## **Useful ADARUN Parameters** This chapter provides a reference for the ADARUN parameters useful to Adabas Parallel Services processing. For information on how to specify ADARUN parameters, read the *Adabas Operations* documentation provided with Adabas. - CLOGMRG: Cluster Command Log Merge - CLUCACHESIZE : Size of the Global Cache Area - CLUCACHETYPE: Global Cache Area Storage Type Option - CLUCACHEUNCHANGED: Global Cache Unchanged Block Option - CLULOCKSIZE : Size of the Global Lock Area - CLUSTER: Adabas Nucleus Cluster Session Control - DIRRATIO / ELEMENTRATIO : Cluster Cache Directory-to-Data Elements Ratio - LRDP: Length of the Redo Pool - MXCANCEL: Timeout Threshold for Canceled Peer Nucleus - MXCANCELWARN: Timeout Threshold for Canceled Peer Nucleus Warning - MXMSG: Timeout Threshold for Internucleus Command Processing - MXMSGWARN: Timeout Threshold for Internucleus Command Processing Warning - MXWTOR : Self-Termination Operator Query Interval - NUCID: Adabas Cluster Nucleus ID - PROGRAM : Program to Run ## **CLOGMRG: Cluster Command Log Merge** | Parameter | Specify | Possible<br>Values | Default | |-----------------|-----------------------------------------------------------------|--------------------|---------| | <u>CLOGM</u> RG | whether the Adabas cluster is to run with automatic CLOG merge. | YES NO | NO | An automatic CLOG merge process provides a single cluster-wide command log containing, in chronological order, all Adabas commands executed by any of the cluster nuclei in the time period covered by the log. CLOGMRG specifies whether the Adabas cluster is to run with the automatic CLOG merge: | Value | Action | |-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | YES | enables an automated process that copies dual or multiple command logs to sequential data sets and merges those data sets across a cluster into a single cluster-wide command log. This process automatically merges command logs when an ADARES CLCOPY is submitted from user exit 2 and executed. The cluster nuclei and the ADARES utility perform coordinated CLOG switches and CLCOPY functions with merging of CLOG records, much the same way the PLOG merge process works. | | NO | (the default), each nucleus produces its own CLOG, independent of any other nucleus in the cluster; dual or multiple CLOGs can be manually copied using ADARES CLCOPY to a sequential data set; and the resulting sequential CLOGs can be manually merged across a cluster using the ADARES MERGE CLOG function. | CLOGMRG is a global (that is, a cluster-wide) parameter, which means that the setting of this parameter in the first cluster nucleus to become active is propagated to all nuclei that subsequently become active. ### **Parameter Dependencies** It is possible to specify both LOGGING=NO and CLOGMRG=YES. In a cluster environment, it is also possible that a CLOG will be written to even if LOGGING=NO. As long as CLOGMRG=NO, nothing will be written to the CLOG if LOGGING=NO. However, if LOGGING=NO and CLOGMRG=YES, control records necessary for ADARES CLCOPY will be written to the CLOG. CLOGMRG is effective only in an Adabas cluster environment; that is, when CLUSTER is specified with a value other than NO and NUCID is specified with a nonzero value. ### **Dynamic Modification** The setting of the CLOGMRG parameter can be changed dynamically using the CLOGMRG command from the operator console, the ADADBS OPERCOM CLOGMRG function, or the Modify Parameter function of Adabas Online System. Because CLOGMRG is a global parameter, the change request to one nucleus is automatically propagated to all nuclei in the cluster. ## **CLUCACHESIZE: Size of the Global Cache Area** | Parameter | Specify | Minimum | Maximum | Default | |--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------|---------| | CLUCACHESIZE | the amount of storage to<br>allocate for the global<br>cache area that services the<br>Adabas Parallel Services<br>cluster in which the current<br>nucleus participates. | 128K | depends on the type<br>of cache<br>(CLUCACHETYPE<br>parameter) | none | The CLUCACHESIZE parameter specifies the amount of storage to be allocated for the global cache area which all nuclei in the Adabas Parallel Services cluster use to share Associator and Data blocks from the database. It has an effect only if CLUSTER=LOCAL is also specified. The location and maximum size of the global cache area depends on the CLUCACHETYPE parameter. If CLUCACHETYPE=DSP, the global cache is kept in a dataspace shared