5 software~

Adabas Bridge for DL/1

Interfaces

Version 2.3.1

September 2009

Adabas Bridge for DL/

This document applies to Adabas Bridge for DL/1 Version 2.3.1 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © Software AG 2009. All rights reserved.

The name Software AG, webMethods and all Software AG product names are either trademarks or registered trademarks of Software AG
and/or Software AG USA, Inc. Other company and product names mentioned herein may be trademarks of their respective owners.

Table of Contents

1 INEETFACES ..oooiiiiiiiiiiiciicci s 1
2 INErOAUCHON ..ot 3
Operational ENVIronmentscccccooviiiiiiiiiiiiiiiiiiiiiicciicccec e 7
Other Documentation You May Needc.ccccoooiiiiiiii, 7
Documentation Related to non-SAG Productscccocuiviiiiiiiiiiiiiiiiiiiis 8
3 Batch Installation and Operationc.cocooiiiiiiiiiiiiic 9
CALLDLIINterfacecccoouiiiiiiiiiiiiiiiiiciicicciccccc e 10
Consistency Interfacecccoccoiviiiiiiiiiiiiiiii 14
USET EXI cuvviiiiiiiiiiiccc e 19
Z/OS JCL ReQUITEMENLScovviiiiiiiiiiiiiiiiiiieie e 19
Z/VSE JCS ReqUirementscccuovviiiiiiiiiiiiiiiiiiciccccciccc s 20
4 CICS Installation and Operationccccceeeeiiiiiiiiiiiiiiiiiieiecee e 23
Overview CICS Installationccceeeiiiiiiiiiiiiiiiiiiececee e 24
Prerequisites for z/OS CICS Installationc.ccccoceeiiiniiiiiiniiiiiiieeccceeee, 24
Prerequisites for z/VSE CICS Installationccccovviiiiiiiiiiiiiiiiniiiiiiicee, 27
Important Note for CICS USersccoiiiiiiiiiiiiiiiiicicicccee e 30
Generating the Runtime Control Tablescccccovviiiiiiiiiiiiiniiiicee, 30
Tuning and Maintaining the Runtime Control Tablesc.ccccoociiiiiinninn, 40
Z/OS REQUITEMENESoeiiiiiiiiiiiiiiiie i 41
Z/VSE ReqQUITEMENLSccviiiiiiiiiiiiiiiiiiiiiiicii e 42
Activating and Controlling the ADL Interfacesccccccocoiiiiiiniiiiiinii, 44
CALLDLIINterfacecccoouiiiiiiiiiiiiiiicicccicccccce e 46
Consistency Interface ..o 47
USET EXIt coviiiiiiiiiiii e 49
5 IMS/TP Installation and Operationcccoceiviiiiiiiiiiiiiiiiiiie e 51
OVEIVIEW ..ottt ns 52
Generating the Runtime Control Tablescccccovviiiiiiiiiiiiiii, 52
CALLDLIINterfaceccccocuiiiiiiiiiiiiiiiiiccicic e 53
ADL Pre-load Programcccocceiviiiiiiiiiiiiiiiiiiciiccicc e 55
USET EXA cuviiiiiiiiiiiicccicccc e 55
JCL RequUirementscccueiiiiiiiiiiiiiiiiiiic i 55
6 ADL Online SeIVICeSc.cooiiiiiiiiiiiiiiiiiiiccii 57
INtrodUuctionooviiiiiiiii 58
Main MENUocoiiiiiiiiicc 61
Maintaining the ADL Interfaces under CICSccocoiiiiiiii, 62
ADL Directory Management Facilitycccccoviiiiiiiiiiiiiniiiiiiiecccce 68
Consistency DBD Maintenancecccooouieiiiiiiiiiiiiiiicciccec 78
Maintenance of the Rolled-out PSBsccccccooiiiiiiiiiiiiiiiiiis 79
Maintenance of Checkpointsccccoeiiiiiiiiiiiiiiiiiii 84
Messages and Codes Retrieval ..o, 88
7 Precompiler for EXEC DLI Commandscccccooiiiiiiiiiiiniiiiiiiiiiiiccciccc e, 91
INtrodUuCtON ..o 92
ADL Precompiler INPULoociiiiiiiiiiiiiiiiiic e 95

Interfaces

ADL Precompiler Outputcccooiiiiiiiiiiiiiiiiiii 97
COBOL Generated Codeccooiiiiiiiiiiiiiiiiiiiiicccccc 98
PL/T Generated Codeccooiiiiiiiiiiiiiiiiiicicccc 98
CICS Command Language Translatorccccooveiiiiiiiniiiic 98
Linkage-Editor Requirements for Application Programscccccceeviviiiiinnnnen 98
Z/OS JCL ReqUITEMENLSccuviiiiiiiiiiiiiiiiiiie i 99
Z/VSE JCS ReqQUITEMENLSc.eeoiiiiiiiiiiiiiiiiiiciieee e 100
8 Using ADL Files with Natural/Adabasccccociiiiiiiiiiiiiiiiii 103
INtroductionoocuiiiiiiiiii 104
Consistency Interfacecccccoeiiiiiiiiiiiiiiiiiii 104
Restrictions when using Natural/Adabasc.ccoooiiiiiiiiiiii 105
Improve the Natural Access to Migrated Filesccccooiiiiiniiiiiiiiiiniien. 107
Error Situations and Consistency Response Codesc.cocoeviiiiiiiniiiiiiinnnenn. 108
Availability of the Consistency Interfacec.ccccocciiviiiiiiiiiiiiiii 109
Example Programsc.ccciiviiiiiiiiiiiiiiiiiii s 109
9 Converting Natural for DL/I Programscccccocveiiiiiiiiiiniiiiiicicccicicecnn 113
INtrodUCtiONooviiiiiiii 114
Conversion of the Data Definitions and of the Datacccccccoiiiiin, 114
Modification of the Applicationcccevviiiiiiiiiiiiiiiiiii s 115
10 SQL Access to the Migrated Filesccccoooiiiiiiiiiiiiiiiiiiin 119
INtroduction ..o 120
How to Access the Migrated Datacccccoociiiiiiiiiiiiiiiiiiiiiiic, 120
Improving the Access to Migrated Datac..cccoooioiiiiiiiiiii, 121
Restrictions for SQL Applicationsccccoeeiiiiiiiiiiiiiiiiiiiiicccc e 121
11 Debugging Aids - ADL Trace Facilitycccoouiviiiiiiiiiii 123
Data Base Call Traceccooiiiiiiiiiiiiiiiiiicicicc 124
Internal Routine Traceccocuiiiiiiiiiiiiicc 129
Z/OS JCL ReqUirementsccooieuiiiiiiiiiiiiiicciciicec e 129
Z/VSE JCS ReqUirementscccoceiviiiiiiiiiiiiiiiiiciicciccecccee e 131
12 CALLDLI Test Program - DAZZLERcccooiiiiiiiiiiiii e 135
INtrodUCHiONoocviiiiiiii 136
DL/T SEATEIMENES ..cevvvniiiiiieeeeiiie et ettt e e et e ettt e ettt eeeaaaessaaaaeesaaaaeeenas 137
SOES e 137
DAZZLER Control Statementscccoccoeiiiiiiiiiiiiiiiicccec 141
z/OS JCL Requirements for DAZZLERcccoooiiiiiiiiiiiiiicccc 143
z/VSE JCS Requirements for DAZZLERccccocoiiiiiiiiiiiiiiiiiiiiciicceee, 144
13 Managing ADL Filesccccccooiiiiiiiiiice 145
OVEIVIEW .ottt 146
Reorganization with ADL Utilities (Pseudo Mixed Mode)ccccoevviviinninnn. 146
Reorganization with ADL Utilities (Normal Mode)c..cccccooiiiiiiniiinn. 149
Reorganization with Adabas Utilitiesccccovviiiiiiiiiiin, 151
Reorganization with User-written Programsccoooiiiiiiiiniii, 152
Change of DL/I Segment Definitionscccccocuiiiiiiiiiiiiiiiiiiiiiiicicciccc 153
Change of DL/I Field Definitionscccccoviiiiiiiiiiiiiiiiiiiiicicceccie 154
Change of the Data Layoutcccceeviiiiiiiiiiiiiiicccccccce e 155

Interfaces

Interfaces

Re-establishment of the Hierarchical Sequencec.cccooiiiiiiiiiiin, 159
Change of DL/I PSB Definitionsccccoeiiiiiiiiiiiiiiiiiiciccccceeeecc e 159
Change of the ADL Structurecccoeoiiiiiiiiiiiiiiiiiiic e, 159
Change of Adabas DBIDs and File Numbersccocooiniiii, 160
Change of the Adabas File Layoutcccocooeiiiiiiiiiiiiiiiiiiccccecn 162
14 Performance Considerationscccccovuiiiiiiiiiiiiiiiiiicc 165
INtrodUCHON ..o 166
Data Processing and Pointersccccociiiiiiiiiiiiiiiiiiin 167
Initial Load and Reload the Databaseccccccoiiiiiiiiiiiii, 169
Using the Adabas Multifetch Featurecccccocciviiiiiiiiiiiiiiin, 170
Insert and Delete ..o 172
Splitting @ DBDccooiiiiiiiiiiiiiiiii e 173
Field Definitionscccccviiiiiiiiiiiiiiiiiiiiic 173
Enquete LOZIC ..cooiiiiiiiiii 174
CICS/Batch CommUNICationcceviiiiiiiiiiiiiiiccccccce e 174
Application Program and DB Designc.ccccoiiiiiiiiiiiiii 174
15 Recovery and Restart Procedurescccoooviiiiiiiiiiiiiiiiiiiiiicecce, 179
INtroduCtionooiiiiiiiiii 180
Extensions and Restrictionscccocooviiiiiiiiiiiiiii 180
Adabas USer TYPeScc.coiiiiiiiiiiiiiiiiciccicecce et 181
Automatic ET Calls Issued by ADLcccoooiiiiiiiii, 185
Restart/Recovery Logic under ADLc.ccccoiviiiiiiiiiiiiiiiiiiic, 186
ADL Actions for Basic and Symbolic Checkpointsc.cccooiiiiiiiiiiiiii, 191
How to Restart a Batch Programcccccoooiiiiiiiiiiiiniiicicccccce, 192
16 Appendix A - DAZZLER Test Streamccccooviviiiiiiiiiiiiiiiiiiiciiececn 195
17 Appendix B - z/OS Dataset USagecccccvevuiiiiiiiiiiiiiiiicieciieee e 201
18 Appendix C - z/VSE Dataset Usagecccceeiiiiiiiiiiiiiiiiiiiiiiciicicccec e 203

Interfaces v

vi

1 Interfaces

This documentation describes the installation and operation of the Adabas Bridge for DL/I (ADL)
Interfaces for DL/I and Adabas applications.

The following topics are covered:

Introduction

Batch Installation and Operation

CICS Installation and Operation

IMS/TP Installation and Operation

ADL Online Services

Precompiler for “EXEC DLI” Commands

Using ADL Files with Natural/Adabas

Converting “Natural for DL/I” Programs

SQL Access to the Migrated Files

Debugging Aids - ADL Trace Facility

CALLDLI Test Program - DAZZLER

Managing ADL Files

Performance Considerations

¢ ¢ ¢ € @ ¢ ¢ e e e v e e e

Recovery and Restart Procedures

Interfaces

Appendix A - DAZZLER Test Stream

¢

Appendix B - z/OS Dataset Usage

Appendix C - z/VSE Dataset Usage

Interfaces

2 Introduction

B Operational ENVIFONMENTSuuiiiiiiie et e e e e e e e e e
= Other Documentation YOU May NEEAooiiiiiiiiiiiii ettt e e
= Documentation Related 10 NON-SAG ProdUCESvvviiiiiiiiiiii e

Introduction

This documentation describes the installation and operation of the Adabas Bridge for DL/I (ADL)
Interfaces for DL/l and Adabas applications. It will be needed in the phase following the conversion
of DL/I databases into ADL files.

The general installation of the ADL load and source libraries, the ADL Directory file and ADL
Natural utilities are described in the ADL Installation documentation. This documentation also
explains how to customize ADL to your site by means of specifying parameters for the ADL
parameter module.

The Adabas Bridge for DL/I consists of essentially six major functional units, namely

® ADL Data Base Conversion Utility
® ADL Directory file

® ADL Online Services

CALLDLI Interface

Consistency Interface

ADL Installation Verification Package

The ADL Data Base Conversion Utility allows you to convert your DL/I DBD and PSB descriptions
into Adabas file descriptions and to convert data stored in DL/I data bases into data stored in
Adabas files automatically. Whenever we talk about Adabas files which are based on the conversion
of DL/I data bases we use the term “ADL file” to point out the special properties of these files. The
information about the original DL/I structures and how they are translated into Adabas definitions
is kept in the ADL Directory file. The contents of this file can be displayed with the ADL Online
Services, which additionally allow you to maintain the ADL interfaces under CICS.

The other two functional units of ADL are the CALLDLI Interface and the Consistency Interface.
The CALLDLI Interface allows DL/I applications to access ADL files in the same way as original
DL/I data bases. The Consistency Interface provides access to ADL files from Natural programs
or with Adabas direct calls. This interface preserves the hierarchical structure of the data, which
is of importance for ongoing DL/I applications.

The ADL Installation Verification Package provides a DL/I application environment including an
example database. The ADL Installation is verified and the conversion of the example database
is practiced. Several DAZZLER test streams, Cobol and Assembler program are included as well
as Natural applications for testing the ADL Consistency. Terms and concepts of DL/I and Adabas
are introduced and it is shown how ADL maps one to the other. The ADL Installation Verification
Package is described in details in the section ADL Installation Verification Package in the ADL Install-
ation documentation.

4 Interfaces

Introduction

DL/I :
Request :
CALLDLI Consistency
Interface Interface :
Mixed ."." \ I :
Mode .**
pe -
Adabas
ET——
—

fe=— =
IR — a Conversion ADL Files
ADL
DB.D{FtSB ""-"'l S Online
Definitions Services
ADL Directory

Figure 1: Functional units of ADL and their interrelation
Figure 1 shows the individual functional units of ADL and their interrelation with DL/I, SQL and
This documentation provides you with the information necessary to operate both the CALLDLI

Natural applications.
Interface and the Consistency Interface once ADL has been installed and the DL/I databases have

been converted.
This documentation is intended primarily for the system programmer responsible for the operation
of Natural/Adabas and/or DL/I applications in batch and online systems. The section Using ADL
Files with Natural/Adabas is of particular interest for application programmers. Similarly, the

sections Managing ADL Files, ADL Online Services and Recovery and Restart Procedures will be

of interest to DBAs.
The first sections of this documentation cover the installation and operation of the ADL Interfaces

for batch, CICS and IMS/TP.
The section ADL Online Services describes how to examine the contents of the ADL Directory file

and maintain the ADL Interfaces for CICS.

Interfaces

Introduction

The section Precompiler for "EXEC DLI” Commands describes how to use the ADL-supplied
precompiler for “EXEC DLI” commands. Although this precompiler is not a direct part of the ADL
Interfaces, it might be required in case DL/I and thus the High Level Programming Interface (HLPI)
is not available.

The section Using ADL Files with Natural/Adabas describes the way in which ADL files can be
accessed by Natural/Adabas applications.

The section Converting "Natural for DL/I” Programs describes what must be considered when
converting an NDL program to a “normal” Natural/Adabas program.

The section SQL Access to the Migrated Files describes how SQL applications can access the mi-
grated data with the Adabas SQL Gateway.

The section Debugging Aids - ADL Trace Facility covers the ADL Interfaces trace facility, which
was designed to debug your applications as well as to track down problems related to the ADL
Interfaces themselves.

A program to test DL/I calls in batch, DAZZLER, is described in the section CALLDLI Test Program
-DAZZLER.

The management of converted DL/I databases is described in the section Managing ADL Files. As
seen from an Adabas DBA point of view, there are a few things to be considered when managing
ADL files with Adabas utilities. Also, this section explains how and in which way the DL/I structure
or the Adabas file layout may be altered.

The tuning of ADL is described in the section Performance Considerations.

Obviously the conversion from DL/I to Adabas affects the restart and recovery scenarios. The
section Recovery and Restart Procedures explains these changes.

Most of the information contained in this documentation refers to both operating systems z/OS
and z/VSE. Information which applies only to a single operating system is clearly marked as such.

In order to install and operate the ADL Interfaces, a certain degree of knowledge of both data base
systems, Adabas and DL/], is required as well as a familiarity with the operating systems and TP
monitors. This manual makes frequent usage of terms, synonyms, abbreviations and facts related
to these systems. For clarity a glossary is provided with the ADL Messages and Codes documentation.

This chapter covers the following topics:

6 Interfaces

Introduction

Operational Environments

The Adabas Bridge for DL/I operates in both online and batch environments. The online environ-
ments currently supported are CICS Versions 3.2 and above. Programming languages which use
the standard DL/I call interface, e.g. COBOL, Assembler, and PL/I, are supported in both online
and batch.

Operating system environments currently supported are: z/VSE and z/OS. The JCL/JCS examples
given in this documentation are tailored for z/VSE and z/OS.

Batch Operation

Once all DL/I data bases accessed by a particular application program have been converted, the
only other thing you need to do to operate the Adabas Bridge for DL/I in batch environments is
to remove the JCL statements for the DL/I data bases and add input cards with ADARUN para-
meters. These are needed since the application has become an Adabas application program. The
way in which the PSB name and application program names are specified, does not change. See
the section Batch Installation and Operation for further details.

Online Operation (CICS)

Once all DL/I data bases have been converted, you may remove all JCL statements and FCT and
ACT entries relating to them, as these are no longer required. Instead, you must generate a table
of all the PSBs needed by the CICS application programs. Under z/OS CICS the ADL requires the
installation of an SVC to operate properly. See the section CICS Installation and Operationfor
further details.

IMS/TP
Once all DL/I data bases have been converted, you may remove any JCL statements relating to

them, as these are no longer required. See the section IMS/TP Installation and Operation for
further details.

Other Documentation You May Need

The following Software AG publications may be useful when installing and operating the ADL
Interface:

® Adabas Utilities documentation

® Adabas Operations documentation

" Adabas Messages and Codes

Interfaces 7

Introduction

" Adabas DBA Reference documentation

For a complete list of Software AG documentation, prices, and ordering information refer to the
Software AG Documentation Overview or contact your Software AG support representative.

Documentation Related to non-SAG Products

The documentation mentioned below might be of interest and helpful for the installation and op-

eration of the ADL interfaces.

For z/OS users:

IMS/VS Application Programming

IMS/VS Application Programming for CICS/VS Users
IMS/VS Utilities Reference documentation

CICS TS Installation Guide

CICS TS Operations and Utilities Guide

CICS TS Resource Definition Guide

For z/VSE users:

= DL/I DOS/VS Guide for New Users

® DL/IDOS/VS Application Programming: CALL and RQDLI Interface

® DL/I DOS/VS Application Programming: High Level Programming Interface
® DL/I DOS/VS Utilities and Guide for the System Programmer

= DL/I DOS/VS Resource Definition and Utilities

" CICS TS Installation Guide

® CICS TS Operations and Utilities Guide

® CICS Resource Definition Guide

Interfaces

http://documentation.softwareag.com/

3

Batch Installation and Operation

CALLDLI Interface
Consistency Interface
User Exitooovvnnnnn.
z/0OS JCL Requirements ..

z/VSE JCS Requirements

Batch Installation and Operation

This chapter covers the following topics:

CALLDLI Interface

The ADL CALLDLI Interface processes all data base requests originating from DL/I calls or com-
mand level programs. For the application, it provides an interface identical to original DL/I. The
CALLDLI Interface decides dynamically, whether a request is to be routed to DL/I or to be processed
by ADL. In the first case, it simply acts as a front-end to DL/L

ADL may be executed in batch in two different modes:

® Normal Mode
This is used for application programs using PSBs which only reference DBDs describing previ-
ously converted DL/I data bases.

* Mixed Mode
This is used for application programs using PSBs which reference at least one DBD describing
an unconverted DL/I data base.

In normal mode, all requests are processed by ADL. In mixed mode, requests are routed to DL/I
if they refer to non-converted DL/I data bases. GU and ISRT calls on the IOPCB and CHKP calls
will be routed to ADL as well as to DL/IL.

Positional Parameters for DAZIFP

All DL/I parameters will be ignored, with the exception of the positional parameters given below.
These will be accepted and interpreted by DAZIFP in the same way as DL/I.

The syntax for the input statement is as follows:
runmode, pgmname,psbnamel[, keyword]

These parameters are explained on the next page.

Parameter |Description

runmode |A three-character string indicating the run mode. The possible values are described in the
following table below.

pgmname | The name of the application program to be loaded and started.

psbname |The name of the PSB used by the application program (if omitted, it is assumed that the PSB
name is the same as the application program name).

10 Interfaces

Batch Installation and Operation

Run Mode |Description

BMP/MPS |Indicates a multi-user batch run. Programs using this mode of operation can run concurrently
with other programs (batch or online). An IO-PCB is added in front of the PCBs. Automatic ET
calls may be issued by the ADL. Checkpoints may be issued and will result in Adabas ET calls.
See also the section Recovery and Restart Procedures. Compatible with DL/I BMP/MPS.

ELO |Indicates an Establish Logical Relationship utility run.

IMS/DLI |Indicates a normal run. Batch update programs using this mode of operation cannot run
concurrently with any other program (batch or online) using the same data base(s). Read-only
programs can. Checkpoints may be issued and will result in Adabas unsynchronized checkpoints
being taken (C1 calls). See also the section Recovery and Restart Procedures. Compatible to
DL/TIMS/DLL

MIX |Indicates that the batch program is to be run in mixed mode. The same rules apply as for
IMS/DLI mode.

MPX/SDX |Indicates an MPS/SDB batch run in mixed mode.

MSG |Indicates an IMS/TP message region processing run.

PRE |Indicates an ADL precompiler run for translating command level programs.

PRT |Indicates a Print Trace utility run.

