ADABAS TEXT RETRIEVAL (MVS/BS2000)

REFERENCE MANUAL

TRS - 211 - 030

Manual Order Number: TRS - 211 - 030

This document is applicable to ADABAS TEXT RETRIEVAL Version 2.1 and to all
subsequent releases. Specifications contained herein are subject to change and these
changes will be reported in subsequent update series or new editions.

Readers’ comments are welcomed. A form for this purpose is provided at the back of this
publication. If this form has been removed, comments may be directed to:

SOFTWARE AG
Documentation
Uhlandstrasse 12

6100 Darmstadt

Federal Republic of Germany

Telefax: 06151 -92 - 2610

or your nearest affiliate.

© December, 1992 SOFTWARE AG, Germany
All rights reserved
Printed in the Federal Republic of Germany

TABLE OF CONTENTS

1.

2.

3.

r

<

INTRODUCTION
ADABAS TEXT RETRIEVAL CALLS
Alphabetical LiStingouuiintn i 2-1
Topical LiStING .. .vvuit et e e e e 2-2
AD DD L 2-3
B 2-6
CL e 2-8
DD 2-9
DS 2-11
DY P . 2-13
EISE 2-14
EISG .. 2-16
BISS 2-18
HIGH .. 2-20
QR 2-23
RET 2-26
RO R 2-27
RULE . 2-28
Dynamic Parameters for the DYPand BCCalls 2-30
QUERY SYNTAX
Search Labels 3-1
Search Mode Parameters, 3-2
Query Syntax Diagrams 3-4
Word-inverted Elements (free-text chapters) 3-4
Formatted-inverted Elements i, 3-4
Search NUmDbeTISo oo e e 3-4
Search Query Languageooiiiiiiiiiiiiii 3-5
a8 ettt e 3-5
Blanks 3-5
Reserved WOrds . ..o oot 3-5
TrUNCAtION . . o ettt e e e 3-5
WOrd Set .ot 3-6
OPEIALOTS ..t 3-7
Evaluation Order of Operatorsc.oouueineineinnennennenneen.. 3-7
Boolean Operatorsiininiin i e 3-8
Relational Operatorsouuviunt it i 3-9
Proximity Operatorseuueintinn ettt 3-11
Search Numbers e 3-13
The SORT and SORTD Functions ..., 3-14
software ag i

4. FILE STRUCTURE

An Example of the Index Structure of ADABAS TEXT RETRIEVAL. 4-2
Document File 4-5
Vocabulary File 4-5
Document Index File i 4-7

5. TOKENIZATION AND KEYWORD DEFINITION

Versions of TRSSCT e 5-1
Character Definitionoitiii i i it 5-2
Character Recognitionttt i, 5-2
Character Translationouitirir ittt 5-2
TRSSCT MaCIOS . .ooii ittt et e e et et et et et e e e 5-3
An Example of TRSSCT e 5-5

Keyword Definition i 5-7
An Example of TRSTEXT e 5-7

THE NATURAL TEXT RETRIEVAL INTERFACE

The NATURAL STORE Statementiiiiiiiiinna... 6-2
The NATURAL DELETE Statement i, 6-2
The NATURAL FIND Statementouiiiiiiiiiiniinn... 6-2
Setting Dynamic Parameters i 6-3
Scrolling Through RETAIN Sets 6-4
SAMPLE APPLICATION
The Calls Used in the Sample Application 7-4
Initialize ADABAS TEXT RETRIEVAL Session 7-5
TRS - INIT .. e 7-5
Document Maintenance and Retrieval 7-9
TRS - AD DD . 7-9
Formatted Retrieval 7-19
TRS - QR oo e e 7-19
Overview of Selected Documents i, 7-27
TRS - EIS oo 7-27
Document Display 7-34
TRS - DISP . . e 7-34
Index Displayoo i 7-39
TRS -HLP . 7 -39
Freestyle Retrieval 7-44
TRS - FOQR . e 7-44
Access NATURAL RETAIN Set 7-49
TRS - NAT . e 7-49

g software ag

r

LS

APPENDIX A — MESSAGES AND CODES

Syntax Errors

APPENDIX B — APPLYING ADABAS TEXT RETRIEVAL IN A
NON-NATURAL ENVIRONMENT

INDEX

software ag

CHAPTER 1

INTRODUCTION

ADABAS TEXT RETRIEVAL Introduction

INTRODUCTION

r

<

In industrialized societies, where the quantity of available information is
increasing exponentially, a major priority has become effective information
management and distribution. Database technology provides perhaps the only
means of managing information of such vast proportations.

Traditional information processing has been performed almost exclusively on
formatted data — data having a specified type and length. Advances in software and
hardware technology, however, have made possible the storage and retrieval of
textual information as well. The ability to process unformatted data makes it
possible to extract needed information quickly from a large text data bases.

The demand for efficient text retrieval is large and growing rapidly in almost all
industries. For example, textual information is found in great quantities in such
fields as publishing, library archiving, law and technical documentation. All of the
necessary data retrieval and data management services needed to create a
comprehensive and truly integrated information processing environment are
provided by ADABAS TEXT RETRIEVAL together with other Software AG
products.

Integrated Information Processing

Reality ’;[E o
%User @
Data-

Communication t
Dictionary 3 —> | Application | | Application | | Application | 3 —> CASE

@ Reflection t %

=

VA Description

Database
°®
10] & o
- : . 00 0O
=71 ||| e ° Tl
Metadata Formatted Unformatted Office Geographical Complex Knowledge | Encyclopaedia
Data Data Data Data Data

v

Physical
Data Storage

software ag 1-1

Introduction ADABAS TEXT RETRIEVAL

ADABAS TEXT RETRIEVAL Overview

ADABAS TEXT RETRIEVAL is the heart of Software AG’s text retrieval
architecture. It offers the full range of functionality expected of powerful
information retrieval systems. Applications which access both formatted and
unformatted data simultaneously can be developed using ADABAS TEXT
RETRIEVAL. Other Software AG products which apply this architecture include:
¢ NATURAL DOCUMENT MANAGEMENT - a complete document
management system;
¢ CON-NECT DOCUMENT RETRIEVAL - a optional extension to the
functionality of Software AG’s office information system CON-NECT.

Since ADABAS TEXT RETRIEVAL is an extension of Software AG’s database
management system ADABAS, it inherits such advantages as high-performance
data compression, on to restart, automatic recovery and 24-hour operation.

ADABAS TEXT RETRIEVAL manages the index information and not the
content of the data. This means that document contents can be stored at any
location (ADABAS, sequential files, CD-ROM, PC, etc.).

ADABAS TEXT RETRIEVAL can be used via its call interface from inside
NATURAL or any third generation language such as COBOL or PL/1.

5 software ag

ADABAS TEXT RETRIEVAL Introduction

ADABAS TEXT RETRIEVAL Functionality

Text can be designated either as formatted or unformatted depending on your
requirements. Unformatted text is referred to in the remainder of this manual as
free-text chapters.

Free-text chapters are subject to a process called inversion which creates the
information necessary to retrieve a text based on content. Any of three different
inversion methods can be used:

e Full-text inversion;
e Thesaurus-controlled inversion;

* Inversion using stopword lists.

Numerous functions and operators are available for flexible retrieval:
¢ Word searches
¢ Word truncation:

- Right truncation;

- Left truncation;

Left and right truncation:
- Middle truncation.

e Phonetic searches;

¢ Synonym searches;

¢ Integration of thesaurus relations:
- Broader terms;
- Narrower terms;
- Synonyms.

¢ Proximity operators for searching adjacent terms, near terms, terms in a
sentence and/or paragraph;

¢ Relational operators;

* Boolean operators;

¢ Structure-independent search (any combination of free-text chapters and
formatted fields);

e References to previous queries (refinement);
e Sorting in ascending and descending order;
* Highlighting of found items.

@ software ag 1-3

<

Introduction ADABAS TEXT RETRIEVAL

ADABAS TEXT RETRIEVAL Terminology

Defined below are the most important and frequently used terms in ADABAS
TEXT RETRIEVAL.

Document

Documents consists of chapters (sometimes referred to as categories) which are
equivalent to fields in the relational database model. Chapters can either be
designated as free-text chapters, which are managed by ADABAS TEXT
RETRIEVAL, or as formatted fields in accordance with the database system.

Free-text chapters can be separated into paragraphs and sentences. This allows
you to issue queries which search individual sentences and paragraphs.

Document
Chapters
ORI
ORD
TIT ORDER NUMBER E;I;jn;atted
TITL
‘ — TITLE
Free-text]
chapters ABS

ABSTRACT

Formatted
fields

5 software ag

ADABAS TEXT RETRIEVAL Introduction

Tokenization
Tokenization is the process by which ADABAS TEXT RETRIEVAL identifies
substrings of an entered text. The process consists of three major steps:

¢ Identification of a character as being a valid character defined in the
ADABAS TEXT RETRIEVAL character table;

e Making the process of tokenization dependent on the context of the
occurrence of characters; this part is defined by the appropriate algorithms
implemented in a specifically designed macro assembler language.

¢ Translation of the word detected by the previous parts of the process.

Inversion

Inversion is the process which creates the necessary document index entries for the
contents of free-text chapters in the document. ADABAS TEXT RETRIEVAL
supports three inversion methods:

e Full-text inversion;
¢ Inversion using a controlled thesaurus;

¢ Inversion by ignoring words in the stopword list.

You can choose one of the inversion methods for each free-text chapter.

@ software ag 1-5

<

CHAPTER 2

ADABAS TEXT RETRIEVAL CALLS

ADABAS TEXT RETRIEVAL Calls

ADABAS TEXT RETRIEVAL CALLS

ADABAS TEXT RETRIEVAL provides calls which perform the following
functions:

e Setup ADABAS TEXT RETRIEVAL sessions;
¢ Invert free-text chapters;

e Retrieve text and information;

* Browse through ISN sets;

* Highlight search terms.

This chapter explains what each call is designed to carry out and the parameters
of each call. The names of dynamic parameters are appear in uppercase capital
letters. All other parameters appear in italics.

Alphabetical Listing

The following table lists all available ADABAS TEXT RETRIEVAL calls in
alphabetical order:

Call Description Page
ADD | Creates document index entries 2-3
BC Starts an ADABAS TEXT RETRIEVAL session 2-6
CL Closes an ADABAS TEXT RETRIEVAL session 2-8
DDS |Deletes document index entries 2-9
DSL | Defines search labels 2-11
DYP |Changes dynamic parameters 2-13
EISE | Ends browsing through an ISN set 2-14
EISG | Browses through an ISN set 2-16
EISS | Starts browsing through an ISN set 2-18
HIGH | Highlights a document 2-20
QR Executes a query 2-23
RET |Creates a NATURAL retain set 2-26
RQR [Releases a query 2-27
RUL | Defines inversion rules 2-28
E

@ software ag 2.1

LS

Calls ADABAS TEXT RETRIEVAL

Topical Listing

The following table provides a cross reference of ADABAS TEXT RETRIEVAL
calls according to function:

Topic Calls |Page
Setting up Sessions BC 2-6
CL 2-8
DYP |2-13
Inverting Documents RUL |[2-28
E
ADD |2-3
DDS (2-9
Retrieving Text and Information DSL (2-11
QR (2-23
RQR |[2-27
Browsing through ISN Sets EISE (2-14
EISG |2-16
EISS |2-18
Highlighting HIGH (2-20

2.9 5 software ag

ADABAS TEXT RETRIEVAL Calls

ADD

Description
The ADD call creates the document index entries for the contents of a free-text
chapter within a document. This process is called document inversion.
Before the ADD call can be executed, the free-text chapter to which the entered
text belongs must have been established.
The free-text chapter is established by a BC or DYP call which provides the name
of the ADABAS hyperdescriptor associated with the free-text chapter in question,
as the value of the TEXT parameter.
The ADD call stores entries in the document index; it does not store the document
text.

Example
See page 7 - 15.

Syntax

CALL °TRS’ 'ADD’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Document-ID alphanumeric variable input
Source-Text Length binary 4 bytes input
Source Text alphanumeric variable input
Document-ISN binary 4 bytes output
End-of-Text Indicator alphanumeric 6 bytes input
Return Code

The return code is the message delivered at the end of processing which indicates
whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

@ software ag 2-3

<

Calls

ADABAS TEXT RETRIEVAL

Document-1D

A unique Document-ID must be provided. There are two different ways of
providing a Document-ID depending on the setting of the dynamic parameter
DOCID of the DYP call:

¢ If the DOCID parameter contains the name of a formatted field (ADABAS
descriptor), the Document-ID parameter must contain a unique value for the
formatted field in question. If a record containing the specified value of
Document-ID already exists, the ADABAS ISN of this record is used in the
document index, otherwise an ADABAS record containing only the value for
the formatted field in question is added to the document file.

e [If the DOCID parameter contains the value ’##°, the Document-ID
parameter must contain the ADABAS ISN of a record on the document file.
An ADABAS record with the specified ISN must already exist on the
document file.

Source-Text Length
The length of the text in bytes, as contained in the parameter Source Text.
Source Text

The text to be inverted.

Document ISN

Document ISN

The Document ISN reflects either of the following ISNs:
e the ISN entered in the Document-ID parameter;
¢ the ISN of the record containing the value of the Document-ID parameter.

End-of-Text Indicator

Free-text chapters can be inverted as one text string or divided into several parts.
The End-of-Text Indicator parameter must contain either of the following values:

LAST For the last part of a free-text chapter.
NOLAST In all remaining cases.

The inversion process for the contents of a free-text chapter can generally be
executed in one step. However, for the inversion of long texts it may be necessary
to execute the inversion in multiple steps, because intermediate ADABAS end
transactions may be required in order to prevent an ADABAS Hold Queue
overflow.

5 software ag

ADABAS TEXT RETRIEVAL Calls

Inversion Process

ORDER NUMBER

TITLE

ABSTRACT

DATE

PRICE

The Process for the
Free-Text Chapters
TOKENIZATION
PROCESS
STANDARDIZED ORIGINAL
TERM TERM

\

INVERSION
PROCESS

SN

FULL-TEXT THESAURUS STOPWORD LIST
INVERSION CONTROLLED CONTROLLED

NS

FULL-TEXT
INDEX

@ software ag 2.5

<

Calls

BC

ADABAS TEXT RETRIEVAL

Description

Example

Syntax

The BC call opens an ADABAS TEXT RETRIEVAL session. This call is
mandatory and must be invoked once at the beginning of each session.

See page 7 - 6.

Call 'TRS’ ’BC’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Size of Buffer binary 4 bytes in/output
Save Area alphanumeric 100 bytes output
Dynamic Parameters alphanumeric variable input

Return Code
The return code is the message delivered at the end of processing which indicates

whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

Size of Buffer

The size of the ADABAS TEXT RETRIEVAL buffer.

Minimum Size 18 K
Recommended Size 48 K

If ADABAS TEXT RETRIEVAL is invoked by NATURAL, the Size of Buffer
becomes an output parameter reflecting the value of the NATURAL TSIZE
parameter as defined in the NATURAL parameter module.

Save Area

The name of the storage area used by ADABAS TEXT RETRIEVAL as a
temporary save area.

5 software ag

ADABAS TEXT RETRIEVAL Calls

Dynamic Parameters

Any of the following dynamic paramters can be specified in a BC call:

AUTOASP DSFNR MAXDPRO SETCHAR WORDLEN
DEFOPER ERRPRE MAXVSET TEXT

DFNR ICBUF PASSWORD TRUNCHAR

DOCID INDEX SEARCHLB VFNR

For details of the dynamic parameters and their possible values, refer to the section
entitled Dynamic Parameters for the DYP and BC Calls on page 2 - 30.

@ software ag 2-7

LS

Calls ADABAS TEXT RETRIEVAL

CL

Description
The CL call closes an ADABAS TEXT RETRIEVAL session and releases all
resources.

Example
See page 7 - 8.

Syntax

CALL °TRS’ 'CL’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Save Area alphanumeric 100 bytes output

Return Code
The return code is the message delivered at the end of processing which indicates

whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

Save Area

This parameter refers to the storage area used by ADABAS TEXT RETRIEVAL
for a temporary save area.

2-8 £ software ag

ADABAS TEXT RETRIEVAL Calls

DDS

Description
The DDS call deletes the document index entries for a specific free-text chapter
within a document.

Important
Before the DDS call can be executed, the free-text chapter to which the entered
text belongs must have been established.
The free-text chapter is established by a BC or DYP call which provides the name
of the ADABAS hyperdescriptor associated with the free-text chapter in question,
as the value of the TEXT parameter.
The DDS call deletes entries in the document index; it does not delete the
document text.

Example
See page 7 - 17.

Syntax

CALL °TRS’ ’'DDS’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Document-ID alphanumeric variable input
Delete Option alphanumeric 3 bytes input
Return Code

The return code is the message delivered at the end of processing which indicates
whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

@ software ag 2-9

<

Calls ADABAS TEXT RETRIEVAL

Document-1D

A unique Document-ID must be provided. There are two different ways of

providing a Document-ID depending on the setting of the DOCID parameter of

the DYP call:

¢ If the DOCID parameter contains the name of a formatted field (ADABAS
descriptor), the Document-ID parameter must contain a unique value for the
formatted field in question.

e If the DOCID parameter contains the value '##’, the Document-ID
parameter must contain the ADABAS ISN of a record on the document file.

Delete Option

There is only one possible delete option:

SUM Deletes the document index entries for the current free-text chapter.

Note: If more than one free-text chapter exists for a document whose index entries are to be
deleted, the document index entries for each chapter must be deleted separately using
repeated pairs of DYP and DDS calls.

2.10 5 software ag

ADABAS TEXT RETRIEVAL Calls

DSL

Description

The DSL call defines search labels on the document index. These labels allow
direct referencing of both formatted fields and free-text chapters in queries.

For free-text chapters, the same search label can be entered for more than one
ADABAS hyperdescriptor name, thus making up a global search label which
enables the user to address multiple free-text chapters with one search label in a

query.
Example
See page 7 - 7.

Syntax

CALL 'TRS’ 'DSL’ parameters

Required Parameters Format Length In/Output

Return Code binary 4 bytes output
Search Labels alphanumeric variable input

Return Code

The return code is the message delivered at the end of processing which indicates
whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

f software ag 2_11

<

Calls

ADABAS TEXT RETRIEVAL

Search Labels

A search label can be assigned to an ADABAS field. This can either be a formatted
field (ADABAS descriptor), or a free-text chapter (ADABAS hyperdescriptor).

The definition of search labels consists of a character string containing one or more
entries separated by commas and ending with a period.

To define a search label, the name of the formatted field (ADABAS descriptor),
or the free-text chapter (ADABAS hyperdescriptor) must be entered followed by
an equal sign and the search label of the specific field. For upward compatibility,
the name of the hyperdescriptor must be entered twice.

Example:

’F1=DATE,Y1Y1=TITLE, Y2Y2=ABSTRACT, Y1Y1=ALL, Y2Y2=ALL.

FI Formatted field
Y Free-text chapter
Y2 Free-text chapter

5 software ag

ADABAS TEXT RETRIEVAL Calls

DYP
Description
The DYP call enables users to define dynamic parameters or redefine any
specified in the BC call at the start of a session or in previous DYP calls. For
example, the call enables users to handle more than one free-text chapter within
a document by changing the TEXT parameter.
Example
See pages 7-15,7-17,and 7 - 37.
Syntax
CALL 'TRS’ ’'DYP’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Dynamic Parameters alphanumeric variable input
Return Code
The return code is the message delivered at the end of processing which indicates
whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A “Messages and Codes”.
Dynamic Parameters
Any of the following dynamic paramters can be specified in a DYP call:
AUTOASP DSFNR MAXDPRO SETCHAR WORDLEN
DEFOPER ERRPRE MAXVSET TEXT
DFNR ICBUF PASSWORD TRUNCHAR
DOCID INDEX SEARCHLB VFNR
For details of the dynamic parameters and their possible values, refer to the section
entitled Dynamic Parameters for the DYP and BC Calls on page 2 - 30.
@ software ag 2-13

LS

Calls

EISE

ADABAS TEXT RETRIEVAL

Description

Example

Syntax

Each query executed by ADABAS TEXT RETRIEVAL results in an ADABAS
ISN set. This set can be referenced by EISE, EISG and EISS calls. After an EISS
call and any number of EISG calls have been used, the EISE call must be used to
conclude browsing through an ISN set.