between the Adabas Parallel Services nuclei. Otherwise, the cache is kept in shared 64-bit virtual storage (z/OS systems only). CLUCACHESIZE must be specified for Adabas Parallel Services nuclei; there is no default. Each Adabas Parallel Services nucleus has its own buffer pool sized by the ADARUN parameter LBP. Optionally, it may also have one or more local cache spaces administered by the Adabas Caching Facility (refer to the description of the ADARUN parameter CACHE). In addition, Adabas Parallel Services uses a global cache area to ensure that current images of Associator and Data blocks from the database are available to all Adabas Parallel Services cluster nuclei. The global cache area must be large enough to retain: - directory elements for all blocks that reside in all buffer pools and the global cache itself; and - enough data elements to keep changed blocks between buffer flushes (cast-outs). The ADARUN parameters DIRRATIO and ELEMENTRATIO determine the ratio between the number of directory and data elements. CLUCACHESIZE may be specified in bytes, in kilobytes followed by a "K", in megabytes followed by an "M", or in gigabytes followed by a "G": - the minimum size is 131072 bytes (or 128K); - for CLUCACHETYPE=DSP, the maximum size is 2147483147 bytes (or 2097152K; or 2048M; or 2G); and - the maximum allowed numeral is 2147483147; for CLUCACHETYPE=V64, use the K, M or G suffix (for example, 10G or 10240M or 10485760K for a global cache of 10 gigabytes size). The value is rounded up to the nearest 4-kilobate boundary. Appropriate sizes for the global cache area depend very much on the application load in the cluster. For more details about these calculations, read *Global Cache Area Size*. You can use the Adabas Online System cache structure size calculator described in *Estimating Sizes for the Cache Structure in a Cluster Environment* to determine appropriate global cache area sizes. ### **Example** In the following example, the global cache area allocated is 500 M. ADARUN PROG=ADANUC, CLUCACHESIZE=500M ## CLUCACHETYPE: Global Cache Area Storage Type Option | Parameter | Specify | Valid Values | Default | |----------------------|----------------------------------------------------|--------------------|---------| | <u>CLUCACHET</u> YPE | the virtual storage type for the global cache area | DSP V64 <br>L64 | DSP | The CLUCACHETYPE parameter specifies the type of virtual storage to be used for the global cache of an Adabas Parallel Services cluster. It has an effect only if CLUSTER=LOCAL is also specified. Valid values are "DSP" (available on all supported operating systems) and "V64" or "L64" (available only on z/OS systems). The size of the global cache is specified in the CLUCACHESIZE parameter. The default value is "DSP", indicating that a shared dataspace will be used for the global cache. In this case, the maximum cache size is 2 GB. If "V64" is specified (on z/OS systems), a shared storage area in 64-bit virtual storage will be used for the global cache. In this case, the cache can be made much larger than 2 GB, but is still subject to the MEMLIMIT value in effect for the ADACOM job for the Adabas Parallel Services database. If "L64" is specified (on z/OS 1.9 or later systems running on IBM z10 machines), the global cache space shared by the cluster nuclei will reside in 64-bit virtual storage that is backed by large pages (provided the large page pool has been configured to a sufficient size and is available in the system). #### **Notes:** - 1. If one ADACOM job is used to hold the shared cache and lock spaces for multiple Adabas Parallel Services clusters, L64 cache spaces of different clusters are slightly less isolated from one another than DSP or V64 cache spaces, creating a marginally higher risk that a cache-related error in one cluster might induce an error in a different cluster. This very small risk can be avoided altogether by using different ADACOM jobs for different L64 cache spaces, but this is not mandatory. - 2. Virtual 64-bit storage backed by large pages can only be used on IBM z10 mainframes running z/OS Version 1.9 or above and for which IBM large page support has been enabled via IBM APAR OA20902. You must also allocate the size of the large page pool (use the LFAREA parameter in the IEASYSxx member of SYS1.PARMLIB). The LFAREA parameter allows you to specify the amount of real storage to be used for large pages; this parameter cannot be changed dynamically and, if it is not set, page frames