REF |Indicates a Reformat utility run.

SDB |Indicates a shared-data base run. Programs running in this mode may access data bases
concurrently with other programs (batch and online). This mode of operation is provided for
compatibility with the DL/I “shared data bases” feature. The ET checkpoint logic is like
BMP/MPS, but no IO-PCB is added to the PCBs.

SHI Indicates a DAZSHINE utility run.

STA |Indicates a stand-alone batch run. Programs using this mode of operation can not run
concurrently with online programs using the same data base(s), nor with any other batch
programs. The ADL directory file is used exclusively. Checkpoints may be issued and will
result in Adabas unsynchronized checkpoints being taken (C1 calls). See also the section
Recovery and Restart Procedures.

UNL |Indicates an Unload utility run.
UTC |Indicates a CBC utility run.

Keywords for DAZIFP

In addition to the positional parameters mentioned above, you may specify one or more keywords
to control operation of ADL.

Any keywords specified must immediately follow the positional parameters. Any keywords not
on the list (e.g. the original DL/I parameters) encountered after the program and PSB names will
cause scanning to be terminated. In this case, all other parameters will be ignored.

If the parameters are read in from a file (i.e., DAZIN1, DAZIN2 or SYSIPT), more than one line
can be used for the parameter specification. A comma followed by a blank after the last keyword
of the line indicates that the specification of the parameters is continued in the next line. Any
character found after the blank in the initial line is treated as a comment.

Interfaces T

Batch Installation and Operation

The table below gives a short explanation of the keywords which may be specified. For further
information (including defaults) on all parameters, see the section ADL Parameter Module in the
ADL Installation documentation.

Keyword |Description
BUFSF |Suffix for the buffer table module name.
CHKPMSG |Checkpoint message destination.
CPID The checkpoint ID from which the application is to be restarted.
DBD The size (in kilobytes) of the ADL DBD ICB buffer.
DBDSF |Suffix for the DBD table module name.
DBID Adabas data base for the ADL directory file.
DUO Support of CA-DUO under z/OS.
EBUF The size (in kilobytes) of the ADL ECB buffer.
ET The number of times a different root segment occurrence may be accessed before an Adabas
ET command is issued (BMP/MPS/SDB programs only).
FNR Adabas file number for the ADL directory file.
FX z/VSE only. Specifies the input data set for the Print Utility when printing the routine trace
or for the ADL precompiler.
IMSY IMS/TP syncpoint/Adabas ET synchronization.
LANG |Language of the application program. Overwrites the PSB language parameter.
LCS The size (in kilobytes) of the last call save area.
LOAD |Indicates whether an ISRT against a PCB with PROCOPT=L is to be written to Adabas or to
a sequential file.
MEFT Defines the ADL Multifetch Table.
OPENRQ |Specifies if an Adabas OPEN is required or not.
PLI z/OS only. Passes PL/I parameters to PL/I. See the explanation on the next page.
PLILE |z/VSE only. Specifies whether PL/I uses the LE/VSE.
PR z/VSE only. Specifies the number of logical printers.
PSB The size (in kilobytes) of the ADL PSB ICB buffer.
PSBSF |Suffix for the PSB table module name.
RBE Specifies the record buffer extension list.
RETRY |The number of times that ADL tries to put a record, which is currently held by another user,
into hold status.
SQ z/VSE only. Specifies the input/output data set for the Unload utility.
STACK |The size (in kilobytes) of the ADL internal subroutine stack.
TRACE |Activates the Trace facility and specifies what is to be traced. This keyword is described in
the section Debugging Aids — the ADL Trace Facility.
UTI Specifies the CBC utility work area.

12

Interfaces

Batch Installation and Operation

PLI Parameter (z/OS Only)

This keyword is used to pass PL/I parameters to PL/I. The feature may only be specified if the PL/I
application program has been link edited with “PLICALLB” as its entry point. Specifying “PLI"
or “PLI=(...)” will cause the PL/I program to be called in conformity with the standards for calling
the entry point “PLICALLB”.

Syntax

PLI =(options)
where options are PL/I execution options.
The following values may be entered:

REPORT, NOREPORT, SPIE, NOSPIE, STAE, NOSTAE.

For further details, see the IBM documentation PL/I Optimizing Compiler: Programmer's Guide.
Normal Mode Batch Execution

To invoke normal mode batch execution under ADL, execute the DAZIFP Bridge initialization
program. This program requires input parameters similar to those for the DL/I initialization pro-
gram. Both positional and keyword parameters exist (see above).

Neither the JCL describing the original DL/I data bases nor the load libraries containing the DL/Iload
modules are required in normal batch execution.

The ADL load library containing the executable ADL batch module and the Adabas load library
must be included in the JCL. ADARUN control statements must also be provided, as is the case
with any Adabas application program. For a detailed description of JCL requirements, see the end
of this section.

Unlike DL/I, ADL opens all files which are referenced in the PSB during initialization. This must
be considered, particularly if the file is opened in EXU mode and the application does not access
the file at all.

Mixed Mode Batch Execution

To invoke mixed mode batch execution under ADL, execute the normal DL/l initialization program.

You still require all the JCL describing the original DL/I data bases and the load libraries containing
the DL/I load modules.

Before running the program, make the following changes in the JCL/JCS:

1. Change the name of the application program in the DL/I parameters from the user program to
DAZIFP. No other parameters have to be modified.

Interfaces 13

Batch Installation and Operation

2. Insert an extra input statement for DAZIFP:

® z/OS Environments
Include a DD statement with the DD name DAZIN2 in the JCL.

= z/VSE Environments
The mixed mode control statement is read from SYSIPT.

3. Add a JCL/JCS statement for the ADARUN file “DDCARD”.

For a more detailed description of the JCL/JCS requirements for mixed mode, see the end of this
section.

The parameters and syntax for the input statement are the same as for normal mode batch execution
(see the first topic of this section).

Note: DL/l and Adabas are not fully synchronized. Therefore, you should carefully consider

restart and recovery procedures for programs running in mixed mode, especially when
they are running concurrently to other programs (MPX or SDX run mode).

Pseudo Mixed Mode Batch Execution

In the "pseudo” mixed mode batch execution, the ADL interface program DAZIFP calls a copy of
itself. This can be useful when changing structures after the conversion. Pseudo mixed mode is
described in details in the section Managing ADL Files.

Link-editing of Application Programs

In general, application programs do not have to be re-linked.

The ADL load library provides the language interface module DAZLIBAT as a substitute for the
IBM language interface DFSLIO00 (z/OS) and DLZLIO00 (z/VSE). These modules provide the entry
points ASMTDLI, PLITDLIL CBLTDLI and FORTDLI. You might need the ADL provided language
interface in case DL/I is not available at your site, and you have to re-link application programs.

Consistency Interface

This paragraph describes how the ADL Consistency Interface intercepts Adabas calls and how
you activate the Consistency in a batch environment.

14 Interfaces

Batch Installation and Operation

Activating the Consistency Interface

The ADL Consistency Interface intercepts Adabas calls on the Adabas link module level. In batch,
this is a module named ADALNK.

A substitute for the Adabas link module in batch, ADALNK, is delivered with the ADL installation
tape. You will have to assemble and link-edit this module, as described in the section below.

Operation of the Consistency Interface requires the original Adabas link module to be present.
This, however, has to be renamed. The default new name for the original Adabas link module is
ADAOLK. When customizing the ADL substitute, you may choose any new unique name for the
original Adabas link module.

Consequently, you have to rename the original Adabas link module for batch, ADALNK, to
ADAOLK (or to whatever is the new name you choose.)

Itis recommended that the ADL supplied substitute and the renamed copy of the original Adabas
link module are both stored on the ADL load library.

For the Consistency Interface to become active, the order of the concatenation of the ADL and
Adabas load libraries is of importance. For z/OS batch jobs, this means that the ADL load library
must be concatenated before the Adabas load library in the JOBLIB or STEPLIB DD statements.

Example:

//STEPLIB DD DISP=SHR,DSN=ADL.LOAD
// DD DISP=SHR,DSN=ADABAS.LOAD
// DD DISP=SHR,DSN=.............

In z/VSE, the ADL load library must be defined in the search sequence of a LIBDEF statement before
the Adabas load library.

Example:
// LIBDEF *,SEARCH=(ADL,ADABAS,)
Customizing the Consistency Interface

The ADL source library contains the source of the substitute for Adabas link module in batch,
ADALNK. The name of this source member is DAZLNK.

All parameters for this module are given as assembler variables and their meaning is explained
in comment statements in the source.

All parameters correspond to customizable parameters in the original Adabas link module for
batch. Note, however, that you do not have to specify an SVC nor a default DBID when you cus-

Interfaces 15

Batch Installation and Operation

tomize the ADL link module substitute. The values for these will dynamically be taken from the
original Adabas link module.

The assembly of the ADL link module substitute requires the ADL source library and the Adabas
supplied macro library as well as the system macro library to be available.

See the sections z/OS Installation and z/VSE Installation in the ADL Installation documentation for
more details on how to assemble and link-edit the ADL link module.

Parameters for the Consistency Interface

This paragraph describes which parameters are of importance for the Consistency Interface and
how you may initialize them. The meaning of the individual parameters, their possible values and
their default values are described in the section ADL Parameter Module in the ADL Installation
documentation.

Most of the parameters for the Consistency Interface will be initialized by the assembly and link-
edit of the ADL parameter module. Parameters of particular importance for the Consistency Interface
are:

FDT |The size of the “file description table”
FSTAC |The size of the internal format buffer stack

PARM (Do (not) read dynamic parameters
RBSIZ |The size of the internal record buffer

SDT |The size of the “segment description table”

When you have specified “PARM=YES” in the assembly of the ADL parameter module, the Con-
sistency Interface will read a card containing dynamic parameters from the file DAZIN1 (z/OS) or
the logical unit SYSIPT (z/VSE). The layout of this card is:

Keyword=value, ...

Keywords must be separated by commas, no intervening or leading blanks are allowed. Any un-
defined keyword causes the scanning to be terminated and the following statements to be ignored.

16 Interfaces

Batch Installation and Operation

As described in the section Keywords for DAZIPF earlier in this section, more than one line can
be used for the parameter specification. You may specify the following dynamic parameters:

DBD |The size (in kilobytes) of the internal control block area for DBDs
DBID |The DBID of the ADL directory file
EBUF |The size (in kilobytes) of the external control block area
FNR |The FNR of the ADL directory file
OPENRQ [Adabas “OP” (not) required
PSB The size (in kilobytes) of the internal control block area for PSBs

STACK |The size (in kilobytes) of the internal subroutine stack

TRACE |Specify trace parameters. This keyword is described in the section Debugging Aids — the
ADL Trace Facility in this documentation.

For a detailed explanation of these parameters, see the ADL Installation documentation, section
ADL Parameter Module.

Table of Converted Adabas Files (DAZTCF)

In order to minimize the effort for batch programs accessing only native Adabas files (i.e. files
which do not result from a conversion of a DL/I data base), you may assemble a table containing
a list of the converted files. Link-edit it together with the ADL substitute for the Adabas batch link
module, ADALNK.

You may use the JCL(JCS) in the member ADLTCF (ADLTCE.]) as an example of how to assemble
the table under z/OS (z/VSE).

To create a table of converted files, DAZTCF, you assemble a source containing one call to the
ADL supplied macro DAZTCEF for each DBID to be included in the table.

The two keyword parameters of the DAZTCF macro are:

DBID= |the DBID to be included in the table
FILES= |list of file numbers to be included in the table

Interfaces 17

Batch Installation and Operation

For the FILES= parameter, there are five forms of specifying the argument:

FILES=x a single file to be included in the table

FILES=(x, ...) a single file as part of a list

FILES=((x), ...) |a single file as part of a list

FILES=((x,y), ...) |a range of file numbers from x to y inclusive

FILES=ALL all files for a given DBID

Any number of files may be specified with the FILES= parameter.

DBIDs and file numbers must be specified in ascending sequence. The same DBID can be specified
more than once in the list.

Which files are to be included in the table of converted files, DAZTCEF, should be evaluated very

carefully. Any call referencing a DBID/FNR combination not included in the DAZTCEF table will

be routed directly to Adabas. Thus, if an ADL file is not included in this table, data integrity will
not be maintained by the Consistency Interface. On the other hand, the ADL directory file and all
Adabas, Natural etc. system files should not be included in the DAZTCEF table.

The DAZTCEF table can also be used under CICS. Refer to the section CICS Installation and Oper-
ation for more details.

Note: DAZTCF replaces the ADL 2.2 table of non-converted files DAZNCF which is no
longer supported.

Example:

DAZTCF DBID=001,FILES=ALL

DAZTCF DBID=002,FILES=((14,20),25,(100,200))
DAZTCF DBID=005,FILES=(1060)

END

Summary

In short, to activate the ADL Consistency Interface for Adabas or Natural batch jobs you have to
perform the following steps:

" create the ADL substitute for the Adabas link module,

® rename the original Adabas link module for batch, ADALNK,

" concatenate the ADL load library before the Adabas load library,

® add a DD card for DAZIN1 (z/OS) or an extra input statement on SYSIPT (z/VSE) when you

intend to read dynamic parameters.

Besides that, Adabas or Natural batch jobs run unchanged as described in the corresponding
Adabas and Natural documentations.

18 Interfaces

Batch Installation and Operation

User Exit

ADL Interfaces optionally pass control to a user written routine (user exit) before each call to
Adabas. This user exit may be used for monitoring purposes as well as to apply modifications to
the call parameters before Adabas receives control. The conventions for this user exit and how it
is activated is described in the section Miscellaneous in the ADL Installation documentation.

z/OS JCL Requirements

The JCL requirements for batch operation are discussed in the following pages. Both normal mode
and mixed mode batch operation are described.

Normal Mode Batch Operation

The following table lists the data sets used by the ADL batch monitor when application programs
are run in normal mode.

DDname | Medium Description

DAZOUT1 | Printer | Messages and codes.

Example

//G EXEC PGM=DAZIFP,PARM='DLI,pgmname,psbname’
//STEPLIB DD DISP=SHR,DSN=ADL.LOAD

// DD DISP=SHR,DSN=ADABAS.LOAD

//DDCARD DD *

ADARUN PROGRAM=USER, ...

//DAZOUT1 DD SYSOUT=X

e

//* application program datasets

e

Interfaces 19

Batch Installation and Operation

Mixed Mode Batch Operation

The following table lists the data sets used by the ADL batch monitor when an application program

is run in mixed mode.

DDname | Medium |Description

DAZIN2 | Reader |Control input for the ADL batch monitor, DAZIFP.

DAZOUT1 | Printer |Report, messages and codes.

Example

// EXEC DLIBATCH,MBR=DAZIFP,PSB=psbname
//G.STEPLIB DD

// DD

// DD DISP=SHR,DSN=ADL.LOAD

// DD DISP=SHR,DSN=ADABAS.LOAD
1%

//* datasets describing DL/I data bases
7%

//G.file DD

/1%

//G.DDCARD DD *

ADARUN PROGRAM=USER, ...
//G.DAZOUT1 DD SYSOUT=X

//G.DAZINZ2 DD *
MIX,pgmname,psbname

e

VA application program datasets
/i

DLIBATCH is the standard batch procedure provided by IBM as part of the IMS/DB installation.

z/VSE JCS Requirements

The JCS requirements for batch operation are discussed in the following pages. Both normal mode

and mixed mode batch operation are described.

20

Interfaces

Batch Installation and Operation

Normal Mode Batch Operation

The following table lists the files used by the ADL batch monitor when application programs are

run in normal mode.

DTF Logical Unit | Medium |Description
DAZIN1 SYSIPT | Reader |Control input for the ADL batch monitor, DAZIFP.
DAZOUT1 | SYSLST | Printer |Messages and codes.

The control input for the batch monitor (DAZIFP) and for ADARUN is read from SYSIPT. The

control statements must be specified in the following order:

DLI,pgmname,psbname, ...

/*

ADARUN DB=dbid,MO=MULTI,PROGRAM=USER, ...

/*

user input

J*

Example

// EXEC PROC=ADLLIBS

// EXEC DAZIFP
DLI,pgmname,psbname

/*

ADARUN PROGRAM=USER, . ..

/*
/&

Mixed Mode Batch Operation

input for DAZIFP

input for ADARUN

The following table lists the files used by the ADL batch monitor when an application program
is run in mixed mode.

DTF Logical Unit | Medium |Description
DAZIN1 SYSIPT | Reader |Control input for the ADL batch monitor, DAZIFP.
DAZOUT1 | SYSLST | Printer |Report, messages and codes.

Interfaces

21

Batch Installation and Operation

The control input for the batch monitor (DAZIFP), for ADARUN and for the DL/I initialization
program, DLZRRCO0, is read from SYSIPT. The control statements must be specified in the following
order:

DLI,DAZIFP,psbname,... input for DLZRRCOO
MIX,pgmname,pshname, ... input for DAZIFP
ADARUN DB=dbid,MO=MULTI,PROGRAM=USER, ... input for ADARUN
/*

user input

J*
Example

// EXEC PROC=ADLLIBS

// EXEC DLZRRCOO
DLI,DAZIFP,psbname
MIX,pgmname,psbname
ADARUN PROGRAM=USER, ...
/*

/&

29 Interfaces

4 CICS

Installation and Operation

B Overview CICS INSLAllAtioNvvviirie et e e
= Prerequisites for zZ/OS CICS INStallationevviiiiiiiiii e
= Prerequisites for zZ/VSE CICS INSLallationooiiiiiiiiii s
B IMPOortant NOte fOr CICS USEISt e e eeaa e
= Generating the Runtime Control TADIEScoovviiiiii e
= Tuning and Maintaining the Runtime Control Tablesc.eiiiiiiiiiiii e

= 7/OS Requirements .
= 7/VSE Requirements

= Activating and Controlling the ADL INtErfaCeScouviiiiiiiiiii i

= CALLDLI Interface ...
= Consistency Interface
= User Exit...............

23

CICS Installation and Operation

This chapter covers the following topics:

Overview CICS Installation

To install the ADL interfaces in CICS under z/OS or z/VSE, perform the steps listed below.

Step |Description

Step 1 |Run ADLCSD against the DFHCSDUP utility.

Step 2 |Add entry to the CICS PLT (optional).

Step 3 |Add JCS/JCL to the CICS start-up job.

Step 4 |Edit, assemble and link edit the CICS runtime control tables.

Step 5 |Install the ADL SVC for CICS (z/OS only).
Add entries to the CICS DCT (z/VSE only).

Step 6 |Generate the ACT (z/VSE only).

The individual steps in the CICS procedures are now explained in more detail.

Prerequisites for z/OS CICS Installation

Step 1

Use the member ADLCSD in the ADL source library as input for the CICS DFHCSDUP utility.
This member contains all program, transaction and transient data queue entries required for ADL.
It can be used as delivered or modified to satisfy the local requirements. In particular the following
entries are mandatory:

PROGRAM(DAZCICS)
PROGRAM(DAZNUCC)
PROGRAM(DAZSYNC)
PROGRAM(DAZPSB)
PROGRAM(DAZDBD)
PROGRAM(DAZBUF)
TDQUEUE (DAZP)

24 Interfaces

CICS Installation and Operation

The following entries are optional:

PROGRAM(DAZCINIT)
PROGRAM(DAZCEND)
PROGRAM(DAZCINF)
PROGRAM(DAZCTON)
PROGRAM(DAZCTOFF)
PROGRAM(DAZCDUMP)
TRANSACTION(DAZI)
TRANSACTION(DAZE)
TRANSACTION(DAZS)
TRANSACTION(DAZT)
TRANSACTION(DAZO)
TRANSACTION(DAZD)
TDQUEUE (DAZD)

TDQUEUE (DAZR)

If your DBDs are defined with user-supplied index maintenance exit routines, you have to add
PROGRAM-entries for each of these routines. See the section User-supplied Index Maintenance Exit
Routines in the ADL Installation documentation for more information.

Make sure that all programs in the ADLCSD are accessible by CICS. This can be achieved by
putting the members into the ADL load library and by adding this library to the CICS load libraries.

Note: When you run under CICS TS 2.3 or below, the ADL.LC23 library must be concatenated
in front of the ADL load library.

Step 2 (optional)

If you want the ADL to be initialized automatically when CICS is started up, you must add the
following entry to the CICS PLT:

DFHPLT TYPE=ENTRY,PROGRAM=DAZCINIT

For automatic shutdown of the ADL when CICS is shut down, you must add the following entry
to the CICS PLT:

DFHPLT TYPE=ENTRY,PROGRAM=DAZCEND

Interfaces 25

CICS Installation and Operation

Step 3

Add the following JCL statements to the CICS start-up job(s):

//DAZOUT2 DD DSN=dsnname,.....,
// DCB=(BLKSIZE=nnnn, LRECL=132,DSORG=PS,RECFM=FB)

If you want to run the trace facility under CICS, you must also add the following JCL statements
to the CICS start-up job:

//DAZOUT1 DD DSN=dsnname,....,

// DCB=(BLKSIZE=nnnn, LRECL=132,DSORG=PS,RECFM=FB)
//DAZOUTS5 DD DSN=dsnname,.....,
// DCB=(BLKSIZE=nnnn, LRECL=8192,DSORG=PS,RECFM=VB)

| Note: “dsname” can be any valid data set name. Block Sizes: any legal block size may be

used.
Step 4
When using ADL under CICS, you need to create the three additional runtime control tables
DAZPSB, DAZDBD and DAZBUF as described in the section Generating the Runtime Control
Tables.

Step 5

Copy the ADL SVC program DAZCSVC to an LPA list library. Add the following entry for the
ADL SVC to the SVC table:

SVCPARM nnn,REPLACE,TYPE(3),EPNAME(DAZCSVC) ,APF(NO) /* ADL SVC */

where nnn is a free SVC number in the range of 200-255.

