
Calling Adabas
This chapter describes the available procedures you can use to call Adabas to execute an Adabas
command. Adabas direct calls use the standard calling procedure provided by the host language (for
example, Assembler, COBOL, Fortran, C, or PL/I).

Note:
Examples of Adabas calls in a variety of host languages are provided with the programming examples in
Programming Examples.

There are two kinds of Adabas direct calls, one for each of the different control block interfaces supported
by Adabas:

The ACB direct call interface is the classic direct call interface, used for Adabas releases prior to
Adabas version 8. Direct calls in this format require the use of the classic Adabas control block
(ACB). If you have been using releases of Adabas prior to Adabas 8, the direct calls used by your
applications use the ACB direct call interface.

The ACBX direct call interface is the extended direct call interface, used for Adabas releases starting
with Adabas 8. Direct calls in this format require the use of the extended Adabas control block
(ACBX). If you have purchased and installed Adabas 8 (or later), you can use this format of direct
call in your applications. Otherwise, you cannot.

Adabas version 8 fully supports both the ACB and the ACBX direct call interfaces:

Existing application programs that use the ACB direct call interface can continue to run in the same
way, without change.

In addition, you can decide whether you want to use the ACBX-based or ACB-based direct call
interface in your application programs, on a call-by-call basis. The same program can use both
interfaces.

The control block and the related buffers specify which Adabas command is to be executed and provide
any additional information (parameters or operands) required for the command. The pointer to the
appropriate control block (ACB or ACBX) must always be the first operand specified in an Adabas call.

This chapter covers the following topics:

How Adabas Distinguishes Between ACB and ACBX Direct Calls

Specifying an ACB Interface Direct Call

Specifying an ACBX Interface Direct Call

Mixing ACB and ACBX Direct Calls

How Adabas Distinguishes Between ACB and ACBX Direct
Calls

1

Calling AdabasCalling Adabas

Any application program can make both ACB and ACBX direct calls. The control block (ACB or ACBX)
is the first parameter in Adabas calls using either the ACB or ACBX interfaces. Adabas 8 determines
which control block is used for a call by the presence of a value starting with the letter "F" at offset 2 of
the control block. Offset 2 in the ACB is the command code field (ACBCMD), but since there is no valid
F* Adabas command, no valid direct call using the ACB will contain a value starting with the letter "F" at
offset 2. Offset 2 in the ACBX is a new version field (ACBXVER) identifying the new ACBX.

The presence or absence of an "F" at offset 2 determines how Adabas 8 interprets the direct call. If an "F"
is specified in offset 2, Adabas interprets the control block and remaining direct call parameters as an
ACBX call; if an "F" is not specified in offset 2, Adabas interprets the control block and remaining direct
call parameters as an ACB call. If, for some reason, the remaining control block fields and direct call
parameters are not specified correctly for the type of call indicated by the presence or absence of an "F" at
offset 2 (for example, if ACB parameters are specified for an ACBX call), errors may result or the results
of the call may not be as expected. For more information about how direct calls are specified using the
ACB or the ACBX, read Specifying an ACB Interface Direct Call or Specifying an ACBX Interface Direct
Call.

Specifying an ACB Interface Direct Call
When making a direct call using the ACB interface, syntax such as the following should be used (this is a
COBOL example):

CALL ’ADABAS’ USING acb-control-block-name
 [format-buffer]
 [record-buffer]
 [search-buffer]
 [value-buffer]
 [ISN-buffer]

In an ACB direct call, Adabas expects buffers to be specified in the order shown in this syntax. If no
buffers are required for a call, no buffers need be specified. However, if a given call does not require a
format buffer, but does require one of the other buffers (for example, a record buffer), a dummy (or blank)
format buffer must be specified prior to the record buffer. Likewise, if a call requires only an ISN buffer,
dummy format, record, search, and value buffers must be supplied as well.

The following table describes each of the italicized, replaceable items in this syntax. For more information
about the format of the ACB control block and Adabas buffers, read Adabas Control Block (ACB) and
Defining Buffers. For information about the relationships between different ABD types, read
Understanding the Different Buffer Types.

