, the user department may have this capability-or if the application is written
by a programmer, the point is that the DBA should define the solution to this one-time require-
ment for database information;

3. Creating a new application program
Here the application is to be run regularly. The DBA will specify the program and negotiate
with the programming manager for it to be written and tested;

DBA Tasks36

The DBA and the User

4. Changing an existing application
This may, of course, involve negotiation with the primary owner of the application system, if
that person is different from the requestor, because any such change affect the performance or
flexibility of the system.

Any end-user request should be fully documented, whatever the outcome. Such requests form
one of the most useful information sources of information for the DBA as to whether or not the
training supplied to the end user has been effective.

Requests from data processing personnel will normally be for

The DBA should decide with the requestor what training is required and when. The DBA will
need to cultivate an awareness in data processing management, that such training cannot be
provided at a moment's notice. Such training should be properly planned in advance.

Training

The DBA will need to be satisfied that the requestor needs to know and is authorized to have
the information. If the answer to either of these questions deviates from the normal situation,

Information

some temporary or permanent adjustment to existing standards and/or practices may need to
be made.

The DBA will either know the answer or may need to refer the problem to Software AG. In the
latter case, the DBA will need to assemble as much documentation on the problem as possible.

Problems

This could take a variety of courses. The DBA should ensure that it is indeed the DBA's
responsibility to provide the assistance that has been requested.

Assistance

Access Requirements

The DBA must have administrative control over any access to and updating of the database. The
DBA should establish with the users, the rights of access for each item in the database. Most of
these access and update authorities will be evident from the design of the application systems
which use the data and the data items will be secured with this in mind. When an unplanned request
arises, the user should discuss this with the DBA. The latter, by reference to the database docu-
mentation, will be able to advise the user on the best way to satisfy the request. In addition, the
very existence of the request is in itself useful input to the DBA's monitoring of the use of the
database.

The requirement for access to the database, whether as a part of an application system or as an
unplanned requirement, can be thought of as a user view or subschema of the database implement-
ation. Its content, security, mode of access and manipulation should all be discussed and recorded.

Occasionally, the access requirement will cross application system boundaries. In this case, the
DBA will need to discuss the right to access the data item with the item's owner.

37DBA Tasks

The DBA and the User

Application Interface

The documentation standards should define the normal interface for an application program to
interact with the DBMS. One of two approaches may be used:

1. Direct calls to Adabas from a host programming language;

2. Calls for service to an access module.

Whichever of these two approaches is used, there will be cases where it is not appropriate or even
possible to adhere to the standard interface policy. Before deviating from the standard interface
technique, however, the DBA should be consulted and approval obtained.

When dealing with unplanned requirements, the DBA should advise the user on the interface
approach to be adopted. This may be an application program, with or without an SQL access
module; Natural; or something else.

Complying with Standards and Controls

The DBA should carefully explain to the user the benefits which are to be derived from conforming
to database standards and control and the problems that can arise if any particular user decides
to ignore them.

A feeling of mutual trust between the user and the DBA must be developed. The users should feel
that the DBA is an impartial and unbiased authority, whose decisions will enhance the welfare
and support the policies of the organization as a whole.

If the user is allowed to access the database using Natural, the DBA should be encouraged to record
any unplanned requests and inform the DBA at regular intervals of these requirements. This is a
part of the feedback and monitoring information that helps the DBA to ensure the continued ef-
fectiveness of the database environment.

DBA Tasks38

The DBA and the User

8 The DBA and Application Selection/Development

■ Configuration and Applications Planning .. 40
■ Database Organization ... 40
■ Understanding Current and Future User Requirements ... 41
■ Coordinating Database Activities .. 41
■ Analyzing Access Requirements .. 41
■ Establishing Data Availability ... 42
■ Performance Versus Flexibility ... 42
■ Advising on Application/Program/Database Design .. 43
■ Determining Physical Storage Requirements .. 43
■ The Test Database and Testing Strategy .. 44

39

This chapter provides an overview of application selection and planning for your database.

Configuration and Applications Planning

From the DBA's knowledge of the use of the database and the monitoring of its performance, the
DBA can contribute valuable data-processing expertise for making management decisions in the
area of configuration and applications planning. The DBA is aware of the user's short- and long-
term needs, as well as day-to-day problems and difficulties. The DBA's contacts with Software
AG enable the DBA to keep abreast of the developments intended for the DBMS. The DBA should,
therefore, be brought into this type of discussion.

The DBA should be involved in any application development project from the beginning. The
DBA will be able to help in the initial survey in order to decide whether a database approach is
justified in view of the organization's planned data processing developments.

The DBA will continue to be involved in project development after the initial implementation of
the database project(s). The addition of new projects creates special problems which the DBA must
resolve carefully.

The addition of new data and a changing use of existing data may change the performance char-
acteristics of an existing system. Careful redesign of the physical structure and placement of data
may be needed in order to give a reasonable service to all users.

Database Organization

As mentioned elsewhere, the DBA is responsible for the formulation and definition of the data
relationships for the purpose of defining logical data structures. These data structures should reflect
the DBA's knowledge of foreseeable developments and include the needs of other related users.

There are two major aspects:

■ the definition and organizing of existing data; and
■ the addition of new data.

Efficient physical structuring demands considerable expertise in translating and implementing
logical relationships. Space, performance and cost must be balanced, taking into account

■ data structure (logical data formats and relationships);
■ storage structure (physical data formats and relationships);
■ access methods (available and to be used);
■ frequency of access;

DBA Tasks40

The DBA and Application Selection/Development

■ physical storage media requirements;
■ timing considerations; and
■ search strategies.

The solution (and the reasoning behind it) should be fully documented.

Understanding Current and Future User Requirements

The DBA is in an ideal position to help the members of a project team appreciate and be aware of
the user's current and future requirements. In this instance, user is to be interpreted in its broadest
sense. It does not only mean the section or department for which the application system is being
designed and developed. User also means other potential users, not forgetting the organization
as a whole. Known future developments must be taken into account. At times, this may mean that
the DBA will need to exercise control over the development of a new application, in order that
these developments may be readily included in the database operation when completed.

Coordinating Database Activities

Providing that the contents of this documentation are put into practice, the DBA will be able to
coordinate all database activities. The DBA's advice should be sought on all developments planned
for the database and the DBA should aim to ensure a steady, controlled progression to an integrated
information system, which will serve the organization as a whole.

In general, the DBA should be involved in all stages of a new project from feasibility study onwards,
both in order to advise on the practical uses of the database and also to carry out the DBA's quality
control function.

The DBA will, therefore, provide lines of communication between different project teams, as well
as with present and future users. The aim should be to cultivate the attitude of designing the
database for the greatest benefit of all users.

Analyzing Access Requirements

This is an important part of the design of the database. When new projects reach the data analysis
and file design stage, it is important for the DBA to ensure that the project team does not take too
parochial a view of the requirements for access to the data to be used by the new application system.

The analysis of access requirements is also an ongoing task. As the requirements of the organization
change (as they are bound to do with time), the DBA will be receiving feedback on these changing

41DBA Tasks

The DBA and Application Selection/Development

requirements. However, the DBA should be careful not to overreact to a new requirement; it may
only be required this one time. Rather, the DBA should respond to gradual and perceptible changes
of emphasis in the access and/or processing requirements of the organization and even then, only
after full discussion with all the affected parties.

Establishing Data Availability

The DBA should assist the project team (possibly by using the data dictionary) to plan a suitable
data acquisition program, ensuring that the following aspects are taken into account:

■ The present form and location of the data;
■ How it is to be collected;
■ How accurate and complete it is at present;
■ What modifications are required to be made to the data before its inclusion in the database;
■ At what time should the data be collected in relation to the implementation of the application

system. How is the intervening period to be handled?

This process will result in a data collection program, which will include the necessary specifications
for any special editing or validation that may be required, as well as providing information to the
DBA for recording in the data dictionary.

Performance Versus Flexibility

The design of a (part of the) database will naturally involve consideration of performance (in the
sense of disk space utilization and computer processing time), as opposed to flexibility (the ease
of adapting to future unknown needs).

The DBA should ensure that the project team does not opt for performance at the expense of
flexibility, and vice versa. The DBA is in a good position to advise the project team on which areas
of the application need to be flexible (i.e., a planned system will also use this data) and which
should be designed for good performance. The ultimate aim of such considerations of performance
versus flexibility is to avoid making decisions where only one of these aspects is considered at the
possible expense of the other.

DBA Tasks42

The DBA and Application Selection/Development

Advising on Application/Program/Database Design

From the DBA's contact with project teams, with other Adabas users, and with Software AG, the
DBA gradually acquires considerable knowledge about application program and data structure
design. The DBA circulates appropriate information throughout the organization. In addition, the
DBA must be available to advise on application design.

Although the DBA may not actually design the database, he/she must be able to advise team
members on file/record design, descriptor selection, and other matters. This provides the DBA an
opportunity to represent other users in the database design.

The DBA must ensure that the design of the physical database will efficiently support the logical
requirements of the first application without prejudicing the success of later projects. The DBA
will advise on how Adabas should be used in order to fulfill the security, integrity and recovery
needs of the application system, design rules and procedures for these. In some cases, additional
software may be needed and the DBA will help to design this. The DBA will consider whether
additional utilities are needed for saving/restoring the database, measuring performance, analyzing
the actual content of the database, and so on.

During this phase, the DBA may also be advising application project teams on the best approach
to data analysis, the use of Adabas, how to design the logical data structure and which design
options are likely to prove to be the most efficient.

Determining Physical Storage Requirements

It is the DBA's responsibility to provide assistance to the project team in determining the physical
storage requirements for a particular application system.

The following parameters should be considered:

■ The volume of data to be stored;
■ The anticipated growth of data;
■ The average size of records;
■ The number of additions and deletions of records over a given time period;
■ Data relationships (data structure);
■ Data representation (internal formats);
■ The effect of compression;
■ The access methods which are to be used on the data.

43DBA Tasks

The DBA and Application Selection/Development

Evaluate carefully the tradeoffs between minimizing the use of storage media and processing costs
while maximizing service (measured in terms of speed or throughput). Also consider the need for
flexibility in the implementation of the application system; requirements may be subject to change,
and other application systems may need access to this application's data. If, minimizing physical
storage requirements means a loss of flexibility, it should not be done without careful consideration
of the problems that may arise in the future. The DBA is, of course, ideally placed to provide the
project team with this type of information.

The Test Database and Testing Strategy

The DBA should advise the project team on the type of test database to be used for the new applic-
ation. Assist the team by setting up the test database. During system testing, test with your own
monitoring, audit, error correction, and control procedures before the system goes live. These
procedures should not be designed after the system has gone into production; they should be de-
veloped by the DBA in parallel with the development of the application system.

It is best to keep test databases separate from the production database by loading them onto sep-
arate disk packs, or even databases. This, in itself, poses two problems:

■ Tests cannot take place in parallel with production work in multiuser mode (in single-user
mode, this problem does not exist);

■ Production data (or some fields in a production file) may be required to test the new system.

The first of these problems could be solved (if storage permits) by running two copies of the
Adabas nucleus in parallel-one for production work, one for test work.

The second can be solved by using the Adabas ADASAV utility to copy across the required data
from the production database to the test packs. In this case, the access authorization for the test
data will have to be agreed before testing begins.

The main advantages of having a separate test database are that files can be loaded with the file
numbers they will have when the system goes live and testing can in no way corrupt the production
database. This is a particularly important consideration when fields are to be added to an existing
file or new descriptors are to be established for the new application system.

Before systems testing starts, the DBA should decide how file conversion and database initialization
is to be accomplished and ensure the preparation of any necessary special conversion or set-up
programs. The strategy for parallel running will need careful consideration and here, too, special
programs may be needed to assist in the comparison of outputs from the existing system and the
new system or to carry out validity checks. Special inquiry facilities (e.g., Natural) may be needed
to help testing and parallel running (these have sometimes also been found useful in subsequent
live running).

DBA Tasks44

The DBA and Application Selection/Development

Before the new database is finally implemented, acceptance tests should be run to demonstrate
that all aspects of the system, including performance and resilience, are satisfactory. These may
or may not be additional to the parallel runs.

Close control of the way in which the new project accesses data will be necessary in order to ensure
that there is not loss of data integrity for existing users of the database. For systems testing, a
special testing mode may be needed in order to ensure that test changes to the database do not
actually affect the operational database.

45DBA Tasks

The DBA and Application Selection/Development

46

9 The DBA and Computer Operations

■ Influence of the Database Administrator ... 48
■ Scheduling Computer Time ... 48
■ Operating Procedures .. 251
■ Restart and Recovery Procedures .. 49
■ Database Utilities .. 49
■ Working with Software AG ... 50

47

This chapter provides an overview on the job of a database administrator.

Influence of the Database Administrator

The DBA carries the responsibility for ensuring that the computer operations function performs
its duties with regard to the database environment. This responsibility is in terms of assisting the
operations function to establish database related operating procedures, restart and recovery pro-
cedures, special database utilities and schedules for computer time for database related work.

The DBA also has a role in actually carrying out the day-to-day administration of the procedures
and safeguards associated with the use of the database.

The DBA will ensure that the operational procedures are correctly adhered to, that dumps and
logs are correctly taken and the DBA may also carry out periodic tests of the recovery systems.

In any emergency situation, the DBA may be involved in controlling recovery, discussing problems
with users and generally working out ways of minimizing the disruption.

Scheduling Computer Time

The DBA should exercise some degree of control over the scheduling of the computer, in order to
facilitate scheduling around a problem and to provide for priority use of the database in emergency
situations.

While direct control over the computer schedule will reside with the computer operations personnel,
it is, nevertheless, advisable to allow the DBA some degree of discretion in determining the
schedule of events as they relate to database processing. In doing so, (for example) problems in-
volving currency of update can be avoided and response time requirements during relatively in-
frequent peak load times can be satisfied without undue effort.

Operating Procedures

The DBA is responsible for working with computer operations personnel in order to develop
formal and documented procedures for operating database-related jobs on the computer.

Among the areas that should be considered are

■ loading a new database;
■ running database utilities;
■ maintaining the data dictionary;

DBA Tasks48

The DBA and Computer Operations

■ maintaining the database;
■ backup procedures;
■ restart/recovery procedures;
■ production and testing requirements.

Restart and Recovery Procedures

The DBA must ensure that the database can be restored to its proper state in the event of destruction
or damage. Restart and recovery is thus an important protection consideration and the DBA must
develop standards, procedures, and rules to provide such a capability.

Computer operations personnel must be educated in and adhere to these standards and procedures
in order to ensure that the recovery and restart of the database can be accomplished without loss
of data integrity.

Any variations to standard practice (for example, a particular sequence of programs to be run
after restart for a particular application system) should be recorded in the computer operations
run book for that application.

Database Utilities

The DBA is responsible for controlling the use of Adabas utilities and for developing or acquiring
specialized utilities to facilitate certain functions involving the database. These utilities may include

■ creation of test databases of suitable size which include all the features of real-life databases
(ADALOD utility);

■ save/restore individual files or the entire database (ADASAV utility);
■ provision of automated reports reflecting the integrity of the data in the database (ADAREP

utility);
■ provision of automatic reporting of security violations (ADALOG facility).

The DBA should retain control over when the utilities are run, including who is authorized to use
them. The DBA's permission should be sought before a utility is used (except, of course, in the
case of well-documented and tested recovery/restart procedures).

49DBA Tasks

The DBA and Computer Operations

Working with Software AG

The DBA should be the primary contact between the organization and Software AG. The DBA's
involvement with Software AG includes

■ obtaining education and training for the organization's staff;
■ receiving and installing new releases and system changes to the Adabas nucleus and utilities;
■ receiving and distributing electronic documentation, manuals and other literature;
■ obtaining advice;
■ reporting problems;
■ suggesting improvements to the system.

This section discusses these interfaces in detail.

Training and Education

Software AG supplies two types of education and training courses:

Tailored to the particular requirements of an individual user site.In-house

General information; any user may participate.Open

In-house training is normally given when the Adabas system is first installed, although the DBA
may from time to time have sufficient need for additional courses of this type. Such courses can
be tailored to meet specific customer requirements and training objectives.

An open course is more general, and although thorough, it may not meet all of the DBA-defined
specific requirements. As a result, the DBA may need to arrange supplementary training to meet
objectives.

Training is offered by Software AG in the following areas:

■ Application programming with Adabas;
■ Database design;
■ Query facilities (for example, Natural);
■ Internals of the Adabas system.

Detailed descriptions of training, including recommended sequences, prerequisites, schedules,
and enrollment information are available from your Software AG representative.

DBA Tasks50

The DBA and Computer Operations

New Releases

When a new release has been thoroughly checked out, it will automatically be distributed to all
Adabas user sites together with instructions which cover the means of effecting a transfer to the
new release.

The new release should be thoroughly checked out by the DBA before production work is trans-
ferred to it. If this is the case, the DBA may find that a standard set of test programs, in the form
of a prepared job stream, may be the best way of checking that the functions previously available
still operate correctly. Such a test job stream will grow with each new function provided by Adabas.

Distribution of Documentation and Updates

As the sole recipient of new literature from Software AG, the DBA should keep a record of the
copies distributed to ensure that the literature is kept as up-to-date as possible. A register of au-
thorized document holders is easily maintained and is perhaps the easiest way to perform this
part of the DBA's responsibilities.

Advice or Consultancy from Software AG

During the initial installation of the Adabas system, assistance is provided to install Adabas into
the user's system library, generate a test database, and perform checkout tests.

Beyond this initial period, there may be occasions when the DBA feels the need for advice or
consultancy from Software AG. Such a request should always come from the DBA.

Software AG will keep the DBA informed of any planned extensions to the Adabas package. As
a general rule, such extensions will be included in the training courses as soon as they have been
firmly defined by Software AG. The DBA, however, may need to pass on such information to ex-
isting projects in order that advantage can be taken of the new facilities as soon as they become
available, thus eliminating the need for later redesign or reprogramming.

Problem Reporting

If a problem arises in the database, the DBA will most often be able to solve them without contacting
Software AG. Nonetheless, Software AG offers comprehensive support to help restore operations
as quickly as possible. The DBA can add to the effectiveness of this support by ensuring that the
problem is defined accurately and succinctly to Software AG's technical support team. All available
output should first be noted and/or collected for eventual reference and, if necessary and requested,
should be sent to Software AG.

51DBA Tasks

The DBA and Computer Operations

DBMS Improvement

Potential areas for system improvement logically occur as a result of the monitoring, auditing and
operations activities. The DBA will have the responsibility for evaluating these potential enhance-
ments and initiating any improvement activities. Software AG encourages and supports User
Groups for its systems, which are an excellent forum for discussing such enhancements. Users
can start the process by submitting a change/enhancement request to the appropriate User Group
representative.

DBA Tasks52

The DBA and Computer Operations

II Database Design

This part of the DBA task description contains information about and guidelines for database
design. Topics discussed include performance, file structure, record design, efficient use of
descriptors, use of the Adabas direct access method (ADAM), disk storage space techniques,
database recovery and restart procedures, and security.

This information is organized under the following headings:

Performance Control During System Design

File and Record Design

Data Access Strategies

Disk Space Usage

Adabas Security

Recovery/Restart Design

The Adabas Recovery Aid

Multiclient Support

Expanded Files

53

54

10 Performance Control During System Design

■ Methodology for Performance Control in System Design ... 56

55

The performance of a system is measured by the time and computer resources required to run it.
These may be important for the following reasons:

■ Some system functions may have to be completed within a specified time frame;
■ The system may compete for computer resources with other systems that have more stringent

time constraints.

Performance may not be the most important objective. Trade-offs often need to be made between
performance and

■ flexibility;
■ data independence;
■ accessibility of information;
■ audit and security considerations;
■ currency of information;
■ ease of scheduling and impact on concurrent users of the database; or
■ disk space.

In some cases, performance may be a constraint to be met rather than an objective to be optimized.
If the system meets its time and volume requirements, attention may be turned from performance
to other areas.

Methodology for Performance Control in System Design

The need to achieve satisfactory performance may affect

■ the design of the database;
■ the options defined when first loading the database;
■ the logic of application functions (for example, whether to use direct access or a combination

of sequential accesses and sorts); and/or
■ operation procedures and scheduling.

Performance requirements must be considered early in the system design process. The following
procedure may be used as a basis for controlling performance:

1. Obtain from the users the time constraints for each major system function. These requirements
are likely to be absolute; that is, the system must meet them.

2. Obtain the computer resource constraints from both the users and operations personnel and use
the most stringent set.

3. Describe each function in terms of the logical design model specifying the

DBA Tasks56

Performance Control During System Design

■ manner in which each record type is processed;
■ access path and the sequence in which records are required;
■ frequency and volume of the run;
■ time available.

4. Decide which programs are most performance critical. The choice may involve volumes, fre-
quency, deadlines, and the effect on the performance or scheduling of other systems. Other
programs may also have minimum performance requirements which may constrain the extent
to which critical functions can be optimized.

5. Optimize the performance of critical functions by shortening their access paths, improving their
logic, eliminating database features that increase overhead, and so on. On the first pass, an at-
tempt should be made to optimize performance without sacrificing flexibility, accessibility of
information, or other functional requirements of the system.

6. Estimate the performance of each critical function. If this does not give a satisfactory result,
either a compromise between the time constraints and the functional requirements must be
found or a hardware upgrade must be considered.

7. Estimate the performance of other system functions. Calculate the total cost and compare the
cost and peak period resource requirements with the economic constraints. If the estimates do
not meet the constraints, then a solution must be negotiated with the user, operations, or senior
management.

8. If possible, validate the estimates by loading a test database and measuring the actual performance
of various functions. The test database should be similar to the planned one in terms of the
number of records contained in each file and the number of values for descriptors. In the test
database, the size of each record is relatively unimportant except when testing sequential pro-
cessing, and then only if records are to be processed in physical sequence.

57DBA Tasks

Performance Control During System Design

58

11 File and Record Design

■ Multiple-Value Fields and Periodic Groups .. 60
■ Different Record Types in a Single Adabas File ... 63
■ Linking Physical Files in a Single Logical File .. 64
■ Data Duplication .. 65
■ Adabas Record Design ... 66

59

It is possible to design an Adabas database with one file for each record type as identified during
the conceptual design stage. Although such a structure would support any application functions
required of it and is the easiest to manipulate for interactive queries, it may not be the best from
the performance point of view, for the following reasons:

■ As the number of Adabas files increases, the number of Adabas calls increases. Each Adabas
call requires interpretation, validation and, in multiuser mode, supervisor call (SVC) and queueing
overhead.

■ In addition to the I/O operations necessary for accessing at least one index, address converter,
and Data Storage block from each file, the one-file-per-record-type structure requires buffer
pool space and therefore can result in the overwriting of blocks needed for a later request.

For the above reasons, it may be advisable to reduce the number of Adabas files used by critical
programs. The following techniques may be used for this procedure:

■ Using multiple-value fields and periodic groups;
■ Including more than one type of record in an Adabas file;
■ Linking physical files into a single logical (expanded) file;
■ Controlling data duplication (and the resulting high resource usage).

Each of these techniques is described in the following sections.

Multiple-Value Fields and Periodic Groups

The simple example below shows the practical use of a periodic group:

QuantityItem CodeDate RequiredCustomerDate FilledOrder DateOrder Number

20024801K10JUNUK432M--29MARA1234E

10030419T15APR--

30027395201JUN--

DBA Tasks60

File and Record Design

Example of a Periodic Group

In the example shown in the table above, the order information in the table is shown converted
to a record format in an Adabas file called ORDERS. Each order record contains a periodic group
to permit a variable number of order items. In this case, the periodic group ORDER_ITEM, com-
prising the ITEM_CODE field (order item code) and the related fields QUANTITY (quantity de-
sired), REQ_DATE (date required), and FILL_DATE (actual date the order was filled), can specify
up to 65,534 different items in a given record. Each unique occurrence of the ORDER_ITEM peri-
odic group is called an occurrence; up to 65,534 occurrences per periodic group are possible.

Note: The use of more than 191 MU fields or PE groups in a file must be explicitly allowed
for a file (it is not allowed by default). This is accomplished using the ADADBS MUPEX
function or the ADACMP COMPRESS MUPEX and MUPECOUNT parameters.

The unique characteristic of the periodic group-the ability to maintain the order of occurrences-is
the reason for choosing the periodic group structure. If a periodic group originally contained three
occurrences and the first or second occurrence is later deleted, those occurrences are set to nulls;
the third occurrence remains in the third position. This contrasts with the way leading null entries
are handled in multiple-value fields, discussed below.

Note also that the record format shown for the ORDERS file may not seem the most logical; how-
ever, fields most likely to contain nulls should be placed together and at the end of the record to
save database space. The fields comprising periodic groups, therefore, are combined after the
other fields in the record.

On the other hand, the ORDERS file record structure, while being appropriate for managing orders,
may not as desirable when managing inventory. A stock control application for the items in the
ORDER file can require a completely different record structure. These records are kept in a different
database file called STOCK (see the figure below).

61DBA Tasks

File and Record Design

Example of a Multiple-Value Field

The record format in STOCK is more suitable to the applications required for stock management
than the format in the ORDERS file. The record is designed to handle cases where an item is des-
ignated as a replacement for another that is no longer in the inventory. By allowing multiple values
for the ITEM_CODE field, the current stock item can also be labelled with the numbers of discon-
tinued items that the new item replaces, allowing references to the old items to automatically select
the new replacement item. To do this, the ITEM_CODE field is defined as a multiple-value field.

For example, the items 80819W and 337015Y are no longer in stock; their item codes have become
synonyms for the basic item 27395R. An application program that inquires about either discontinued
item can first look through all ITEM_CODE values for the old code, and then refer to the first
ITEM_CODE value in the multiple-value field to identify the replacement.

The ITEM_CODE field may contain from one to 65,534 values, depending on the settings for the
file. Unlike a periodic group, however, the individual values in a multiple-value field do not keep
positional integrity if one of the values is removed. For example, if the item 337015Y in the STOCK
record shown above can no longer be ordered and the pseudocode is set to a null, 80819W auto-
matically becomes the second occurrence under ITEM_CODE.

The following limits apply when using multiple-value fields or periodic groups:

■ The maximum number of values of any multiple-value (MU) field can be up to 65,534. The ac-
tual number of occurrences allowed must be explicitly set for a file (it is not allowed by default).
This is accomplished using the ADADBS MUPEX function or the ADACMP COMPRESS MUPEX
and MUPECOUNT parameters.

■ The maximum number of occurrences of any one periodic group (PE) can be up to 65,534. The
actual number of occurrences allowed must be explicitly set for a file (it is not allowed by default).
This is accomplished using the ADADBS MUPEX function or the ADACMP COMPRESS MUPEX
and MUPECOUNT parameters.

■ A periodic group cannot contain another periodic group.

DBA Tasks62

File and Record Design

■ Depending on the compressed size of one occurrence, their usage can result in extremely large
record sizes which may be larger than the maximum record size supported by Adabas.

Descriptors contained within a periodic group and subdescriptors or superdescriptors derived
from fields within a periodic group cannot be used to control logical sequential reading or as a
sort key in find and sort commands. In addition, specific rules apply to the ways in which search
requests involving one or more descriptors derived from multiple-value fields and/or contained
within a periodic group may be used. These rules are described in the Adabas Utilities document-
ation, ADACMP utility.

Different Record Types in a Single Adabas File

Another method of reducing the number of files is to store data belonging to two logical record
types in the same Adabas file. The following example shows how a customer file and an order file
might be combined. This technique takes advantage of Adabas null-value suppression.

Fields in the field definition table for the combined file:

Key, Record Type, Order Data, Order Item Data

Stored records:

Key Type Order Data*

Key Type * Order Item Data

* indicates suppressed null values.

The key of an order item record could be order number plus line sequence number within this
order.

This technique reduces I/O operations by allowing the customer and order record types to share
control blocks and higher-level (UI) index blocks. Fewer blocks have to be read before processing
of the file can start, and more space is left free in the buffer pool for other types of blocks.

The customer and order records can be grouped together in Data Storage, reducing the number
of blocks that have to be read to retrieve all the orders for a given customer. If all the orders are
added at the same time the customer is added, the total I/O operations required will also be reduced.
If the orders are added later, they might not initially be grouped in this way but they can be
grouped later by using the ADAORD utility.

The key must be designed carefully to insure that both customer and order data can be accessed
efficiently. To distinguish different orders belonging to the same customer, the key for a customer
record will usually have the null value of the suffix appended to it, as shown below:

63DBA Tasks

File and Record Design

A00231 000 Order header for order A00231
A00231 001 Order item 1
A00231 002 Order item 2
A00231 003 Order item 3
A00232 000 Order header for order A00232
A00232 001 Order item 1 ↩

A record type field is unnecessary if the program can tell whether it is dealing with a customer or
order record by the contents of the key suffix. It may be necessary for a program to reread a record
to read additional fields or to return all fields that are relevant to any of the record types.

Linking Physical Files in a Single Logical File

An Adabas file with three-byte ISNs can contain a maximum of 16,777,215 records; a file with
four-byte ISNs can contain 4,294,967,294 records. If you have a large number of records of a single
type, you may need to spread the records over multiple physical files.

To reduce the number of files accessed, Adabas allows you to link multiple physical files containing
records of the same format together as a single logical file. This file structure is called an expanded
file, and the physical files comprising it are the component files. An expanded file can comprise
up to 128 component files, each with a unique range of logical ISNs. An expanded file cannot exceed
4,294,967,294 records.

Note: Since Adabas version 6 supports larger file sizes and a greater number of Adabas
physical files and databases, the need for expanded files has, in most cases, been removed.

Although an application program addresses the logical file (the address of the file is the number
of the expanded file's base component, or anchor file), Adabas selects the correct component file
according to the data in a field defined as the criterion field. The data in this field has characteristics
unique to records in only one component file. When an application updates the expanded file,
Adabas looks at the data in the criterion field in the record to be written to determine which
component file to update. When reading expanded file data, Adabas uses the logical ISN as the
key to finding the correct component file.

Adabas utilities do not always recognize expanded files; that is, some utility operations automat-
ically perform their functions on all component files, and others recognize only individual phys-
ical files. See Expanded Files for more information.

DBA Tasks64

File and Record Design

Data Duplication

■ Physical Duplication
■ Logical Duplication

Physical Duplication

In some cases, a few fields from a header record are required almost every time a detail record is
accessed. For example, the production of an invoice may require both the order item data and the
product description which is part of the product record. The simplest way to make this information
quickly available to the invoicing program is to hold a copy of the product description in the order
item data. This is termed physical duplication because it involves holding a duplicate copy of data
which is already physically represented elsewhere-in this case, in the product record. Physical
duplication can also be in effect if some fields from each detail record are stored as a periodic
group in a header record.

Physical duplication seldom causes much of a problem if it is limited to fields that are updated
only infrequently. In the example above, the product description data rarely changes; the rule is:
the less activity on duplicated fields, the better.

Logical Duplication

Assume a credit control routine needs the sum of all invoices present for a customer. This inform-
ation can be derived by reading and totalling the relevant invoices, but this might involve random
access of a large number of records. It can be obtained more quickly if it is stored permanently in
a customer record that has been correctly maintained. This is termed logical duplication because
the duplicate information is not already stored elsewhere but is implied by the contents of other
records.

Programs that update physically or logically duplicated information are likely to run more slowly
because they must also update the duplicate copies. Logical duplication almost always requires
duplicate updating because the change of any one record can affect data in other records. Logical
duplication can also cause severe degradation in a TP environment if many users have to update
the same record.

65DBA Tasks

File and Record Design

Adabas Record Design

Once an Adabas file structure has been determined, the next step is usually to define the fields
for the file. The field definitions are entered as input statements to the ADACMP utility's COM-
PRESS function, as described in the Adabas Utilities documentation This section describes the
performance implications of some of the options that may be used for fields.

The fields of a file should be arranged so that those which are read or updated most often are
nearest the start of the record. This will reduce the CPU time required for data transfer by reducing
the number of fields that must be scanned. Fields that are seldom read but are mainly used as
search criteria should be placed last.

For example, if a descriptor field is not ordered first in the record and logically falls past the end
of the physical record, the inverted list entry for that record is not generated for performance
reasons. To generate the inverted list entry in this case, it is necessary to unload short, decompress,
and reload the file; or use an application program to reorder the field first for each record of the
file.

Combining Fields

If several fields are always read and updated together, CPU time can be saved by defining them
as one Adabas field. The disadvantages of combining fields in this way are:

■ More disk space may be required since combining fields may reduce the possibilities for com-
pression;

■ It may be more difficult to manipulate such fields in query language programs such as SQL.

Using Field Groups

The use of groups results in more efficient internal processing of read and update commands. This
is the result of shorter format buffers in the Adabas control block. Shorter format buffers, in turn,
take less time to process and require less space in the internal format buffer pool.

Numeric Fields

Numeric fields should be loaded in the format in which they will most often be used. This will
minimize the amount of format conversion required.

DBA Tasks66

File and Record Design

Fixed-Storage Option

The use of the fixed storage (FI) option normally reduces the processing time of the field but may
result in a larger disk storage requirement, particularly if the field is contained within a periodic
group. FI fields, like NU fields, should be grouped together wherever possible.

67DBA Tasks

File and Record Design

68

12 Data Access Strategies

■ Efficient Use of Descriptors ... 70
■ Collation Descriptor ... 70
■ Superdescriptor .. 71
■ Subdescriptor ... 71
■ Phonetic Descriptor ... 72
■ Hyperdescriptor ... 111
■ File Coupling .. 72
■ User-Assigned ISNs ... 74
■ Using the ISN as a Descriptor .. 74
■ ADAM Usage ... 74

69

This chapter describes various data access strageties available in Adabas.

Efficient Use of Descriptors

Descriptors are used to select records from a file based on user-specified search criteria and to
control a logical sequential read process. The use of descriptors is thus closely related to the access
strategy used for a file. Additional disk space and processing overhead are required for each
descriptor, particularly those that are updated frequently. The following guidelines may be used
in determining the number and type of descriptors to be defined for a file:

■ If data in certain fields needs to be resequenced before processing on the field can continue, a
collation descriptor can be defined.

■ The distribution of values in the descriptor field should be such that the descriptor can be used
to select a small percentage of records in the file;

■ Additional descriptors should not be defined to further refine search criteria if a reasonably
small number of records can be selected using existing descriptors;

■ If two or three descriptors are used in combination frequently (for example, area, department,
branch), a superdescriptor may be used instead of defining separate descriptors;

■ If the selection criterion for a descriptor always involves a range of values, a subdescriptor may
be used;

■ If the selection criterion for a descriptor never involves the selection of null value, and a large
number of null values are possible for the descriptor, the descriptor should be defined with the
null-value suppression (NU) option;

■ If a field is updated very frequently, it should normally not be defined as a descriptor;
■ Files that have a high degree of volatility (large number of additions and deletions) should not

contain a large number of descriptors.

Collation Descriptor

A collation descriptor is used to sort (collate) descriptor field values in a special sequence based
on a user-supplied algorithm. An alpha or wide field can be defined as a parent field of a collation
descriptor.

Special collation descriptor user exits are specified using the ADARUN parameter CDXnn (CDX01
through CDX08). The user exits are used encode the collation descriptor value or decode it back
to the original field value. Each collation descriptor must be assigned to a user exit, and a single
user exit may handle multiple collation descriptors.

DBA Tasks70

Data Access Strategies

Superdescriptor

A superdescriptor is a descriptor created from a combination of up to 20 fields (or portions of
fields). The fields from which a superdescriptor is derived may or may not be descriptors. Super-
descriptors are more efficient than combinations of ordinary descriptors when the search criteria
involve a combination of values. This is because Adabas accesses one inverted list instead of sev-
eral and does not have to `AND' several ISN lists to produce the final list of qualifying records.
Superdescriptors can also be used in the same manner as ordinary descriptors to control the logical
sequence in which a file is read.

The values for search criteria that use superdescriptors must be provided in the format of the su-
perdescriptor (binary for superdescriptors derived from all numeric fields, otherwise alphanumeric).
If the superdescriptor format is binary, the input of the search value using an interactive query or
report facility such as Natural may be difficult.

For complete information about defining superdescriptors, read SUPDE: Superdescriptor Definition
in the ADACMP documentation found in Adabas Utilities Manual.

Subdescriptor

A descriptor that is derived from a portion of a field is called a subdescriptor. The field used to
derive the subdescriptor may or may not be a descriptor. If a search criteria involves a range of
values that is contained in the first `n' bytes of an alphanumeric field or the last `n' bytes of a nu-
meric field, a subdescriptor may be defined from only the relevant bytes of the field. Using a
subdescriptor allows the search criterion to be represented as a single value rather than a range.
This results in more efficient searching, since Adabas does not need to merge intermediate ISN
lists; the merged list already exists.

For example, assume an alphanumeric field AREA of 8 bytes, the first 3 of which represent the
region and the last 5 the department. If only records for region `111' are desired, a search criterion
of `AREA = 11100000 thru 11199999' would be required without a subdescriptor. If the first three
bytes of AREA were defined as a subdescriptor, a search criterion equal to `REGION = 111' can
be specified.

71DBA Tasks

Data Access Strategies

Phonetic Descriptor

A phonetic descriptor may be defined to perform phonetic searches. Using a phonetic descriptor
in a Find command returns all the records that contain similar phonetic values. The phonetic value
of a descriptor is based on the first 20 bytes of the field value with only alphabetic values being
considered (numeric values, special characters and blanks are ignored).

Hyperdescriptor

The hyperdescriptor option enables descriptor values to be generated based on a user-supplied
algorithm. Up to 31 different hyperdescriptors can be defined for a single physical Adabas database.
Each hyperdescriptor must be named by an appropriate HEXnn ADARUN statement parameter
in the job where it is used.

Hyperdescriptors can be used to implement n-component superdescriptors, derived keys, or
other key constructs. For more information about hyperdescriptors, see the documentation on
User and Hyperexits, as well as the ADACMP utility description in the Adabas Utilities document-
ation.

File Coupling

Using a single Find command, file coupling allows the selection of records from one file that are
related (coupled) to records containing specified values in a second file. For example, assume two
files, CUSTOMER and ORDERS, that contain customer and order information, respectively. Each
file contains the descriptor CUSTOMER_NUMBER, which is used as the basis for relating (coupling)
the files.

Physical Coupling

The files are physically coupled using the ADAINV utility, which creates a pair of additional indices
in the inverted list indicating which records in the CUSTOMER file are related (coupled) to records
in the ORDERS file (that is, have the same customer number) and vice versa. Once the files have
been coupled, a single Find command containing descriptors from either file may be constructed,
for example:

DBA Tasks72

Data Access Strategies

FIND CUSTOMER WITH NAME = JOHNSON
AND COUPLED TO ORDERS
WITH ORDER-MONTH = JANUARY

Physical coupling may be useful for information retrieval systems in which file volatility is very
low, or the additional overhead of the coupling lists is deemed insignificant compared with the
ease with which queries may be formulated. It may also be useful for small files which are
primarily query-oriented.

Physical coupling may involve a considerable amount of additional overhead if the files involved
are frequently updated. The coupling lists must be updated if a record in either of the files is added
or deleted, or if the descriptor used as the basis for the coupling is updated in either file.

Physical coupling requires additional disk space for the storage of the coupling indices. The space
required depends on the number of records that are related (coupled). The best case is where the
coupling descriptor is a unique key for one of the files. This means that only a few records in one
file will be coupled to a given record in the other file. The worst case is when a many-to-many
relationship exists between the files. This will result in a large number of records being coupled
to other records in both files.

A descriptor used as the basis for coupling should normally be defined with the null suppression
option so that records containing a null value are not included in the coupling indices.

See the Adabas Utilities documentation, the ADAINV utility, for additional information on the
use of coupling.

Logical Coupling

A multifile query may also be performed by specifying the field to be used for interfile linkage in
the search criteria. This feature is called logical coupling and does not require the files to be
physically coupled.

Although this technique requires read commands, it is normally more efficient if the coupling
descriptor is volatile because it does not require any physical coupling lists. It should also be noted
that the user program need only specify the search criteria and the field to be used for the soft-
coupling link. Adabas performs all necessary search, read and internal list matching operations.

73DBA Tasks

Data Access Strategies

User-Assigned ISNs

The user has the option of assigning the ISN of each record in a file rather than having this done
by Adabas. This technique permits later data retrieval using the ISN directly rather than using the
inverted list technique. This requires that the user develop his own method for the assigning a
unique ISN to each record. The resulting ISNs must be within the range of the MINISN and
MAXISN parameter values specified by the ADALOD utility when the file is loaded.

Using the ISN as a Descriptor

The user may store the ISN of related records in another record in order to be able to read the related
records directly without using the Inverted Lists.