See page 7 - 33.

CALL °TRS’ ’EISE’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Command-1D binary 4 bytes input
Set Type alphanumeric 1 byte input

Return Code
The return code is the message delivered at the end of processing which indicates

whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

Command-1D
The ADABAS Command-ID of the ISN set to be referenced, as created by the QR

call. It is identical to the Command-ID output parameter of the QR call which
generated the ISN set and must therefore be set to the same value.

5 software ag

ADABAS TEXT RETRIEVAL Calls

Set Type

The type of ISN set for which browsing is to be terminated. One of the following
values must be specified:

D’ Document ISN set
A% Vocabulary ISN set

The value of the Set Type parameter must be identical to the value of the Type
parameter of the QR call.

@ software ag 2-15

<

Calls ADABAS TEXT RETRIEVAL
EISG
Description
Each query executed by ADABAS TEXT RETRIEVAL results in an ADABAS
ISN set. This set can be referenced by EISE, EISG and EISS calls.
The EISG call is used to browse through an ISN set created by a QR call. The
sequence of one or more EISG calls must be preceded by an EISS call and
concluded by an EISE call.
Example
See page 7 - 30.
Syntax
CALL °TRS’ ’EISG’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Command-ID binary 4 bytes input
Set Type alphanumeric 1 byte input
Quantity binary 4 bytes input
Position binary 4 bytes input
ISN binary 4 bytes output
Return Code
The return code is the message delivered at the end of processing which indicates
whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.
Command-ID
The ADABAS Command-ID of the ISN set to be referenced, as created by the QR
call. It is identical to the Command-ID output parameter of the QR call which
generated the ISN set and must therefore be set to the same value.
2.16 fj software ag

ADABAS TEXT RETRIEVAL Calls

Set Type

The type of ISN set for which browsing is to be executed. One of the following
values must be specified:

D’ Document ISN set
A% Vocabulary ISN set

The value of the Set Type parameter must be identical to the value of the Type
parameter of the QR call.

Quantity

The number of ISNs in the set generated by the QR call. The value of the Quantity
parameter must be identical to the Quantity parameter of the QR call.

Position

The position of the requested ISN within the ISN set as generated by the QR call.

ISN

The ISN within the position as indicated by the Position parameter in the ISN set
is returned by the EISG call.

@ software ag 2.17

<

Calls

EISS

ADABAS TEXT RETRIEVAL

Description

Example

Syntax

Each query executed by ADABAS TEXT RETRIEVAL results in an ADABAS
ISN set. This set can be referenced by EISE, EISG and EISS calls.

The EISS call starts browsing through an ISN set created by a QR call. The EISS
call must be performed once before each sequence of EISG calls used to browse
through an ISN set.

See page 7 - 29.

CALL °'TRS’ ’EISS’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Command-ID binary 4 bytes input
Set Type alphanumeric 1 byte input
Quantity binary 4 bytes input

Return Code
The return code is the message delivered at the end of processing which indicates

whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

Command-ID
The ADABAS Command-ID of the ISN set to be referenced, as created by the QR

call. It is identical to the Command-ID output parameter of the QR call which
generated the ISN set and must therefore be set to the same value.

5 software ag

ADABAS TEXT RETRIEVAL Calls

Set Type

This parameter defines the type of ISN set for which browsing is to be started. One
of the following values must be specified:

D’ Document ISN set
A% Vocabulary ISN set

The value of the Set Type parameter must be identical to the value of the Type
parameter of the QR call.

Quantity

The number of ISNs in the set generated by the QR call. The value of the Quantity
parameter must be identical to the Quantity parameter of the QR call.

@ software ag 2-.19

<

Calls ADABAS TEXT RETRIEVAL

HIGH

Description

The HIGH call is used to mark those words in a document which have been found
for a given query.

The HIGH call marks the beginning and ending of the words to be highlighted by
two specific characters. In NATURAL these characters can be used for dynamic
highlighting by means of the dynamic attribute feature (DY).

Important

Before the HIGH call can be executed, the free-text chapter to which the entered
text belongs must have been established.

The free-text chapter is established by a BC or DYP call which provides the name
of the ADABAS hyperdescriptor associated with the free-text chapter in question,
as the value of the TEXT parameter.

Example
See page 7 - 36.

Syntax
CALL °TRS’ ’HIGH’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Document-ID alphanumeric variable input
Query Name alphanumeric 8 bytes input
Input Text alphanumeric variable input
Output Text alphanumeric variable output
Text Length binary 4 byte input
Prefix alphanumeric 1 byte input
Suffix alphanumeric 1 byte input
Cursor binary 4 bytes in-/output

Return Code
The return code is the message delivered at the end of processing which indicates

whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A “Messages and Codes”.

2-20 £ software ag

ADABAS TEXT RETRIEVAL Calls

Document-1D

A unique Document-ID must be provided. There are two different ways of
providing a Document-ID depending on the setting of the DOCID parameter of
the DYP call:

e If the DOCID parameter (DYP call) contains the name of a formatted field
(ADABAS descriptor), the Document-ID parameter must contain a unique
value for the formatted field in question.

e If the DOCID parameter (DYP call) contains the value '##’, the
Document-ID parameter must contain the ADABAS ISN of a record on the
document file representing the document in question.

Query Name

The name of the query as defined in the Query Name parameter of the QR call. The
words will be highlighted according to the selection criteria specified in this query.

Input Text
The source text which contains the words to be highlighted. Blanks should be

provided at the beginning and at the end of the source text to host the assigned
prefix and suffix characters if necessary.

Output Text

The source text including the assigned prefix and suffix characters.

Text Length

The length of the source text expressed in bytes.

Prefix

The special character indicating the beginning of a word to be highlighted.

Recommended character: ’°<’

@ software ag 2-21

<

Calls

ADABAS TEXT RETRIEVAL

Suffix
The special character indicating the end of a word to be highlighted.
Recommended character: *>’

Cursor
For each free-text chapter of a document, this parameter has to be set to zero at

the beginning of the highlighting process and must not be changed for the
remainder of the process.

5 software ag

ADABAS TEXT RETRIEVAL Calls

QR
Description

The QR call is used to retrieve text and information from free-text chapters and
formatted fields. This process is called information retrieval.

Example
See pages 7-21,7-23,7-24,7-29,7-42,7-47,7 - 48.

Syntax
CALL °TRS’ ’'QR’ parameters

Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Query alphanumeric variable input
Query Length binary 4 byte input
Query Name alphanumeric 8 bytes input
Disp Error binary 4 byte output
Length Error binary 4 byte output
Default Mode alphanumeric 1 byte input
Command-ID binary 4 bytes output
Quantity binary 4 bytes output
Type alphanumeric 1 byte input

Return Code

The return code is the message delivered at the end of processing which indicates
whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A “Messages and Codes”.

Query
The query. Its syntax is described in the chapter 3 “Query Syntax”.
Query Length

The length of the current query expressed in bytes.

@ software ag 2-23

<

Calls

ADABAS TEXT RETRIEVAL

Query Name

The name of the current query. Subsequent queries can use this name to refer to
the results of the current query. Two different types of query names are possible
depending on the value of the Type parameter:

Type Query Name Range of nnn

D DOCSOnnn 001 - 999

A" WRDSOnnn 001 - 999
Disp Error

If an error is detected when the syntax of the query is checked, this parameter will
contain the displacement of the erroneous term within the query.

Length Error

If an error is detected when the syntax of the query is checked, this parameter will
contain the length of the erroneous term within the query.

Default Mode

The default selection mode. One of the following letters must be specified as the
default selection mode:

Letter Selection Mode
= PRECISE

A ASPECT

G GROUP

P PHONETIC

R ROOT

S SYN

X SYR

Selection modes are explained in chapter 3 Query Syntax.

5 software ag

ADABAS TEXT RETRIEVAL Calls

Command-1D
The ADABAS Command-ID of the ADABAS ISN set created by the QR call.

This parameter serves as input to the EISS, EISG, EISE and RET calls.

Quantity

The number of ISNs contained in the ISN set created by the ADABAS TEXT
RETRIEVAL QR call.

Tipe

The type of retrieval to be executed by the QR call. There are two possible values:

‘D¢ Document retrieval
% Vocabulary retrieval
@ software ag 2-25

Calls

RET

ADABAS TEXT RETRIEVAL

Description

Example

Syntax

The RET call is used to enter an ADABAS Command-ID created by a QR call into
the NATURAL Retain-Table.

See page 7 - 47.

CALL 'TRS’ ’'RET’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Command-ID binary 4 bytes input
Quantity binary 4 bytes input
Retain-Name alphanumeric 32 bytes input

Return Code
The return code is the message delivered at the end of processing which indicates

whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

Command-1D

The ADABAS Command-ID of the ISN set created by a QR call to be entered in
the NATURAL Retain-Table.

Quantity

The number of ISNs contained in the ISN set created by a QR call.

Retain-Name

The name of the NATURAL Retain set. This name can be used in subsequent
NATURAL FIND statements for further retrieval.

5 software ag

ADABAS TEXT RETRIEVAL Calls

RQR
Description
The RQR call is used to release all results of a specific query.

A query is automatically released when another QR call with the same Query
Name is executed.

Example
See pags 7-21,7-23,7-24,7 - 46.

Syntax
CALL 'TRS’ ’'RQR’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Query Name alphanumeric 8 bytes input

Return Code
The return code is the message delivered at the end of processing which indicates

whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

Query Name

The name of the query to be released, as assigned in the QR call.

@ software ag 2-27

<

Calls

RULE

Description

Syntax

ADABAS TEXT RETRIEVAL

The Rule call is used to define the rules for document inversion.

CALL °TRS’ ’RULFE’ parameters
Required Parameters Format Length In/Output
Return Code binary 4 bytes output
Option alphanumeric 7 bytes input
Max Words binary 4 bytes input
Aspects alphanumeric variable input
Marks alphanumeric variable input

The return code is the message delivered at the end of processing which indicates
whether an error has occurred. A zero code indicates the normal end of processing.
Other codes are explained in Appendix A Messages and Codes.

Option

This parameter defines the type of inversion to be executed. The options are:

Option Characteristics

’FULL’ Full text inversion of all words contained in the document to be
inverted. This option is generally the default setting.

’EXCLUDFE’ Inversion of all words not belonging to one of the aspects as
defined in the Aspect parameter.

’INCLUDFE’ Inversion only of those words belonging to aspects as defined in
the Aspect parameter.

"MARKED’ Inversion only of those words which are tagged with special
markers as defined in the Marks parameter.

Max Words

The maximum number of words to be inverted per document. This parameter is
only maintained for upward compatibility. If ADABAS hyperdescriptors are used
for document indexing then this parameter is of no relevance.

5 software ag

ADABAS TEXT RETRIEVAL Calls

Aspects

A list of the aspects to be used for the inversion of a document. Individual aspects
on the list must be separated by commas and the list must end with a period.

Marks

A list of predefined character strings used in the document to be inverted. If the
mark used refers to a predefined aspect, the latter can be entered after the mark
and separated from it by the equals (=) symbol. Marks must be separated by
commas and the list concluded with a period.

@ software ag 2-29

<

Calls

ADABAS TEXT RETRIEVAL

Dynamic Parameters for the DYP and BC Calls

The following dynamic parameters can be specified by a BC or DYP call.

Parameter Explanation

AUTOASP Automatically creates an aspect for each new word entered in
the vocabulary file.

DEFOPER Specifies the default operator to be used in case none is
explicitly mentioned between two terms. Possible values are:
AND, OR, NOT, ADJ, INPAR, INSEN, NEAR
Default setting: ADJ

DFNR Document File Number. The Document File Number can be
specified either as it stands, or alternatively together with the
ADABAS Database ID in question. In the latter case, Database
ID and file number must be enclosed in parentheses and
separated by a comma.

Example:

'DFNR=39’

’DFNR=(1,39)’

Note: The DFNR parameter is mandatory

DOCID ADABAS field name of the Document-ID in the document file.
The value °##’ indicates that the ISN of the document file is to
be used as document identification.

Default setting: DA’

DSFNR Document Index File Number. The Document Index File
Number can be specified either as it stands, or alternatively
together with the ADABAS Database ID in question. In the
latter case, Database ID and file number must be enclosed in
parenthesis and separated by a comma.

Example:

’DSFNR=39’

'DSNR=(1,39)’

Note: The DSFNR parameter is mandatory

ERRPRE A constant value to be added to all ADABAS TEXT
RETRIEVAL return codes.

Default setting: 0 (zero)
ICBUF Number of in-core buffers (512 bytes each) used for the

vocabulary.
Default setting: 0 (zero)

5 software ag

ADABAS TEXT RETRIEVAL Calls

Parameter Explanation

INDEX This parameter indicates which proximity indices are to be
maintained by ADABAS TEXT RETRIEVAL. The following
values can be entered:

’INDEX=(WORD)’

only word positions are maintained.
’INDEX=(WORD,SENTENCE)’

word and sentence positions are maintained.
’INDEX=(WORD,PARAGRAPH)’

word and paragraph positions are maintained.

If this parameter is omitted, ADABAS TEXT RETRIEVAL
will maintain word, sentence and paragraph positions.

MAXDPRO Specifies the maximum number of selected documents on which
a proximity search is to be performed.

Default setting: 200

MAXVSET Specifies the maximum number of words for a search.
Default setting: 2000

PASSWORD An ADABAS password can be supplied.

SEARCHLB Specifies the default search label. The names of free-text
chapters can be entered to a maximum of 20. If this parameter
is omitted it takes the current value of the TEXT parameter.
Example:

"SEARCHLB=(Y1Y1,Y2Y2,Y3Y3)’

SETCHAR Specifies the prefix character used to identify the result of
previous queries.
Default setting: NONE
Recommended setting: #

TEXT The name of the ADABAS hyperdescriptor of the current
free-text chapter. This name is used for subsequent ADD and
DDS calls. For compatibility reasons regarding previous
versions of ADABAS TEXT RETRIEVAL, the name of the
hyperdescriptor must be entered twice.

If the SEARCHLB parameter is omitted, the value of the
TEXT parameter is used as the default search label.
Default setting: 'Y1Y1’

TRUNCHAR The character to be used as word truncation indicator.
Default setting: **

@ software ag 2-31

<

Calls

Parameter

ADABAS TEXT RETRIEVAL

Explanation

VFNR

WORDLEN

Vocabulary File Number. The Vocabulary File Number can be
specified either as it stands, or alternatively together with the
ADABAS Database ID in question. In the latter case, Database
ID and file number must be enclosed in parenthesis and sepa-
rated by a comma.

Example:

"VFNR=38’

"VFNR=(1,38)’

The VFENR parameter is mandatory

The value of this parameter indicates the word length to be used
by ADABAS TEXT RETRIEVAL.

Maximum word length: 64.

Default setting: 32

The dynamic parameters form a character string of one or more parameter entries
and must be separated by commas and ended by a period. Each parameter must
be coded as follows:

’Parameter=Value’

Example:

'VFNR=38,DFNR=39,DSFNR=39,TEXT=Y2Y2.’

5 software ag

CHAPTER 3

QUERY SYNTAX

ADABAS TEXT RETRIEVAL Query Syntax

QUERY SYNTAX

Search Labels

A search label is an alphanumeric identifier up to eight characters long used to
refer to an element name in a search query. For example, the label “ABS” could
be used to refer to the element “ABSTRACT” in search queries. This method of
abbreviation saves keystrokes in entering search queries.

Search labels are defined using the DSL call (see page 2 - 11).
Queries in formatted fields must be preceded by a search label.

Queries to free text chapters can be preceded by a search label, but do not have to
be if the search label required is the same as that last specified in the TEXT or
SEARCHLB parameter of the last BC or DYP call. Thus, a search label for a free
text chapter remains valid until another search label has been chosen to replace
it. For example:

ABS ADABAS

The occurrences of the term ADABAS within the free text chapter ABSTRACT
will be retrieved.

@ software ag 3-1

<

Query Syntax ADABAS TEXT RETRIEVAL

Search Mode Parameters

The search mode indicates the method to be used when retrieving inverted words.

The search mode precedes the search term in a query. If not search mode is
specified, then the mode most previously specified is used. The following syntax
must be used:

Search-label search-mode search-term

When no selection mode is specified in the QR call which initiates the query, the
default selection mode is used. The default selection mode is defined by the value
of the Default Selection Mode parameter of the QR call in question.

search-label The name of the search label for the element concerned
search-term The term to be used as the basis for retrieval
search-mode One of the following parameters

Parameter* Mode

= PRECISE

PHONETIC PHONETIC

SYN SYNONYM

ROOT ROOT

SYR SYNONYM/ROOT

ASPECT ASPECT

GROUPxn GROUP

The options are explained in more detail below.

PRECISE Mode

The default mode. Searches are performed on the basis of spelling alone. Input
must be identical to that contained in the document.

PHONETIC Mode

All words are retrieved which have the same phonetic value. This feature is
designed for searches in German language, but it can also be used with some
success for English language. For example, a PHONETIC search for the name
“Mayer” will also retrieve the names “Maier” and “Meyer”.

SYNONYM Mode

If search terms are have synonyms defined for them in a thesaurus, then all
documents containing the search term and its synonyms are found. The selection
mode SYNONYM is based on the information stored previously in the
SYNONYM field (V8) of the vocabulary file.

5 software ag

ADABAS TEXT RETRIEVAL Query Syntax

ROOT Mode

The ROOT search mode selects those documents which contain any of the search
term’s previously defined roots. This search mode is based on the information
stored previously in the ROOT field (V4) of the vocabulary file.

SYNONYM/ROOT Mode

The SYR selection mode selects those documents which contain the words
specified in the query, and/or any of their previously defined synonyms, and/or any
of their previously defined roots. This search mode is based on the information
stored previously in the SYNONYM field (V8) and/or ROOT field (V4) of the
vocabulary file.

ASPECT Mode

All words are retrieved which are narrower terms for the search term. The number
of hierarchical levels between the search term and the terms found is irrelevant.
For example, an ASPECT search for the term “fiction” would retrieve the words
“poem”, “epic”, “sonnet”, “ballad”, “haiku”, “novel”, “story”, etc. The selection
mode ASPECT is based on the information stored previously in the ASPECT field

(VS5) of the vocabulary file.

GROUP Mode

All words are retrieved which are narrower terms occurring n levels lower in the
thesaurus hierarchy than the search term. Where n is omitted the depth is equal
to 1.

For example, a GROUP search for the term “fiction” would retrieve the words
2 [13 l”’ [13 » [13

“poem”, “nove story”, etc., but NOT the narrower terms (“sonnet”, “epic”,
“ballad”, “haiku”, etc.) for these.

The selection mode GROUP is based on the information stored previously in the
ASPECT field (V5) of the vocabulary file.

@ software ag 3-3

<

Query Syntax ADABAS TEXT RETRIEVAL

Query Syntax Diagrams

The syntax diagram below shows the various elements of a search query.
Expressions in square brackets are optional.

' SORT

QUERY = query-expression [boolean-operator query] SORTD

sort-field

The content of query-expression varies depending on whether you reference
word-inverted elements, formatted-inverted elements, or search numbers. The
different possibilities are listed below.

Word-inverted Elements (free-text chapters)

QUERY

EXPRESSION — search-label word-set [proximity-operator word-set]

Formatted-inverted Elements

QUERY

= -label [relational- -
EXPRESSION search-label [relational-operator] word-set

Search Numbers

QUERY

EXPRESSION — search-number [boolean-operator query]

3-4 5 software ag

ADABAS TEXT RETRIEVAL Query Syntax

Search Query Language

Case
Search queries may be entered in either upper or lower case.