2

Specifying an ACB Interface Direct CallCalling Adabas

Replace With

acb-control-block-name The pointer to the Adabas Control Block (ACB) to use for the call.

format-buffer The name of or pointer to the format buffer to use for the call. Only one
format buffer can be specified in a single ACB direct call.

ISN-buffer The name of or pointer to the ISN buffer to use for the call. Only one ISN
buffer can be specified in a single ACB direct call.

record-buffer The name of or pointer to the record buffer to use for the call. Only one record
buffer can be specified in a single ACB direct call.

search-buffer The name of or pointer to the search buffer to use for the call. Only one search
buffer can be specified in a single ACB direct call.

value-buffer The name of or pointer to the value buffer to use for the call. Only one value
buffer can be specified in a single ACB direct call.

Specifying an ACBX Interface Direct Call
The way direct calls are made in your applications when using the new ACBX interface is different than
when using the classic ACB interface. In addition, the calls are different for mainframe applications and
open systems applications. This section covers the following topics:

Specifying an ACBX Interface Direct Call in Mainframe Applications

Specifying an ACBX Interface Direct Call in Open System Applications

Specifying an ACBX Interface Direct Call in Mainframe Applications

The way direct calls are made in your applications when using the new ACBX interface is different than
when using the classic ACB interface. When making a direct call using the ACBX interface in mainframe
applications, syntax such as the following should be used (this is a COBOL example):

CALL ’ADABAS’ USING acbx-control-block-name
 reserved-fullword
 reentrancy-token
 [format-buffer-ABD record-buffer-ABD [multifetch-buffer-ABD]]...
 [search-buffer-ABD]
 [value-buffer-ABD]
 [ISN-buffer-ABD]
 [performance-buffer-ABD]
 [user-buffer-ABD]

Each ABD either directly precedes its associated buffer or contains a pointer to the buffer. It effectively
represents the buffer.

ABDs can be specified in any sequence in an ACBX interface direct call. However, if an ABD requires a
matching ABD of another type, Adabas will match them sequentially. For example, if three format buffer
ABDs and three record buffer ABDs are included in the call, the first format buffer ABD in the call is
matched with the first record buffer ABD in the call, the second format buffer ABD is matched with the
second record buffer ABD, and the third format buffer ABD is matched with third record buffer ABD.

3

Calling AdabasSpecifying an ACBX Interface Direct Call

If unequal numbers of match-requiring ABDs are specified, Adabas will generate a dummy ABD (with a
buffer length of zero) for the missing ABD. For example, if three format buffer ABDs are specified, but
only two record buffer ABDs are specified, a dummy record buffer ABD is created for use with the third
format buffer ABD. If you would prefer that the dummy record buffer ABD be used for the second format
buffer ABD instead, you must specify the dummy record buffer ABD yourself prior to the record buffer
ABD to be used by the third format buffer ABD.

For commands where data in the record buffer is not described by a format specification in the format
buffer, no format buffer segments need be specified; if any are specified, they are ignored. This applies to
only a few commands; the most prominent of them is OP.

The following table describes each of the italicized, replaceable items in this syntax. For more information
about the format of the extended Adabas control block (ACBX), Adabas buffer descriptions (ABDs), and
Adabas buffers, read Extended Adabas Control Block (ACBX), Adabas Buffer Descriptions (ABDs), and
Defining Buffers. For information about the relationships between different buffer types, read
Understanding the Different Buffer Types.

4

Specifying an ACBX Interface Direct Call in Mainframe ApplicationsCalling Adabas

Replace With

acbx-control-block-nameThe pointer to the extended Adabas control block (ACBX) to use for the call.

format-buffer-ABD The name of or pointer to the format buffer ABD that defines a format buffer
segment to use for the call. Each format buffer segment must end with a
period and be a complete and valid standalone format buffer. Multiple format
buffer ABDs can be specified in a single ACBX direct call.