For example, assume an application which needs to read an order record and then find and read
all customer records for the order. If the ISN of each customer record (for more than one customer
per order, a multiple-value field could be used) were stored in the order record, the customer re-
cords could be read directly since the ISN is available in the order record.

Storing the customer record ISNs avoids having to issue a FIND command to the customer file to
determine the customer records for the order. This technique requires that the field containing the
ISNs of the customer records be established and maintained in the order record, and assumes that
the ISN assignment in the customer file will not be changed by a file unload and reload operation.

ADAM Usage

The Adabas direct access method (ADAM) facility permits the retrieval of records directly from
Data Storage without access to the inverted lists. The Data Storage block number in which a record
is located is calculated using a randomizing algorithm based on the ADAM key of the record. The
use of ADAM is completely transparent to application programs and query and report writer fa-
cilities.

The ADAM key of each record must be a unique value. The ISN of a record may also be used as
the ADAM key.

While accessing ADAM files is significantly faster, adding new records to and loading of ADAM
files is slower than for standard files because successive new records will not generally be stored
in the same block.

If an ADAM file is to be processed both randomly and in a given logical sequence, the logical se-
quential processing may be optimized by using the bit truncation feature of the ADALOD utility.

DBA Tasks74

Data Access Strategies

This feature permits the truncation of a user-specified number of bits from the rightmost portion
of each ADAM key value prior to its usage as input to the randomizing algorithm. This will cause
records of keys with similar leftmost values to be stored in the same Data Storage block.

It is important not to truncate too many bits, however, as this may increase the number of overflow
records and degrade random access performance. The reason is, overflow records which cannot
be stored in the blocks located using the ADAM key are stored elsewhere using the standard in-
verted list process; overflow records must also be located using the inverted list. The only other
way to minimize overflow is to specify a relatively large file and padding factor size.

ADAM will generally use an average of 1.2 to 1.5 I/O operations (including an average of overflow
records stored under Associator control in other blocks of the file), rather than the three to four
I/O operations required to retrieve a record using the inverted lists. Overflow records are also re-
trieved using normal Associator inverted list references.

The variable factors of an ADAM file that affect performance are, therefore, the amount of disk
space available (the more space available, the fewer the overflow records which need to be located
with an inverted list), the number of bits truncated from the ADAM key, and the amount of record
adding and update activity. The ADAMER utility may be used to determine the average number
of I/O operations for various combinations of disk space and bit truncation. See the Adabas Utilities
documentation for additional information.

75DBA Tasks

Data Access Strategies

76

13 Disk Space Usage

■ Data Compression ... 78
■ Forward Index Compression .. 118
■ Padding Factors .. 81

77

The efficient use of disk space is especially important in a database environment since

■ sharing data between several users, possibly concurrently and in different combinations, normally
requires that a large proportion of an organization's data be stored online; and

■ some applications require extremely large amounts of data.

Decisions concerning the efficient usage of disk space must be made while considering other ob-
jectives of the system (performance, flexibility, ease of use). This section discusses the techniques
and considerations involved in performing trade-offs between these objectives and the efficient
usage of disk space.

Data Compression

Each field may be defined to Adabas with one of three compression options:

■ Fixed storage (FI), in which the field is not compressed at all. One-byte fields that are always
filled (for example, gender in a personnel record) and alphanumeric or numeric fields with full
values (for example, personnel number) should always be specified as fixed (FI) fields.

■ Ordinary compression (the default) which causes Adabas to remove trailing blanks from alpha-
numeric fields and leading zeros from numeric fields;

■ Null-value suppression, which includes ordinary compression and in addition suppresses the
null value for a field. Adjacent null value fields are combined into a single value.

The following table illustrates how various values of a five-byte alphanumeric field are stored
using each compression option.

Null-Value SuppressionOrdinary CompressionFixed StorageField Value

4ABC (4 bytes)4ABC (4 bytes)ABCbb (5 bytes)ABCbb

5ABCD (5 bytes)5ABCD (5 bytes)ABCDb (5 bytes)ABCDb

6ABCDE (6 bytes)6ABCDE (6 bytes)ABCDE (5 bytes)ABCDE

* (1 byte)2b (2 bytes)bbbbb (5 bytes)bbbbb

2X (2 bytes)2X (2 bytes)X (1 byte)X

The number preceding each stored value is an inclusive length byte (not used for FI fields). The
asterisk shown under null-value suppression indicates a suppressed field count. This is a one-byte
field which indicates the number of consecutive empty (suppressed) fields present at this point
in the record. This field can represent up to 63 suppressed fields.

The compression options chosen also affect the creation of the inverted list for the field (if it is a
descriptor) and the processing time needed for compression and decompression of the field.

DBA Tasks78

Disk Space Usage

Fixed Storage

Fixed storage indicates that no compression is to be performed on the field. The field is stored
according to its standard length with no length byte. Fixed storage should be specified for small
one- or two-byte fields that are rarely null, and for fields for which little or no compression is
possible. Refer to the Adabas Utilities documentation the ADACMP utility, for restrictions related
to the use of FI fields.

Ordinary Compression

Ordinary compression results in the removal of trailing blanks from alphanumeric fields and
leading zeros from numeric fields. Ordinary compression will result in a saving in disk space if
at least two bytes of trailing blanks or leading zeros are removed. For two-byte fields, however,
there is no savings, and for one-byte fields, adding the length byte actually doubles the needed
space. Such fields, and fields that rarely have leading or trailing zeros or blanks, should be defined
with the fixed storage (FI) option to prevent compression.

Null-Value Suppression

If null-value suppression (NU) is specified for a field, and the field value is null, a one-byte empty
field indicator is stored instead of the length byte and the compressed null value (see Data Com-
pression). This empty field indicator specifies the number of consecutive suppressed fields that
contain null values at this point in the record. It is, therefore, advantageous to physically position
fields which are frequently empty next to one another in the record, and to define each with the
null-value suppression option.

An NU field that is also defined as a descriptor is not included in the inverted lists if it contains a
null value. This means that a find command referring to that descriptor will not recognize quali-
fying descriptor records that contain a null value.

This applies also to subdescriptors and superdescriptors derived from a field that is defined with
null-value suppression. No entry will be made for a subdescriptor if the bytes of the field from
which it is derived contain a null value and the field is defined with the null-value suppression
(NU) option. No entry will be made for a superdescriptor if any of the fields from which it is derived
is an NU field containing a null value.

Therefore, if there is a need to search on a descriptor for null values, or to read records containing
a null value in descriptor sequence-for example, to control logical sequential reading or sorting-
then the descriptor field should not be defined with the NU option.

Null-value suppression is normally recommended for multiple-value fields and fields within
periodic groups in order to reduce the amount of disk space required and the internal processing
requirements of these types of fields. The updating of such fields varies according to the compres-
sion option used.

79DBA Tasks

Disk Space Usage

If a multiple-value field value defined with the NU option is updated with a null value, all values
to the right are shifted left and the value count is reduced accordingly. If all the fields of a periodic
group are defined with the NU option, and the entire group is updated to a null value, the occur-
rence count will be reduced only if the occurrence updated is the highest (last) occurrence. For
detailed information on the updating of multiple-value fields and periodic groups, see the Adabas
Utilities documentation ADACMP utility, and the Adabas Command Reference documentation
A1/A4 and N1/N2 commands.

Forward Index Compression

The forward (or `front' or `prefix') index compression feature saves index space by removing re-
dundant prefix information from index values. The benefits are less disk space used, possibly
fewer index levels used, fewer index I/O operations, and therefore greater overall throughput.
The buffer pool becomes more effective because the same amount of index information occupies
less space. Commands such as L3, L9, or S2, which sequentially traverse the index, become faster
and the smaller index size reduces the elapsed time for Adabas utilities that read or modify the
index.

Within one index block, the first value is stored in full length. For all subsequent values, the prefix
that is common with the predecessor is compressed. An index value is represented by

<l,p,value>

where

is the number of bytes that are identical to the prefix of the preceding value; andp

is the exclusive length of the remaining value including the p-byte.l

For example:

CompressedDecompressed

6 0 ABCDEABCDE

2 5 FABCDEF

4 3 GGGABCGGG

2 5 HABCGGH

Index compression is not affected by the format of a descriptor. It functions as well for PE-option
and multiclient descriptors.

The maximum possible length of a compressed index value occurs for an alphanumeric value in
a periodic group:

DBA Tasks80

Disk Space Usage

253 bytes for the proper value if no bytes are compressed
1 byte for the PE index
1 byte for the p-byte.

The total exclusive length can thus be stored in a single byte.

Adabas implements forward index compression at the file level. When loading a file (ADALOD),
an option is provided to compress index values for that file or not. The option can be changed by
reordering the file (ADAORD).

Adabas also provides the option of compressing all index values for a database as a whole. In this
case, specific files can be set differently; the file-level setting overrides the database setting.

The decision to compress index values or not is based on the similarity of index values and the
size of the file:

■ the more similar the index values, the better the compression results.
■ small files are not good candidates because the absolute amount of space saved would be small

whereas large files are good candidates for index compression.

Even in a worst case scenario where the index values for a file do not compress well, a compressed
index will not require more index blocks than an uncompressed index.

Padding Factors

A large amount of record update activity may result in a considerable amount of record migration,
i.e., removal of the record from its current block to another block in which sufficient space for the
expanded record is available. Record migration may be considerably reduced by defining a larger
padding factor for Data Storage for the file when it is loaded. The padding factor represents the
percentage of each physical block which is to be reserved for record expansion.

The padding area is not used during file loading or when adding new records to a file (this is not
applicable for an ADAM file, since the padding factor is used if necessary to store records into
their calculated Data Storage block). A large padding factor should not be used if only a small
percentage of the records is likely to expand, since the padding area of all the blocks in which
nonexpanding records are located would be wasted.

If a large amount of record update/addition is to be performed in which a large number of new
values must be inserted within the current value range of one or more descriptors, a considerable
amount of migration may also occur within the Associator. This may be reduced by assigning a
larger padding factor for the Associator.

The disadvantages of a large padding factor are a larger disk space requirement (fewer records
or entries per block) and possible degradation of sequential processing since more physical blocks
will have to be read.

81DBA Tasks

Disk Space Usage

Padding factors are specified when a file is loaded, but can be changed when executing the ADADBS
MODFCB function or the ADAORD utility for the file or database.

DBA Tasks82

Disk Space Usage

14 Adabas Security

■ Security Planning .. 84
■ Password Security ... 124
■ Security by Value .. 86
■ Ciphering ... 86
■ Adabas SAF Security ... 86
■ Natural andAdabas Online System Security .. 87

83

This section describes general considerations for database security and introduces the security
facilities provided by Adabas and the Adabas subsystems. Detailed information about the facilities
discussed in this section may be found in other parts of this documentation and in the Adabas
Security documentation.

Security Planning

Effective security measures must take account of the following:

■ A system is only as secure as its weakest component. This may be a non-DP area of the system:
for example, failure to properly secure printed listings;

■ It is rarely possible to design a foolproof system. A security system will probably be breached
if the gain from doing so is likely to exceed the cost;

■ Security can be expensive. Costs include inconvenience, machine resources, and the time required
to coordinate the planning of security measures and monitor their effectiveness.

The cost of security measures is usually much easier to quantify than the risk or cost of a security
violation. The calculation may, however, be complicated by the fact that some security measures
offer benefits outside the area of security. The cost of a security violation depends on the nature
of the violation. Possible types of cost include

■ loss of time while the violation is being corrected;
■ penalties under privacy legislation, breach of contracts, and so on;
■ damage to relationships with customers, suppliers, employees, and so on.

Password Security

Password security allows the DBA to control a user's use of the database by

■ restricting the user to certain files;
■ specifying for each file whether the user can access and update, or access only;
■ preventing the user from accessing or updating certain fields while allowing access or update

of other fields in the same file;
■ restricting the user's view of the file to records that contain specified field values (for example,

department code).

The DBA can assign a security level to each file and each field within a file. In the following table,
x/y indicates the access/update security level. The value 0/0 indicates no security.

DBA Tasks84

Adabas Security

FieldsFile

BB (4/5)AA (0/0)1 (2/3)

MM (6/9)LL (6/7)2 (6/7)

YY (4/5)XX (4/5)3 (4/5)

GG (0/15)FF (0/0)4 (0/0)

A user must supply an appropriate password to access/update a secured file. In the following
table, x/y indicates the password access/update authorization level.

Passwords
BETAALPHA

4/52/3File 1

6/70/0File 2

0/04/5File 3

Assuming the files, fields, and passwords shown in the above tables, the following statements are
true:

■ Password ALPHA
■ can access and update field AA in file 1, but not field BB;
■ can access and update all fields in file 3;
■ cannot access or update file 2.

■ Password BETA
■ can access and update all fields in file 1;
■ can access all the fields in file 2 and can update field LL, but not field MM;
■ cannot access or update file 3.

■ No password is required to access any field in file 4, or to update field FF.
■ Field GG in file 4 can be read only. Its update security level is 15 and the highest possible author-

ization level is 14.

If password BETA can access a field that password ALPHA cannot, then password BETA can also
access all the fields in the same file that password ALPHA can access. There is no way in which
ALPHA can be authorized to access field AA but not field BB and password BETA to access BB
but not AA. The same restriction applies to update (although not necessarily to the same combin-
ations of fields or to the advantage of the same password). ALPHA could be permitted to update
all the fields which BETA can update and some others which BETA cannot update.

This restriction does not apply to file-level security. For example, ALPHA can use file 3 but not
file 2, and BETA can use file 2 but not file 3. When a record is being added to a file, Adabas only
checks the update security level on those fields for which the user is supplying values. For example,

85DBA Tasks

Adabas Security

the password ALPHA could be used to add a record to file 1 provided that no value was specified
for field BB. This could represent the situation where, for example, a customer record is only to
be created with a zero balance. For record deletion, the password provided must have an author-
ization level equal to or greater than the highest update security level present in the file. For ex-
ample, an update authorization level of 9 is required to delete a record from file 2, and, it is not
possible to delete records from file 4.

Security by Value

It is also possible to limit access/update fields within a file based on the contents of the field in the
file. See the Adabas Security documentation for more information.

Ciphering

Adabas is able to cipher (encrypt) records when they are initially loaded into a file or when records
are being added to a file. Ciphering makes it extremely difficult to read the contents of a copy of
the database obtained from a physical dump of the disk on which the database is contained. Ci-
phering applies to the records stored in Data Storage only. No ciphering is performed for the As-
sociator.

Adabas SAF Security

Adabas SAF Security, an Adabas add-on product, can be used with Software AG's Com-plete and
with the following non-Software AG security environments:

■ CA-ACF2 (Computer Associates);
■ CA-Top Secret (Computer Associates);
■ RACF (IBM Corporation)

For more information about Adabas SAF Security, contact your Software AG representative.

DBA Tasks86

Adabas Security

Natural andAdabas Online System Security

The Natural Security system may also be used to provide extensive security provisions for Ada-
bas/Natural users. See the Natural Security documentation for additional information.

Access to the DBA facility Adabas Online System (AOS) can also be restricted. AOS Security requires
Natural Security as a prerequisite.

87DBA Tasks

Adabas Security

88

15 Recovery/Restart Design

■ Adabas Recovery .. 129
■ Planning and Incorporating Recoverability .. 91
■ Matching Requirements and Facilities ... 91
■ Transaction Recovery .. 92
■ End Transaction (ET) Command .. 92
■ Close (CL) Command ... 131
■ Reading ET Data ... 93
■ System or Transaction Failure .. 93
■ Limitations of Adabas Transaction Recovery ... 132
■ Adabas Checkpoint Commands ... 93
■ Exclusive File Control ... 94
■ User Restart Data .. 95

89

This chapter discusses the design aspects of database recovery and restart. Proper recovery and
restart planning is an important part of the design of the system, particularly in a database envir-
onment. Although Adabas provides facilities to perform both restart and recovery, the functions
must be considered separately.

Adabas Recovery

Recovery of database integrity has the highest priority; if a database transaction fails or must be
cancelled, the effects of the transaction must be removed and the database must be restored to its
exact condition before the transaction began.

The standard Adabas system provides transaction logic (called ET logic), extensive checkpoint/log-
ging facilities, and transaction-reversing backout processing to ensure database integrity.

Restarting the database following a system failure means reconstructing the task sequence from
a saved level before the failure, up to and including the step at which the failure occurred-including,
if possible, successfully completing the interrupted operation and then continuing normal database
operation. Adabas provides a recovery aid that reconstructs a recovery job stream to recover the
database.

Recoverability is often an implied objective. Everyone assumes that whatever happens, the system
can be systematically recovered and restarted. There are, however, specific facts to be determined
about the level of recovery needed by the various users of the system. Recoverability is an area
where the DBA needs to take the initiative and establish necessary facts. Initially, each potential
user of the system should be questioned concerning his recovery/restart requirements. The most
important considerations are

■ how long the user can manage without the system;
■ how long each phase can be delayed;
■ what manual procedures, if any, the user has for checking input/output and how long these

take;
■ what special procedures, if any, need to be performed to ensure that data integrity has been

maintained in a recovery/restart situation.

DBA Tasks90

Recovery/Restart Design

Planning and Incorporating Recoverability

Once the recovery/restart requirements have been established, the DBA can proceed to plan the
measures necessary to meet these requirements. The methodology provided in this section may
be used as a basic guideline.

1. A determination should be made as to the level and degree to which data is shared by the
various users of the system.

2. The recovery parameters for the system should be established. This includes a predicted/actual
breakdown rate, an average delay and items affected, and items subject to security and audit.

3. A determination should be made as to what, if any, auditing procedures are to be included in
the system.

4. An outline containing recovery design points should be prepared. Information in this outline
should include
■ validation planning. Validation on data should be performed as close as possible to its point

of input to the system. Intermediate updates to data sharing the record with the input will
make recovery more difficult and costly;

■ dumps (back-up copies) of the database or selected files;
■ user and Adabas checkpoints;
■ use of ET logic, exclusive file control, ET data;
■ audit procedures.

5. Operations personnel should be consulted to determine if all resources required for recovery/re-
start can be made available if and when they are needed.

6. The final recovery design should be documented and reviewed with users, operations personnel,
and any others involved with the system.

Matching Requirements and Facilities

Once the general recovery requirements have been designed, the next step is to select the relevant
Adabas and non-Adabas facilities to be used to implement recovery/restart. The following sections
describe the Adabas facilities related to recovery/restart.

91DBA Tasks

Recovery/Restart Design

Transaction Recovery

Almost all online update systems and many batch update programs process streams of input
transactions which have the following characteristics:

■ The transaction requires the program to retrieve and add, update, and/or delete only a few re-
cords. For example, an order entry program may retrieve the customer and product records for
each order, add the order and order item data to the database, and perhaps update the quantity-
on-order field of the product record.

■ The program needs exclusive control of the records it uses from the start of the transaction to
the end, but can release them for other users to update or delete once the transaction is complete.

■ A transaction must never be left incomplete; that is, if it requires two records to be updated,
either both or neither must be changed.

End Transaction (ET) Command

The use of the Adabas ET command

■ ensures that all the adds, updates, and/or deletes performed by a completed transaction are
applied to the database;

■ ensures that all the effects of a transaction which is interrupted by a total or partial system failure
are removed from the database;

■ allows the program to store up to 2000 bytes of user-defined restart data (ET data) in an Adabas
system file. This data may be retrieved on restart with the Adabas OP or RE commands. The
restart data can be examined by the program or TP terminal user to decide where to resume
operation;

■ releases all records placed in hold status while processing the transaction.

Close (CL) Command

The Adabas CL command can be used to update the user's current ET data (for example, to set a
user-defined job completed flag). Refer to the section User Restart Data for more information.

DBA Tasks92

Recovery/Restart Design

Reading ET Data

After a user restart or at the start of a new user or Adabas session, ET data can be retrieved with
the OP command. The OP command requires a user ID, which Adabas uses to locate the ET data,
and a command option to read ET data.

The RE command can also be used to read ET data for the current or a specified user; for example,
when supervising an online update operation.

System or Transaction Failure

The autobackout routine is automatically invoked at the beginning of every Adabas session. If a
session terminates abnormally, the autobackout routine removes the effects of all interrupted
transactions from the database up to the most recent ET. If an individual transaction is interrupted,
Adabas automatically removes any changes the transaction has made to the database. Each applic-
ation program can explicitly back out its current transaction by issuing the Adabas BT command.

Limitations of Adabas Transaction Recovery

The transaction recovery facility recovers only the contents of the database. It does not recover TP
message sequences, reposition non-Adabas files, or save the status of the user program.

It is not possible to back out the effects of a specific user's transactions because other users may
have performed subsequent transactions using the records added or updated by the first user.

Adabas Checkpoint Commands

Some programs cannot conveniently use ET commands because

■ the program would have to hold large numbers of records for the duration of each transaction.
This would increase the possibility of a deadlock situation (Adabas automatically resolves such
situations by backing out the transaction of one of the two users after a user-defined time has
elapsed, but a significant amount of transaction reprocessing could still result), and a very large
Adabas hold queue would have to be established and maintained;

■ the program may process long lists of records found by complex searches; restarting part of the
way through such a list may be difficult.

93DBA Tasks

Recovery/Restart Design

Such programs can use the Adabas checkpoint command (C1) to establish a point to which the
file or files the program is updating can be restored if necessary.

Exclusive File Control

A user can request exclusive update control of one or more Adabas files. Exclusive control is re-
quested with the OP command and will be given only if the file is not currently being updated by
another user. Once exclusive control is assigned to a user, other users may read but not update
the file. Programs that read and/or update long sequences of records, either in logical sequence
or as a result of searches, may use exclusive control to prevent other users from updating the records
used. This avoids the need for placing each record in hold status.

Checkpointing Exclusively Controlled Files

Exclusive control users may or may not use ET commands. If ET commands are not used, check-
points can be taken by issuing a C1 command.

System or Program Failure

In the event of a system or program failure, the file or files being updated under exclusive control
may be restored using the BACKOUT function of the ADARES utility. This utility is not automat-
ically invoked and requires the Adabas data protection log as input. This procedure is not necessary
if the user uses ET commands (see the section Transaction Recovery).

Limitations of Exclusive File Control

The following limitations apply to exclusive file control:

■ Recovery to the last checkpoint is not automatic, and the data protection log in use when the
failure occurred is required for the recovery process. This does not apply if the user issues ET
commands.

■ In a restart situation following a system failure, Adabas does not check nor prevent other users
from updating files which were being updated under exclusive control at the time of the system
interruption.

DBA Tasks94

Recovery/Restart Design

User Restart Data

The Adabas ET and CL commands provide an option of storing up to 2000 bytes of user data in
an Adabas system file. One record of user data is maintained for each user. This record is overwrit-
ten each time new user data is provided by the user. The data is maintained from session to session
only if the user provides a user identification (user ID) with the OP command.

The primary purpose of user data is to enable programs to be self-restarting and to check that re-
covery procedures have been properly carried out. The type of information which may be useful
as user data includes the following:

■ The date and time of the original program run and the time of last update. This will permit the
program to send a suitable message to a terminal user, console operator, or printer to allow the
user and/or operator to check that recovery and restart procedures have operated correctly. In
particular, it will allow terminal users to see if any work has to be rerun after a serious overnight
failure of which they were not aware.

■ The date of collection of the input data.
■ Batch numbers. This will enable supervisory staff to identify and allocate any work that has to

be reentered from terminals.
■ Identifying data. This data can be a way for the program to determine where to restart. For ex-

ample, a program driven by a logical sequential scan needs to know the key value at which to
resume.

■ Transaction number/input record position . This may allow an interactive user or batch program
to locate the starting point with the minimum of effort. Although Adabas returns a transaction
sequence number for each transaction, the user also may want to maintain a sequence number
because
■ after a restart, the Adabas sequence number is reset;
■ if transactions vary greatly in complexity, there may not be a simple relationship between the

Adabas transaction sequence number and the position of the next input record or document;
■ if a transaction is backed out by the program because of an input error, Adabas does not know

whether the transaction will be reentered immediately (it may have been a simple keying error)
or rejected for later correction (if there was a basic error in the input document or record);

■ Other descriptive or intermediate data; for example, totals to be carried forward, page numbers
and headings of reports, run statistics.

■ Job/batch completed flag. The system may fail after all processing has been completed but before
the operator or user has been notified. In this case, the operator should restart the program
which will be able to check this flag without having to run through to the end of the input. The
same considerations apply to batches of documents entered from terminals.

■ Last job/program name. If several programs must update the database in a fixed sequence, they
may share the same user ID and use user data to check that the sequence is maintained.

95DBA Tasks

Recovery/Restart Design

A user's own data can be read with either the OP or RE command. User data for another user can
be read by using the RE command and specifying the other user's ID. User data for all users can
be read in logical sequential order using the RE command with a command option; in this case,
user IDs are not specified.

DBA Tasks96

Recovery/Restart Design

16 The Adabas Recovery Aid

■ The Recovery Log (RLOG) .. 98
■ Starting the Recovery Aid ... 99

97

When a system failure disrupts database operation, the Adabas Recovery Aid can create a job
stream that reconstructs the database to the point of failure.

The Recovery Aid combines the protection log (PLOG) and the archived database status from
previous ADASAV operations with its own recovery log (RLOG) information to reconstruct the
job sequence. The result is a reconstructed job statement string (recovery job stream) that is placed
in a specially named output data set.

The two major parts of the Adabas Recovery Aid are the recovery log (RLOG) and the recovery
aid utility ADARAI. The RLOG is formatted like other Adabas files, using ADAFRM, and then
defined with the ADARAI utility.

The DBA must run the Recovery Aid utility, ADARAI, to

■ define the RLOG and set up the Recovery Aid environment;
■ display current RLOG information;
■ create the recovery job stream.

The Recovery Log (RLOG)

The recovery log (RLOG) records the essential information that, when combined with the PLOG,
is used by the ADARAI utility's RECOVER function to rebuild a job stream to recover and restore
the database status up to the point of failure.

The RLOG information is grouped in generations, where each generation comprises the database
activity between consecutive ADASAV SAVE, RESTORE (database) or RESTORE GCB operations.
The RLOG holds a minimum of four consecutive generations, up to a maximum value specified
when the RLOG is activated; the maximum is 32. If RLOG space is not sufficient to hold the specified
number of generations, the oldest generation is overwritten with the newest in wraparound
fashion.

The RLOG file is formatted like other database components by running the ADAFRM utility (SIZE
parameter), and then defined using the PREPARE function of the Recovery Aid ADARAI utility
(with the RLOGSIZE parameter). The space required for the RLOG file is approximately 10 cylinders
of 3380 or equivalent device space.

The ADARAI PREPARE function must be performed just before the ADASAV SAVE run that
begins the first generation to be logged. After ADARAI PREPARE is executed, all subsequent
nucleus and utility jobs that update the database must specify the RLOG file. Of course, the RLOG
file can be included in any or all job streams, if desired.

The RLOG file job statement should be similar to the following:

DBA Tasks98

The Adabas Recovery Aid

//DDRLOGR1 DD DISP=SHR,DSN=... .RLOGR1

Starting the Recovery Aid

The activity of the Recovery Aid and RLOG logging begins when the first ADASAV SAVE/RE-
STORE database or RESTORE GCB function is executed following ADARAI PREPARE.

All activity between the first and second ADASAV SAVE/RESTORE database or RESTORE GCB
operations following the ADARAI PREPARE operation belongs to the first generation. When
viewing generations with the ADARAI utility's LIST function, generations are numbered relatively
in ascending order beginning with the oldest generation.

For more detailed information on setting up the Recovery Aid, see Restart and Recovery in the
Adabas Operations documentation and the ADARAI utility description in the Adabas Utilities
documentation.

99DBA Tasks

The Adabas Recovery Aid

100

17 Multiclient Support

■ The Owner Concept ... 136
■ Superusers ... 103
■ Program Compatibility .. 104
■ Support for Soft Coupling .. 104
■ Data and Index Structures ... 104
■ Performance Considerations .. 106
■ User Profile Table .. 107
■ Possible Adabas Response Codes .. 107
■ Utility Support for Multiclient Files ... 107

101

The Adabas multiclient feature stores records for multiple users or groups of users in a single
Adabas file. This feature is specified at the file level. It divides the physical file into multiple logical
files by attaching an owner ID to each record. Each user can access only the subset of records that
is associated with the user's owner ID. The file is still maintained as a single physical Adabas file.

The Adabas nucleus handles all database requests to multiclient files.

The Owner Concept

Each record in a multiclient file has a specific owner, which is identified by an internal owner ID
attached to each record (for any installed external security package such as RACF or CA-Top
Secret, a user is still identified by either Natural ETID or LOGON ID). The owner ID is assigned
to a user ID. A user ID can have only one owner ID, but an owner ID can belong to more than one
user.

The following table shows examples of the ETID/owner ID relationship.

DescriptionOwner IDETID

More than one user can use the same owner ID.

Here, USER1, USER2 and USER3 share the same owner ID and therefore the same records.

1USER1

1USER2

1USER3

...

2USER4

The relationship between the user ID and the owner ID is stored in the profile table in the Adabas
checkpoint file. The DBA maintains the profile table using Adabas Online System/Basic Services
(AOS), a prerequisite for the multiclient feature.

The relation between user ID and owner ID is 1:1 or n:1; either a single user or group of users can
be assigned to one owner ID. Record isolation is always performed on the owner ID level.

The owner ID has a fixed length of up to 8 bytes (alphanumeric). The length is defined by the user
during file creation; it can be changed only by unloading and reloading the multiclient file. Each
owner ID must be less than or equal to the length assigned for the file; otherwise, a nonzero response
code occurs. To avoid wasting space, make the owner ID no larger than necessary.

The following tables show an example of owner isolation for a group of eight file records.

DBA Tasks102

Multiclient Support

DiscussionRecordOwner IDISN

Example for a physical Adabas file with records owned by different usersdata11

data22

data13

data34

data25

data36

- no data -7

data18

RecordISNRecordISN

- no data -1data1

data2- no data -2

- no data -3data3

- no data -4- no data -4

data5- no data -5

- no data -6- no data -6

- no data -7- no data -7

- no data -8data8

File as seen by a user with an owner ID=2File as seen by a user with an owner ID=1

Superusers

A superuser owner ID provides access to all records in a multiclient file. A superuser owner ID
begins with an asterisk (*). Adabas allows users with such an owner ID to match with any other
owner ID, allowing the user to read all records in a file. More than one superuser owner IDs, each
beginning with an asterisk and allowing identical privileges, can be defined for a multiclient file.

A superuser owner ID applies only to Lx read commands and nondescriptor search (Sx) commands.
Descriptor search commands by a superuser return only the records having the superuser's owner
ID. Data records or index values stored by a superuser are labeled with the superuser's owner ID.

Note: If a superuser issues an L3 or L9 command, the value start option is ignored; that is,
Adabas always starts at the very beginning of the specific descriptor.

103DBA Tasks

Multiclient Support

Program Compatibility

No changes to an existing application program are needed to use it in a multiclient environment;
however, a user ID must be supplied in the Additions 1 field of the Adabas control block of each
open (OP) call made by a user who addresses a multiclient file. This allows Adabas to retrieve the
owner ID from the checkpoint file. Otherwise, the application program neither knows nor cares
whether a multiclient file or a standard Adabas file is being accessed.

Support for Soft Coupling

Multiclient support is provided for soft coupling.

Data and Index Structures

The data and index structures of a multiclient file differ from those of standard Adabas files.

Data Storage

A Data Storage (DATA) record in a standard file has the following structure:

A Data Storage record in a multiclient file has the following structure:

DBA Tasks104

Multiclient Support

Comparison of Normal and Multiclient Record Formats

Associator

Every normal index and upper index value for a multiclient file is prefixed by the owner ID:

Normal Index Element Structure

The tables below illustrate a multiclient index structure. If a single descriptor value points to more
than one Data Storage record, Adabas stores this extended index value only once, followed by the
list of ISNs. If the same descriptor value for different owner IDs is to be stored, then multiple
entries are made in the index.

NAMEOwner IDISN

The field NAME is a descriptor.SMITH11

SMITH22

SMITH13

JONES34

JONES25

105DBA Tasks

Multiclient Support

NAMEOwner IDISN

HARRIS36

- not stored -7

HARRIS18

ISN listISN countDE valueOwner ID

This is the index for the descriptor NAME. The sort sequence of values
is: owner ID | (DE-value)

81HARRIS1

1,32SMITH1

51JONES2

21SMITH2

61HARRIS3

41JONES3

Notes:

1. Every type of descriptor is prefixed by the owner ID: simple descriptors, sub/superdescriptors,
phonetic, and hyperdescriptors. The owner ID prefix is not counted as a parent field for super-
and hyperdescriptors. The maximum number of parent fields is not affected.

2. The maximum length of a descriptor value, including the owner ID, is 253 bytes.

3. A superuser reading index values in L3/L9 sequence gets values in sorting order by owner ID:
the values for the lowest owner ID first, then the values for the next higher owner ID, and so
on. Values for each owner ID are sorted in ascending order.

Performance Considerations

The multiclient feature causes no added processing overhead for find (S1,S2), read-logical (L3)
and histogram (L9) commands. The index structure permits specific record selection, and there is
no postselection procedure in the Data Storage.

If the selection is done on the Data Storage, Adabas must read the record and check the owner ID.
If the record's owner ID does not match the current user's owner ID, the record is skipped. This
might slow down a read-physical (L2) and a read-by-ISN (L1 with I option) command or a non-
descriptor search command.

DBA Tasks106

Multiclient Support

User Profile Table

The owner ID is part of the user's profile record, which is stored in the Adabas profile table. The
profile is maintained using the Adabas Online System. See the Adabas Online System document-
ation for more information.

Possible Adabas Response Codes

Calls to multiclient files can result in the following non-zero Adabas response codes, which indicate
that an error has occurred:

If a user tries to read or change a multiclient file's record using an owner ID
that does not apply to the record, Adabas returns either response code 3 or 113,
depending on the type of read or update operation.

Read and Update Operation

If a user has an owner ID that is either blank or too long for the owner ID length
assigned to the multiclient file, Adabas returns response code 68 if this owner
tries to add a new record.

Add Record Operation

A user with a blank or missing owner ID receives response code 3 or 113 when
trying to access a multiclient file.

Blank or Missing Owner IDs

Utility Support for Multiclient Files

In general, multiclient files are transparent to Adabas utility processing. Special functions of the
ADALOD and ADAULD utilities support the migration of an application from a standard to a
multiclient environment.

The ADALOD Utility LOAD Function

Two ADALOD LOAD parameters LOWNERID and ETID support multiclient files. The parameters
work together to define owner IDs and determine whether a file is a multiclient file.

LOWNERID specifies the length of the internal owner ID values assigned to each record for mul-
ticlient files.

Valid length values are 0-8. In combination with the ETID parameter, the LOWNERID parameter
can be used to reload a standard file as a multiclient file, change the length of the owner ID for
the file, or remove the owner ID from the records of a file.

If the LOWNERID parameter is not specified, the length of the owner ID for the input file (if any)
remains the same.

107DBA Tasks

Multiclient Support

ETID assigns a new owner ID to all records being loaded into a multiclient file, and must be spe-
cified if the input file contains no owner IDs; that is, the input file was not unloaded from a mul-
ticlient source file.

The following table illustrates the effects of LOWNERID and ETID settings.

Owner ID Length in Input File:LOWNERID Parameter Setting:
20

Convert into a nonmulticlient fileKeep as nonmulticlient file0

Decrease owner ID lengthSet up multiclient file (ETID)1

Keep owner ID lengthSet up multiclient file (ETID)2

Increase owner ID lengthSet up multiclient file (ETID)3

Keep as a multiclient fileKeep as nonmulticlient file(LOWNERID not specified)

Where this table indicates (ETID) in the "Owner ID Length...0" column, the ETID parameter must
specify the user ID identifying the owner of the records being loaded. The owner ID assigned to
the records is taken from the user profile of the specified user ID. In the "Owner ID Length...2"
column the ETID parameter is optional; if ETID is omitted, the loaded records keep their original
owner IDs.

Note: If the ETID parameter is used, the ADALOD utility requires an active nucleus. The
nucleus will translate the ETID value into the internal owner ID value.

The ADALOD Utility UPDATE Function

When executing the UPDATE function, ADALOD keeps the owner ID length previously defined
for the file being updated. The owner IDs of the records being added are adjusted to the owner
ID length defined for the file. The owner IDs of the loaded records or of any new records must fit
into the existing owner ID space.

Examples:

ADALOD LOAD FILE=20,LOWNERID=2,NUMREC=0

-creates file 20 as a multiclient file. The length of the internal owner ID is two bytes, but no actual
owner ID is specified. No records are actually loaded in the file (NUMREC=0).

ADALOD LOAD FILE=20,LOWNERID=2,ETID=USER1

-creates file 20 as a multiclient file and loads all supplied records for user USER1. The length of
the internal owner ID is two bytes.

ADALOD UPDATE FILE=20,ETID=USER2

-performs a mass update to add records to file 20, a multiclient file. Loads all the new records for
USER2.

DBA Tasks108

Multiclient Support

The ADAULD Utility

The ADAULD utility unloads records from an Adabas file to a sequential output file. This output
file can then be used as input to a subsequent ADALOD operation.

If a multiclient file is unloaded, the output file contains all the unloaded records with their owner
IDs. This information can either be retained by the subsequent ADALOD operation, or be over-
written with new information by the ADALOD ETID parameter. Any differences in LOWNERID
parameter values for the unloaded and newly loaded file are automatically adjusted by ADALOD.

The ETID parameter of ADAULD can be used to restrict UNLOAD processing to only the records
owned by the specified user. If the ETID parameter is omitted, all records are unloaded. If the
SELCRIT/SELVAL parameters are specified for a multiclient file, the ETID parameter must also
be specified.

Example:

ADAULD UNLOAD FILE=20,ETID=USER1

-unloads all records owned by USER1 in physical sequence.

The ADACMP Utility

The ADACMP utility either compresses user data from a sequential input file into the Adabas in-
ternal structure, or decompresses Adabas data to a sequential user file. The COMPRESS function
makes no distinction between standard and multiclient files, processing both in exactly same way.
The DECOMPRESS function can decompress records selectively if the INFILE parameter specifies
a multiclient file and a valid ETID value is specified.

The DECOMPRESS function skips the owner ID, if present. The output of a DECOMPRESS oper-
ation on a multiclient file contains neither owner ID nor any ETID information.

If the INFILE parameter specifies a multiclient file for the DECOMPRESS function, decompression
can be limited to records for a specific user using the ETID parameter. ADACMP then reads and
decompresses records for the specified user. If the ETID parameter is not specified when decom-
pressing a multiclient file, all records in the file are decompressed.

Example:

ADACMP DECOMPRESS INFILE=20,ETID=USER1

-decompresses records which are owned by USER1 from file 20 to a sequential output file.

109DBA Tasks

Multiclient Support

110

18 Expanded Files

■ Defining Expanded Files ... 112
■ Inserting a Component File .. 114
■ Removing a Component File .. 114
■ Deleting Expanded Files ... 115
■ Inspecting an Expanded File .. 115
■ Expanded Files and the Adabas Nucleus .. 115
■ Expanded Files and Adabas Utilities .. 116

111

An expanded file is a logical file comprising one or more physical component files. Each component
file contains records numbered by logical instead of physical ISN numbers. These physical com-
ponent files must have

■ identical field definition tables (FDTs); and
■ different logical ISN ranges defined by the file's MINISN and MAXISN parameters. The ISN

ranges cannot overlap.

The component files are chained together in sequence according to their ascending ISN ranges.
The file with the lowest ISN range is called the anchor file; its file number is the number of the
whole expanded file.

An expanded file can comprise up to 128 component files; it cannot exceed 4,294,967,294 records.
An Adabas component file with 3-byte ISNs can contain a maximum of 16,777,215 records; a
component file with 4-byte ISNs can contain 4,294,967,294 records.

Note: Now that Adabas supports larger file sizes and a greater number of Adabas physical
files and databases, the need for expanded files has, in most cases, been removed.

Expanded files are supported by the Adabas

■ command that processes ISN lists, S8.
■ sort commands S2 and S9. Before using this feature, investigate how it will affect database per-

formance and impact users.
■ prefetch/multifetch functions, which are enhanced for ET/BT support during expanded file

processing.

Defining Expanded Files

Using ADALOD

Expanded files are defined at load time. Each physical component file is loaded separately using
the ADALOD LOAD function. For all but the first component file, the ANCHOR parameter must
be specified to refer to the anchor file. ADALOD LOAD then performs the following tasks:

■ Compares the FDT of the new file to the FDT of the anchor file to ensure that they are the same.
■ Checks the new ISN range (MINISN to MAXISN for the new component file) against the ISN

ranges of the anchor and all other component files to ensure that there is no duplication;
■ Checks for specification of the NOACEXTENSION parameter (Address Converter extensions

are not permitted in component files);
■ Checks that the MAXRECL parameter of the new component file is equal to that for the existing

anchor file. All component files must have the same MAXRECL value.