2% Interfaces

CICS Installation and Operation

Prerequisites for z/VSE CICS Installation

Step 1

Use the member ADLCSD in the ADL source library as input for the CICS DFHCSDUP utility.
This member contains all program and transaction entries required for ADL. Remove the transient
data queue entries if the TDQUEUE keyword is not supported by the CICS level in use. The
ADLCSD member can be used as delivered or modified to satisfy the local requirements. In par-
ticular the following entries are mandatory:

PROGRAM(DAZCICS)
PROGRAM(DAZNUCC)
PROGRAM(DAZSYNC)
PROGRAM(DAZPSB)
PROGRAM(DAZDBD)
PROGRAM(DAZBUF)
TDQUEUE (DAZP) - if allowed

The following entries are optional:

PROGRAM(DAZCINIT)
PROGRAM(DAZCEND)
PROGRAM(DAZCINF)
PROGRAM(DAZCTON)
PROGRAM(DAZCTOFF)
PROGRAM(DAZCDUMP)
TRANSACTION(DAZI)
TRANSACTION(DAZE)
TRANSACTION(DAZS)
TRANSACTION(DAZT)
TRANSACTION(DAZO)
TRANSACTION(DAZD)
TDQUEUE (DAZD) - if allowed
TDQUEUE (DAZR) - if allowed

If your DBDs are defined with user-supplied index maintenance exit routines, you have to add
PROGRAM-entries for each of these routines. See the section User-supplied Index Maintenance Exit
Routines in the appendix of the ADL Installation documentation for more information.

Make sure that all programs in the ADLCSD are accessible by CICS. This can be achieved by
putting the members into the ADL load library and by adding this library to the CICS load libraries.

Interfaces 27

CICS Installation and Operation

Step 2 (optional)

If you want the ADL to be initialized automatically when CICS is started up, you must add the
following entry to the CICS PLT:

DFHPLT TYPE=ENTRY,PROGRAM=DAZCINIT

For automatic shutdown of the ADL when CICS is shut down, you must add the following entry
to the CICS PLT:

DFHPLT TYPE=ENTRY,PROGRAM=DAZCEND

Step 3

Add the following JCS statements to the CICS start-up job(s):

// DLBL DAZOUTZ2,'filename',....
// EXTENT SYSnnn,....

If you want to run the Trace facility under CICS, you must also add the following JCS statements
to the CICS start-up job:

// DLBL DAZOUT1,'filename',....
// EXTENT SYSnnn,....

Step 4

When using ADL under CICS, you need to create the three additional runtime control tables
DAZPSB, DAZDBD and DAZBUF as described in the section Generating the Runtime Control
Tables.

28 Interfaces

CICS Installation and Operation

Step 5

If the TDQUEUE keyword of the DFHCSDUP utility is not available in the CICS in use, add the
following entries to the CICS DCT:

DFHDCT TYPE=SDSCI,DSCNAME=DAZOUTZ,BLKSIZE=nnnn,RECSIZE=132,
RECFORM=FIXBLK, TYPEFLE=OUTPUT,DEVICE=DISK

DFHDCT TYPE=EXTRA,DESTID=DAZP,DSCNAME=DAZOUTZ,0PEN=DEFERRED

If you want to run the Trace facility under CICS, you must also add the following entries to the
CICS DCT:

DFHDCT TYPE=SDSCI,DSCNAME=DAZOT5D,BLKSIZE=8196,RECFORM=VARBLK,
TYPEFLE=OUTPUT,DEVICE=DISK

DFHDCT TYPE=SDSCI,DSCNAME=DAZOUTI1,BLKSIZE=nnnn,RECSIZE=132,
RECFORM=FIXBLK,TYPEFLE=OUTPUT,DEVICE=DISK

DFHDCT TYPE=EXTRA,DESTID=DAZD,DSCNAME=DAZOT5D,0PEN=DEFERRED
DFHDCT TYPE=EXTRA,DESTID=DAZR,DSCNAME=DAZOUTI1,0PEN=DEFERRED

Note: Block Sizes: Any legal block size may be used.

Step 6

If you run application programs under CICS which do not explicitly specify the psbname in the
scheduling call but use the default psbname as defined in the CICS application control table, you
have to assemble and link-edit the ACT using the ADL-supplied macros.

Use the sample JCS in the ADL Source Library member ADLACT.J as an example (do not forget
to specify OPTION SYSPARM=DAZACT"). The default name of the load module produced by
this procedure is DAZACT. A two character suffix may be appended to this name if it is necessary
to keep more than one version in the load library. In this case, the ACTSF parameter has to be set
to make the two-character suffix known to ADL. See the sectione ADL Parameter Module in the
ADL Installation documentation for details. The full name of the ACT (for example, DAZACT)
followed by the suffix must be added to the ADLCSD member used as input for the DFHCSDUP
utility.

Interfaces 29

CICS Installation and Operation

Important Note for CICS Users

Any CICS transaction that uses ADL must have a TWASIZE of at least 24 bytes. ADL saves the
24 bytes of the TWA, uses them itself, and then restores their former contents. After this, it returns
to the user. ADL does not use the TWA when PLINTWA=NO is specified while creating the
parameter module. See the section ADL Parameter Module in the ADL Installation documentation
for details.

Generating the Runtime Control Tables

As explained in the section ADL Conversion Utilities for DBDs and PSBs in the ADL Conversion
documentation, the information corresponding to the DBDs and PSBs is stored as external control
blocks on the ADL Directory file. When an application program running under CICS schedules a
particular PSB, all external control blocks related to and the DBDs referenced by that PSB must be
converted to internal control blocks. These internal control blocks are kept in memory, allowing
faster access to the necessary information.

For performance reasons, the conversion from external to internal control blocks should not be
done repeatedly each time a program issues a scheduling call. It would be most appropriate to
convert the control blocks only once and keep them in memory. On the other hand, the storage
available might not be sufficient to hold all internal control blocks at the same time.

The solution chosen by ADL allows optimal performance in smaller systems where all internal
control blocks will be kept in memory, but has the flexibility to handle larger systems with nearly
the same performance.

When ADL is activated under CICS, all DBD and PSB external control blocks that will be accessed
in the online environment are converted to internal control blocks. All DBD-related internal control
blocks are kept in the DAZDBD table. The PSB-related internal control blocks are written to the
ADL Directory file. Whenever a PSB is scheduled for the first time, the related internal control
blocks are rolled into the table DAZBUF and remain there until ADL is switched off.

If the space in the DAZBUF bulffer table is not sufficient to store all PSB internal control blocks,
PSBs that are currently not in use by any application program are purged and, in turn, the requested
PSB is rolled into DAZBUF. The DAZPSB table is used to control the DAZBUF bulffer table.

The DAZBUF bulffer table is arranged in groups, each containing slots. All slots in a group are of
the same size. Thus, if a group of slots are occupied and some PSBs are rolled out, the other groups
are not affected.

In addition to the DBD-related internal control blocks, the DAZDBD table contains the task ID
table, the local user blocks (LUB), the segment description table (SDT), the file description table
(FDT) and the exit routine table (EXR). The task ID table is used to assign a specific task ID to the

30 Interfaces

CICS Installation and Operation

corresponding internal areas. The local user blocks are used as reentrant storage to reduce CICS
getmain requests. With the help of the SDT and FDT tables, the ADL Consistency Interface translates
Adabas database requests to internal DL/I calls. The exit routine table maintains the user exists.

Step 1: Generating the Table of PSBs (DAZPSB)

Assemble and link-edit the table of PSBs, DAZPSB, using as input either

* an existing DL/I Directory List, PSB-PDIR under z/OS, or
® an existing Application Control Table, DFHACT under z/VSE

Ensure that you use the ADL-supplied macro substitutes that are in the ADL source library on
the installation tape.

Note: For z/VSE users: You must specify OPTION SYSPARM="DAZPSB' for the assembly
of the ACT.

Alternatively, the DAZPSB module may be created using the ADL-supplied macros MGPSTIN,
MGPSTEN and MGPSTF], as shown in the following example:

MGPSTIN DATE=mm/dd/yy
Initialization (assembly date)
MGPSTEN NAME=psbname

as many PSB entries as needed

MGPSTEN NAME=psbname
MGPSTFI final macro to trigger table generation
END

An entry for an internally used Consistency PSB will be automatically generated in the DAZPSB
table. The name of this PSB is ADL$PSB.

You may use the JCL (JCS) in member ADLCTG1 (ADLCTGL1.]) as an example of how to assemble
and link-edit the DAZPSB table under z/OS (z/VSE).

The default name for the PSB table module is DAZPSB; however, a two-character suffix may be
appended, if needed to keep more than one version in the load library. See the section ADL Para-
meter Module in the ADL Installation documentation for details on the PSBSF parameter. The full
name (DAZPSB followed by the two-character suffix) must be included in the ADLCSD member
used as input for the DFHCSDUP utility.

Interfaces 31

CICS Installation and Operation

Step 2: Determining Requirements for the Runtime Control Tables

As soon as all PSBs that will be accessed in the online environment are known, the DBDs referenced
by these PSBs and the amount of storage needed for the internal control blocks can be determined
using the external control blocks stored on the ADL directory file.

The ADL utility DAZSHINE can be used to determine requirements for the DAZDBD and DAZBUF
Runtime Control Tables. Figure 2a below shows the four-step table generation process performed
by DAZSHINE. The inputs to DAZSHINE are the DAZPSB table, the ADL Directory file containing
the DBD and PSB external control blocks, the ADL files and a control card in the following format:

MODE=xxxx,RANGE=(start,step)

where xxxx is

SHORT |a report on the status and size of all PSBs will be produced.

FULL |as above, but in addition, a detailed summary on the status of all PCBs contained in each PSB
will be produced.

NONE |none of the above will be printed.

and start and step determine the starting point and size (in bytes) of the steps used to group the
PSBs and produce the PSB size statistics. If you specify RANGE= (128,256) for example, possible
slot sizes will be 128, 384, 640 etc. The defaults are: MODE=NONE, RANGE=(128,128).

The PSBs are only grouped into the given slot sizes, if the total size of all PSBs exceeds 512 Kb.
Otherwise every PSB will have its own slot.

The output of DAZSHINE is a run report, statistics of the size and status of the PSBs contained in
DAZPSB, and the source needed for the generation of the DAZBUF buffer table. The DAZSHINE
run report describes each PCB contained in each PSB, all DBDs referenced by each PCB, and the

status of each referenced DBD (that is, converted or not converted). Thus, you can determine which
PCBs will access converted data bases and which ones will still access non-converted data bases.

32 Interfaces

CICS Installation and Operation

CICS Table Generation Procedure

Interfaces 33

CICS Installation and Operation

PDIRIACT
Source
Statement
Y
Assembly
&
Link Edit
Y
Module
DAZPSB
Control
Statement \
h
ADL = = DAZSHINE
Directory

am

Buffer Table
Definition
Statements

Step 3

h 4
Assembly
&
Link Edit

Module
DAZBUF

/ Files

Step 1

Step 2

DBD Table
Definition
Statements

ﬂ &;
D
L=
S

L 4

Assembly
-
Link Edit

Module
DAZDBD

Report

34

Interfaces

CICS Installation and Operation

Figure 2a: CICS Table Generation

Note, however, that if a PCB references a logical DBD which is not converted, DAZSHINE cannot
find the physical DBDs referenced by this logical DBD. It is therefore recommended that you
convert the control blocks of all logical DBDs, even if the corresponding physical DBDs are not
yet converted.

In order to determine the size requirement for the ADL FDT area in the DAZDBD table, DAZSHINE
reads the FDTs of the ADL files. It uses the FDTs of all the files referenced by a physical DBD that
was converted with CONSI=YES in the GENDBD statement (see the section ADL Data Conversion
Utilities in the ADL Conversion documentation). A list of all these DBDs can be displayed and
modified by the ADL Online Services (see the corresponding section in this documentation).

The output of DAZSHINE provides you with the DBIDs and FNRs of the selected ADL files and,
if the corresponding FDT has been found, with the number of the Adabas fields in each file. Further
the DBD, SDT and FDT area sizes will be displayed. These areas will be allocated with the given
sizes in step 4, if the DBDMAC macro is assembled with the parameter values as calculated by

DAZSHINE.

You may use the JCL (JCS) in the member ADLCTG2 (ADLCTG2.]) as an example on how to execute
the DAZSHINE utility under z/OS (z/VSE).

The default names for the PSB, DBD and buffer table modules are DAZPSB, DAZDBD and DAZBUE,
respectively. A two-character suffix may be appended to each of these names if there is more than
one version to be kept in the source or load libraries. The suffix is set by the PSBSF, DBDSF and
BUFSF parameters. See the section, ADL Parameter Module in the ADL Installation documentation
for details.

Step 3: Generating the Internal Control Block Table (DAZBUF)

The buffer table DAZBUF is arranged in groups of slots of the same size. Figure 2b below depicts
the DAZBUF layout.

The slot size and number of slots in one group are defined with the ADL-supplied macro BUFMAC.
The following keyword arguments are required when calling the BUFMAC macro:

TYPE= ENTRY to specify the entry for one group of slots.

FINAL triggers the generation of the table. A BUFMAC macro with TYPE=FINAL must
be present as the last statement before the END statement.

SIZE= | nnnor nnnK the size of the slots in bytes or kilobytes (K).

NUM= nnn the number of slots in the group.

You cannot specify two groups of the same size. The total size of DAZBUF is limited to 512K; the
BUFMAC macro will issue an error message if this size is exceeded.

Interfaces 35

CICS Installation and Operation

Usually, you do not have to modify the source to create DAZBUF; you assemble and link-edit the
output produced by the DAZSHINE utility. However, in certain cases it might be appropriate to
“tune” the DAZBUF table layout to gain performance when rolling in or rolling out the PSBs.
Refer to the corresponding section below.

You may use the JCL (JCS) in the member ADLCTG3 (ADLCTG3.]) as an example of how to as-
semble and link-edit the DAZBUF table under z/OS (z/VSE).

The default name for the buffer table module is DAZBUEF, however, a two character suffix may
be appended if needed to keep more than one version in the load library. See the section ADL
Parameter Module in the ADL Installation documentation for details on the BUFSF parameter. The
full name (for example, DAZBUF) followed by the two-character suffix must be included in the
ADLCSD member used as input for the DFHCSDUP utility.

36 Interfaces

CICS Installation and Operation

DAZBUF Buffer Table

Size
Entry

Directory

n slots

~ ofsize a

m slots

>.. of size b

Total length £ 512 K

Figure 2b: DAZBUF Buffer Table

Step 4: Generating the DBD Table (DAZDBD)

The DAZDBD table is generated by the assembly and link-edit of a single call to the ADL-supplied
macro DBDMAC, with the following keyword arguments:

NUMDBD= |the number of physical and secondary index DBDs referenced by all PSBs in DAZPSB. Default:
10

NUMSEG= |the total number of segments in the DBDs as included in NUMDBD, above. Default: 50

NUMFLD= |the total number of fields in the DBDs as included in NUMDBD, above. Default: 100

NUMSEC= |the total number of secondary indices specified by all physical DBDs included in NUMDBD,
above. Default: 20

NUMEXR= |the total number of secondary indices for which an index maintenance exit routine is supplied.
Default: 0

NUMAFI= |the total number of ADL files accessible by the ADL Consistency Interface. Default: NUMDBD

Interfaces

37

CICS Installation and Operation

NUMAFD= |the total number of field definitions in all ADL files above. Default: 9 x NUMAFI + 2 x
NUMSEG + NUMSEC + 2 x NUMFLD

The summary report of the DAZSHINE utility (Step 2 above) will provide you with these values,
in the case where you do not use the source generated by DAZSHINE.

Note that you do not have to specify precise parameter values, but they must always be large
enough to cover the total number of entries. You should, therefore, include those DBDs that are
not yet converted but will be in the future. This may prevent having to re-create DAZDBD every
time another database is converted.

In addition to tracking DBD internal control blocks, the DAZDBD module maintains a table of
task entries currently active under ADL. The DBDMAC macro parameter TSKENT specifies the
maximum number of tasks that can be active under ADL at the same time. TSKENT defaults to
255, which should normally be sufficient.

Also, there is an area which contains the local user blocks (LUBs). The LUBs are used at the start
and end of a task which is running against ADL. The LUBENT parameter of the DBDMAC macro
specifies the number of LUB entries. The default value of LUBENT is 10, which should normally
be sufficient.

The other tables contained in the DAZDBD module are the Exit Routine Table, the Segment De-
scription Table (SDT) and the File Description Table (FDT). The Exit Routine Table is used for the
administration of the User-supplied Index Maintenance Exit Routines. See the appendix in the
ADL Installation documentation for more information on exit routines. With the help of the other
two tables, the ADL Consistency Interface assigns an Adabas field to a SENSEG of the internal
PSB in order to generate an internal DL/I call.

You may use the JCL (JCS) in the member ADLCTG4 (ADLCTG4.]) as an example on how to as-
semble and link-edit the DAZDBD table under z/OS (z/VSE).

The default name for the DBD table module is DAZDBD; however, a two- character suffix may
be appended if needed to keep more than one version in the load library. See the section ADL
Parameter Module in the ADL Installation documentation for details of the DBDSF parameter. The
full name followed by the two-character suffix must be included in the ADLCSD member used
as input for the DFHCSDUP utility.

38 Interfaces

CICS Installation and Operation

DAZDBD Header Header

Task Header Task Table
Task Ent

LUB Header Local User Blocks
LUB Ent

DBD Header DBD Table
DBD ICB

EXR Header Exit Routine Table
EXR Ent

SDT Header Segment Description Table
SDT Ent

FDT Header File Description Table
FDT Entry

DTy |

Interfaces 39

CICS Installation and Operation

Figure 2c: DAZDBD Table

Tuning and Maintaining the Runtime Control Tables

When ADL is active under CICS, it continuously monitors the performance of the buffer table
DAZBUF and the PSB usage. When switched off, ADL prints a summary of the buffer performance.

This CICS Monitor Performance Summary report, which is written to the extra partition dataset
destination DAZP, can be printed using either the DAZPRINT utility or any standard printing
utility. The DAZPRINT utility is activated by executing the ADL initialization program DAZIFP
with the parameters shown below:

PRT,DAZPRINT
MODE=ROUTINE

The CICS Monitor Performance Summary tells you, how often a group of slots was used to roll
in a PSB from the directory file (“PSB Rolled In” count) and how frequently a task had to put in
wait status because a slot could not immediately be freed (“Task Wait” count). If the Task Wait
count is rather high compared to other groups of slots and to the Roll In count, the number of slots
in this particular slot group should be increased.

The Performance Summary also lists all PSBs by slot groups. This list shows the actual size of the
PSB internal control blocks, how frequently they have been used (Use Count) and how frequently
they have been rolled out (Roll Out Count). A Use Count of zero indicates that the particular PSB
was never scheduled during the CICS session, so you should check if such a PSB can be omitted
from the list of PSBs in the DAZPSB Table.

The performance of the buffer management can be improved by changing the number of slots for
the particular groups, by changing the group's slot sizes, or by adding or deleting slot groups.

The requirements for the buffer management will also change during the conversion process,
when more and more data bases will be converted. In particular, when additional DBDs or PSBs
are converted, you must check that the DAZDBD table is still large enough to handle all DBD in-
ternal control blocks and all corresponding FDTs. It is recommended, however, to repeat the steps
2, 3 and 4 of the CICS control table generation completely.

40 Interfaces

CICS Installation and Operation

z/0S Requirements

The following table lists the data sets used by the utility DAZSHINE.

DDname | Medium |Description

DAZIN1 | Reader |Control input for the ADL batch monitor, DAZIFP, and for the DAZSHINE utility.
DAZOUT1 | Printer |Messages and codes.
DAZOUT?2 | Report |Report.
DAZOUT4 | Disk [Source for the DAZBUF and DAZDBD table generation.

Examples:

The following is an example of a job to run the DAZSHINE utility:

// EXEC PGM=DAZIFP,PARM="SHI,DAZSHINE'
//STEPLIB DD DISP=SHR,DSN=ADL.LOAD
// DD DISP=SHR,DSN=ADABAS.LOAD

//DDCARD DD *

ADARUN PROGRAM=USER, ...

//DAZIN1 DD *

MODE=mode, RANGE=(start,step)

//DAZOUT1 DD SYSOUT=X

//DAZOUT2 DD SYSOUT=X

//DAZOUT4 DD DSN=&&DECK,DISP=(,PASS),UNIT=SYSDA,

// SPACE=(80, (100,100),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)
/=

// EXEC PGM=IEBUPDTE,PARM=NEW

//SYSPRINT DD SYSOUT=X
//SYSUTZ DD DSN=ADL.SOURCE,DISP=SHR
//SYSIN DD DSN=&&DECK,DISP=(OLD,DELETE)

The following is an example of a job to print the CICS Monitor Summary:

//PRT EXEC PGM=DAZIFP,PARM='PRT,DAZPRINT'
//STEPLIB DD DISP=SHR,DSN=ADL.LOAD

//DAZINS DD DISP=SHR,DSN=cics-file-dazout?
//DAZOUT1 DD SYSOUT=X

//DAZIN1 DD *

MODE=ROUTINE

/*

Interfaces 41

CICS Installation and Operation

z/VSE Requirements

The following table lists the data sets used by the utility DAZSHINE.

DTF Logical Unit | Medium |Description

DAZIN1 SYSIPT | Reader |Control input for the ADL batch monitor, DAZIFP, and the DAZSHINE
utility.

DAZOUT1 | SYSLST | Printer |Report, messages and codes.

DAZOUT2 | SYS011 | Printer |Report. *

DAZOT3D | SYS013 Disk |Report. **

DAZIN3D | SYS013 Disk |Report. **

DAZOUT4 | SYSxxx Disk |Source for the generation of the DAZBUF table.

* Only required when more than one logical printer is available. In this case, SYS011 may be used
to assign a second printer to which the report will be routed directly.

**Only required when only one logical printer is available. In this case, the report which is normally
directed to DAZOUT?2 as the second print file will be directed to disk. At the end of the job it will
be read from disk and routed to DAZOUTI.