Blanks
In searching formatted-inverted text elements, search terms which contain blanks
or non-TRS characters must be enclosed in quotes.
In searching word-inverted text elements, blanks between words are interpreted
as ADJ or NEAR operators, depending on parameters set during NDM
installation. (see the section entitled Proximity Operators below).

Reserved Words
Search labels, global labels, and operators are reserved words within NDM and
therefore cannot be used directly in search queries. To apply a reserved word in a
search query, it must be surrounded by quotes.

Truncation
Truncation enables the retrieval of documents containing word segments or
derivatives. Three types of truncation are available: left, right and middle. The
character used to indicate truncation is specified by your administrator during
installation. The following examples illustrate the three truncation options
applying an asterisk (“*”) as truncation character.

Note: Word truncation is not possible for formatted-inverted elements.

Right Truncation
Right truncation is used to retrieve documents which contain words beginning with
a specified string of letters. Thus the query
ABSTRACT Kkilo*
retrieves all words beginning with the string “kilo”, such as “kilogram” and
“kilowatt”.

5 software ag 3-5

Query Syntax ADABAS TEXT RETRIEVAL

Left Truncation

Left truncation is used to retrieve documents which contain words ending with a
specified string of letters. Thus the query

ABSTRACT *gram

retrieves all words ending with the string “gram”, such as “kilogram” and
“program”.

Left and Right Truncation

Note:

Combined right and left truncation is used to retrieve documents which have words
containing a specified string of letters. Thus the query

ABSTRACT *ra*

retrieves words such as “gram”, “kilogram”, “hurrah”, “arab”, etc.

Combined use of left and right truncation is only possible if explicitly defined during
NDM installation. Contact your administrator to determine if this function is available
for your installation.

Middle Truncation

Middle truncation is used to retrieve documents which contain words beginning
and ending with a specified string of letters. Thus the query

ABSTRACT hypo*mia
retrieves all words beginning with the string “hypo” and ending with the string

“mia”, such as “hypothermia” and “hypoglycaemia”. It is not possible to specify
how many letters are to be truncated.

Word Set

In NDM syntax, a word set is simply one or more or search terms or number strings
forming part of a query expression.

5 software ag

ADABAS TEXT RETRIEVAL Query Syntax

Operators

Evaluation Order of Operators

When several different operators are used in the same search query, the order of
evaluation is determined on a the basis of predefined priority. The evaluation
priorities, from highest to lowest, are the following:

Expressions enclosed in parentheses;
Proximity operators (ADJ, NEAR, INSEN, INPAR);
AND;
NOT;
OR.
5 software ag 3-7

Query Syntax ADABAS TEXT RETRIEVAL

Boolean Operators

Boolean operators are used to join query expressions of the same or different
types. The following Boolean operators may be used:

e AND;
e NOT;
e OR.

The AND Operator

The AND operator is used to select documents based on the commonality of two
query expressions. For example, the query

ABSTRACT strawberries AND cream

retrieves all documents in which the words “strawberries” and “cream” both occur
in the element with the ABSTRACT search label.

The AND operator can be used more than once in a single query. For example, the
query
ABSTRACT gin AND vermouth AND olive

retrieves all documents in which all the words are contained.

The OR Operator

The OR operator is used to retrieve documents in which any one of the terms
specified occur. This is especially useful for retrieving related concepts. For
example, the query

ABSTRACT sugar OR sweetener

retrieves all documents in which either the word “sugar” or the word “sweetener”
occurs in the element with the ABSTRACT search label.

Like the AND operator, the OR operator can be used more than once within a
single query. You can also replace the OR in search queries with a comma.

ABSTRACT sugar, sweetener

The NOT Operator

The NOT operator is used to retrieve documents which contain one specified term
and which do not contain another. It can be used only following a query expression.
For example, the query

ABSTRACT sweetener NOT honey

retrieves those documents in which the element with the ABSTRACT search label
contains the word “sweetener”, but not the word “honey”. The following example,
however, is invalid:

ABSTRACT NOT honey

5 software ag

ADABAS TEXT RETRIEVAL Query Syntax

Relational Operators

Relational operators are used to reference alphanumeric and numeric
formatted-inverted elements.

The following relational operators may be used:
e BETWEEN~#nn

* EQun (“equal to”)

* GEn (“greater than or equal to”)

¢ GTn (“greater than”)

¢ LEn (“less than or equal to”)

¢ LTn (“less than”)

where “n” in each case is an obligatory value which depends on the element in
question.

The relational operator can be omitted in which case the default is ‘EQ’.

The operators are described in more detail below.

The BETWEEN Operator

The BETWEEN operator is used to retrieve documents containing any one of a
range of values. For example, the query

DATE BETWEEN 19870101,19871231

retrieves all documents in which the date given in the element with the DATE
search label is 1987.

The EQ Operator

The EQ (“equal to”) operator is used to retrieve documents containing a single,
precise value. For example, the query

NUMBER EQ 109
retrieves the document in which the value for the NUMBER search label is 109.

The same result is also be achieved by omitting the operator:

NUMBER 109

@ software ag 3-9

<

Query Syntax ADABAS TEXT RETRIEVAL

The GE Operator

The GE (“greater than or equal to”) operator is used to retrieve documents
containing a value greater than or equal to the specified value. For example, the

query
NUMBER GE 109

retrieves all documents in which the value for the NUMBER search label is 109
or greater.

The GT Operator

The GT (“greater than) operator is used to retrieve documents containing a value
larger than the specified value. For example, the query

NUMBER GT 109

retrieves all documents in which the value for the NUMBER search label is greater
than 109.

The LE Operator

The LE (“less than or equal to”) operator is used to retrieve documents containing
a value less than or equal to the specified value. For example, the query

NUMBER LE 109

retrieves all documents in which the value for the NUMBER search label is less
than or equal to 1009.

The LT Operator

The LT (“less than”) operator is used to retrieve documents containing a value
smaller than the one specified. For example, the query

NUMBERLT 109

retrieves all documents in which the NUMBER search label is less than 109.

5 software ag

ADABAS TEXT RETRIEVAL Query Syntax

Proximity Operators

Proximity operators specify retrieval based on relative word position within a text.
They can only be used to search word-inverted elements.

The following proximity operators are available:

e ADIJn;

e NEARn;
e INPARn;
e INSENn.

where “n” is an optional integer value.

Although extremely powerful, proximity operators may cause performance
problems and for this reason your NDM administrator may have disabled them for
your database. If allowed, they should only be used if you are searching relatively
small document sets.

The ADJ Operator

The ADIJ operator is used to retrieve documents in which words appear within the
distance from one another specified by the “n” parameter, and in the order of
entry. The ADJ operator used alone is equivalent to “ADJ1”. For example, the

query
ABSTRACT Moon ADJ River

selects all documents in which the element with the “ABSTRACT” search label
contains the word string “Moon River”.

Where the operator is used with the “n” parameter, NDM retrieves all documents
in which the distance between the words specified is equal to or less than the
parameter value given.

Thus, for example, the query
ABSTRACT Tennessee ADJ3 Authority
selects all documents in which the word “Authority” occurs three or less words after

the word “Tennessee”, e.g. “Tennessee River Valley Authority” and “Tennessee
Highways Authority.”

f software ag 3-11

<

Query Syntax ADABAS TEXT RETRIEVAL

The NEAR Operator

The NEAR operator is used to retrieve documents in words appear near each
other, irrelevant of their order. For example the query

ABSTRACT recycled NEAR paper

selects all documents in which the element with the ABSTRACT search label
contains the word pairs “recycled paper” and “paper recycled”.

The NEAR operator can be modified by adding a numerical delimiter. Thus, the
query

ABSTRACT recycled NEAR4 paper

b [13

selects all documents containing the word groups “recycled paper”, “paper is
recycled” and “paper will be recycled” and “recycled different kinds of paper”.

The INSEN Operator

The INSEN operator is used to retrieve documents in which the words specified
occur within the same sentence and in which the individual sentences have been
marked with delimiting characters. For example, the query

ABSTRACT coffee INSEN columbia

selects all documents in which the word “coffee” occurs in the same sentence of
the element with the ABSTRACT search label as the word “columbia”.

The INSEN operator can be modified by adding a numerical delimiter. Thus the
query
ABSTRACT coffee INSEN4 columbia

selects all documents in which the word “coffee” occurs within four sentences of
the word “columbia”.

The INPAR Operator

The INPAR operator is used to retrieve documents in which the words specified
occur within the same paragraph and in which the individual paragraphs have been
marked with delimiting characters. For example, the query

ABSTRACT coffee INPAR columbia

retrieves all documents in which the word “coffee” occurs in the same paragraph
as the word “columbia”.

The INPAR operator can be modified by adding a numerical delimiter. Thus, the
query
ABSTRACT banana INPAR4 guatemala

retrieves all documents in which the word “banana” occurs within four paragraphs
of the word “guatemala”.

5 software ag

ADABAS TEXT RETRIEVAL Query Syntax

Search Numbers

Search numbers are the numbers allocated to each query you issue during a
session. They can be used in subsequent queries to reference the set of documents
already retrieved. To distinguish them from normal numbers in queries, they must
be given a prefix (e.g. #1). The prefix is specified by your administator during
installation.

The search number consits of the current value of the SETCHAR parameter and
the number of the query whose results are to be referenced.

An example of a query using a search number is:

#1 AND AUTHOR DICKENS

This would retrieve all documents in query set 1 with the author Dickens.

@ software ag 3-13

<

Query Syntax ADABAS TEXT RETRIEVAL

The SORT and SORTD Functions

Using the SORT and SORTD functions, you can sort a document set in ascending
or descending order.

The syntax of the sort function is as follows:

SORT search-label

SORTD search-label

SORT Specifies a sort in order of ascending magnitude.

SORTD Specifies a sort in order of descending magnitude

search-label Specifies the formatted-inverted element to be used as the sort
criterion.

For example, the query
ABSTRACT sugar SORT DATE

retrieves all documents in which the word “sugar” occurs in the element with the
ABSTRACT search label and sorts them according to the value given in the
element which has search label “DATE”, starting with the oldest document.

As many as three sort criteria can be specified in a search query, for example:

SORT NUMBER SORT PUBLISH SORT ACC - NO

5 software ag

CHAPTER 4

FILE STRUCTURE

ADABAS TEXT RETRIEVAL File Structure

FILE STRUCTURE

The information in ADABAS TEXT RETRIEVAL is stored in three logical
ADABAS files which can be stored in one or more physical ADABAS files. The
three logical ADABAS files are:

e Document file (DFNR);
e Vocabulary file (VFNR);
¢ Document index file (DSFNR).

The document file must contain user-defined formatted fields which are to be used
for retrieval operations. The ADABAS ISNs of the document file will make up the
resulting ISN sets for retrieval operations.

The vocabulary file contains the word index and thesaurus of ADABAS TEXT
RETRIEVAL.

The document index file contains the indices of all free-text chapters.

Important:

Because the ADABAS ISN’s of all files mentioned above are used by ADABAS TEXT
RETRIEVAL for free-text indexing, the ADABAS ISNs must not be deleted or changed
in any way. If any of these files is reloaded, the USERISN parameter must be specified.

@3 software ag 4 -1

LS

File Structure ADABAS TEXT RETRIEVAL

An Example of the Index Structure of ADABAS TEXT RETRIEVAL.

The following diagrams show how the internal index structure of ADABAS TEXT
RETRIEVAL functions by way of a simple example, and how ADABAS TEXT
RETRIEVAL indices are used when a retrieval operation is carried out.

For example, in Figure 1 the two documents DOC1 and DOC2 are allocated the
ISNs 678 and 679 in the document file.

Document File

ISN DOCID TEXT
678 DOCH1 this is a computer
679 DOC2 this is another computer

Figure 1

During the inversion process, each word of a document is entered on the
vocabulary file (see Figure 2). The vocabulary file, similar to a dictionary, contains
a single entry of each word known to the system no matter how frequently the word
occurs in the documents. The words known to the system are entered in the V1
field. Each word entered receives an ADABAS ISN unique to that word. This
unique ADABAS ISN is called a word ISN.

Thereafter, the name of the free-text chapter to which the information belongs and
the document ID of the document in question are entered in the D1 field on the
document index file (see Figure 3). The document ISN of the document to which
the information belongs is entered in the DO field. The word ISNs representing the
words of which the document consists are entered in the multiple field D3.

The ADABAS hyperdescriptor technique enables ADABAS TEXT RETRIEVAL
to make up an inverted list which relates the word ISNs of a document to the
document ISN of the document in question, although this document ISN is part of
the data of the document index file and not the original ISN as assigned by
ADABAS.

During a retrieval operation (see Figure 4) ADABAS TEXT RETRIEVAL
searches the vocabulary file for the ISN of the word sought. In the example on the
following pages, the word “computer” is sought. If the word cannot be found, the
result of the query will be zero; otherwise ADABAS TEXT RETRIEVAL uses the
word ISN (in this case 4) to find all documents containing the word sought on the
document index file. In this case, the documents with the document ISNs 678 and
679 are in the document file.

5 software ag

r

<

ADABAS TEXT RETRIEVAL

File Structure

Vocabulary File

software ag

DATA ASSO
Word
Word Word ISN
ISN Vi1 Vi1 ISNQ | ISN
1 THIS A 1 3
2 IS ANOTHER 1 5
3 A COMPUTER 1 4
4 COMPUTER IS 1 2
5 ANOTHER THIS 1 1
Figure 2
Document Index File
DATA ASSO
Free Doc Word Word Doc
Text ISN ISN ISN ISN
isN | DB | po D3 Y1 ISNQ | ISNs
1 Y1 678 1,2,3,4 1 2 678,679
2 Y1 679 1,2,5,4 2 2 678,679
3 1 678
4 2 678,679
5 1 679
Figure 3

File Structure

ADABAS TEXT RETRIEVAL

Query: COMPUTER

Vocabulary File

ASSO VA1 ISNQ | ISN
A 1 3
ANOTHER 1 5
COMPUTER 1 4
IS 1 2
THIS 1 1
—» | Word ISN = 4

Document Index File
ASSO Word Doc

ISN ISN
Y1 ISNQ | ISNs
1 2 678,679
2 2 678,679
3 1 678

4 2 678,679
5 1 679

— | Document ISNs = 678,679

Figure 4

5 software ag

ADABAS TEXT RETRIEVAL File Structure

Document File

ADABAS TEXT RETRIEVAL uses the ADABAS ISNs of the document file to
identify the documents. These ADABAS ISNs form the result of any query entered
in the system in the form of ADABAS ISN sets. The respective ADABAS ISN is
either identified by the value of a unique formatted field on the document file or
entered directly as a parameter to the ADD or DDS call (see the DOCID
parameter in the DYP call, page 2 - 30).

In order to perform queries accessing the contents of the free-text chapters
together with user defined formatted fields all relevant formatted fields must be
contained in the document file.

Vocabulary File

The vocabulary file contains:
¢ The vocabulary (word index) of ADABAS TEXT RETRIEVAL;
e The ADABAS TEXT RETRIEVAL thesaurus.

It consists of the following fields:

Field Description

FNDEF="01,V1,32,A ,DE,NU’ (WORD) The field V1 contains the
standardized word as encountered by
ADABAS TEXT RETRIEVAL during the
inversion process. A typical case of
standardization is the translation of all
characters (letters) contained in a word to
upper case.

HYPDE="12,V2,32,A,NUMU=VI’ (WORD-DOUBLE) The hyperdescriptor
V2 contains the internal index values for the
execution of double truncation (*string*).

If double truncation is not required, the
hyperdescriptor V2 can be omitted.

FNDEF="01,V3,32,A ,DE,NU’ (WORD-REVERSE) The field V3 contains
the internal index values for the execution of
left and middle truncation.

FNDEF="01,V4,32,A,DEMUNU’ (ROOT) The field V4 contains user defined
roots of the word contained in the V1 field;
it supports the execution of the ROOT or
SYR selection modes.

@ software ag 4-5

<

File Structure

Note:

Field

ADABAS TEXT RETRIEVAL

Description

FNDEF="01,V5,32,A,DE,MUNU’

PHONDE="V6(V1)’

FNDEF="01,V8,32,A,DE,MUNU’

FNDEF="01,V9,32,A,NU’

(ASPECT) The V5 field contains user
defined broader terms (ASPECTS) of the
word contained in the V1 field: it supports
the execution of the ASPECT and GROUPn
selection modes.

(PHONETIC) The Phonetic descriptor V6
is built on the basis of the word contained in
the V1 field. It supports the execution of the
PHONETIC selection mode.

(SYNONYM) The occurrences of the
multiple value field V8 make up a synonym
ring containing those user defined words
which are of equal meaning; they support the
execution of SYN or SYR selection modes.

(ORIGINAL) The field V9 contains the
original nonstandard form of the word as
contained in the V1 field and as encountered
by ADABAS TEXT RETRIEVAL during
the inversion process at its first occurrence in
any text entered into the system.

If the original non-standardized form of the
word is not required, the field V9 can be
omitted.

The length of all the fields above corresponds to the word length inside ADABAS TEXT
RETRIEVAL. It is specified by the WORDLEN parameter of the BC or DYP call. It
must not exceed 64 bytes. The default word length is 32 bytes.

5 software ag

ADABAS TEXT RETRIEVAL

Document Index File

File Structure

The document index file contains the internal document index created by
ADABAS TEXT RETRIEVAL during the inversion process.

It consists of the following fields:

Field

Description

FNDEF="01,D0,4,B,NU’
FNDEF="01,D1,32,A,NU,DE’
FNDEF="01,D2,4,B,NU,DE’
FNDEF="01,D3,3,B,MU,NU’
FNDEF="01,D4,2,B,MU,NU’
FNDEF="01,D5,2,B,MU,NU’
FNDEF="01,D6,2,B,MU,NU’
FNDEF="01,D8,6,B,NU’

Document ISN

Name of free-text chapter and document
Segment number

Word index

Paragraph positions

Sentence positions

Word positions

ISN and position of last word in previous
segment

For each user-defined free-text chapter a hyperdescriptor in the following form
must be added to the document index file:

Field

Description

HYPDE="12,Y1,3,B,MU,NU=D0,D1,D3’

This hyperdescriptor definition should be
used for applications which either do not use
proximity search at all, or only very
occasionally. In this case the field D8 must be
omitted from the document index file.

HYPDE="12,Y1,6,B,MU,NU=D0,D1,D3,D6,D§’

This hyperdescriptor definition should be
used if fast operation for the ADJ1 and
NEART1 operators is required.

@3 software ag

<

CHAPTER 5

TOKENIZATION AND KEYWORD DEFINITION

ADABAS TEXT RETRIEVAL Tokenization and Keyword Definition

TOKENIZATION AND KEYWORD DEFINITION

Tokenization is the process by which ADABAS TEXT RETRIEVAL identifies
substrings of a text as words. Tokenization occurs whenever the content of a
free-text chapter is inverted (ADD call) or a query is processed by the system (QR
call).

The process consists of three major parts:

The identification of valid characters. Character definitions are made in the
ADABAS TEXT RETRIEVAL character table.

The possibility of making the process of tokenization dependent on the
context of the occurrence of characters; this part is defined by the appropriate
algorithms implemented in a specifically designed macro Assembler
language.

The translation of the word detected by the previous parts of the process
(above); the translation is defined by an appropriate translation table.

All parts of the tokenization process can be found in the module TRSSCT. Several
standard implementations of TRSSCT are parts of the ADABAS TEXT
RETRIEVAL installation libraries. You can use an existing module as is or modify
a module to your requirements.

Versions of TRSSCT

The following different standard versions of TRSSCT are currently available:

Version Explanation

TRSSCT Standard implementation to support international character
set including the German ‘Umlaute’.

TRSSCT1 The same as TRSSCT but including also the suppression of

dashes (X’60°) and the substitution of the German ‘Umlaute’ by
their appropriate transcriptions (e.g. A = AE etc.).