DBA Tasks112

Expanded Files

■ Loads the new component file, and;
■ Links the new component file into the expanded file chain.

Example:

ADALOD LOAD statements define an expanded file (only the relevant parameters are shown):

ADALOD LOAD FILE=11,NOACEXTENSION
ADALOD MINISN=1,MAXISN=16000000
ADALOD ...

ADALOD LOAD FILE=23,NOACEXTENSION
ADALOD ANCHOR=11
ADALOD MINISN=36000001,MAXISN=50000000
ADALOD ...

ADALOD LOAD FILE=17,NOACEXTENSION
ADALOD ANCHOR=11
ADALOD MINISN=20000001,MAXISN=36000000

This example loads file 11 as an expanded file comprising:

1-16,000,000File 11, ISN range:

20,000,001-36,000,000File 17, ISN range:

36,000,001-50,000,000File 23, ISN range:

Using the Online System

An expanded file can also be defined using the Adabas Online System Define File function. This
function creates a new, empty file that can be specified as an anchor or component file for an ex-
panded file. Existing files can be chained together using the Expanded File Maintenance function.

Rules for Defining Expanded Files

1. The NOACEXTENSION parameter must be set to prevent any extension of the Address Con-
verter (i.e., increase to MAXISN) for the specified file.

2. The MINISN parameter must be specified when loading a component file for an expanded file.

3. The file number for the component file can be freely chosen.

4. A single file is loaded as an expanded file when the ANCHOR and FILE parameters specify
the same file number.

5. An existing single file which is to be expanded may be referenced as the anchor file when the
second component file is loaded. ADALOD then sets NOACEXTENSION for the first file, and
makes it the anchor file.

113DBA Tasks

Expanded Files

Note: An anchor file created in this way loses its anchor status when all component files
are removed. If necessary, you can insert the file into itself to reestablish its anchor status.

6. The ISN ranges for the component files cannot overlap, but there may be gaps of unused ISNs
between file ranges.

7. The component files can be loaded in any sequence.

8. If a new component file is loaded that has an ISN range lower than the range of the current
anchor file, the newly loaded file becomes the new anchor file. The ANCHOR parameter of any
component file loaded thereafter must refer to the new anchor file.

Inserting a Component File

Component files can be inserted into an expanded file using the ADALOD LOAD function as
described in Defining Expanded Files or using Adabas Online System.

Using the online system, a new file can be created and inserted into an expanded file using the
Define File function. A file that already exists can be inserted into an expanded file using the Insert
Component File function.

Refer to the section Rules for Defining Expanded Files, elsewhere in this guide for possible effects
of adding a component file.

Removing a Component File

A component file may be both removed from the expanded file and deleted using the Adabas
Online System Delete File function. To remove a component file from the expanded file chain
without deleting the file, the Adabas Online System Remove Component File function can be used.

Refer to the section Rules for Defining Expanded Files, elsewhere in this guide for possible effects
of removing a component file.

DBA Tasks114

Expanded Files

Deleting Expanded Files

The Adabas Online System Delete File function also allows you to delete the complete expanded
file; that is, to delete the anchor and all component files. The ADADBS utility's DELETE function
can also be used to delete the complete expanded file.

Inspecting an Expanded File

In addition to the normal information about individual files, the report produced by the ADAREP
utility shows the component file list for each expanded file in the database. The expanded file in-
formation itself is also available using the Adabas Online System Display File function.

Expanded Files and the Adabas Nucleus

A user call that refers to an expanded file is automatically directed to the appropriate physical
component file by the Adabas nucleus. The user or application receives no indication that the se-
lected file is an expanded file.

If the file number in the Adabas control block specifies the component file of an expanded file, the
call is interpreted as being for the complete expanded file. Thus, user applications that accessed
an existing component file in the past need not be changed if that file is integrated into an expanded
file: the calls automatically apply to the complete expanded file. However, for convenience Software
AG recommends that calls refer to the anchor file.

If a function performed on an expanded file produces results from more than one component file,
those results are combined to produce a single result. For example, an L2 command (read physical
sequential) for an expanded file is performed on each component file in sequence, beginning with
the anchor file. Upon reaching the end-of-file for a component file, the L2 automatically continues
with the next component file. The results are accumulated sequentially from all files that were
read.

On the other hand, an L3 command (read logical sequential by descriptor) is performed as separate
parallel calls to each component file, and the results are merged into a single sequence before they
are returned to the caller.

115DBA Tasks

Expanded Files

Recommended Nucleus Changes for Expanded Files

To better accommodate parallel processing of component files for a single command, an increase
in the following ADARUN parameter values is recommended for the nucleus session:

DescriptionParameter

Length of the table of ISNs (TBI)LI

Length of the table of sequential commandsLQ

Length of the Adabas work pool areaLWP

Length of the search/sort areaLS

Maximum number of active command IDs (CIDs) allowed per userNQCID

Restrictions When Using Expanded Files

The following limitations apply to programs running on an expanded file:

■ Physical and/or soft coupling is not currently supported for expanded files.
■ Multiclient support is not provided for expanded files.
■ Once established, component files of an expanded file cannot be renumbered.
■ When Adabas Security is used for an expanded file, the following should be the same for all

component files:
■ protection profile
■ password
■ security-by-value profile
■ cipher code

Expanded Files and Adabas Utilities

Although the expanded file is transparent to the user making Adabas calls, the DBA running the
Adabas utilities must be aware of the existence of an expanded file. Adabas utility functions process
expanded files in one of two ways:

■ they process the complete expanded file; or
■ they process component files.

DBA Tasks116

Expanded Files

Functions That Process Complete Expanded Files

Utility functions that process the entire expanded file include the following ADADBS, ADARES,
and ADASAV functions:

ADADBS DELETE Function

Deletes a complete expanded file only.

ADARES REGENERATE and BACKOUT FILE Functions

Process the expanded file as a whole whenever one of the component files is specified in the file
list. All other component files must then also be specified.

ADASAV

■ RESTORE(file)Function
Processes the expanded file as a whole whenever one of the component files is specified in the
file list. All other component files must then also be specified.

■ SAVE (file)Function
Processes the expanded file as a whole whenever one of the component files is specified in the
file list. When running the SAVE (file) function while the Adabas nucleus is active, all other
component files must then also be specified.

Functions That Process Component Files

Utility functions that process component files include the following ADADBS, ADAINV, ADALOD,
ADAORD, ADAACK, ADADCK, ADAICK, ADAVAL, ADAULD, and ADASCR functions.

ADAACK, ADADCK, ADAICK, ADAVAL, ADAULD

All functions of these utilities check single component files only.

ADADBS

■ CHANGE / NEWFIELD Functions. These functions modify the field definition table (FDT) of a
single component file only. The DBA must perform the CHANGE or NEWFIELD function for
all component files in the expanded file. ADADBS prints a message indicating that the specified
file is part of an expanded file, and then completes with condition code 4.

■ RELEASE Function.Releases the index for a descriptor of a single component file. The DBA must
perform the RELEASE function for all component files in the expanded file. ADADBS prints a
message indicating that the specified file is part of an expanded file, and then completes with
condition code 4.

117DBA Tasks

Expanded Files

ADAINV

■ INVERT Function. Creates the index for a new descriptor of a single component file. The DBA
must perform the INVERT function for all component files in the expanded file. ADAINV prints
a message indicating that the specified file is part of an expanded file, and then completes with
condition code 4.

■ COUPLE Function. The ADAINV COUPLE function is not available for expanded files.

ADALOD UPDATE Function

Adds records to/deletes records from a single component file. When performing a mass update
on some or all component files, the complete list of ISNs to be deleted from all component files
can be supplied. ADALOD automatically selects only the ISN values from the specified range that
are appropriate for the component file currently being processed. The same is true when adding
new records with USERISN=YES.

When new records are being added with USERISN=NO but no free ISN is found, the loader cannot
allocate a new Address Converter extent since the ISN range cannot be increased (NOACEXTEN-
SION is active for all component files). Instead, ADALOD creates the index as though end-of-file
had been reached. The remaining records not loaded may be added later to another component
file using the SKIPREC parameter.

ADALOD does not check for unique descriptor values across component file boundaries.

ADAORD REORFILE / REORFASSO / REORDATA Functions

Each reorder the respective areas of a single component file. Since the file is not logically changed,
the functions need not be performed on all component files of an expanded file.

ADASCR (Adabas Security) Functions

Defines security profiles for individual component files only. The protection, password, security-
by-value and cipher code for each component file should be defined the same for all component
files in an expanded file.

DBA Tasks118

Expanded Files

III Database Maintenance Tasks

This part of the DBA documentation describes the tasks involved in defining, maintaining and
running an Adabas database.

This information is organized under the following headings:

Defining an Adabas Database

Database Space Management

Database Monitoring and Tuning

Error Handling and Message Buffering

Universal Encoding Support (UES)

Multiple Platform Support

Getting Started with Large Object (LB) Fields

119

120

19 Defining an Adabas Database

■ Step 1 : Estimate the Size of the Database ... 122
■ Step 2 : Allocate Space ... 140
■ Step 3 : Format the Space ... 142
■ Step 4 : Define Database Parameters .. 143

121

This chapter describes the procedure for defining an Adabas database. It is important for the DBA
to understand the information provided for each step before attempting to define a new database.

Defining a new database involves the steps described in this chapter.

After you have completed these steps successfully, you can use the ADACMP and ADALOD
utilities to load user files into the database.

Step 1 : Estimate the Size of the Database

■ Components Required by the Nucleus
■ Other Components
■ General Space Requirements
■ General Procedure for Estimating Space
■ Estimation Formulas
■ Normal Index (NI)
■ Upper Index (UI)
■ Address Converter (AC)
■ Data Storage
■ How Adabas Allocates Work Space
■ Work Part 1: Data Protection Information
■ Work Part 2: Intermediate Search Results
■ Work Part 3: ISN Lists from Search Commands
■ Work Part 4: Data Related to Distributed Transaction Processing
■ Sort

Components Required by the Nucleus

The Adabas nucleus requires three database components: Data Storage, an Associator, and a Work
area.

Data Storage

The Data Storage component contains the compressed data records of each file in the database.

DBA Tasks122

Defining an Adabas Database

Associator

The Associator contains elements for each file in the database and for the database as a whole.

For each file in the database, the Associator includes an inverted list, an address converter, and a
field definition table (FDT):

■ The inverted list, which resolves Adabas search commands and reads records in logical sequence,
comprises the normal index (NI) and as many as 14 upper indexes (UI). All of the values for
each descriptor in the file are contained in the NI along with a count of the records that contain
each value and a list of the ISNs of those records. To increase search efficiency, UI levels are
automatically created by Adabas as required, each level to manage the next lower level index.
The first level UI, like the NI it manages, contains entries for only one descriptor in each index
block. All other UI levels contain entries for all descriptors in each index block. Upper Indexes
require a minimal amount of space (two blocks is the minimum).

■ The address converter maps the logical identifier of a record (ISN) to the relative Adabas block
number (RABN) of the Data Storage block where the record is stored. It comprises a list of
RABNs in ISN order; for example, the fifteenth entry in the address converter contains the RABN
for ISN 15.

■ The field definition table (FDT) defines the logical contents of an Adabas file. It contains the name,
level, length, format, and specified options for each field in the file.

For the database as a whole, the Associator includes storage management tables and coupling
lists:

■ Storage management tables list the Associator and Data Storage blocks that are available for alloc-
ation, along with the amount of unused space in each Data Storage block.

■ Coupling lists exist for physically coupled files only are used to resolve search commands in
which descriptors from more than one file are used.

Work

The Work area stores information in four parts:

■ Part 1. Stores data protection information required by the routines for autorestart and autoback-
out.

■ Part 2. Stores intermediate results (ISN lists) of search commands.
■ Part 3. Stores final results (ISN lists) of search commands.
■ Part 4. Stores data related to distributed transaction processing.

Note: If you have Adabas Transaction Manager Version 7.5 or later installed, Work part
4 of DDWORKR1 is no longer supported. Instead, a second Work data set, DDWORKR4
is required. DDWORKR4 is a container data set used for the same purpose as Work part
4 of DDWORKR1, but it can be used in parallel by all members in a cluster. The

123DBA Tasks

Defining an Adabas Database

DDWORKR4 data set should be allocated and formatted in the normal way, using a block
size greater than or equal to DDWORKR1. It should be at least as large as the cluster’s
LP parameter of the database or cluster.

Other Components

■ Sort and Temp Areas
■ Logs

Sort and Temp Areas

The Adabas utilities ADAINV, ADALOD, and ADAVAL require two additional data sets, SORT
and TEMP, for sorting and intermediate storage of data.

The sizes of TEMP and SORT vary according to the utility function to be executed. These data sets
can be allocated during the job and then released, or permanent data sets can be allocated and
reused.

Logs

Adabas has the following optional logs:

■ The command log (CLOG) records information from the control block of each Adabas command
that is issued. The CLOG provides an audit trail and can be used for debugging and for monit-
oring usage of resources. Single, dual, or multiple (2-8) data sets can be used (multiple data sets
are recommended).

■ The protection log (PLOG) records before-images and after-images of records and other elements
when changes are made to the database. It is used to recover the database (up to the last ET)
after restart. Single, dual, or multiple (2-8) data sets can be used (multiple data sets are recom-
mended).

■ The recovery log (RLOG) records additional information that the Adabas Recovery Aid uses to
construct a recovery job stream.

Note: Each CLOG, PLOG, and RLOG data set is limited to 16,777,215 (x'FFFFFF')
blocks/RABNs.

DBA Tasks124

Defining an Adabas Database

General Space Requirements

The space requirements for the Associator (NI, UI, and AC) and Data Storage are calculated
automatically for each file by the ADALOD utility and the ADACMP utility, respectively. If you
want to allocate a specific amount of space to a file or estimate the space needed for a file without
actually executing these utilities, you can use the formulas provided in this chapter.

If the number and size of the files that will eventually be loaded into the database are not known
at the time that the database is established, it is not necessary to allocate a large amount of extra
space to the Associator and/or Data Storage, since the space may be increased subsequently by
using the ADD or INCREASE function of the ADADBS utility.

The initial allocation for Associator and Data Storage should, however, allow for the loading of
all currently planned files in addition to a reasonable amount of database expansion (adding new
files or updating existing files).

When estimating the Associator space, the following requirements for the database as a whole
must be added to the estimates calculated for each file within the database (normal index, upper
indexes, and address converter):

■ The first 30 Associator blocks are used by Adabas for storing internal control information. Note
that the physical block sizes for Associator, Data Storage, and Work vary from one Adabas
component to another and according to the device type on which each component is located.

■ Associator blocks equaling five times the value specified by the MAXFILES parameter are re-
served by Adabas for file control information. The MAXFILES parameter is set when running
the ADADEF utility.

General Procedure for Estimating Space

1. Estimate the following requirements for each file; then add the estimates together for an estimate
for the whole database:
■ Associator (normal index, upper indexes, address converter)
■ Data Storage

2. Estimate the following requirements for the database as a whole:
■ Associator (space reserved by Adabas)

■ First 30 blocks for internal control information;
■ (MAXFILES * 5) blocks for file control information (the ADADEF parameter MAXFILES

specifies the maximum number of files that can be loaded into the database);
■ Work area; sort area; temp area; logs

125DBA Tasks

Defining an Adabas Database

Estimation Formulas

The following sections provide formulas for estimating the space that should be allocated to each
component.

■ Associator, in terms of
■ normal index (NI)
■ upper index (UI)
■ address converter (AC)

■ Data Storage
■ Work, in terms of

■ part 1 (data protection information)
■ part 2 (intermediate results of search commands)
■ part 3 (ISN lists from search commands)
■ part 4 (data related to two-phase commit processing)

■ sort space

Rules of Precedence in the Formulas

The formulas follow the normal rules of precedence; that is, expressions are evaluated in the fol-
lowing order:

1. Elements in parentheses;

2. Multiplication and division operations;

3. Addition and subtraction operations;

4. Left to right (when elements have the same precedence level, the one on the left is evaluated
first).

Normal Index (NI)

Use the following formula to estimate the normal index space required for each descriptor in the
file:

NIRBYTES = ISNSIZE * AVUQVAL * RECORDS + DESCVALS * (AVLENG + 2)

where

DBA Tasks126

Defining an Adabas Database

is the space requirement for normal index, in bytes.NIRBYTES

is the length of ISNs in the file (3 or 4 bytes). The ISN length is specified by the ADALOD
parameter ISNSIZE.

ISNSIZE

is the average number of unique values for the descriptor in each record.AVUQVAL

is the number of records to be contained in the file, which is specified by the ADALOD
parameter MAXISN.

RECORDS

is the number of unique values for the descriptor in the file.DESCVALS

is the average length of the values for the descriptor.AVLENG

AVUQVAL

AVUQVAL is less than or equal to 1 unless the descriptor is a multiple-value field (MU) or part
of a periodic group (PE).

If the descriptor is defined with the NU (null suppression) option, AVUQVAL equals the average
number of values per record minus the percentage of records that contain a null value (the field
is empty). For example, if each record has one value for the descriptor and 20 per cent of the values
are null

AVUQVAL = 1 - 0.2 = 0.8

Similarly, if an MU field has an average of 10 values per record and 20% of the values are null

AVUQVAL = 10 - 2 = 8

AVLENG

If the descriptor field is not defined with the FI (fixed length) option, AVLENG equals the average
compressed length of the field, including the length byte. If the descriptor is defined with the FI
option, AVLENG equals the standard length of the field.

ISNSIZE * AVUQVAL * RECORDS

ISNSIZE * AVUQVAL * RECORDS represents the space required to store the ISNs. It is the import-
ant factor for descriptors that have many duplicate values.

127DBA Tasks

Defining an Adabas Database

DESCVALS * (AVLENG + 2)

DESCVALS * (AVLENG + 2) represents the space required to store the descriptor values. It is the
important factor for descriptors that have a large proportion of unique values.

Convert Bytes to Blocks

Use the following formula to convert bytes to blocks. Round the result up to the next block.

NIRBLOCKS = NIRBYTES / (ASSOBLKSIZE * (1 - PADFACTOR / 100))

where

is the NI space requirement, in blocks.NIRBLOCKS

is the NI space requirement, in bytes (from the NIRBYTES formula).NIRBYTES

is the ASSOR1 block length. To review a list of block sizes by device type and component,
refer to the sections entitled Device And File Considerations in the Adabas installation
documentation for the appropriate system platform (z/OS, VSE, z/VM, or BS2000).

ASSOBLKSIZE

is the ASSOR1 block padding factor, which is a percentage of the block length expressed
as a value between 1-90.

PADFACTOR

Examples

The following examples assume that ASSOR1 is stored on a 3380 device.

Example 1:

Descriptor AA has one value per record and no null values. There are 50 different values for AA
in the file. The average compressed length for the values is 3 bytes.

ISNSIZE=3
MAXISN=20000
PADFACTOR=10 (%)

NIRBYTES = 3 * 1 * 20,000 + 50 * (3 + 2)
= 60,000 + 250
= 60,250 bytes

NIRBLOCKS = 60,250 / (2004 * (1 - 0.1))
= 33.41
= 34 blocks

Example 2:

Descriptor BB has one value per record and no null values. There are 20,000 different values for
BB in the file. The average compressed length for the values is 10 bytes.

DBA Tasks128

Defining an Adabas Database

ISNSIZE=4
MAXISN=20000
PADFACTOR=10 (%)

NIRBYTES = 4 * 1 * 20,000 + 20,000 * (10 + 2)
= 80,000 + 240,000
= 320,000 bytes

NIRBLOCKS = 320,000 / (2004 * (1 - 0.1))
= 177.42
= 178 blocks

Example 3:

Descriptor CC is a null-suppressed multiple-value (MU) field with an average of 10 occurrences
and 3 null values per record. There are approximately 300 different values for CC in the file. The
average compressed length for the values is 4 bytes.

ISNSIZE=3
MAXISN=10000
PADFACTOR=5 (%)

NIRBYTES = 3 * 7 * 10,000 + 300 * (4 + 2)
= 210,000 + 1,800
= 211,800 bytes

NIRBLOCKS = 211,800 / (2004 * (1 - 0.05))
= 111.25
= 112

Example 4:

Descriptor DD is a null-suppressed field contained within a periodic group. DD contains an average
of 5 values per record; there is an average of 3 null values per record. There are 10 different values
for DD in the file. The average compressed length for the values is 5 bytes.

ISNSIZE=4
MAXISN=10000
PADFACTOR=5 (%)

NIRBYTES = 4 * 2 * 10,000 + 10 * (5 + 2)
= 80,000 + 70
= 80,070 bytes

129DBA Tasks

Defining an Adabas Database

NIRBLOCKS = 80,070 / (2004 * (1 - 0.05))
= 42.06
= 43

Upper Index (UI)

Use the following formula to estimate the UI space required for each descriptor in the file:

UIRBYTES = NIRBLOCKS * (AVDESCLEN + ISNSIZE + RABNSIZE + 1)

where

is the UI space requirement, in bytes.UIRBYTES

is the NI space requirement, in blocks (from the NIRBLOCKS formula).NIRBLOCKS

is the average compressed length of the values for the descriptor.AVDESCLEN

is the length of ISNs in the file (3 or 4 bytes). The ISN length is specified by the ADALOD
parameter ISNSIZE.

ISNSIZE

is the length of RABNs in the database (3 or 4 bytes). The RABNSIZE is specified for all files
in a database when the database is defined.

Note: RABNSIZE refers only to the length of the relative Adabas block number. It does not
refer to the block size.

RABNSIZE

Convert Bytes to Blocks

Use the following formula to convert bytes to blocks. Round the result up to the next block.

UIRBLOCKS = UIRBYTES / (ASSOBLKSIZE * (1 - PADFACTOR / 100))

where

is the UI space requirement, in blocks.UIRBLOCKS

is the UI space requirement, in bytes (from the UIRBYTES formula).UIRBYTES

is the ASSOR1 block length. To review a list of block sizes by device type and component,
refer to the sections entitled Device And File Considerations in the Adabas installation
documentation for the appropriate system platform (z/OS, VSE, z/VM, or BS2000).

ASSOBLKSIZE

is the ASSOR1 block padding factor, which is a percentage of the block length expressed
as a value between 1-90.

PADFACTOR

DBA Tasks130

Defining an Adabas Database

Example

This example assumes that the Associator is stored on a 3380 DASD; therefore, ASSOR1 has 2004
bytes per block.

The NI block requirement for this file is estimated to be 45 blocks. The average compressed length
of the values for the descriptor is 3 bytes. The database has 3-byte (24-bit) RABNs; the file has 3-
byte ISNs. The ASSOR1 block padding factor is 5 (%).

UIRBYTES = 45 * (3 + 3 + 3 + 1)
= 450

UIRBLOCKS = 450 / (2004 * (1 - 0.05))
= 450 / 1903.8
= 0.24

= 1 block(a minimum of 2 blocks can be allocated for the UI)

Address Converter (AC)

Use the following formula to estimate the address converter space required for the file. Round the
result up to the next whole block.

ACBLOCKS = (MAXISN +!) * RABNSIZE / ASSOBLKSIZE

where

is the space requirement for the address converter, in blocks.ACBLOCKS

is the MAXISN setting for the file.MAXISN

is the length of RABNs in the database (3 or 4 bytes). The RABNSIZE is specified for all
files in a database when the database is defined.

Note: RABNSIZE refers only to the length of the relative Adabas block number. It does
not refer to the block size.

RABNSIZE

is the Associator block size. To review a list of block sizes by device type and component,
refer to the sections entitled Device And File Considerations in the Adabas installation
documentation for the appropriate system platform (z/OS, VSE, z/VM, or BS2000).

ASSOBLKSIZE

131DBA Tasks

Defining an Adabas Database

Examples

The following examples assume that the Associator is stored on a 3380 DASD; ASSOR1 has 2004
bytes per block.

Example 1:

MAXISN=2000000
RABNSIZE=3

ACBLOCKS = (2,000,000 * 3) / 2004
= 6,000,000 / 2004
= 2994.01
= 2995 blocks

Example 2:

MAXISN=2000000
RABNSIZE=4

ACBLOCKS = (2,000,000 * 4) / 2004
= 8,000,000 / 2004
= 3992.02
= 3993 blocks

Data Storage

Use the following formula to estimate the space required for Data Storage. Round the result up
to the next whole block.

DATASTORAGE = MAXISN / ((DSBLKSIZE * (1 - (PADFACTOR / 100))) / AVRECLEN)

where

is the space requirement for Data Storage, in blocks.DATASTORAGE

is the MAXISN setting for the file.MAXISN

is the Data Storage block size, rounded down to the next integer. To review a list of block
sizes by device type and component, refer to the sections entitled Device And File

DSBLKSIZE

Considerations in the Adabas installation documentation for the appropriate system
platform (z/OS, VSE, z/VM, or BS2000).

is the Data Storage block padding factor, which is a percentage of the block length
expressed as a value between 1-90.

PADFACTOR

is the average compressed record length.AVRECLEN

DBA Tasks132

Defining an Adabas Database

Example

MAXISN = 1000000
Average compressed record length = 50
Model 3380 block size for DATA = 4820
Data Storage block padding factor = 5 (%)

DATASTORAGE = 1,000,000 / ((4820 * (1 - 0.05)) / 50)
= 1,000,000 / (4579 / 50)
= 1,000,000 / 91
= 10,989.01
= 10,990 blocks

How Adabas Allocates Work Space

When you allocate the Work data sets, allocate enough space for all parts. The minimum allowable
Work space is 300 blocks. Three ADARUN parameters can be used to break up the space into parts
1-4 as follows:

Note: Work part 4 or DDWORKR1 is no longer supported if you have Adabas Transaction
Manager Version 7.5 or later installed. Instead, you should use the DDWORKR4 data set.
DDWORKR4 is a container data set used for the same purpose as Work part 4, but it can
be used in parallel by all members in a cluster. The DDWORKR4 data set should be allocated
and formatted in the normal way, using a block size greater than or equal to DDWORKR1.
It should be at least as large as the cluster’s LP parameter of the database or cluster.

■ The ADARUN LP parameter specifies the size of Work part 1. The default setting is 1000 blocks;
the minimum is 200. A database with little or no updating needs 500-1000 blocks. Work part 1
begins with RABN 1; the last RABN is the value of LP.

■ The ADARUN LWKP2 parameter specifies the size of Work part 2. If LWKP2=0 (the default),
Adabas calculates the size automatically, using the formula described in Work Part 2: Interme-
diate Search Results .

Work part 2 begins in the block following the last block of Work part 1; thus, the first RABN of
part 2 is given by

1 + LP

■ The ADARUN LDTP parameter specifies the size of Work part 4 when ADARUN DTP=RM. If
LDTP=0 (the default), the length of Work part 4 is equivalent to the length of Work part 1
(ADARUN LP). If a non-zero value is specified, it must be greater than the value specified for
LP. If a smaller value is specified, Adabas changes it to equal the LP value.

Note: Work part 4 of DDWORKR1 is no longer supported if you have Adabas Transaction
Manager Version 7.5 or later installed. Instead, you should use the DDWORKR4 container
data set.

133DBA Tasks

Defining an Adabas Database

Work part 4 begins in the block following the last block of Work part 2; thus, the first RABN of
part 4 is given by

1 + LP + LWKP2

■ After allocating parts 1, 2, and possibly 4, Adabas allocates the remaining blocks to Work part
3. It is important that you allocate enough space to the DDWORKR1 data set to leave at least 50
blocks for part 3.

Work Part 1: Data Protection Information

The data protection area for all transactions running in parallel must fit into 1/4 of the Work part
1 (that is, LP) area. Following are general guidelines for determining the proper size for Work part
1:

1. The total Work part 1 size should be four times the estimated size required for a single average
transaction in bytes times the maximum number of transactions that run in parallel. This value
is then divided by the Work block size (in bytes) minus 200 to convert bytes to blocks.

2. If some transactions are very long, then those transactions alone plus all short transactions ex-
ecuted in parallel should be used to determine the size of a single average transaction.

3. The size of a single average transaction is determined by estimating the average number of
updates (modifications, additions, and deletions) per transaction and multiplying that number
by the estimated bytes required per update. To this is added space for ET data and for the ET
record in bytes.

4. The size required per update is determined by the average compressed record length in bytes
times 4 (before image, after image, and DVT space for each) plus 100 bytes for each protection
record header (that is, 100 times 4).

A formula that expresses these guidelines is

WK1= (4 * TASIZE * TAP) / (BLKSIZE - 200)

where

is size of Work part 1 in blocksWK1

is the size of a single average transaction in bytesTASIZE

is the maximum number of transactions actually executed in parallelTAP

is the Work block size in bytesBLKSIZE

TASIZE= (((4 * AVCRL) + 400) * UPDTA) + ETDATA + 100

where

DBA Tasks134

Defining an Adabas Database

is the average compressed record length in bytesAVCRL

is the average number of updates per transactionUPDTA

is the average length of ET data in bytesETDATA

Example

If AVCRL = 300 bytes, UPDTA = 4, and ETDATA = 200 bytes, then

TASIZE= (((4 * 300) + 400) * 4)+ 200 + 100 = 6700 bytes

If TAP = 100 and BLKSIZE = 5492, then

WK1 = (4 * 6700 * 100) / (5492 - 200) = 506.46 blocks

Work Part 2: Intermediate Search Results

Use the following formula to estimate the space required for the Work part 2 area. Round the
result up to the next whole block.

WORK2 = 22 + 2 * ((4 * RECORDS) / (BLKSIZE - 16))

where

is the Work part 2 space requirement, in blocks.WORK2

RECORDS is the number of records in the file with the most records. This number equals

TOPISN - MINISN + 1

where:

is the highest ISN currently used in the file.TOPISN

is the lowest ISN used in the file.MINISN

The MINISN value is specified with the ADACMP/ADALOD parameter MINISN; 1 is the
default. You can use the ADAREP utility to display the TOPISN and MINISN values for the
files in a database.

is the block size of the device where the Work data set is stored. To review a list of block sizes
by device type and component, refer to the sections entitled Device And File Considerations in

BLKSIZE

the Adabas installation documentation for the appropriate system platform (z/OS, VSE, z/VM,
or BS2000).

Note: An Adabas internal table requires one byte of storage for each Work part 2 block.

135DBA Tasks

Defining an Adabas Database

Example

The number of records in the largest file in the database is 500,000. The Work data set is stored on
a 3380 device.

WORK2 = 22 + 2 * ((4 * 500,000) / (5492 - 16))
= 752.46
= 753 blocks

Work Part 3: ISN Lists from Search Commands

Adabas allocates to Work part 3 (resultant ISN lists) the Work space remaining after the allocation
of the part 1 (data protection information) and part 2 (intermediate results) areas.

The minimum requirement for this area is 50 blocks.

If insufficient space is provided for this area, Adabas may be unable to execute additional search
commands until the space currently occupied by ISN lists has been released. Consider the following
factors when estimating the space needed for the Work part 3 area:

■ The number of concurrent search commands to be processed (each ISN list is stored in a separate
block), and the expected size of the resulting ISN lists (each ISN is stored as 4 bytes, regardless
of the ISNSIZE specified for the file);

■ The number of saved ISN lists resulting from previous search commands with the SAVE ISN
LIST option which will be held concurrently;

■ The amount of memory which will be required by Adabas as a result (each block allocated to
this area requires 4 bytes of memory).

Example

A maximum of 100 search commands with an average of 25 resulting ISNs per command are to
be processed concurrently during the session.

Adabas will need 100 blocks in the Work part 3 area.

Work Part 4: Data Related to Distributed Transaction Processing

Note: Work part 4 of DDWORKR1 is no longer supported if you have Adabas Transaction
Manager Version 7.5 or later installed. Instead, you should use the DDWORKR4 data set.
DDWORKR4 is a container data set used for the same purpose as Work part 4, but it can
be used in parallel by all members in a cluster. The DDWORKR4 data set should be allocated
and formatted in the normal way, using a block size greater than or equal to DDWORKR1.
It should be at least as large as the cluster’s LP parameter of the database or cluster.

Work part 4 maintains information about some of the global transactions involved in distributed
processing. For example, during phase one of the commit process, a global transaction's protection

DBA Tasks136

Defining an Adabas Database

data may be copied from Work part 1 to Work part 4 if it is no longer possible to store the inform-
ation in Work part 1.

If an overflow of Work part 4 is pending, the nucleus can force a transaction termination. This
clears Work part 4 except for transaction IDs (XIDs) and local transaction status information.

The required size of Work part 4 depends on the applications running against the database and
on the system load. If you have Adabas Transaction Manager Version 7.4 or earlier installed, a
safe size of LP/4 is a good value to start with. If you have Adabas Transaction Manager 7.5 or later
installed, a minimum size of 8 blocks must be specified, with the maximum number of blocks being
the size of the DDWORK4 data set divided by 8.

Because the information maintained in Work part 4 cannot currently be moved to a different area,
you can alter the size of Work part 4 between sessions only as follows:

■ you can decrease the size of Work part 4 if it was not used at all in the previous session.
■ you can increase the size of Work part 4 if it was used in the previous session.

Sort

The following formulas estimate the sort data set space used for sorting all values of a single
descriptor. Multiple descriptors are sorted successively: all values are sorted for the first descriptor,
then all values for the second descriptor, and so on. Therefore, estimate the space for the largest
possible descriptor sort; that will be enough for all descriptors.

Use the following formula to estimate the space required for the sort area:

DESCSPACE = (AVDESCLEN + (1 + ISNSIZE)) * NUMRECS * AVPEOCCUR * AVMVOCCUR

where

is the total descriptor space required, in bytes.DESCSPACE

is the average compressed descriptor length, in bytes.AVDESCLEN

is the size of the ISN being used (either 3 or 4).ISNSIZE

is the number of records.NUMRECS

is the average number of periodic group occurrences, if the descriptor is in a periodic
group. Otherwise, set this value to 1.

AVPEOCCUR

is the average number of multiple-value field occurrences, if the descriptor is a
multiple-value field. Otherwise, set this value to 1.

AVMVOCCUR

137DBA Tasks

Defining an Adabas Database

Work Pool Size

Use the following formula to estimate the space required for the work pool:

LWPAVAIL = LWPSIZE - 1216 - (32 * SORTDEVTRKS) - SORTDEVBSIZ

where

is the available part of the work pool space, in bytes.LWPAVAIL

is the total work pool size, in bytes (the utility's LWP parameter value).LWPSIZE

is the number of sort device tracks per cylinder. To review a list of block sizes by device
type and component, refer to the sections entitled Device And File Considerations in the

SORTDEVTRKS

Adabas installation documentation for the appropriate system platform (z/OS, VSE, z/VM,
or BS2000).

is the sort device block size, in bytes.SORTDEVBSIZ

Sorted Partial Sequences

To determine the space required for sorted partial sequences, use one of the following calculations.
The one to use depends on the AVDESCLEN value (average descriptor length) used to calculate
the DESCSPACE value (total descriptor space required).

■ If AVDESCLEN is less than 12

LENGSEQ = (LWPAVAIL * (AVDESCLEN + (1 + ISNSIZE))) / 2

where

is the length of sorted partial sequences.LENGSEQ

is the available Work pool space.LWPAVAIL

is the average compressed descriptor length, in bytes.AVDESCLEN

is the size of the ISN being used (either 3 or 4).ISNSIZE

■ If AVDESCLEN is equal to or greater than 12

LENGSEQ = (LWPAVAIL * 2) / 3

where

DBA Tasks138

Defining an Adabas Database

is the length of sorted partial sequences.LENGSEQ

is the available Work pool space.LWPAVAIL

Device Surfaces

Use the following formula to calculate the number of device surfaces rounded up to the next integer:

SURFACES = (DESCSPACE / LENGSEQ) / SORTDEVTRK

where

is the number of surfaces required for sort space, rounded up to the next integer.SURFACES

is the total descriptor space required, in bytes.DESCSPACE

is the length of sorted partial sequences.LENGSEQ

is the number of sort device tracks per cylinder. To review a list of block sizes by device
type and component, refer to the sections entitled Device And File Considerations in the

SORTDEVTRKS

Adabas installation documentation for the appropriate system platform (z/OS, VSE, z/VM,
or BS2000).

Estimated Sort Size

Using the intermediate values calculated for LENGSEQ and SURFACES, compute the estimated
sort size as follows:

SORTSIZE = (SURFACES * SORTDEVTRKS * LENGSEQ * 2) / (SORTDEVBSIZ - 4)

where

is the estimated sort area size, in blocks. This value should be rounded up to the next full
cylinder.

SORTSIZE

is the number of surfaces required for sort space, calculated earlier and rounded up.SURFACES

is the number of sort device tracks per cylinder. To review a list of block sizes by device
type and component, refer to the sections entitled Device And File Considerations in the

SORTDEVTRKS

Adabas installation documentation for the appropriate system platform (z/OS, VSE, z/VM,
or BS2000).

is the length of sorted partial sequences.LENGSEQ

is the sort device block size, in bytes.SORTDEVBSIZ

139DBA Tasks

Defining an Adabas Database

Number of Descriptors Sorted

Use the following formula to estimate the number of descriptors that can be sorted in the SORTSIZE
space calculated in the previous formula (assuming the same descriptor definition that was used
when calculating DESCSPACE):

DESCOUNT = SURFACES * SORTDEVTRKS * LENGSEQ / (AVDESCLEN + (1 + ISNSIZE))

where

is the number of descriptors defined in the earlier DESCSPACE calculation that can be
held in the SORTSIZE space calculated above.

DESCOUNT

is the number of surfaces required for sort space, calculated earlier and rounded up.SURFACES

is the number of sort device tracks per cylinder. To review a list of block sizes by device
type and component, refer to the sections entitled Device And File Considerations in the

SORTDEVTRKS

Adabas installation documentation for the appropriate system platform (z/OS, VSE, z/VM,
or BS2000).

is the length of sorted partial sequences.LENGSEQ

is the average compressed descriptor length, in bytes.AVDESCLEN

is the size of the ISN being used (either 3 or 4).ISNSIZE

Step 2 : Allocate Space

1. Use standard operating-system procedures to allocate data sets for the following Adabas com-
ponents:
■ Required by the Adabas nucleus:

■ Associator (ASSO)
■ Data Storage (DATA)
■ Work area (WORK1)
■ Work area (WORK4), if Adabas Transaction Manager 7.5 or later is installed.

■ Required by some Adabas utilities:
■ sort area (SORT)
■ temp area (TEMP)

■ Optional (but recommended) logs:
■ dual or multiple command log (CLOG)
■ dual or multiple protection log (PLOG)
■ recovery log (RLOG)

DBA Tasks140

Defining an Adabas Database

Normally, ASSO, DATA, and WORK are each allocated as a single operating system data
set. However, you can allocate the Associator and Data Storage on up to 99 separate data sets
each; the data sets can be allocated on the same or different device types. Note that your ac-
tual real maximum number of physical extents may be less than 99 because the maximum
number you can define is derived from the block size of the first Associator data set
(DDASSOR1).

2. To minimize contention and distribute I/O activity more evenly across hardware channels,
place the ASSO, DATA, WORK, PLOG, and RLOG data sets on different physical volumes. If
only two volumes are available, place ASSO on one volume and DATA and WORK data sets
on the second.

The WORK and PLOG data sets should be on different volumes, since a PLOG I/O operation
is always followed by a WORK I/O operation.

The RLOG data set should always be placed on a separate device of the same type.

Disk access time may be considerably reduced by separating TEMP from DATA, and SORT
from ASSO. When loading files containing 100,000 records or more, splitting SORT across two
volumes reduces disk arm movement.

3. Specify the disk space allocation in the job control (JCL/JCS or VM CONTROL minidisk) of the
format utility (ADAFRM). See the Adabas Utilities documentation for specific information and
job examples.

■ Examples
■ Performance Note

Examples

Example 1 : Database Allocation Using Two Volumes

Volume 2Volume 1

DATAASSO

WORKTEMP

SORTPLOG1

PLOG2

141DBA Tasks

Defining an Adabas Database

Example 2 : Database Allocation Using Three Volumes

Volume 3Volume 2Volume 1

WORKDATAASSO

TEMPSORTPLOG1

PLOG2

Example 3 : Database Allocation When Loading a Large File

Volume 5Volume 4Volume 3Volume 2Volume 1

SORT (2nd half)DATADATADATAASSO

WORKSORT (1st Half)PLOG2PLOG1

TEMP

Performance Note

Software AG does not recommend using hardware compression (IDRC) for protection log files.
The ADARES utility BACKOUT function will run at least twice as long under z/OS when processing
compressed data. Also, the BACKOUT function is not supported for compressed data on VSE or
z/VM systems.

Step 3 : Format the Space

Before loading the first file into the database, use the ADAFRM utility to format the ASSO, DATA,
and WORK data sets. Refer to the Adabas Utilities documentation for information about the
ADAFRM utility.