The control input for the batch monitor (DAZIFP), for ADARUN, and for DAZSHINE itself are
all read from SYSIPT. The control statements for this must be specified in the following order:

SHI,DAZSHINE Input for DAZIFP
/%

ADARUN DB=dbid,MODE=MULTI,PROGRAM=USER, ... Input for ADARUN
/%

MODE=mode, RANGE=(start,step) Input for DAZSHINE
/%

42 Interfaces

CICS Installation and Operation

Examples:
The following is an example of a job to execute the DAZSHINE utility:

// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL DAZOUT4, 'punchfile',0,SD

// EXTENT SYS010,volser,

// ASSGN SYS013,DISK,VOL=volser,SHR
// DLBL DAZOT3D, 'printfile',0,SD

// EXTENT SYS013,volser,

// DLBL DAZIN3D, 'printfile',0,SD

// EXTENT SYS013,volser,

// EXEC DAZIFP

SHI,DAZSHINE Input for DAZIFP
/*

ADARUN PROGRAM=USER, ... Input for ADARUN
/*

MODE=mode, RANGE=(start,step) Input for DAZSHINE
/*

// DLBL IJSYSIN, 'punchfile’

// EXTENT SYSIPT,volser ASSGN SYSIPT,DISK,VOL=volser,SHR
// EXEC LIBR,PARM="ACCESS S=data_set_name'

/&

CLOSE SYSIPT,READER

The following is an example of a job to print the CICS Monitor Summary:

// JOB

// ASSGN SYS014,DISK,VOL=xxxxxx,SHR
// DLBL DAZINS5D, 'data_set_name',0,SD
// EXTENT SYSO014,XXXXXX

// EXEC PROC=ADLLIBS

// EXEC DAZIFP

PRT,DAZPRINT

/*

MODE=ROUTINE

/*

/&

Interfaces 43

CICS Installation and Operation

Activating and Controlling the ADL Interfaces

Under CICS, the ADL Interfaces may be activated in the following three ways:

" Automatic activation
= ADL Online Services

® ADL transactions

Automatic activation and deactivation of ADL may be achieved by adding entries to the CICS
PLT for the ADL Interface modules DAZCINIT (for start-up) and DAZCEND (for shut-down).
This is described earlier in this section.

The most convenient way of managing the ADL interfaces is provided by the ADL Online Services,
which allow you to activate and deactivate the ADL interfaces as well as start and stop the ADL
trace facility for some or all terminals. You can list the CICS PSB table and write the ADL tables
on the CICS dump file. These features are described in more detail in the section ADL Online Services.

ADL provides transactions to activate, deactivate and control the ADL Interfaces under CICS. In
contrast to the ADL Online Services (which is a Natural application), these transactions are written
in Assembler, so they can be used in environments where Natural is not available. Each transaction
corresponds to one function as described below. After the requested function is performed, the
current status of ADL is displayed on the screen and control is returned to CICS.

The following functions are available:

Transaction Program Function

DAZI DAZCINIT |Switch on the ADL Interfaces

DAZE DAZCEND |Switch off the ADL Interfaces

DAZT DAZCTON |Start the ADL trace facility for all terminals
DAZO DAZCTOFF |Stop the ADL trace facility

DAZD | DAZCDUMP |Write the ADL tables to the CICS dump files
DAZS DAZCINF |Display the current status of the ADL Interfaces

In addition to the programs outlined above, the program DAZCFCT is delivered as source code.
It can be used to switch on the ADL trace facility for a specific terminal. The parameters of
DAZCFCT are given as assembler variables and their purpose is explained in comments in the
source code. A sample JCL/JCS to assemble and link-edit the program is provided in the source
library member ADLCFCT (ADLCFCT.)).

44 Interfaces

CICS Installation and Operation

When the ADL Interfaces are activated, the following sequence of informational messages is sent
to the operator console:

ADL0931 - Adabas Bridge for DL/I - Nucleus loaded
ADL0936 - ADL table DAZPSB Toaded

ADL0937 - ADL table DAZDBD loaded

ADL0935 - ADL table DAZBUF Toaded

ADL0933 - ADL Consistence Interface is active
ADL0938 - ADL task related user exit is active
ADL0939 - Adabas Bridge for DL/I initialised

When the ADL Interfaces are activated manually, the message ADL0939 is also displayed at the
terminal.

If the initialization of ADL fails, or the ADL Interfaces are in INDOUBT status, you should carefully
evaluate the cause of this problem. After correcting the error, you can activate the ADL Interfaces
with the DAZI transaction. It is recommended, however, to restart your CICS system after a failure
of the ADL Interfaces initialization in order to ensure a defined state of the system.

At the start of each transaction the INDOUBT is indicated. This will be overwritten at the end of
the transaction by the final status.

*** Adabas BRIDGE for DL/I 2.3.1 **x*

CALLDLI Interface On
Consistence Interface .. On
Routine Trace Off
Call Trace Off
Trace Term ID

DL/I in System Yes
CICS Level 0640

ADL0939 - Adabas Bridge for DL/I initialised

Figure 2d: The ADL transaction DAZI

Interfaces 45

CICS Installation and Operation

CALLDLI Interface

Normal Mode and Mixed Mode

As is the case with batch processing, the ADL CALLDLI Interface may be used with CICS in both
normal mode and mixed mode. In contrast to batch processing, however, there is no difference
between execution of CICS transactions in the two modes. The decision whether to pass a DL/I
call to ADL or to DL/I is made completely automatically, and is based on the status of the PSB and
DBD being used. The status of the PSB is displayed with the CICS PSB table in the ADL Online
Services. The various possibilities are as follows:

PSB Status |Description

ADL The PSB and all related DBDs are converted; and the PSB is included in DAZPSB. Each call
will be passed on to ADL (Adabas).

Mixed |The PSB is converted and included in DAZPSB. At least one referenced DBD is converted and
one is not converted. The ADL CALLDLI Interface will check the DBD accessed. If the DBD
has been converted to Adabas, the call will be passed on to the ADL CALLDLI Interface: if not,
it will be passed on to DL/I.

DL/I The PSB is not converted or not included in DAZPSB or all related DBDs are not converted.
Each DL/I call will be passed on to DL/L

Note that all DBDs related to a PSB which has the status DL/I or Mixed must be properly defined
for DL/I and that the corresponding databases must be opened, regardless of the status of the DBD
(converted or not). ADL will pass the scheduling call for each of the PSBs to DL/I, which will return
a scheduling error code (one of “TA”, “TE”, “TJ”, “TH”, “TK” or another) to the application.

Also, ADL will pass all calls referring to PSBs which are not contained in the ADL table of PSBs,
DAZPSB to DL/I.

Link-Editing of Application Programs

In general, application programs do not have to be re-linked. ADL provides a language interface
with the ADL load libraries:

DAZLICI3 |for CICS under z/OS.
DAZLICID (for z/VSE CICS.

These modules provide the entry points CEETDLI, ASMTDLI, PLITDLI, CBLTDLI, RPGDLI and
FORTDLI. You may need these interfaces to replace the IBM language interfaces DFSLIO00 (z/OS)
and DLZLIO00 (z/VSE) in case of DL/I not being available in your system.

46 Interfaces

CICS Installation and Operation

For detailed information on how to link-edit a CICS application, see the CICS Installation and Op-
eration Guide for z/OS or z/VSE.

Note: Application programs which have been linked with DAZLICI2 of ADL 2.2 or earlier

cannot run with ADL 2.3. Therefore these applications must be re-linked with the new
DAZLICI3. DAZLICI3 is CICS release independent so that a further relinking will be no
more required.

De-synchronization of CICS Applications

Programs which issue DL/I and native Adabas calls (e.g. Natural for DL/I programs), will encounter
“synchronization” problems after the DL/I data has been converted to Adabas and is accessed
through the ADL. This is because from the Adabas point of view, all calls are issued by one user.
The open call issued by the program is overwritten by the open call of ADL, similar problems
arise for ET, BT, RC and CL commands.

ADL offers a parameter “ADAUSR”. If you set this parameter to “YES”, the ADL CALLDLI Interface
generates its own Adabas user ID which avoids the mismatching with the Adabas direct commands
issued by the program. The Adabas user ID is only generated when the ADL Consistency interface

is active. Adabas calls against the ADL Consistency run under the same user ID as the native
Adabas calls.

If you do not have programs issuing DL/I and Adabas calls simultaneously, you can set
“ADAUSR=NQO” which is also the default.

Consistency Interface

This section describes how the ADL Consistency Interface intercepts Adabas calls in a CICS envir-
onment and the actions necessary to activate the Consistency Interface.

The internal PSB with the name ADL$PSB is automatically generated by the ADL Consistency
Interface. It is built up dynamically based on the contents of the ADL Directory file whenever
ADL is switched on in a CICS system. With the CONSI parameter of the GENDBD function in the
ADL Control Block Conversion Utility, you can define which DBDs should be used to build up
the internal PSB (refer to the ADL Conversion documentation for details). The same functionality
is provided by the DBDs for Consistency function in the ADL Online Services (see the correspond-
ing section in this documentation).

The purpose of the consistency PSB, ADL$PSB, is to allow the Consistency Interface to generate
internal DL/I calls to serve data base requests from Natural or Adabas applications.

Interfaces 47

CICS Installation and Operation

Installing the Consistency Interface

The ADL Consistency Interface for CICS intercepts Adabas calls in an Adabas user exit named
ADLEXITB.

To operate with the Consistency Interface, add a statement for ADLEXITB to the linkage editor
input for the Adabas link module under CICS, as described in the ADL Installation documentation.

& Important: When the ADL Consistency is used with Adabas version 8.1, an Adabas correction
must be applied. This is CI812002 for Adabas 8.1.2 or CI813001 for Adabas 8.1.3.

Customizing the Consistency Interface

When ADL is “switched off” in a CICS system, each Adabas call will be rejected by the ADLEXITB
user exit with a response 216. However, if you link a table of converted Adabas files (DAZTCF)
to the Adabas link module under CICS, a call will be rejected only if it refers to a file which is in
this table. The method for generating a table of converted Adabas files is described in Consistency
Interface in the section Batch Installation and Operation.

The contents of the DAZTCEF table should be evaluated very carefully. Do not include the ADL
Directory file, Adabas and Natural system files etc., but include ADL files. Once ADL is switched
on, the DAZTCF table is no longer used. Instead, a similar table is generated dynamically based
on the information in the ADL Directory file.

Activating the Consistency Interface

Finally, for the Consistency Interface to become active under CICS, ADL has to be “switched on”
in that particular CICS system. See the section Activating and Controlling the ADL Interfaces.

Once ADL is switched on, the status of the internal Consistency PSB 'ADL$PSB' indicates the status
of the Consistency Interface.

PSB |Status Description

ADL |The Consistency Interface is active and the Consistency PSB is successfully initialized.

Mixed |The Consistency Interface is active but the Consistency PSB is found to be empty.

DL/I |The Consistency Interface is not active.

48 Interfaces

CICS Installation and Operation

Parameters for the Consistency Interface

This section describes which parameters are of importance for the Consistency Interface and how
you may initialize them. The meaning of the individual parameters, their possible values and their
default values are described in the ADL Installation documentation in the section ADL Parameter
Module.

All parameters are initialized by the assembly and link-edit of the ADL parameter module. Para-
meters of particular importance for the Consistency Interface in a CICS environment are:

FSTAC |the size (in bytes) of the internal format buffer stack

RBSIZ |the size (in bytes) of the internal record buffer

Summary

To activate the ADL Consistency Interface under CICS, you have to perform the following steps:

= assemble the table DAZTCEF of converted Adabas files (optional);
include ADLEXITB in the linkage editor input statements of the Adabas link or globals module;

include DAZTCF in the linkage editor input statements of the Adabas link or globals module
(optional);

® ensure that ADL is “switched on” in the CICS system.

User Exit

ADL Interfaces optionally pass control to a user written routine (user exit) before each call to
Adabas. This user exit may be used for monitoring purposes as well as to apply modifications to
the call parameters before Adabas receives control. The conventions for this user exit and how it
is activated is described in section Adabas Call User Exit in the ADL Installation documentation.

Interfaces 49

50

5 IMS/TP Installation and Operation

= Qverview

= Generating the Runtime Control TADIEScoouiiiiiiiii e

= CALLDLI Interface

B ADL Pre-load PrOGraMoeiiiiieii et

= User Exit

= JCL Requirements

51

IMS/TP Installation and Operation

This chapter covers the following topics:

Overview

For application programs accessing ADL to be able to run under IMS/TP, the batch-specific steps
of the installation procedure must have been performed.

Each application program affected must be re-linked with an ADL front-end program, DAZENTRY.
This front-end program then passes control to ADL for PSB initialization every time the application
program is entered. After this, control is given to the application program.

Each DL/I call issued by the application program is passed on to the ADL CALLDLI Interface,
which then determines whether it must be passed on to IMS, handled by ADL itself, or both. Calls
using a DB PCB are handled as if the application program were running in mixed mode. All calls
against converted data bases are handled by ADL; all other calls are passed on to IMS. Calls using
an I/O PCB are generally passed on to IMS, except for the GU and CHKP calls using the first I/O
PCB. These are treated first of all by ADL as a checkpoint call (i.e. an Adabas ET call is issued),
and are then passed on to IMS.

If all DB PCBs of a PSB refer to converted databases, the DB PCBs can be deleted from the IMS
PSB (but not from the ADL PSB). This avoids warning messages from IMS/TP at start-up of the
message region, if the corresponding VSAM file is no longer available.

Generating the Runtime Control Tables

To operate the ADL Interfaces under IMS/TP you need to generate three runtime control tables:

DAZPSB |a table containing an entry for each PSB to be used in the IMS/TP system. A PSB, which does
not contain DB PCBs (i.e., it contains TP-PCBs only) should not be included in the table.

DAZDBD |a table which is used to store DBD internal control blocks.

DAZBUF |a table used as a buffer for PSB related internal control blocks which are subject to roll in/roll
out mechanisms.

These tables are exactly the same as those needed to operate the ADL Interfaces under CICS. For
brevity, the generation of these tables is described only once, in the section CICS Installation and
Operation.

As is the case under CICS, the ADL CALLDLI Interface will only route those data base requests
to ADL which reference a PSB contained in the DAZPSB table.

52 Interfaces

IMS/TP Installation and Operation

A summary report on the performance of these tables in a particular message region will be written
to the file DAZOUT2 when the message region is terminated.

CALLDLI Interface

IMS/TP Message Region Execution

To invoke an IMS/TP Message Region under ADL, execute the DAZIFP initialization program.
This program requires input (positional and keyword) parameters similar to those for the IMS
Message Region Controller. These are explained below.

The JCL describing the original IMS data bases which have been converted is not required.

The ADL load library containing the executable ADL batch module and the Adabas load library
must be included in the JCL. ADARUN control statements must also be provided, as is the case
with any Adabas application program. For a detailed description of JCL requirements, see the end
of this section.

Pre-requirements for IMS/TP Application Programs

Each application program running under a Message Region Controller started with ADL must be
re-linked with DAZENTRY using the following link edit directives:

ENTRY DAZENTRY

CHANGE pgment(DLITASM)
INCLUDE APPL(pgmname)
INCLUDE ADLLOAD(DAZENTRY)
NAME pgmname(R)

where

pgmname |is the name of the application program and

pgment |is the name of the entry part of the application program.

Only main programs, i.e., programs which are initially called by a transaction, should be linked
with DAZENTRY, but not subprogrames, etc..

Interfaces 53

IMS/TP Installation and Operation

Parameters for the ADL Message Region Control Program

All IMS parameters (i.e. those parameters specified in the EXEC statement) will be passed on un-
changed to IMS. The first positional parameter is also interpreted by DAZIFP and should be spe-
cified as follows:

MSG

This indicates an IMS/TP Message Region run.

In addition to the positional parameter mentioned above, you may specify one or more keyword
parameters in order to control operation of ADL. Such keyword parameters must be specified in
a separate control statement with the following format:

keyword

The following table provides a brief explanation of the various keywords which can be specified.
For further information on all the parameters (including default settings), see the section ADL
Parameter Module in the ADL Installation documentation.

Keyword |Description
BUFSF |A two-character suffix for the name of the buffer table module.
DBD |The size (in kilobytes) of the ADL DBD ICB bulffer.
DBDSF | A two-character suffix for the name of the DBD table module.
DBID |The Adabas data base ID for the ADL directory file.
EBUF |The size (in kilobytes) of the ADL ECB buffer.
FNR |The Adabas file number of the ADL directory file.
IMSY |IMS/TP syncpoint/Adabas ET synchronization.
PLI |Passes parameters on to PL/I. See the section Batch Installation and Operation in this
documentation for details.
PSB |The size (in kilobytes) of the ADL PSB ICB buffer.
PSBSF | A two-character suffix for the name of the PSB table module used under CICS.
STACK |The size (in kilobytes) of the ADL internal subroutine stack.
TRACE |Activates the TRACE facility and specifies what is to be traced.

54

Interfaces

IMS/TP Installation and Operation

ADL Pre-load Program

Add an entry for DAZMPL to the IMS/TP pre-load list DFSMPLxx. The module DAZMPL is de-
livered in the ADL load library. It is linked as re-usable and not re-entrant. This ensures that
IMS/TP will reload it after a failure.

User Exit

ADL Interfaces optionally pass control to a user written routine (user exit) before each call to

Adabas. This user exit may be used for monitoring purposes as well as to apply modifications to
the call parameters before Adabas receives control. The conventions for this user exit and how it
is activated is described in the section Adabas Call User Exit in the ADL Installation documentation.

JCL Requirements

The following table lists the data sets used by the ADL batch monitor when an IMS/TP Message
Processing Region is run.

DDname | Medium |Description

DAZIN2 | Reader |Control input for the ADL batch monitor, DAZIFP, and the keyword parameters.
DAZOUT1 | Printer |Messages and codes.
DAZOUT?2 | Printer |DAZIFP initialization and termination report.

Example

//REGION EXEC PGM=DAZIFP,PARM=(MSG,.......)
//STEPLIB DD DSN=IMSVS.PGMLIB,DISP=SHR

// DD DSN=IMSVS.RESLIB,DISP=SHR

// DD DSN=ADL.LOAD,DISP=SHR

// DD DSN=ADABAS.LOAD,DISP=SHR

//DDCARD bbb %

ADARUN PROGRAM=USER, . ..
//DAZINZ bbb *
DBID=9, FNR=30

//DAZOUTL DD SYSOUT=X
//DAZOUT2 DD SYSOQUT=X

Interfaces 55

56

6 ADL Online Services

= |ntroductionccoeeeenn...
= MainMenucooeevenn

= Maintaining the ADL Interfaces Under CICSoooiiiiiiii e
= ADL Directory Management FaCIItYoooiimiiiiiii e
B Consistency DBD MaiNtENANCEvvviiiiiiiiiiiiiie e
= Maintenance of the ROIEA-OUE PSBS ..o

= Maintenance of Checkpoints

= Messages and Codes REMEVALoiiiiiiiiiiie e

57

ADL Online Services

This chapter covers the following topics:

Introduction

The ADL Online Services provides services which are used:

" to maintain the ADL Interfaces under CICS,

" to report the contents of the ADL directory file, in particular the DBD and PSB control blocks,
" to assign DBDs for the ADL Consistency Interface,

= to handle the rolled-out PSBs for CICS or IMS/TP,

" to maintain the checkpoints stored in the directory,

" to retrieve ADL messages and codes.

ADL
Online
Services

ciCSs DBDs for Checkpoint

Maintenance Consistency Maintenance
Directory Rolled-out Messages
Management PSB related and Codes
Facility ICBs Retrieval

Figure 1: ADL Online Service Main Functions

Each of these services is selectable from the Main Menu of the ADL Online Services, and the fol-
lowing sections describe them in detail. Note that the service “CICS Maintenance” is only of interest
if you are running ADL in a CICS environment, and the service “Rolled-out PSB related ICBs” is
only of interest if you are running in a CICS environment or under IMS/TP. The service “DBDs
for Consistency” is only of interest if Natural or Adabas direct call programs are modifying the
migrated data.

58 Interfaces

ADL Online Services

Prerequisites

The ADL Online Services is an online application written in Natural. Therefore it can only be ac-
cessed if Natural is available on your site. Furthermore, the service “Maintenance of the ADL In-
terfaces under CICS” can only be used if the ADL Online Services are installed in the same CICS
as the ADL Interfaces. The main functions under CICS, however, can also be performed from As-
sembler applications. Refer to the section CICS Installation and Operation in this documentation
for more information on the ADL functions under CICS.

In order to access the ADL Directory file, the ADL Online Services must be aware of the DBID
and the file number of the ADL Directory file. You have to specify the following Natural parameter:

LFILE=(207,dbid, fnr)

where dbid and fnr are the database ID and file number of the ADL Directory file. The LFILE
parameter is described in detail in the Natural Parameter Reference documentation. If the LFILE
parameter is not defined, The ADL Online Services will display the following message at startup:

Warning: No Natural LFILE parameter for ADL directory!

In this case, you must specify the DBID and file number of the ADL Directory file in the Main
Menu, as described later.

Starting the ADL Online Services

The programs of the ADL Online Services are stored on the SYSADL library. To start the application,
enter the following statements:

LOGON SYSADL MENU
Terminating the ADL Online Services

To terminate the session, press the PF3, PF12 or CLEAR key in the Main Menu, or select the code

“” 7

.” in the Main Menu.

Interfaces 59

ADL Online Services

Online Help

For each menu of the ADL Online Services there is a help facility available. Press the PF1 key to
access the help information corresponding to the current screen.

General Key Assignments

If not otherwise stated, the following general key assignments are valid for all of the screens in

the ADL Online Services:
Key | Value |Meaning
PF1 | Help |Display online help for the current screen.
PF3 | Exit |Save modifications, if any, and return to previous screen.
PF7 | Prev |Scroll to previous page.
PF8 | Next |Scroll to next page.
PF10 | Top |Scroll to first page.
PF11 | Bot |[Scroll to last page.
PF12 | Can |As PF3, but modifications are not saved.
PF15 | Menu |Save modifications, if any, and return to the Main Menu.
Clear As PF15, but modifications are not saved.