TRSSCTS The same as TRSSCT but to be used in BS2000 environments.
TRSSCT1S The same as TRSSCT1 but to be used in BS2000 environments.
5 software ag 5-1

Tokenization and Keyword Definition ADABAS TEXT RETRIEVAL

Character Definition

Characters can be grouped into different user-defined classes. The definition of
the appropriate user-defined classes is done by the TRSMLT macro.

Typical character classes could be, for example, ALPH, NUMBER, DOT etc. Each
possible relevant character value is assigned to one or more classes by the TRSMT
macro. The character definition part of TRSMT must contain the CSECT/ENTRY
definitions TRSSCTQC and TRSSCTTC.

Character Recognition

The tokenization logic is implemented with the TRSMSL macro. The tokenization
part of TRSSCT must contain the CSECT/ENTRY definitions TRSSCTQL and
TRSSCTTL.

Character Translation

The character translation table containing a translated character value for all
relevant characters must be defined for all possible 256 EBCDIC characters. The
character translation part of TRSSCT must contain the CSECT/ENTRY
definitions TRSSCTQT and TRSSCTTT.

5 software ag

ADABAS TEXT RETRIEVAL Tokenization and Keyword Definition

TRSSCT Macros
TRSMLT

The TRSMLT macro is used to define all classes of characters which will be used
by ADABAS TEXT RETRIEVAL (i.e. ALPH, NUM, etC.).

The TRSMLT macro has the parameter TYPES:

TRSMLT TYPES=(class1,class2,class3...)

where classl, class2, class3 denote the user defined classes for character
definition. The TRSSCT module must contain one call to TRSMLT only.

TRSMT

The TRSMT macro is used to assign specific characters to one or more of the
classes already defined by the TRSMLT macro.

The TRSMT macro has the two parameters CHAR and CLASS:
TRSMT CHAR=(c1,c2,c3...), CLASS=class1

where cl, ¢2, ¢3... denote the characters to be assigned to the class in question.

The input of the different characters can either be in character or hexadecimal
format. If the input is in hexadecimal format it must start with the letter X and the
values must be enclosed in quotation marks (e.g. X’4B’). If the input is in character
format the values should be enclosed in quote marks (e.g. ’A).

It is not necessary to define all of the 256 possible EBCDIC characters by the
TRSMT macro. Those which are not defined will be regarded as delimiters
(usually blanks).

The TRSSCT module can contain as many calls of TRSMT as necessary for the
definition of all relevant characters.

@ software ag 5-3

<

Tokenization and Keyword Definition ADABAS TEXT RETRIEVAL

TRSMSL

The TRSMSL macro is used to define those actions which are to be taken by
ADABAS TEXT RETRIEVAL when the tokenization process comes across a
character belonging to a specific class. The TRSMSL macro has the following
syntax.

TRSMSL IF=class,GOTO=label,
ACTION=action, IFMODE=mode,
IFID=id, TYPE=type,CHAR=c1

The parameters of the TRSMSL macro take the following values:

Parameter Parameter Value

IF class: Denotes the class of characters for which the TRSMSL macro is to
be executed. If the parameter IF is omitted, the TRSMSL macro is
executed.

GOTO label: Denotes the label in TRSSCT from which program execution is to

be continued after the the execution of the current TRSMSL macro. The
parameter GOTO can be omitted.

ACTION action: Denotes the action to be taken by TRSSCT for the current
character. The parameter ACTION can be omitted. There are six
different possible values for the parameter ACTION:

ACCEPT Character is to be accepted.

SKIP Charactr is to be ignored.

TRUNCATE Current character string is to be truncated, thus forming
a word.

REPLACE Character is to be replaced by the character
contained in the value ¢l of the parameter CHAR.

INSERT The character contained in the value cl of the
parameter CHAR is to be inserted in the current
character string.

IFMODE mode: Denotes whether a specific action is to be taken during the text
inversion process or the query syntax analysis only. The value "T’ denotes
that the action is to be taken during the text inversion process and the
value ’Q’ denotes that the action is to be taken during the query syntax
analysis only. The parameter IFMODE can be omitted.

IFID id: One-byte alphanumeric character denoting that a specific action is
only to be executed for a specific tokenization process as assigned to
certain free text chapters or formatted fields by the DSL call. The
parameter IFID can be omitted.

CHAR cl: Denotes a one byte character used together with the actions
REPLACE or INSERT. If the value of the parameter ACTION equals
REPLACE or INSERT, a value for the parameter CHAR must be
supplied; in all other cases the parameter CHAR is ignored.

5 software ag

ADABAS TEXT RETRIEVAL

An Example of TRSSCT

TRSSCT CSECT

*

* CHARACTER RECOGNITION
*
TRSSCTQL CSECT

ENTRY TRSSCTTL
TRSSCTTL DS OH

COPY TRSEQU

Tokenization and Keyword Definition

TRS00010
TRS00020
TRS00030
TRS00040
TRS00050
TRS00060
TRS00070
TRS00080

TRSMLT TYPES=(ALPH,NUMBER,SPEC,DOT,BLANK,SERCOMM,APOS,EQ,REL) TRS00090

START TRSMSL IF=SPEC,GOTO=SPEC1 TRS00100
TRSMSL IFFAPOS,GOTO=APOS1 TRS00110
TRSMSL IF=ALPH,GOTO=SA ,ACTION=ACCEPT TRS00120
TRSMSL IFE=NUMBER,GOTO=SN,ACTION=ACCEPT TRS00130
TRSMSL IF=DOT,GOTO=DOT1 TRS00140
TRSMSL ACTION=SKIPGOTO=START TRS00150

SA TRSMSL IF=SERGOTO=SA ,ACTION=SKIP TRS00160
TRSMSL IF=ALPH,GOTO=SA ,ACTION=ACCEPT TRS00170
TRSMSL IFFNUMBER,GOTO=SA ACTION=ACCEPT TRS00180
TRSMSL IF=DOT,GOTO=SA1,ACTION=ACCEPT TRS00190
TRSMSL ACTION=TRUNCATE TRS00200

SA1 TRSMSL IF=ALPH,GOTO=SA ,ACTION=ACCEPT TRS00210
TRSMSL IFFNUMBER,GOTO=SA ACTION=ACCEPT TRS00220
TRSMSL ACTION=BACK TRS00230
TRSMSL ACTION=TRUNCATE TRS00240

SN TRSMSL IFFNUMBER,GOTO=SN,ACTION=ACCEPT TRS00250
TRSMSL IF=SERGOTO=SA ,ACTION=SKIP TRS00260
TRSMSL IF=ALPH,GOTO=SA ,ACTION=ACCEPT TRS00270
TRSMSL IF=DOT,GOTO=SN1,ACTION=ACCEPT TRS00280
TRSMSL ACTION=TRUNCATE, TYPE=ENUMER TRS00290

SN1 TRSMSL IF=ALPH,GOTO=SA,ACTION=ACCEPT TRS00300
TRSMSL IFE=NUMBER,GOTO=SN,ACTION=ACCEPT TRS00310
TRSMSL ACTION=BACK TRS00320
TRSMSL ACTION=TRUNCATE, TYPE=ENUMER TRS00330

DOT1 TRSMSL IFMODE=Q,GOTO=DOT2 TRS00340
TRSMSL ACTION=ACCEPT TRS00350
TRSMSL ACTION=TRUNCATE TRS00360

DOT2 TRSMSL ACTION=SKIPRGOTO=START TRS00370

SPEC1 TRSMSL IFMODE=Q,GOTO=SPEC2 TRS00380
TRSMSL ACTION=SKIPGOTO=START TRS00390

SPEC2 TRSMSL IF=REL,GOTO=SPEC3 TRS00400
TRSMSL ACTION=ACCEPT TRS00410
TRSMSL ACTION=TRUNCATE TRS00420

SPEC3 TRSMSL ACTION=ACCEPT TRS00430
TRSMSL IF=EQ,ACTION=ACCEPT TRS00440
TRSMSL IF=REL ,ACTION=ACCEPT TRS00450
TRSMSL ACTION=TRUNCATE TRS00460

APOSL TRSMSL IFMODE=Q,GOTO=APOS1A TRS00470
TRSMSL ACTION=SKIPGOTO=START TRS00480

APOSIA TRSMSL ACTION=SKIP TRS00490

APOSIB TRSMSL IFFAPOSACTION=SKIPRGOTO=APOS2 TRS00500
TRSMSL ACTION=ACCEPT,GOTO=APOS1B TRS00510

APOS2 TRSMSL ACTION=TRUNCATE,TYPE=STRING TRS00520
LTORG TRS00530

* TRS00540

* CHARACTER DEFINITION TRS00550

* TRS00560

TRSSCTQC CSECT TRS00570
ENTRY TRSSCTTC TRS00580

@3 software ag

<

Tokenization and Keyword Definition

TRSSCTTCDS OH

*

*

*

TRSMT CHAR=(AB,C,D,E,FGH,I,JK,L,M,N,O,P),CLASS=ALPH
TRSMT CHAR=(ab,c,d,ef,g,h,ijk|l,mn,0,p),CLASS=ALPH

TRS00590

TRSMT CHAR=(Q,R,S,T,V,UW.X,Y,Z),CLASS=ALPH
TRSMT CHAR=(I,St,V,UW,X,y,z),CLASS=ALPH
TRSMT CHAR=($ #, &&" '*'),CLASS=ALPH
TRSMT CHAR=(1,2,3,4,5,6,7,8,9,0),CLASS=NUMBER

TRSMT CHAR=(-'),CLASS=SEP
TRSMT CHAR=(!?,."),CLASS=DOT
TRSMT CHAR=(' '),CLASS=BLANK
TRSMT CHAR=(('),CLASS=SPEC
TRSMT CHAR=()'),CLASS=SPEC

ADABAS TEXT RETRIEVAL

TRS00600
TRS00610
TRS00620
TRS00630
TRS00640
TRS00650

TRS00660

TRS00670
TRS00680

TRS00690
TRS00700

TRSMT CHAR=('='),CLASS=SPEC+EQ
TRSMT CHAR=('<’;'>'),CLASS=SPEC+REL
TRSMT CHAR=(’,"),CLASS=SPEC+COMM

TRSMT CHAR=("""),CLASS=APOS

TRS00710

TRS00720
TRS00730

TRS00740

TRSMT CHAR=(X'4A’ X'EO",X'5A"),CLASS=ALPH
TRSMT CHAR=(X'CO0',X'6A",X’D0’"),CLASS=ALPH
TRSMT CHAR=(X'A1'),CLASS=ALPH

LTORG

CHARACTER TRANSLATION

TRSSCTQT CSECT

ENTRY TRSSCTTT

TRSSCTTT DS OH

TRTAB DC 256AL1(*-TRTAB)

ORG TRTAB+C'a
DC CABCDEFGHI’
ORG TRTAB+Cj'
DC CJKLMNOPQR’
ORG TRTAB+C'S
DC C'STUVWXYZ’
ORG TRTAB+X'CO'
DC X'4A

ORG TRTAB+X'6A
DC X'EO

ORG TRTAB+X’'DO
DC X'5A

ORG

END

TRS00780
TRS00790

TRS00750
TRS00760

TRS00770

TRS00800

TRS00810
TRS00820
TRS00830
TRS00840

TRS00850

TRS00860
TRS00870
TRS00880
TRS00890
TRS00900
TRS00910
TRS00920
TRS00930
TRS00940
TRS00950
TRS00960
TRS00970
TRS00980
TRS00990

5 software ag

ADABAS TEXT RETRIEVAL Tokenization and Keyword Definition

Keyword Definition

The system keywords of ADABAS TEXT RETRIEVAL are defined in the module
TRSTEXT.

You can change but should under no circumstances remove any keyword entries
made by the macro TRSMKEY. You can assign additional values to all keywords
by the macro TRSMALT.

<

software ag

An Example of TRSTEXT
TRS TITLE'TEXT RETRIEVAL SPECIAL TEXTS. MODIFIABLE SECTION.” TRS00010
TRSTEXT CSECT TRS00020
R R ST R R R e R R RS RS RS TR RS R TR&)OO?’O
* * TRS00040
* THE FOLLOWING TEXTS MAY BE MODIFIED, BUT NOT ELIMINATED. * TRS00050
* * TRS00060
LR ST R R e R e R RS RS RS RS T RS R RS TR&)OO?O
TXTESEN TRSMKEY '. "’ END OF SENTENCE TRS00080
TRSMALT '?’ TRS00090
TRSMALT !’ TRS00100
TXTEPAR TRSMKEY '$$’ END OF PARAGRAPH TRS00110
TXTFEQU TRSMKEY '=' EQUAL TRS00120
TXTESYN TRSMKEY 'SYN’ SYNONYMS TRS00130
TXTESYR TRSMKEY 'SYR' SYN-ROOT TRS00140
TXTFPHO TRSMKEY 'PHONETIC PHONETIC TRS00150
TXTFCAT TRSMKEY 'ASPECT’ ASPECT TRS00160
TRSMALT 'CATEGORY’ CATEGORY TRS00170
TXTFGRP TRSMKEY ’'GROUP GROUP TRS00180
TXTFROT TRSMKEY 'ROOT’ ROOT TRS00190
TXTFFA1 TRSMKEY 'FUNCT USER FUNCTION 1 TRS00200
TXTFFA2 TRSMKEY 'FUNC2 USER FUNCTION 2 TRS00210
TXTFFA3 TRSMKEY 'FUNC3 USER FUNCTION 3 TRS00220
TXTFFA4 TRSMKEY 'FUNC4 USER FUNCTION 4 TRS00230
TXTFFAS TRSMKEY 'FUNCY USER FUNCTION 5 TRS00230
TXTFFA6 TRSMKEY 'FUNCE USER FUNCTION 6 TRS00230
TXTFFA7 TRSMKEY 'FUNC7 USER FUNCTION 7 TRS00230
TXTFFA8 TRSMKEY 'FUNCS8 USER FUNCTION 8 TRS00230
TXTFFA9 TRSMKEY 'FUNCY USER FUNCTION 9 TRS00230
TXTFFAO TRSMKEY 'FUNCO' USER FUNCTION 0 TRS00230
TXTFTHNT TRSMKEY 'DOWN’
TXTFTHBT TRSMKEY 'UP
TXTFTHSY TRSMKEY ’'SY’
TXTOLEP TRSMKEY '(’ LEFT PARENTHSIS TRS00240
TXTORIP TRSMKEY ')’ RIGHT PARENTHSIS TRS00250
TXTMCOM TRSMKEY °’/ COMMA TRS00260
TXTSORA TRSMKEY ’'SORT’ SORT BY TRS00270
TXTSORD TRSMKEY ’'SORTD’ SORT BY TRS00280
TXTOOR TRSMKEY 'OR’ OR TRS00290
TXTOAND TRSMKEY 'AND’ AND TRS00300
TXTONOT TRSMKEY 'NOT’ NOT TRS00310
TXTOADJ TRSMKEY 'ADJ ADJ TRS00320
TXTONEA TRSMKEY 'NEAR’ NEAR TRS00330
TXTOISEN TRSMKEY 'INSEN’ SENTENCE TRS00340
TXTOIPAR TRSMKEY 'INPAR’ PARAGRAPH TRS00350
TXTRLEQ TRSMKEY 'EQ’ EQUAL TRS00360

Tokenization and Keyword Definition

TRSMALT =
TXTRLGT TRSMKEY 'GT’
TRSMALT >’
TRSMALT '>>'
TXTRLLT TRSMKEY 'LT’
TRSMALT '<
TRSMALT <<
TXTRLGE TRSMKEY 'GE
TRSMALT '>=
TXTRLLE TRSMKEY ’'LE
TRSMALT ’'<='
TXTRLBT TRSMKEY 'BETWEEN’
TRSMALT '<>'
TRSMALT '><
TRSMFIN
END

TRS00370
GREATER
TRS00390
TRS00400
LESSTHAN
TRS00420
TRS00430
GREATER EQUAL
TRS00450
LESS OR EQUAL
TRS00470
BETWEEN
TRS00490
TRS00500
TRS00510
TRS00520

ADABAS TEXT RETRIEVAL

TRS00380

TRS00410

TRS00440

TRS00460

TRS00480

5 software ag

CHAPTER 6

NATURAL TEXT RETRIEVAL INTERFACE

ADABAS TEXT RETRIEVAL NATURAL Text Retrieval Interface

THE NATURAL TEXT RETRIEVAL INTERFACE

The NATURAL text retrieval interface enables ADABAS TEXT RETRIEVAL
to be used with the aid of normal NATURAL statements.

The following NATURAL statements are supported by the NATURAL interface:

¢ STORE
* FIND
e DELETE

When the interface is to be used, the document file and the document index file
must be the same physical file. The DB ID and the file number of the vocabulary
file are entered to the NATURAL session either by a NTFILE macro or the LFILE
parameter; the logical file ID to be used is 238.

The relation between a field containing text and the hyperdescriptor containing its
free text index is indicated by entering the ADABAS field name of the field
containing the text as first entry in the list of the parent fields of the appropriate
hyperdescriptor.

Example:

FNDEF="01,T1,72,A,MU,NU’
HYPDE="12,Y1,3,B,MU,NU=T1,00,D1,D3’

The hyperdescriptor Y1 will contain the document index values generated during
the inversion of the text entered in the field T1.

Use of the interface requires that a logical DBID be established by means of the
NTDB macro. In NATURAL 2.1 it must be of type USER. In NATURAL 2.2 it
must be of type TRS. This logical DBID must be contained in the DDMs used in
the NATURAL programs. The physical DBID will be taken either from the
NTFILE macro or the LFILE parameter with the logical ID 238.

@ software ag 6-1

LS

NATURAL Text Retrieval Interface ADABAS TEXT RETRIEVAL

The NATURAL STORE Statement

If a STORE statement is executed which is directed to the interface, the interface
examines whether one of the fields, contained in the current view is to be free text
inverted in accordance with the definition of the document indices
(hyperdescriptor).

If such fields are found, the free text inversion is immediately executed.

The WITH NUMBER clause of the NATURAL STORE statement is used to
support the inversion of long documents.

If the ISN provided in the WITH NUMBER clause points to a previously stored
document index entry, the index of this record is extended by the index entries
made up during the inversion of the text contained in the record currently stored.

The NATURAL DELETE Statement

When deleting a record all corresponding document index entries are also deleted.

The NATURAL FIND Statement

The NATURAL FIND statement can be used to execute retrieval operations on
previously inverted texts. All sub-clauses of the NATURAL FIND statement are
supported.

The NATURAL name of the relevant hyperdescriptor must be used to enter
selection criteria. Any type of query can be entered as a value for a
hyperdescriptor.

5 software ag

ADABAS TEXT RETRIEVAL NATURAL Text Retrieval Interface

Setting Dynamic Parameters

When using the interface, it is also possible to set TRS dynamic parameters (TRS
parameters are explained in Chapter 2, ADABAS TEXT RETRIEVAL Calls). This
is done using the NATURAL PROCESS statement.

The DDM to be used in the NATURAL PROCESS statement is called
TRS - SYSTEM and is contained in the ADABAS TEXT RETRIEVAL INPL
dataset. Before issuing a PROCESS call, the database ID in the DDM must be
adjusted to the logical database ID addressing the interface and the file number
to the physical file number of the vocabulary file in question.

The names of the variables representing the different parameters correspond to
the names of the parameters themselves. The values of the required parameters
must be supplied according to the syntax of the PROCESS statement.

Example:

PROCESS TRS - SYSTEM USING SETCHAR="*', WORDLEN=64

In addition to the dynamic parameters described in chapter 4, there are two other
parameters to be used in connection with the interface:

HIGH Turns highlighting on or off.
Possible values: ON or OFF.
Default value: ON

HIGHCHAR Hexadecimal values for the indication of the beginning and end
of the string to be highlighted. Four characters must be
supplied. The first two characters indicate the beginning of the
string to be highlighted. The last two characters indicate the end
of the string to be highlighted. Default: 4C6E (‘<>").

Example:

PROCESS TRS - SYSTEM USING HIGH="ON’, HIGHCHAR="FEFF’

@ software ag 6-3

<

NATURAL Text Retrieval Interface ADABAS TEXT RETRIEVAL

Scrolling Through RETAIN Sets

Example

The NATURAL text retrieval interface offers an additional feature for scrolling
through NATURAL RETAIN sets. It allows forward and backward scrolling and
positioning within a set.