Format TEMP and SORT before using any Adabas utility that requires them. You can allocate and
format temporary data sets and delete them after executing the utility, or allocate and format
permanent data sets for repeated use.

Note: When using the Recovery Aid (including the RLOG), you must catalog all temporary
data sets. When running with the Recovery Aid, the general rule is to catalog temporary
data sets in jobs that require the Associator data sets.

Format the CLOG, PLOG, and RLOG data sets before starting the first session in which the logging
is to be performed.

DBA Tasks142

Defining an Adabas Database

Step 4 : Define Database Parameters

Once all database components have been physically allocated and formatted, use the ADADEF
utility to define database parameters such as database identification, maximum number of files,
system file assignment, and so on.

The sizes of the ASSO, DATA, and WORK data sets must be defined with ADADEF DEFINE
parameters. Note that defining the sizes to Adabas is different from allocating the space; the data
sets must be allocated and formatted before you can define them to Adabas. The sizes of the other
data sets are defined to Adabas as follows:

■ TEMP and SORT: when you execute the utility that uses them;
■ CLOG and PLOG: at the start of a nucleus session, with ADARUN parameters;
■ RLOG: when logging begins, using the PREPARE function of the ADARAI utility.

Note: Each log data set (CLOG, PLOG, or RLOG) is limited to 16,777,215 (x'FFFFFF')
blocks/RABNs.

143DBA Tasks

Defining an Adabas Database

144

20 Database Space Management

■ Adabas Physical Extents ... 146
■ Relative Adabas Block Number (RABN) ... 146
■ Adabas Logical Extents .. 148
■ Adabas Space Allocation and Deallocation ... 149
■ Using the Database Status Report to Control Space Use ... 157
■ Potential Space Use Problems and Recommended Actions ... 158

145

This chapter provides the DBA with all pertinent information related to database space manage-
ment. Information is provided about

■ Adabas physical and logical extents;
■ Adabas relative block number (RABN);
■ the role of the Adabas nucleus and utilities in allocating/deallocating space;
■ using the database status report to monitor database space usage;
■ potential space utilization problems and recommended action.

Adabas Physical Extents

An Adabas physical extent (database container) is a collection of physical blocks assigned to a
given database component (Associator, Data Storage, Work) during the definition of the database
(see the ADADEF utility, ASSOSIZE, DATASIZE and WORKSIZE parameters).

The space for a physical extent is allocated using the standard allocation procedures of the operating
system in use.

An Adabas physical extent may be allocated within a single operating system extent which consists
of a primary extent only, or may be allocated as a primary extent together with one or more sec-
ondary extents. The secondary extents need not be contiguous to the primary extent or to each
other.

An Adabas physical extent may be contained on a single physical volume or may extend across
multiple volumes. The Associator and Data Storage components may each contain up to about 99
Adabas physical extents. However, your actual real maximum could be less because the extent
descriptions of all Associator, Data Storage, and Data Storage Space Table (DSST) extents must fit
into the general control blocks (GCBs). For example, on a standard 3390 device type, there could
be more than 75 Associator, Data Storage, and DSST extents each (or there could be more of one
extent type if there are less for another).

Relative Adabas Block Number (RABN)

Adabas information is stored in space allocated in blocks. A block's size depends on:

■ the physical device on which the block is located; and
■ the Adabas component to which the block is assigned.

For example, the default device type used by Adabas is the IBM 3380 disk. This device is assumed
in many utility and operating parameters as the device type unless another is specified.

DBA Tasks146

Database Space Management

When 3380 space is allocated for Adabas, it must be designated as Associator (ASSO), Data Storage
(DATA), the Work area (WORK), logging area (PLOG, CLOG, RLOG), sort area, or temp area. A
3380 block allocated to ASSO contains 2004 bytes, but a 3380 block allocated to DATA contains
4820 bytes. Block sizes are predefined for each device type and Adabas component. To review a
list of block sizes by device type and component, refer to the sections entitled Device And File
Considerations in the Adabas installation documentation for the appropriate system platform (z/OS,
VSE, z/VM, or BS2000).

Adabas block sizes are not fixed by hardware; however, they are referred to as physical blocks to
coincide with the level of description used for physical block (FBA) devices. Software AG tries to
maintain consistent block definitions, by device type, from release to release. However, in some
cases the block size for a component type may change to accommodate expanded Adabas facilities.
Thus, a specific Adabas component (PLOG, ASSO, etc.) may need to be reformatted before you
can run a new Adabas release.

Adabas identifies and addresses each physical block within a database component (Associator,
Data Storage, Work) by its relative Adabas block number (RABN), which indicates the block's position
relative to the beginning of the component. RABNs are assigned in ascending sequence within
each database component, starting with "1". If multiple physical extents are used, the RABN as-
signment continues across the physical extents.

The first track of the first physical extent of the Associator, Data Storage and Work components
is not used. The first track of the second and each subsequent physical extent as well as all extents
of TEMP, SORT, CLOG, and PLOG are used.

The number of RABNs that can be assigned to ASSO and DATA depends on the RABNSIZE
parameter, which is specified when the database is defined. RABNSIZE specifies the length of re-
lative Adabas block numbers in the database (not the length of the block itself).

■ If RABNSIZE=3 (block number is 24 bits or three bytes), the maximum number of RABNs is
16,777,215.

■ If RABNSIZE=4 (block number is 31 bits or four bytes), the maximum number of RABNs is
2,147,483,646.

The number of Adabas blocks that can be stored on a given physical unit (track/cylinder/volume)
of external storage is different for each database component and for each device type.

For example, using the z/OS information provided in SupportedDevice Types, inAdabas z/OS Install-
ation GuideS, the number of blocks that can be stored on a given z/OS volume may be calculated
as shown in the following examples. In addition, the RABN ranges stored on each VOLSER can
easily be determined using the Adabas Online System report function.

147DBA Tasks

Database Space Management

Example 1: Associator database component, model 3380 (880 cylinders are assumed to be
available on the volume)

number of ASSO blocks = blocks/track * tracks/cylinder * number of cylinders
= 19 * 15 * 880 = 250,800 Associator blocks

Nineteen (19) blocks must be subtracted for the first track of the first Associator physical extent;
therefore, the first Associator volume can contain a maximum of 250,781 blocks.

Example 2: Data Storage database component, model 3370 (748 cylinders are assumed to be
available on the volume)

number of DATA blocks = blocks/track * tracks/cylinder * number of cylinders
= 10 * 12 * 748 = 89,760 Data Storage blocks

Ten (10) blocks must be subtracted for the first track of the first Data Storage physical extent;
therefore, the first Data Storage volume can contain a maximum of 89,750 blocks.

Adabas Logical Extents

An Adabas logical file extent is a group of consecutive RABNs allocated by the Adabas nucleus
or an Adabas utility. For each file loaded into the database, a minimum of one of each of the fol-
lowing types of Adabas logical extents is allocated to the file:

Allocated from the physical extent . . .Logical extent

Data StorageData Storage

Associatoraddress converter

Associatornormal index

Associatorupper index

Additional logical extents are allocated by the Adabas nucleus or an Adabas utility when additional
space is needed as a result of file maintenance.

A maximum of two address converters may be allocated for any file, one for the file itself and one
for any spanned records in the file. If spanned records are not used, only one address converter
is allocated.

The total number of logical file extents that can be defined is limited only in that the extent inform-
ation of all address converters, Data Storage, normal index, and upper index extents for the file
must fit into the file control block (FCB). (The extent information is stored in a variable section of
the FCB.) For example, on a standard 3390 device type, a file could have more than 40 extents of
each type (or there could be more of one type if there are less for another).

DBA Tasks148

Database Space Management

When the Adabas nucleus starts up, the FCBs are checked. If there is insufficient FCB space for
four further extents, the Adabas nucleus prints messags suggesting that the files should be re-
ordered. In addition, if the last file extent of each type has only five or less free ISNs or blocks left,
the nucleus locks the file for utility use only. Normal users trying to access the file will then get
response code 17 or 48.

The "Contents of the Database" section of an ADAREP utility report flags files that may have in-
sufficient FCB space for ten further extents. In the "File Information" section of the report, ADAREP
prints a conservative estimate for how many further file extents can possibly be built for each file.

Adabas Space Allocation and Deallocation

This section provides an overview of Adabas space allocation and deallocation procedures. A full
understanding of these procedures will help ensure correct and efficient database space manage-
ment.

Free Space Table

All space available for allocation is stored in the free space table (FST). This table contains all RABN
extents that are currently available for an allocation to any file.

Adabas Nucleus Space Allocation Rules

When processing an add or update record command, the Adabas nucleus may need to allocate
an additional extent to any of the following file components:

■ address converter
■ normal index
■ upper index
■ Data Storage

This section describes the rules used for the allocation.

Address Converter (AC)

The size of the address converter is initially defined by the MAXISN parameter in the ADALOD
utility. The actual highest expected ISN is slightly higher because the address converter is stored
in entire blocks. For example:

■ If RABNSIZE=3, MAXISN=5000 on a model 3380 with 668 entries per block (2004/3) results in
8 blocks. The highest ISN expected (before further expansion) is therefore 5343 (668 * 8 - 1).

■ If RABNSIZE=4, MAXISN=5000 on a model 3380 with 501 entries per block (2004/4) results in
10 blocks. The highest ISN expected is therefore 5009 (501 * 10 - 1).

149DBA Tasks

Database Space Management

If the Adabas nucleus requires an additional extent for a file when executing N1 commands, the
allocation routine attempts to locate a new extent of 25% of the current size:

■ If an unused extent between 25% and 28% can be found using the free space table (FST), that
space is taken immediately;

■ If only longer extents are available in the FST, a new extent of exactly 25% is taken;
■ If only smaller extents are available in the FST, the longest available extent is taken;
■ If an additional AC extent is required, and the maximum has already been assigned, Adabas

will return an appropriate response code to the calling program;
■ If a file has the attribute "one AC extent only" (e.g., if the file is an expanded file), an attempt to

allocate a second AC extent will cause a response code.

Normal Index (NI), Upper Index (UI), Data Storage (DS)

For the purpose of allocating a new extent, the following formulas are used:

where

number of blocks currently allocated.B

highest ISN expected.E

highest ISN currently allocated.U

If an extent found in the FST is contiguous with the end of a previous extent, it is allocated for a
maximum of Z blocks.

If no such extent can be found in the FST

■ but an extent between Z and 9 * Z/8 is found, it is allocated.
■ but an extent with more than 9 * Z/8 blocks is found, then a new extent is allocated with exactly

Z blocks.
■ the longest extent in the FST is allocated as the new extent.

Additionally, if the MAXNI, MAXUI, or MAXDS parameter is specified for the current file, the
nucleus allocates no more than the specified maximum number of blocks for the NI, UI, or DS,
respectively.

DBA Tasks150

Database Space Management

Space Allocation with the ADADBS Utility

ADD/INCREASE Associator, Data Storage
If the physical extent for the Associator or Data Storage has been exhausted, the ADD or IN-
CREASE function (using Adabas Online System or the ADADBS utility) may be used to provide
additional physical space.

The ADD function requires the allocation of an additional data set to the Associator or Data
Storage. The new data set may be located on the same or a different device type than those
currently in use. Both the Associator and Data Storage may consist of no more than 99 data
sets each. However, your actual real maximum will be less because the maximum number of
physical extents that you can define is derived from the block size of the first Associator data
set (DDASSOR1). For example, on a standard 3390 device type, there could be more than 75
Associator, Data Storage, and DSST extents each (or there could be more of one extent type if
there are less for another).

The INCREASE function results in the physical extension of an existingdata set. The new space
must, however, first be formatted using the ADAFRM utility. There is no restriction on the
number of times the INCREASE function may be used.

Following an ADD function, the new data set must be formatted using the ADAFRM utility
before it can be used, and the appropriate changes must be made to all Adabas job control as
described in the Adabas Operations documentation.

After increasing Data Storage, it may be necessary to run the REORASSO function of the
ADAORD utility to reorder the Data Storage space table (DSST) to a single extent to allow
additional increases in Data Storage.

To permit formatting or reordering, the nucleus session terminates automatically following
an ADADBS ADD or INCREASE operation.

ALLOCATE Function
The ALLOCATE function (Adabas Online System or ADADBS utility) may be used to allocate
an extent of a specific size for any of the following file components:
■ Data Storage
■ address converter
■ normal index
■ upper index

It is also possible to specify where the extent is to be allocated by specifying a starting RABN.

Using this function, the DBA may, based on knowledge of the projected size of a file, allocate
extents of a specific size, rather than having Adabas perform the assignment. This may avoid
having Adabas allocate an extent which is too small or too large (see ADALOD utility).
MAXNI/MAXUI and MAXDS values in effect for the accessed file are not checked.

151DBA Tasks

Database Space Management

DEALLOCATE Function
The DEALLOCATE function (Adabas Online System or ADADBS utility) may be used to
deallocate an extent allocated for any of the following file components:
■ Data Storage
■ address converter
■ normal index
■ upper index

It is also possible to specify where deallocation is to begin by specifying a starting RABN. The
deallocated space is returned to the free space table (FST).

DELETE Function
The DELETE function (Adabas Online System or ADADBS utility) causes an existing file to
be deleted from the database. All space which was assigned to the file is returned to the free
space table and is available for reuse. DELETE can delete complete expanded files only.

RECOVER Function
The RECOVER function (Adabas Online System or ADADBS utility) may be used to recover
space which was allocated during an execution of the ADAINV or ADALOD utility which
terminated abnormally. The recovered space is returned to the free space table and is available
for reuse.

REFRESH Function
The REFRESH function (Adabas Online System or ADADBS utility) results in the setting of a
file status to 0 records loaded and 1 extent allocated to each file component. Any additional
extents other than the first extent are returned to the free space table.

RELEASE and UNCOUPLE Functions
The RELEASE and UNCOUPLE functions (Adabas Online System or ADADBS utility) results
in the deletion of an inverted list or physical coupling lists. The space used for the list can be
recovered only by using ADAORD. When releasing a descriptor for an expanded file, each
component file must be released individually. ADADBS displays a message whenever a
descriptor of an expanded file is being released.

Space Allocation with the ADAINV Utility

COUPLE/INVERT Functions

The COUPLE and INVERT functions (Adabas Online System or ADAINV utility) may result in
the assignment of additional blocks for the NISIZE file component (but not DSSIZE or MAXISN).
This occurs if the available space becomes full during processing of the input data.

In such a case, if there are any index blocks freed during deletion by the nucleus, these blocks are
reused. Then, if available, a range of blocks in the free space table whose size is within the range
M1 through M2 will be taken.

DBA Tasks152

Database Space Management

M1 and M2 are computed as follows:

M2 = M1 + M1/8
M1 = MAX (A2, NIB/4 + KZ)

where

zap-able value (default = 10)KZ

number of NI blocks in useNIB

and

A2 = MIN (A1, NIB * 2)
A1 = IUN * NIB/IUS

where

number of unused ISNsIUN

number of used ISNsIUS

When inverting a descriptor for an expanded file, each component file must be individually inver-
ted. ADAINV displays a message whenever a descriptor of an expanded file is being inverted.

Space Allocation with the ADALOD Utility

LOAD Function

The LOAD function of the ADALOD utility is used to load a file into a database.

DSSIZE Parameter

The number of blocks or cylinders specified with the DSSIZE parameter is allocated and assigned
to the first DS extent at the beginning of ADALOD execution.

The DSRABN or DSDEV parameters may be used to force the allocation to a specific RABN or
device.

If during processing of the input data, this first allocated extent becomes full, a search is made for
a range of free blocks in the free space table whose size is within the range M1 through M2.

M1 and M2 are computed as follows:

M2 = M1 + M1/8
M1 = MAX (A2, DSB/4 + KZ)

where

153DBA Tasks

Database Space Management

zap-able value (default = 10)KZ

number of DS blocks in useDSB

and

A2 = MIN (A1, DSB * 2)
A1 = IUN * DSB/IUS

where

number of unused ISNsIUN

number of used ISNsIUS

If enough space is found in the free space table and that space follows immediately an already
allocated extent, this space is added to the end of the extent. In this case no new extent is allocated.

If a new extent is needed, the free space table is scanned and the number of blocks needed to sat-
isfy the size of M1 through M2 is taken for the new extent. Up to 99 extents are possible. However,
your actual real maximum will be less because the maximum number of physical extents that you
can define is derived from the block size of the first Associator data set (DDASSOR1). If space is
not available, ADALOD ends with an error message.

The maximum number of logical file extents that you can now define is derived from the block
size of the first Associator data set (DDASSOR1). The extent information is stored in a variable
section of the FCB. New extents can be added now until the used FCB size reaches the block size
of the Associator data set.

MAXISN Parameter

The MAXISN value is converted into a number of blocks and rounded up to a full block boundary.
This range of blocks is allocated at the beginning of ADALOD execution and is assigned to the
first address converter extent for the file.

The ACRABN parameter may be used to force the allocation to begin at a specific location.

If during processing of the input data, this first allocated extent becomes full, ADALOD tries to
allocate another AC extent whose size is 25% of the sum of all currently existing AC extent sizes.

■ If an unused range of blocks is available in the free space table in the range of 25% through 28%
of the size currently in use, this range is immediately allocated as a new AC extent for the file;

■ If only longer free ranges are available, a new AC extent of 25% is taken from the smallest free
range of blocks;

■ If only smaller free ranges are available, the largest available is taken.

DBA Tasks154

Database Space Management

NISIZE/UISIZE Parameters

At the beginning of its execution, ADALOD allocates and assigns the blocks or cylinders specified
by the NISIZE and UISIZE parameters to the first NI and UI extents, respectively.

The NIRABN and UIRABN parameters can be used to force extent allocation to begin at a specific
RABN.

If you omit the NISIZE or UISIZE parameters, ADALOD does not initially allocate NI and UI
space. Instead, ADALOD waits until all incoming descriptor values have been written to the Temp
data set, and then estimates NISIZE and UISIZE values as follows:

■ If no input records were processed:

NISIZE = Number of descriptors +1
UISIZE = 2 blocks

■ If input records were processed:

For each descriptor in the file, up to 16 temp data set blocks are selected and read. The contents
of these blocks are sorted and estimated to the total amount of temp blocks used for this
descriptor.

The chosen algorithm returns the NISIZE and UISIZE values for each descriptor, which ADALOD
adds together and then multiplies by the factor K, which is

K = (MAXISN - MINISN + 1) / number of records loaded

If, during operation, ADALOD determines that the resulting value is not enough, ADALOD
allocates subsequent extents during its run. The sizes of these extents are computed in the same
way as for additional DSSIZE extents, as described above.

UPDATE Function

The UPDATE function of the ADALOD utility performs a mass add/delete of records to/from an
existing file, reorganizes and (if necessary) expands the Associator and/or Data Storage space.

The ADALOD UPDATE functions allocates additional AC space if the MAXISN parameter specifies
a new, higher maximum ISN value-even if the restructuring of the AC, NI and UI performed by
UPDATE results in more unused current space. ADALOD UPDATE adds Data Storage space if
the current Data Storage space cannot hold the new records.

MAXISN Parameter

If a MAXISN value is specified for the UPDATE operation that is greater than the current value
for the file, the difference between the old and the new MAXISN setting is computed. The number
of AC blocks to satisfy this amount is then allocated from the free space table as an additional extent.
The ACRABN parameter may be used to force the allocation to begin at a specific location.

155DBA Tasks

Database Space Management

If during processing of the input data the current AC and/or Data Storage extent becomes full,
ADALOD tries to allocate another AC and/or Data Storage extent whose size is 25% of the sum
of all currently existing AC and/or Data Storage extent sizes.

■ If an unused range of blocks is available in the free space table in the range of 25% through 28%
of the size currently in use, this range is immediately allocated as a new AC extent for the file;

■ If only longer free ranges are available a new AC extent of 25% is taken from the smallest free
range of blocks;

■ If only smaller free ranges are available, the largest available is taken.

Space Allocation by the ADAORD Utility

ADAORD reorders the respective Adabas Associator component (AC, NI/UI, DSST) and Data
Storage to reclaim unusable space for reuse. Although ADAORD functions affect only the selected
component files of an Adabas expanded file, there is no change to the logical consistency of an
expanded file; therefore, ADAORD does not have to be performed on each component file of an
expanded file, unless desired.

Accessed Table TypesFunction

AC, NI, UIREORFASSO

AC, NI, UI, DSSTREORASSO

DSREORFDATA, REORDATA

AC, NI, UI, DSREORFILE, REORDB

For each accessed file and for each accessed table type (depending on the function), the following
action is taken:

■ All used space is returned to the free space table.
■ All tables with a specific location (ACRABN, DSRABN, NIRABN, UIRABN) are allocated and

assigned as a first extent. The sizes used are either supplied (MAXISN, DSSIZE, NISIZE, UISIZE)
or taken from the original file.

■ All tables without a specific location are allocated and assigned as a first extent.

If one of the extents become full, the same action is taken as described for the ADALOD (UPDATE)
utility (see the previous section).

DBA Tasks156

Database Space Management

Space Allocation by ADASAV (RESTORE FILES Function)

If a file to be restored is already present in the database (OVERWRITE parameter must be specified)
the space used by all these files is returned to the free space table. If a component file of an expanded
file is specified, then all related component files must also be specified.

■ RESTORE FILE=...

For each file to be restored, the original RABNs must be available. ADASAV tries to allocate the
required extents at their original position with their original size. If one of these allocations fails,
ADASAV will terminate with ERROR-060.

■ RESTORE FMOVE=...

For each file to be restored, at least the amount of original space used will be allocated. The al-
location of the first extent for each file table can be forced to a specific location by using one of
the optional parameters ACRABN, DSRABN, NIRABN, UIRABN. The sizes of these tables may
be increased using MAXISN, DSSIZE, NISIZE, UISIZE.

If space is available, multiple input extents may be compressed in a new single extent. If there is
not enough contiguous free space available, ADASAV will split the tables over several new extents
(up to 99 for each table). If such space is not available, ADASAV will terminate with ERROR-060.

Using the Database Status Report to Control Space Use

Database space utilization information can be obtained directly from the database status report
produced by executing the ADAREP utility or using Adabas Online System.

In addition to a file allocation map and a block allocation map, this report lists the number of
blocks

■ used (and unused) for the Associator physical extent (or extents);
■ used (and unused) for the Data Storage physical extent (or extents);
■ allocated for the Work physical extent;
■ used (and unused) for each file for the address converter, normal index, upper index, and Data

Storage logical extent (or extents).

See the ADAREP chapter in the Adabas Utilities documentation for a detailed explanation of the
information provided on this report.

The DBA should frequently review this report to identify potential space utilization problems.

The next section contains guidelines on problems which may be detected using the status report,
and recommendations as to what action should be taken to prevent and/or resolve each problem.

157DBA Tasks

Database Space Management

Potential Space Use Problems and Recommended Actions

This section provides a summary of the problems most often encountered concerning database
space utilization, and the recommended corrective action to be taken to prevent and/or correct
problems.

Full Physical Extents

1. The Associator physical extent is nearly or completely full.
■ The physical extent may be increased (see ADADBS utility, INCREASE function);
■ A new physical extent may be added (see ADADBS utility, ADD function);
■ The Associator may be reordered using the ADAORD utility. This will be of benefit only if

a large amount of Associator space fragmentation exists;
■ Unused file extents can be release using the ADADBS DEALLOCATE function;
■ Any Adabas files no longer required may be deleted (see the ADADBS utility; DELETE

function);
■ Any file coupling lists no longer needed may be deleted (see the ADADBS utility, UNCOUPLE

function);

2. The Data Storage physical extent is nearly or completely full.
■ The physical extent may be extended (see the ADADBS utility, INCREASE function);
■ A new physical extent may be added (see the ADADBS utility, ADD function); this is recom-

mended only when the new extent is on a new device type.
■ Data Storage may be reordered (see the ADAORD utility, REORDATA function). This will

be of benefit only if a large amount of Data Storage space fragmentation exists, or the Data
Storage padding factor is decreased;

■ A given file may be reordered (see the ADAORD utility, REORFILE function);
■ Any Adabas files no longer required may be deleted (see the ADADBS utility, DELETE

function).

DBA Tasks158

Database Space Management

Maximum Physical Extents Reached

1. The maximum number of Associator physical extents (about 99) has been reached.
■ The last extent can be increased using the ADADBS INCREASE function;
■ The Associator can be reordered by executing the ADAORD REORASSO function;
■ All files can be unloaded using the ADAORD RESTRUCTURE function and then reloaded

into a larger database using ADAORD STORE.

2. The maximum number of Data Storage physical extents (about 99) has been reached.
■ The last extent can be increased using the ADADBS INCREASE function;
■ Data Storage can be reordered (see the ADAORD utility, REORDATA function). This will

result in the elimination of Data Storage space fragmentation;
■ All files can be unloaded using the ADAULD utility and then reloaded into a larger database.

Maximum Logical Extents Reached

1. The maximum logical extents for the address converter, normal index, or upper index for a file
has been reached.
■ The REORFILE or REORFASSO function of the ADAORD utility can be executed to reorder

all Associator entries for the file.
■ ISN reusage can be invoked using the ADADBS utility.
■ The file can be unloaded, deleted, and reloaded.

2. The maximum logical extents limit for either Data Storage or the Data Storage space table for
a file has been reached.
■ The file (and all other files) can be reordered using the REORFDATA or REORFILE function

of the ADAORD utility. This condenses multiple Data Storage extents into fewer extents.
■ The file can be unloaded, deleted, and reloaded.

159DBA Tasks

Database Space Management

160

21 Database Monitoring and Tuning

■ Monitoring Resource Use .. 162
■ Reporting on Resource Use ... 162
■ Monitoring Database Controls .. 162
■ Performance Management, Statistics, and Tuning .. 163
■ Adabas Session Statistics ... 164
■ Command Logging .. 169

161

This chapter describes the data base administrator's tasks in the area of monitoring and tuning.

Monitoring Resource Use

The DBA is responsible for monitoring the database environment on a continuing basis to ensure
that an efficient level of service is provided while maintaining database integrity.

The DBA should implement a set of procedures designed to foresee degradation before the event
and to adjust the operation or design of the database in an orderly and controlled way. This set
of procedures includes

■ identifying potential sources of degradation;
■ establishing tools for monitoring database performance; and
■ controlling the implementation of adjustments.

Reporting on Resource Use

The DBA should report regularly on database use and performance to both data processing and
user management. The reports should be factual, but should also include recommendations for
tuning the database environment. It should be remembered that tuning, while benefitting the or-
ganization as a whole, may adversely affect the service received by one or more users. Any decision
on tuning should, therefore, be made by all affected users.

Monitoring Database Controls

The DBA should establish appropriate controls and monitor them to ensure the integrity of the
database.

Computer-generated control totals can be checked and cross-footed between computer processing
runs or generated reports. Batch responses (or inquiries) may include such information as the exact
run time, search parameters, time of last update of data, and the primary parameter controls. This
increases the confidence level and helps to ensure the integrity of the database.

The problem of control totals takes different forms at different installations. Although hard and
fast rules are not possible in this area, some general guidelines can be given.

The DBA needs to ensure that proper consideration is given to the following areas in the design
of each application system that will use the database:

DBA Tasks162

Database Monitoring and Tuning

■ What controls can be checked on every batch update run? For example, record counts, additions,
deletions, updates.

■ What controls require a full file pass to check them? For example, value field hash totals.
■ What input transactions, Adabas logs, etc., should be retained in order to be able to recover

when control totals are found to be wrong at the end of a given period?
■ Are localized control totals (that is, by branch, product group) of any use in identifying the areas

affected by a file control total error?

Performance Management, Statistics, and Tuning

The following table illustrates some of the monitoring statistics that may be used and what adjust-
ments to (or tuning of) the database environment may result.

May require tuning ofChanges in....
disk storage
allocation

processing
priority

hardware or
software
configuration

access
method used

database
structure

YYYYterminal and line traffic

YYYYYresponse times (application
performance)

YYYaccess totals by user and
descriptor

YYYYdatabase size

YYYYdatabase growth rate

When any alteration is made to a production database, care must be taken to ensure a continued
high level of reliability and integrity. Whatever the change, the DBA must make sure that the de-
cision is the right one and that it is properly and accurately implemented. He should retain absolute
control over the tuning process and ensure that it follows the formal acceptance procedures.

The DBA must be careful not to overreact to changes in the items listed in the table. A sudden
change in line traffic, response times, etc., may only be temporary. It is important to determine
whether the change represents a permanent trend or a temporary disturbance to the normal way
of operating.

The table can be used to determine what tuning may be necessary when a new project will cause
a significant change in terminal and line traffic, response times, etc. The DBA can then act in advance
to minimize these effects before the new application system is implemented.

163DBA Tasks

Database Monitoring and Tuning

Adabas Session Statistics

The statistics printed at the end of each Adabas session may be used to monitor Adabas perform-
ance. Specifically, the session statistics comprise

■ input/output (I/O) statistics;
■ command statistics; and
■ pool/queue usage statistics.

Input/Output Statistics

The following I/O statistics are provided:

I/O Counts (Including Initialization)

WritesReads

2150ASSO

21842388DATA

13859WORK

16039PLOG

00CLOG

51932456TOTAL:

33899LOG. READS

13.9BUFFER EFF.

The input/output (I/O) counts represent the number of physical I/Os executed during the session
to the Associator (ASSO), Data Storage (DATA), Work (WORK), the data protection log (PLOG),
and the command log (CLOG).

Also provided are the number of logical reads issued for the buffer pool (LOG. READS) and the
buffer efficiency (BUFFER EFF.) which is the number of logical reads divided by the number of
Associator and Data Storage reads. The higher the value for buffer efficiency, the more efficient
is buffer pool usage. If the value is less than 10, the DBA may wish to increase the size of the
Adabas buffer pool (see the Adabas Operations documentation, the ADARUN LBP parameter
description).

DBA Tasks164

Database Monitoring and Tuning

Distribution of ASSO/DATA I/Os by VOL-SER Number (Excluding Initialization)

COUNTHIGH RABNVOL-SER

38(ASSO: 894)ADA003

6(ASSO: 2544)ADA003

0(DATA: 894)ADA003

4572(DATA: 1344)ADA003

4616TOTAL:

The distribution of I/Os for the Associator and Data Storage per physical volume is also provided.
The data provided are the highest RABN accessed/updated (HIGH RABN) and the number of
I/Os (COUNT). The DBA can use this data to determine if any adjustments are necessary to the
buffer pool parameters and/or to the physical allocation of the database.

Command Statistics

In the following example, command statistics are provided for a session in which Adabas executed
12,687 calls in five threads.

Distribution of Commands by Source

The following table shows the source of commands for the session: either from the same environ-
ment (local) or from a remote environment across a network:

NumberSource

0REMOTE LOGICAL

0REMOTE PHYSICAL

0LOCAL LOGICAL

12,686LOCAL PHYSICAL

Distribution of Commands by Thread

The following table shows the thread activity for the session:

NumberThread

7,3281

2,7282

1,2403

8144

5415

12,651TOTAL:

165DBA Tasks

Database Monitoring and Tuning

If the thread with the highest number has an activity count greater than zero it can be assumed
that the Adabas nucleus would be able to process a larger number of commands if the number of
threads were increased. Increasing the number of threads would prevent commands from waiting
in the command queue for selection.

Distribution of Commands by File

The following table shows the distribution of commands by file:

NumberFile

4,2470

8,4041

12,651TOTAL:

Commands that are not file-related (e.g. BT, ET) are counted against file 0.

Distribution of Commands by Type

The following table shows the distribution of commands by command type:

NumberCommand Type

4,198A1/4

4,191ET

4,242L1/4

56OP

12,687TOTAL:

The command type UC indicates privileged call issued by Adabas utilities.

Note: The command type REST indicates commands such as C1, C5, RI and HI.

Additional Session Statistics

THERE WERE 56 USERS PARTICIPATING
MOST CALLS (57) INITIATED BY USER user ID
MOST I/O-S (14) INITIATED BY USER user ID
MOST THR.-TIME (04:16:32) WAS USED BY USER user ID

DBA Tasks166

Database Monitoring and Tuning

Formats had to be translated28

Formats had to be overwritten0

Autorestarts were done0

Throw-backs due to ISN problem20

Throw-backs due to space problem16

Buffer-flushes were done186

Formats Translated/Overwritten

Adabas read and update commands require a Format Buffer that specifies the fields to be read or
updated. This Format Buffer is interpreted and converted into an internal Format Buffer by Adabas,
which enters each resulting internal Format Buffer into the internal Format Buffer pool. Each in-
ternal Format Buffer is identified by a combination of user and command IDs.

For each new read/update command, Adabas looks to see if a user ID/command ID entry is already
present in the format buffer pool. If not, Adabas translates the command's new format buffer and
enters it into the pool. Once the format buffer pool becomes full, an existing entry must be over-
written to accommodate a new entry.

The format translation process is CPU intensive. Therefore, the DBA should ensure that an excessive
number of format overwrites are not occurring by doing the following:

1. Ensure that user programs are making correct use of command IDs; that is, using non-blank
command IDs when appropriate and releasing command IDs when no longer needed. For
further information on command ID use, refer to the Adabas Command Reference documenta-
tion.

2. Consider increasing the size of the internal format buffer pool (with the ADARUN LFP para-
meter, described in the Adabas Operations documentation).

The Adabas nucleus produces statistics on format translations and format overwrites at the con-
clusion of each session. The Adabas operator command DSTAT may also be used to obtain this
information.

Autorestarts

The number of Autorestarts performed during the session.

167DBA Tasks

Database Monitoring and Tuning

Command Throwbacks

The number of times a command could not be executed because the Adabas nucleus was waiting
for

■ an available ISN; or
■ Adabas work pool space.

In such an event, the command is thrown back into the command queue for processing at a later
point in time.

If either of these numbers is greater than zero:

1. adjust the ratio between the ADARUN LWP (work pool size) and LS (sort work area) parameters;

2. increase the size of the Adabas work pool (ADARUN LWP parameter);

3. evaluate ADARUN TT (transaction time limit) parameter;

4. check application program hold logic;

5. increase the Adabas hold queue size (ADARUN NH parameter); and

6. use superdescriptors to reduce complexity of search commands.

The ADARUN parameters are described in the Adabas Operations documentation.

Buffer Flushes

The number of buffer flushes performed during the session.

The Adabas buffer pool represents a virtual database that is shared by all active users. It contains
the most frequently used Associator and Data Storage blocks, and its purpose is to minimize
physical I/O activity.

The size of the buffer pool is determined by the ADARUN LBP parameter. LBP should be set as
large as possible with the restriction that setting too large a value may cause excessive paging by
the operating system.

Buffer and Queue Statistics

Session statistics include the maximum buffer and queue use during the session. These statistics
are presented for all buffers and queues (except the buffer pool) for which high-water marks can
be computed. The following table shows high-water marks for a sample session:

DBA Tasks168

Database Monitoring and Tuning

%High-Water MarkADARUN ParameterPool Area

2912032NAB = 10AB

953648NC = 20CQ

10500LDEUQP = 5000DUQ

141760LFP= 12000FI

23552NH = 100HQ

00LCP= 10000SC

00LI = 10000TBI

00LQ = 10000TBS

864880NU = 20UQ

NU = 20UQF

5070464LWP = 14000WORK

00XID = 0XID

Note: The UQF is the user queue extension that holds the file list. The size of its pool is
computed using the UQ pool size.

The high-water marks are provided together with the applicable ADARUN parameter setting that
was in effect for the session.

The DBA should monitor each high-water mark and, if necessary, make adjustments to the appro-
priate ADARUN parameters.

Command Logging

Adabas command logging may be used to generate information on all the commands issued by
users to Adabas. Some of the information provided is

■ user identification;
■ time of day;
■ the command used;
■ the file accessed;
■ the record accessed;
■ the Adabas response code received;
■ the time required for the command to perform.

Command logging is controlled by the ADARUN parameter LOGGING.

169DBA Tasks

Database Monitoring and Tuning

170

22 Error Handling and Message Buffering

■ Range of Operations .. 172
■ Recovery or Plug-In (PIN) Routines ... 173
■ PIN Routine User Exit ... 183

171

The error handling and message buffering facility helps implement 24X7 operations by analyzing
and recovering from certain types of errors automatically with little or no DBA intervention. It
also generates additional information so that the error can be diagnosed by the user and by Software
AG.

The ADARUN SMGT parameter is set to activate the facility; if message buffering is to be used,
the ADARUN MSGBUF parameter is used to size the buffer. The wrap-around message buffer
collects Adabas messages for later review by Adabas Online System in case online access to the
console or to DDPRINT messages becomes unavailable. The buffer aids problem analysis and
performance tuning.

The error handling functions of the facility are implemented as operands of the operator command
SMGT and can be invoked from the operator console or from Adabas Online System. See the
Adabas Operations documentation for detailed information.

The current implementation of the facility makes it possible for the nucleus to protect itself or
provide additional error recovery information for

■ a parameter error 31 : autorestart error;
■ a parameter error 73 : checkpoint file is full during initialization;
■ non-response codes by capturing pertinent areas of storage to aid in the diagnosis; and
■ program interruptions by providing additional dump areas.

Range of Operations

User Exit Failures

User exits and hyperexits that are essential to the operation of the Adabas nucleus can be marked
as critical (the default) or not using one of the operands of the SMGT operator command:

■ If a user exit is defined as critical, it is not affected by the error handling and message buffering
facility: an abnormal termination in it causes the Adabas nucleus to terminate abnormally as
well.

■ If the user exit is defined as not critical and an abnormal termination occurs in it, the facility
maintains an active Adabas nucleus, optionally refrains from invoking that exit, takes a dump
of the nucleus at the point when the exit failed, and issues messages to the system log to inform
the DBA of the problem. The DBA can then examine the diagnostic information, use it to fix the
problem, then load and reactivate the corrected exit using operands of the SMGT operator
command.

Note: If an Adabas exit attaches a subtask, the subtask is not protected by the error handling
and message buffering facility.

DBA Tasks172

Error Handling and Message Buffering

Recovery or Plug-In (PIN) Routines

The extensions (plug-in routines or PINs) are designed to analyze and, in some cases, determine
the cause of an abend while allowing the nucleus to continue processing. The PIN determines
whether it is safe to allow the nucleus to continue processing and prints appropriate messages to
notify the DBA when this is the case.

The PIN routine user exit ADASMXIT can be used to obtain additional information about response
codes and abends. The user exit allows you to specify particular response codes or response
code/subcode combinations to be monitored. Once you have modified the user exit, you can reload
it and make your changes effective without bringing the database down.

Each plug-in (PIN) service routine handles a predefined condition when encountered, allowing
the Adabas nucleus to

■ remain active when it otherwise would terminate abnormally; or
■ print extended error diagnostics as an aid to error recovery.

Based on its execution, a PIN module can either transfer control to the Adabas nucleus so that it
can resume normal processing-usually with a response code-or it can return control to the error
handling and message buffering facility, allowing the Adabas nucleus to terminate abnormally.

While the PIN is executing, most Adabas functionality is available to the PIN as the registers at
the time of the abnormal event are available. The PIN decides whether the nucleus should remain
active.

A PIN can also be used to format an intelligent dump in a number of circumstances to help debug
a particular response or abend code.

If the PIN determines that the nucleus is to remain active, the PIN sets a response code.

PIN Processing

In the event of an abnormal termination or nonzero response code, the error handling and message
buffering facility looks for a PIN routine first for the specific condition and location detected, then
for the specific condition, and finally for the location (any condition). If an appropriate PIN is
found, it is invoked; otherwise, the nucleus is terminated.

If a PIN routine is invoked and it

■ handles the condition, processing then continues with no further intervention from the error
handling facility.

■ cannot handle the condition, the PIN returns control to the error handling facility and the nuc-
leus is terminated.

173DBA Tasks

Error Handling and Message Buffering

For a response code error, the error handling facility first determines whether the response code
is one that it monitors.

■ If the answer is no, the PIN returns control to the nucleus and the response code is returned to
the user normally.

■ Otherwise, the appropriate PIN is invoked to print additional information about the response
code that to help resolve the problem. The PIN then returns control to the nucleus and the re-
sponse code is returned to the user normally.

Once the PIN has processed the response code, it returns control to the error handling facility so
that normal response code processing can continue.

Default PIN Module ADAMXY

The ADAMXY module is the default PIN module comprising the PIN routines that are distributed
with Adabas and automatically installed during initialization.

Note: It is possible to disable the default PIN ADAMXY using the SMGT,DELPIN or
SMGT,DEACTPIN operator commands.