General Map Elements

Every screen of the ADL Online Services contains the following elements:

B Current date and time.

® ADL Online Services version.

® DBID and file number of the ADL directory.

= Name of the active function.

® Name of current map.

Note that in the CICS Maintenance the ADL Online Services version and DBID/FNR displayed
are those of the ADL nucleus rather than those of the Natural environment currently used.

60

Interfaces

ADL Online Services

Main Menu

When you start the ADL Online Services, the following menu is displayed:

10:55:01 ***x ADL ONLINE SERVICES 2.3.1 **x* 19.06.2007
01424 / 00802 - Main Menu - MENU---M

Code Function ADL Directory

A DBDs for Consistency (ADABAS) DBID: 1424
CICS Maintenance FNR 802
Directory Management Facility = -------------
Messages and Codes Retrieval

Rolled-out PSB-related ICBs

ADL Version and Correction Status

Checkpoint Maintenance

Help

Terminate Session

VX << X O O

Enter=RPFl===PF2===PF3===PFl===PF5===PFG===[PIF7 = = =[PF@= = =PFY===PFLO-=PFLlL-==PF12==-
Help Exit Can

In the Main Menu you can select which of the ADL online service you want to use. The functions
provided are described below in details. Additionally you can specify the DBID and file number
of the ADL directory. The DBID/FNR specified will be used in all services; solely the CICS Main-
tenance uses the DBID and file number of the ADL CICS nucleus.

The Main Menu provides the following functions:

Code |Function

A |DBDs for the ADL Consistency Interface. You can list and modify the status of all converted physical
databases.

C |CICS Maintenance. The current status of the ADL Interfaces and of the ADL trace facility is outlined
together with some system information. You can start and stop the ADL Interfaces, switch the ADL
trace facility on and off, list the ADL PSB table for CICS, list the ADL zap status and write the ADL
tables to the CICS dump file.

D |Directory Management Facility. You can list the DBDs and PSBs of the ADL Directory file. The
segment and field definitions are outlined together with their corresponding Adabas definitions.

Interfaces 61

ADL Online Services

Code |Function

There is also a function which supplies you with a detailed list of information of each external control
block.

M |Messages and Codes Retrieval. You can display the full ADL error message text corresponding to
ADL error numbers. Also, the ADL abend codes and the DL/I status codes can be retrieved.

R |Rolled-out PSB-related ICBs. You can list the PSBs and corresponding environments, and delete
unused PSBs.

X |Checkpoint Maintenance. Your can list and delete checkpoints of programs which terminated
abnormally.

? |Online Help.

Terminate the ADL Online Services.

To terminate the session, press either PF3 or PF12 or the Clear key.

Maintaining the ADL Interfaces under CICS

This service is reached by selecting code C in the Main Menu, and allows you to maintain the ADL
Interfaces under CICS.

10:57:37 ***% ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - CICS Maintenance - ADLCICSM
CALLDLI Interface Off Terminal ID TCG7/
Consistency Interface .. Off Routine Trace .. Off
DL/I in System Call Trace Off
CICS Level 0640 Trace Term ID ..
Functions

_ Switch ADL Interfaces on
_ Switch Trace Facility on
_ List CICS PSB Table

_ List ADL Zap Status

_ Dump ADL Tables

Mark the requested function(s).

Enter=RPFl===PF2===PF3===PFl===PF5===PFG===[PIF7 = = =[PF@= = =PFY===PFLO=-=PFLl==PF12==-
Help Exit ADL Trace PSBs Zaps Can

62 Interfaces

ADL Online Services

The screen for this service displays the DBID and file number of the ADL Directory file as defined
in the parameter module of the ADL CICS nucleus. The version of the ADL CICS nucleus is also
displayed. These values may therefore differ from those displayed in other screens of the ADL
Online Services.

The screen informs you about the status of the ADL Interfaces. The ADL CALLDLI Interface can
be in any one of the following states:

Status |Description

Off The ADL CALLDLI Interface is not active. All DL/I requests are routed to DL/I (if available).

On The ADL CALLDLI Interface is active. All DL/I requests are routed to ADL, which decides
whether they can be handled by Adabas or whether they have to be forwarded to DL/I (mixed
mode only).

Indoubt |The ADL Interfaces are in an undefined state. The initialization could not be completed
successfully. Do not attempt to run your system when it is in this state. Deactivate the ADL
interfaces and determine the cause of the problem. When the problem has been solved, you can
start the ADL Interfaces again. You are recommended, however, to restart your CICS system
after a failure of the ADL initialization.

The ADL Consistency Interface can be in one of the following states:

Status |Description

Off |The ADL Consistency Interface is either not installed or not activated. If it is not installed, all Adabas
requests are routed to Adabas. Otherwise, depending on the entries in the DAZTCEF table, the call
is either routed to Adabas or is refused with response 216.

On |The ADL Consistency Interface is installed and active. All Adabas requests are routed to ADL,
which then decides if the requests can be forwarded directly to Adabas, or if they have to be
processed by ADL first.

Furthermore, the CICS Maintenance menu outlines the terminal ID, the CICS level, and whether
DL/l is in the system. The latter information can only be retrieved if the ADL CALLDLI Interface
is active. Finally the status of the ADL trace facility is displayed. It shows if the ADL internal
routines and/or the DL/I and Adabas calls will be traced and for which terminal(s).

The functions provided by the CICS Maintenance menu are described now in detail. If you mark
more than one function, they are processed one after the other.

Interfaces 63

ADL Online Services

Switch ADL Interfaces on / off
When you mark this function in the CICS Maintenance menu, the ADL CALLDLI and Consistency

Interfaces are switched on or off, depending on their current status. When switching ADL off, you
will be asked to confirm the requested function in a pop-up window.

The ADL Consistency Interface will only be activated if it is installed. This function will also reset
all internal tables used by ADL to handle the PSB scheduling. In addition a summary will printed
on the performance of the ADL buffer management. See the section Generating the Runtime
Control Tables in the for more details on how to use this report.

When the ADL CALLDLI Interface is successfully activated the following message is displayed:
ADL0939 - Adabas Bridge for DL/I initialized
When the ADL Interfaces are deactivated, the following message is displayed:

ADL0940 - Adabas Bridge for DL/I switched off

Switch Trace Facility on / off

When you select this function in the CICS Maintenance menu the following pop-up window is
displayed

11:10:15 **%*% ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - CICS Maintenance - ADLCICSM
CALLDLI Interface On Terminal ID TCG/
Consistency Interface .. On Routine Trace .. Off
DL/T in System No Call Trace Off
CICS Level 0640 Trace Term ID ..
Functions
S i R I e R L R R LR L LR L LR L L LEEL L LR +
x Switch T| Switch on ADL Routine Trace . Y |
_ List CIC| Switch on ADL Call Trace Y |
_ List ADL| Terminal ID(sS)............... TCG7 |
_ Dump ADL] |
|
|

| Enter to perform, PF3 to exit

Mark the requested function(s).

64 Interfaces

ADL Online Services

ERter=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFL10==PF11l==PF12==-=
Help Exit ADL Trace PSBs Zaps Can

This Trace facility provides the same trace possibilities as the batch Trace facility described in the
section Debugging Aids - ADL Trace Facility later in this documentation.

You can specify which kind of trace should be activated and for which terminal(s). The default
terminal ID is the current one. A blank character is treated as a wildcard. For example to switch
on the ADL Trace facility for all terminals where the ID starts with an 'A’, specify 'A ' as terminal
ID. If the terminal ID is completely blank, the ADL Trace facility is started for all terminals. Note,
that you can only activate the Trace facility successfully, if the trace datasets have been installed.

List CICS PSB Table

If you select this function in the CICS Maintenance menu, the following screen is displayed.

11:19:15 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - CICS PSB Table - ADLCPSBM
Nr. Name Status Lan #PCB #I0-PCB DBID Schedule Total use Rolled out

29 PSB026 DL/1 - - - - - - -
30 PSB027 DL/1 - - - - - - -
31 PSB028 DL/1 - - - - - - -
32 PSB029 DL/1 - -
33 PSB030 DL/I - -

34 SCHOOL ADL CBL 10 0 1424 0 0 0
35 SCHOOLL ADL CBL 1 0 1424 0 0 0
36 TSTPSB ADL CBL 6 0 1424 0 0 0
37 UNKNOWN DL/I = = = = = = =
Start: Total : 37

Enter=PFl===PF2===PF3===PFl===PF5===PF&===PF7===PF8===PF9===PFL10==PF11l==PF12=--
Help Exit Prev Next Top Bot Can

Interfaces 65

ADL Online Services

It lists all the PSBs contained in the DAZPSB table. The status indicates how the PSB was initialized.
Possible status values are: "ADL', 'DL/I' and "Mixed'. Their meaning is described under CALLDLI
Interface in the section CICS Installation and Operation. The following information can only be re-
trieved if the PSB status is 'ADL' or 'Mixed":

Column [Description

Lan The language of the corresponding application program(s) as defined in the PSB source.
#PCB |The total number of PCBs in the PSB.
#IO-PCB | The number of IO-PCBs in the PSB.
DBID |The Adabas DBID of the ADL files belonging to the PSB.
Schedule |The number of tasks currently scheduling the PSB.

Total use |The number of tasks which have used the PSB up to now.

Rolled out |The number of times the PSB-related ICBs have been rolled out to the ADL directory file.

You can use the PF-keys for scrolling or you can specify a start value to restart the list from that
value. Note that pressing ENTER refreshes the screen.

List ADL Zap Status

If you select this function in the CICS Maintenance menu, the following screen is displayed:

11:23:47 **% ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - List ADL Zap Status - ADLCZAPM
Range Applied Zaps
001 - 010 001 002 006
011 - 020
021 - 030
031 - 040
041 - 050
051 - 060
061 - 070
071 - 080
081 - 090
091 - 100
Start: 1

Enter=RPFl===PF2===PF3===PFl===PF5===PFG===[PF7 == =PF@===PFY===PFLO==PFLl==PFl2===
Help Exit Prev Next Top Bot Can

66 Interfaces

ADL Online Services

It lists all zaps applied to the ADL CICS nucleus DAZNUCC. A zap which is applied, is indicated
by its number. Possible zap numbers are 1 through 500. You can use the PF-keys for scrolling or
you can specify a start value to restart the list from that value.

Dump ADL Tables

When you select this function in the CICS Maintenance Menu, the following pop-up window is
displayed:

11:28:11 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
1424 / 802 - CICS Maintenance - ADLCICSM
CALLDLI Interface On Terminal ID TCG7/
Consistency Interface .. On Routine Trace .. Off
DL/I in System No Call Trace Off
CICS Level 0640 Trace Term ID ..
Functions :

_ Switch ADL Interfaces off

_ Switch Trace Facility on

_ List CICS PSB Table

I e +

x D | Writing ADL tables to the dump file |
| Do you wish to continue? Y/N Y|
|
|

| ENTER to perform, PF3 to exit

Mark the requested function(s).

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit ADL Trace PSBs Zaps Can

When you enter 'Y' (yes), the ADL CICS tables DAZPSB, DAZDBD and DAZBUF are written to
the CICS dump file, together with the ADL internal area DAZSYSDS and the ADL zap directory.

This information is helpful when debugging abnormal terminations of application programs under
CICS.

Interfaces 67

ADL Online Services

ADL Directory Management Facility

This service is reached by selecting code D in the Main Menu.

Directory
Management
Facility
External
D_BD P_SB Control Block
List List :
Information
-
= ™ = ™ f H
- ECB [| ECB ‘ SI:IIEE(.;:IBﬂc
§ Information | Information Information
e
- Delete | Delete
DBD PSBE
) %
&
|| List
Segments
_ oy
|
List
Fields
S vy

Figure 2: Directory Management Facility

The ADL Directory Management Facility (DMF) consists of following parts:

® The “Directory Management Facility” menu is the entry to DMF and all its services.

The “DBD List” menu provides a list of all DBDs which are stored on the ADL directory file.

The “List Segments” menu shows you the segments of a specific DBD.

The “List Fields” menu exposes the definitions of the fields under a given segment.

The “PSB List” menu provides a list of all PSBs which are stored on the ADL directory file.
You can “delete DBDs” or “PSBs” from the ADL directory file.

68 Interfaces

ADL Online Services

® In the “External Control Block Information” menu you can retrieve an external control block
(ECB) in hexadecimal and character format.

® The “specific ECB Information” provides you with all information of a specific ECB.

Directory Management Facility Menu

11:31:32 *** ADL ONLINE SERVICES 2.3.1 ***
01424 / 00802 - Directory Management Facility -
Code Function Name

D DBD List 0

L List Segments of Data Base R

P PSB List 0

I ECB Information

? Help

Enter Code :

Back to the Main Menu

Name: R ->

19.06.2007
ADBDMF -M
required

0 -> optional

Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit

Can

This service is reached by selecting code D in the Main Menu. It is the entry to the DMF. The codes
in the menu provide the following functions:

Code |Function

D |DBD List. Display all data bases, which are stored in the ADL directory file. The list starts at the

specified DBD name, or if none is given, at the top.

L |List Segments. Explode the segments of the given DBD. A name of a DBD is required.

P |PSB List. Display all PSBs, which are stored in the ADL directory file. The list starts at the specified

PSB name, or if none is given, at the top.

I |ECB Information. Retrieve a detailed list of information of any external control block.

? |Online Help.

Back to the Main Menu.

Interfaces

69

ADL Online Services

DBD List Menu
11:33:57 **x ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - DBD List - ADBDBD-M

Cmd DBD Typ Cmd DBD Typ Cmd DBD Typ

_ COURSEDB P _ _

_ COURSEL L _ _

_ INSTDB P _ _

_ INSTL L _ _

_ STUDIDX X _ _

Start:

Available Commands: Delete Inform List Quit

ENCEr=PFl===PF2===PF3===PFl===PF5===PFG===[PF7 = = =PF@= = =PFY===PFLO==PFL1L==PF12==-
Help Exit Next Top Can

This service is reached by selecting code D in the Directory Management Facility menu. It lists all
DBDs of the ADL directory file, together with their type. Possible types are:

Type |Meaning

P |Physical DBD
L |Logical DBD
X |Secondary Index DBD

The DBDs can be marked with the following line commands:

Line Command |Meaning

D A pop-up window for interactive confirmation is displayed. The marked DBD will be
deleted from the ADL directory file, if you confirm with 'Y’ (yes). Note that the Adabas
file(s) containing the data of the DBD, will not be deleted.

Display the ECB Information of the marked DBD.
L List the segments of the marked DBD.
Exit the DBD List menu.

70 Interfaces

ADL Online Services

If you want to delete a physical DBD, you must also delete all secondary index DBDs, which are
related to this DBD. Otherwise the CBC utility will indicate an error situation in case you reconvert
the DBD. A DBD can also be deleted with the DELDBD function of the ADL CBC utility which
automatically deletes the related secondary index DBDs.

If you enter a new start name in the corresponding field, the DBD list will start at the given value.

List Segments Menu

15:24:52 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - List Segments - ADBSEG-M
Data Base: COURSEDB Type: Physical
Converted
There are 4 Segments in 3 Levels with 1 Secondary Index. Completed
Seg Segment ADA ADA ADA Seg No. ADA ADA Log L.Parent L.Parent
Cmd No Name Level Grp PCK VCK Len F1d Dbid Fnr Id DB-Name Seg-Name
_ 1 COURSE 1 SA PC 30 1 1424 833 71
_ 2 CLASS 2 SB PB 20 1 1424 833 71
_ 3 STUDENT 3 SA 40 2 1424 835 73
_ 4 INSTRP 3 SB 25 2 1424 834 72 INSTDB INSTRUCT

Available Commands: List Quit

ERt@Pr=PFl===PF2===PF3===PFld===PF5===PF&===PF7===PF8===PF9===PFLO==PF11==PF12=--
Help Exit Next Top Can

This service is reached by selecting code L in the Directory Management Facility menu or by
marking a DBD with code L in the DBD List menu. It informs you about a DBD and all its segments.
The name and type of the DBD are displayed. Possible types are Physical’, 'Logical', and 'Index'.
It is also indicated, whether the data base is converted to Adabas and whether the conversion is
completed. 'Completed' means, that all DBDs with logical relationships to the given one, are con-
verted, too. Furthermore the number of segments, of hierarchical levels and of secondary indices
is given.

Interfaces A

ADL Online Services

The list of segments contains the following information:

Column Meaning
Cmd Here the user can insert a line command. The available commands are explained
later.
Seg No. The DL/I hierarchical segment number (position).
Segment Name |The name of the segment as defined in the original DL/I DBD definition.
Level The DL/I hierarchical level. This defines together with the segment number the
hierarchical structure of the DBD.
ADA Grp The name of the Adabas group corresponding to the DL/I segment.
ADA PCK The Adabas name of the partial concatenated key (PCK) field. For every segment

with a sequence field a PCK field is created. It contains the data of the sequence
field, if a dependent segment is accessed.

ADA VCK The Adabas name of the virtual concatenated key (VCK) field. It follows the same
rules as the PCK field, but is only created, if a DBD is involved in logical relationships
by itself. This means, that one segment of the DBD is a logical parent of a segment
of the same DBD. The VCK field contains the data of the sequence field, if a logically
dependent segment is accessed.

Segm. Length The length of the segment as defined in the original DL/I DBD definition. This is
also the total length of all Adabas fields, which belong to the corresponding Adabas
group.

No. Flds The number of DL/I fields belonging to this segment. Be aware that this is often not
the number of Adabas fields of the corresponding Adabas group. In fact ADL creates
Adabas fields not only for every DL/I field, but also for every part of a DL/I segment
for which no DL/I field is defined. This are the so-called “filler” fields. On the other
hand for a redefined DL/I field no Adabas field may be created.

ADA Dbid/Fnr The Adabas DBID and file number of the ADL file with the data of this segment. If
the DBID is 0, the DBID of the ADL directory is used at runtime.

Log Id The logical ID used for the unique identification of the hierarchical structured data.
L. Parent If the segment is a logical child of another segment, the DL/I data base and segment
DB/Seg-Name name of this “logical parent” segment are exposed here.

Note that for segments in a logical DBD only the segment number, name and level are exposed.

72 Interfaces

ADL Online Services

Possible line commands are:

Line Command |Meaning
L List the field definitions of the marked segment.
Q Exit the List Segments menu.
List Fields Menu
11:38:57 **%* ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - List Fields - ADBFIE-M
Data Base : COURSEDB Type ..: Physical
Segment ..: CLASS Length : 20
DL/I ADABAS Comments
Name Type Format Start Length Name Type Format
CLASSNO SEQ,U C 1 5 AC A UNIQUE FIELD

Enter=PFl===PF2===PF3===PFl===PF5===PF&===PF7===PF8===PF9===PFL10==PF11l==PF12=--
Help Exit Next Top Can

This service is reached by marking a segment with code L in the List Segments menu. It informs
you about the fields of a segment. The name and type of the DBD is shown together with the name
and length of the segment.

The list of fields is divided in three parts:

Part Description

DL/ The definitions of the DL/I field are displayed here: Name, format, start and length. For more
information about these values see the IMS/VS Utilities Reference documentation.

Adabas |The definitions of the Adabas field are shown here: Name, type and format. The Adabas field
length is the same as the corresponding DL/I field length. For more information about these
values see the Adabas Utilities documentation .

Comments |A comment can be displayed here.

Interfaces 73

ADL Online Services

PSB List Menu
11:40:32 *** ADL ONLINE SERVICES 2.3.1 **=* 19.06.2007
01424 / 00802 - PSB List - ADBPSB-M
Cmd PSB Cmd PSB Cmd PSB
SCHOOL _ _
Start:

Available Commands: Delete Inform Quit

ENCEr=PFl===PF2===PF3===PFl===PF5===PFG===[PF7 = = =PF@= = =PFY===PFLO==PFL1L==PF12==-
Help Exit Next Top Can

This service is reached by selecting code P in the Directory Management Facility menu. It lists all
PSBs of the ADL directory file.

The PSBs can be marked with the following line commands:

Line Command |Meaning
D A pop-up window for interactive confirmation is displayed. The marked PSB will be deleted
from the ADL directory file, if you confirm with 'Y’ (yes).
I Display the ECB Information of the marked PSB.
Q Exit the PSB List menu.

If you enter a new start name in the corresponding field, the PSB list will start at the given value.
A PSB can also be deleted with the DELPSB function of the ADL CBC utility.

74 Interfaces

ADL Online Services

External Control Block Information Menu

11:42:48 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - External Control Block Information - TESTECBM
Code: 1 (Ecb,Info)
Type: DBD (Dbd, Seg,F1d,seX,Lch,Psb,pCb,SEs,SeF,xRf)
PSB/DBD name: COURSEDB
PCB/DBD offset ..: 00000000 PSB/XRF offset ..: 00000000
ECB type DBD Lines 2
DBD,PSB
L Offset External Control Block (hex) ECB (char) Offset
1 0000 00000000 00000460 C3D6E4D9 E2CHC4C2 = ?-COURSEDB * 00000000
0010 00000000 00000000 00000000 00000000 * w 00000010
2 0020 00000040 00000460 04010329 000003A0 = -7 77 % 00000020
0030 00000000 00000000 00000000 00000000 * w 00000030
3 0040 40404040 40404040 40404040 40404040 * & 00000040
0050 40404040 40404040 40404040 40404040 * & 00000050
4 0060 40404040 40404040 40404040 40404040 =* & 00000060
0070 40404040 40404040 40404040 40404040 * & 00000070

ENCEr=PFl===PF2===PF3===PFl===PF5===PFG===[PF7 = = =PF@= = =PFY===PFLO=-=PFLL==PF12=~-
Help Exit Next Can

This service is reached by selecting code I in the Directory Management Facility menu. To retrieve
information of an external control block (ECB) you have to specify a code, the type of the ECB,
the PSB or DBD name, and the offset to the ECB.

The “Code” defines how the information is to be returned.

Code [Meaning

E |The ECB is listed in hexadecimal and character format on the bottom of the current screen.