To use this feature, two fields must be added to the DDM of the file in question.
One field denotes the RETAIN set requested; the other field specifies the start
position for scrolling. The fields must have the following format:

L DB NAME F LENGTH D
Z0 SET A 32 D
1 Zz1 POSITION N 8 D

These fields need not be physically present on the ADABAS file.

FIND NUMBER
DOCUMENT FILE TEXT="COMPUTER’
RETAIN AS 'LISTY’

FIND DOCUMENT FILE SET="LISTY’
AND POSITION=1 THRU 10

DISPLAY ...
END FIND

The first ten objects contained in set LIST1 are presented in ascending ISN
sequence. If backward scrolling is required, the values for the POSITION
parameter must be reversed (POSITION= 10 THRU 1).

5 software ag

CHAPTER 7

SAMPLE APPLICATION

ADABAS TEXT RETRIEVAL Sample Application

SAMPLE APPLICATION

This chapter demonstrates the use of ADABAS TEXT RETRIEVAL calls in the
context of a sample application. This sample application is written in NATURAL
and is contained as a NATURAL INPL on the ADABAS TEXT RETRIEVAL

installation tape.

A retrieval application typically consists of the functions illustrated below:

A TYPICAL TEXT RETRIEVAL APPLICATION
Document Document
Maintenance Retrieval
Add Modify Delete Execute Delete Execute
Document Document Document Query Document Query
Create Delete Delete Hil?hlight
Index Index Entries | | Index Entries ems
Selected
Create
Index
@ software ag 7-1

<

Sample Application ADABAS TEXT RETRIEVAL

The sample application explained in this chapter is a small text retrieval system
used to retrieve information on Software AG’s product documentation. It enables
the maintenance and retrieval of documents.

The following main functions are implemented:

* Maintenance. Store, update, delete documents;

¢ Formatted retrieval. Query, select, display documents;

* Freestyle retrieval. Query, display, overview.

The following figure provides an overview of the sample application:

Example menu

TRS-INIT
Maintenance Formatted Freestyle
Retrieval Retrieval
TRS-ADD TRS-QR TRS-FQR
TRS-EIS TRS-FQRH
TRS-DISP TRS-NAT
TRS-HLP

Local data area
TRS-LDA

7-2 f software ag

ADABAS TEXT RETRIEVAL Sample Application

The following diagram provides an overview of the sample application file
structure:

Document File

File-Number: 39
DDM-Name: TRS-DOCUMENT

N 2

DFNR VFNR
File-Number: 39 File-Number: 39
DDM-Name: TRS-VOCABULARY

DFNR

File-Number: 39

To implement the sample application, you must adjust the physical file numbers
to the values chosen by you when installing the sample application files in the
ADABAS database:

e Change the file numbers of the DDMs TRS-DOCUMENT and
TRS - VOCABULARY;

* Change the file numbers used for the ADABAS TEXT RETRIEVAL BC call
in the NATURAL program TRS - INIT (statement number 0330, page
7-6);

¢ Recatalog all NATURAL objects with the NATURAL CATALL command.

@ software ag 7-3

<

Sample Application ADABAS TEXT RETRIEVAL

The Calls Used in the Sample Application

The following table alphabetically lists the calls used in the sample application:

Call Primary Application Contained in
Sample Programs
ADD Invert a document TRS - ADD
BC Start an ADABAS TEXT RETRIEVAL session TRS - INIT
CL Close an ADABAS TEXT RETRIEVAL session |TRS - INIT
DDS Delete document index entries TRS - ADD
DSL Define search label TRS - INIT
DYP Change dynamic parameters TRS - ADD
TRS - DISP
EISE End browsing through an ISN - Set TRS - EIS
EISG Start browsing through an ISN - Set TRS - EIS
EISS Browse through an ISN - Set TRS - EIS
HIGH Highlight a document TRS - DISP
QR Execute a query TRS - HLP
TRS - FQR
TRS - QR
RET Create a NATURAL Retain - Set TRS - FQR
RQR Release a query TRS - FQR
TRS - QR

7-4 5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Initialize ADABAS TEXT RETRIEVAL Session
TRS - INIT

The program TRS - INIT initializes an ADABAS TEXT RETRIEVAL session
and invokes the required function (maintenance, retrieval, freestyle retrieval).
The program is broken down into the following functional segments.

¢ Initialize program;

e Set to lower case;

Initialize the ADABAS TEXT RETRIEVAL Session (BC call);
Define Search Labels (DSL call);

Display Menu and Invoke Selected Functions;

Close the ADABAS TEXT RETRIEVAL Session (CL call).

Program Start Up

0010 KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A Ak kA Ak Ak Ak hkhkhkhkhkhkhkkhkhkkhkhkkhhkk

0020 * *

0030* ADABASTEXT RETRIEVAL Example Application *
0040* *

0050 * Object : TRS-INIT *

0060 * Type : Program *

0070 * Function : Initidize TRS session *

0080* Author : Software AG *

0090* *

0100 hhhkkhhkhkhhkhhhkhhkhhkhhhhhkhhhkhhkhkhhkhkhhhhhhkhhhkhhdhhhkhhhhkhhhkhhkhkhhkhhkkhhkhkhkhhkhkhhkhx
0110 *

0120 DEFINE DATA LOCAL USING TRS-LDA

0130 LOCAL

01401 SEL (A1)
0150 END-DEFINE
0160 *

Use Lowercase letters

0070 % == = m mm *
0180 * Set lower case *

02190 % === == = m *
0200 SET CONTROL 'L’

0210 *

@ software ag 7-5

<

Sample Application ADABAS TEXT RETRIEVAL

Note:

Initialize the ADABAS TEXT RETRIEVAL Session

It is recommended that you execute a CL call prior to a BC call to ensure that the
existing session is closed.

The BC call in line 0330 is used to initialize an ADABAS TEXT RETRIEVAL
session.

The TRS.DYP-PARM parameter contains all relevant ADABAS TEXT
RETRIEVAL start-up parameters for that specific session.

0220 * === = m o m e e e e e e *
0230 * Initialize TRS session *

0240 * == m mm e e e e e e *
0250 *

0260 *

0270 CALL 'TRS 'CL' TRSRC TRS.SAVE

0280 *

0290 *

0300 MOVE 'VFNR=38,DFNR=39,DSFNR=39,DOCID=DA,SETCHAR=#." TO TRS.DYP-PARM
0310 *

0320 *

0330 CALL 'TRS 'BC' TRS.RC TRS.SIZE TRS.SAVE TRS.DYP-PARM

0340 *

0350 *

0360 IF TRSRC NEO

0370 MOVETRSRCTOTRSRC1

0380 *

0390 *

0400 CALL'TRS 'CL’' TRS.RC TRS.SAVE

0410 *

0420 *

0430 WRITE 'Errorin TRS-BC:’ TRS.RC1

0440 STOP

0450 END-IF

0460 *

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Define Search Labels

In order to use logical names for the retrieval of free-text chapters and formatted
fields in the document structure, search labels are assigned to these fields using the
DSL call (see line 0530). The parameter TRS.DSL - PARM must contain all
necessary search label definitions.

The logical name #TITLE is assigned to the free-text chapter hyperdescriptor
Y1Y1 and the logical name #ABSTRACT to Y2Y2 (see line 0500).

The logical name #DATE is assigned to the formatted field represented by the
ADABAS descriptor DB and the logical name #ORDER to DA (see line 0500).

These logical names can be used for processing queries which access the requested
fields in the document structure.

0480 * Define Search-Labels *

0490 * - === m e e e e e e e e e *

d500 MOVE 'Y 1Y 1=#TITLE,Y 2Y 2=#ABSTRACT,DB=#DATE,DA=#ORDER."’ TO TRS.DSL -PARM \
0510 *

0520 *

d530 CALL 'TRS 'DSL’' TRS.RC TRS.DSL -PARM \
0540 *

0550 *

0560 IF TRS.RC NE O

0570 MOVE TRSRC TO TRS.RC1

0580 CALL'TRS 'CL’' TRSRC TRS.SAVE

0590 WRITE 'Errorin TRS-DSL:’ TRS.RC1

0600 STOP

0610 END-IF

0620 *

0630 SET KEY ALL

0640 SET KEY PF3 NAMED ' Quit’

0650 *

@ software ag 7-7

<

Sample Application ADABAS TEXT RETRIEVAL

Display Menu and Invoke Selected Functions

A menu is displayed for selecting a desired function. The following functions are
available:

A Document Maintenance (store, update, delete);
R Formatted Retrieval;
F Freestyle Retrieval.

B0 * - - - <= = = = < = o *
0670* Display Menu *

0BBO * - - - <= = = = < o e o o *
0690 REPEAT

0700 INPUT USING MAP’'TRS-MENU’
0710 IF*PF-KEY ='PF3

0720 ESCAPEBOTTOM

0730 END-IF

0740 DECIDE ON FIRST VALUE SEL
0750 VALUE'A

0760 FETCH 'TRS-ADD’

0770 VALUE'R’

0780 FETCH 'TRS-QR’

0790 VALUE'F

0800 FETCH 'TRS-FQR’

0810 VALUE'’

0820 ESCAPE BOTTOM

0830 NONE

0840 REINPUT 'Invalid function code.’
0850 END-DECIDE

0860 END - REPEAT

0870 *

Close the ADABAS TEXT RETRIEVAL Session

The CL call in line 0930 closes the ADABAS TEXT RETRIEVAL session.

0880 * === == == e e e e e e e e e e e oo *
0890 * Close TRS session *

0900 * === === e e e e e e e e e e e e oo *
0910 *

0920 *

(930 CALL 'TRS 'CL’' TRS.RC TRS.SAVE

0940 *

0950 *

0960 SET CONTROL 'U’

0970 *

0980 END

7-8 fj software ag

ADABAS TEXT RETRIEVAL Sample Application

Document Maintenance and Retrieval

TRS - ADD

The program TRS - ADD enables the user to perform the following functions.
e Select a document for update/delete;

e Store a document;

e Update a document;

Invert a document (ADD call);

Delete a document;

Delete document index entries (DDS call).

Program Start Up

0010 KA A KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A Ak kA Ak hkhkhkhkhkkhkhkkhkhkkhkhhkhkhhkhhhk

0020 * *

0030* ADABASTEXT RETRIEVAL Example Application *
0040* *

0050 * Object : TRS-ADD *

0060 * Type : Program *

0070 * Function: Store, update, delete and invert document *

0080 * Author : Software AG *

0090* *

Oloo hhhkkhhkkhhkhhhhkhhhkhhhhhkhhhkhkhhkhhkhhhhhhhhhhkhhhhhhkhkhhhkhhhkhhkhkhhkhhkhhkhkhkhkhhkhhkhx
0110 *

0120 DEFINE DATA LOCAL USING TRS-LDA [* TRS Parameter
0130 *

0140 LOCAL

0150 *

0160 1 MAP1 [* Fieldsin Map

0170 20RDER (A16)

0180 2DATE (N8)

0190 2PRICE (N3)

0200 2TITLE (A70)

0210 2 ABSTRACT (A70/12)

0220 *

0230 1 DOCUMENT VIEW OF TRS-DOCUMENT ~ /* Document View
0240 20RDER (A16)

0250 2 DATE

0260 2PRICE (N3)

0270 2TITLE

0280 2 ABSTRACT (12)

0290 *

0300 1 #ORDER-OLD (A16) /* Work Fields
03101#MSG (A72)

0320 *

0330 END-DEFINE

0340 *

@ software ag 7-9

<

Sample Application

05T

0360 * Set keys

o 70 F s

0380 SET KEY ALL

0390 SET KEY PF2 NAMED 'Clear’

0400 SET KEY PF3NAMED ’Quit’

0410 SET KEY PF4 NAMED ’Update’

0420 SET KEY PF5 NAMED 'Delete’

0430 SET KEY PF6 NAMED ' Store’

0440 SET KEY PF8 NAMED 'Next’

0450 SET KEY PF10 NAMED ' Query’

0460 *

0470 *

0480 R1. * Main Loop
0490 REPEAT

0500 *

0510 *

0520 INPUT WITH TEXT #MSG USING MAP’'TRS-ADDM’
0530 *

Terminate

0550 * Quit Function

T

0570 IF*PF-KEY ='PF3
0580 ESCAPEBOTTOM
0590 END-IF

0600 *

Invoke Formatted Retrieval

B0 * === == -l

0620 * Invoke Query

i

0640 |IF*PF-KEY ='PF10
0650 FETCH'TRS-QR’
0660 END-IF

0670 *

ADABAS TEXT RETRIEVAL

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Clear Screen
510 s *
0690 * Clear screen
(00 *

0710 IF*PF-KEY ="PF2

0720 RESET MAP1

0730 MOVE 'Input data and press enter.” TO #MSG
0740 ESCAPE TOP

0750 END-IF

0760 *

Next Document

0770 % = mm e m o m *
0780 * Next document
0790 % === == mm o m *

0800 IF*PF-KEY ='PF8

0810 READ DOCUMENT BY ORDER = MAP1.ORDER
0820 IF MAP1.ORDER NE DOCUMENT.ORDER
0830 ESCAPE BOTTOM

0840 END-IF

0850 END-READ

0860 MOVE DOCUMENT.ORDER TO MAP1.ORDER
0870 END-IF

0880 *

0890 *

0900 IFMAP1LORDER=""

0910 REINPUT 'Please enter Order Nr.’

0920 END-IF
0930 *
5 software ag 7-11

Sample Application ADABAS TEXT RETRIEVAL

Select Document for STORE/UPDATE/DELETE

0940 * === mm e e oo *
0950 * Select document
0960 * == === m e oo *

0970 IF*PF-KEY =’ENTR’ OR *PF-KEY ='PF8
0980 IF MAPL.ORDER = #ORDER-OLD

0990 ESCAPE TOP

01000 END-IF

01010 *

01020 FL1.

01030 FIND (1) DOCUMENT WITH ORDER = MAP1.ORDER

01040 MOVE BY NAME DOCUMENT TO MAPL

01050 MOVE MAPL.ORDER TO #ORDER-OLD

01060 END-FIND

01070 *

01080 IF*NUMBER (F1)>0

01090 COMPRESS’Order-Nr.” MAPLORDER 'found.” INTO #MSG
01100 ELSE

01110 COMPRESS’Order-Nr.’ MAPL.ORDER 'not found.’ INTO #MSG
01120 END-IF

01130 ESCAPE TOP

01140 *

01150 END-IF

01160 *

Store Document
In this program segment, the document is stored in the document file and inverted

by ADABAS TEXT RETRIEVAL. The document is inverted using the subroutine
SR - INVERT specified in line 1300. This subroutine begins in line 2020.

D70 % - - - o - o *
01180 * Store document
01090 - - mmmm o e s *

01200 IF*PF-KEY ='PF6’

01210 FIND (1) DOCUMENT WITH ORDER = MAP1.ORDER

01220 IF*NUMBER > 0

01230 COMPRESS'’ Document’ MAP1.ORDER 'aready exists.’ INTO #MSG
01240 REINPUT #MSG MARK *MAP1.ORDER

01250 END-IF

01260 END-FIND

01270 MOVEBY NAME MAP1 TO DOCUMENT

01280 STORE DOCUMENT

01290 *

(1300 PERFORM SR-INVERT /* Invoke Inversion

01310 *

01320 END TRANSACTION

01330 COMPRESS’Order-Nr.:" MAPLORDER 'successfuly added.” INTO #MSG
01340 RESET #ORDER-OLD

01350 END-IF

01360 *

7-12 f software ag

ADABAS TEXT RETRIEVAL Sample Application

Update Document

The following program segment updates the document in the document file and
re-inverts the document. The document is inverted using the subroutine
SR - INVERT specified in line 1540. This subroutine begins in line 2020.

D1B70 % - mm - s mm e e *
01380 * Update document
01390 * == === e e e e e e e e e oo *

01400 IF*PF-KEY ="PF4

01410 IF MAPL1L.ORDER NE #ORDER-OLD

01420 REINPUT 'No change of Order-Nr. allowed. for update’
01430 MARK *MAP1.ORDER

01440 END-IF

01450 IFMAPLDATENE MASK(YYYYMMDD)

01460 REINPUT ' Please correct date” MARK *MAPL.DATE
01470 END-IF

01480 FIND (1) DOCUMENT WITH ORDER = MAP1.ORDER
01490 MOVE BY NAME MAP1 TO DOCUMENT

01500 *

01510 UPDATE /* Invoke Inversion

01520 *

01530 RESET #ORDER-OLD

d1540 PERFORM SR-INVERT

01550 END OF TRANSACTION

01560 COMPRESS ' Order-Nr..;" MAP1.ORDER 'successfuly updated’ INTO #MSG
01570 END-FIND

01580 *
01590 END-IF
01600 *
@ software ag 7-13

Sample Application ADABAS TEXT RETRIEVAL

Delete Document

The documents are deleted from the document file. The selection of the relevant
input entries is carried out in subroutine SR - DELETE specified in line 1830. This
subroutine begins in line 2570.

OLB10 ® - mm - o oo o oo e e *
01620 * Delete document

01630 * == === s mmmm e e *
01640 IF*PF-KEY ='PF%

01650 F2.

01660 FIND DOCUMENT ORDER = MAPL.ORDER
01670 SET CONTROL 'WFL70C7B10/10

01680 INPUT ’PLease retype Order-Nr.’ #ORDER-OLD (AD=T’ ")

01690 SET CONTROL ’'WB’

01700 IF #ORDER-OLD NE MAPLORDER

01710 MOVE'No record deleted. TO #MSG

01720 ESCAPE BOTTOM

01730 END-IF

01740 DELETE

01750 END-FIND

01760 *

01770 IF*NUMBER (F2)=0

01780 BACKOUT TRANSACTION

01790 COMPRESS’Document’ MAPL.ORDER 'does’t exists.’ INTO #MSG
01800 REINPUT #MSG MARK *MAPLORDER

01810 END-IF

01820 *

(1830 PERFORM SR-DELETE /* Invoke Delete Index

01840 *

01850 RESET MAPL

01860 END OF TRANSACTION

01870 COMPRESS’ Order-Nr. MAPLORDER 'successfuly deleted.” INTO #MSG
01880 RESET #ORDER-OLD

01890 ESCAPE TOP

01900 END-IF

01910 *

01920 *

01930 END-REPEAT

7-14 f software ag

ADABAS TEXT RETRIEVAL Sample Application

‘-

<

Invert Document

The SR-INVERT subroutine inverts the contents of the two free-text chapters
TITLE and ABSTRACT.

Before the inversion by the ADD call, the TEXT parameter must be set to the
name of the ADABAS hyperdescriptor (Y1) which represents the free-text chapter
TITLE in the document file. This is carried out by the DYP call in line 2120..

The ADD call is then executed in line 2180 which performs the inversion. Within
the ADD call:

e The field MAP1.ORDER contains the current value of the document ID;

* Thefield TRS.ALEN contains the length of the text to be inverted, in this case
72 bytes;

¢ The field MAP1.TITLE(1) contains the one and only text line of the free-text
chapter TITLE;

* The field TRS.DISN will contain the ISN assigned to the DFNR record by
TRS;

* The constant, LAST, indicates that there are no subsequent parts of the
free-text chapter to be inverted.

The procedure for inverting the chapter ABSTRACT is identical to that for TITLE
above (see lines 2370 and 2430).

Bearing in mind that the name of the ADABAS hyperdescriptor for ABSTRACT
is Y2, the possible length of the free-text can be up to 864 bytes.