The following table describes the interrupts that are handled by the PIN routines in ADAMXY.
For each interrupt, extended dump formatting is provided to aid in error analysis:

The processor . . .Exception TypeCode

is about to execute an instruction that has an invalid operation code.Operation01

attempts to execute a supervisory instruction while in problem state.Privileged Operation02

interrupts a program deliberately to aid problem diagnosis.Execute03

attempts to alter system or hardware storage; access fetch protected
system or hardware storage; or access or modify storage that is not

Protection (also Segment
and Page)

04

allocated. Requires record/file-level locking with user notification in job
log. Note that code 16 (segment exception) and code 17 (page exception)
are also presented to the error handling facility as code 04.

encounters a reference to an invalid read address.Addressing05

attempts to either set or branch to an old address or an instruction that
required a field to be aligned but did not have an aligned argument.

Specification06

encounters a corrupted data record, probably a field that should be
packed decimal is not.

Data07

a high-order carry occurs; or high-order significant bits are lost in a
fixed-point add, subtract, shift, or sign-control operation.

Fixed Point08

encounters a zero divisor in a division instruction; probably a corrupted
record. Code 9 is for binary; code 11 is for packed decimal; and code 15
is for floating point arithmetic.

Divide09, 11, 15

The message

DBA Tasks174

Error Handling and Message Buffering

*****DEFAULT PIN OUTPUT************

is generated whenever the default PIN ADAMXY is invoked. This is followed by all output con-
cerning the program interrupt processing of ADAMXY. The message

*****END OF DEFAULT PIN OUTPUT*****

-is generated whenever ADAMXY is completed.

Additional PIN Modules Provided

Some of the PIN modules discussed in this section are delivered with add-on products of Adabas.
They are established automatically when the relevant server component initializes at nucleus
startup:

PINAFP
PINATM
PINAVI
PINCOR
PINSAF

The remaining PIN modules discussed in this section are included with Adabas but are not part
of ADAMXY and are not automatically installed at Adabas initialization:

PINAUTOR
PINOPRSP
PINRSP
PINUES

PINRSP and PINUES are installed using the SMGT,ADDPIN=module-name command when the
nucleus is active. Because PINAUTOR and PINOPRSP are invoked during system initialization
when operator commands are not available, they are activated by renaming a particular module
in the Adabas load library:

■ renaming NOOPRSP to PINOPRSP activates that PIN;
■ renaming NOAUTOR to PINAUTOR activates that PIN.

See the Adabas Installation documentation for more information about installing PIN modules.

175DBA Tasks

Error Handling and Message Buffering

PINAFP

PINAFP is delivered with the add-on product Adabas Fastpath. It is established automatically
when the Adabas Fastpath server component initializes at nucleus startup (ADARUN FAST-
PATH=YES).

In the event of a program interrupt (see the table in the section Default PIN Module ADAMXY)
in the Adabas Fastpath server component, control is passed to PINAFP, which formats and prints
the main memory areas used by the component. These diagnostics are written to the DDPRINT
data set with the title

ADABAS FASTPATH - memory-area-name : SNAP BY PINAFP

PINAFP then returns control to the error handling and message buffering facility so that Adabas
can terminate abnormally.

If necessary, PINAFP can be activated and deactivated. However, after PINAFP is reactivated, it
will not be reestablished until the next nucleus session.

PINATM

PINATM is delivered with the add-on product Adabas Transaction Manager (ATM). It is established
automatically when the ATM job initializes (ADARUN DTP=TM).

In the event of a program interrupt (see the table in the section Default PIN Module ADAMXY)
in the ATM logic, control may be passed to PINATM, which formats and prints the main memory
areas used by ATM. These diagnostics are written to the DDPRINT data set with the title

ADABAS TRANSACTION MANAGER - memory-area-name : SNAP BY PINATM

PINATM then returns control to the error handling and message buffering facility so that Adabas
can terminate abnormally.

If necessary, PINATM can be activated and deactivated. However, after PINATM is reactivated,
it will not be reestablished until the next ATM session.

PINAUTOR

If NOAUTOR has been renamed to PINAUTOR in the Adabas load library and a parameter error
31 occurs during autorestart, PINAUTOR acquires control. PINAUTOR attempts to identify the
file that is in error and exclude it from autorestart if possible.

Before excluding a file from autorestart processing, PINAUTOR checks that

■ the file is not the security or checkpoint file; and
■ the response code is not 9, 65, 72, 88, 97, 99, 148, or 151 as these are not valid for the exclusion

process.

DBA Tasks176

Error Handling and Message Buffering

Additionally, PINAUTOR checks whether certain files or particular response codes for a particular
database are designated as ineligible for exclusion. For example, it may be senseless to start a
database without the particular file on which it depends. You can customize ADASMXIT to include
the files and the response codes that cannot be excluded. You can also specify the maximum
number of autorestarts with exclusions that can be attempted.

The AREXCLUDE procedure is automatically invoked to exclude a file. See the Adabas Operations
documentation, ADARUN parameter AREXCLUDE for more information. Note that excluded
files may become inconsistent and need to be restored from backup using ADASAV RESTORE.

If a file is excluded from autorestart, an SM-PINAUTOR2 message is generated followed by an
ADAN50 message, both indicating the file number of the excluded file.

Whenever PINAUTOR is invoked, the message PINAUTOR OUTPUT is generated followed by
messages pertaining to the specific PINAUTOR situation as described in the Adabas Messages
and Codes documentation. To indicate that PINAUTOR processing is completed, the message
END PINAUTOR OUTPUT is generated.

PINAVI

PINAVI is delivered with the add-on product Adabas Vista. It is established automatically when
the Adabas Vista server component initializes at nucleus startup (ADARUN VISTA=YES).

In the event of a program interrupt (see the table in the section Default PIN Module ADAMXY)
in the Adabas Vista server component, control is passed to PINAVI, which formats and prints the
main memory areas used by the component. These diagnostics are written to the DDPRINT data
set with the title

ADABAS VISTA - memory-area-name : SNAP BY PINAVI

PINAVI then disables the program in which the interrupt occurred and returns control to Adabas
so that Adabas can continue. Disabling the program does not disrupt the Adabas service; however,
access to Adabas Vista files may be restricted. In this case, a nonzero response code returned to
the user identifies the restrictions.

If necessary, PINAVI can be activated and deactivated. However, after PINAVI is reactivated, it
will not be reestablished until the next nucleus session.

177DBA Tasks

Error Handling and Message Buffering

PINCOR

PINCOR is delivered with System Coordinator for Adabas Options. It is established automatically
when the System Coordinator server component (ADAPOP) initializes at nucleus startup.

If a program interrupt occurs in the System Coordinator server component, control is passed to
PINCOR, which formats and prints the main memory areas used by the component.

These diagnostics are written to the DDPRINT data set with the title

COMMON RUNTIME - memory-area-name : SNAP BY SMGT

PINCOR then returns control to the error handling and message buffering facility so that Adabas
can terminate abnormally.

PINOPRSP

Caution: PINOPRSP makes it possible to initialize a database and operate it without writing
checkpoints. If database recovery procedures become necessary, the missing checkpoint
information can result in critical errors. To prevent this, you must reorder the checkpoint
file immediately after PINOPRSP is invoked and be able to account for all changes in the
status of the database between initialization and the reordering of the checkpoint file.

If NOOPRSP has been renamed to PINOPRSP in the Adabas load library and a parameter error
73 occurs during system initialization indicating a checkpoint overflow condition, PINOPRSP is
invoked.

The message PINOPRSP OUTPUT is generated indicating that PINOPRSP has been invoked.
PINOPRSP then generates a message warning the DBA that Adabas will activate even though the
checkpoint file is full:

response code INTERCEPTED BY PINOPRSP BECAUSE THE CHECKPOINT FILE IS
FULL. THE ADABAS NUCLEUS WILL ACTIVATE BUT THE CHECKPOINT FILE NEEDS
TO BE REORDERED AS SOON AS POSSIBLE.

The response code is either 75 or 77 in this case. No checkpoint is written but the nucleus activates.
Corrective action needs to be taken as soon as possible. The message "END PINOPRSP OUTPUT"
is then generated to indicate that PINOPRSP processing is completed.

DBA Tasks178

Error Handling and Message Buffering

PINRSP

The SMGT,ADDPIN=PINRSP operator command activates PINRSP, which provides extended
information to aid in diagnosing a response code.

Note: Only response codes set by Adabas can be logged. A response code such as 22 (invalid
command code), which is set by the Adabas SVC before it reaches Adabas, is not logged.

If PINRSP is installed without modifying the Adabas PIN routine user exit ADASMXIT, all response
codes are logged. You can customize ADASMXIT to

■ include specific response codes or response code/subcode combinations;
■ indicate the number of times a particular response code can be monitored.

When a nonzero response code is encountered, PINRSP acquires control. The message "PINRSP
OUTPUT" is generated to indicate that PINRSP has control. Depending on the response code en-
countered, different areas are logged.

With respect to areas logged, five categories of response codes are described:

1. Basic response code logging includes
■ the active thread
■ the FCB if possible
■ the areas that have been GETMAINed and are currently in use

2. Index-related response codes such as 177
■ basic response code logging
■ the index structure from the thread
■ active CQEs
■ buffer pool headers

3. Response codes such as 40 where additional IUB areas may be pertinent
■ basic response code logging
■ IUBs
■ active CQEs

4. Response codes such as 255 where additional attached buffer information may be necessary
■ basic response code logging
■ active CQEs
■ attached buffer information

5. Response codes such as 72 where the user queue may be helpful
■ basic response code logging

179DBA Tasks

Error Handling and Message Buffering

■ active CQEs
■ user queue

Example:

Rather than obtain a CLOG when you need additional information to diagnose a particular response
code, you can modify ADASMXIT to capture the response code, reassemble it, and load it while
the nucleus is up. The information is then logged the next time the response code is encountered.

Once you have the information, you can modify ADASMXIT to remove the response code and
reload it so that information is no longer captured. Alternatively, you can set ADASMXIT initially
to log the information only `n' number of times.

You can also use PINRSP in conjunction with ADASMXIT to suppress the ADAN77 message that
is generated for response codes 201, 202, or 203. This may be useful in situations where a new
application receives enough security errors to fill the SYSLOG. Although Software AG does not
recommend this action, you may temporarily modify ADASMXIT to suppress N77 messages and
activate PINRSP with response codes 201, 202 and 203 indicated in ADASMXIT.

If message suppression is activated, the ADAN77 message "Message suppression in effect" is
generated and the PINRSP output providing format information related to the response code is
suppressed.

Once PINRSP has completed processing, the message END PINRSP OUTPUT is generated.

PINSAF

PINSAF is delivered with the add-on product Adabas SAF Security (ADASAF). It is invoked
automatically when the ADASAF initializes at nucleus startup.

In the event of a program interrupt (see the table in the section Default PIN Module ADAMXY)
in ADASAF, control is passed to PINSAF, which formats and prints the main memory areas used
by ADASAF. These diagnostics are written to a data set with the title

ADABAS SAF INTERFACE - control-block-name : SNAP BY SMGT

PINSAF then returns to the error handling facility so that Adabas can terminate abnormally.

Note: For security reasons, PINSAF does not allow Adabas to continue after an abend in
ADASAF.

Like other PIN routines, PINSAF can be activated and deactivated. However, after PINSAF is re-
activated, ADASAF itself must be restarted before PINSAF will function correctly. Refer to the
Adabas SAF Security documentation for more information.

DBA Tasks180

Error Handling and Message Buffering

PINUES

PINUES handles Adabas response codes in the context of the universal encoding support (UES)
system. PINUES captures input/output errors when trying to

■ load an encoding object that does not exist; or
■ convert invalid data.

Note:

When used with other PIN routines that handle the same error conditions, the PIN loaded last is
called to handle the error. For example:

F NUC227,SMGT,ADDPIN=PINRSP
F NUC227,SMGT,ADDPIN=PINUES

In this example, PINUES is loaded after PINRSP and therefore handles the error conditions it can
handle (response codes 17, 48, and 55). All other response codes are processed by PINRSP.

The message PINUES OUTPUT is generated to show that PINUES has acquired control. The
message END PINUES OUTPUT is generated when PINUES processing is completed.

Error Conditions Handled

■ Response codes 17 and 48 may occur on an OP command if the ECS objects are not available
that are needed to determine the data conversion between user and Adabas file. In this case,
PINUES calls ADAMXF with the options IUB and UQE to obtain diagnostic output.

■ Response code 55 may occur if ECS returns a response indicating that the conversion or moving
of text failed. In this case, the conversion parameters and buffers are snapped to obtain diagnostic
output.

Output Produced

Whenever PINUES writes diagnostic information, the following lines are printed on the console:

******** P I N U E S OUTPUT ********'

ADANX1 dbid COMMAND cmd COMMAND ID hex-cid FNR file-number
RESPONSE adabas-response-code SUBCODE adabas-subcode FLD

field-name'
TID hex-internal-user-id UID open-userid JOB job-name'

****** END P I N U E S OUTPUT ******'

181DBA Tasks

Error Handling and Message Buffering

Session Snapshots

18:17:37 ADAN19 00227 BUFFERFLUSH IS A S Y N C H R O N O U S
18:17:37 ADAN01 00227 A D A B A S V7.1.0 IS ACTIVE
18:17:37 ADAN01 00227 MODE = MULTI
18:17:37 ADAN01 00227 RUNNING WITHOUT RECOVERY-LOG
18:18:04 ADAI29 OPER CMD: SMGT,ADDPIN=PINUES
18:18:04 ADANTG 00227 PIN MODULE PINUES LOADED
18:18:04 ADANO2 00227 SMGT COMMAND PROCESSED
18:18:04 ADAN41 00227 1999-01-00 18:18:03 FUNCTION COMPLETED

18:36:33 ADAN7A 00227 ECS ERROR -2 IN FUNCTION GETHANDL
18:37:21
18:37:21 ******** P I N U E S OUTPUT ********
18:37:21 ADANX1 00227 COMMAND OP COMMAND ID 00000000 FNR 00014
18:37:21 RESPONSE 017 SUBCODE 023
18:37:21 TID 00000013 UID BLAUTOPF JOB TXG.....
18:37:21 ADAH51 00227 DUMP FORMAT CALLED

The following output is produced by the ADAMXF module:

18:37:22 ADAH52 00227 DUMP FORMAT COMPLETED
18:37:22 ****** END P I N U E S OUTPUT ******
18:37:22
18:49:45 ADAN7A 00227 ECS ERROR 54 IN FUNCTION CVFTXTX
18:49:45
18:49:45 ******** P I N U E S OUTPUT ********
18:49:45 ADANX1 00227 COMMAND A1 COMMAND ID 00000000 FNR 00014
18:49:45 RESPONSE 055 SUBCODE 004
18:49:45 TID 00000017 UID ANDECHS. JOB TXG.....

ECS CONVERSION PARAMETERS

0C190BE0+0000 00106570 00000080 00000200 00000000 *................*
0C190BF0+0010 00000004 0C10ACB4 00000004 0010A6E0 *..............w.*
0C190C00+0020 00004000 0C190BEC 0000020C 00000000 *................*
0C190C10+0030 001065AD 0C190BE4 00000000 00000000 *.......U........*

ECSE FROM ENCODING 3026 TO ENCODING 3035

00106570+0000 02000002 00000BD2 00000BDB 00000004 *.......K........*
00106580+0010 00000000 001062C8 00106350 001064E8 *.......H.......Y*
00106590+0020 0000BD20 0000BDB0 0000000C 00000000 *................*
001065A0+0030 001065AD 0004362C 40000000 00FEFE00 *................*
001065B0+0040 00000340 40000000 04404000 00000000 *................*
001065C0+0050 00000000 00000000 00000000 00000000 *................*
001065D0+0060 00000000 00000000 00000000 00000000 *................*
001065E0+0070 00000000 00000000 00000000 00000000 *................*
001065F0+0080 00000000 00000000 02000001 00000BDB *................*

DBA Tasks182

Error Handling and Message Buffering

ECONV INPUT AREA

0C10ACB4+0000 4141F1F2 40404040 40404040 40404040 *..12............*

ECONV OUTPUT AREA

0010A6E0+0000 414150C2 50C350C4 50C550C6 50C750C8 *...B.C.D.E.F.G.H*
0010A6F0+0010 50C150C2 50C350C4 50C550C6 50C750C8 *.A.B.C.D.E.F.G.H*

LINES 0010A700 TO 0010A7C0 SAME AS ABOVE
0010A7D0+00F0 50C150C2 50C350C4 50C550C6 00000000 *.A.B.C.D.E.F....*
0010A7E0+0100 00000000 00000000 00000000 00000000 *................*

LINES 0010A7F0 TO 0010E6D0 SAME AS ABOVE

18:49:45 ****** END P I N U E S OUTPUT ******

PIN Routine User Exit

The PIN routine user exit (entry name ADASMXIT) can be used to

■ supply parameters to the various PINs. If the exit is not installed, the parameters are set to the
default values.

■ examine a condition when it is encountered before the PIN routine is invoked so that recovery
actions other than those provided by Adabas can be implemented.

The ADASMXIT load module must be located so that it can be loaded by the nucleus, either in
the load library concatenation or in a system call library such as the z/OS system link list. If you
are running either ADASMP or Adaplex+ on z/OS, the ADASMXIT module must be placed in an
authorized load library.

The PIN routine user exit is written in Assembler.

User Exit Inputs

The exit is entered with the following registers set:

Adabas PIN routine save areaR13

Return address / AMODER14

Entry point addressR15

R0 Function code:

nucleus initialization1 -

abend2 -

response code4 -

183DBA Tasks

Error Handling and Message Buffering

nucleus termination5 -

R1 Parameter list

address of two user words+0

address of condition description block (CDB) for
functions 2, 4

+4

User Exit Outputs

There are no outputs. Return codes are ignored and all registers other than 15 must be returned
unchanged.

Condition Description Block

For each program check, abnormal termination, or response code error, a control block called the
condition description block (CDB) is generated that describes the event that occurred, where it
occurred, and what the registers and machine state were when it occurred. The CDB is passed to
the error handling and message buffering facility for use in determining whether a PIN routine
is to be called or whether an Adabas user exit is to be terminated. A PIN routine uses the CDB to
obtain information about the occurrence of the condition.

Modifying and Reloading the Exit

The PIN routine user exit may be modified, reassembled, and reloaded with the nucleus active.
To load a newly reassembled exit, issue the console operator command

to deactivate the PIN routine user exitSMGT,XD=SXnn

to load the modified version of the exitSMGT,XLOAD=SXnn ↩

to activate the exitSMGT,XA=SXnn ↩

See the Adabas Online System documentation for another way to accomplish this task.

Using the Exit with PINAUTOR

If PINAUTOR is enabled

■ without the PIN routine user exit, the maximum number of files that can be excluded from
autorestart is 10 (the default) and all files except the checkpoint and security (system) files are
eligible for exclusion. All response codes are eligible for exclusion except those that Adabas
disallows as a general rule.

DBA Tasks184

Error Handling and Message Buffering

■ with the PIN routine user exit, you can modify its AUTOPARM to change the maximum number
of files that can be excluded from autorestart and prevent specific files and/or response codes
from ever being excluded.

AUTOPARM Example

AUTOPARM DS 0D
MAXARPIN DC F'6' Maximum of 6 files can be excluded from autorestart
BADRSPS DC XL1'48' Response code 72 cannot be excluded from autorestart

DC XL29'00' 28 more entries are possible
NOTFILE DC XL2'0041' File number 65 cannot be excluded from autorestart

DC XL48'00' 23 more entries are possible

Using the Exit with PINRSP

If PINRSP is enabled

■ without the PIN routine user exit, all response codes are monitored with no specific subcode
checking. Each response code is monitored a maximum of ten times. The ADAN77 message is
not suppressed.

■ with the PIN routine user exit, you can modify the response code to indicate the specific response
codes and subcodes that are to be monitored and the maximum number of times each response
code is to be monitored. You can set `N77MSG' to YES in conjunction with response code
201/202/203 monitoring to suppress message ADAN77.

Response Table Entry Example

Note: There is one entry per response code up to 255.

XL5'000A000000'
.
.... subcodes (up to 3; specified in hexadecimal)
.
.... maximum number of times to invoke PINRSP for response code (default=10)
.
.... 00 don't log, 01 log

Example:

The ninth entry in the table corresponds to response code 9.

The entry X'0105020311' indicates that response code 9, subcodes 2, 3, and 16 are logged. Response
code 9 is logged a maximum of 5 times.

185DBA Tasks

Error Handling and Message Buffering

186

23 Universal Encoding Support (UES)

■ Wide-Character Encodings .. 188
■ Wide-Character Data Support .. 190

187

Note: UES support requires that you use a version 7 or above Adabas SVC or router.

The Universal Encoding Support (UES) is a database option that enables Adabas to

■ perform data conversions;
■ handle wide-character encoding;
■ set the basis for internationalization tasks such as collation sequences.

Data conversion needs arise when communicating with different systems, i.e., conversion between
different code pages for alphanumeric data or conversion of numerical data due to different machine
architectures (see also section Multiple Platform Support).

Wide-character encoding is used in Asian language environments. Due to the need for a large
number of different characters, non-single-byte character sets have been defined. In addition,
Unicode, a Universal Character Set, is more frequently used (see also section Wide-Character
Encodings).

A frequently listed internationalization task is searching and sorting data in a language specific
order rather than binary order as defined by the encoding (see also section Collation Descriptor
Exits in User Exits.

Wide-Character Encodings

In most cases, an Asian text character cannot be encoded using a single byte. For example, Japanese
with more than 10,000 characters in its set is encoded using two or more bytes per character. Because
of the encoding required, these are called double-byte character sets (DBCS) or multiple-byte
character sets (MBCS) as opposed to the single-byte character sets (SBCS) characteristic of most
Western languages.

Previous versions of Adabas have stored DBCS-encoded data in alphanumeric fields. Problems
with this solution include the following:

■ the default blank of alphanumeric fields may be different from the blank required for double-
or multiple-byte character fields;

■ field truncations caused by length overwrites can result in changed or invalid characters because
the string is cut off at a byte boundary rather than at a character boundary.

■ client/server applications are difficult to implement when client and server use different encodings
for their double- or multiple-byte character sets.

Although version 7 of Adabas continues to support the storage of DBCS-encoded data in alphanu-
meric fields, it introduces a wide-character (W) field format to store data with a well defined en-
coding and character set.

DBA Tasks188

Universal Encoding Support (UES)

The default encoding for Wide format is Unicode for both storage and user. This default can be
changed on user and storage level to the encoding appropriate for the intended usage.

In the figure below, the Japanese Kana (first two) and kanji (second two) characters are encoded
in mainframe modal (mixed) and non-modal (pure)

■ DBCS for use on EBCDIC-based machines
■ JIS for use on ASCII-based machines

and in Unicode, a fixed 2-byte encoding that is more universal than the other encodings and is
used as the default encoding in Adabas.

Wide-Character Encoding Example

Modal encodings shift back and forth between single- and double-byte character encodings. Mixed
DBCS strings always start and end in single-byte mode.

Double-byte character only field lengths must be an even number of bytes.

For EBCDIC encodings, the padding or blank character is X'40' or X'4040'. On Hitachi machines,
the wide space is X'A1A1' and the single byte space is X'40'. Adabas allows a single byte space to
appear in double-byte mode without a mode switch.

189DBA Tasks

Universal Encoding Support (UES)

Wide-Character Data Support

Adabas supports wide-character data with

■ extended alphanumeric format fields; and
■ wide-character format fields.

For an existing database or file, the encoding is assigned to alpha or wide fields using the ADADBS
utility without an unload/reload. The field-level option NV (pass a field unconverted to/from a
caller) is available.

Extended Alphanumeric Fields

Adabas extends alphanumeric fields to support wide-character data by defining encoding keys
on both the database and file levels: the file level encoding takes precedence over the database
encoding. The encoding specifies the format in which the data is to be stored. It is also used as the
default format in which data is exchanged with a local user.

The encoding must be compatible with EBCDIC; that is, the space character must be X'40'. For in-
ternal processing reasons, only one of the following encoding families is supported for a given
file:

■ EBCDIC (single-byte character set)
■ mixed host-DBCS
■ host-DBCS with DBCS-only option

Advantages and Disadvantages

The advantages of using extended alphanumeric fields include

■ immediate support of existing databases that contain DBCS data;
■ applications such as Natural continue running without changes; and
■ no logic changes in the Adabas nucleus for calls from the same encoding/architecture since al-

phanumeric fields do not define an internal coding.

The disadvantage is that DBCS is not a universal encoding and unlike Unicode, it does not support
all characters used in the world's languages.

DBA Tasks190

Universal Encoding Support (UES)

Limitations

For an application, all alphanumeric fields have the same encoding. It is not possible to use different
encodings for different fields in the same session.

Conversion Considerations

When converting from pure single-byte character encodings, the field length of variable fields
may change requiring a shift of the converted record.

Wide-Character Fields

Adabas defines a wide-character (W) format for fields. W format fields are similar to alphanumeric
(A) format fields in that encoding keys are defined on both the database and file levels: the file
encoding takes precedence over the database encoding. It differs from A field encoding in that

■ if no encoding is specified, the default Unicode encoding is used.
■ the internal encoding specifies the format in which the data is stored.
■ the user encoding specifies the default format for data presented to the user.

A descriptor is stored (and sorted) with internal encoding.

Advantages and Disadvantages

The advantages of using wide-character (W) fields include the following:

■ round-trip problems are avoided because the character set of the local encoding can be a superset
of all character sets of user and special encodings;

■ space is saved because internal encodings allow the use of UTF-8 when supported by ECS; and
■ native Unicode (the user encoding), the standard Java text encoding, can be directly stored and

retrieved.

The disadvantages are that

■ Natural and other products do not immediately support the new format; and
■ support for W format fields currently has the limitations listed in the next section, some of which

may be resolved in future releases of Adabas.

191DBA Tasks

Universal Encoding Support (UES)

Limitations

■ For an application, all wide-character (W) fields have the same encoding. It is not possible to
use different encodings for different fields in the same session.

■ A W field cannot be the source for a phonetic descriptor or hyperdescriptor.
■ Format conversions are not possible from numbers (U, P, B, F, G) to W format.
■ A W field cannot be part of a coupled field, physical or soft.
■ A W field cannot be part of a format selection criterion (conditional format). This limitation is

due primarily to the single-byte character encoding of the criteria input (format buffer, search
buffer, and utility).

■ A W field cannot be part of a security-by-value criterion.
■ A W field cannot be used with an edit mask.
■ Format buffer literals are handled as unconvertible single-byte character strings.

Special DBCS Format Conversion Rules

To ensure a smooth transition from existing applications that use mixed-DBCS and DBCS-only
data, special format conversion rules have been defined:

1. A modal DBCS encoding comprising the superset of single-byte and double-byte characters is
treated as mixed-DBCS encoding for alphanumeric fields and as DBCS-only encoding for wide-
character fields.

2. When converting from wide-character DBCS-only to the user's alphanumeric mixed-DBCS en-
coding, the encoding difference is ignored.

For example, if the user encoding for both alpha and wide formats is defined as DBCS and in the
FDT, field AA is defined as alpha and field WW is defined as wide:

Value in User BufferFormat Buffer

mixed-DBCSAA[,A]

DBCS-onlyAA,W

DBCS-onlyWW,A

DBCS-onlyWW[,W]

DBA Tasks192

Universal Encoding Support (UES)

24 Multiple Platform Support

■ Encodings .. 194
■ ADACOX Conversion Exit ... 195
■ Conversion of High Value in Value Buffer .. 196
■ Data Translation Restrictions ... 196
■ Platform Considerations .. 197

193

Prior to Adabas version 7, converting data for Adabas buffers between different machine architec-
tures (ASCII, EBCDIC) was handled by Entire Net-Work. With the increasing use of applications
where clients and servers (that is, the databases) have different encodings, it has become necessary
to expand the data transfer and conversion capabilities of Adabas itself. To this end, Entire Net-
Work determines whether the target database has translation capabilities, and if so, passes the
unconverted data on to the database for conversion there.

An additional advantage of translating data within Adabas is that other transport mechanisms
can now be supported. For UES-enabled databases, Adabas version 7 supports Entire Net-Work
access to the z/OS mainframe database through the TCP/IP protocol from web-based applications
or from PC-based applications such as Software AG's Jadabas. See the ADARUN parameters TCP
and TCPURL in the Adabas Operations documentation for more information.

Adabas data translation occurs as follows:

■ The client application can specify a special encoding and communicate it to the Adabas nucleus
at session open (OP command).

■ The LNKUES/ADALNK converts Adabas buffer data depending on the architecture of the caller.
■ A number of utilities provide for special encoding and architecture settings.

EBCDIC to ASCII and ASCII to EBCDIC translation tables are located in the Adabas Installation
documentation. A table listing the encoding keys provided with Adabas version 7 is located in
the Adabas Command Reference documentation and the Adabas Utilities documentation.

Encodings

Adabas recognizes four types of encodings that can be specified in parallel:

Character string encoding ...Encoding

is stored and processed internallyFile

is used as the default for Adabas local call interface requests and for ADACMP DDEBAND.Default User

overrides the default user encoding for a user session or an ADACMP execution. This is used
to adapt to the special needs of a client program.

User

is in acceptable sort order. The collation can be defined by language and country standards
commonly identified with a local definition.

Collation

Since user data does not require conversion, Adabas equates the local default user and file encoding
to increase processing speed. Remote requests with ASCII architecture are converted using the
database default ASCII user encoding.

Double-byte character sets are converted using the native mainframe EBCDIC architecture encoding:
host DBCS from IBM, Fujitsu Technology Solutions, or Hitachi.

DBA Tasks194

Multiple Platform Support

Special applications or remote clients select a specific user encoding that fits their processing en-
vironment at session open.

To ensure round-trip compatibility between architectures and encodings, Adabas uses a file en-
coding that holds the superset of all characters defined in the default user and any specific user
encodings. For wide-character fields, such a file encoding defaults to the universal character set
encoding Unicode.

Collation encoding is defined for a descriptor field. Values for this encoding are obtained algorith-
mically by calling a collation exit programmed to produce culturally correct sorted keys; that is,
a character dictionary. Collation encoding may be defined for both alphanumeric and wide-char-
acter fields; the collation encoding/exit is defined on the file level for alpha and/or wide descriptor
fields.

ADACOX Conversion Exit

A conversion exit, ADACOX, is available for your use. ADACOX supports context-sensitive conver-
sion between Windows-1256 and EBCDIC Arabic or EBCDIC Farsi code page with UES enabled
databases.

While Arabic characters are unshaped in Windows-1256, the supported EBCDIC encodings use
shaped forms depending on previous or following characters. In addition, for certain consecutive
characters the combined form is used e.g. LAM-ALEF ligature.

Currently, no support is included for conversion from logical to visual order and vice versa, or
symmetric character conversion.

The conversion exit will always be loaded for UES enabled databases.

When a new conversion between two encodings is first used, the exit is queried whether it supports
the conversion. If it does, the exit will be called for any such conversion; if it does not, Adabas
and/or Entire Conversion Services will do the conversion.

However, the conversions defined in ADACOX need to be backed by corresponding ECS objects;
for example, for the conversion 420 to 1256 the character set properties are determined by the ECS
objects.

195DBA Tasks

Multiple Platform Support

Conversion of High Value in Value Buffer

When performing searches using the S operator, the high value is usually a sequence of X'FF'
bytes.

With UES=YES, the source and target code pages control the conversion of data. The conversion
of the character X'FF' depends on its mapping to the target code page. It is therefore possible that
the X'FF' will not remain the X'FF' in the converted value.

For example, when converting from 819 (ISO 8859-1 Latin1) to 37 (EBCDIC), the Latin small letter
'y' with diaeresis is mapped from X'FF' to X'DF'. As a result, searches find fewer or even no records.

This problem is solved as follows. With UES=YES and Alpha (or Wide) conversion, all FROM-TO
Search/Logical Read Criteria are handled in such a way that in the TO criterion the high-value
characters at the value end are preserved when converted into the internal search value and ex-
cluded from value conversion.

Note: This solution is not implemented for the value operators (EQ, GT, GE, LE, and LT).
It is limited to the TO value of FROM-TO search criteria (S operator). This applies to alpha
and wide-format fields and to the Alpha/Wide format parts of Super and Sub Descriptors.

Data Translation Restrictions

The following restrictions of Entire Net-Work are continued with Adabas translation:

■ compressed records (FB=C) are not converted.
■ text literals are not converted and are passed as is. When reading records, a literal is returned

unchanged (for example, FB AA, '-do not convert-',BB).
■ prefetch option P is not supported in conversion.
■ ET data is not converted. When reading, ET data is padded with EBCDIC blanks.

Additional restrictions imposed by Adabas include the following:

■ for all C`Xn' command codes used by CSCI, only the control block is converted; not the buffers.
This applies only for Adabas version 7 servers.

■ Entire System Server (NPR) / XCOM applications are not included in the scope of Adabas
translation. Those applications need to do their own translation.

■ OS/2 unpacked numbers sign X`Dn' is not used and therefore, is not supported.
■ Adabas does not provide user translation exits for field-level translation. Such exits are provided

by Entire Net-Work.

DBA Tasks196

Multiple Platform Support

Platform Considerations

Although differences between Adabas versions running on various platforms are gradually being
reduced, the following considerations apply when porting applications:

OpenVMSOpen SystemsMainframe

1,2,4,81,2,4,82 and 4 onlyFixpoint field length

YesYesNoBinary superdescriptor format default is U (unpacked)

NoNoYesSigned binary superdescriptor

NoNoYesBinary superdescriptor format conversion

NoNoYesSuperdescriptor with MU and PE fields

NoNoYesSuperfields and subfields

YesYesNoSuperdescriptor with floating-point format parents

272929Maximum length of unpacked fields

141515Maximum length of packed fields

NoNoYesPrefetch option for read and ET/BT commands

NoNoYesLong alpha (LA) field option

YesYesNoField arithmetic update option in format buffer

YesYesNoMC command

YesYesNoHyperfield value generation from value buffer

Additionally, user data provided in mainframe ADALNK user exits is not sent to ASCII machines.

197DBA Tasks

Multiple Platform Support

198

25 Getting Started with Large Object (LB) Fields

Adabas 8 introduces large object fields (LB fields). These are fields that may contain much more
data than the 253 bytes of normal alphanumeric fields or the 16,381 bytes of LA fields. Fields
containing large objects are defined with the new LB option. The theoretical maximum size of the
value of an LB field is just short of 2 GB; practical usable sizes are smaller.

Adabas stores LB field values in a separate file, called a LOB file, that is tightly associated with the
file containing the LB fields, which is called the base file.

Note: LOB files must be managed independently from their associated base files. For example,
using ADADBS REFRESH to refresh the base file will not automatically refresh the LOB
file; a separate, independent ADADBS REFRESH job for the LOB file must be run independ-
ently. Likewise, Adabas Online System (AOS) and Adabas Manager file functions must be
applied separately to the LOB file from the base file.

To use LB fields with Adabas 8, complete the following steps:

1 Define an FDT with one or more fields assigned the LB option. You can use the ADACMP
COMPRESS function to create LB fields. For example:

ADACMP COMPRESS
ADACMP FNDEF='1,AA,8,A,DE' Key field
ADACMP FNDEF=...
ADACMP FNDEF='1,AZ,250,A,NU' Data field
ADACMP FNDEF='1,L1,0,A,LB,NV,NU,NB' Binary LOB field

This defines field L1 as a large object field. The NV and NB options specify that this field is
not subject to character conversion, nor to the compression of trailing blanks. The NU option
specifies that this field is null-suppressed (fields with the NB option must also have either
the NU or NC option defined). In effect, Adabas will not modify the provided field values in
any way. For further information about the LB field option and all field options (including
the NV and NB field options), read Field Options, in Adabas Concepts and Facilities Manual.

199

If you provide input data for ADACMP to compress, the input can contain either short LB
field values (up to 253 bytes) or large LB field values (greater than 253 bytes). In the uncom-
pressed input record, at the place that corresponds to the LB field (in the example, L1), you
may provide an empty LB value by specifying an inclusive length of X'00000004' that is not
followed by LB data (since the LB value is empty). For further information about the structure
of the COMPRESS input data, read Input Data Requirements, in Adabas Utilities Manual

Or:

You can also update an existing FDT using the ADADBS NEWFIELD function with an FNDEF
specification defining an LB field. (Adabas Online System also provides equivalent function-
ality.) If you elect to do this, you do not need to define and load a new base file and you can
skip the next step and proceed with Step 3 of these instructions.

2 Use the ADALOD LOAD function to load the (possibly empty) base file with LB fields into
the database.

You will load an empty LOB file separately in the next step, although the LOB and base files
can be loaded in either order, or even in parallel. For example:

ADALOD LOAD FILE=11,NAME='BASE-FILE'
ADALOD LOBFILE=12
ADALOD MAXISN=100000,DSSIZE=5000B
ADALOD ...
ADALOD SORTSIZE=100,TEMPSIZE=100

The LOBFILE parameter specifies the file number of the LOB file associated with this base
file. For complete information about the LOB-related ADALOD parameters, read LOAD: Load
a File, in Adabas Utilities Manual.

Note: A base file-LOB file pair can also be established by just loading a LOB file, if a file
with LB fields (base file) is already present.

Specify the //DDAUSBA output data set from the ADACMP COMPRESS step as //DDEBAND
input data set for the ADALOD LOAD function.

3 Use the ADALOD LOAD function to load an empty LOB file and associate it with the base file
you loaded in the previous step or that you updated in Step 1. (The LOB and base files can
be loaded in either order, or even, in parallel.)

ADALOD LOAD FILE=12,LOB,NAME='LOB-FILE'
ADALOD BASEFILE=11
ADALOD MAXISN=500000,DSSIZE=500000B,NISIZE=4000B,UISIZE=40B
ADALOD ISNREUSE=YES,DSREUSE=YES,INDEXCOMPRESSION=YES
ADALOD ...
ADALOD SORTSIZE=100,TEMPSIZE=100

The LOB file type indicates that ADALOD should load a LOB file with a predefined FDT. No
//DDEBAND input data set need be supplied if you are loading an empty LOB file.

DBA Tasks200

Getting Started with Large Object (LB) Fields

The BASEFILE parameter specifies the file number of the base file associated with this LOB
file. For complete information about the LOB-related ADALOD parameters, read LOAD: Load
a File, in Adabas Utilities Manual.

Note: A base file-LOB file pair can also be established by just loading a LOB file, if a file
with LB fields (base file) is already present.

4 Run a database report using ADAREP and see how the base file and LOB file are shown in
the report.

5 Reevaluate and adjust the Adabas nucleus (ADARUN) parameters NISNHQ, NH, LP, LDEUQ,
LWP, NAB, and LU to make sure the nucleus will have sufficient resources for processing LB
fields. For more information about these parameters, read Adabas Initialization (ADARUN
Statement), inAdabasOperationsManual. For information on how these parameters might need
adjusting, read Migrating From Previous Adabas Versions, in the Planning Manual for Adabas 8

6 Write or adjust an application program to load data, including LB field values, into the base
file. Behind the scenes, Adabas will store LB field values (except for very short ones) in the
LOB file, but this is transparent to your application. Commands in application programs
should always be directed against the base file; application programs need neither know nor
care about the existence of a LOB file.

■ One way to work with LB fields is using Natural 4.2. The LB field (for example, L1) of the
LOB file is mapped to a dynamic variable in Natural. Otherwise, your application program
can be written in much the normal way. Natural will automatically issue the Adabas calls
in the format necessary to deal with large LB field values.

■ Alternatively, your application program can issue direct calls against Adabas. For calls with
large LB field values (more than 32 KB of data), you must use the ACBX direct call interface
of Adabas 8. (Calls using the ACB direct call interface can be used if all specified LB field
values fit into a single 32 KB buffer.) For more information, read Specifying an ACBX Interface
Direct Call, inAdabas Command Reference Guide. For example, you could specify the following
information in the ACBX direct call:

SpecificationDirect Call Component

ACBX ACBXCMD = N1 (insert record)
ACBXFNR = 11 (base file number)
...

First format/record buffer segment
pair

FB1 = 'AA,8,A,L1L,4,B,...,AZ,250,A.'
RB1 = 'KEY-1 ' X'000186A0' ... 'Some arbitrary ↩
data...'

201DBA Tasks

Getting Started with Large Object (LB) Fields

SpecificationDirect Call Component

Second format/record buffer
segment pair

FB2 = 'L1,*.'
RB2 = X'100,000 bytes of binary data'

The locations and lengths of the two buffer segment pairs must be given in four Adabas
buffer descriptions (ABDs), which are not shown here. For more information, read Adabas
Buffer Descriptions (ABDs), in Adabas Command Reference Guide

The length indicator (L) for the LB field in the first format buffer segment (L1L,4,B) specifies
that the length of the L1 field value proper is stored at the corresponding place in the first
record buffer segment, which indicates a LB field value length of 100,000 bytes (in hex,
186A0). For more information about the length indicator, read Length Indicator (L), in the
Adabas Command Reference Guide.