ISN-buffer-ABD The name of or pointer to the ISN buffer ABD that defines an v segment to
use for the call. Only one ISN buffer ABD can be specified in a single ACBX
direct call.

multifetch-buffer-ABD The name of or pointer to the multifetch bufferABD that defines a multifetch
buffer segment to use for the call. Multiple multifetch buffer ABDs can be
specified in a single ACBX direct call.

performance-buffer-ABDThe name of or pointer to the performance buffer ABD that defines a
performance buffer segment used by Adabas Review. The performance buffer
segment is reserved for use by Adabas Review.

record-buffer-ABD The name of or pointer to the record buffer ABD that defines a record buffer
segment to use for the call. Multiple record buffer ABDs can be specified in a
single ACBX direct call.

reentrancy-token The ADALNK reentrancy token. This is a fullword in the calling program’s
storage where ADALNK stores the address of its static data area. This
fullword should be set to zero before the first Adabas call. It should then
remain unchanged for all subsequent direct calls while the program runs.

reserved-fullword The fullword containing binary zeros. This fullword is reserved for use by
Adabas and should be set to binary zeros before the first Adabas call.

search-buffer-ABD The name of or pointer to the search buffer ABD that defines a search buffer
segment to use for the call. Only one search buffer ABD can be specified in a
single ACBX direct call.

user-buffer-ABD The name of or pointer to the user buffer ABD that defines a user buffer
segment (extension) to use for the call. The user buffer extension (UBX) is
used for the user data passed to user exits LNKUEX1 (link routine pre-call
exit) and LNKUEX2 (link routine post-call exit). A single user buffer ABD
can be specified in an ACBX direct call.

value-buffer-ABD The name of or pointer to the value buffer ABD that defines a value buffer
segment to use for the call. Only one value buffer ABD can be specified in a
single ACBX direct call.

Specifying an ACBX Interface Direct Call in Open System Applications

The way direct calls are made in your applications when using the new ACBX interface is different than
when using the classic ACB interface. When making a direct call using the ACBX interface in open
system applications, syntax such as the following should be used (this is a COBOL example):

5

Calling AdabasSpecifying an ACBX Interface Direct Call in Open System Applications

CALL ’ADABAS’ USING acbx-control-block-name
 ABD-count
 ABD-list-pointer

The following table describes each of the italicized, replaceable items in this syntax. For more information
about the format of the extended Adabas control block (ACBX), Adabas buffer descriptions (ABDs),
ABD lists, and Adabas buffers, read Extended Adabas Control Block (ACBX), Adabas Buffer Descriptions
(ABDs), ABD Lists, and Defining Buffers.

Replace With Conditions

acbx-control-block-name The pointer to the extended
Adabas control block (ACBX) to
use for the call.

Required.

ABD-count The number of ABD pointers
included in the ABD list for the
direct call.

Required only if ABDs and their
associated buffers are used in the
direct call.

ABD-list-pointer The pointer to the ABD list for
the direct call. The ABD list
contains pointer references for all
of the ABDs used by the ACBX
direct call. For more information
about the ABD list, read ABD
Lists.

Required only if buffers are
required for the direct call.

Mixing ACB and ACBX Direct Calls
You can freely mix ACB and ACBX direct calls in the same application.

In TSO or batch environments, when Adabas 8 non-reentrant (ADALNK) direct calls are invoked using
both the ACB and ACBX direct call interfaces in the same application, user context is preserved because
the work area used for the calls is part of the ADALNK module itself. However, if you elect to use
reentrant (ADALNKR) direct calls using both the ACB and ACBX direct call interfaces in the same
application, you must ensure that the user context is preserved yourself, or your application may produce
incorrect results. For information on preserving user context in ADALNKR direct calls, read Mixing ACB
and ACBX Interface Direct Calls to ADALNKR.

6

Mixing ACB and ACBX Direct CallsCalling Adabas

	Calling Adabas
	How Adabas Distinguishes Between ACB and ACBX Direct Calls
	Specifying an ACB Interface Direct Call
	Specifying an ACBX Interface Direct Call
	Specifying an ACBX Interface Direct Call in Mainframe Applications
	Specifying an ACBX Interface Direct Call in Open System Applications

	Mixing ACB and ACBX Direct Calls