01940 KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A Ak A A Ak Ak hhkhkhkkhkhkhkhkhkhkhkkhkhkhkhkk
01950 KA AR A AR A AR A AR A AR A AR A A A A AR A AR A AR A AR A ARk A AR A A Ak kA Ak Ak kA hkhkhkhkhkhkkhkhkkhkhkhkhkhhkhkhhk
01960 *kk S u b rou t | nes KAKK KKK A IR A IR A IR A IR A Ak Ak kA hkhkhkhkhkhkkhkhkhkhkhhkhhhk

01970 KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A Ak kA Ak Ak hhkhkhkkhkhkkhkhkhkhkhkhkhkhhkhhhk

01980 KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A Ak kA Ak Ak hhkhkhkhkhkkhkhkhkhkhkhkhhkhhhk

01990 *
02000 *

02010 KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A hk kA Ak Ak hhkhkhkkhkhkkhkhkkhkhkhkhkhkkhhhk

02020 DEFINE SUBROUTINE SR-INVERT /* Inversion Process for Document

02030 KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A Ak kA Ak hkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhhhk
02040 *

02050 * - - - - - - oo *
02060 * TRS-ADD =====|nversion for Document Chapter - TITLE

02070 * === == = = o e oo *
02080 *

02090 MOVE'TEXT=Y1Y1l’' TOTRSDYP-PARM

02100 *

02110 *

(2120 CALL 'TRS 'DYP TRS.RC TRS.DYP-PARM

02130 *

02140 *

02150 MOVE 68 TO TRSALEN

02160 *

02170 *

02180 CALL 'TRS 'ADD’ TRS.RC MAPL.ORDER TRSALEN MAPLTITLE

02190 TRS.DISN'LAST ’

02200 *

software ag 7-15

Sample Application ADABAS TEXT RETRIEVAL

02210 *

02220 IFTRSRCNEO

02230 MOVETRSRCTO TRS.RC1

02240 BACKOUT TRANSACTION

02250 COMPRESS'Error in TRS-ADD (Title) =>' TRS.RC1 INTO #MSG

02260 REINPUT #MSG

02270 END-IF

02280 *

02290 *

02300 * === === e e e eeeeeeeeeaeeeaas *

02340 MOVE'TEXT=Y2Y2' TOTRSDYP-PARM

02350 *

02360 *

(2370 CALL'TRS 'DYP TRS.RC TRS.DYP-PARM

02380 *

02390 *

02400 MOVE 816 TO TRSALEN

02410 *

02420 *

(2430 CALL'TRS 'ADD’ TRS.RC MAPL.ORDER TRSALEN MAPLABSTRACT(1)
02440 TRS.DISN'LAST *

02450 *

02460 *

02470 IFTRSRCNEO

02480 MOVETRSRC TO TRS.RC1

02490 BACKOUT TRANSACTION

02500 COMPRESS ' Errorin TRS-ADD (Abstract) =>" TRS.RC1 INTO #MSG
02510 REINPUT #MSG

02520 END-IF

02530 *

02540 END-SUBROUTINE
02550 *

02560 *

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

‘-

<

Delete Document Index Entries

Within the SR - DELETE subroutine, the DDS call is invoked in order to remove
index entries from the document index file (DSFNR).

The index entries for the free-text chapters TITLE and ABSTRACT must be
deleted separately.

The deletion process takes place for ABSTRACT in lines 2670 and 2700 and for
TITLE in lines 2860 and 2890. Prior to the invocation of the DDS call, the TEXT
parameter must be set to the name of the ADABAS hyperdescriptor representing
the free-text chapter in question (see lines 2640 and 2830).

The field MAP1.ORDER contains the value of the document ID.

02570 KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A Ak kA Ak Ak hhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhhhk

02580 DEFINE SUBROUTINE SR-DELETE /* Delete Document Index

02590 KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A Ak kA Ak Ak hkhkhkhhkhkhkkhkhkkhkhkkhkhhkhhhk

02600 *

02610 * === == mmmmm e m e oo *

02620 * TRS-DDS ===== Delete Index for Document Chapter - TITLE

02630 * - === - s o s s oo *

02640 MOVE 'TEXT=Y1Y1l' TO TRS.DYP-PARM |
02650 *

02660 *

02670 CALL'TRS 'DYP TRS.RC TRS.DYP-PARM |
02680 *

02690 *

02700 CALL'TRS 'DDS TRS.RC MAPLORDER'SUM’ |
02710 *

02720 *

02730 IFTRS.RCNEO

02740 MOVE TRSRCTO TRS.RC1

02750 BACKOUT TRANSACTION

02760 COMPRESS 'Error in TRS-DDS (Title) =>" TRS.RC1 INTO #M SG

02770 REINPUT #MSG

02780 END-IF

02790 *

software ag 7-17

Sample Application ADABAS TEXT RETRIEVAL

(0237 R *

(2830 MOVE'TEXT=Y2Y2.' TO TRS.DYP-PARM |
02840 *

02850 *

(2860 CALL'TRS 'DYP TRS.RC TRS.DYP-PARM |
02870 *

02880 *

(2890 CALL'TRS 'DDS TRS.RC MAPLORDER’SUM'’ |
02900 *

02910 *

02920 IFTRSRCNEO

02930 MOVETRS.RCTOTRSRC1

02940 BACKOUT TRANSACTION

02950 COMPRESS'Errorin TRS-DDS (Abstract) =>' TRS.RC1 INTO #MSG

02960 REINPUT #MSG

02970 END-IF

02980 *

02990 END-SUBROUTINE

03000 *

03010 *

03020 *

03030 *

03040 FETCH "MENU'’

03050 END

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Formatted Retrieval

TRS - QR

The TRS-QR program represents the main retrieval part of the demonstration
application. The program enables the user to enter specific queries for each of the
categories in the document. The program returns the respective results and totals
them by linking all relevant queries with the boolean operator “AND.” The
program is broken up into the following subsections:

¢ Execute Query for the categories Order, Title, Abstract, Date (QR call);
¢ Produce Final Result (QR call);

e Invoke Overview.

Program Start Up

0010 KA A KA AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A Ak kA Ak Ak hhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhhkk

0020 * *

0030* ADABASTEXT RETRIEVAL Example Application *
0040* *

0050 * Object : TRS-QR *

0060 * Type : Program *

0070* Function : Retrieva *

0080* Author : Software AG *

0090* *

Oloo hhhkkhhkkhhkhhhkhhkhhkhhhhhkhhhkhhkhkhhkhhhhhhhkhhhkhhdhhhkhhkhhhkhhkhhkhkhhkhhhkhhkhkhkhkhkhkhhkdhx
0110*

0120DEFINE DATA LOCAL USING TRS-LDA /* TRS Parameter
0130*

0140LOCAL

0150*

01601 #MAP /* Fieldsin Map

0170 2 #ORDER(A60)
0180 2 #ORDER-R(N7)
0190 2 #TITLE(A6O)

0200 2 #TITLE-R(N7)
0210 2 #ABSTRACT(A60)
0220 2 #ABSTRACT-R(N7)
0230 2 #DATE(AG0)

0240 2 #DATE-R(N7)
0250 2 #RESULT(N7)
0260

02701 #MSG(AT2)

0280

0290END - DEFINE

0300

@ software ag 7-19

<

Sample Application

01 s

0320* Set keys

(10 s

0340SET KEY ALL

0350SET KEY PF2 NAMED ’'Clear’
0360SET KEY PF3 NAMED ’Quit’

0370SET KEY PF6 NAMED 'Over’
0380SET KEY PF10 NAMED 'Add’

0390*
0400REPEAT
0410*

0420 INPUT USING MAP’TRS-QRM’

0430*

Terminate

0450* Escape to menu

T

0470 IF*PF-KEY ="PF3
0480 ESCAPEBOTTOM
0490 END-IF

0500*

Invoke Document Processing

013

0520* Invoke Add

i

0540 IF*PF-KEY ="PF10’
0550 FETCH'TRS-ADD’
0560 END-IF

0570*

ADABAS TEXT RETRIEVAL

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Clear Screen

Clear Screen and release queries.

For the release of the queries a RQR call is used (see lines 0620 and 0650).

0580% == = == === e e e *
0590* Clear the screen

0600% == = = = === e e *
0610 IF*PF-KEY ='PF2

0620*

0630*

0640 CALL 'TRS 'RQR’ TRS.RC’'DOCS0002'

0650*

0660*

0670 CALL 'TRS 'RQR’ TRS.RC’'DOCS0003

0680*

0690*

0700 RESET #MAP

0710 ESCAPE TOP

0720 END-IF

0730*

Execute Query for ORDER

O7A0% ~ - - - ... *
0750* TRSQuery ===== ORDER-NUMBER

O7B0% === - === mm o e - *
0770 RESET TRS.QUERY -G #ORDER-R #TITLE-R #ABSTRACT-R #DATE-R #RESULT
0780*

0790 IF#ORDER NOT EQ"’

0800*

0810 MOVE’DOCS0001' TO TRSNAME

0820 COMPRESS’'#ORDER’ #ORDER TO TRS.QUERY

0830~

0840*

0850 CALL'TRS 'QR TRSRC TRS.QUERY TRS.QLEN TRSNAME TRS.DERR TRS.LERR
0860 TRSMODE TRS.CID TRS.QTY TRSTYPE

0870*

0880*

0890 IFTRSRCNEO

0900 MOVE TRSRC TO TRS.RC1

0910 COMPRESS’Error in TRS.QR =>' TRSRC1 TO #MSG

0920 REINPUT #MSG MARK *#ORDER

0930 END-IF

0940*

0950 MOVE TRS.QTY TO#ORDER-R

0960 MOVE'#1' TO TRS.QUERY -G

0970*
0980 END-IF
0990*
1000*
5 software ag 7-21

Sample Application ADABAS TEXT RETRIEVAL

Execute Query for TITLE

The query entered by the user for the formatted field TITLE is executed by the QR
call in line 1100).

The search label entered by the user and the query expression are combined with
the parameter TRS.QUERY for the QR call (see lines 1060 - 1070). The constant
'DOCS0002” constitutes the query name in TRS.NAME. This will be used to
reference back to this specific query later on in the program.

In the QR call:

The TRS.QLEN parameter indicates the length of the query. In the example,
it is 80 bytes;

The parameters TRS.DERR and TRS.LERR contains information on syntax
errors detected in the query;

The constant “D” is chosen for the TRS.MODE parameter in order to
indicate that a document retrieval must be carried out;

The TRS.CID parameter contains the ADABAS command ID which
identifies the ADABAS ISN list resulting from the query;

The TRS.QTY parameter contains the number of selected documents. This
parameter is shown to the user as the first result;

The constant value ’=’, in the TRS.TYPE parameter, chooses the default
selection mode to be PRECISE.

In the field TRS.QUERY-G of line 1220, the constant entry '#2’ indicates that the
result of this query will be incorporated into the final query (for determining the
final result).

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

0T e *
1020+ TRSQuery ===== TITLE

0B0% - - - - = - = o *
1040 IF#TITLENOTEQ”

1050*

1060 MOVE’DOCS0002' TO TRSNAME

1070 COMPRESS #TITLE’ #TITLE TO TRS.QUERY

1080

1090

1100 CALL’TRS 'QR TRSRC TRS.QUERY TRSQLEN TRSNAME TRSDERR TRSLERR
1110 TRSMODE TRSCID TRSQTY TRSTYPE

1120

1130*

1140 IFTRSRCNEO

1150 MOVETRSRCTO TRSRC1

1160 COMPRESS'Error in TRS.QR =>' TRS.RC1 TO #MSG
1170 REINPUT #MSG MARK *#TITLE

1180 END-IF

1190*

1200 MOVETRS.QTY TO#TITLE-R

1210 IFTRSQUERY-GEQ™’

1220 MOVE'#2 TO TRS.QUERY-G

1230 ELSE

1240 COMPRESS TRS.QUERY -G 'AND #2' TO TRS.QUERY -G
1250 END-IF

1260*

1270 ELSE

1280*

1290*

1300 CALL'TRS 'RQR' TRS.RC’DOCS0002'
1310*

1320*

1330 END-IF

1340*

1350*

@ software ag 7-23

<

Sample Application ADABAS TEXT RETRIEVAL

Execute Query for ABSTRACT and DATE

A QR call is used to select documents according to the queries entered by the user
for the fields ABSTRACT and DATE. Note that the QR call in lines 1450 and 1460
is identical to that used for TITLE above.

1360 = - - *
1370* TRSQuery ===== ABSTRACT

1380 - *
1390 IF #ABSTRACT NOTEQ"’

1400*

1410 MOVE'DOCS0003' TO TRSNAME

1420 COMPRESS '#ABSTRACT’ #ABSTRACT TO TRS.QUERY
1430*

1440*

1450 CALL 'TRS 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRSNAME TRS.DERR TRS.LERR
1460 TRSMODE TRS.CID TRS.QTY TRS.TYPE

1470*

1480*

1490 IFTRSRCNEO

1500 MOVETRSRCTO TRSRC1

1510 COMPRESS Error in TRS.QR =>" TRS.RC1 TO #MSG
1520 REINPUT #MSG MARK *#ABSTRACT

1530 END-IF

1540*

1550 MOVE TRS.QTY TO#ABSTRACT-R

1560 IFTRSQUERY-GEQ'’

1570 MOVE'#3 TO TRS.QUERY -G

1580 ELSE

1590 COMPRESS TRS.QUERY -G 'AND #3' TO TRS.QUERY -G
1600 END-IF

1610*

1620 ELSE

1630*

1640*

1650 CALL'TRS 'RQR' TRS.RC’DOCS0003'

1660*

1670*

1680 END-IF

1690*

1700*

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

1700 - *
1720 TRSQuery ===== DATE

1780 *
1740 IF#DATENOTEQ" "’

1750*

1760 MOVE'DOCS0004' TO TRSNAME

1770 COMPRESS '#DATE' #DATE TO TRS.QUERY

1780*

1790*

1800 CALL 'TRS 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRSNAME TRS.DERR TRS.LERR
1810 TRSMODE TRS.CID TRS.QTY TRS.TYPE
1820*

1830*

1840 IFTRSRCNEO

1850 MOVETRSRCTO TRSRC1

1860 COMPRESS Error in TRS.QR =>" TRS.RC1 TO #MSG
1870 REINPUT #MSG MARK *#DATE

1880 END-IF

1890*

1900 MOVE TRS.QTY TO#DATE-R

1910 IFTRSQUERY-GEQ'’

1920 MOVE'#4 TO TRS.QUERY -G

1930 ELSE

1940 COMPRESS TRS.QUERY -G 'AND #4' TO TRS.QUERY -G
1950 END-IF

1960*

1970 END-IF

1980*

1990*

Produce Final Result

A QR call is executed in line 2090 to produce the final total result based on the
queries which have already been executed.

This final result is stored under the name DOCS0011 in line 2050.

2000% = - = == == m *
2010* TRSQuery ===== Total

2020¥ == = *
2030 IFTRS.QUERY-GNOTEQ"’

2040*

7050 MOVE'DOCS0011' TO TRSNAME

2060 MOVE TRS.QUERY -G TO TRS.QUERY

2070*

2080*

2090 CALL 'TRS 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRSNAME TRS.DERR TRS.LERR
4100 TRSMODE TRS.CID TRS.QTY TRS.TYPE
2110*

2120*

2130 IFTRSRCNEO

2140 MOVETRSRCTO TRSRC1

2150 COMPRESS Error in TRS.QR =>" TRS.RC1 TO #MSG
2160 REINPUT #MSG

2170 END-IF

2180*

2190 MOVETRS.QTY TO#RESULT

2200*

2210 END-IF

2220*

@ software ag 7 -25

<

Sample Application ADABAS TEXT RETRIEVAL

Invoke Overview

The program TRS-EIS is invoked to create an overview of all documents selected
by the final query.

74 *
2240* Invoke Overview
7 e *

2260 IF*PF-KEY ='PF6

2270 IF#RESULT =0

2280 REINPUT ’'No final result build.’
2290 ELSE

2300 FETCH RETURN'TRS-EIS
2310 END-IF

2320 END-IF

2330*

2340END - REPEAT

2350*

2360FETCH 'MENU’

2370*

2380*

2390END

7-26 f software ag

ADABAS TEXT RETRIEVAL Sample Application

Overview of Selected Documents

TRS - EIS

The program TRS - EIS creates an overview of the selected documents using the
EISS, EISG and EISE calls. The user can then select documents to be displayed
by marking them with “X”. The program is divided into the following subsections:

¢ Resume Query (QR call);

¢ Create Overview (EISG call);
e Page Up;

e Page Down;

¢ Select Item for Display.

@ software ag 7-27

<

Sample Application

Program Start Up

ADABAS TEXT RETRIEVAL

0010**

0020* *
0030* ADABASTEXT RETRIEVAL Example Application *
0040* *

0050* Object : TRS-EIS

0060* Type : Program

0070* Function: Retrieval overview

0080* Author : Software AG

0090* *

*

*

0100**

0110*
0120DEFINE DATA LOCAL USING TRS-LDA
0130

0140LOCAL

0150

0160 1 DOCUMENT VIEW OF TRS-DOCUMENT
0170 2 ORDER

0180 2 DATE

0190 2TITLE

0200

0210 1 MAPL /* Fieldsin Map
0220 2 LINE(A72/16)

0230 2 MARK(A1/16)

0240 2 MARK-CV(C/16)

0250

02601 MSG(AT72)

0270

02801 JN2) I* Work Fields
02901 K(N2)

03001 1(N7)

03101 P-FROM(N7)

03201 P-THRU(N?)

03301 ORD(A16/16)

0340

03501 LINEL(A72)

03601 REDEFINE LINE1

0370 2 ORDER(A11)

0380 2 FILLERL (A1)

0390 2 DATE(NS)

0400 2 FILLER2 (A1)

0410 2 LINE-TEXT(A51)

0420

0430END - DEFINE

0440

[* TRS-Parameter

/* Document View

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

r

<

Set Keys
O4B0¥ === = o oo *
0460* Set keys
470" = - mm e e e e *

0480SET KEY ALL

0490SET KEY PF3 NAMED ’Quit’
0500SET KEY PF6 NAMED 'Disp’
0510SET KEY PF7 NAMED 'Back’
0520SET KEY PF8 NAMED ’For’
0530*

Resume Query

A QR call in line 0610 is executed in order to resume the result of the final query
by the program TRS - QR and to sort the selected documents according to the
formatted field ORDER (see line 0570).

The EISS call in line 0740 is used to start browsing through an ISN set created by
a QR call.

0540 - - - - - mm s e o *
0550* Resume Queries
(0 s *

q570M OVE'#11 SORT #ORDER’ TO TRS.QUERY
0580MOVE’DOCS0012' TO TRS.NAME

0590*

0600*

0610CALL 'TRS 'QR' TRSRC TRS.QUERY TRS.QLEN TRSNAME TRS.DERR TRS.LERR
0620 TRSMODE TRS.CID TRS.QTY TRS.TYPE
0630*

0640*

0650IF TRS.RC NE O

0660 MOVE TRSRC TO TRSRC1

0670 WRITE'INTERNAL ERROR’

0680 STOP

0690END-IF

0700*

0710MOVE TRS.QTY TOTRS.QTY1

0720*

0730*

q74OCALL 'TRS "EISS TRSRC TRS.CID TRSTYPETRS.QTY
0750*

0760*

0770MOVE 1 TO P-FROM

0780*

software ag 7 -29

Sample Application ADABAS TEXT RETRIEVAL

Create Overview

An overview is of the selected documents is created. These documents are fetched
via ISNs which have been provided by the EISG call in line 1000. This call contains
the following parameters:

The TRS.CID parameter contains the ADABAS Command ID assigned to
the query previously executed.

The constant “D” is assigned to the parameter TRS.TYPE to indicate that a
document selection was executed.

The TRS.QTY parameter contains the number of documents selected by the
previous QR call;

The TRS.POS parameter must contain the relative position of the requested
ISN inside the ADABAS ISN set. In this case, the user variable “I” is used to
browse through the selected documents;

The parameter TRS.ISN will contain the ADABAS ISN selected by the EISG
call.

The document represented by the ISN provided by the EISG call is then accessed
by a GET command in line 1050.