I |A detailed list of information of the specified ECB is displayed. When returning to the current map,
the ECB is listed as with code E.

The “Type” specifies the type of the requested ECB. Possible types are : DBD, SEG (segment), FLD
(field), SEX (secondary index), LCH (logical child), PSB, PCB, SES (sensitive segment), SEF (sens-
itive field), XRF (external reference). The shortest possible abbreviation for a type is denoted by
uppercase characters, like 'D' for DBD. In general you may use a 'D' for all DBD-related ECBs
(DBD, SEG, FLD, SEX, LCH, XRF) and a 'P' for all PSB-related ECBs, (PSB, PCB, SES, SEF). But if
you use the 'Next' (PF8) function, you must specify the correct type.

The “PSB/DBD name” is the name of the PSB or DBD, to which the ECB belongs.

Interfaces 75

ADL Online Services

The offsets have to be specified in hexadecimal format. Which offsets you have to specify depends

on the ECB type you want to retrieve.

ECB Type PCB/DBD Offset PSB/XRF Offset
DBD 0 0
SEG,FLD,SEX,LCH | offset to ECB 0
PSB 0 0

PCB 0 offset to PCB

SES,SEF offset to ECB offset to PCB
1st XRF offset to 1st XRF 0

more XRF offset to 1st XRF | offset to current XRF

If you want to retrieve a specific ECB and you don't know the offset to it, you have to start with
the DBD or PSB ECB. For these the offsets are all zero. In the ECB Information you find the offset
to the first sub-structure like SEG or PCB. Then you can continue with the sub-structures until
you reach the requested ECB.

Example

You want to retrieve the ECB information of the first field 'CLASSNO' in the second segment
'CLASS' of the DBD 'COURSEDB'. Specify Code T', PSB/DBD name 'COURSEDB', and PSB/XRF
offset '0'. Then specify the following types and PCB/DBD offsets to retrieve the information which
is required for the next step.

Step | Type | DBD Offset Retrieved ECB Page Line Value
1 | DBD | 00000000 | DBD COURSEDB | 1 | 'Firstsegment' | 00000040
2 | SEG | 00000040 | Segment COURSE | 1 | 'Nextsegment' | 00000160
3 | SEG | 00000160 | Segment CLASS 2 'First field" | 000001EO
4 | FLD | 000001EO | Field CLASSNO

For each retrieved ECB, the type (which can differ from the specified type) and the number of
lines used by this ECB are displayed. The list contains a line counter ('L'), the offset relative to the
start of the ECB, the ECB in hexadecimal and character format, and the offset relative to the start
of the corresponding DBD or PSB ECB. This last offset is the sum of the two specified offsets.

With the PF8 ('Next') key, you retrieve the next ECB of the same type. This function is not available
for DBD and PSB ECBs. In the example above you can press the PF8 key in step 3 instead of spe-
cifying the DBD offset '160', to retrieve the second segment (CLASS).

76 Interfaces

ADL Online Services

Specific ECB Information

11:53:47 **%*% ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - ECB Information - ADLPCB1M
SCHOOL + 00000520 PCB 7 Page 1 of 3
Keyword Name Description Value
TYPEC$TY Type of ADL External Control Block ... 18 => PCB
TYPECNXT Next PCB ECB (PSB offset) 000005E0
DBDNAME PCBECNAM Name of corresponding DBD COURSEDB
PROCSEQ PCBECIND Index DBD nameiiiiinnenn..
PCBECNUM PCB progressive number 7
PCBECLV# Number of Tevelscoiiiuuuenn.... 3
PCBECSN# Total number of sensitive segments ... 4
KEYLEN PCBECKEY Key feedback area length 35
PCBECSEN First sensitive segment (PCB offset) . 00000040 => COURSE
PCBEC$STY Type of PCB ... 02
TYPE PCBEC{GM GSAM PCB ..ot
POS PCBEC{MP Multiple positioning support X

ENCEr=PFl===PF2===PF3===PFl===PF5===PFG===[PF7 = = =PF@= = =PFY===PFLO=-=PFLL==PF12=~-
Help Exit Prev Next Top Bot Can

This service is reached by selecting code I in the External Control Block Information menu or by
marking a line with I in the DBD List or PSB List menu. It supplies you with all information of a
specific external control block (ECB). In the header is the type and the name of the ECB displayed,
together with the DBD/PSB name and the offset to the current ECB. The page number can be
overwritten, if a specific page should be listed. Beside of the standard PF keys, you can also specify
a page '0' to exit the menu. The columns in the list provide the following information:

Column Meaning

Column |Meaning

Keyword |The DL/l keyword of the DBD/PSB definition, which specifies the value. For more information
about the keywords see the IMS/VS Ultilities Reference documentation.

Name |The ADL internal used name of the value.

Description | A short description of the value.

Value |Counters and numbers are printed in decimal format, offsets and type or flag bytes in
hexadecimal format. A flag is set, if the value is 'X'. Some values are coded, for example the
'Type'. In this case the corresponding read-able value is denoted by '=>'". For some offsets the
corresponding ECB name is denoted in the same way.

Interfaces 7

ADL Online Services

Consistency DBD Maintenance

This service is reached by selecting code A in the Main Menu.

11:56:47 *** ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - DBDs for the ADL Consistency Interface - ADBCFD-M
Cmd DBD Status Cmd DBD Status Cmd DBD Status
COURSEDB N _ _
INSTDB N _ _
Start:

Available Commands: Yes No

Enter=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFL0==PF1l==PF12==-=
Help Exit VYes No Undo Next Save Top Can

This menu lists all converted physical DBDs. It exposes if the corresponding Adabas files can be
accessed by the ADL Consistency Interface or not by the status “Y” (yes) or “N” (no), respectively.
You can change the status by entering the appropriate line commands. Save your changes with
PFo.

The status is defined with the CONSI parameter of the GENDBD function at the DBD conversion.
See the section ADL Conversion Utilities for DBDs and PSBs in the ADL Conversion documentation
for more details. Any changes of the status should be evaluated carefully. An Adabas/ Natural
call (batch or online) referencing a DBID / FNR which belongs to a DBD with status “N”, is routed
directly to Adabas. Thus, if a DBD should be accessed by both DL/I and Adabas / Natural applic-
ations, it's status must be “Y”.

You may set the status of a DBD to “N”, if there is no Adabas / Natural application which updates
the corresponding files.

78 Interfaces

ADL Online Services

You may also set the status to “N”, if only Adabas / Natural applications access this DBD, and
you have decided not to run any other DL/I applications against it. In this case there is no need to
support the ADL internal fields anymore.

Unused DBDs should have the status “N” or should be deleted from the directory file. This should
be done, in order to avoid problems during the building up of the internal Consistency PSB, which
picks up all converted physical DBDs with status “Y”.

If there is more than one DBD referencing the same data (i.e., the same Adabas file), only one of
them should have the status “Y”. All others should be set to “N”.

Note, that the CICS or IMS/TP tables have to be re-generated (see the section Generating the
Control Tables in this documentation), if you change the status of a DBD from “N” to “Y”.

Possible line commands are:

Line Command |Meaning
Y Set the status to “Y” (yes). Calls against this DBD will be handled by the ADL Consistency
Interface.
N Set the status to “N” (no). Calls against this DBD will be routed directly to Adabas.

If you enter a new start name in the corresponding field, the list will start at the given value.

The assignment of the function keys is as follows:

Key [Function

PF4 |Set the status of all DBDs on the current page to “Y”.

PF5 |Set the status of all DBDs on the current page to “N”.

PF6 |Undo all modifications on the current page.

PF9 |Save all modifications.

If you leave the menu and there are any modifications which have not yet been saved, you will
be asked whether you want to save them or not.

Maintenance of the Rolled-out PSBs

This service is reached by selecting code R in the Main Menu.

At start-up of ADL under CICS or IMS/TP all PSB related external control blocks (ECBs) are con-
verted to internal control blocks (ICBs) and rolled out to the ADL directory file. They are stored
with the name of the environment (CICS or IMS/TP start-up job name) and the PSB name. They
can be deleted, if ADL is not active in the corresponding environment.

Interfaces 79

ADL Online Services

The Maintenance of the Rolled-out PSBs consists of following parts:

Rolled-out
PSB related
ICBs
List PSBs in List m'l::::t:ut
Environment Environments
PSB ICBs
Figure 3: Rolled-out PSBs
Rolled-out PSB-related ICBs menu
This service is reached by selecting code R in the Main Menu.
11:58:31 **x* ADL ONLINE SERVICES 2.3.1 **=* 19.06.2007
01424 / 00802 - Rolled-out PSB-related ICBs - ADLPIM-M

Code Function

p List PSBs in Environments
E List Environments

D Delete Rolled-out PSB ICBs
?

Help
Back to the Main Menu

Enter Code :

Enter=RPFl===PF2===PF3===PFl===PF5===PFG===[PIF7 = = =[PF@= = =PFY===PFLO=-=PFLl==PF12==-
Help Exit PSBs Env. Can

80 Interfaces

ADL Online Services

This menu is the entry to the Maintenance of the Rolled-out PSBs. The codes in the menu provide
the following functions:

Code | PF-Key |Function

P PF4 |List all PSBs for all environments.

PF5 [List all environments.

E
D Delete all or specific PSBs.
?

Online Help.

Exit the menu.

List of the PSBs in the Environments

Dir 1424 / 802 - ADL 2.3.1 Rolled-out PSB-related ICBs - Page 1
No Env. (Hex) PSB (Hex) Env PSB Blocks
1 C4C1C5C6 C3CO9FOF2 C1C4D35B D7E2C240 DAEFCIO2 ADLS$PSB 3
2 C4C1C5C6 C3CIO9F0OF2 (C6C5D5C4 E3D7E2C2 DAEFCIOZ2 BIGPSB 1
3 C4C1C5C6 C3CO9FOF2 E2C3C8D6 D6D34040 DAEFCI02 SCHOOL 3
4 C4C1C5C6 C3CIO9F0OF2 E2C3C8D6 D6D3D340 DAEFCIO2 SCHOOLL 1
5 C4C1C5C6 C3CO9FOF2 E3E2E3D7 E2C24040 DAEFCIO2 TSTPSB 3
Total number of rolled-out PSB-related ICBs .. : 5
Total number of environments g 1
MORE

This service is reached by selecting code P or pressing PF4 in the Rolled-out PSB- related ICBs

menu. It lists the names of the environments and of the PSBs in hexadecimal and character format.
Additionally it outlines how many blocks (Adabas records) are used to store the ICBs. At the end
of the list the total number of the rolled-out PSB-related ICBs and of the environments is printed.

Note, that the list is printed in sequential sequence. You can only page forward (by pressing
ENTER). When all PSBs have been listed, the Rolled-out PSB-related ICBs menu is displayed.

Interfaces 81

ADL Online Services

List of the Environments

Dir

1424 / 802 - ADL 2.3.1 Environments of PCB-related ICBs - Page 1

Total

MORE

1 C4C1C5C6 C3CIF0F2 DAEFCIOZ

number of environments g 1

This service is reached by selecting code E or pressing PF5 in the Rolled-out PSB-related ICBs
menu. It lists the names of the environments in hexadecimal and character format. At the end of
the list the total number of the environments is printed.

Note, that the list is printed in sequential sequence. You can only page forward (by pressing
ENTER). When all environments have been listed, the Rolled-out PSB-related ICBs menu is dis-
played.

Delete Rolled-out PSBs

This service is reached by selecting code D in the Rolled-out PSB-related ICBs menu. First a pop-
up window is displayed, where you can choose, how to continue.

Enter

Meaning

Y

For each environment you will be asked if you want to delete the PSBs.

No PSB is deleted. Back to the Rolled-out PSB-related ICBs menu.

All PSBs in all environments will be deleted. There is no additional confirmation.

H| x| Z

Test mode. All environments will be processed, but no PSB will be deleted.

82

Interfaces

ADL Online Services

If you have entered 'Y', 'X', or "T" in the pop-up window, the Delete PSB-related ICBs menu is dis-
played.

13:23:16 **% ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Delete PSB-related ICBs - ADLPID-M
No. Environ. PSBs Status
1 DAEFCIOZ Environments
PSBs:
Records:
Start time ..: 13:23:16.7

Elapsed time : 00:00:00.0

Confirm deletion of PSBs in DAEFCIOZ
with Y N

Enter=PFl===PF2===PF3===PFld===PF5===PFG===[PF7===PF@===PFY===PFLO==PF11==PFil2===
Next Help Exit Next Can

It lists the processed environments, the number of PSBs in the environment and the status. The
status can be either 'deleted’ or blanks (not deleted). Additionally it informs you about the total
number of environments, PSBs, and records (blocks), which have been processed up to now. The
start and elapsed time of the processing is also displayed.

If you have entered "Y' in the pop-up window, the name of an environment is displayed and you
have to confirm the deletion.

Enter

Y |All PSBs of the displayed environment will be deleted.

N |No PSB of the displayed environment will be deleted.

X |AIl PSBs of the displayed and of all following environments will be deleted. There is no additionally
confirmation.

T |Test mode. No PSB of the displayed environment will be deleted. The following environments will
be processed without confirmation, and no PSB of them will be deleted.

Note that a PSB must not be deleted, if ADL is active in the corresponding environment.

Interfaces 83

ADL Online Services

Maintenance of Checkpoints

This service is reached by selecting code X in the Main Menu.

When a batch application issues a checkpoint, ADL writes a checkpoint entry to the ADL directory
file. A checkpoint entry is identified by the program name and the checkpoint ID. If the program
terminates normally, all written checkpoints will be removed from the directory and will, therefore,
not appear on either list mentioned below. But if the program terminates abnormally, the check-
points will be listed and can be used to restart the program. For more information on how to restart
a program, see the section Recovery and Restart Procedures in this documentation.

Checkpoint Maintenance produces two types of lists:

® Checkpoint Information List: shows each individual checkpoint ID together with the name of
the abnormally terminated program,

® Checkpoint Program List: shows the total amount of checkpoints for each abnormally terminated
program.

Checkpoints can also be deleted, whereby all checkpoints related to one program, are always deleted
together. It is, therefore, impossible to delete individual checkpoints.

| Note: Do not delete any checkpoints belonging to programs which are to be restarted.

The checkpoint maintenance feature consists of the following parts:

Checkpoint
Maintenance

Checkpoint . e :
Information a9 PN
List List Checkpoints

Figure 4: Checkpoint Maintenance

84 Interfaces

ADL Online Services

Checkpoint Maintenance Menu

This service is reached by selecting code X in the Main Menu.

13:25:12
01424 / 00802 - Checkpoint Maintenance -

*** ADL ONLINE SERVICES 2.3.1 ***

Code Function

L List all Checkpoints
P Program List
D Delete Checkpoints
? Help
Back to the Main Menu

Enter Code :

19.06.2007
ADLXCM-M

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help

Exit Chkp Prog

Can

This menu is the entry to the Checkpoint Maintenance. The codes in the menu provide the following

functions:
Code | PF-Key |Function
L PF4 |List each checkpoint ID and program name.
P PF5 |List all abnormally terminated programs.
D Delete checkpoints of all/specific programs.
? Online Help.
Exit the menu.

Interfaces

85

ADL Online Services

Checkpoint Information List

This service is reached by selecting code L or pressing PF4 in the Checkpoint Maintenance menu.
It lists the names of all abnormally terminated programs and the individual checkpoint IDs for
each of those programs. Additionally, it outlines how many Adabas records are used for each
checkpoint entry. At the end of the list the total number of checkpoints and of effected programs
is printed.

Note, that the list is printed in sequential order. You can only page forward (by pressing ENTER).
When all programs with the related checkpoint IDs have been listed, the Checkpoint Maintenance
menu is displayed.

Dir. 1424 / 802 - ADL 2.3.1 List Checkpoint Information - Page 1
No. Program Checkpoint Records
1 DAZZLER GSMO6X01 3
Total number of Checkpoints : 1
Total number of effected programs s 1
MORE
Checkpoint Program List
Dir. 1424 / 802 - ADL 2.3.1 Checkpoint Program List - Page 1
No. Program Checkpoints
1 DAZZLER 1
Total number of Checkpoints : 1
Total number of effected programs g 1
MORE

86 Interfaces

ADL Online Services

This service is reached by selecting code P or pressing PF5 in the Checkpoint Maintenance menu.
It lists the names of abnormally terminated programs and the total amount of checkpoints for each
program

Note, that the list is printed in sequential order. You can only page forward (by pressing ENTER).
When all applicable programs have been listed, the Checkpoint Maintenance menu is displayed.

Deletion of Checkpoints

This service is reached by selecting code D in the Checkpoint Maintenance menu. First, a pop-up
window is displayed, where you can choose from the following options:

Enter

Meaning

Y

For each program you will be asked if you want to delete the checkpoints.

No deletion. Back to the Checkpoint Maintenance menu.

All checkpoints of all programs will be deleted. There is no additional confirmation.

N
X
T

Test mode. All programs will be processed, but no checkpoint will be deleted.

If you have entered 'Y', 'X', or 'T" in the pop-up window, the Delete Checkpoints menu is displayed.

14:08
01424

128

/ 00802
Program

1 DAZZLER

%*% ADL ONLINE SERVICES 2.3.1 * 19.06.2007
- Delete Checkpoints - ADLXCD-M
CPIDs Status
Programs:
Checkpoints
Records:
Start time ..: 14:08:28.0

Elapsed time : 00:00:00.0

Confirm deletion of the checkpoints
of program DAZZLER with Y N

Enter-PFLl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Next

Help

Exit

Next Can

Interfaces

87

ADL Online Services

It lists the program names, the number of checkpoints found in them and their status. The status
can be either 'deleted’ or blanks (not deleted). Additionally, it informs you about the total number
of programs, checkpoints and Adabas records, which have been processed up to now. The start
and elapsed time of the processing is also displayed.

If you have entered 'Y' in the pop-up window, the name of an environment is displayed and you
have to confirm the deletion.

Enter |Meaning
Y |All checkpoints of the displayed program will be deleted.
N |No checkpoint of the displayed environment will be deleted.
X |All checkpoints of the displayed and of all following programs will be deleted. There is no additionally
confirmation.
T |Test mode. No checkpoint of the displayed program will be deleted. The following programs will

be processed without confirmation, and checkpoints will not be deleted.

Checkpoints must not be deleted, if it is planned to restart the program.

Messages and Codes Retrieval

This service is reached by selecting code M in the Main Menu. It starts with the ADL messages

retrieval.
14:10:30 **%*% ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Messages and Codes Retrieval - ADLEMR-M

ADL message no.: 0701

Description:
[Tlegal or missing parameters

Cause

: The mandatory parameters for DAZIFP were not specified
correctly. There should be three positional parameters:
XXX, pgmname,psbname,

These may be followed by keyword parameters.

Action : Check the input parameters and correct the error. See the

chapter Batch Installation and Operation, ADL Interfaces Manual
for details.

88

Interfaces

ADL Online Services

ERter=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11l==PF12=--
Read Help Code Exit Prev Next Can

Enter a message number (range 1 to 1400) to retrieve the description of the ADL error message.
Additionally the probably cause for the failure and the recommended action is displayed.

With the PF2 key you can switch to the ADL ABEND and DL/I status codes retrieval.

14:12:13 **%*% ADL ONLINE SERVICES 2.3.1 *** 19.06.2007
01424 / 00802 - Messages and Codes Retrieval - ADLEMC-M

ABEND/Status code : ix

Description:
Violated insert rule

Cause: An insert rule has been violated.

Action: Check the insert rules and correct the program.
Command completed : No

Error situation ..: Yes (CMD or Conversion)

Possible commands : ISRT.

Eniteip= PR === P E2= == PR3 PIEA == RIS == PIE 6 = =PI B == Pl E == S PIEG == PIRTR 0= = RN = =PI 2=
Read Help Msg Exit Prev Next Can

Enter the last two characters, to retrieve the description of the corresponding ADL ABEND code,
i.e. 'Z1' for ABEND code 'DAZ1'. The ABEND codes are displayed together with the probably
cause and the recommended action.

Enter a two character DL/I status code to retrieve the description of that status code. Further the
following information is displayed: The cause, the recommended action, whether the command
has been completed, whether it is an error situation, and for which commands this status code
can be retrieved. It is also indicated, if a status code can only be issued by DL/I (i.e. not by ADL),
or if it can only be issued by ADL.

Press the PF2 key to switch back to the ADL messages retrieval.

The message number 1500 (status code VR) has a special meaning. It indicates the current version
of ADL and gives some information about the ADL directory file.

Interfaces 89

90

7 Precompiler for EXEC DLI Commands

LI 11 o 10 oo PR SSUPPPPRRRR 92
B ADL PreCOMPILEr INPUL ...ovieiiiie ettt e et e e e et aaaa s 95
® ADL Precompiler OULPULeiiiiiii et e et e e e e 97
B COBOL GeNErated COUE ...ttt e e ettt e e e e e et ra e e e e e e e 98
B PL/ GENEAEA COUE ...eviiiiee ittt e et e ettt e e e ettt e e et e e e e nne e e e e anneee s 98
= CICS Command Language TranSIatoruviiiiiiiii e 98
= |inkage-Editor Requirements for Application Programscooiiiiiiiiiiiiieeiee e 98
B Z/OS JOL REQUIFEMENES ..ttt ettt e e e e e e e e e e e e et a e e e e e e s anees 99
B Z/V/SE JCS REQUITEMENTSveieeeeiieee ettt e et e e et e e e et e e e et e e e e e nneee e e e 100

91

Precompiler for EXEC DLI Commands

This chapter covers the following topics:

Introduction

This section is only of interest for installations in which application programs using the Higher
Level Programming Interface (HLPI) need to be converted. It describes the different possibilities
and procedures available for converting such application programs written in COBOL or PL/I .

When an application program using the HLPI issues a DL/l request in an unconverted environment
(i.e. where ADL is not involved), an extra interface layer is used to interpret the call from the ap-
plication program (which originates from an EXEC command) and transform them into normal
calls. The figure below illustrates this process.