will remain allocated at a size of 4K. ### **Example** In the following example, the type of virtual storage used for the global cache area is specified as "V64". ADARUN PROG=ADANUC,CLUCACHETYPE=V64 # **CLUCACHEUNCHANGED : Global Cache Unchanged Block Option** | Parameter | Specify | Possible<br>Values | Default | |-------------------|--------------------------------------------------------------------------------------------------|--------------------|---------| | CLUCACHEUNCHANGED | whether unchanged blocks are written to global cache during Adabas Parallel Services processing. | YES <br>NO | NO | The CLUCACHEUNCHANGED parameter specifies whether an Adabas Parallel Services nucleus should write unchanged blocks to the global cache. It has an effect only if CLUSTER=LOCAL is also specified. Valid values are "YES" and "NO". - The default value is "NO", which indicates that the nucleus will write only changed (updated) Associator and Data blocks from the database to the global cache. - If "YES" is specified, the nucleus will write changed and unchanged Associator and Data blocks to the global cache. #### Recommendation If a lot of virtual storage can be made available for local and global caching by the Adabas Parallel Services cluster (where local caching is controlled by the ADARUN LBP parameter and possibly the Adabas Caching Facility add-on product), assigning the bulk of the available storage to the global cache (ADARUN CLUCACHESIZE parameter), which is shared by all Adabas Parallel Services nuclei for the database, provides for more economic use of the storage than assigning it to the local caches of the individual cluster nuclei (ADARUN LBP parameter and the Adabas Caching Facility ADARUN CASSOMAXS and CDATAMAXS parameters), which are private to each nucleus. However, each cluster nucleus requires sufficient local buffer pool space (LBP parameter) to hold the entire working set of Associator and Data blocks needed for parallel command processing. In cases where the global cache size (CLUCACHESIZE parameter) is set to a large value, CLUCACHEUNCHANGED should be set to "YES", so that the global cache achieves a better hit rate (efficiency). ### **Example** In the following example, the CLUCACHEUNCHANGED parameter is set to that both changed and unchanged Associator and Data blocks are written to the global cache. ADARUN PROG=ADANUC, CLUCACHEUNCHANGED=YES ## **CLULOCKSIZE**: Size of the Global Lock Area | Parameter | Specify | Minimum | Maximum | Default | |---------------------|----------------------------------------------------------|---------|---------|---------| | <u>CLULOCKS</u> IZE | the amount of storage allocated for the global lock area | 128K | 2G | none | The CLULOCKSIZE parameter specifies the amount of storage to be allocated for the global lock area which all nuclei in the Adabas Parallel Services cluster use to synchronize their processing. It has an effect only if CLUSTER=LOCAL is also specified. CLULOCKSIZE must be specified for Adabas Parallel Services nuclei; there is no default. CLULOCKSIZE may be specified in bytes, in kilobytes followed by a "K", in megabytes followed by an "M", or in gigabytes followed by a "G". - The minimum size is 131072 bytes (or 128K) - The maximum size is 2147483147 bytes (or 2097152K, 2048M, or 2G). The value is rounded up to the nearest 4-kilobyte boundary. Appropriate sizes for the global lock area depend on the expected amount of parallel command processing in the cluster. For more details about these calculations, read *Global Cache Area Size*. You can use the Adabas Online System lock structure size calculator described in *Estimating Sizes for the Lock Structure* in a Cluster Environment to determine appropriate global lock area sizes. ## **CLUSTER: Adabas Nucleus Cluster Session Control** | Parameter | Specify | Possible<br>Values | Default | |-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------| | CLUSTER | whether the Adabas nucleus will participate in a cluster of nuclei working on the same Adabas database, and, if so, the type of cluster (Adabas Parallel Services or Adabas Cluster Services) in which it will participate. | NO <br>SYSPLEX<br> LOCAL | NO | The CLUSTER parameter specifies whether the Adabas nucleus will participate in a cluster of nuclei working on the same Adabas database, and if so, which type of cluster: - If CLUSTER=NO (the default), the nucleus will not participate in an Adabas cluster. If CLUSTER=NO, the NUCID parameter must be set (or