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

O790% == == === = e *
0800* Create Overview

0810¥ == == === = *
0820REPEAT

0830*

0840 /* Calculate Posistion in Set

0850 MOVE P-FROM TO P-THRU

0860 ADD 15 TO P-THRU

0870 IFP-THRU GT TRS.QTY1

0880 MOVE TRS.QTY1TOP-THRU

0890 END-IF

0900*

0910 RESET MAP1 K

0920 MOVE (AD=NP) TO MARK -CV/(*)

0930*

0940*

0950 FOR | = P-FROM TO P-THRU

0960*

0970 MOVE I TO TRS.POS

0980*

0990*

1000 CALL 'TRS 'EISG TRSRC TRS.CID TRS.TYPE TRS.QTY TRSPOSTRSISN
1010*

1020*

1030 MOVE TRS.ISN TO TRS.ISN1

1040*

1050 GET DOCUMENT TRS.ISN1

1060*

1070 ADD1TOK

1080 MOVE DOCUMENT.ORDER TO LINE1.ORDER
1090 MOVE DOCUMENT.ORDER TO ORD(K)

1100 MOVE DOCUMENT.DATE TO LINELDATE
1110 MOVETITLE TOLINE-TEXT

1120 MOVE LINE1 TO LINE(K)

1130 RESET MARK-CV(K)

1140*

1150 END-FOR

1160*

1170*

1180 INPUT WITH TEXT MSG USING MAP’ TRS-EISM’
1190*

1200*

1210 RESET MSG

1220*

1260 IF*PF-KEY ="PF3
1270 ESCAPEBOTTOM

1280 END-IF
1290*
@ software ag 7 - 31

Sample Application

Page Up

Scroll back through the set of documents.

00

1310* Page-Up

e 72

1330 IF*PF-KEY ='PF7’

1340 SUBTRACT 16 FROM P-FROM

1350 IFP-FROM LT 1

1360 MOVE 'Thisisthefirst page. TO MSG
1370 MOVE 1TO P-FROM

1380 END-IF

1390 END-IF

1400*

Page Down

Scroll forward through the set of documents.

TAL0% - -

1420* Page-Down

14B0% = -

1440 |F *PF-KEY ='PF8'
1450 ADD 16 TO P-FROM

1460 IFP-FROM GT TRS.QTY1

1470 MOVE'Thisisthelast page’ TOMSG
1480 SUBTRACT 16 FROM P-FROM

1490 END-IF

1500 END-IF

1510*

ADABAS TEXT RETRIEVAL

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Select Item for Display

The subprogram TRS-DISP is invoked in line 1650 to display a document (see line
1560). The document - iol (ORDER) is passed as parameter to the subprogram.

At the end, an EISE call is issued in line 1960 to end browsing.

1700 *
1530* Select item for display
1.0 *
1550 IF*PF-KEY ="ENTR’ OR *PF-KEY ='PF6

1560*

1570 IF*PF-KEY ='PF6'

1580 MOVEALL 'X’ TO MARK(LK)
1590 END-IF

1600*

1610 FORJ=1TO16

1620 IFMAPLMARK (J NE"’

1630 MOVE LINE(J) TO LINEL

1640*

1650 CALLNAT 'TRS-DISP ORD(J) MSG
1660*

1670 IF*PF-KEY ="PF3

1680 ESCAPE BOTTOM

1690 END-IF

1700*

1710 IF*PF-KEY ="PF6'

1720 MOVE 'Thisisthefirst page.’ TO MSG
1730 RESET J

1740 END-IF

1750*

1760 IF*PF-KEY ='PF8 AND J=K

1770 MOVE 'Thisisthelast page’ TO MSG
1780 SUBTRACT 1 FROM J

1790 END-IF

1800*

1810 IF*PF-KEY ="PF7

1820 SUBTRACT 2 FROM J

1830 IFJLTO

1840 MOVE 'Thisisthefirst page.’ TO MSG
1850 RESET J

1860 END-IF

1870 END-IF

1880*

1890 END-IF
1900 END-FOR
1910 END-IF
1920*

1930END - REPEAT
1940*

1950*

1960CALL 'TRS 'EISE' TRS.RC TRS.CID TRS.TYPE
1970*

1980*

1990END

@ software ag 7-33

<

Sample Application ADABAS TEXT RETRIEVAL

Document Display

TRS - DISP

The program TRS - DISP displays a single document selected from the document
overview provided by the program TRS - EIS. The HIGH call is used to mark the
words which fulfill the search criterion specified in the QR calls. The program is
divided into the following major subsections:

e Find document;
¢ Highlight document (HIGH call);
¢ Display documents.

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Program Start Up

0010**

0020* *

0030* ADABASTEXT RETRIEVAL Example Application *
0040* *

0050* Object : TRS-DISP *

0060* Type : Subprogram *

0070* Function : Display selected documents *

0080* Author : Software AG *

0090* *
0100**
0110*

0120DEFINE DATA PARAMETER

0130*

01401 PARA

0150 2 ORDER (A16)

0160 2MSG (A72)

0170

0180LOCAL USING TRS-LDA
0190LOCAL

0200

02101 MAP1

0220 2 ORDER(A16)

0230 2 PRICE(N3)

0240 2 DATE(NS)

0250 2 TITLEL(A70)

0260 2 ABSTRACT1(A70/12)
0270

02801 DOCUMENT VIEW OF TRS-DOCUMENT
0290 2 ORDER

0300 2 DATE

0310 2 PRICE

0320 2 TITLE

0330 2 C*ABSTRACT

0340 2 ABSTRACT (12)
03501 1(N2)

0360

0370END-DEFINE

0380

0390REPEAT

0400

0410 RESET MAPL

0420

@ software ag 7 -35

<

Sample Application ADABAS TEXT RETRIEVAL

Find Document

This procedure collects the document information for display and highlighting.

0430% == === == m e e *
0440* Find Document

0450% == == === e e e *
0460 FIND DOCUMENT WITH ORDER = PARA.ORDER

0470*

0480 MOVE DOCUMENT.ORDER TO MAP1.ORDER
0490 MOVE DOCUMENT.PRICE TO MAPL.PRICE
0500 MOVE DOCUMENT.DATE TO MAP1.DATE
0510 MOVE 70 TO TRSHLEN

0520 MOVE DOCUMENT.TITLE TOTRSHTEXT1
0530 MOVEO TO TRS.CURSOR

0540*

Highlight Document

A HIGH call is issued in order to highlight the term or terms specified in a query.
Prior to highlighting, a DYP call (see line 0600 and 0880) must be executed in
order to set the TEXT parameter to the name of the ADABAS hyperdescriptor
representing the free-text chapter in question.

In the HIGH call, the DOCUMENT.ORDER parameter contains the document
ID. This process is also carried out for the document abstract (see lines
0830 - 1020).

The constant DOCS0002 is the name of the query (issued in the program
TRS - QR) for which the highlighting is to be performed. The input parameter
TRS.HTEXT contains the source text to be highlighted (in this case the title). By
use of the NATURAL dynamic attribute parameter (DY), the TRS.HTEXT?2
output parameter, which contains the source text including prefixes and suffixes
created by the HIGH call, can be used for immediate physical highlighting.

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

The constants <’ and >’ represent the suffix and prefix to be used to mark the
words fulfilling the search criteria. Highlighting is achieved using the NATURAL
dynamic attribute facility.

The TRS.CURSOR parameter is an internal variable which controls the
highlighting process. Prior to the start of the highlighting process, it must be set to
zero. It must not be changed during intermediate processing (see line 0740).

0550 - - - mmm e *
0560* TRSHigh ===== Highlight Document Chapter - TITLE

05 70% = --mmmmm e e *
0580*

0590*

0600 CALL'TRS 'DYP TRSRC'TEXT=Y1Yl’

0610*

0620*

0630 CALL'TRS 'HIGH' TRS.RC DOCUMENT.ORDER 'DOCS0002’

0640 TRSHTEXT TRSHTEXT2 TRSHLEN '<’ '> TRS.CURSOR

0650*

0660*

0670 IFNOT (TRS.RC=00R =6)

0680 MOVE TRS.RC TO TRS.RC1

0690 INPUT(AD=OIL) 'ERROR IN TRS-HIGH :* TRS.RC1

0700 STOP
0710 END-IF
0720*

0730 MOVETRSHTEXT2TO MAPLTITLEL
q740 MOVE O TO TRS.CURSOR

0750*

0760 FOR1=1TO C*DOCUMENT.ABSTRACT
0770 IF1>12

0780 ESCAPE BOTTOM

0790 END-IF

0800 MOVE70TO TRSHLEN
0810 MOVEDOCUMENT.ABSTRACT(l) TO TRSHTEXT1
0820*

0830% - - - *
0840* TRSHigh ===== Highlight Document Chapter - ABSTRACT

0850 — - - *
0860*

0870*

0880 CALL'TRS 'DYP TRSRC'TEXT=Y2Y2’

0890*

0900*

0910 CALL'TRS 'HIGH TRS.RC DOCUMENT.ORDER 'DOCS0003' TRSHTEXT
0920 TRSHTEXT2 TRSHLEN '<' > TRS.CURSOR

0930*

0940*

0950 IFNOT (TRSRC=00R=6)

0960 MOVE TRS.RC TO TRS.RC1

0970 INPUT(AD=0IL) 'ERROR IN TRS-HIGH :* TRS.RC1

0980 STOP

0990 END-IF

1000 MOVE TRSHTEXT2TO MAPLABSTRACTL()

1010 END-FOR

1020 END-FIND

1030*

@ software ag 7-37

<

Sample Application ADABAS TEXT RETRIEVAL

Display Documents

Display the documents with highlighting.
Note: The NATURAL dynamic attribute feature is used to highlight the words marked by the

HIGH call.

L0A0¥ = - = - m *
1050* Display Highighted Document

J0B0% - - - - = - mm e e *

1070 INPUT WITH TEXT MSG

1080 USING MAP'TRS-DISM’

1090*

1100 IF*PF-KEY ="PF3' OR*PF-KEY ='PF6 OR
1110 *PF-KEY ='PF7" OR*PF-KEY ="PF8
1120 RESET MSG

1130 ESCAPE ROUTINE

1140 END-IF
1150*

1160END - REPEAT
1170*

1180END

7-38 fj software ag

ADABAS TEXT RETRIEVAL Sample Application

Index Display

TRS - HLP

The help routine TRS - HLP shows the values of the formatted fields and the
free-text chapters. For formatted fields DATE and ORDER, a simple histogram
is used. For the free-text chapters, logical reads on the “word fields” of the
vocabulary and subsequent QR calls are used to obtain the number of documents
where the words occur.

The program is divided into the following subsections:

¢ Display Available Values for ORDER;

¢ Display Available Values for DATE;

¢ Display Vocabulary for TITLE or ABSTRACT;

e Show Screen.

@ software ag 7 -39

<

Sample Application

Program Start Up

0010**

0020* *

0030 ADABASTEXT RETRIEVAL Example Application *
0040* *

0050* Object : TRS-HLP *

0060* Type : Helproutine *

0070* Function : Display category index *

0080* Author : Software AG *

0090* *

0100**

0110*
0120DEFINE DATA PARAMETER

0130*

01401 PARA

0150 2 FIELD (A65)

0160 2 VALUE (A60)

0170 2 REDEFINE VALUE

0180 3 DATE (N4)

0190*

0200LOCAL USING TRS-LDA

0210+

0220LOCAL

02301 VOC VIEW OF TRS-VOCABULARY
0240 2 WORD

0250 2 ORIGINAL-WORD

02601 DOC1 VIEW OF TRS-DOCUMENT
0270 2 ORDER

02801 DOC2 VIEW OF TRS-DOCUMENT
0290 2 DATE

03001 MAP1

0310 2 CAT (A10)

0320 2 MARK (A1/10)

0330 2 WORD (A30/10)

0340 2QTY (N5/10)

0350 2CV (C/10)

0360*

03701 # (N2)

03801 #J (N2)

03901 #K (A1)

04001 #D (N4)

04101 #A (A60)

04201 #V (A34)

0430END - DEFINE

0440*

0450SET KEY PF3

0460MOVE (AD=PN) TO CV(*)

0470*

0480*

0490IF NOT(PARA.FIELD = "#TITLE OR ='#ABSTRACT')
0500*

ADABAS TEXT RETRIEVAL

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Display Available Values for ORDER

A HISTOGRAM statement is used in line 550 to determine the values present for
the formatted field ORDER.

05 10% - - - mmm e e *
0520* Display available values for Order *
0530 - - - mmm e e *

0540 IF PARA.FIELD = '#ORDER
@550 HISTOGRAM DOC1 FOR ORDER STARTING FROM PARA VALUE
0560 ADD 1TO#

0570 MOVE DOC1.ORDER TO MAPLWORD(#)

0580 MOVE*NUMBER TOMAPLQTY (#)

0590 RESET CV(#)

0600 IF# GE 10

0610 PERFORM SR-SCREEN

0620 IF*PF-KEY ='PF3

0630 ESCAPE ROUTINE

0640 END-IF

0650 END-IF

0660 END-HISTOGRAM

0670 END-IF

Display Available Values for DATE

A HISTOGRAM statement is used in line 770 to determine the values present for
the formatted field DATE.

0680% - - - e oo *
0690* Display available values for Date *
0700 === == == = *

0710 IF PARA.FIELD = '#DATE’
0720 IF PARA.DATE NE MASK(YYMM)

0730 MOVE PARA.DATE TO #D

0740 END-IF

0750 RESET PARA.VALUE

0760

4770 HISTOGRAM DOC2 FOR DATE STARTING FROM #D
0780 ADD1TO#

0790 MOVE DOC2.DATE TO MAPLWORD(#)

0800 MOVE*NUMBER TOMAPLQTY (#)

0810 RESET CV(#)

0820 IF# GE 10

0830 PERFORM SR-SCREEN

0840 IF*PF-KEY ='PF3

0850 ESCAPE ROUTINE

0860 END-IF

0870 END-IF
0880 END-HISTOGRAM
0890*
0900 END-IF
0910EL SE
0920*
5 software ag 7 - 41

Sample Application ADABAS TEXT RETRIEVAL

Display Vocabulary for TITLE or ABSTRACT

The vocabulary file is read in line 1010 and a QR call is issued in line 1080 to
determine how often the queried word is found in the contents of the relevant
free-text chapter. If the number of documents selected by this query is greater than
zero, the word becomes part of the display. The “original word” representing the
non-standard word is used for the display to show the word in lower/upper case and
special characters (see line 1190).

0980F = - - - <= = = = *
0940* DISPLAY VOCABULARY FOR TITLE OR ABSTRACT *
0O50F = - - - <= = = = < o o *

0960 MOVE PARA.VALUE TO #A
0970 |F PARA VALUE < H'81’

0980 MOVEH'81' TO#A

0990 END-IF

1000*

1010 READ VOC BY WORD = #A

1020

1030 COMPRESS™” VOC.WORD " TO#V LEAVING NO
1040 COMPRESS PARA.FIELD #V TO TRS.QUERY

1050 MOVE'DOCS0020 TO TRSNAME

1060*

1070*

1080 CALL 'TRS 'QR TRSRC TRSQUERY TRS.QLEN TRSNAME TRS.DERR TRS.LERR
1090 TRSMODE TRS.CID TRS.QTY TRSTYPE
1100*

1110*

1120 IFTRSRCNEO

1130 MOVE TRSRC TO TRSRC1

1140 INPUT (AD=OIL) 'ERROR IN TRSQR =>' TRSRC1
1150 END-IF

1160*

1170 IFTRSQTY >0

1180 ADD1TO#

1190 MOVE VOC.ORIGINAL -WORD TO MAPLWORD(#)
1200 MOVE TRS.QTY TO MAPLQTY (#)

1210 RESET CV(#)

1220 END-IF

1230*

1240 IF# GE 10

1250 PERFORM SR-SCREEN

1260 IF*PF-KEY ='PF3

1270 ESCAPE ROUTINE

1280 END-IF

1290 END-IF

1300 END-READ

1310END-IF

1320IF #1 > 0

1330 PERFORM SR-SCREEN

1340END-IF

1350*

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Show Screen

The selected values are displayed to screen and can be selected for inclusion in
queries.

1360**

1370DEFINE SUBROUTINE SR-SCREEN /* Display Screen
1380**
1390*

1400MOVE PARA.FIELD TO MAPL.CAT

1410*

1420INPUT USING MAP’ TRS-HLPM’

1430*

1440IF *PF-KEY ="PF3

1450 ESCAPE ROUTINE

1460END-1F

1470*
<0 *
1490* Check if words are marked

1500% = - = == == mm *

1510FOR #J= 1 TO#
1520 IF MAPLMARK (#J) NE* °

1530 IF PARA.VALUENE"’

1540 MOVE’, TO#K

1550 END-IF

1560 COMPRESS PARA .VALUE #K MAPLWORD(#J) INTO PARA.VALUE LEAVING NO
1570 IFNOT (PARA.FIELD = "#TITLE' OR="#ABSTRACT’) AND

1580 PARA.VALUENE'’

1590 ESCAPE BOTTOM

1600 END-IF

1610 END-IF

1620END-FOR

1630*

1640RESET MAPL# #

1650MOVE (AD=PN) TO CV(*)

1660*
1670END - SUBROUTINE
1680END
5 software ag 7 -43

Sample Application ADABAS TEXT RETRIEVAL

Freestyle Retrieval

TRS - FQR

The program TRS - FQR enables the user to enter queries which conform to
ADABAS TEXT RETRIEVAL query syntax. The program is divided into the
following logical units.

e Delete queries (RQR);

* Copy query;
¢ Create NATURAL retained set (RET call);
¢ Execute query (QR call).

Program Start Up

0010**

0020* *

0030* ADABASTEXT RETRIEVAL Example Application *
0040* *

0050* Object : TRS-FQR *
0060* Type : Program *
0070* Function: Freestyleretrieval *
0080* Author : Software AG *
0090* *
Oloo**
0110*

0120DEFINE DATA LOCAL USING TRS-LDA

0130*

0140LOCAL

01501 #CHAPTER(A10)

01601 #QUERY (A62)

01701 #NR (N2/10)

01801 #MARK(A1/10)

01901 #RESULT(N5/10)

02001 #PQR(A62/10)

02101 #MSG (A60)

02201# (N4

02301#) (N4)

02401 #SETID (A32) INIT< TRSSET'>

02501 #QNAM (A8)

02601 REDEFINE #QNAM

0270 2 HEADER (A4)

0280 2 COUNT (N4)

02901 CV1 (C/10)

0300*

0310END-DEFINE

0320*

7 -44 5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Set Keys
0330% == === oo *
0340* Set keys
0350¥ == === = = = oo *

0360SET KEY ALL
0370SET KEY PF2 NAMED *Delete

0380SET KEY PF4 NAMED *Copy'’

0390SET KEY PF3 NAMED ’ Quit

0400SET KEY PF6 NAMED *Over’

0410

0420MOVE (AD=PN) TO CV1(*)

0430

0440REPEAT

0450

0460 RESET #MARK (*)

0470

0480 INPUT WITH TEXT #MSG USING MAP’ TRS- FQRM’
0490

Terminate

0500% - - - - *
0510* Escape to menu

0520% - - - - - *
0530 IF*PF-KEY ="'PF3

0540 ESCAPE BOTTOM

0550 END-IF
0560*
5 software ag 7 -45

Sample Application ADABAS TEXT RETRIEVAL

Delete Queries

The user deletes previously executed queries by marking them with “D” and
pressing (frz]. The queries are released by executing a RQR call as seen in line
0660.

05 70% - oo *
0580* Delete Queries
0590% - - - e oo *

0600 IF*PF-KEY =’PF2
0610 FOR# =1TO 10

0620 IF#MARK(#)EQ 'D’

0630 MOVE# TO #QNAM.COUNT

0640

0650

0660 CALL 'TRS 'RQR TRSRC#QNAM

0670

0680

0690 RESET #RESULT(#!) #NR(#) #PQR(#) #MARK (#)
0700 MOVE (AD=PN) TO CV1(#)

0710 END-IF

0720 END-FOR

0730 ESCAPE TOP

0740 END-IF

0750

Copy Query

A previously executed query can be copied to make up a new query which can be
modified and executed.