92 Interfaces

Precompiler for EXEC DLI Commands

HLPI Interface

Application
Program

EXEC DLI

Language
Interface

\J

IMS / DLI
EXEC Call
Interpreter

(HLPI)

Call DLI

IMS / DLI

= Request
Handler

Application programs using the HLPI can be run against ADL in one of two different ways: with

or without the ADL precompiler.

Interfaces

93

Precompiler for EXEC DLI Commands

Running HLPI Programs without the ADL Precompiler

Application

Program

EXEC DLI

Language
Interface

Y

IMS / DLI
EXEC Call
Interpreter

(HLPI)

Call DLI

Y

IMS / DLI
Request
Handler

ADL

The application programs do not issue standard DL/I calls directly: instead, these are issued by
the HLPL This means that the DL/I environment must be present. Command level programs can

be run against ADL in mixed mode.

94

Interfaces

Precompiler for EXEC DLI Commands

Running HLPI Programs with the ADL Precompiler

Application
Program

Precompiled ADL
EXEC DLI

ADL
Language
Interface

The ADL precompiler translates each EXEC DLI command in the application program into one
(and only one) call to ADL. This call is passed directly to ADL in the same manner as for normal
DL/I calls. This means that no extra interface layer is required. Thus, in a completely converted
environment, DL/I need not still be available. When the ADL precompiler has been used, however,
application programs cannot be run in mixed mode.

ADL Precompiler Input

The ADL precompiler accepts as input a source program written in PL/ I or COBOL in which EXEC
DLI commands have been coded. It produces as output an equivalent source program in which
the commands have been translated into statements in the language of the source program. The
statements generated result in a call to the ADL nucleus (batch or CICS) to fulfill the function re-
quested.

For more details on the syntax of the EXEC DLI commands, see the appropriate IBM documentations.
The ADL precompiler is activated separately before the compile and link edit steps.

The program source input data set must contain fixed length records, which must be 80 bytes long.
The first statement of the source program must be a CBL statement for COBOL or a *PROCESS
statement for PL/ I . This control statement may be passed on unchanged as part of the program
source output.

Interfaces 95

Precompiler for EXEC DLI Commands

The control statement contains the parameters for the ADL precompiler itself, and has the following

syntax:

LAN=XXX, keyword=value

Keyword

Explanation

INPUT

(z/VSE only). Indicates whether the source program input should be read in from the reader or
from disk/tape. Possible values:

DISK The program source input is read in from disk or tape. You must specify DAZIN5D
or DAZINGST, respectively, as DTFE. The corresponding logical unit is SYS014. This
default logical unit can be overwritten by the ADL "FX' parameter as described in
the section ADL Parameter Module in the ADL Installation documentation. Since the
ADL precompiler expects a record size of 80 bytes, the "FX' setting should be
overwritten during the generation of the precompiler nucleus DAZNUCP. For
example: FX=(14,80,80)

READER |The program source input is read in from the reader, i.e. from SYSIPT.
Default: |READER

LAN

The source program language, a three-character abbreviation. Possible values: CBL for COBOL
PLI for PL/I Default: none

LIST

Indicates whether or not the program listing, including the EXEC commands with sequence
numbers, is to be produced. Possible values: Y : (the program listing is to be produced) N : (the
program listing is not to be produced) Default: Y

MARGIN

(PL/T only) Specifies the left and right margin of the input statements of the source program.
The ADL precompiler will only scan that part of any input source statement between the two
margins. The syntax of this parameter is as follows: MARGIN=(L,R)

L : Left margin of source program Possible values: 1-71 Default: 2

R : Right margin of source program Possible values: 2-72 Default: 72

PREF

The three-character prefix to be used for variables (COBOL) and ENTRY names (PL/I). Possible
values: AXX where:

A :is any character which may be used as the first character of a COBOL variable name or PL/I
ENTRY name.

X : any character allowed to be the second or any subsequent character of a COBOL variable
name or PL/I ENTRY name.

Default: DAZ

QNUM

(COBOL only). The maximum number of qualification statements to be expected in any one
command. Possible values: 1-999 Default: 8

SEGM

Indicates whether or not a program segment is to be precompiled. Possible values:

Y : A program segment is to be precompiled for later inclusion in the main program. This means
that only the EXEC commands will be translated. No variables and no user DIB will be generated.
N : A main program is to be precompiled.

Default: N

If SEGM=Y is specified for a PL/I program segment, make sure that the parameter PREF is
specified as well. The ADL precompiler generates a separate ENTRY statement with a unique
name for each EXEC command in PL/I. Where a program segment is precompiled separately,

96

Interfaces

Precompiler for EXEC DLI Commands

Keyword |Explanation

the ENTRY names generated must differ from those in the main program. This can be achieved
by specifying a different prefix (PREF parameter).

SNUM |(COBOL only) The maximum number of SSAs to be expected in any one EXEC command. Possible
values: 1-15 Default: 15

UDIB |Indicates whether or not fields need to be generated for the user DL/I Interface Block (DIB).
Possible values:

Y : (fields for the user DIB will be generated).

N : (fields for the user DIB will not be generated).

Default: N

XOPTS |Specifies whether or not the first statement should be output. Possible values:
Y : where the first statement should be output.

N : where the first statement should not be output.

Default: N

ADL Precompiler Output

The program source output is output as fixed length records with a length of 80 bytes.

The first output listing produced contains messages produced by the ADL precompiler. Where
one or more errors were encountered during translation, an error message with the following
layout will be produced:

Warning nnnn from ADL module DAZEXEC/DAZEXSER at address aaaaa

ADLnnnn message

Error occurred during interpretation of EXEC DLI statement with sequence no:
99999

where

nnnn |is the number of the message,

aaaaa |is the offset within the ADL module DAZEXEC in which the message was generated, and

99999 |is the sequence number of the EXEC DLI command which was found to be in error. This sequence
number corresponds to the number printed on the output data set containing the complete listing
(see below).

The second output listing produced contains the original source program including the EXEC DLI
commands. In addition, each EXEC DLI command has been given a sequence number which can
be used to find particular commands found to be in error. Where an EXEC DLI command is found
to be in error, the error message written to the message output listing is reproduced.

Interfaces 97

Precompiler for EXEC DLI Commands

COBOL Generated Code

For COBOL, each EXEC command is replaced by a series of MOVE statements followed by a CALL
statement. The MOVE statements take care of possible type conversions for numeric arguments and
assign constants to data variables. For this purpose declarations for these temporary variables are
automatically included in the working storage. Declarations for the user DIB are also automatically
included in the working storage. It is possible to precompile program segments separately for
later inclusion in a main program.

PL/l Generated Code

For PL/ I each EXEC command is replaced by a DO statement, a declaration of a generated unique

ENTRY name, a CALL statement and an END statement. The ENTRY declaration takes care of possible
type conversions for numeric arguments. The ADL precompiler generates the declarations for the
user DIB variables for each valid PL/I PROCEDURE statement. It is possible to precompile program
segments separately for later inclusion in a main program.

CICS Command Language Translator

Where an application program also contains EXEC CICS commands, the CICS Command Language
Translator has to process the application program as well before it can be compiled. The CICS
Command Language Translator may be activated either before or after the ADL precompiler. In
either case, make sure that the translator options for the CICS Command Language Translator do
not specify DLI.

Linkage-Editor Requirements for Application Programs

After having passed the ADL precompiler, the CICS language translator and the compiler, the
application program must be linked together with the appropriate language interfaces for ADL.
Depending on the operational environment, the following modules are to be linked to the applic-
ation program:

CICS online programs:
z/OS - DAZLICI3

z/VSE - DAZLICID

98 Interfaces

Precompiler for EXEC DLI Commands

Batch programs:
z/OS - DAZLIBAT
z/VSE - DAZLIBAT

Alllanguage interface modules described above are on the installation tape in the ADL load library.
The language interfaces mentioned above replace the IBM modules DESLI000 (z/OS) and DLZLI000
(z/VSE). For details on how to link-edit command level application programs, see the CICS Install-
ation and Operations Guide

/) Important: All application programs which have been linked with DAZLICI2 of ADL 2.2 or
before, must be relinked with DAZLICI3. DAZLICI3 is CICS release independent.

z/OS JCL Requirements

The table below lists the data sets used by the ADL precompiler during processing of an application
program.

DDname Medium |Description

DAZIN2 | Disk/Tape |Program source input

DAZIN1 Reader |ADL precompiler control statement
DAZOUT1 | Printer |Program listing
DAZOUT2 | Printer |Error messages

DAZOUT4 | Disk/Tape |Precompiled program

Example

The following is an example of an ADL Precompiler Run for a COBOL application program:

//PRE EXEC PGM=DAZIFP,PARM="PRE,DAZEXPRE"
//STEPLIB DD DISP=SHR,DSN=ADL.LOAD
// DD DISP=SHR,DSN=ADABAS. LOAD

//DAZOUT1 DD SYSOUT=X

//DAZOUT2 DD SYSOUT=X

//DAZOUT4 DD DSN=&&TEMP,SPACE=(TRK, (20,20)) ,UNIT=VIO,DISP=(,PASS),
// DCB=(RECFM=FB,DSORG=PS,BLKSIZE=3120, LRECL=80)

//DDCARD DD *

ADARUN PROGRAM=USER, . ..

/1*

//DAZIN1 Db *

LAN=CBL

//DAZINZ Db %

Interfaces 99

Precompiler for EXEC DLI Commands

application program source code

A
//APPLPROG EXEC DFHEITCL
//TRN.SYSIN DD DSN=&&TEMP,DISP=(0OLD,DELETE)
//LKED.ADL DD DISP=SHR,DSN=ADLxxx.LOAD
//LKED.SYSIN DD *

INCLUDE ADL(DAZLICI3)

NAME anyname(R)
/*

z/VSE JCS Requirements

The table below lists the data sets used by the ADL precompiler during application program
processing.

DTF Logical Unit | Medium |Description

DAZIN2 SYSIPT | Reader |Program source input *1
DAZINSD | SYS014 Disk |Program source input *2/ *3
DAZINST | SYS014 Tape |Program source input *2/*3
DAZIN1 SYSIPT | Reader |ADL precompiler control statement
DAZOUT1 | SYSLST | Printer |Program listing
DAZOUT2 | SYS011 | Printer |Error messages
DAZOT3D | SYS013 Disk |Error messages *4
DAZOT3T | SYS013 Tape |Error messages *4
DAZOUT4 | SYSxxx Disk |Precompiled program

*1 Only required, if the default input mode INPUT=READER is active.
*2 Only required, if the input mode INPUT=DISK is specified.

*3 Either one (disk or tape) is required. The logical unit indicated, is the default logical unit. To
change it, specify the FX parameter as described in the section ADL Parameter Module in the ADL
Installation documentation. Note that the ADL precompiler expects a record length of 80 bytes.

*4 Only required when only one logical printer is available. In this case, the message which is
normally directed to DAZOUT? as a second print file will be written to disk. At the end of the job,
it will be read from disk and routed to DAZOUT1.

100 Interfaces

Precompiler for EXEC DLI Commands

If the default input mode INPUT=READER is active, the control input for the batch monitor (DAZIFP),
ADARUN, the ADL precompiler, and the program source input are all read in from SYSIPT. The
control statements must be specified in the following order:

PRE,DAZEXPRE input for DAZIFP

/*

ADARUN ... input for ADARUN

/*

LAN= ... input for the ADL precompiler
/*

application program source
/%
Example

The following is an example of an ADL Precompiler Run for a COBOL application program:

// ASSGN SYS010,DISK,VOL=volume,SHR
// DLBL DAZQUT4, 'punch-dataset',0,SD
// EXTENT SYS010,volume,,,rtrk,ntrks
// ASSGN SYS013,DISK,VOL=volume, SHR
// DLBL DAZOT3D, 'temp-dataset',0,SD
// EXTENT SYS013,volume,,,rtrk,ntrks
// ASSGN SYS013,DISK,VOL=volume, SHR
// DLBL DAZIN3D, 'temp-dataset',0,SD
// EXEC PROC=ADLLIBS
// EXEC DAZIFP,SIZE=512K
PRE,DAZEXPRE
/*
ADARUN PROGRAM=USER, ...
/*
LAN=CBL
/*

COBOL application program source

/*

// DLBL IJSYSPH, 'cobol-translation',O
// EXTENT SYSPCH,,1,0,rtrk,ntrks
ASSGN SYSPCH,DISK,VOL=volume, SHR

// DLBL IJSYSIN, 'punch-dataset',0

// EXTENT SYSIPT

ASSGN SYSIPT,DISK,VOL=volume,SHR

// EXEC DFHECP1S$

CLOSE SYSIPT,SYSRDR

CLOSE SYSPCH,cuu

// DLBL IJSYSIN, 'cobol-translation',O
// EXTENT SYSIPT

ASSGN SYSIPT,DISK,VOL=volume, SHR

Interfaces 101

Precompiler for EXEC DLI Commands

// OPTION CATAL
PHASE pgmname,*
INCLUDE DFHECI

// EXEC FCOBOL
INCLUDE DAZLICID

/*

CLOSE SYSIPT,SYSRDR

// EXEC LNKEDT

/&

// J0OB RESET

ASSGN SYSIPT,SYSRDR

ASSGN SYSPCH, cuu

/&

102

Interfaces

8 Using ADL Files with Natural/Adabas

LI 121 (oo 1 o110 o PRSP PPPTPPRR 104
B CONSISTENCY INTEITACE ..eiieiiii et e et e e et e e e e nneeas 104
= Restrictions when using Natural/Adabasovieiiiiiiiii e 105
= |mprove the Natural Access to Migrated Filesooviiiiiiiiii 107
= Error Situations and Consistency ReSponse COUESvvvvviiiiiiiiiiiiiiiie e 108
= Availability of the ConsiStency INtErfaCeoovuriiiii 109
B EXAMPIE PrOGIAMS .ooviiiiiiiiiieeee e 109

103

Using ADL Files with Natural/Adabas

This chapter covers the following topics:

Introduction

After a DL/I data base was converted to one or more ADL files, these files can be accessed and
manipulated with Natural applications or other programs using direct Adabas calls. This section
explains:

® how you can do this,

how ADL guarantees the integrity of the data as expected by original DL/I applications,
® which restrictions apply for updates from Natural/Adabas applications.

® how to improve the access to the migrated file for Natural applications.

| Note: Set the Natural parameter ADAMODE to “0” when you run Natural programs against
the ADL Consistency.

Consistency Interface

When hierarchical structures, like those being defined in DL/I data bases, are mirrored into a table
like structure as those of ADL files, the original structure of the data has to be preserved by either
the use of physical pointers or foreign keys. The latter may be considered as logical pointers. ADL
maintains both kinds of pointers automatically.

The foreign keys maintained by ADL for a given segment type are built up in a similar way as a

DL/I concatenated key. In other words, the foreign key stored together with a segment occurrence
determines its position in the data base by identifying its parent segments (if there are any). ADL
introduces the term “partial concatenated key” (PCK) for the foreign key of one particular segment

type.

The physical pointers are needed for DL/I applications. Whenever a DL/I application issues a data
base call, this call is intercepted by the ADL CALLDLI Interface. Implicitly, a DL/I data base call
is serviced by referring to the physical pointers. We say implicitly, because these physical pointers
are determined by the actual position of the segment occurrences in the data base. Based on this,
the ADL CALLDLI Interface then maintains the foreign keys automatically, though they are never
used directly by DL/I applications.

In case of Natural/Adabas applications, the situation is just the other way around. An Adabas call
on ADL files supplies the segment data and all PCKs of its parent segments. In order for DL/I
applications to be able to “see” these data as well, the corresponding physical pointers have to be
built up. This task is performed by the ADL Consistency Interface.

104 Interfaces

Using ADL Files with Natural/Adabas

The ADL Consistency Interface intercepts Adabas calls. On the first level, all kind of retrieval calls
(like Adabas L3, S1 etc.) are routed directly to Adabas. On a second level, only calls referring to

ADL files will be considered. If necessary, the Consistency automatically constructs the physical
pointers for the record to be inserted, updated or deleted based on the PCKs provided by the user.

In a later stage of the data base conversion process, you might want to phase out the old DL/I ap-
plications completely. Therefore, the further operation of the ADL Consistency Interface may be-
come obsolete. For this reason, the Natural applications or programs using direct Adabas calls
should originally be designed as if the Consistency Interface is not existent.

Note that the installation and operation of the Consistency Interface is described earlier in this
documentation.

Summary

® the CALLDLI Interface automatically sets and maintains the PCKs of all parent segments,

* the Consistency Interface sets and maintains the physical pointers needed to preserve the hier-
archical structure of the data base,

* the Consistency Interface is necessary to update ADL files with Natural or programs using direct
Adabas calls, when access to these files for DL/I applications must still be provided.

Restrictions when using Natural/Adabas

Natural applications or programs using Adabas direct calls follow exactly the same syntax in ac-
cessing either a normal Adabas file or an ADL file. The only difference is, that the applications
may receive response codes from the ADL Consistency Interface, if it is active.

The rules having to be obeyed when manipulating ADL files with Natural/Adabas programs are
derived directly from the fact that the hierarchical structure of the data, as seen from DL/I applic-
ations, has to preserved. The ADL Consistency Interface is a product which guarantees the refer-
ential integrity of your data.

The following is an example of the hierarchical structure of a DL/I data base consisting of four
segments types:

Interfaces 105

Using ADL Files with Natural/Adabas

COURSE Root Segment Type
Parent
I 1
Child
CLASS Dependent Segment Type
Parent
] 2
Child
STUDENT INSTRUCTOR
3

Figure: Sample data base used in our examples

In DL/, the segments STUDENT and INSTRUCTOR are child segments to the parent segment
CLASS, which in turn is a child segment to COURSE. The parent segments are identified by a

course number or class number respectively.

Transformed to an ADL file the course number is denoted the PCK of the record COURSE and
serves as a link for the records COURSE and CLASS. ADL stores the course number together with
the CLASS data as shown in the following table:

DL/l Segment Type |ADL Record Type

COURSE COURSE
CLASS PCK-COURSE, CLASS
STUDENT PCK-COURSE, PCK-CLASS, STUDENT

INSTRUCTOR |PCK-COURSE, PCK-CLASS, INSTRUCTOR

Referential integrity in this context means that each STUDENT/INSTRUCTOR record occurrence
must refer to an existing CLASS record occurrence, which in turn must also refer to an existing
COURSE record occurrence.

106 Interfaces

Using ADL Files with Natural/Adabas

In order to allow the Consistency Interface to maintain the referential integrity, relation data have
to be supplied with each update request to an ADL file. For insert and replace calls (Adabas N1
or Al) this simply means that you have to supply the foreign keys of all related record types. In
DL/I calls this means supplying the concatenated key. Furthermore, when replacing a record, you
must not alter the foreign keys of its parent segment.

Delete calls may not attempt to delete parent segment occurrences which have dependent child
segment occurrences. For ADL files this means, that record occurrences without PCKs referred to
by other record occurrences must be deleted first. Considering the above example, note that a record
occurrence of CLASS can only be deleted after all record occurrences of STUDENT and INSTRUCT-
OR have been deleted.

Summary
® when inserting records in an ADL file, specify the corresponding foreign keys or PCKs for the

related record type;

® when replacing records in an ADL file, specify the corresponding foreign keys or PCKs for the
related record type but NEVER alter the PCKs;

® when deleting a record occurrence, be sure that it is not referred to by PCK fields in other record
occurrences;

® the Consistency Interface will preserve the referential integrity of the data base.

Improve the Natural Access to Migrated Files

When ADL migrates the DL/I structure, the generated Adabas file layout is optimized to satisfy
the needs of the DL/I applications. Therefore only the root sequence field, the physical pointer
fields (“Z1-field”) and the secondary index fields are defined as descriptors. From these fields
only the root sequence field should be used by Natural applications because the other fields are
ADL internal fields.

Natural applications read the hierarchy through the PCK fields. If the application should access
the data of a dependent segment, it is recommended to create an Adabas superdescriptor build
up by the PCK fields of the parent segments. If the segment itself has a sequence field, the corres-
ponding Adabas field should be added to the superdescriptor as well.

If Natural applications should access data in a secondary index like manner, any other field (like
a sequence field of a dependent segment) can be defined as descriptor. If you build up new super-
descriptors take care that only those fields are included which belong to the same segment plus
PCK fields of parents of the segment. If you use fields from different segments, one part will always
be empty and the superdescriptor will not give you any value.

It is recommended that you define only those descriptors and superdescriptors which are really
used by any application. Every descriptor cost some performance not only in the Natural applica-

Interfaces 107

Using ADL Files with Natural/Adabas

tions but also in the DL/I applications and when utilities run. On the other hand if you have use
for a descriptor or superdescriptor, you should define it. A non-descriptor search gives you the
poorest performance.

Error Situations and Consistency Response Codes

Whenever you violate the rules for manipulating ADL files defined earlier in this section, the ADL
Consistency Interface will return a non-zero response code in the Adabas control block. For Nat-
ural applications, this response code is available in the system variable *‘ERROR-NR. The Adabas
response code returned is “216” and the corresponding Natural *ERROR-NR is “3216”.

A more detailed error message can then be obtained from the ADL Consistency Interface by sub-
mitting an Adabas S1 call conforming to a defined standard. This is in detail explained in the
documentation ADL Messages and Codes. Natural programmers may simply obtain this error
message by a call to the ADL supplied Natural subprogram ADLERROR, as in the example below:

IF *ERROR-NR = 3216
CALLNAT "ADLERROR' {FERRMESS
END-IF

providing an alphanumeric variable “4ERRMESS” of at least 80 bytes length.
The error text returned has the following layout:

"ADLxxxx - error message

where xxxx is a four character error code. For an explanation of the error code, please refer to the
documentation ADL Messages and Codes.

As explained above, the ADL Consistency Interface will guarantee the referential integrity of your
ADL files. However, we recommend a programming style, which avoids updates resulting in
ADL Consistency Interface response codes. In other words, the logic to preserve the referential
integrity of the data should as far as possible be included in the application program itself.