default) to 0. - If CLUSTER=LOCAL, the nucleus will participate in a cluster where all nuclei run on the same operating system image. The add-on product Adabas Parallel Services is required to run in this mode. - If CLUSTER=SYSPLEX, the nucleus will participate in a cluster where the nuclei may run on different systems within a parallel sysplex. This is supported only for z/OS systems. The add-on product Adabas Cluster Services is required to run in this mode. If CLUSTER=LOCAL or SYSPLEX, the NUCID parameter must be set to a nonzero value that identifies the individual cluster nucleus. Also, the parameter settings MODE=SINGLE, READONLY=YES, LFIOP=0 and DTP=TM, and the use of sequential protection log datasets (DD-name/link name DDSIBA) are not allowed for cluster nuclei. ### **Example** The following example includes the nucleus in a cluster run with Adabas Cluster Services: ADARUN DBID=53,CLUSTER=SYSPLEX,NUCID=5301 ## DIRRATIO / ELEMENTRATIO : Cluster Cache Directory-to-Data Elements Ratio The DIRRATIO and ELEMENTRATIO parameters together define the ratio of directory elements to data elements in the Adabus Cluster Services coupling facility cache structure or the Adabas Parallel Services global cache area. This ratio influences the allocation of the cache structure/area when the first cluster nucleus starts. It has no influence on the cache structure/area when a subsequent nucleus starts. | Parameter | Specify | Minimum | Maximum | Default | |------------------|--------------------------------------------------------------|---------|---------|---------| | <u>DI</u> RRATIO | the directory portion of the directory-to-data element ratio | 1 | 32767 | 4 | | ELEMENTRATIO | the element portion of the directory-to-data element ratio | 1 | 32767 | 1 | The DIRRATIO / ELEMENTRATIO ratio is optionally used in Adabas cluster environments to tune the cache structure/area for better performance. Directory elements are used to keep track of the cluster members that have individual blocks in their local caches (buffer pool and Adabas Caching Facility caches), so that the blocks can be invalidated should other members modify them. Data elements are used to hold the contents of Associator and Data blocks from the database. If the number of directory elements is insufficient, existing directory elements are reused and the blocks associated with those directory elements are invalidated and can then no longer be reused. When blocks become invalid even though they have not been modified, they must be reread and registered again the next time they are referenced and validated. It is generally better to reassign storage for data elements to keep more Associator and Data blocks in the cache structure/area than to define too many directory elements in the cache. More data elements than necessary can be used to keep additional blocks to improve the cache efficiency. The number of directory elements need not be greater than the sum of the sizes of all buffer pools plus the amount of space represented by data elements (number of data elements times data element size), divided by the smallest Associator block size. LRDP: Length of the Redo Pool You can use the Adabas Online System cache structure size calculator described in *Estimating Sizes for the Cache Structure in a Cluster Environment* to determine appropriate global cache area sizes and DIRRATIO/ELEMENRATIO parameter values. When connecting to the cache structure/area during startup, the ADAX57 message reports the number of directory and data elements allocated and the size of a data element. ## **LRDP**: Length of the Redo Pool | Parameter | Specify | Minimum | Maximum | Default | |--------------|---------------------------------|---------|------------|---------| | <u>LR</u> DP | the size (in bytes) of the redo | 0; or | 2147483647 | LFIOP | | | pool. | 80000 | | value | The LRDP parameter specifies the size of the redo pool in an Adabas Cluster Services or Adabas Parallel Services nucleus. It has an effect only when CLUSTER=SYSPLEX or LOCAL has also been specified. Its default is the size of the flush I/O pool (LFIOP parameter) of the cluster nucleus. - If LRDP is set to zero, the cluster nucleus performs immediate publishing: Updated database blocks are always written to the global cache at the time each update takes place. - If LRDP is set to (or defaults to) a nonzero value, the cluster nucleus performs deferred publishing: The writing of updated database blocks to the global cache is deferred