The asterisk (*) length notation in the second format buffer segment (L1,*) specifies that
the LB field value proper (without any further length information) is stored at the corres-
ponding location in the second record buffer segment. For more information about asterisk
length notation, read Asterisk (*) Length Notation , in the Adabas Command Reference Guide.

DBA Tasks202

Getting Started with Large Object (LB) Fields

IV Adabas Online System Demo Version

A demo version of Adabas Online System (AOS) and access to the online services for selected
other Adabas products and facilities is included with Adabas as shown in the following diagram:

AOS Demo Version

This part of the DBA tasks documentation describes the operation and use of the AOS demo version.
The use of the online services for the other Adabas products and facilities is described in the
manuals for those products and facilities. The demo services available for Adabas Fastpath
(AFPLOOK) and Adabas Vista (AVILOOK) are described inAFPLOOK andAVILOOK, elsewhere
in this manual. AOS Security is described in the Adabas Security documentation.

This information is organized under the following headings:

203

Overview

Main Menu Functions

Session Monitoring

List Checkpoints

File Maintenance

Database Maintenance

System Operator Command Functions

Database Report

DBA Tasks204

Adabas Online System Demo Version

26 Overview

■ What You Can Do with the AOS Demo Version .. 207

205

The AOS demo version includes the following functions that are comparable to Adabas operator
commands and utilities and are used for Adabas database analysis and control:

Overview of the AOS Demo Version

See the Adabas Installation documentation for information about installing the demo version of
AOS.

The AOS add-on product includes services that correspond to additional utility functions and
operator commands. Read the Adabas Online System documentation for information.

DBA Tasks206

Overview

What You Can Do with the AOS Demo Version

The DBA can use the AOS demo version to monitor aspects of an Adabas database while an
Adabas session is active. Using menu options, the DBA can view resource and hold queue status;
display space allocation; display file and database parameters; create new FDTs; and stop a current
Adabas session.

For analyzing performance and monitoring database operation, the AOS demo version displays
the system from the viewpoint of either a user or a particular system resource. For example, you
can

■ check hold queue status;
■ view nucleus parameters;
■ monitor command and file usage and system performance information;
■ list file layout and extent status; and
■ list file distribution of the database by VOLSER.

For controlling the overall Adabas session, the AOS demo version can be used to

■ create new FDTs; and
■ terminate an Adabas nucleus session (ADAEND).

207DBA Tasks

Overview

208

27 Main Menu Functions

■ Specifying the AOS Demo Version Database .. 211
■ Using Program Function (PF) Keys ... 211
■ Selecting a Menu Option ... 211
■ Getting Help ... 212
■ AOS Demo Version Messages ... 212

209

To enter the AOS demo version, log on to the Natural application SYSAOS and enter MENU at
the NEXT prompt, if one appears.

Note: If the full version AOS is installed on your system, enter MENU instead. See the
Adabas Online System documentation for more information.

14:40:37 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
- Main Menu - PMAIN02

Code Basic Services Code Other Services
---- ---------------------- ---- ---------------------
A Session monitoring 1 Adabas Cache Facility
C Checkpoint maintenance 2 Delta Save Facility
F File maintenance * Trigger Maintenance
M Database maintenance 4 AOS Security
O Session opercoms 5 Transaction Manager
R Database report 6 Adabas Statistics
* Space calculation 7 Vista
? Help 8 Fastpath
. Exit 9 SAF Security
---- ---------------------- ---- ---------------------

Code _
Database ... 1955 (WIS1955)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit

The Main Menu displays the functions available with Adabas Online System. AOS functions that
are not not available with the demo version are marked with an asterisk (*) on the screen.

From the Main Menu, you can access available "Basic Services" functions or one of the "Other
Services" installed on your system. Other services installed at your site are highlighted.

The Main Menu indicates the main DBA tasks in the demo version:

FunctionCode

Session monitoring allows you to display nucleus parameters, session and thread status information,
ISNs in the hold queue, and maintenance levels for nucleus modules

A

Checkpoint maintenance allows you to list checkpoint informationC

File maintenance allows you to define a new FDT for a new fileF

Database maintenance is not active for the demo versionM

Session opercoms allows you to add or delete PIN modules used by the extended error recovery facilities;
display currently loaded PIN routines and activate or deactivate them, display locked files, and
terminate a session normally (ADAEND)

O

DBA Tasks210

Main Menu Functions

FunctionCode

Database report allows you to view general database layout information, tables of database files, and
detailed information for any file

R

Subsequent sections in this chapter describe the major functions of the AOS demo version and
menu/screen structures in the order that they appear on the Main Menu.

Specifying the AOS Demo Version Database

The database on which the AOS demo version is installed becomes the default database for demo
version functions. However, you can specify the database of any active Adabas nucleus session.
Subsequent AOS demo version functions refer to that database until you specify another database
or exit the AOS demo version.

Using Program Function (PF) Keys

Available PF keys and their functions are listed at the bottom of each screen. The following program
function (PF) keys appear on all screens within the AOS demo version; other navigation keys appear
on some screens:

HelpPF1

Exit to previous screenPF3

Return to the Main MenuPF12

Selecting a Menu Option

To select a function or option, enter the option code in the Code field.

Selecting a Main Menu function displays a menu of choices for that function.

211DBA Tasks

Main Menu Functions

Getting Help

From any AOS demo version menu, you can use PF1 to display a brief comment about the current
menu. See Using Program Function (PF) Keys .

AOS Demo Version Messages

The AOS demo version issues a message confirming each completed function. If an error occurs,
a message appears containing a reference number and describing the error.

Before analyzing an error, try reviewing the help information (PF1) for the last step you performed
to see if any requirements were overlooked; then retry the operation.

Response code 22 is returned if the Adabas session is terminated and restarted while the AOS
demo version is active. In this case, the application should be stopped and restarted.

DBA Tasks212

Main Menu Functions

28 Session Monitoring

■ Display ADARUN Parameters .. 215
■ Display Hold Queue ... 216
■ Display System Status and Thread Usage .. 217
■ Display Maintenance Levels .. 220

213

Adabas session monitoring functions display major Adabas resources. These functions are most
useful when analyzing system performance or seeking the cause of performance problems.

14:38:19 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
- Session Monitoring - PAC0002

Code Service Code Service
---- -------------------------- ---- ----------------------------
* Display cluster members * Refresh nucleus statistics
* Maintain user profiles * Current session statistics
D Display parameters * Maintain TCP/IP URL
* Modify parameters U Display session utilization
Q Display queues Z Display maintenance levels
? Help
. Exit

---- -------------------------- ---- ----------------------------

Code _
Database ID .. 1955 (WIS1955) NucID .. 1022

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

You can use the Session Monitoring environment to monitor the Adabas nuclei in a multiprocessing
(Parallel Services or Cluster Services) environment. When the DBID of a Parallel or Cluster Services
database is entered on the Session Monitoring menu, subsequent screens include a field to specify
the ID of the nucleus in the cluster that you want to monitor.

Each of the functions on the Session Monitoring menu is discussed in the following sections:

FunctionCode

Display Adabas nucleus (ADARUN) parametersD

Display the contents of the hold queueQ

Display session status and thread usageU

Display Adabas nucleus modules: maintenance levels and ZAPs appliedZ

DBA Tasks214

Session Monitoring

Display ADARUN Parameters

You can view Adabas nucleus (ADARUN) parameters.

To view the parameters, select option D from the Session Monitoring menu.

Three screens are used for displaying parameters:

16:33:03 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
DBID 105 - Display Parameters - PACP002

Modify parameters below, as required:
-------------- Pools --------------- ----------- Queues ------------------
Sort Area (LS) .. 19968 Command Queue (NC) .. 100
Int. User Buffer (LU) .. 65535 Hold Queue (NH) .. 9000
Buffer Pool (LBP) .. 127936 User Queue (NU) .. 700
Format Pool (LFP) .. 12000 ---------- Time Windows -------------
ISN List Table (LI) .. 10000 Transaction Time (TT) .. 300
Seq. Cmd. Table (LQ) .. 2500 Max Transaction Time (MXTT) .. 3600
Work Pool (LWP) .. 500000 Nonactivity ACC-User (TNAA) .. 300
Attached Buffer (NAB) .. 35 Nonactivity ET-User (TNAE) .. 300
Security Pool (LCP) .. 10000 Nonactivity EXU-User (TNAX) .. 300
UQ-DE Pool (LDEUQP) .. 5000 Max Nonactivity Time(MXTNA) .. 3600
Flush I/O Pool (LFIOP) .. 125000 Time Limit Sx-Cmds (TLSCMD) .. 286
Err. Recovery(SMGTBUFF) .. 0 Max Time for Sx-Cmds(MXTSX) .. 3600

Command Time (CT) .. 9000
SYNS60 Interval (INTNAS) .. 3600

Page 1 of 3
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit + Menu

215DBA Tasks

Session Monitoring

16:33:03 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
DBID 105 - Display Parameters - PACP002

Modify parameters below, as required:
--------- Miscellaneous ----------- -------- User Specific Limits ---------
ReadOnly session (READONLY) .. NO Hold Queue Limit (NISNHQ) .. 2200
UTI only session (UTIONLY) .. NO CIDs per User (NQCID) .. 75
OPEN required (OPENRQ) .. NO ISNs / TBI Element (NSISN) .. 51
Ignore DIB Entry (IGNDIB) .. NO ------------ Buffer Pool --------------
Local nucleus (LOCAL) .. NO Bufferflush Dur. (TFLUSH) .. 1
Number of Threads (NT) .. 4 Parallel LFIOP I/O (FMXIO) .. 60
Non DE Search (NONDES) .. YES Async. by Vol-Ser (ASYTVS) .. YES
Log AOS/DBS Update (AOSLOG) .. NO
Batch Support (BATCH) .. NO
Data Protection Area (LP) .. 500
Ignore Work Part 4 (IGNTPC) .. NO
WORK-Part-4 Area (LTPC) .. 0
WORK-Part-2 Area (LWKP2) .. 0

Page 2 of 3

Modify parameters below, as required:
 ---- Command Logging ---- ---------- Protection Logging -----------
 Command Logging .. NO PLOG required (PLOGRQ) .. NO
 LOGCB NO DUAL PLOG Size (DUALPLS) .. 0
 LOGFB NO DUAL PLOG Device (DUALPLD) .. 0
 LOGRB NO ------------ Other Services -------------
 LOGSB NO Triggers and Procedures (SPT) .. NO
 LOGVB NO Delta Save Facility (DSF) .. NO
 LOGIB NO Cache Facility (CACHE) .. NO
 LOGIO NO Transaction Manager (ATM) .. NO
 LOGUX NO TCP/IP Support (TCPIP) .. NO
 LOGSIZE 8904 Ext. Error Recovery (SMGT) .. NO
 DUAL CLOG Size ... 0 2 Phase Commit Support (TPC) .. NO
 DUAL CLOG Dev. ... 0 Review Support (REVIEW) .. NO

 Page 3 of 3
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit ↩

Display Hold Queue

Selecting Queue displays (option Q) from the Session Monitoring menu displays the following
menu:

DBA Tasks216

Session Monitoring

09:00:20 ***** A D A B A S BASIC SERVICES ***** 1997-01-29
- Queue Displays - PACQ002

Code Service
---- ---------------------------
* Display User Queue Elements
* Display Command Queue
H Display Hold Queue
? Help
. Exit

---- ----------------------------
Code _
Max No. Elements ... 100
Last Activity 0 (elapsed time in seconds)
Selection Criteria
ET-ID (User-ID) .. ________ User Type ... ___
Job Name ________
Terminal ID ________

Database ID 105 (RD-105)
Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Clear UID Menu

Option H displays a list of the ISNs currently in hold status.

If the queue is currently empty, an appropriate message appears.

Display System Status and Thread Usage

Selecting Resource utilization (option U) from the Session Monitoring menu invokes the Resource
Utilization menu:

217DBA Tasks

Session Monitoring

11:44:10 ***** A D A B A S BASIC SERVICES ***** 1997-01-30
- Resource Utilization - PACU002

Code Service
---- -------------------------------
* Command usage
* File usage
* High water marks (pools/queues)
* Workpool (LWP) usage
* PLOG status
S System status
T Thread usage
* WORK status
? Help
. Exit

-------- -------------------------------
Code _
File Number .. 0
Database ID .. 105 (RD-MPM105)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

Each option allows you to refresh (PF4) the displayed values, a convenience for long-term mon-
itoring of Adabas system functions.

System Status

System status (option S) displays I/O counts for the ASSO, DATA, WORK, and PLOG data sets;
remote and local call distribution; and other current session status information.

DBA Tasks218

Session Monitoring

16:44:13 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
DBID 105 - System Status - PACUS02

Physical
Reads Writes Call Distribution

------------------------- ---------------------------------------
ASSO 132 29 Remote Logical 0
DATA 3 9 Remote Physical 0
WORK 4 29 Local Logical 145
PLOG 0 Local Physical 0
Logical Reads 194 Logical Reads (binary) 000000C2
Buffer Efficiency 1.4 No. of HQEs active 0

No. of UQEs in User Queue .. 2
Format Translations .. 0 No. of CQEs waiting in CQ .. 0
Format Overwrites 0

Total intern. Autorestarts . 0
Throw Backs for ISN .. 0 No. of PLOG switches 0
Throw Backs for Space. 0 No. of Bufferflushes 8

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Refresh Menu

Thread Usage

Thread usage (option T) displays a table of all defined Adabas threads, the status of each, the com-
mand type currently in process in each active thread, and the number of commands processed by
each thread in the current session.

11:47:18 ***** A D A B A S BASIC SERVICES ***** 1997-01-30
DBID 105 - Thread Status - PACUT02

Nr. I Thread Status I Command Type I Nr. CMDs I

1 I Active I Simple Cmd. I 18992 I
2 I Not active I I 109 I
3 I Not active I I 0 I
4 I Not active I I 0 I
5 I Not active I I 0 I

I I I I

219DBA Tasks

Session Monitoring

Display Maintenance Levels

Selecting Display maintenance levels (option Z) from the Session Monitoring menu displays inform-
ation about the Adabas nucleus modules:

13:43:09 ***** A D A B A S BASIC SERVICES ***** 1999-06-09
DBID 105 - Display Maintenance Levels - DPACZ02

Select Module Name: ________

ADARUN RUNMVS Date 1998-10-27, Version 7.1. 0, Zap Base AO10000
RUNIND Date 1998-10-27, Version 7.1. 0, Zap Base AI10000

ADATSP Date 1998-10-30, SM Level 00, Zap Level 0000
Zaps 0034 0040 0043 0083 0084 0099

ADATCP Date 1998-10-30, SM Level 00, Zap Level 0000
Zaps 0136

ADAMSG Date 1998-10-30, SM Level 00, Zap Level 0000
ADAIOR Date 1998-10-29, SM Level 00, Zap Level 0000
ADAIOS Date 1998-10-29, SM Level 00, Zap Level 0000

Zaps 0001 0003 0004 0005 0007
ADANC0 Date 1998-11-01, SM Level 00, Zap Level 0000

Zaps 0036

Command ===>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit -- - + Menu

Maintenance levels for each module are displayed. Any ZAPs that are applied to the module are
also listed.

The list of modules can be limited by entering a specific module name in the Select Module Name
field at the top of the screen. A starting value may also be used. For example, specifying ADANC3
displays information for the ADANC3 module only. Specifying ADANC* lists all modules with
names that begin with ADANC.

DBA Tasks220

Session Monitoring

29 List Checkpoints

SelectingCheckpoint maintenance (option C) from the Main Menu invokes the Checkpoint Mainten-
ance menu:

14:41:59 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
- Checkpoint Maintenance - PCP0002

Code Service
---- -----------------------
C List checkpoints
* Delete checkpoints
? Help
. Exit
---- -----------------------

Code _
Date(YYYY-MM-DD) . 0000-00-00
Ext. CP-list N
Checkpoint Name .. ALL
Database ID 1955 (WIS1955)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

Option C lists checkpoints currently in the checkpoint file.

The result can be either a basic or an extended list, depending on the setting of the External CP-
list field, which can be used to override the CPEXLIST operating control parameter.

You can start the list of checkpoints on a particular day by entering the date in the Date field in
exactly the format shown.

221

You can specify the database for which the checkpoint list is to be written.

You can restrict the list to a particular type of checkpoint by changing the ALL designation in the
Checkpoint Type field to one of the following:

nucleus initializationSYNC

user open EXFSYNF

utility without NUCSYNP

ADARESSYNS

volume ID changeSYNV

utilitySYNX

ADASAV DB beginSYN1

ADASAV DB beginSYN2

ADASAV file beginSYN4

ADASAV file beginSYN5

For more information about checkpoint types, see ADAREP in the Adabas Utilities documentation
.

The following screen displays a normal checkpoint list:

15:12:22 ***** A D A B A S Basic Services ***** 1997-01-30
DBID 105 - List Checkpoints - PCPC002

CP CP Date Time PLOG Block Vol/Ser User Job Name
Name Type Number Number Number Type
---- ---- ---------- -------- ------ ---------- -------- ---- --------
SYNC 01 1996-04-01 00:29:41 MPM105
SYNS 60 1996-04-01 02:00:37 ADABAS
SYNP 06 1996-04-01 02:43:55 PMS105SS
SYNV 0A 1996-04-01 02:59:51 PMS105SS
SYNV 0A 1996-04-01 02:59:51 PMS105SS
SYNV 0A 1996-04-01 02:59:51 PMS105SS
SYNV 0A 1996-04-01 02:59:51 PMS105SS
SYNC 01 1996-04-01 03:12:30 MPM105
SYNS 60 1996-04-01 04:34:43 ADABAS

This screen illustrates an extended checkpoint list providing additional information about each
checkpoint:

DBA Tasks222

List Checkpoints

12:58:49 ***** A D A B A S Basic Services ***** 1997-01-31
DBID 105 - List Checkpoints - PCPC002

CP CP Date Time PLOG Block Vol/Ser User Job Name
Name Type Number Number Number Type
---- ---- ---------- -------- ------ ---------- -------- ---- --------
SYNC 01 1996-04-01 00:29:41 MPM235

SESSION OPEN IGNDIB = N , FORCE = N
SYNS 60 1996-04-01 02:00:37 ADABAS

STATISTIC RECORD
SYNP 06 1996-04-01 02:43:55 PMS235SS

SAVE DB
SYNV 0A 1996-04-01 02:59:51 PMS235SS

SAVE DB VOL-SER = 502461 SESSION = 933
SYNV 0A 1996-04-01 02:59:51 PMS235SS

SAVE DB VOL-SER = SESSION = 933
SYNV 0A 1996-04-01 02:59:51 PMS235SS

SAVE DB VOL-SER = 502215 SESSION = 933

223DBA Tasks

List Checkpoints

224

30 File Maintenance

Selecting option F from the Main Menu invokes the File Maintenance menu:

14:42:25 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
- File Maintenance - PFL0002

Code Service
---- ------------------------------
C Define/modify FDT
* Release descriptor
* Delete existing file
* Define new file
* Modify file parameters
* Reorder file online
* Refresh file to empty status
* Allocate/deallocate file space
* Maintain expanded files
? Help
. Exit
---- ------------------------------

Code _
File No 0 Descriptor Name .. __
Database ID .. 1955 (WIS1955)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

From the File Maintenance menu, option C displays the FDT/SDT Definition / Modification menu:

225

15:34:30 ***** A D A B A S BASIC SERVICES ***** 1998-07-30
- FDT/SDT Definition / Modification - PFLC002

Code Service
---- -------------------
* Add new field(s)
* Change field length
D Define new FDT
* Online invert
* Define/add SDT
? Help
. Exit
---- -------------------

Code _
File No. 50
Field Name ... __
Database ID .. 105 (RD-MPM105)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Def. File Exit Menu

From the FDT/SDT Definition / Modification menu, option D displays the Define FDT screen,
which can be used to define a new FDT for a new file:

5:13:34 ***** A D A B A S BASIC SERVICES ***** 1997-02-12
DBID 105 - Define FDT - PFLCD02

File Number ... 200 New FDT ... Y
Enter Field Description(s) :

I Level I Name I Length I Format I Options I
I---
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I
I __ I __ I ___ I _ I __ __ __ __ __ I

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

FDTs for existing files cannot be redefined with this option.

DBA Tasks226

File Maintenance

This function corresponds to the Adabas utility function ADACMP COMPRESS.

227DBA Tasks

File Maintenance

228

31 Database Maintenance

Selecting option M from the Main Menu invokes the Database Maintenance menu:

14:42:42 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
- Database Maintenance - PDM0002

Code Service
---- ----------------------------
* Add new dataset to ASSO/DATA
* Increase/decrease ASSO/DATA
* List/reset DIB block entries
* Recover unused space
* Uncouple two ADABAS files
? Help
. Exit

---- ----------------------------

Code _
File No. 0
Coupled File .. 0
Database ID ... 1955 (WIS1955)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

None of the Database Maintenance functions are active for the demo version.

229

230

32 System Operator Command Functions

■ Extended Error Recovery .. 232
■ Display Locked Files .. 235
■ Stop User(s) ... 236
■ Terminate a Session Normally (ADAEND) ... 237

231

Selecting Session opercoms (option O) from the Main Menu displays the following menu:

14:43:03 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
- Session Opercoms - PACI002

Code Service Code Service
---- ------------------------------ ---- ------------------------------
* Allocate/Deallocate CLOG/PLOG S Stop user(s)
E Extended Error Recovery T Termination Commands
* Force Dual CLOG or PLOG switch * Manage Online Utilities
L Lock or unlock files * User Table Maintenance
* Reset ONLINE-DUMP-Status
? Help
. Exit

---- ------------------------------ ---- ------------------------------
Code _
Userid(ETID) ... ________
CLOG/PLOG Ind .. _ Global.. _
Database ID 1955 (WIS1955) NucID .. 1022

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

The following functions are available to the AOS demo version:

FunctionCode

Add or delete PIN modules used by the extended error recovery facilities; display, activate or deactivate
current PIN routines

E

Display locked filesL

Stop a specific user, all users of a specific file or job, or all inactive usersS

Terminate a session normally (ADAEND)T

Extended Error Recovery

Selecting option E (extended error recovery) from the Session Opercoms menu displays the Exten-
ded Error Recovery menu:

DBA Tasks232

System Operator Command Functions

14:44:35 ***** A D A B A S BASIC SERVICES ***** 1999-05-12
- Extended Error Recovery - DPACIE2

Code Service
---- ----------------------------------
* Display message buffer
* Display/modify environment
* Display/modify Exit routines
M Add/Delete PIN modules
P Display/modify PIN routines
* Refresh threshold and alert exits
* SNAP a nucleus dump
? Help
. Exit

------ ----------------------------------

Code _
Start Address .. End Address ...
Database ID 823 (RD-CK-823)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

From this menu you can

■ add or delete PIN modules;
■ display, activate, or deactivate specific PIN routines.

Add / Delete PIN Modules

Selecting option M (add/delete PIN modules) from the Extended Error Recovery menu displays
a list of currently available PIN modules:

13:42:45 ***** A D A B A S BASIC SERVICES ***** 1999-06-18
DBID 823 - Add/Delete PIN Modules - PACIEM2

Mark entries with 'A' to Add or 'D' to Delete:

M Module Description Message
- -------- ------------------------------ -------
_ ADAMXY Standard Nucleus PIN Routines

PINAAF SAF Security
PINAFP Adabas Fastpath
PINATM Adabas Transaction Manager
PINAVI Adabas Vista

_ PINRSP Adabas Response Code Handler
_ PINUES Universal Encoding Support

To load a PIN module into memory, enter `A' in the M column next to the module name.

233DBA Tasks

System Operator Command Functions

This command is successful only if the exit module exists in a library accessible to the Adabas
nucleus.

To remove a PIN module from memory, enter a `D' in the M column next to the module name.

When deleting a PIN module from memory, all related PIN routines are also removed.

These functions are the same as the extended error recovery operator commands

SMGT,{ADDPIN | DELPIN}=module-name

Display/Modify PIN Routines

Selecting option P (display/modify PIN routines) from the Extended Error Recovery menu displays
a list of PINs currently loaded in memory:

13:08:49 ***** A D A B A S BASIC SERVICES ***** 1999-06-16
DBID 105 - List/Modify PIN Routines - PACIEP2

Mark entries with 'A' Activate, or 'D' Deactivate: Total Pins: 012

M Condition Error Location Status Uses Module Message
- --------- ---------------------------- ------- ---- -------- -----------
_ 000C1000 All Locations Active 0 ADAMXY
_ 000C2000 All Locations Active 0 ADAMXY
_ 000C3000 All Locations Not Act 0 ADAMXY
_ 000C4000 All Locations Active 0 ADAMXY
_ 000C5000 All Locations Active 0 ADAMXY
_ 000C6000 All Locations Active 0 ADAMXY
_ 000C7000 All Locations Not Act 0 ADAMXY
_ 000C8000 All Locations Active 0 ADAMXY
_ 000C9000 All Locations Active 0 ADAMXY
_ 000CB000 All Locations Active 0 ADAMXY
_ 000CF000 All Locations Active 0 ADAMXY
_ 00047000 All Locations Active 0 ADAMXY

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Refr -- - + Menu

For all PIN routines on the list, the screen indicatess the conditions that cause them to be executed,
the current status, the number of times they have been used, and the module in which they are
located.

To change the status of the PINs from this screen, enter in the M column next to the PIN number

DBA Tasks234

System Operator Command Functions

to activate a PINA

to deactivate a PIND

After changes have been made, use PF4 to refresh the screen.

These functions are the same as the extended error recovery operator commands

SMGT,DISPLAY=PINS
SMGT,{ACTPIN | DEACTPIN}=pin-number

Display Locked Files

Selecting option L from the Session Opercoms menu displays the following:

16:02:10 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
- Lock / Unlock Files - PACIL02

Code Service
---- ----------------------------------
D Display locked files
* Lock file for all users
* Advance lock file
* Lock file except for UTI/EXF users
* Unlock file from general lock
* Release an advance lock
* Unlock file from UTI/EXF lock
? Help
. Exit
---- -----------------------------------

Code _
File Number .. 30
UTI/EXF Ind .. U
Database ID .. 105 (RD-105)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

Option D from this menu displays the Display Locked Files screen:

235DBA Tasks

System Operator Command Functions

10:57:45 ***** A D A B A S BASIC SERVICES ***** 1998-07-31
DBID 105 - Display Locked Files - PACID02

M Fnr. Lock Status M Fnr. Lock Status
- ----- ------------------------- - ----- -------------------------

1 Locked for ALL users
35 Locked except for UTI
50 Locked except for EXU/EXF
55 Locked for ALL users
60 Locked for ALL users

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit -- - + Menu

Stop User(s)

Selecting option S (stop users) from the Session Opercoms menu displays the Stop Users menu:

DBA Tasks236

System Operator Command Functions

18:26:02 ***** A D A B A S BASIC SERVICES ***** 1999-07-29
- Stop Users - PACIS02

Code Service
---- -----------------------
* Stop users using file
* Stop inactive users
* Stop users by jobname
* Stop a selected user
? Help
. Exit

---- -----------------------
Code _
File Number _____
Last Activity ________ (elapsed time in seconds)
Job Name ________
Purge UQE(s) N
Selected Userid ..
Database ID 105 (RD-105)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Disp UQ Exit Clear UID Menu

None of the Stop Users functions are active for the demo version.

Terminate a Session Normally (ADAEND)

Selecting option T from the Session Opercoms menu invokes the Session Termination menu from
which you can terminate a session normally (ADAEND).

237DBA Tasks

System Operator Command Functions

11:43:00 ***** A D A B A S BASIC SERVICES ***** 1997-01-30
- Session Termination - PACT002

Code Service
---- -----------------------------------
A Normal session termination (ADAEND)
* Cancel session immediately (CANCEL)
* Stop session (HALT)
? Help
. Exit

-------- -----------------------------------
Code _
Database ID .. 105 (RD-MPM105)
Current nr. of users in User Queue ... 9
Nr. of users with open transactions .. 0

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

You are prompted to confirm your termination request before the action is taken.

DBA Tasks238

System Operator Command Functions

33 Database Report

■ Display Files ... 240
■ Display General Database Layout ... 244

239

Database Report functions, which correspond to selected functions of the Adabas ADAREP utility,
provide both general and specific information in either table or report format.

14:43:26 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
- Database Report - PDR0002

Code Service
---- -------------------------------------
* List files with crit. no. of extents
* Display field description table (FDT)
F Display file(s)
G General database layout
* List VOLSER distribution of database
* Display ASSO/DATA block (RABN)
* Display unused storage
? Help
. Exit
---- -------------------------------------

Code _
File No 0_____ Password ..
Database ID .. 1955 (WIS1955)
VOLSER ______

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

Options available to the AOS demo version allow you to view database-level general information
and tables of database files, and file-specific information for any file:

FunctionCode

Display file(s), either a list of all files in the specified database or detailed information about a specific
file.

F

Display the general layout of the specified database.G

Display Files

If no particular file is specified, option F lists all files in the specified database. If a file is specified,
option F provides detailed layout information for the file. Physical device and file layout inform-
ation is available only for a specific file.

DBA Tasks240

Database Report

Display a List of Files in the Specified Database

When no file number or "0" (zero) is specified in the File No field on the Database Report menu,
a list of the files in the specified database is displayed:

09:24:38 ***** A D A B A S BASIC SERVICES ***** 1997-02-20
DBID 105 - Display Files - PDRF002

Fnr File Name Loaded Top-ISN Max-ISN Ext. Pad % Ind. %Used
NUAD A D ACISEXU A D

---- ---------------- ---------- ---------- ---------- ---- -- -- ------- -----
1 EMPLOYEES 1993-06-15 1110 5511 1111 3 3 NNISNNN 68 88
2 MISCELLANEOUS 1993-06-15 1779 5511 1111 3 3 NNISNNN 32 88
4 AUTOMOBILES 1993-06-15 1000 5511 1111 3 3 NNISNNN 34 36
5 PERSONNEL 1993-06-15 1000 5511 1111 3 3 NNISNNN 38 52
6 FINANCE 1993-06-15 1000 5511 1111 3 3 NNISNNN 52 52
7 GDMUSIC 1992-05-01 3292 16535 1111 3 3 NNNSNNN 81 95
8 SAMPC-REV311DATA 1992-05-01 44679 100593 1111 3 3 NNNSNNN 79 99
9 RD-NAT217-FUSER 1993-09-23 163272 175005 1111 3 3 NNISNNN 76 99

10 RD-PRD314-FDIC 1992-05-01 60016 63387 1111 3 3 NNNSNNN 73 90
11 REV320-DBFILE 1992-05-01 4442 11023 1111 10 10 NNNSNNN 42 82
12 REV340-DBFILE 1993-02-15 52008 63387 1111 10 10 NNNSNNN 6 13
13 SASRM-ZAP-TEST 1992-05-01 11 1377 1111 3 3 NNNSNNN 93 4
14 SASRM-ZAPSYS 1992-05-01 5 1377 1111 3 3 NNNSNNN 28 4
16 SAGDT-PRD-FDIC 1992-05-01 25649 30315 1111 3 3 NNISNNN 57 85

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Repos Exit -- - + Menu

The PF2 (Reposition) key displays a window in which you can enter a new starting value for the
file list. When you enter a file number, the Display Files list begins with that file.

The Display Files screen provides the following information for each file:

■ file number and file name;
■ date the file was loaded into the database;
■ highest ISN currently in use in the file and the highest ISN allowed in the file;
■ number of logical extents currently assigned: by Associator (N ormal index; U pper index; A

ddress converter) and D ata Storage. A maximum of five logical extents may be allocated to a
file.

■ block padding factor percentage defined for the Associator and for Data Storage;
■ indicators as follows:

241DBA Tasks

Database Report

ADAM option: A = ADAM ISN- or descriptor-selected file; N = non-ADAM file.A

coupled (C) or non-coupled (N) file.C

ISNs are reusable (I) or not (N).I

Data Storage blocks are reusable (S) or not (N).S

data files are ciphered/encrypted (E) or not (N).E

files are expanded (X) or normal (N).X

USERISN option: U = option is in effect for the file; N = option is not in effect.U

■ percentage of allocated space currently used by the file in the Associator and in Data Storage.

Display Information for a Specific File

When a valid system file number is specified on the Database Report menu, the following Display
File Layout information is displayed for that file:

18:27:37 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
DBID 105 - Display File Layout - PDRF012

* File 75 * UES-FILE

Records loaded 1107 Date loaded 1999-01-26 12:18:17
Top ISN 1107
Max ISN expected ... 1502 Max Compr Rec Lngth .. 4816
Minimum ISN 1 Asso/Data Padding 3%/3%
Size of ISN 3 Bytes Highest Index Level .. 3
Number of Updates .. 0
ISN Reusage NO USERISN NO
Space Reusage YES MIXDSDEV NO
ADAM File NO PGMREFRESH NO
Ciphered File NO NOACEXTENSION NO
Coupled Files NONE Universal Encoding ... YES
Blk per DS Extent .. 0
Blk per UI Extent .. 0
Blk per NI Extent .. 0 Length of Owner ID ... 0

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Refresh Menu

The information for the file can be refreshed by pressing PF4 .

You can display additional information about space allocations by pressing ENTER .

The Display File Layout screen displays the following information for the file:

■ the file number and name;
■ the number of records currently contained in the file;

DBA Tasks242

Database Report

■ ISN information: the highest ISN currently used in the file; the highest ISN planned for the file
(see the ADALOD utility's MAXISN parameter); the lowest ISN that can be assigned to a record
in the file (see the ADALOD utility's MINISN parameter); whether 3- or 4-byte ISNs are used
for the file; and whether ISNs can be reused.

■ the total number of updates since the file was last loaded;
■ other file option settings: whether Data Storage space can be reused; whether the file was loaded

with the ADAM option, the cipher option, the USERISN option; whether the file is physically
coupled to another file; whether Data Storage extents can be on different device types; whether
the file can be refreshed using the E1 command; whether the file permits the MAXISN setting
to be increased.

■ the number of blocks allowed per Data Storage, upper index, and normal index extent;
■ the date and time the file was last loaded;
■ the maximum compressed record length permitted for the file (see the ADALOD utility's

MAXRECL parameter);
■ the padding factor for the Associator and for Data Storage;
■ the highest index level currently active for the file;
■ the total number of blocks in the file that have been changed by updates since the file was last

loaded;
■ the length of the owner ID for multiclient files.
■ whether universal encoding support (UES) is being used.

Pressing ENTER from the initial Display File Layout screen displays the following space allocation
and usage information:

243DBA Tasks

Database Report

18:33:41 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
DBID 105 - Display File Layout - PDRF022

File 75

IDeviceIListI Space allocated I From To I Unused I
I Type ITypeI Blocks / Cyls. I RABN RABN I Blocks / Cyls.I

-----I------I----I-------------------I --------------------I----------------I
I I I I I I

ASSO I 3380 I AC I 3 0 I 724 - 726 I 0 0 I
I 3380 I UI I 15 0 I 747 - 761 I 0 0 I
I 3380 I NI I 20 0 I 727 - 746 I 0 0 I
I 3380 I NI I 56 0 I 762 - 817 I 2 0 I
I I I I I I

DATA I 3380 I DS I 116 0 I 216 - 331 I 29 0 I

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Refresh Menu

Display General Database Layout

Option G displays general database information on the Display General DB-Layout screen:

DBA Tasks244

Database Report

18:43:07 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
DBID 105 - Display General DB-Layout - PDRG002

Isolated
Database Name RD-105
Database Number 105
Database Version 7.1
Database Load Date 1998-10-21 14:40:47
System Files 19 , 0 , 0 , 0 , 0 , 0 , 0 , 0
Maximum Number of Files .. 100
Number of Files Loaded ... 5
Highest File Loaded 75
Trigger File Number 14
Size of RABN 4 Bytes
Current Log Tape Number .. 5
Delta Save Facility Inactive
Recovery Aid Facility Inactive
Universal Encoding Sup. .. Yes

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

You can display additional information about UES codes, coupling, and space allocations by
pressing ENTER.

The Display General DB Layout screen displays the following information for the file:

■ the name and number of the database;
■ the version level of the Adabas database software;
■ the date and time the database was loaded;
■ the numbers of Adabas system files allocated to the database;
■ the maximum number of files permitted for the database; the total number of files currently

loaded; and the highest file number currently in use;
■ whether 3- or 4-byte RABNs are being used for the file;
■ the number of the most recent data protection log tape for the database;
■ whether the Adabas Delta Save Facility and/or the Adabas Recovery Aid (ADARAI) are active

or inactive for the database.
■ whether universal encoding support (UES) is being used.

When universal encoding support (UES) is being used, pressing ENTER from the initial Display
File Layout screen lists the current code values:

245DBA Tasks

Database Report

18:51:22 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
DBID 105 - Display General DB-Layout - PDRG002

Universal Encoding Support Enabled

UES Encoding Keys:

Alpha File Encoding 37
Wide File Encoding 4095
Alpha ASCII Encoding 437
Wide User Encoding 4095

In any case, pressing ENTER from the initial Display File Layout screen displays the following
space allocation and usage information:

18:52:01 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
DBID 105 - Display General DB-Layout - PDRG002

IDeviceI Total Number of I Extents in Block I DD-Names I
I Type I Blocks / Cyls. I From To I I

------I------I----------------------I -------------------------I----------I
I I I I I

ASSO I 3380 I 14231 50 I 1 14231 I DDASSOR1 I
I I I I I

DATA I 3380 I 6741 50 I 1 6741 I DDDATAR1 I
I I I I I

WORK I 3380 I 3592 30 I 1 3592 I DDWORKR1 I

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

DBA Tasks246

Database Report

V AppendicesAppendix

■ A Appendices ... 249
■ B Appendix ... 273

247

248

A Appendices

■ CLOGLAYOUT=5 Record Layout .. 250
■ CLOGLAYOUT=8 Record Layout .. 251
■ Command Type Field in CLOGLAYOUT Records ... 251
■ Remote Nucleus ID Field in CLOGLAYOUT Records .. 251
■ Command-Executing Nucleus ID Field in CLOGLAYOUT Records ... 252
■ Timestamps in CLOGLAYOUT Records ... 252
■ PRILOG : Printing the Command Log .. 252
■ PRILOGC: Printing the Command Log ... 261

249

Two command log layout formats are supported by Adabas mainframe products:

■ The first format (invoked by CLOGLAYOUT=5) is supported in all supported Adabas mainframe
versions and is the default format.

The DSECT that maps the layout of the CLOGLAYOUT=5 records is called LOREC and can be
found in the ADAvrs.SRCE library.

■ The second format (invoked by CLOGLAYOUT=8) is supported only in Adabas version 8 or
later. This format includes all of the information provided in CLOGLAYOUT=5, but each buffer
is prefixed by its corresponding Adabas buffer description (ABD) as well. Each segmented
buffer (format, record, or multifetch) is written separately and uniquely identified.

The DSECT that maps the layout of the CLOGLAYOUT=8 records is called LORECX and can
be found in the ADAvrs.SRCE library.

This document describes the command log formats that Adabas supports as well as some command
log utilities.

Notation vrs, vr, or v: When used in this documentation, the notation vrs or vr stands for the
relevant version of a product. For further information on product versions, see version in the
Glossary.

CLOGLAYOUT=5 Record Layout

Command log layout 5 comprises two log record types:

■ the basic log record type (x'0001') is produced for all commands processed on noncluster nuclei
and for those that arrive from a remote nucleus and run under internal command queue elements
(ICQEs).

■ the asynchronous request log record type (x'0002') is created on a nucleus that sends a command
to another nucleus. This record type is used in Adabas nucleus cluster environments only.

The DSECT that maps the layout of the CLOGLAYOUT=5 records is called LOREC and can be
found in the ADAvrs.SRCE library.

DBA Tasks250

Appendices

CLOGLAYOUT=8 Record Layout

Command log layout 8 comprises two log record types:

■ the basic log record type (x'0001') is produced for all commands processed on noncluster nuclei
and for those that arrive from a remote nucleus and run under internal command queue elements
(ICQEs).

■ the asynchronous request log record type (x'0002') is created on a nucleus that sends a command
to another nucleus. This record type is used in Adabas nucleus cluster environments only.

The DSECT that maps the layout of the CLOGLAYOUT=8 records is called LORECX and can be
found in the ADAvrs.SRCE library.

Command Type Field in CLOGLAYOUT Records

The command type field (at hexadecimal offset 12 in the LOREC DSECT and hexadecimal offset
23 in the LORECX DSECT) refers to the following command types:

A1/A4, E1/E4, N1/N2Update

All non-update commands with a single search argument.Simple

All non-update commands with more than one search argument.Complex

The command type field may contain other information that is unrelated to commands. The flags
should therefore be tested with a binary mask:

B'xxxx xusc'

where u is the update flag bit, s is the simple flag bit, and c is the complex flag bit.