0760% - - - - - == mm e *
0770* Copy Query
0780 - - - - - oo oo *

0790 IF*PF-KEY =’ PF4’
0800 FOR# =1TO 10

0810 IF#MARK(#)EQ 'C

0820 MOVE #PQR(#) TO #QUERY
0830 RESET #MARK (*)

0840 ESCAPE BOTTOM

0850 END-IF

0860 END-FOR

0870 ESCAPE TOP

0880 END-IF

0890

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Create NATURAL Retained Set and Invoke Overview

After resuming the query, the RET call is used in line 1070 to create a NATURAL
retain set. This NATURAL retain set is used in the program TRS - NAT to create
an overview of selected documents.

Before executing the RET call , the query in question is resumed by the use of the
QR call in line 1030.

0900% == === === e oo *
0910* Create NATURAL Retain Set and Invoke Overview
0920% == === === e oo *

0930 IF*PF-KEY ="PF6

0940 FOR# =1TO 10

0950 IF#MARK(#)="X’

0960 IF#RESULT (#)=0

0970 REINPUT ’'Query result is zero'

0980 END-IF

0990 MOVE’'DOCS0011" TO TRS.NAME

1000 COMPRESS'# #NR(#l) INTO TRS.QUERY LEAVING NO

1010*

1020*

1030 CALL'TRS 'QR’ TRS.RC TRS.QUERY TRS.QLEN TRSNAME
1040 TRS.DERR TRSLERR TRSMODE TRS.CID TRSQTY TRSTYPE
1050*

1060*

ﬂO?O CALL'TRS 'RET' TRSRC TRS.CID TRS.QTY #SETID

1080*

1090*

1100 FETCH RETURN 'TRS-NAT’

1110 END-IF

1120 END-FOR
1130 RESET #MARK(*)
1140 ESCAPETOP

1150 END-IF
1160*
5 software ag 7 -47

Sample Application ADABAS TEXT RETRIEVAL

Execute Query

A QR call (see line 1400) is executed to perform the query. The query and its
results are put on the stack of executed queries.

0 *
1180* TRS Queries
T *

1200 IF#QUERY =""

1210 REINPUT 'No query specified.’

1220 END-IF

1230*

1240 FOR# =1TO 10

1250 IF#PQR(#) =""

1260 ESCAPE BOTTOM /* Check for empty slot
1270 END-IF

1280 END-FOR

1290 IF# =11

1300 REINPUT

1310 'Stack isfull ! delete queries by marking with ”"D” and PF2'
1320 END-IF

1330*

1340 MOVE’'DOCS TO #QNAM.HEADER

1350 MOVE#l TO #QNAM.COUNT

1360 MOVE#QNAM TO TRSNAME

1370 COMPRESS #CHAPTER #QUERY TO TRS.QUERY
1380*

1390*

1400 CALL 'TRS 'QR' TRS.RC TRS.QUERY TRS.QLEN TRSNAME TRS.DERR TRS.LERR
1410 TRS.MODE TRS.CID TRS.QTY TRS.TYPE
1420*

1430*

1440 MOVE (AD=I) TOCV1(#)

1450 MOVE TRS.QUERY TO #PQR(#l)

1460 MOVE TRS.QTY TO#RESULT(#)

1470 MOVE# TO#NR(#)

1480*

1490 IF TRSRC NEO

1500 MOVE TRS.RC TO TRS.RC1

1510 COMPRESS Error in TRS.QR =>' TRS.RC1 TO #MSG
1520 END-IF

1530 RESET #QUERY

1540*

1550END - REPEAT

1560*

1570FETCH "MENU’

1580END

5 software ag

ADABAS TEXT RETRIEVAL Sample Application

Access NATURAL RETAIN Set

TRS - NAT

The program TRS - NAT displays the documents that are represented by a
NATURAL retain set created by a RET call in the retrieval program TRS - FQR.

It shows how to integrate ADABAS TEXT RETRIEVAL resulting sets into the
processing of retain sets created by simple NATURAL Find commands.

Program Start Up

0010**

0020* *

0030* ADABASTEXT RETRIEVAL Example Application *
0040* *

0050* Object : TRS-NAT *

0060* Type : Program *

0070* FUNCTION : Access NATURAL SET created by TRSRET-CALL *
0080* Author : Software AG *

0090* *

0100**

0110DEFINE DATA LOCAL
01201 DOC VIEW OF TRS-DOCUMENT
0130 2 ORDER

0140 2TITLE

0150END -DEFINE

0160*

0170FORMAT PS=20
0180FORMAT KD=ON

0190SET KEY ALL

0200SET KEY PF3 NAMED ’Quit’
0210*

@3 software ag 7 -49

<

Sample Application ADABAS TEXT RETRIEVAL

Retrieve NATURAL Retain Set

The NATURAL retain set TRSSET, created by the RET call in program
TRS - FQR, is accessed in line 0250. In line 0380, the set is released.

(0207 R T *
0230* Retrieve NATURAL Retain Set

(07 e T T *
QZSOFIND DOC WITH 'TRSSET’

0260*

0270 DISPLAY ORDERTITLE (AL=60)
0280 AT END OF PAGE

0290 INPUT NO ERASE 1/50"
0300 IF*PF-KEY ='PF3

0310 ESCAPEBOTTOM

0320 END-IF

0330 END-ENDPAGE
0340END-FIND

0350*

0360*

0370NEWPAGE

(380RELEASE SET

0390END

5 software ag

ADABAS TEXT RETRIEVAL Appendix A

APPENDIX A — MESSAGES AND CODES

Return Code 1

Explanation: Invalid number of parameters.

Return Code 2

Explanation: Storage allocation failed.

Action: Increase TSIZE parameter.

Return Code 3

Explanation: ~ « TSIZE not found.
¢ Invalid TRS call.
o Invalid order of TRS call.
o Invalid type parameter for QR call

Action: Check Type parameter.
o Invalid Default Mode parameter for QR call

Action: Check Default Mode parameter.

Return Code 5

Explanation: Invalid order of EIS calls.

Action: Execute an EISS call before executing an EISG call.

Return Code 6

Explanation: Referenced query not found.

Action: Check reference for previous query.
Return Code 7
Explanation: Invalid request for vocabulary query.

Return Code 8

Explanation: Invalid number of operands in formatted fields.

Action: For each relational operator with the exception of BETWEEN,
one operand is required; for the BETWEEN operation two op-
erands are required.

@ software ag A-1

LS

Appendix A ADABAS TEXT RETRIEVAL

Return Code 9
Explanation: The proximity operation is overburdened. Before a proximity
operation is performed the result of an AND operation is

checked and if it is greater than the value of the MAXDPRO pa-
rameter the response code will be displayed.

Action: Increase the MAXDPRO parameter.
Return Code 10

Explanation: Invalid truncation operation action.

Action: Check the use of truncation.
Return Code 11
Explanation: Too many terms in ASPECT operation.
Return Code 12
Explanation: Internal error; index destroyed
Return Code 13
Explanation: Maximum number of words per document exceeded.
Return Code 14

Explanation: Invalid parameters in BC or DYP call.

Action: Check parameters in BC or DYP call.

Return Code 16

Explanation: Invalid parameters in DSL call.

Action: Check parameters for DSL call.
Return Code 19

Explanation: Invalid parameters in RULE call.

Action: Check all parameters for RULE call.
Return Code 20

Explanation: Too many words in one query.

Action: Increase MAXVSET parameter.

5 software ag

ADABAS TEXT RETRIEVAL

Return Code 30

Appendix A

Explanation: Using LOADER =YES and vocabulary ISN is in use.

Action: Do not use STARTISN or change its value.
Return Code 40

Explanation: Using LOADER=YES sort error.

Action: Check sort messages.

@3 software ag

LS

Appendix A ADABAS TEXT RETRIEVAL

Syntax Errors

Return Code 101

Explanation: Operator followed by another operator.

Return Code 102

Explanation: An operand must appear before a comma.

Return Code 104

Explanation: Operator followed by right parenthesis.

Return Code 105

Explanation: Operator as last token in query.

Return Code 106

Explanation: Operand not found after function.

Return Code 107

Explanation: Function followed by another function.

Return Code 108

Explanation: Comma appears after function.

Return Code 109

Explanation: Left parenthesis appears after function.

Return Code 110

Explanation: Right parenthesis appears after function.

Return Code 111

Explanation: Function as last token in query.

Return Code 112

Explanation: Comma followed by function.

Return Code 113

Explanation: Comma followed by comma.

5 software ag

ADABAS TEXT RETRIEVAL Appendix A

Return Code 114

Explanation: Comma followed by left parenthesis.
Return Code 115

Explanation: Comma followed by right parenthesis.
Return Code 116

Explanation: Comma as last token in query.

Return Code 117

Explanation: Operand followed by another operand.
Return Code 118

Explanation: Operand followed by left parenthesis.
Return Code 119

Explanation: Left parenthesis followed by operator.
Return Code 120

Explanation: Left parenthesis followed by comma.
Return Code 121

Explanation: Left parenthesis is followed by right parenthesis
Return Code 122

Explanation: Left parenthesis is last token in query.
Return Code 123

Explanation: Right parenthesis followed by comma.
Return Code 124

Explanation: Right parenthesis followed by operand.
Return Code 125

Explanation: Right parenthesis followed by left parenthesis.

@ software ag A-5

LS

Appendix A ADABAS TEXT RETRIEVAL

Return Code 126

Explanation: Comma as first token in query.
Return Code 127

Explanation: Right parenthesis as first token.
Return Code 128

Explanation: Empty query.
Return Code 130

Explanation: Reference number followed by function.

Return Code 131

Explanation: Reference number followed by comma.
Return Code 132

Explanation: Reference number followed by operand.
Return Code 133

Explanation: Reference number followed by left parenthesis.

Return Code 135

Explanation: Function followed by reference number.

Return Code 136
Explanation: Comma followed by reference number.
Return Code 137
Explanation: Operand followed by reference number.
Return Code 138
Explanation: Right parenthesis followed by reference number.

Return Code 139

Explanation: Reference number followed by reference number.

5 software ag

ADABAS TEXT RETRIEVAL Appendix A

Return Code 140

Explanation: Operator as first token in query; unmatched parenthesis.
Return Code 141

Explanation: Operator after formatted field.
Return Code 142

Explanation: Function after formatted field.

Return Code 143

Explanation: Comma after formatted field.

Return Code 144

Explanation: Left parenthesis after formatted field.
Return Code 145

Explanation: Right parenthesis after formatted field.
Return Code 146

Explanation: Value is expected after formatted field.

Return Code 148

Explanation: Formatted field after formatted field.
Return Code 149

Explanation: Operator after relation operator is invalid.
Return Code 150

Explanation: Function after relation operator is invalid.
Return Code 151

Explanation: Comma after relation operator is invalid.

Return Code 152

Explanation: Left parenthesis after operator is invalid.

@ software ag A-7

LS

Appendix A ADABAS TEXT RETRIEVAL

Return Code 153

Explanation: Right parenthesis after operator is invalid.
Return Code 154

Explanation: Value is expected after relation operator.
Return Code 155

Explanation: Formatted field is not expected after relational operator.

Return Code 156

Explanation: Relation operator after relation operator.

Return Code 157

Explanation: Relation operator after operator.
Return Code 158

Explanation: Formatted field after function.
Return Code 159

Explanation: Relation operator after function.

Return Code 160

Explanation: Formatted field after comma.

Return Code 161

Explanation: Relation operator after comma.
Return Code 162

Explanation: Relation operator not after formatted field.
Return Code 163

Explanation: Relation operator after left parenthesis.
Return Code 164

Explanation: Formatted field after right parenthesis.

5 software ag

ADABAS TEXT RETRIEVAL Appendix A

Return Code 165

Explanation: Relation operator after right parenthesis.
Return Code 166

Explanation: Relation operator not preceded by formatted field.
Return Code 167

Explanation: Formatted field after reference number.
Return Code 168

Explanation: Relation operator after reference number.
Return Code 169

Explanation: Formatted field after operand.
Return Code 195

Explanation: Too many tokens for formatted field.
Return Code 196

Explanation: Non-numeric token for numeric formatted field.
Return Code 198

Explanation: Invalid formatted field for SORT or SORTD.
Return Code 199

Explanation: Internal error during syntax checking.

@ software ag A-9

LS

ADABAS TEXT RETRIEVAL Appendix B

APPENDIX B —
APPLYING ADABAS TEXT RETRIEVAL IN A
NON-NATURAL ENVIRONMENT

Most of the ADABAS TEXT RETRIEVAL functions can be used in any program-

ming environment which supports standard linkage conventions.

If ADABAS TEXT RETRIEVAL is to be used in a non-NATURAL environment
the call link conventions are slightly different from those described in chapter 1:

¢ instead of passing the requested ADABAS TEXT RETRIEVAL function as
first parameter the character string “TRS” plus the function name make up

the name of the program to be called.

Example:

CALL TRSQR or CALL TRSADD

* as additional first parameter to each call, the address of an area to be used by
ADABAS TEXT RETRIEVAL internally must be passed by the calling
program. The size of the storage area must be supplied in the Size of Buffer
parameter of the TRSBC call; for instance an address in an Assembler

program; a pointer variable in a PL1 program etc.

This storage area is initialised in the TRSBC call. It must be passed unchanged to

every subsequent ADABAS TEXT RETRIEVAL call.

@3 software ag

LS

ADABAS TEXT RETRIEVAL

INDEX

- A -

ADABAS TEXT RETRIEVAL
functionality, 1 -3
overview, 1 -2
terminology, 1 -4

ADD Call, 2-3

ADJ Operator, 3 - 11

AND Operator, 3 - 8

ASPECT Mode, 3 -3

-B -

BC Call, 2-6,2-30
BETWEEN Operator, 3-9
Boolean Operators, 3 - 8
AND, 3-8
NOT, 3-8
OR, 3-8
Browse, initiate, 2 - 18
BS2000. See Installation

-C -

Calls, 2-1
ADD,2-3
alphabetical listing, 2 - 1
BC,2-6,2-30
CL,2-8
DDS,2-9
DSL,2-11
DYP,2-13,2-30
EISE, 2- 14
EISG, 2 - 16
EISS, 2- 18
general, 2-1
HIGH, 2 -20
QR,2-23

@3 software ag

LS

RET, 2-26
RQR, 2-27
RULE, 2 - 28
topical listing, 2 - 2
Chapter, 1-4
Character
definition, 5 - 2
recognition, 5 - 2
translation, 5 - 2
CL Call, 2-8

-D -

DDS Call, 2-9
DELETE Statement, 6 - 2
DFNR. See Document File
Document, 1 -4

display, 7 - 34

inversion, 2 - 3

maintenance, 7 - 9

overview, 7 - 27

retrieval, 7-9
Document File, 4-1,4-5,7-3
Document Index File, 4-1,4-7
DSFNR. See Document Index File
DSL Call, 2 - 11
Dynamic Parameter, 2 - 30

definition, 2 - 13, 2 - 30

TRS, 6-3
DYP Call, 2-13,2-30

-E -

EISE Call, 2 - 14
EISG Call, 2- 16
EISS Call, 2 - 18

EQ Operator, 3-9
Error Messages, A - 1

Index

Index ADABAS TEXT RETRIEVAL

-F - - M -
File Structure, 4 - 1 Messages. See Error Messages
FIND Statement, 6 - 2 Mode. See Search Mode
Function MVS. See Installation
SORT, 3-14
SORTD, 3 - 14
- N -
-G -
NATURAL
GE Operator, 3 - 10 DELETE statement, 6 - 2
GROUP Mode, 3-3 FIND statement, 6 - 2
GT Operator, 3 - 10 non - natural environments, A - 1

RETAIN set, 6-4,7-49
STORE statement, 6 - 2
-H - text retrieval interface, 6 - 1
NEAR Operator, 3 - 12
Non - NATURAL Environments, A - 1
NOT Operator, 3 - 8

HIGH, 6 - 3
HIGH Call, 2 - 20
HIGHCHAR, 6 -3
Highlighting, 2 - 20

HIGH, 6 - 3
HIGHCHAR, 6 - 3 -0 -
Operator, 3 -7
ST - ADJ,3-11
AND, 3-8
Index BETWEEN, 3-9
display, 7 - 39 boolean, 3 - 8
structure, 4 - 2 EQ,3-9
INPAR Operator, 3 - 12 evaluation order, 3 - 7
INSEN Operator, 3 - 12 GE,3-10
Inversion, 1-3,1-5,4-2 GT, 3-10
INPAR, 3 - 12
INSEN, 3 - 12
- K - LE,3-10
Keyword Definition, 5-1,5 -7 EE i";g 1
’ OR,3-8
proximity, 3 - 11
- L - relational, 3 -9

OR Operator, 3 - 8
Label. See Search Label
LE Operator, 3 - 10
LT Operator, 3 - 10

| -ii g software ag

ADABAS TEXT RETRIEVAL

-P -

Parameter, dynamic, 2 - 30
definition, 2 - 13, 2 - 30
PHONETIC Mode, 3 -2
PRECISE Mode, 3 -2
Program. See Sample Application
Proximity Operators, 3 - 11
ADJ,3-11
INPAR, 3-12
INSEN, 3-12
NEAR, 3 - 12

-Q -

QR Call, 2 -23

Query
diagram, 3 - 4
language, 3 - 5
reserved words, 3 -5
syntax, 3-1,3-4
truncation, 3 - 5

-R -

Relational Operators, 3 -9
BETWEEN, 3-9
EQ,3-9
GE,3-10
GT,3-10
LE,3-10
LT, 3-10

Release Query, 2 - 27

RET Call, 2 - 26

RETAIN Set, 6 -4, 7 -49

Retrieval
formatted, 7 - 19
QR call, 2 - 23

ROOT Mode, 3 -3

RQR Call, 2 -27

RULE Call, 2 - 28

@3 software ag

<

Index

- S -

Sample Application, 7 - 1
Search Label, definition, 2 - 11
Search Label, 3 -1
Search Mode, 3 -2
ASPECT, 3-3
GROUP, 3-3
PRECISE, 3 - 2
ROOT,3-3
SYNONYM, 3-2,3-3
Search Number, 3 - 13
Session
close, 2 -8
initialize, 7 - 5
open, 2-6
SORT, 3 - 14
SORTD, 3-14
STORE Statement, 6 - 2
SYNONYM Mode, 3-2,3-3
Syntax
errors, A -4
query,3-1,3-4
SYR. See SYNONYM Mode

-T -

Text
formatted, 1-3
unformatted, 1 - 3
Thesaurus, 4 - 5
Tokenization, 1-5,5-1
TRSSCT, example, 5 - 5
TRSSCT macros, 5 - 3

TRSMLT, 5 - 3
TRSMSL, 5 -4
TRSMT, 5 -3
TRS, dynamic parameters, 6 - 3

TRS - ADD. See Sample Application
TRS - DISP. See Sample Application
TRS - EIS. See Sample Application
TRS - FQR. See Sample Application
TRS - HLP. See Sample Application
TRS - INIT. See Sample Application
TRS - NAT. See Sample Application
TRS - QR. See Sample Application

Index ADABAS TEXT RETRIEVAL

TRSMLT. See Tokenization -V -

TRSMSL. See Tokenization

TRSMT. See Tokenization VFNR. See Vocabulary File
TRSSCT. See Tokenization VM/CMS. See Installation
TRSSCT1,5-1 Vocabulary File, 4-1,4-5
TRSSCTIS, 5-1 VSE. See Installation
TRSSCTS, 5-1

TRSTEXT. See Keyword Definition
Truncation, 3 - 5

left, 3-6 -W-
left and right, 3 - 6
right, 3-5 Word Set, 3-6

| -iv g software ag

	Adabas Text Retrieval (MVS/BS2000) Reference Manual
	Table of Contents
	Introduction
	Adabas Text Retrieval Calls
	Query Syntax
	File Structure
	Tokenization and Keyword Definition
	The Natural Text Retrieval Interface
	Sample Application
	Appendices
	Messages and Codes
	Applying Adabas Text Retrieval in a Non-Natural Environment

	Index