until later. However, updates are always published in the global cache before the transactions they belong to are committed (by ET commands). The redo pool is used to maintain descriptions of all unpublished updates, in case they need to be redone due to concurrent updates to the same blocks by other nuclei in the cluster. By combining multiple updates to the same block into a single write-to-cache operation, deferred publishing tends to result in fewer read and write operations from and to the global cache than immediate publishing. Depending on the type of application workload, this may have a large positive effect on performance. This is especially the case for Adabas Cluster Services, where frequent communication with the cache in the coupling facility may cause a high overhead. **Recommendation:** For Adabas Cluster Services, specify a nonzero LRDP parameter (or use the default). Different nuclei in the same cluster can have different settings of LRDP. It is also possible, although not recommended, to run one nucleus with LRDP=0 and another one with LRDP>0. If the redo pool specification is too small and the pool runs full, the nucleus will write additional updated blocks to the global cache before the surrounding transactions end. Such additional cache writes may hurt system performance. The nucleus reports on the usage (high watermark) of the redo pool in a shutdown statistic and in the response to the DRES operator command or the corresponding AOS or ADADBS OPERCOM functions. ## **MXCANCEL:** Timeout Threshold for Canceled Peer Nucleus | Parameter | Specify | Minimum | Maximum | Default | |-----------|----------------------------------------------------------------------------------------------------------------|---------|------------|-----------------------------| | MXCANCEL | the timeout threshold, in seconds, in which the processing of an intracluster cancellation request must occur. | 15 | 2147483647 | MXMSG<br>parameter<br>value | The optional MXCANCEL parameter specifies the maximum number of seconds for which one cluster nucleus (the sending nucleus) waits for the termination of another nucleus (the peer nucleus) in the cluster that it has canceled for not responding to an internal, intracluster command. If a value for MXCANCEL is not specified, the value specified for the ADARUN MXMSG parameter is used. Values from zero through 14 are not valid MXCANCEL values. If the sending nucleus does not receive notification that the canceled nucleus has terminated within the MXCANCEL timeout period, it does one of the following things: - It returns response 124, subcode 28 (no reply) to the user on whose behalf the intracluster command was issued. - It terminates itself abnormally if the communication occurred on behalf of an internal process that must not fail. When a cluster nucleus fails, the other nuclei in the cluster can recover from the failure only once they know for sure that the first nucleus has disconnected from the shared structures and is no longer writing to the database. When an unresponsive cluster nucleus has been canceled, it is important that it terminate quickly, so that it does not hold up the recovery process performed by the other nuclei in the cluster. #### Note: Do not specify an MPMDUMP JCL statement for a cluster nucleus. An MPMDUMP is written before the failing nucleus disconnects from the shared structures and may significantly delay the start of the online recovery process performed by the other nuclei in the cluster. Instead, on z/OS systems, consider specifying a //SVCDUMP DD DUMMY statement, which usually produces a very quick dump prior to disconnecting. On other systems, and as a backup method on z/OS, specify a regular system dump statement (e.g., SYSUDUMP on z/OS) for a dump that is produced after disconnecting. The value for MXCANCEL can be changed dynamically (for the time the Adabas nucleus is running) using the MXCANCEL operator command. # **MXCANCELWARN: Timeout Threshold for Canceled Peer Nucleus Warning** | Parameter | Specify | Minimum | Maximum | Default | |--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|-----------------| | MXCANCELWARN | the timeout threshold, in seconds, for an intracluster cancellation request to occur before an early warning about the failure of the cancellation request is issued. | 0 (no<br>warning)<br>or 4 | MXCANCEL - 1 | MXCANCEL<br>/ 4 | The optional MXCANCELWARN parameter specifies the number of seconds after an intracluster cancellation