Remote Nucleus ID Field in CLOGLAYOUT Records

The remote nucleus field (at offset 4D in the LOREC DSECT and offset 1C in the LORECX
DSECT)represents a remote nucleus ID.

■ For the basic log record type (x'0001') where the command originates in another nucleus, this
field contains the ID of the nucleus that sent the command. It remains zero for locally-executed
commands and noncluster nuclei.

■ For the asynchronous request log record type (x'0002'), this field contains the ID of the nucleus
to which the command is sent. It is zero for implicit broadcasts (GLOBAL and SYSTEM) and

251DBA Tasks

Appendices

contains the ID of the first destination for explicit broadcasts (list of destinations). The CLOG
record contains the Adabas control block, buffers, and (if appropriate) Adabas buffer descriptions
(ABDs) related to the first (or only) destination, and the job name and communications ID of
the initiator of the request.

Command-Executing Nucleus ID Field in CLOGLAYOUT Records

The nucleus ID field at offset 58 in the LOREC DSECT and at offset 1A in the LORECX DSECT
provides the ID of the nucleus executing the command. In a cluster environment, the nucleus ID
is either the SMPID or the PLXID; in a noncluster environment, the nucleus ID is zero (0).

Timestamps in CLOGLAYOUT Records

Timestamps in an Adabas 8 command log created using CLOGLAYOUT=8 are stored in machine
time (GMT), whereas CLOGLAYOUT=5 timestamps are stored, as always, in local time. The
LORECX record layout that describes the CLOGLAYOUT=8 command log includes a differential
time field that stores the difference between machine time and local time at the time the CLOG
record is written. This field allows you to calculate the local time of a command log record.

Because of the different timestamp formats used in CLOGLAYOUT=5 and CLOGLAYOUT=8
command logs, we do not recommend that you mix or merge command logs created using different
CLOGLAYOUT settings (and, in fact, Adabas does not allow this in cluster or parallel services
environments). If you do, your results will be unpredictable.

The command logs used for all Adabas nuclei in a cluster environment must be created using the
same CLOGLAYOUT setting. If you mix settings, your results will be unpredictable.

PRILOG : Printing the Command Log

Adabas provides the PRILOG print program to read and report the contents of Adabas command
logs in either version 5 or version 8 command log layout format.

PRILOG reads a sequential Adabas command log that has been produced directly by the Adabas
nucleus (DD/LOG file) or by the ADARES CLCOPY utility when the Adabas nucleus uses dual
or multiple comand logging.

PRILOG is supplied in both source and object form.

Note: Although PRILOG can be customized, Software AG does not support the program
when it has been modified by the user.

DBA Tasks252

Appendices

In source form, three modules (PRILOG, CCSTCK, and PRILOGD) are supplied for the z/OS, VSE,
and BS2000 operating systems. These modules replace all PRILOG versions supplied with earlier
versions of Adabas.

Two of the PRILOG modules are system-independent components and one is specific to a partic-
ular operating system:

interprets control statements; generates report lines from CLOG records.PRILOG

converts internal timestamp information on CLOG records into a more useful form before
printing, making it compliant with Year 2000 standards. CCSTCK is provided independently
so it can also be used by other programs.

CCSTCK

retrieves an input control card image and a CLOG record and prints a line. PRILOGD is
system-dependent. It contains a number of parameters that are described in the source.

PRILOGD

This section covers the following topics:

■ Print Program Input
■ Control Statement Parameters
■ Command Selection Parameters
■ PRILOG Messages
■ Installing and Using PRILOG under VSE
■ Installing and Using PRILOG under z/OS

Print Program Input

As input, the PRILOG program requires CLOG records and control statements.

Control statements must begin with the program name "PRILOG" in columns 1 through 7; at least
one space must follow the program name before parameters are entered.

Parameters can be entered up to column 71. No continuation or parameter splitting is permitted.
Additional parameters can be entered on a separate PRILOG statement.

A comment line begins with an asterisk (*). Comments may also be added to the right side of the
parameter string as long as the comment is separated from the parameter value by at least one
space.

253DBA Tasks

Appendices

Control Statement Parameters

Three parameters can be entered on the PRILOG control statements:

■ CLOGLAYOUT Parameter
■ FIELDS Parameter
■ DIMENSIONS Parameter

CLOGLAYOUT Parameter

The CLOGLAYOUT parameter identifies the format of the CLOG records being used as input to
the PRILOG program. Valid values are 5 and 8; the default value is 5. The syntax is:

CLOGLAYOUT={5 | 8}

FIELDS Parameter

The FIELDS parameter identifies the item (or items) from the CLOG records that are to be printed.
Its syntax is:

FIELDS= { (item, ...) | (LIST) }

Replace item with one of the following:

DescriptionItem

Adabas extended control blockACBX

format bufferFB

ISN bufferIB

I/O listIOL

Adabas control block field listLIST

multifetch bufferMB

performance bufferPB

record bufferRB

search bufferSB

user exit B bufferUXB

value bufferVB

verbosity (see below)VERB

The default value is "LIST". Multiple items can be listed in any order.

If a data item listed in the FIELDS parameter is not being captured during the ADALOG session
and is therefore not present in the CLOG record, the request to print that data item is ignored.

DBA Tasks254

Appendices

If "VERB" is specified, then a more verbose output is generated. The additional fields displayed
are the Additions 1, Additions 2 and Additions 5 fields along with the full communications ID.
These values are all displayed in hexadecimal format. Also, if the DIMENSIONS parameter spe-
cifies a narrower output format, the fields not printed in the columns will be displayed in the
verbose output format.

DIMENSIONS Parameter

The optional DIMENSIONS parameter is used to specify the format that the printed output should
take. The number of columns must be 80, 133, or 163, but any number of rows can be specified. If
no value for rows is specified, there will be no page breaks and the column headers will print only
once. The syntax of the DIMENSIONS parameter:

DIMENSIONS=({80[, x] | 133[, x] | 163[, x] | OLD})

If the DIMENSIONS parameter is not specified when CLOGLAYOUT=5 is specified, the traditional
118-column/58-row output is generated. If it is specified, a new style output will be generated ac-
cording to the dimensions specified.

If the DIMENSIONS parameter is not specified when CLOGLAYOUT=8 is specified, the output
will default to 163 columns with no page breaks. If you prefer to generate the traditional 118-
column/58-row output format for CLOGLAYOUT=8 logs, specify DIMENSIONS=OLD.

Command Selection Parameters

You can also filter the PRILOG output using the command selection parameters described in this
section:

■ CLASS Command Selection Parameter
■ COMMAND Command Selection Parameter
■ DATE Command Selection Parameter
■ FILE Command Selection Parameter
■ LOGIN_ID Command Selection Parameter
■ RECORDS Command Selection Parameter
■ RESPONSE Command Selection Parameter

255DBA Tasks

Appendices

■ USER_ID Command Selection Parameter

CLASS Command Selection Parameter

Use the CLASS parameter to select log records whose command codes belong to the specified
command classes. The CLASS parameter has the following syntax:

CLASS=(keyword[,keyword]...)

The following table describes the keywords that can be specified:

Commands IncludedKeyword

BT, CL, C1, C3, C5, ET, HI, OP, MC, RC, RE, or RICONTROL

S1, S2, S4, S8, or S9FIND

LF, L1, L2, L3, L4, L5, L6, or L9READ

A1, E1, I1, N1, or N2UPDATE

In the following example, the commands included in the FIND and UPDATE keywords are selected:

PRILOG CLASS=(FIND,UPDATE)

COMMAND Command Selection Parameter

Use the COMMAND parameter to select log records whose commands match specified Adabas
command names. The COMMAND parameter has the following syntax:

COMMAND=(cmd[,cmd]...)

Any valid Adabas command can be specified for cmd. In the following example, log records for
the OP, S1, L1, E1, and CL commands are selected:

PRILOG COMMAND=(OP, S1, L1, E1, CL)

DATE Command Selection Parameter

Use the DATE parameter to select log records whose timestamps fall between the inclusive start
and end times specified. The DATE parameter has the following syntax:

DATE=(start-dd-mmm-yyyy[:start-hh:mm:ss][,end-dd-mmm-yyyy[:end-hh:mm:ss]])

All times must be specified in military (24-hour) time format.

The first date and time specified in the DATE parameter is the start date and time; the second date
and time pair in the syntax is the end date and time. A comma separates these start and end
timestamps. Log records with dates that fall on or between these timestamps will be selected. In
the following example, all log data occurring between (and including) 19:16:00.000 and 20:20:20.999
on October 10, 2006 will be selected.

DBA Tasks256

Appendices

PRILOG DATE=(10-OCT-2006:19:16:00,10-OCT-2006:20:20:20)

If a time is specified, a date is mandatory. If a time is not specified or if only part of the time is
specified, the missing values will be assumed to be zero. For example, a specification of 10-OCT-
2006:19:16 is interpreted as 10-OCT-2006:19:16:00 and a specification of 10-OCT-2006:19 is inter-
preted as 10-OCT-2006:19:00:00.

If no start timestamp is specified, then all records that fall up until the end of the specified range
are selected. In the following example, all log records are selected that occurred earlier than and
at 20:20:20:999 of October 10, 2006:

PRILOG DATE=(,10-OCT-2006:20:20:20)

If no end timestamp is specified, then all records that fall after the start of the specified range are
selected. In the following example, all log records are selected that occur after or at 20:00:00:000
on October 10, 2006.

PRILOG DATE=(10-OCT-2006:20:00:00,)

If only one date (with no comma) is specified, then the records that are selected must have a
timestamp that match the specified timestamp. In the following example, all log records are selected
that occur within (and including) the range 10-OCT-2006:19:16:00.000 through 10-OCT-
2006:19:16:00.999:

PRILOG DATE=(10-OCT-2006:19:16)

FILE Command Selection Parameter

Use the file parameter to select log records which reference a specified list of file numbers or range
of file numbers. The FILE parameter has the following syntax:

FILE=(num[-num][,num[-num]]...)

Any valid Adabas file numbers can be substituted for num. A maximum of ten ranges or file
number values may be specified

In the following example, any log record referencing file numbers 10, 20 or 30 through 40 are se-
lected.

PRILOG FILE=(10,20,30-40)

257DBA Tasks

Appendices

LOGIN_ID Command Selection Parameter

Use the LOGIN_ID parameter to select log records with references to a specific login ID. The LO-
GIN_ID parameter has the following syntax:

LOGIN_ID=string

Only one login ID can be specified for string. In the following example, any log record containing
XSCPCOC in the LOGIN_ID column is selected.

PRILOG LOGIN_ID=XSCPCOC

RECORDS Command Selection Parameter

Use the RECORDS parameter to select log records with references to the specified command se-
quence number or range of command sequence numbers. The RECORDS parameter has the fol-
lowing syntax:

RECORDS=num[-num]

Any valid command sequence number can be substituted for num. In the following example, any
log record containing a command sequence number between and including 101 and 677 will be
selected.

PRILOG RECORDS=101-677

RESPONSE Command Selection Parameter

Use the RESPONSE parameter to select log records that reference the specified list of response
codes or range of response codes. THe RESPONSE parameter has the following syntax:

RESPONSE=(num[-num][,num[-num]]...)

Any valid Adabas response codes can be substituted for num. A maximum of ten ranges or response
code values may be specified

In the following example, any log record referencing response codes 0, 17, or 15 through 61 are
selected.

PRILOG RESPONSE=(0,17,15-61)

DBA Tasks258

Appendices

USER_ID Command Selection Parameter

Use the USER_ID parameter to select log records with references to a specific user ID. The USER_ID
parameter has the following syntax:

USER_ID=string

Only one user ID can be specified for string. In the following example, any log record containing
XSCPCOC in the USER_ID column is selected.

PRILOG USER_ID=XSCPCOC

PRILOG Messages

PRILOG messages are documented in the Adabas Messages and Codes manual as "PL6nnna" (inde-
pendent) and "PL6ann" (system-dependent) messages.

Installing and Using PRILOG under VSE

The following components comprise the PRILOG print program for VSE:

DescriptionMember

Independent PRILOG assembly language source modulePRILOG.A

VSE-dependent PRILOG assembly language source modulePRILOGD.A

Independent Adabas STCK conversion assembly language source moduleCCSTCK.A

Object deck for PRILOGPRILOG.OBJ

Object deck for PRILOGDPRILOGD.OBJ

Object deck for CCSTCKCCSTCK.OBJ

Executable phase for PRILOGPRILOG.PHASE

Sample VSE JCS to assemble, catalog, and link the PRILOG, CCSTCK, and PRILOGD
components into the PRILOG.PHASE

ASMPRILO.X

Sample VSE JCS to execute the PRILOG utilityJPRILOG.X

The PRILOG.PHASE may be executed from the library without additional preparation. However,
if it becomes necessary to reassemble and relink the PRILOG.PHASE, the following points must
be observed:

■ The PRILOG.A, CCSTCK.A, and PRILOGD.A modules must be assembled using the IBM high-
level Assembler (ASMA90).

■ The provided sample JCS member ASMPRILO.X must be modified to suit your site's require-
ments. Check the volume, and extent information as well as the library and sublibrary information
provided in the JCS members.

259DBA Tasks

Appendices

Executing PRILOG under VSE

Execute the PRILOG print program by running the PRILOG.PHASE in either a static or dynamic
partition.

The PRILOG program uses three files:

DescriptionFile

PRILOG control card data; may be read from any valid device that can be assigned to
SYSIPT

SYSIPT

PRILOG report file; may be written to any device that can be assigned to SYSLSTSYSLST

Sequential command log input file; this file may reside on any IBM-supported disk
device, or it may be read from tape

SYS001 (DDCLOG)

Notes:

1. The PRILOG control cards must be available from SYSIPT. If on disk or tape, they must be 80-
byte records with a fixed record format.

2. The PRILOG report file must be written to SYSLST. If assigned to disk or tape, the output records
are 121 bytes in length with a fixed record format. ASA control characters are used for printer
control and are in the first byte of each print record.

3. The sequential command log file must be assigned to SYS001. The file may be on disk or tape
and may not have a block size greater than 32,760 bytes. The record format is VARBLK.

The provided JPRILOG.X JCS member may be modified according to your installation's require-
ments to execute the PRILOG print program. Modify the extent, DLBL, sublibrary, and volume
information before submitting the job.

Installing and Using PRILOG under z/OS

The following components comprise the PRILOG print program for z/OS:

DescriptionLibraryMember

Independent PRILOG assembly language source moduleADAvrs.SRCEPRILOG

z/OS-dependent PRILOG assembly language source moduleADAvrs.SRCEPRILOGD

Independent Adabas STCK conversion assembly language source moduleADAvrs.SRCECCSTCK

Sample JCL to assemble and link the PRILOG, CCSTCK, and PRILOGD
components into the PRILOG load module.

ADAvrs.JOBSASMPRILO

Sample JCL to execute the PRILOG utilityADAvrs.JOBSJPRILOG

The PRILOG program uses three files:

DBA Tasks260

Appendices

DescriptionFiles

used for input parameter data; may be any sequential 80-byte record file supported by QSAM.DDCARD

used for the output command log report; may be assigned to SYSOUT or to any 121-byte
record data set with record format of FBA.

DDPRINT

used for the input sequential command log file; must be a sequential file produced by the
ADARES CLCOPY utility, or the direct DDLOG sequential file produced by an Adabas
nucleus when single command logging is used.

DDCLOGIN

PRILOGC: Printing the Command Log

Adabas provides the PRILOGC print program to read and report the contents of Adabas command
logs in either version 5 or version 8 command log layout format.

PRILOGC reads a sequential Adabas command log that has been produced directly by the Adabas
nucleus (DD/LOG file) or by the ADARES CLCOPY utility when the Adabas nucleus uses dual
or multiple comand logging.

PRILOGC is supplied only in source form.

Note: Although PRILOGC can be customized, Software AG does not support the program
when it has been modified. To use PRILOGC you must at least compile the source provided
by Software AG, although no modifications are necessary.

PRILOGC sources are supplied for the z/OS, VSE, z/VM, BS2000, Sun Solaris, and Windows oper-
ating systems. These modules replace all PRILOGC versions supplied with earlier versions of
Adabas.

Two of the PRILOGC modules are system-independent components, and one is specific to a par-
ticular operating system.

Note: In z/VM environments, solution ADA813L002 must be applied before you can use
PRILOGC. For more information about this solution and its documentation, please contact
your Software AG support representative.

This section covers the following topics:

■ z/OS Library Members
■ z/VSE Library Members
■ z/VM Library Members
■ BS2000 Library Members
■ Print Program Input
■ Command Selection Parameters
■ Installing and Using PRILOGC under z/OS
■ Installing and Using PRILOGC under z/VSE

261DBA Tasks

Appendices

■ Installing and Using PRILOGC under z/VM
■ Installing and Using PRILOGC under BS2000

z/OS Library Members

For z/OS environments, the following sources are provided:

Main program logic - written in C.PRILOGC

Code to convert a STCK value into YYMMDD - written in
assembler.

CCSTCK

C header files used by PRILOGC.ADABASX/ADACLGX/ADAENV/IODESAM

The following JCL members are provided in z/OS environments:

Sample JCL to assemble the CCSTCK ADABAS STCK convert routine and link-edit the
CCSTCK module. Also use this member to compile and link PRILOGC using the IBM/C
compiler.

ASMPRILC

Sample JCL to run PRILOGCJPRILOGC

z/VSE Library Members

For z/VSE environments, the following sources are provided:

Source for main program logic. Written in C.PRILOGC.C

Source to convert a STCK value into YYMMDD. Written in assembler.CCSTCK.A

Source to convert an 8-byte field containing 'clock ticks' into a string of
the form XXX.YYY MS. This is required on VSE due to the absence of

TIMEPRT.A

long long support in VSE C. This is used in PRILOGC when populating
DURation and SELection fields in the output. Written in assembler.

C header files used by PRILOGCADABASX.H ADACLGX.H
ADAENV.H IODESAM.H

The following JCL members are provided in z/VSE environments:

Sample JCS to optionally assemble CCSTCK and TIMEPRT, and compile and link PRILOGC.ASMPRILC.X

Sample JCS to run PRILOGCJPRILOGC.X

DBA Tasks262

Appendices

z/VM Library Members

For z/VM environments, the following sources are provided:

Source for main program logic. Written in C.PRILOGC C

Source to convert a STCK value into YYMMDD. Written in Assembler.CCSTCK ASSEMBLE

C header files used by PRILOGCADABASX H
ADACLGX H
ADAENV H
IODESAM H

The following EXECs are provided in z/VM environments:

Sample EXEC to compile PRILOGC.PRILOGCC

Sample EXEC to run PRILOGCPRILOGCR

BS2000 Library Members

For BS2000 environments, the following sources are provided:

Main program logic - written in C.PRILOGC

Code to convert a STCK value into YYMMDD -
written in assembler.

CCSTCK

C header files used by PRILOGC.ADABASX.H/ADACLGX.H/ADAENV.H/IODESAM.H

The following JCL members are provided in BS2000 environments:

Sample JCL that can be adapted to assemble the CCSTCK ADABAS STCK convert routine.ASMBS2

Compile and link PRILOGC using the IBM/C compiler.C

Sample JCL to run PRILOGCJPRILOGC

Print Program Input

As input, the PRILOGC program requires CLOG records and control statements.

Control statements are read from stdin and take one or more of the following parameters:

263DBA Tasks

Appendices

a: print Additions fields
l: large line size
b: dump with verbosity
t: dump with traditional format - dump records in format used by earlier prilogc ↩
with Version 5 CLOGS
c: dump Control Block
f: dump Format Buffer
r: dump Record Buffer
s: dump Search Buffer
u: dump User Buffer
v: dump Value Buffer
n: dump ISN Buffer
6: dump in Open System V6 Format
8: dump in Mainframe V8 Format
x: dump exted Buffer (User Data)
i: dump IO List
h: dump help information
d: output dimensions (columns,rows), where colums can be 80 or 133 or 163

Example: -clfrsvbtnix -d=133,200

If a data item specified from the list above is not being captured during the ADALOG session and
is therefore not present in the CLOG record, the request to print that data item is ignored.

If -b verbosity is specified, then a more verbose output is generated. The additional fields displayed
are the Additions 1, Additions 2, and Additions 5 fields along with the full communications ID.
These values are all displayed in hexadecimal format. Also, if the -d DIMENSIONS parameter
specifies a narrower output format, the fields not printed in the columns will be displayed in the
verbose output format.

The optional DIMENSIONS parameter (-d=cols,rows) is used to specify the format that the printed
output should take. The number of columns must be 80, 133, or 163, but any number of rows can
be specified. If no value for rows is specified, there will be no page breaks and the column headers
will print only once.

Command Selection Parameters

You can also filter the PRILOGC output using the command selection parameters described in
this section:

■ CLASS Command Selection Parameter
■ COMMAND Command Selection Parameter
■ DATE Command Selection Parameter
■ FILE Command Selection Parameter
■ LOGIN_ID Command Selection Parameter
■ RECORDS Command Selection Parameter
■ RESPONSE Command Selection Parameter

DBA Tasks264

Appendices

■ USER_ID Command Selection Parameter

CLASS Command Selection Parameter

Use the CLASS parameter to select log records whose command codes belong to the specified
command classes. The CLASS parameter has the following syntax:

CLASS=(keyword[,keyword]...)

The following table describes the keywords that can be specified:

Commands IncludedKeyword

BT, CL, C1, C3, C5, ET, HI, OP, MC, RC, RE, or RICONTROL

S1, S2, S4, S8, or S9FIND

LF, L1, L2, L3, L4, L5, L6, or L9READ

A1, E1, I1, N1, or N2UPDATE

In the following example, the commands included in the FIND and UPDATE keywords are selected:

CLASS=(FIND,UPDATE)

COMMAND Command Selection Parameter

Use the COMMAND parameter to select log records whose commands match specified Adabas
command names. The COMMAND parameter has the following syntax:

COMMAND=(cmd[,cmd]...)

Any valid Adabas command can be specified for cmd. In the following example, log records for
the OP, S1, L1, E1, and CL commands are selected:

PRILOGC COMMAND=(OP, S1, L1, E1, CL)

DATE Command Selection Parameter

Use the DATE parameter to select log records whose timestamps fall between the inclusive start
and end times specified. The DATE parameter has the following syntax:

DATE=(start-dd-mmm-yyyy[:start-hh:mm:ss][,end-dd-mmm-yyyy[:end-hh:mm:ss]])

All times must be specified in military (24-hour) time format. Note that the date fields above can
optionally be followed by hours, minutes, and seconds.

The first date and time specified in the date parameter is the start date and time; the second date
and time pair in the syntax is the end date and time. A comma separates these start and end
timestamps. Log records with dates that fall on or between these timestamps will be selected. In

265DBA Tasks

Appendices

the following example, all log data occurring between (and including) 19:16:00.000 and 20:20:20.999
on October 10, 2006 will be selected.

DATE=(10-OCT-2006:19:16:00,10-OCT-2006:20:20:20)

If a time is specified, a date is mandatory. If a time is not specified or if only part of the time is
specified, the missing values will be assumed to be zero. For example, a specification of 10-OCT-
2006:19:16 is interpreted as 10-OCT-2006:19:16:00 and a specification of 10-OCT-2006:19 is inter-
preted as 10-OCT-2006:19:00:00.

If no start timestamp is specified, then all records that fall up until the end of the specified range
are selected. In the following example, all log records are selected that occurred earlier than and
at 20:20:20:999 of October 10, 2006:

DATE=(,10-OCT-2006:20:20:20)

If no end timestamp is specified, then all records that fall after the start of the specified range are
selected. In the following example, all log records are selected that occur after or at 20:00:00:000
on October 10, 2006.

DATE=(10-OCT-2006:20:00:00,)

If only one date (with no comma) is specified, then the records that are selected must have a
timestamp that match the specified timestamp. In the following example, all log records are selected
that occur within (and including) the range 10-OCT-2006:19:16:00.000 through 10-OCT-
2006:19:16:00.999:

DATE=(10-OCT-2006:19:16)

FILE Command Selection Parameter

Use the file parameter to select log records which reference a specified list of file numbers or range
of file numbers. The FILE parameter has the following syntax:

FILE=(num[-num][,num[-num]]...)

Any valid Adabas file numbers can be substituted for num. A maximum of ten ranges or file
number values may be specified

In the following example, any log record referencing file numbers 10, 20 or 30 through 40 are se-
lected.

FILE=(10,20,30-40)

DBA Tasks266

Appendices

LOGIN_ID Command Selection Parameter

Use the LOGIN_ID parameter to select log records with references to a specific login ID. The LO-
GIN_ID parameter has the following syntax:

LOGIN_ID=string

Only one login ID can be specified for string. In the following example, any log record containing
XSCPCOC in the LOGIN_ID column is selected.

LOGIN_ID=XSCPCOC

RECORDS Command Selection Parameter

Use the RECORDS parameter to select log records with references to the specified command se-
quence number or range of command sequence numbers. The RECORDS parameter has the fol-
lowing syntax:

RECORDS=num[-num]

Any valid command sequence number can be substituted for num. In the following example, any
log record containing a command sequence number between and including 101 and 677 will be
selected.

RECORDS=101-677

RESPONSE Command Selection Parameter

Use the RESPONSE parameter to select log records that reference the specified list of response
codes or range of response codes. The RESPONSE parameter has the following syntax:

RESPONSE=(num[-num][,num[-num]]...)

Any valid Adabas response codes can be substituted for num. A maximum of ten ranges or response
code values may be specified

In the following example, any log record referencing response codes 0, 17, or 15 through 61 are
selected.

RESPONSE=(0,17,15-61)

267DBA Tasks

Appendices

USER_ID Command Selection Parameter

Use the USER_ID parameter to select log records with references to a specific user ID. The USER_ID
parameter has the following syntax:

USER_ID=string

Only one user ID can be specified for string. In the following example, any log record containing
XSCPCOC in the USER_ID column is selected.

USER_ID=XSCPCOC

Installing and Using PRILOGC under z/OS

The following components comprise the PRILOGC print program for z/OS:

DescriptionLibraryMember

Independent PRILOGC source module written in C.ADAvrs.SRCEPRILOGC

Independent Adabas STCK conversion assembly language source module.ADAvrs.SRCECCSTCK

Sample JCL to assemble and link CCSTCK, and compile and link PRILOGC
load module.

ADAvrs.JOBSASMPRILC

Sample JCL to execute the PRILOGC utility.ADAvrs.JOBSJPRILOGC

Before PRILOGC can run on z/OS, the PRILOGC load module must be built by running the compile
and link step of the sample job ASMPRILC.

The PRILOGC program uses three files:

DescriptionFiles

PRILOGC control card parameter data, passed via the PARM= keyword on the JCL EXEC
statement.

PARM data

used for the output command log report; may be assigned to SYSOUT or to any 121-byte
record data set with record format of FBA.

SYSPRINT

used for the input sequential command log file; must be a sequential file produced by the
ADARES CLCOPY utility, or the direct DDLOG sequential file produced by an Adabas nucleus
when single command logging is used.

PRLIN

DBA Tasks268

Appendices

Installing and Using PRILOGC under z/VSE

The following components comprise the PRILOGC print program for z/VSE:

DescriptionMember

Independent PRILOGC assembly language source modulePRILOGC.C

Independent STCK conversion assembly language source moduleCCSTCK.A

VSE-only time conversion assembly language source moduleTIMEPRT.A

Object deck for PRILOGCPRILOGC.OBJ

Object deck for CCSTCKCCSTCK.OBJ

Object deck for TIMEPRTTIMEPRT.OBJ

Sample VSE JCS to optionally assemble and catalog CCSTCK and TIMEPRT, and compile
and link PRILOGC into the PRILOGC.PHASE

ASMPRILC.X

Sample VSE JCS to execute the PRILOGC utilityJPRILOGC.X

Before PRILOGC can be run on z/VSE, the PRILOGC.PHASE must be built, using linkage editor
control statements from the link-edit step in sample job ASMPRILC.X.

When running ASMPRILC to reassemble PRILOGC components or link the PRILOGC.PHASE,
the following points must be observed:

■ The CCSTCK.A, and TIMEPRT.A components must be assembled using the IBM high-level
Assembler (ASMA90).

■ The provided sample JCS member ASMPRILC.X must be modified to suit your site's require-
ments. Check the volume and extent information, as well as the library and sublibrary information
provided in the JCS members.

Executing PRILOGC under z/VSE

Execute the PRILOGC print program by running the PRILOGC.PHASE in either a static or dynamic
partition.

The PRILOGC program uses three files:

DescriptionFile

PRILOGC control card parameter data, passed via the PARM= keyword on the JCS EXEC
statement.

PARM data

PRILOGC report file; may be written to any device that can be assigned to SYSLSTSYSLST

Sequential command log input file; this file may reside on any IBM-supported disk device,
or it may be read from tape

SYS001 (PRLIN)

Notes:

269DBA Tasks

Appendices

1. The PRILOGC report file must be written to SYSLST. ASA control characters are used for
printer control and are in the first byte of each print record.

2. The sequential command log file must be assigned to SYS001. The file may be on disk or tape
and may not have a block size greater than 32,760 bytes. The record format is VARBLK.

The provided JPRILOGC.X JCS member may be modified according to your installation's require-
ments to execute the PRILOGC print program. Modify the extent, DLBL, sublibrary, and volume
information before submitting the job.

Installing and Using PRILOGC under z/VM

The following components comprise the PRILOGC print program for z/VM:

DescriptionMember

Independent PRILOGC assembly language source modulePRILOGC C

Independent STCK conversion assembly language source moduleCCSTCK ASSEMBLE

Sample EXEC to compile PRILOGCPRILOGCC EXEC

Sample EXEC to run the PRILOGC utilityPRILOGCR EXEC

To install and run PRILOGC in z/VM environments:

Be sure that solution ADA813L002 is applied before you use PRILOGC. For more information
about this solution and its documentation, please contact your Software AG support representative.

1 Run the PRILOGCC EXEC to compile and build PRILOGC.

When running PRILOGCC to recompile PRILOGC components , the following points must
be observed:

■ The provided sample PRILOGCC EXEC must be modified to suit your site's requirements.

2 Modify PRILOGCR. Set CLOGFN, CLOGFT, and CLOGFM to the filename, filetype, and
filemode of the input Command Log file. Set OUTFN and OUTFT to the filename and filemode
of the output file to which the PRILOGC output will be redirected.

3 Run PRILOGCR, providing input parameters if desired.

DBA Tasks270

Appendices

Installing and Using PRILOGC under BS2000

The following components comprise the PRILOGC print program under BS2000:

DescriptionLibraryMember

Independent PRILOGC source module written in C.ADAvrs.BS2SRCEPRILOGC (S)

Independent Adabas STCK conversion assembly language source
module.

ADAvrs.BS2SRCECCSTCK (S)

General sample JCL that can be adapted to assemble.ADAvrs.BS2SRCEASMBS2 (J)

Sample JCL to compile PRILOGC and bind it together with CCSTCK
and C runtime components.

ADAvrs.BS2SRCEC (J)

Sample JCL to execute the PRILOGC utility.ADAvrs.BS2SRCEJPRILOGC (J)

Before PRILOGC can run in BS2000 environments, the PRILOGC load module must be built by
running the compile and link step of the sample job C.

The PRILOGC program reads the control card parameter data from SYSDTA in the job deck and
writes the command col report to SYSOUT.

The input sequential command log file produced by the ADARES CLCOPY utility is accessed
through the link name PRLIN. To read this, it must be declared as unblocked. For example:

/SET-FILE-LINK PRLIN,DB99.CLOG1,REC-FORM=U

271DBA Tasks

Appendices

272

B Appendix

■ Interoperable Encodings ... 275
■ Coexistent Encodings ... 277

273

The tables in this document list the encodings available with universal encoding support (UES)
when executing Adabas utilities or issuing Adabas commands. Encodings represent single-byte
character sets (Latin-1 or not) or double-/multiple-character sets. If encodings:

■ have a character set in common with other encodings so that conversion between them is accom-
plished without loss of data, they are "interoperable". Two encodings are said to be interoperable
when all roundtrip string conversions return the same string as the original or if they have the
same the CS number and F/M/S size.

■ are not interoperable, they are "coexistent" with other encodings.

Columns used in the following tables are described as follows:

ADAECS key number in decimal and hexadecimalKey

character set as identified by IBMCS

code page usually identical to the "key". It is not identical whenCP

■ CP does not fit into the ECS key number range 1-4095; or
■ the encoding is constructed from two or more code pages.

F/M/S Size encoding uses all allocated graphical character spaceF

maximum for given ESIDM

subsetS

encoding scheme identifier with the following entries:ESID

EBCDIC fixed 11100

EBCDIC mixed DBCS modal1301

IBM PC data fixed 12100

IBM PC data DBCS only2200

IBM PC data mixed DBCS nonmodal2300

ISO-8 fixed 14100

ISO-8 fixed 1 graphic characters in the range x'80'- x`9F' reserved for control
codes

4105

the hexadecimal value representing the fill character used in the encoding.Fill

the hexadecimal value representing the substitution character used in the encoding.Sub

Encoding categories are described in this document.

DBA Tasks274

Appendix

Interoperable Encodings

Single-Byte Character Sets (Latin-1)

DescriptionSubFillESIDF/M/S SizeCPCSKey
HexDec

CECP: USA, Canada (ESA*), Netherlands, Portugal, Brazil,
Australia, New Zealand

3F401100F 1903769702537

CECP: Austria, Germany, de_deu3F401100F 190273697111273

CECP: Denmark, Norway3F401100F 190277697115277

CECP: Finland, Sweden3F401100F 190278697116278

CECP: Italy, it_ita3F401100F 190280697118280

CECP: Spain, Latin America (Spanish), es_esp3F401100F 19028469711C284

CECP: United Kingdom, en_gbr3F401100F 19028569711D285

CECP: France, fr_fra3F401100F 190297697129297

CECP: Belgium, Canada (AS/400*), Switzerland, international
Latin-1

3F401100F 1905006971F4500

ISO 8859-1: Latin alphabet, Latin-11A204100F 190819697333819

CECP: Iceland, is_ISL3F401100F 190871697367871

IBM EBCDIC 37 with euro sign3F401100F 1901140**4741140

IBM EBCDIC 273 with euro sign3F401100F 1901141**4751141

IBM EBCDIC 277 with euro sign3F401100F 1901142**4761142

IBM EBCDIC 278 with euro sign3F401100F 1901143**4771143

IBM EBCDIC 280 with euro sign3F401100F 1901144**4781144

IBM EBCDIC 284 with euro sign3F401100F 1901145**4791145

IBM EBCDIC 285 with euro sign3F401100F 1901146**47A1146

IBM EBCDIC 297 with euro sign3F401100F 1901147**47B1147

IBM EBCDIC 285 with euro sign3F401100F 1901148**47C1148

IBM EBCDIC 871 with euro sign3F401100F 1901149**47D1149

PC data-190: Latin alphabet, Latin-1 (CCSID=4946)7F202100S 190850697F6A*3946

* This code page is not yet available but may be at a later time.

** This information is not yet available.

275DBA Tasks

Appendix

Single-Byte Character Sets (Non-Latin-1)

DescriptionSubFillESIDF/M/S SizeCPCSKey
HexDec

IBM, Arabic (all presentation shapes)3F401100M 1814202351A4420

IBM, Hebrew, iw_isr3F401100M 1524249411A8424

ISO 8859-7: Greek/Latin, el_GRC1A204100M 18381392532D813

IBM, Latin-23F401100F 190870959366870

IBM, Greek, el_GRC3F401100M 18487592536B875

ISO 8859-2: Latin-21A204100F 190912959390912

ISO 8859-41A204100F 190914392914

ISO 8859-5: Cyrillic, 8-bit1A204100F 1909151150393915

ISO 8859-8: Hebrew, iw_ISR1A204100M 152916941394916

IBM, Urdu3F401100F 1909181160396918

ISO 8859-101A204100F190919397919

ISO 8859-9 Latin-5 (ECMA-128, Turkey TS-5881), tr_TUR1A204100F 1909201152398920

IBM, Baltic, 8-bit1A204100F 1909211305399921

IBM, Estonia, 8-bit1A204100F 190922130739A922

ISO 8859-15 Latin-9 with euro sign1A204100F 190923**39B923

IBM EBCDIC Latin-9 with same character set as 923.3F401100F 190924**39C924

IBM, Urdu1A204100F 190100611603EE1006

IBM, Cyrillic multilingual3F401100F 190102511504011025

IBM, Turkey Latin-5, tr_TUR3F401100F 190102611524021026

IBM, Baltic, multilingual (EBCDIC)3F401100F 190111213074581112

IBM, Estonia (EBCDIC)3F401100F 190112213074621122

DF.04-F Latin-9, CCSN:EDF04F, Extended BS2000 code
EBCDIC)

3F401100F1903581**DFD3581

** This information is not yet available.

Double- and Multiple-Byte Character Sets

DescriptionSubFillESIDF/M/S SizeCPCSKey
HexDec

Japanese Katakana host extended SBCS, ja_JPN3F401100M 1622901172122290

Simplified Chinese host extended SBCS
(EBCDIC), zh_CHN

3F401100M 998361174344836

IBM, Japanese Latin host extended SBCS,
ja_JPN

3F401100M 162102711724031027

DBA Tasks276

Appendix

DescriptionSubFillESIDF/M/S SizeCPCSKey
HexDec

IBM, Japanese PC data extended SBCS, ja_JPN1A202100S 162104111724111041

IBM, traditional Chinese PC data extended
SBCS, zh_TWN

1A202100M 97104311754131043

IBM, simplified Chinese PC data single-byte
(IBM GB) including 5 SAA SB characters,
zh_CHN

1A202100M 991115117445B1115

IBM, simplified Chinese DBCS PC (IBM GB)
including 1880 UDC and 31 IBM-selected,
zh_CHN

FEFEA1A12200M 935513809375641380

IBM, simplified Chinese PC data mixed (IBM
GB) including 1880 UDC, 31 IBM-selected and
5 SAA SB characters, zh_CHN

1A
FEFE

20
A1A1

2300M 94541115138011749375651381

IBM CCSID 5026, Japanese Katakana-Kanji
host mixed including 1880 UDC, extended
SBCS, ja_JPN

3F
FEFE

40
4040

1301S 9306290
300

1172370BD23026

IBM CCSID 5035, Japanese Latin-Kanji host
mixed including 1880 UDC, extended SBCS,
ja_JPN

3F
FEFE

40
4040

1301S 93061027
300

1172
370

BDB3035

IBM, CCSID 4396, Japanese host double-byte
including 1880 UDC, ja_JPN

FEFE40401200S 9144300370D443396

IBM CCSID 28709: traditional Chinese host
extended SBCS (EBCDIC), zh_TWN

3F401100S 9737091175E7D3709

UTF-8: with user/compatibility area; without
surrogates

001A0020F 63456FFB4091

Coexistent Encodings

Single-Byte Character Sets

DescriptionSubFillESIDF/M/S SizeCPCSKey
HexDec

US-ASCII1A205100F 9436710333

ISO 8859-3, Latin-3, Afrikaans, Catalan, Dutch, English,
German, Italian, Maltese, Spanish, Turkish

1A204100F 19066

ISO 8859-6, Arabic1A204100M 14599

Microsoft MSDOS US, en_USA1A202100F 2224376971B5437

Microsoft Windows OEM Codepage 720, Arabic1F202100F 223720

277DBA Tasks

Appendix

DescriptionSubFillESIDF/M/S SizeCPCSKey
HexDec

Microsoft Windows OEM Codepage 737, Greek1F202100F 223737

Microsoft Windows OEM Codepage 775, Baltic1F202100F 223775

IBM-803_STD Old Hebrew EBDIC IBM-803_p100-19993F401100F 88803-323803

Microsoft multilingual code page 850, Latin-11A202100F 2239501106350850

Microsoft Windows OEM Codepage 852,
cp852_DOSLating2

1F202100F 223852

Microsoft Windows OEM Codepage 857, Turkish1F202100F 223857

Microsoft multilingual code page 850, Latin-1, euro-ready1A202100F 2229501106350858

Microsoft Windows OEM Codepage 862, Hebrew1F202100F 223862

Microsoft Windows OEM Codepage 866, Cyrillic1F202100F 223866

Microsoft Windows OEM Codepage 874, Thai1F202100F 223874

IBM Latin-1 Open Systems EBCDIC3F401100F 1906971047

Microsoft, Windows ANSI, Latin-2, euro-ready1A204105M 217125014004E21250

Microsoft, Windows ANSI, Cyrillic, euro-ready1A204105M 220125114014E31251

Microsoft, Windows ANSI, Latin-1, euro-ready1A204105M 215125214024E41252

Microsoft, Windows ANSI, Greek, euro-ready1A204105M 206125314034E51253

Microsoft, Windows ANSI, Turkey, euro-ready1A204105M 215125414044E61254

Microsoft, Windows ANSI, Hebrew, euro-ready1A204105M 194125514054E71255

Microsoft, Windows ANSI, Arabic, euro-ready1A204105M 214125614064E81256

Microsoft, Windows ANSI, Baltic rim, euro-ready1A204105M 203125714074E91257

KO18-R, Cyrillic PC1F204105F 2228789482084

MS-DOS Baltic PC-Data1F202100S 2227758132087

Microsoft, Windows-1258, Vietnam1F204105S 212125814082258

BS2000 DF.03 International CCSN:EDF03IRV3F401100S 95646E013585

BS2000 DF.03 CCSN:EDF03DR Austria, Germany
(EBCDIC) - with Dollar

3F401100S 95265E023586

BS2000 DF.03 CCSN´:EDF03DRI Austria, Germany
(EBCDIC) - with International Currency Sign

3F401100S 95E033587

BS2000 DF.04-DR V LATIN 1, CCSN:EDF04DR Austria,
Germany (EBCDIC)

3F401100F 190697E043588

BS2000 DF.04-1 LATIN 1, CCSN:EDF041IRV International
(EBDIC)

3F401100F 190697E053589

Software AG, used for ECS internallyA120-3FFC4092

Software AG, old TS default, ASCII1A204100FFD4093

Software AG, old TS default, EBCDIC3F401100--FFE4094

Unicode001A00207200-FFF4095

DBA Tasks278

Appendix

Double- and Multiple-Byte Character Sets

DescriptionSubFillESIDF/M/S SizeCPCSKey
HexDec

IBM CCSID 1350, EUC-JP, ja_JPN composed of
US-ASCII, JIS-X-0208, HW Katakana, and
JIS-X-0212-90

1A20
8140

4403S 13102367
952
896
953

103
1061
1121
1062

1218

ISO-2022-JP, US-ASCII, JIS-Roman, JIS-0208-1983,
JIS_C_6226-1978

1A2054042436

IBM Japanese Latin host double-byte including
4370 UDC, ja_JPN

FEFE40401200M 11634300100112C300

IBM Japanese PC double-byte including 1880 UDC,
SJIS, ja_JPN

FCFC81402200M 914430137012D301

IBM traditional Chinese host double-byte including
6204 UDC (EBCDIC) zh_TWN

FEFE40401200M 20263835935343835

Simplified Chinese host double-byte including
1880 UDC (EBCDIC), zh_CHN

FEFE40401200M 9355837937345837

IBM traditional Chinese PC data double-byte
including 6204 UDC, zh_TWN

FCFC81402200M 2026392793539F927

Microsoft, JIS Roman, JIS-X-208, half-width
Katakana, ja_JPN

1A20
8140

2300M 9301897
301

11223703A4932

Simplified Chinese host mixed including 1880
UDC, extended SBCS (EBCDIC), zh_CHN

3F
FEFE

40
4040

1301M 9454836
837

1174
937

3A7935

Microsoft, GB Roman, GB 2312-80, zh_CHN1A20
1A1A

2300M 94491185
937

1185
937

3A8936

IBM traditional Chinese host mixed including 6204
UDC, extended SBCS (EBCDIC), zh_TWN

3F
FEFE

40
4040

1301S 20360903
937

1175
935

3A9937

IBM, Japanese PC data mixed including 1880 UDC,
extended SBCS, ja_JPN

1A
FCFC

20
8140

2300M 93061041
301

1172
370

3AE942

IBM, traditional Chinese PC data mixed including
6204 UDC, extended SBCS, zh_TWN

1A
FCFC

20
8140

2300M 203609481175
935

3B4948

IBM, Korean IBM KS code - PC data mixed
including 1880 UDC, ko_KOR

1A
AFFE

20
A1A1

2300M 101979491278
1050

3B5949

Microsoft, Big Five, zh_TWN1A20
A140

2300M 20357950103
935

3B6950

IBM, Korean IBM KS code - PC data double-byte
including 1880 UDC, ko_KOR

AFFEA1A12200M 1010395110503B7951

MAC Japanese, JIS-Roman, JIS-X-208, HW
Katakana, ja_JPN

1A20
8140

3001100013001

279DBA Tasks

Appendix

DescriptionSubFillESIDF/M/S SizeCPCSKey
HexDec

Same as EDD 937 Chinese EBCDIC, with code
point X'5F' mapped to Unicode U+005E and X'B0'
to U+00AC

3F
FEFE

40
4040

1301S 203601175
935

4037

DBA Tasks280

Appendix

VI AFPLOOK

281

282

34 AFPLOOK

■ Enabling AFPLOOK ... 284
■ Operational Defaults .. 284
■ Adjusting the Defaults ... 284
■ AFPLOOK Parameters ... 285
■ AFPLOOK Report .. 287

283

The command sampler (AFPLOOK) can be used to determine where the best results may be ex-
pected from Fastpath by reporting on the command constructs that qualify for Fastpath.