request is made when the cluster nucleus requesting the cancellation should issue warnings about the inability of the canceled peer nucleus to terminate. If no value is specified for the MXCANCELWARN parameter, the value used is calculated as the value of the ADARUN MXCANCEL parameter divided by four. When dividing by four to determine the default value, the quotient is rounded up to the next integer value. The value of MXCANCELWARN must be less than the value of MXCANCEL. If MXCANCELWARN is set to a value greater than or equal to the value specified for MXCANCEL, the value is rejected. If MXCANCELWARN is set to a value of zero (0), no warnings are issued about canceled cluster nuclei that are slow to terminate. If the target nucleus does not terminate within the time period set by MXCANCELWARN, the nucleus that issued the cancellation request writes message ADAX9G to the operator console, identifying the target nucleus by its nucleus ID, job name, and system name. This message indicates that the nucleus writing the message may be in danger of terminating itself if the canceled peer nucleus does not terminate within the timeout period defined by the MXCANCEL parameter. You can use the ADAX9G message to trigger an alert or take other appropriate action before the MXCANCEL timeout period expires. If the peer nucleus targeted for cancellation terminates after the ADAX9G message is written, the nucleus that issued the cancellation request writes message ADAX9K to the operator console, indicating that the cancellation occurred and the requesting nucleus is no longer in danger of terminating itself as a result of this particular incident. The value for MXCANCELWARN can be changed dynamically (for the time the Adabas nucleus is running) using the MXCANCELWARN operator command. #### Note: If the value of the MXCANCEL parameter is dynamically changed using the MXCANCEL operator command while the nucleus is running, but its new value is less than or equal to the current MXCANCELWARN setting, the value of MXCANCELWARN is automatically set to zero. You can then use the MXCANCELWARN operator command to dynamically set the MXCANCELWARN parameter to a new value that is less than the new MXCANCEL value. # **MXMSG:** Timeout Threshold for Internucleus Command Processing | Parameter | Specify | Minimum | Maximum | Default | |-----------|---------------------------------------------------------------------------------------------------|---------|---------|---------| | MXMSG | the timeout threshold, in seconds, in which the processing of an intracluster command must occur. | 15 | 32767 | 300 | The optional MXMSG parameter specifies the maximum number of seconds in which one cluster nucleus waits for the response of another nucleus in the cluster to an internal, intracluster command. If a value for MXMSG is not specified, a value of 300 seconds (5 minutes) is used. If the receiving nucleus does not respond to the intracluster command within the time period set by the MXMSG parameter, the requesting cluster nucleus issues a cancellation request for the unresponsive nucleus. The cancellation is requested to preserve the ability of all of the other active nuclei in the cluster to process user commands. Adabas nuclei working on the same cluster database must collaborate to keep the database physically and logically consistent while processing user commands. To do this, they intermittently submit internal, intracluster commands to one another. If a nucleus in the cluster does not respond to these intracluster requests in a timely manner, the other nuclei in the cluster may quickly or gradually become unable to continue processing user commands. Problems that may prevent a cluster nucleus from responding to intracluster commands fall into two broad categories: - Problems have occurred in the cluster nucleus, such as a CPU loop or a resource deadlock. In such cases, the nucleus experiencing the problem must be terminated to resolve the problem and the sooner this happens, the sooner the other cluster nuclei can recover from the failure and get back to normal processing. - Problems have occurred outside the cluster nucleus, such as CPU starvation or a problem in the host system. In such cases, the cause of the delayed response might possibly be removed by system measures unrelated to the cluster database, and letting the other cluster nuclei wait some time for a resolution might prevent an unnecessary abnormal termination of a cluster member. The value of MXMSG should strike a balance between these two categories, so that faulty cluster nuclei that cannot possibly stay active are canceled reasonably quickly while cluster nuclei that are victims of temporary system problems are not unnecessarily terminated. For assistance in setting the value of the MXMSG parameter, review the statistics provided on the messaging performance reports produced at termination or by the DXMSG operator command. The value for MXMSG can be changed dynamically (for the time the Adabas nucleus is running) using the MXMSG operator command. # MXMSGWARN: Timeout Threshold for Internucleus Command Processing Warning | Parameter | Specify | Minimum | Maximum | Default | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------| | <u>MXMSGW</u> ARN | the timeout threshold, in seconds, for<br>a response to an intracluster command<br>to occur before an early warning about<br>the failure of the intracluster request is<br>issued | _ · | MXMSG<br>- 1 | MXMSG<br>/ 4 | The optional MXMSGWARN parameter specifies the number of seconds after an intracluster request is made when the cluster nucleus issuing the intracluster request should issue warnings about the failure of the target cluster nucleus to respond. If no value is specified for the MXMSGWARN parameter, the value used is calculated as the value of MXMSG divided by four. When dividing by four to determine the default value, the quotient is rounded up to the next integer value. The value of MXMSGWARN must be less than the value of MXMSG. If MXMSGWARN is set to a value greater than or equal to the value specified for MXMSG, the value is rejected. If MXMSGWARN is set to zero, no warnings are issued about cluster nuclei that are slow to respond. If the target nucleus does not respond within the time period set by MXMSGWARN, the nucleus that issued the request writes message ADAX9C to the operator console, identifying the target nucleus by its nucleus ID, job name, and system name. This message indicates that the target nucleus may be in danger of being canceled by the nucleus that issued the request if it does not respond within the timeout period defined by the MXMSG parameter. You can use the ADAX9C message to trigger an alert or take other appropriate action before the MXMSG timeout period expires. If the target nucleus responds to the intracluster command after the ADAX9C message is written, the nucleus that issued the intracluster-command writes message ADAX9D to the operator console, indicating that a response was given and the target nucleus is no longer in danger of being canceled as a result of this particular incident. The value for MXMSGWARN can be changed dynamically (for the time the Adabas nucleus is running) using the MXMSGWARN operator command. #### Note: If the value of the MXMSG parameter is dynamically changed using the MXMSG operator command while the nucleus is running, but its new value is less than or equal to the current MXMSGWARN setting, the value of MXMSGWARN is automatically set to zero. You can then use the MXMSGWARN operator command to dynamically set the MXMSGWARN parameter to a new value that is less than the new MXMSG value. ## **MXWTOR:** Self-Termination Operator Query Interval | Parameter | Specify | Minimum | Maximum | Default | |----------------|---------------------------------------------------------------------------------------|----------------|---------|---------| | <u>MXWT</u> OR | the timeout interval, in seconds, in which an operator response to a self-termination | 0 (no warning) | 64800 | 0 | | | operator query must occur. | or 15 | | | The optional MXWTOR parameter specifies the maximum number of seconds that a cluster nucleus should wait for an operator response to a self-terminating operator query. If no value is specified for the MXWTOR parameter, a value of zero is used. Values from 1 through 14 are not valid MXWTOR values. A cluster nucleus issues a self-terminating operator query to the console via message ADAX9J if a canceled peer nucleus remains active after the time period defined by the MXCANCEL parameter. The MXWTOR parameter specifies how long the nucleus should wait for a response to this query. One way that the operator may reply to the ADAX9J message is to make sure that the canceled cluster nucleus mentioned in the message actually terminates; once this happens, the ADAX9J message is retracted automatically, an online recovery process is performed, and the nucleus that issued the ADAX9J message