The sampler can be controlled and viewed online using SYSAFP but may also be controlled without
SYSAFP using the defaults module AFPLUKD. In either case, the sampler will print a report in
DDPRINT at ADAEND time if a sample is active at that time.

Enabling AFPLOOK

AFPLOOK is enabled using the following ADARUN command:

ADARUN FASTPATH=YES

Use the SYSAFP administration center to activate the sample.

Operational Defaults

AFPLOOK is set up with certain operational defaults that control the amount of memory used
during command analysis by restricting

■ the maximum number of files sampled; and
■ the number of concurrent users.

If any parameter is exceeded, AFPLOOK tries to ignore the excess while still reporting maximum
information. In this way, AFPLOOK audits a general sampling of the database command workload
to determine Fastpath optimization parameters. The operational defaults can be modified for site
requirements as described in the section APLOOK Parameters.

Adjusting the Defaults

AFPLOOK is designed for dynamic use. It is inactive by default. You use the SYSAFP administration
center to activate and target it. However, you can control it independently of the administration
center.

It is possible to configure AFPLOOK independently of SYSAFP by creating a defaults module
AFPLUKD. Please refer to the sample job SAGLUKD which is distributed as part of the Adabas
release tape.

Each of the parameters described in the sectionAPLOOKParameters. can be pre-configured using
AFPLUKD.

DBA Tasks284

AFPLOOK

AFPLOOK Parameters

This section describes the AFPLOOK parameters, which are used to define the boundaries of the
sample and limit the amount of memory required.

■ Maximum Files
■ Command/Descriptors per File
■ Maximum Concurrent Users
■ Maximum CIDs per User
■ Maximum Commands Processed
■ Job Name
■ Selected Files
■ Demo Sampling (AFPLUKD Only)
■ Real Sampling (AFPLUKD Only)
■ Report Title (AFPLUKD only)

Maximum Files

The maximum number of files to be sampled.

Once the maximum number of files is put in the analysis table, no additional files are sampled;
however, additional files show in a command count so that it can be determined whether or not
this parameter should be increased for subsequent executions.

Default: 64

Command/Descriptors per File

The maximum number of command/descriptor entries per file.

In conjunction with the Maximum Files parameter, this parameter restricts the amount of memory
used. If the maximum entries is reached for a file, the last entry is converted into a general accu-
mulator. Note that only one entry is required for the Adabas command types L1,L2,S8, and S9.

Default: 32

285DBA Tasks

AFPLOOK

Maximum Concurrent Users

The maximum size for the table of concurrent users.

If all the user areas are being used at one time, a new request is satisfied by releasing the 'oldest
usage' user area. The number of times this reusage occurs is noted and printed in the summary.
When a sample contains a high percentage of reusage, this parameter should be adjusted.

Default: 100

Maximum CIDs per User

The maximum concurrent Adabas Command IDs (CIDs) sampled for each user processed.

In conjunction with the Maximum Concurrent Users parameter, this parameter restricts the amount
of memory used. Commands for Command IDs that exceed this maximum are ignored and reported
as rejected. When a sample contains a high percentage of rejections, this parameter should be ad-
justed.

Default: 10

Maximum Commands Processed

The maximum number of commands to be sampled.

Default: No limit

Job Name

Used to restrict sampling to a particular job name. One or more asterisks (*) can be used in the job
name as a wild card character so that the sample can select all jobs that match the name ignoring
the character positions occupied by an asterisk (*).

Default: None

Selected Files

Used to restrict sampling to specific files.

This option may be useful where the maximum files overflowed, or file activity is known and
detailed analysis is required.

Default: All files

DBA Tasks286

AFPLOOK

Demo Sampling (AFPLUKD Only)

For use when pre-configuring AFPLOOK with the defaults module AFPLUKD and licensed
Fastpath is not present.

DEMO= sets whether demo AFPLOOK samples by default or not.

Settings are: ON / OFF

Default: ON

Real Sampling (AFPLUKD Only)

For use when pre-configuring AFPLOOK with the defaults module AFPLUKD and licensed
Fastpath is present.

REAL= sets whether real AFPLOOK samples by default or not.

Settings are: ON / OFF

Default: OFF

Report Title (AFPLUKD only)

For use when pre-configuring AFPLOOK with the defaults module AFPLUKD.

This parameter sets the title that will be seen on the output report. This can be a maximum of 30
characters.

Default: AFPLOOK report summary

AFPLOOK Report

This section describes the types of information available on the AFPLOOK report:

■ File Summary
■ Potential Optimization Summary
■ Sample Command Analysis

287DBA Tasks

AFPLOOK

■ Report Parameters

File Summary

This section of the report provides a summary of the file commands.

--- -- ---- ---------- -- ---------- ---------
FNR CC DESC DIRECT ACC RC SEQUENTIAL SEQUENCES
--- -- ---- ---------- -- ---------- ---------
20 L1 -- 1

L2 -- 4 4
L3 CC 1
L9 AA 1
L9 BB 2
L9 CC 2 1 1
S1 AA 3 1
TOTALS 7 8 21(18%)

EXCLUDED COMMANDS: 2
ALREADY PREFETCHED: 3

(UPDATES 2,INSERTS 1,DELETES 1) (MAX.RBL DA 0,SEQ 32)

ExplanationColumn

Adabas file number.FNR

Adabas command code.CC

Primary descriptor.DESC

Maximum number of direct access commands that can be optimized.DIRECT ACC

Maximum number of RC commands that can be optimized.RC

Maximum number of sequence commands that can be optimized.SEQUENTIAL

Number of sequences that caused the number of sequential commands. The sequence
factor for optimization may be calculated from these two numbers.

SEQUENCES

The rightmost number shows the total sampled commands for the file together with the percentage
relative to all the sampled file commands. On a large report, this number can be used to determine
quickly which files should be considered for optimization.

Commands that have been ignored for the file are also listed along with the reason for exclusion.

The final line shows the update commands as well as the maximum record buffer lengths found
for direct access or sequential commands that can be optimized.

DBA Tasks288

AFPLOOK

Potential Optimization Summary

This section of the report summarizes the total commands sampled for all files and expresses this
as a percentage of all commands seen. Excluded commands are similarly reported.

------------------------ POTENTIAL OPTIMIZATION SUMMARY -------------------
SAMPLED COMMANDS MAXIMUM OPTIMIZATION

SAMPLED FILE COMMANDS 116 (77%) <------ SEQUENTIAL: 55 (47%)
DIRECT ACCESS: 32 (27%)

RCS: 4 (3%)
EXCLUDED COMMANDS 33 (22%)
TOTALS 149 (100%) 91 (61%)

The maximum optimization numbers are an estimation of potential optimization. The sequential
commands, direct access, and RC totals are expressed as a percentage of the total sampled file
commands. The total is expressed as a percentage of all commands.

These numbers indicate the estimated potential optimization using Fastpath. The actual optimization
will depend on various factors unique to each user site. Contact Software AG for assistance when
interpreting samples.

Sample Command Analysis

This section of the report provides command analysis information.

COMMAND ANALYSIS

REJECTED COMMANDS
MAX. USERS EXCEEDED: 0
MAX. CIDS EXCEEDED: 0
MAX. FILES EXCEEDED: 0 0 (0%)

EXCLUDED COMMANDS
BAD COMMANDS: 4
NON-FILE COMMANDS: 7
NON-FILE RCS: 2
EXCLUDED FILE COMMANDS: 8
UPDATE COMMANDS: 4
ALREADY PREFETCHED: 8 33 (22%)

SAMPLED FILE COMMANDS 116 (77%)
ALL COMMANDS SEEN 149 (100%)
--

The numbers shown:

■ illustrate the type of commands processed, and
■ put the previous section into perspective.

289DBA Tasks

AFPLOOK

Rejected commands are categorized by users, CIDs, and files exceeded. If the total percentage is
high, estimates reported elsewhere may not give an accurate assessment.

Excluded commands are split into the following categories:

ExplanationCategory

Unexpected Adabas response codes.Bad commands

Commands that cannot be attributed to a file; for example, OP,CL,ET,C1,RE.
Plus file commands HI,LF,RI.

Non-file commands

All RC commands plus any RC for which the CID is not stored by AFPLOOK.Non-file RCs

L4,L5,L6,S4,S5.Excluded file commands

A1,A4,E1,E4,N1.Update commands

Any command that could qualify for sequential optimization that has prefetch
or multifetch already set.

Already prefetched

Report Parameters

This section of the report

■ shows the important parameters used to produce the report; and
■ gives an indication of the parameters needed.

--
PARAMETERS USED
MAX. FILES: 64 FILES NEEDED: 5
..MAX. DE: 32 OVERFLOWS: 0
MAX. USERS: 100 HIGH USERS: 15
..MAX.CID: 10 HIGH CIDS: 4
* REUSED USER AREA OCCURRENCES: 0
MAX.RECORDS: NO LIMIT

--

DBA Tasks290

AFPLOOK

VII AVILOOK

291

292

35 AVILOOK

■ Enabling AVILOOK .. 294
■ SYSAVI – Selecting AVILOOK .. 294
■ SYSAVI – Using AVILOOK .. 295

293

The command analysis sampler (AVILOOK) can be used to determine those files which may be-
nefit from Adabas Vista's Partitioning option by reporting on the command constructs used to
access the file.

The sampler is controlled and viewed online using SYSAVI and, in addition, prints the results at
normal database termination.

Note: For those Adabas customers who do not have an Adabas Vista license, the AVILOOK
sampler along with a demo version of SYSAVI is distributed as part of the Adabas release
tape.

Enabling AVILOOK

AVILOOK is enabled using the following ADARUN command:

ADARUN VISTA=YES

SYSAVI – Selecting AVILOOK

To select AVILOOK

■ Selecting service 4 from the SYSAVI main menu displays the AVILOOK menu options:

+--+
| Code Service |
| ---- ---------------- |
| 1 File Maintenance |
| . Exit |
| ---- ---------------- |
| Code..: _ |
| |
| Database ID..: _____ Nuc ID..: _____ |
| |
| System Coordinator Node.: _____ |
| |
+--+

DBA Tasks294

AVILOOK

SYSAVI – Using AVILOOK

This section describes how to use AVILOOK.

■ AVILOOK File Maintenance
■ AVILOOK File Statistics
■ AVILOOK Add Files

AVILOOK File Maintenance

The File Maintenance screen lists the files that are already defined to AVILOOK for a specified
database number. The database name is also displayed.

To display the File Maintenance screen from the AVILOOK menu

1 Select service option 1.

2 Specify the Adabas database number for the database for which you wish to run AVILOOK.

The database must be running with the ADARUN VISTA=YES parameter.

3 (Optional) For a cluster database, specify a Nucleus ID.

If the database number you specify is a cluster database, you have the option to specify the
Nucleus ID of the cluster nucleus you wish to monitor.

+--+
| 13:31:07 Select Cluster Members 2006-04-20 |
| V1NUCSM1 |
| DBID: 231 |
| |
| C Nuc C Nuc C Nuc C Nuc |
| _ 1 _ 2 |
| |
| |
| |
| Mark to select |
| Command ==> |
| PF3 Exit PF4 Refr |
| |
+--+

You may select the appropriate nucleus from this list.

If you choose not to specify a Nucleus ID or you specify a value of 0, you are required to
specify the Node ID of the local Adabas System Coordinator. A window is displayed listing
the nuclei that are currently active in the cluster.

295DBA Tasks

AVILOOK

If the job within which you are using SYSAVI is defined to a System Coordinator group, the
Node ID of the local System Coordinator is automatically set up.

DBID: 231 (TEST-V7-DB)

C File Command Limit Commands Started Status
_ 12 0 0 Paused
_ 2 0 5768 2006-04-20 09:09:20 Active

Mark with (A)ctivate,(P)ause,(R)eset,(S)tatistics,(X)Delete

Command ==>

Press PF4 to refresh the command count.

To select a file entry

■ Enter one of the following options in column C next to the file to be selected:

activate; start gathering statisticsa

pause; stop gathering statisticsp

reset statistics to zeror

display the current statistics for the files

delete the file from the file listx

AVILOOK File Statistics

To display the File Statistics screen from the AVILOOK menu

■ Enter option “s” in column C next to the file entry:

DBA Tasks296

AVILOOK

DBID: 231 (TEST-V7-DB)
File: 2 Started: 2006-04-20 09:09:20

Paused :

CC Desc Command Count CC Desc Command Count
L3 AA 2836
S1 AB 1324
L3 BC 24
L9 S1 26

Other Commands not listed above: 1558

Command ==>

This screen shows statistics on the command constructs used to access the file (for example,
S1,L3 and L9 commands). The statistics are displayed in descending order by command code
(CC) and Adabas two-character field name (Desc).

In this example, there are 2836 accesses to file 2 using an L3 command with the Adabas field
AA as the primary sequence field. Such a file, where the predominant access is by a single
key, may benefit from being partitioned using the Adabas field AA as the Adabas Vista par-
titioning field.

AVILOOK Add Files

To add a new AVILOOK file

1 Press PF10 from the AVILOOK File Maintenance screen.

+--+
| 08:11:07 AVILOOK Add File 2006-04-20 |
| V14100M2 |
| |
| File _____ Status (A/P) P (Active/Paused) |
| Command Limit 0 (0=No Limit) |
| |
| PF3 Exit PF5 Update |
| |
+--+

2 Enter the file number.

3 Indicate whether you want AVILOOK to start gathering statistics immediately (Active status)
or you want to define the file now and activate it at a later time (Pause status).

297DBA Tasks

AVILOOK

4 (Optional) Predefine the maximum number of commands the active file can process before
it automatically reverts to pause status.

5 Press PF5 to add the file.

Note: Files defined (and activated) are only sampled for the duration of the current database
session.

DBA Tasks298

AVILOOK

Index

A
Adabas Cluster Services

monitor a session online, 214
Adabas Online System

demo version, 206
error messages for, 212
invoking, 210
logging on, 209
main menu functions, 209
obtaining help information, 212
overview, 210
range of options, 207
selecting a menu option, 211
specifying a database for, 211
using program function (PF) keys, 211

Adabas Parallel Services
monitor a session online, 214

ADADBS utility
allocate space using, 151

ADAINV utility
allocate space using, 152

ADALOD utility
allocate space using, 153

ADAM
direct record access without inverted lists, 74

ADAMXY module, 174
ADAORD utility

allocate space using, 156
ADARAI utility

concept of generation, 99
general description, 97
starting, 99

ADARUN
display parameters, 215

ADASAV utility
allocate space using, 157

ADASMXIT, 183
address converter

space allocation by nucleus, 149
space calculation using formula, 131

Associator
automatic space calculation, 125
blocks reserved by Adabas, 125
device allocation, 140
space calculation using formula for address converter, 131
space calculation using formula for normal index (NI), 126
space calculation using formula for upper index (UI), 130

autobackout

function of routine, 93

C
checkpoints

list current, 221
types of, 222

ciphering
data, 86

CLASS command selection parameter
PRILOG, 256
PRILOGC, 265

CLOGLAYOUT parameter
PRILOG, 254

COMMAND command selection parameter
PRILOG, 256
PRILOGC, 265

Command log
device allocation, 140

command log
CLOGLAYOUT=5, 250
CLOGLAYOUT=8, 251
record layouts, 249

Command log (CLOG)
program to print, 252, 261

commands
checkpoint, 93
CL (close), 92
ET (end transaction), 92

condition description block (CDB), 184

D
data access

strategies for, 69
data compression

default options, 78-79
fixed-storage (FI) options, 78-79
null-value options, 79
null-value suppression options, 78
padding factors, 81

data duplication
logical, 65
physical, 65

data protection area
space calculation using formula, 134

Data Storage
automatic space calculation, 125
device allocation, 140
space allocation by nucleus, 150

299

space calculation using formula, 132
database

define, 121
define parameters for, 143
design, 53
display general layout, 244
estimate size of, 122
file and record design, 59
online maintenance menu, 229
online report, 240
recovery and restart design, 89
space management, 145
standards, 20
using status report to control space use, 157

DATE command selection parameter
PRILOG, 256
PRILOGC, 265

DBA
advising on data collection and validation, 17
advising on system development, 16
assisting in database design, 12
database planning, 40
defining database contents, 17
describing data sources, 24
determining responsibility for data, 16
documenting applications using the database, 23
documenting backup procedures, 26
documenting data access and manipulation procedures, 25
documenting database standards, 20
documenting restart and recovery procedures, 27
documenting the database, 20
educating users, 12
establishing database procedures and standards, 10
liaison with user, 36
maintaining procedures and standards, 12
maintaining user ID and password information, 25
management support for, 7
measuring database performance, 27
necessary attributes, 6
position in the IS organization, 6
relationship to operations, 47
selecting applications, 16
selecting suitable applications, 13
summary of functions performed by, 13
training responsibilities, 30
using a data dictionary, 22
working with Software AG, 50

descriptor
efficient use of, 70
prefixed with multiclient owner IDs, 106
using ISNs as, 74

device types
allocating Adabas components to, 140

DIMENSIONS parameter
PRILOG, 255

E
error handling facility, 171
errors

Extended Error Recovery menu, 232
planning for recovery, 91
system/transaction failure, 93
transaction recovery, 92

ETID
conversion to ownerid by ADALOD, 108

exclusive file control, 94
expanded files

and the nucleus, 115
and utilities, 116
define using ADALOD, 112
deleting, 115
description of, 111
general description, 64
inserting a component file, 114
inspecting, 115
recommended nucleus changes for, 116
removing a component file, 114
restrictions when using, 116
rules for defining, 113

extents
description of logical, 148
description of physical, 146

F
Field Definition Table (FDT)

define for a new file
using AOS demo version, 225

fields
advantages and disadvantages of combining, 66
fixed-storage (FI) option, 67, 79
null-value suppression (NU) option, 79
using groups of, 66
using numeric, 66

FIELDS parameter
PRILOG, 254

FILE command selection parameter
PRILOG, 257
PRILOGC, 266

file coupling
logical, 73
multiclient support for logical files, 104
physical, 72

files
database allocation of large, 142
design of records and, 59
display a list of, 240
display file layout, 242
display locked, 235
exclusive control of, 94
linking multiple physical in a single logical, 64
online maintenance menu, 225

free space table (FST)
description of, 149

H
hold queue

display, 216
hyperdescriptor

description of, 72

I
improved data recording capability

use recommendation, 142
index

DBA Tasks300

Index

space allocation by nucleus, 150
ISNs

user-assigned, 74
using as descriptors, 74

L
large files

database allocation with, 142
LOGIN_ID command selection parameter

PRILOG, 258
PRILOGC, 267

M
maintenance

display levels, 220
MAXISN

ADALOD parameter, 149
multiclient files

ADACMP utility support for, 109
ADALOD utility support for, 107
ADAULD utility support for, 109
concept of owner, 102
concept of superuser, 103
converting from single client, 102
data and index structures, 104
description of, 102
owner ID stored in user profile, 107
performance considerations, 106
relationship of owner ID to user ID (ETID), 102
response codes, 107
support for soft coupling, 104
transparent to application programs, 104

multiple-value fields
description of, 60

multiprocessing
monitoring sessions, 214

N
normal index

space calculation using formula, 126
nucleus

required components, 122
space allocation by, 149
space allocation rules, 149

P
password

security, 84
performance

methodology for achieving satisfactory, 56
periodic groups

description of, 60
phonetic descriptor

description, 72
PIN modules

ADAMXY, 174
add / delete online, 233
installing, 175
list of, 175

PIN routine

processing, 173
user exit, 183

PIN routines
activate / deactivate online, 234
defined, 173
display, 234

PINAUTOR, 176
activating, 175
installing, 175
user exit with, 184

PINAVI, 177
PINCOR, 178
PINOPRSP, 178

activating, 175
installing, 175

PINRSP, 179
user exit with, 185

PINSAF, 180
PINUES, 181
Predict

Adabas data dictionary, 22
PRILOG

CLASS command selection parameter, 256
CLOGLAYOUT parameter, 254
COMMAND command selection parameter, 256
command selection parameters, 255
control statement parameters, 254
DATE command selection parameter, 256
DIMENSIONS parameter, 255
executing under VSE, 260
FIELDS parameter, 254
FILE command selection parameter, 257
installing under VSE, 259
installing under z/OS, 260
LOGIN_ID command selection parameter, 258
messages reference, 259
program to print command log, 252
RECORDS command selection parameter, 258
RESPONSE command selection parameter, 258
USER_ID command selection parameter, 259

PRILOGC
CLASS command selection parameter, 265
COMMAND command selection parameter, 265
command selection parameters, 264
DATE command selection parameter, 265
executing under z/VSE, 269
FILE command selection parameter, 266
installing under BS2000, 271
installing under z/OS, 268
installing under z/VM, 270
installing under z/VSE, 269
LOGIN_ID command selection parameter, 267
program to print command log, 261
RECORDS command selection parameter, 267
RESPONSE command selection parameter, 267
USER_ID command selection parameter, 268

Protection log
device allocation, 140

R
RABNs

description of, 146
device space required by, 147

301DBA Tasks

Index

records
combining multiple types in one file, 63
design of, 66
designing files and, 59
direct access to, 74

RECORDS command selection parameter
PRILOG, 258
PRILOGC, 267

recovery
planning and design, 89

Recovery log
defining, 98
device allocation, 140
general description, 98

resources
display usage statistics, 217

RESPONSE command selection parameter
PRILOG, 258
PRILOGC, 267

restart
planning and design, 89

rules
nucleus space allocation, 149

S
security

by ciphering data, 86
by value, 86
password and value-level, 84
planning and facilities, 83
using ADASAF, 86
using AOS Security, 87
using Natural Security, 87

session
display status, 218
monitor online, 213-214
terminate online, 237

Sort
device allocation, 140

Sort data set
space calculation using formula, 137

space
allocate/deallocate procedures, 149
allocating to Adabas components, 140
allocation by nucleus, 149
allocation rules, 149
allocation using ADADBS, 151
allocation using ADAINV, 152
allocation using ADALOD, 153
allocation using ADAORD, 156
allocation using ADASAV, 157
database management, 145
efficient use of, 77
estimating for database as a whole, 125
estimating for each file, 125
format using ADAFRM utility, 142
formulas for estimating, 126
full physical extents, 158
general procedure for estimating, 125
maximum logical extents reached, 159
maximum physical extents reached, 159
problems and recommended actions, 158

subdescriptor

description, 71
superdescriptor

description, 71
system

display status, 218
failure, 93

T
Temp

device allocation, 140
threads

display usage statistics, 219
transaction

failure, 93
recovery, 92
recovery limits, 93

U
Universal Encoding Support (UES), 187
Universal encoding support (UES)

table of encodings, 273
coexistent, 277
interoperable, 275

upper index
space calculation using formula, 130

user
stop operation for

using Basic Services, 236
user data

for restart purposes, 95
reading using direct call command, 93

user exits
ADASMXIT, 183
handling errors in, 172
PIN routine, 183

USER_ID command selection parameter
PRILOG, 259
PRILOGC, 268

users
stop online, 236

W
Work

data set allocation, 133
part 1 space calculation using formula, 134
part 2 space calculation using formula, 135
part 3 space calculation, 136

Work area
device allocation, 140
part 4 space calculation, 136

DBA Tasks302

Index

	DBA Tasks
	Table of Contents
	Preface
	I DBA Roles and Responsibilities
	1 Central Control and Coordination
	2 The DBA in the IS Organization
	Position of the DBA in the Organization
	Necessary Attributes for a DBA
	Management Support
	What Mistakes Are Possible?

	3 Establishing Database Control and Administration
	Establishing Database Procedures and Standards
	Database Procedures
	Data Security Procedures
	Planning Recovery Procedures
	Setting Standards

	Maintaining Procedures and Standards
	Assisting in Database Design
	Educating Users
	Selecting Applications Suitable for the Database System
	DBA Function Summary

	4 Data Definition and Control
	Planned Approach : Central Control of Data
	Determining Responsibility for Data
	Selecting Applications : Advising on System Development
	Advising on Data Collection and Validation
	Defining Database Contents

	5 Database Documentation
	Standards
	Description of the Database
	Data Dictionary, Function and Use
	Predict : The Adabas Data Dictionary
	Applications Using the Database
	Description of Data Sources
	Data Access and Manipulation Procedures
	Passwords and User Identification
	Backup Procedures
	Restart and Recovery Procedures
	DBMS Performance and Measurement

	6 Education and Training
	Overview
	Database Concepts
	Database Design
	Programming
	Operating Procedures and Techniques
	Data Entry
	Database Query and Report Generation

	7 The DBA and the User
	Liaison with the User
	Access Requirements
	Application Interface
	Complying with Standards and Controls

	8 The DBA and Application Selection/Development
	Configuration and Applications Planning
	Database Organization
	Understanding Current and Future User Requirements
	Coordinating Database Activities
	Analyzing Access Requirements
	Establishing Data Availability
	Performance Versus Flexibility
	Advising on Application/Program/Database Design
	Determining Physical Storage Requirements
	The Test Database and Testing Strategy

	9 The DBA and Computer Operations
	Influence of the Database Administrator
	Scheduling Computer Time
	Operating Procedures
	Restart and Recovery Procedures
	Database Utilities
	Working with Software AG
	Training and Education
	New Releases
	Distribution of Documentation and Updates
	Advice or Consultancy from Software AG
	Problem Reporting
	DBMS Improvement

	II Database Design
	10 Performance Control During System Design
	Methodology for Performance Control in System Design

	11 File and Record Design
	Multiple-Value Fields and Periodic Groups
	Different Record Types in a Single Adabas File
	Linking Physical Files in a Single Logical File
	Data Duplication
	Physical Duplication
	Logical Duplication

	Adabas Record Design
	Combining Fields
	Using Field Groups
	Numeric Fields
	Fixed-Storage Option

	12 Data Access Strategies
	Efficient Use of Descriptors
	Collation Descriptor
	Superdescriptor
	Subdescriptor
	Phonetic Descriptor
	Hyperdescriptor
	File Coupling
	Physical Coupling
	Logical Coupling

	User-Assigned ISNs
	Using the ISN as a Descriptor
	ADAM Usage

	13 Disk Space Usage
	Data Compression
	Fixed Storage
	Ordinary Compression
	Null-Value Suppression

	Forward Index Compression
	Padding Factors

	14 Adabas Security
	Security Planning
	Password Security
	Security by Value
	Ciphering
	Adabas SAF Security
	Natural andAdabas Online System Security

	15 Recovery/Restart Design
	Adabas Recovery
	Planning and Incorporating Recoverability
	Matching Requirements and Facilities
	Transaction Recovery
	End Transaction (ET) Command
	Close (CL) Command
	Reading ET Data
	System or Transaction Failure
	Limitations of Adabas Transaction Recovery
	Adabas Checkpoint Commands
	Exclusive File Control
	Checkpointing Exclusively Controlled Files
	System or Program Failure
	Limitations of Exclusive File Control

	User Restart Data

	16 The Adabas Recovery Aid
	The Recovery Log (RLOG)
	Starting the Recovery Aid

	17 Multiclient Support
	The Owner Concept
	Superusers
	Program Compatibility
	Support for Soft Coupling
	Data and Index Structures
	Data Storage
	Associator

	Performance Considerations
	User Profile Table
	Possible Adabas Response Codes
	Utility Support for Multiclient Files
	The ADALOD Utility LOAD Function
	The ADALOD Utility UPDATE Function
	The ADAULD Utility
	The ADACMP Utility

	18 Expanded Files
	Defining Expanded Files
	Using ADALOD
	Using the Online System
	Rules for Defining Expanded Files

	Inserting a Component File
	Removing a Component File
	Deleting Expanded Files
	Inspecting an Expanded File
	Expanded Files and the Adabas Nucleus
	Recommended Nucleus Changes for Expanded Files
	Restrictions When Using Expanded Files

	Expanded Files and Adabas Utilities
	Functions That Process Complete Expanded Files
	ADADBS DELETE Function
	ADARES REGENERATE and BACKOUT FILE Functions
	ADASAV

	Functions That Process Component Files
	ADAACK, ADADCK, ADAICK, ADAVAL, ADAULD
	ADADBS
	ADAINV
	ADALOD UPDATE Function
	ADAORD REORFILE / REORFASSO / REORDATA Functions
	ADASCR (Adabas Security) Functions

	III Database Maintenance Tasks
	19 Defining an Adabas Database
	Step 1 : Estimate the Size of the Database
	Components Required by the Nucleus
	Data Storage
	Associator
	Work

	Other Components
	Sort and Temp Areas
	Logs

	General Space Requirements
	General Procedure for Estimating Space
	Estimation Formulas
	Rules of Precedence in the Formulas

	Normal Index (NI)
	AVUQVAL
	AVLENG
	ISNSIZE * AVUQVAL * RECORDS
	DESCVALS * (AVLENG + 2)
	Convert Bytes to Blocks
	Examples

	Upper Index (UI)
	Convert Bytes to Blocks
	Example

	Address Converter (AC)
	Examples

	Data Storage
	Example

	How Adabas Allocates Work Space
	Work Part 1: Data Protection Information
	Example

	Work Part 2: Intermediate Search Results
	Example

	Work Part 3: ISN Lists from Search Commands
	Example

	Work Part 4: Data Related to Distributed Transaction Processing
	Sort
	Work Pool Size
	Sorted Partial Sequences
	Device Surfaces
	Estimated Sort Size
	Number of Descriptors Sorted

	Step 2 : Allocate Space
	Examples
	Example 1 : Database Allocation Using Two Volumes
	Example 2 : Database Allocation Using Three Volumes
	Example 3 : Database Allocation When Loading a Large File

	Performance Note

	Step 3 : Format the Space
	Step 4 : Define Database Parameters

	20 Database Space Management
	Adabas Physical Extents
	Relative Adabas Block Number (RABN)
	Adabas Logical Extents
	Adabas Space Allocation and Deallocation
	Free Space Table
	Adabas Nucleus Space Allocation Rules
	Space Allocation with the ADADBS Utility
	Space Allocation with the ADAINV Utility
	COUPLE/INVERT Functions

	Space Allocation with the ADALOD Utility
	LOAD Function
	UPDATE Function

	Space Allocation by the ADAORD Utility
	Space Allocation by ADASAV (RESTORE FILES Function)

	Using the Database Status Report to Control Space Use
	Potential Space Use Problems and Recommended Actions
	Full Physical Extents
	Maximum Physical Extents Reached
	Maximum Logical Extents Reached

	21 Database Monitoring and Tuning
	Monitoring Resource Use
	Reporting on Resource Use
	Monitoring Database Controls
	Performance Management, Statistics, and Tuning
	Adabas Session Statistics
	Input/Output Statistics
	I/O Counts (Including Initialization)
	Distribution of ASSO/DATA I/Os by VOL-SER Number (Excluding Initialization)

	Command Statistics
	Distribution of Commands by Source
	Distribution of Commands by Thread
	Distribution of Commands by File
	Distribution of Commands by Type

	Additional Session Statistics
	Formats Translated/Overwritten
	Autorestarts
	Command Throwbacks
	Buffer Flushes

	Buffer and Queue Statistics

	Command Logging

	22 Error Handling and Message Buffering
	Range of Operations
	User Exit Failures

	Recovery or Plug-In (PIN) Routines
	PIN Processing
	Default PIN Module ADAMXY
	Additional PIN Modules Provided
	PINAFP
	PINATM
	PINAUTOR
	PINAVI
	PINCOR
	PINOPRSP
	PINRSP
	PINSAF
	PINUES

	PIN Routine User Exit
	User Exit Inputs
	User Exit Outputs
	Condition Description Block
	Modifying and Reloading the Exit
	Using the Exit with PINAUTOR
	AUTOPARM Example

	Using the Exit with PINRSP
	Response Table Entry Example

	23 Universal Encoding Support (UES)
	Wide-Character Encodings
	Wide-Character Data Support
	Extended Alphanumeric Fields
	Advantages and Disadvantages
	Limitations
	Conversion Considerations

	Wide-Character Fields
	Advantages and Disadvantages
	Limitations

	Special DBCS Format Conversion Rules

	24 Multiple Platform Support
	Encodings
	ADACOX Conversion Exit
	Conversion of High Value in Value Buffer
	Data Translation Restrictions
	Platform Considerations

	25 Getting Started with Large Object (LB) Fields

	IV Adabas Online System Demo Version
	26 Overview
	What You Can Do with the AOS Demo Version

	27 Main Menu Functions
	Specifying the AOS Demo Version Database
	Using Program Function (PF) Keys
	Selecting a Menu Option
	Getting Help
	AOS Demo Version Messages

	28 Session Monitoring
	Display ADARUN Parameters
	Display Hold Queue
	Display System Status and Thread Usage
	System Status
	Thread Usage

	Display Maintenance Levels

	29 List Checkpoints
	30 File Maintenance
	31 Database Maintenance
	32 System Operator Command Functions
	Extended Error Recovery
	Add / Delete PIN Modules
	Display/Modify PIN Routines

	Display Locked Files
	Stop User(s)
	Terminate a Session Normally (ADAEND)

	33 Database Report
	Display Files
	Display a List of Files in the Specified Database
	Display Information for a Specific File

	Display General Database Layout

	V AppendicesAppendix
	A Appendices
	CLOGLAYOUT=5 Record Layout
	CLOGLAYOUT=8 Record Layout
	Command Type Field in CLOGLAYOUT Records
	Remote Nucleus ID Field in CLOGLAYOUT Records
	Command-Executing Nucleus ID Field in CLOGLAYOUT Records
	Timestamps in CLOGLAYOUT Records
	PRILOG : Printing the Command Log
	Print Program Input
	Control Statement Parameters
	CLOGLAYOUT Parameter
	FIELDS Parameter
	DIMENSIONS Parameter

	Command Selection Parameters
	CLASS Command Selection Parameter
	COMMAND Command Selection Parameter
	DATE Command Selection Parameter
	FILE Command Selection Parameter
	LOGIN_ID Command Selection Parameter
	RECORDS Command Selection Parameter
	RESPONSE Command Selection Parameter
	USER_ID Command Selection Parameter

	PRILOG Messages
	Installing and Using PRILOG under VSE
	Executing PRILOG under VSE

	Installing and Using PRILOG under z/OS

	PRILOGC: Printing the Command Log
	z/OS Library Members
	z/VSE Library Members
	z/VM Library Members
	BS2000 Library Members
	Print Program Input
	Command Selection Parameters
	CLASS Command Selection Parameter
	COMMAND Command Selection Parameter
	DATE Command Selection Parameter
	FILE Command Selection Parameter
	LOGIN_ID Command Selection Parameter
	RECORDS Command Selection Parameter
	RESPONSE Command Selection Parameter
	USER_ID Command Selection Parameter

	Installing and Using PRILOGC under z/OS
	Installing and Using PRILOGC under z/VSE
	Executing PRILOGC under z/VSE

	Installing and Using PRILOGC under z/VM
	Installing and Using PRILOGC under BS2000

	B Appendix
	Interoperable Encodings
	Single-Byte Character Sets (Latin-1)
	Single-Byte Character Sets (Non-Latin-1)
	Double- and Multiple-Byte Character Sets

	Coexistent Encodings
	Single-Byte Character Sets
	Double- and Multiple-Byte Character Sets

	VI AFPLOOK
	34 AFPLOOK
	Enabling AFPLOOK
	Operational Defaults
	Adjusting the Defaults
	AFPLOOK Parameters
	Maximum Files
	Command/Descriptors per File
	Maximum Concurrent Users
	Maximum CIDs per User
	Maximum Commands Processed
	Job Name
	Selected Files
	Demo Sampling (AFPLUKD Only)
	Real Sampling (AFPLUKD Only)
	Report Title (AFPLUKD only)

	AFPLOOK Report
	File Summary
	Potential Optimization Summary
	Sample Command Analysis
	Report Parameters

	VII AVILOOK
	35 AVILOOK
	Enabling AVILOOK
	SYSAVI – Selecting AVILOOK
	SYSAVI – Using AVILOOK
	AVILOOK File Maintenance
	AVILOOK File Statistics
	AVILOOK Add Files

	Index