remains active. If the operator does not respond to the ADAX9J message within the time period set by the MXWTOR parameter and the canceled peer nucleus has not terminated in the meantime, the nucleus that requested the operator response and printed message ADAX9J terminates itself with message ADAX99. If MXWTOR is set to zero (the default), the operator query does not occur (no ADAX9J messages are written) and no operator intervention is expected. Instead, the nucleus terminates itself immediately with the ADAX99 message and user abend code 79. Some installations may want to specify MXWTOR value long enough to allow the operator a good opportunity to bring down the canceled peer nucleus. Other installations may prefer not to get such operator queries at all. The value for MXWTOR can be changed dynamically (for the time the Adabas nucleus is running) using the MXWTOR operator command. ### **NUCID: Adabas Cluster Nucleus ID** #### Note: The NUCID parameter replaces the earlier parameters PLXID and SMPID. | Parameter | Specify | Possible Values | Default | |-----------|--------------------------------------------|-----------------|---------| | NUCID | the ID for a nucleus in an Adabas cluster. | 0-65000 | 0 | NUCID identifies an Adabas cluster nucleus. The cluster may span operating system images under Adabas Cluster Services, or it may be confined to a single operating system image under Adabas Parallel Services. A value greater than 0 (the default) identifies this nucleus as an Adabas cluster nucleus. | Value | Meaning | |---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | The default setting. This is not an Adabas cluster nucleus. | | 1-65000 | This is an Adabas cluster nucleus. This value must be unique among all target IDs declared to the Adabas router (ADASVC): Adabas databases (DBID), cluster nuclei (NUCID), Natural buffer pools and other MPM servers, Entire Net-Work, and internal targets used by Adabas Cluster Services and Adabas Parallel Services (restricted range 65,001-65,479). Nucleus IDs for the same cluster need not be specified contiguously. | ### Guidelines - Each nucleus being run must have its own Work data set. - All nuclei in a cluster must be run against the same database. - Software AG strongly recommends that you run utilities or user applications against a nucleus in the local z/OS image. Although a remote open nucleus may be used, performance degradation due to network overhead is likely. ### **Example** The following example starts an Adabas cluster session with the specified cluster nuclei: | ADARUN PROG=ADANUC, NUCID=1, | | |------------------------------|--| | | | ## **PROGRAM: Program to Run** | Parameter | Specify: | Possible Values | Default | |-----------------|-----------------------------|-----------------|---------| | <u>PRO</u> GRAM | the program to be executed. | see table below | USER | This parameter specifies what to execute. The possible values are described in the following table: PROGRAM : Program to Run | Specify: | To start: | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------| | ADACOM | an ADACOM task (used in Adabas Cluster Services and Adabas Parallel Services environments) | | | For more information, refer to your Adabas Cluster Services and Adabas Parallel Services documentation. | | ADANUC | an Adabas nucleus | | | For more information about executing an Adabas nucleus, read <i>Adabas Session Execution</i> , in <i>Adabas Operations</i> documentation. | | ADAREV | an Adabas Review hub. Specify this in conjunction with the ADARUN REVIEW parameter. | | | For more information, refer to your Adabas Review documentation. | | NETWRK | an Entire Net-Work node | | | For more information, refer to your Entire Net-Work documentation. | | RENTUSER | a user program to be run using a reentrant Adabas batch/TSO link routine. | | | For more information, refer to your Adabas TP monitor installation documentation. | | USER | a user program to be run using a non-reentrant Adabas batch/TSO link routine. | | | For more information, read <i>Linking Applications to Adabas</i> , in <i>Adabas Operations</i> documentation. | | utility-name | an Adabas utility | | | Specify an Adabas utility for <i>utility-name</i> . For more information, refer to <i>Adabas Utilities</i> documentation. | ## **Examples** The following example starts an Adabas nucleus. | ADADIIM | PROGRAM=ADANUC | |---------|----------------| The following example starts an Adabas Review hub. ADARUN PROGRAM=ADAREV, REVIEW=202