Example

Consider our example data base: Before placing a delete call for a record occurrence of CLASS,
place a read call to make sure that no record occurrences of STUDENT/ INSTRUCTOR still exist.

The reason for our recommendation is, that in a later stage of the data base conversion process
the ADL Consistency Interface could become obsolete. Then, the logic of the application programs
might be affected by not receiving any Consistency response codes.

108 Interfaces

Using ADL Files with Natural/Adabas

Availability of the Consistency Interface

Natural programs may check the availability of the ADL Consistency Interface by calling the ADL
supplied Natural subprogram ADLACTIV. It returns a 2-bytes integer value. If the ADL Consistency
Interface is active the value ’0’, otherwise the value ’8' is returned. Under CICS, if the ADL user
exit ADLEXITB is installed but the ADL Interfaces are not activated, a value ‘4’ is returned.

In general, a program which updates migrated data, should only run when the response from
ADLACTIV is ‘0.

Example

DEFINE DATA LOCAL

1 #RSP(12)

END-DEFINE

CALLNAT "ADLACTIV' #RSP
DECIDE ON FIRST VALUE OF #RSP

VALUE 0

WRITE "ADL Consistency is active.'
VALUE 4

WRITE "ADL user exit installed, but ADL is not active.'
VALUE 8

WRITE "ADL Consistency is not active.'
NONE

WRITE 'Unexpected response from ADL Consistency.'
END-DECIDE
END

Example Programs

The following Natural programs demonstrate how to code with respect to the referential integrity.
The full sources can be found on the SYSADLIV Natural library.

Interfaces 109

Using ADL Files with Natural/Adabas

Program INS-STUD: Insert a Student

Before a dependent segment is inserted, it should be verified that the parents, i.e. the path to the
segment, exists.

* Check if the path to the student exits
*
FIND (1) COURSEDB-CLASS WITH CLASSNO = #CLASSNO
WHERE PCK-COURSENQO = #fCOURSENO
IF NO RECORDS FOUND
REINPUT 'COURSE / CLASS NOT FOUND !

END-NOREC

*

* Store the data in the data base

*
MOVE #COURSENO TO COURSEDB-STUDENT-UPD.PCK-COURSENO
MOVE #CLASSNO TO COURSEDB-STUDENT-UPD.PCK-CLASSNO
MOVE #SURNAME TO COURSEDB-STUDENT-UPD.SURNAME
MOVE #FILLER-AB TO COURSEDB-STUDENT-UPD.FILLER-AB
STORE COURSEDB-STUDENT-UPD
END OF TRANSACTION

END-FIND

Program DEL-COUR: Delete a Course

Before a parent is deleted, it should be verified that it has no dependents. The following program
does not perform the delete if there are dependents

* Check if the data exits
*
COURSE. FIND (1) COURSEDB-COURSE WITH COURSENO = #COURSENO
IF NO RECORDS FOUND
REINPUT 'COURSE NOT FOUND !'
END-NOREC

*

* Check if there are dependents
*
RESET #NBR
CLASS. READ COURSEDB-CLASS WHERE PCK-COURSENO = #COURSENO
MOVE *COUNTER TO #NBR
WRITE #NBR '. CLASS FOUND UNDER THIS COURSE:' CLASSNO CLASSNAME
END-READ

IF #NBR = 0 /* NO DEPENDENTS

*

Delete the data

DELETE (COURSE.)
END OF TRANSACTION
WRITE 'COURSE DELETED!'

110 Interfaces

Using ADL Files with Natural/Adabas

END-IF
END-FIND

Program CDELCOUR: Cascaded delete of a Course

When DL/I deletes a segment, all dependents are deleted automatically. This is named “cascaded
delete”. The program CDELCOUR (together with the programs called by it) is an example on how
to code a cascaded deletion with Natural.

FIND (1) COURSEDB-COURSE WITH COURSENO = #COURSENO
IF NO RECORDS FOUND
MOVE 'Course not found!'
TO #ADL-MESS
ESCAPE BOTTOM
END-NOREC
& Delete dependents recursively
CALLNAT '"CASDELCL' #fCOURSENO #N-CL #N-ST #N-IP #RESPONSE
IF #RESPONSE NE 0
ESCAPE BOTTOM
END-IF
* All dependents are deleted -> delete the COURSE
DELETE
MOVE 1 TO #N-SUM
END-FIND

Interfaces 111

12

9 Converting Natural for DL/l Programs

B T OTUCH ON e e e 114
= Conversion of the Data Definitions and of the Dataooovveeiee e, 114
= Modification of the APPLICALIONeiiii e 115

13

Converting Natural for DL/I Programs

This chapter covers the following topics:

Introduction

The Natural for DL/I (NDL) interface provides access to data stored in an IMS/DB database for
Natural applications. When the DL/I databases access by NDL are converted into Adabas files
with the ADL, the NDL applications can continue to run like any other DL/I application. NDL
converts the Natural generated internal Adabas call into an DL/I call which is converted by ADL
into an Adabas call and forwarded to Adabas. On the way back, the response of Adabas is converted
by ADL into a DL/I response and returned to NDL which converts it into an Adabas response for
the Natural application.

NDL applications have special restrictions and enhancements caused by the hierarchical structure
of the underlying database. Thus after the migration, the NDL application cannot run “as they
are” against Adabas. This chapter describes what you have to respect when you convert a NDL
program to a “normal” Natural/Adabas program.

After the conversion, the Natural program must run through the ADL Consistency as long as there
is any DL/I application (Cobol, PL/1) accessing the same data. The restrictions for Natural programs
running against the ADL Consistency are described in the section Using ADL Files with Natur-
al/Adabas in this documentation. Although the Consistency is an overhead too, the conversion
from Natural for DL/I to Natural/Consistency has several advantages:

" Better performance because read calls are routed directly to Adabas.

® The hierarchical view to the data is replaced by a flat view with foreign keys.

® Normal Natural (i.e. Natural/Adabas) syntax can be used. No special NDL syntax restrictions,
error messages etc. must be obeyed.

® When all NDL applications are converted, NDL is no longer required.

* Natural with the Consistency is the path towards standard Natural/Adabas. L.e. as soon as no
DL/I application accesses the data anymore, the ADL Consistency is obsolete, too.

Conversion of the Data Definitions and of the Data

The DBD definitions accessed by the NDL application must be converted with the ADL Control
Block Conversion (CBC) utility. You can use one file per segment (GENSEG statement of the ADL
CBC utility), or collect more than one segment in one file. The ADL Conversion Utility is described
in the ADL Conversion documentation.

In a first step, the FDT is loaded without data into Adabas. Then load the field descriptions gener-
ated by ADL into Predict with the Predict Incorporate function.

114 Interfaces

Converting Natural for DL/I Programs

Build new Predict masterfiles and DDMs from the ADL definitions and from the NDL definition.

Use from ADL

Field | Description

Zx |ADL internal fields.

Xx |Descriptors corresponding to secondary indices.

Sx |Adabas groups corresponding to DL/I segments. Use the DL/I segment name as long name.

Use from NDL

Field | Description

xx |All Adabas field definitions corresponding to parts of the DL/I segment. Take care that the short
names are unique. These fields must be part of the group corresponding to the DL/I segment.

Special considerations for reference fields:

* Define the sequence fields as descriptors. Note that the root sequence field is already defined
by ADL as descriptor. The short name of the root sequence field must be the one defined by
ADL.

® For the foreign primary key fields, i.e. the PCK and VCK fields, use the ADL short name (normally
Px/Qx), and the NDL long name. Define these fields as descriptors.

® Build superdescriptors with the source segment to reflect secondary indices. Use NDL long-
names for those superdescriptors.

® Do not allocate fields with foreign keys of secondary indices for dependent segments. Because
the secondary index fields belong to another segment, DL/I applications would not fill these
fields.

After this modifications have been performed, generate ADACMP cards with Predict. Then unload
the data from DL/I and load it into Adabas with ADL utilities. For the compression, use the
ADACMP cards from Predict. The data conversion is described in the section ADL Conversion
Utility in the ADL Conversion documentation.

Modification of the Application

This section describes what have to be considered in the NDL applications concerning database
related commands when converting to Natural/Adabas and the ADL Consistency.

READ/FIND commands

READ and FIND commands are only affected when the application reads a dependent segment and
uses in the root level a secondary index. In this case the root level must first be read with the sec-

Interfaces 115

Converting Natural for DL/I Programs

ondary index to get the primary key, and this must be used as foreign key when reading the de-
pendent.

Example

We have a root segment “A” with primary and secondary index and a dependent segment “B”
with a sequence field. We would like to access segment B and use on the root level the secondary
index.

Natural Name |Description

ROOT-A-VIEW |view of root segment A
SEG-B-VIEW |view of dependent segment B
A-PRIMKEY |root primary key

ROOT-PRIM |root primary key used as foreign key

A-SEC root secondary index

ROOQOT-SEC |root secondary index used as foreign key

SEG-B-SEQ |dependent segment sequence field

NDL

FIND SEG-B-VIEW WITH ROOT-SEC=SEC-VAL1 /* sec index

AND SEG-B-SEQ=B-VAL2 /* dependent
ADL
FIND ROOT-A-VIEW WITH A-SEC=SEC-VALI /* sec index
MOVE A-PRIMKEY to #PRIM-VALL /* prim key
FIND SEG-B-VIEW WITH ROOT-PRIM=#fPRIM-VALI /* prim key
AND SEG-B-SEQ=B-VAL2 /* dependent
STORE

When performing a STORE command, the foreign keys must be filled. Before the command is ex-
ecuted, it must be verified that the referenced values exist. This is eventually already ensured by
the application logic. In case of an inconsistence an error handling must be provided.

DELETE

DL/I and thus NDL too, offer a cascaded delete. When a segment occurrence is deleted, all depend-
ent segment occurrences are deleted automatically. In Natural/Adabas there is no such function.
If arecord has dependents, i.e. records which refer the current sequence field as foreign keys, these
records must be deleted explicitly.

. Note: Aslong as the ADL Consistency is active, the dependents must be deleted from bottom
to top and finally the record itself can be deleted

116 Interfaces

Converting Natural for DL/I Programs

UPDATE
UPDATE commands are not affected by the conversion.

| Note: Sequence fields and foreign keys can neither be updated with NDL nor with the ADL

Consistency. You should carefully evaluate, before updating such a field with Natural/Ada-
bas.

END TRANSACTION/BACKOUT TRANSACTION

DL/I'makes an implicit checkpoint at each terminal I/O. Because Adabas does not make any implicit
ET call, the transaction logic of the application must be checked and if required, additionally 'END
TRANSACTION' statements must be added.

ERROR HANDLING

There will be no more NDL specific error message in the application. The error handling must
reflect only Natural/Adabas error situations. Additionally when the ADL Consistency is used, a
Consistency response code can be obtained. This is described in details in the chapter Using ADL
Files with Natural/Adabas in this documentation.

Interfaces 117

118

10 SQL Access to the Migrated Files

LI 121 (oo 1 o110 o PRSP PPPTPPRR 120
= How t0 Access the Migrated Dataooiiiiiiiiiii e 120
= |mproving the Access to Migrated Dataoiiiiiiiiii e 121
= Restrictions for SQL APPICALIONSeiiiiiiiii e 121

19

SQL Access to the Migrated Files

This chapter covers the following topics:

Introduction

The Adabas SQL Gateway provides business users real-time access to Adabas data, no matter
where that data resides, using standard SQL-based desktop tools.

With Adabas SQL Gateway, mission-critical Adabas data can be accessed quickly and easily by
any ODBC, JDBC, OLE DB or .NET standard SQL application. IT and business users also can access
Adabas with SQL-based reporting tools, such as Business Objects, Crystal Reports and MS Office.
With Adabas SQL Gateway, IT can deliver business users the information they need, straight to
their desktops.

After the DL/I databases have been converted to Adabas files, these files can be accessed by SQL
applications with the Adabas SQL Gateway. The advantages for the Adabas data offered by the
Adabas SQL Gateway can be extended to DL/I data this way.

This section explains:

® How to access the migrated data from SQL applications.
® How to improve the access.

® What restrictions apply for the SQL applications.

The installation and operation of the Adabas SQL Gateway is described in the Adabas SQL Gateway
manual.

How to Access the Migrated Data

Import the Adabas definitions to the Adabas SQL Gateway data dictionary with the CONNX Data
Dictionary Manager. You can either use the FDT import or if you have already generated DDMs
for Natural, you can use the SYSTRANS import function.

As described in the section Using ADL Files with Natural/Adabas in this documentation, ADL
mirrors the hierarchical structure defined in the DL/I database by using physical pointers and
foreign keys. An SQL table should reflect all the fields belonging to a DL/I segment plus the foreign
key fields. SQL tables should not contain the physical pointer fields nor other ADL internal fields
(20 — Z8, secondary index descriptor).

Once the data definitions are imported, you can read the data with SQL applications.

120 Interfaces

SQL Access to the Migrated Files

Improving the Access to Migrated Data

Depending on the data you want to read with the SQL application, you should consider defining
new descriptors and superdescriptors in the Adabas file. You may define as descriptor:

" Sequence fields of dependent segments (the root sequence field is already a descriptor).

* Foreign key fields.
You may define as superdescriptors:

® The concatenated key fields, i.e. all foreign key fields of the parents of a segment. This super-
descriptor may additionally include the sequence field of the segment itself if available.

® Fields building up a secondary index.

You may define other fields as descriptors or superdescriptors even if there is no counterpart in

the DL/I structure. But ...

® Do not build superdescriptors from fields of different segments. It will not contain any data.

® Donot allocate descriptors/superdescriptors which you do not use. Itis an overhead in perform-
ance.

Restrictions for SQL Applications

SQL applications must not update the migrated data. If an SQL application would insert dependent
segment data, DL/I applications would not “see” this data. This is because there is no “Consistency”
for SQL which updates the ADL internal physical pointer fields which are required for the DL/I
applications.

Moreover if an SQL application updates the data, it can destroy the hierarchy. For example if it
deletes a root segment data, the dependent data is still in the database but cannot longer be accessed
by DL/I applications. Once again, no “Consistency” prevents the SQL application from destroying
the referential integrity.

Note that these restrictions apply only as long as DL/I applications access the data. As soon as all
DL/I applications have been replaced, you can modify the data with SQL applications without
restrictions.

Interfaces 121

122

11 Debugging Aids - ADL Trace Facility

B DAta BASE Call TIACE ...uvvi it 124
B NEEIMNAI ROULINE TTACE ..vvviiiiiiiiiiiitit ittt ettt et e e e e et et ettt et e s et e s e tesaaaaaaerareeeeees 129
B Z/OS JOL REQUIFEMENESeeeiiieie ettt ettt et e et e e et e e e as 129
B Z/VSE JCS REQUINEMENTSeeiei ittt e et e e e e e e et eeeeeas 131

123

Debugging Aids - ADL Trace Facility

The Adabas Bridge for DL/I includes a Trace facility with which you can gather information on
the following:

® DL/I and Adabas calls (referred to as “database call trace”).

® Internal routine ADL calls (referred to as “routine trace”)
You may activate the Trace facility in different ways:

® By specifying the TRACE parameter in the ADL parameter module (see the section ADL Parameter
Module in the ADL Installation documentation).

® By specifying the TRACE parameter as one of the parameters for the ADL initialization program,
DAZIFP (see the section Batch Installation and Operation in this documentation for details), or

® Dynamically under CICS in the CICS Maintenance of the ADL Online Services or by running
the DAZT transaction.

This chapter covers the following topics:

Data Base Call Trace

Tracing DL/l and Adabas Calls

The Trace facility for DL/I and Adabas calls consists of two parts, one that is responsible for data
acquisition and the other for reporting.

Data Acquisition

The data acquisition part of the Trace facility collects data for every DL/I and Adabas call while
the application program is running, and stores them in a sequential file known as the trace file.

The default setting causes data to be collected for all calls, from the beginning of the job to the
end. However, you may also use the TRACE parameter operands listed below to trace a specific
number of DL/I calls or to start a trace at a particular call.

When you activate the Trace facility under CICS with the ADL Online Services, the system prompts
you for a terminal ID and the type of trace wanted. Specifying a terminal ID results in a trace of
calls from the specified terminal only. Any blank character in the specified terminal ID is treated
as a wildcard, i.e. it matches all characters. Thus, if a blank terminal ID is specified (4 blank char-
acters) a trace of calls from all active terminals is conducted.

124 Interfaces

Debugging Aids - ADL Trace Facility

The syntax of the Trace parameter for DAZIFP or the ADL Parameter Module is as follows:

TRACE=([t],[s],Cal,[n],[m],Cc],Cul,[b])

All parameters are positional parameters. Trailing commas can be omitted, e.g.

TRACE=(RD)

The operands of the TRACE parameter have the following meaning:

Operand

Explanation

t

The type of trace requested. One or more of the following values may be specified:
R: All internal routine calls will be traced.

D: All DL/I and Adabas calls will be traced.

U: Special trace for the CBC utility.

The order in which these values are specified is irrelevant.

Default: None

The start, i.e. the first DL/I call to be traced.
Possible values: 1 - 9999999
Default: 1

The number of DL/I calls to be traced.
Possible values: 1 - 9999999
Default: 9999999

The name of the routine at which the routine trace is to be started. The name given must start
with “DAZ”, and may have a maximum of 8 characters.
Default: DAZCOMDC

The number of the call to the routine specified in “n” at which the routine trace is to be started.
An entry of 0 causes “n” to be ignored and the complete routine trace to be printed.
Default: 0

The name of the routine which is to be counted. The name given must start with “DAZ”, and may
have a maximum of 8 characters.
Default: DAZCOMDC

The logical unit number (for z/VSE only).
Possible values: 0-999
Default: 11

The block size (for z/VSE only).
Possible values: 0-99999
Default: 8196

For the ADL CALLDLI Interface the data collected contain the following information:

® The “before” image of a DL/I call (i.e. its form before it is passed to the system): the function,
SSAs and I/O area (for insert and replace calls) are traced.

Interfaces

125

Debugging Aids - ADL Trace Facility

® The “after” image of an Adabas call (i.e. its form when it is returned by the system): the Adabas
control block and buffers (any of the format, record, search, value and ISN buffers, if used) are
traced. The fields of the Adabas control block are listed individually in readable format (character
or numeric) and in hexadecimal format (denoted by a leading “x”). The buffers are listed in
hexadecimal and in character format.

= The “after” image of a DL/I call: the user PCB, key feedback area and I/O area (for retrieval calls)
are traced.

000001 GU
SSA1T :C3D6E4D9 E2C54040 4DC3D6E4 DI9E2C5D5 D67E40D4 CLE3C8CS5 D4CLF2FO
FO5D *COURSE (COURSENO= MATHEMAZ200) =
L6 ISN: 0000000021 x00000015 DBID: 01424 x0590 FNR: 00833 x0341 RSP:
00000 x0000 CID: 'Z??7?' xE9010101 TERM:
TIME: 0000000005 x00000005 ISNL: 0000000000 I[SNQ: 0000000000 0P1:
'R’ xD9 opz: 'v' XE5 TASK:

ADD1: '"AA" CIC1BBCA40404040 ADD2: " 7' O001EOO3F ADD3: 4040404040404040 ADD4:
4040404040740590 ADD5: 0000000000000000
FBL: 0024 FB: F4E76BF4 E76BE9F4 6BF8E76B F8E76BF4 E76BF4E7 6BE2C14B

*4X,4X,724,8X,8X,4X,4X, SA. *
RBL: 0063 RB: 40404040 40404040 00404040 40404040 40404040 40404040 40404040
40404040 * . *
40D4C1E3 C8C5D4C1 F2FOFOD4 C1E3C8C5 D4C1E3CY9 C3E24040 40404040
404040 * MATHEMAZO0OMATHEMATICS &
SBL: 0003 SB: C1C14B
*AA. *
VBL: 0010 VB: D4CIE3C8 C5D4ClF2 FOFO
*MATHEMA200 *
DBD: COURSEDB STA: SEG: COURSE LEV: 01 SEN: 00000004 OPT: AP RES:
01030470
KYL: 0010 KY: D4C1E3C8 C5D4CI1F2 FOFO
*MATHEMAZ200 *
IOL: 0030 I0O: D4C1E3C8 C5D4C1F2 FOFOD4C1 E3C8C5D4 CIE3C9C3 E2404040 40404040
4040 *MATHEMA200MATHEMATICS R

Database call trace

For the ADL Consistency Interface, the following data are collected:

" A “before” image of the user Adabas call.

" A “before” image of internally emulated DL/I type calls. Only the I/O area but no SSAs will be
traced.

" An “after” image of Adabas calls issued by ADL i.e. inits form when it is returned from Adabas.

" An “after” image of internally emulated DL/I type calls.

126 Interfaces

Debugging Aids - ADL Trace Facility

" An “after” image of the user Adabas call. This is after the Consistency has completed its pro-
cessing, but before the call is either passed to Adabas or control is returned to the user. Note
that a non-zero Adabas return code displayed is the actual ADL return code (in a range from
1201 to 1299) and not the return code which will be seen by the user (216).

Only those user Adabas calls will be traced which perform an update function (insert, delete or
replace) and reference to an ADL file.

For the ADL Consistency Interface it is recommended to overwrite the default routine name of
the 'n' and 'c' operands with the ADL routine name DAZCFDEC.

Data Reporting

The data reporting part of the Trace facility reads and interprets the data stored in the trace file
and produces a trace report. As such, it is part of the ADL nucleus and is activated by executing
the ADL initialization program DAZIFP with the parameters shown below as provided by the file
DAZINI (see the section Batch Installation and Operation for details).

PRT,DAZPRINT

You can control the Trace data reported using an additional control statement read in from either
DAZIN1 (z/OS) or DAZINZ (z/VSE). This statement has one of the following two formats and options:

MODE=SHORTL, TERM=t][, TASK=11]
or
MODE=FULLL,ADA=x]1[,DLI=y][,TERM=t][, TASK=1i]

where

Operand |Explanation

t is a four-character CICS terminal ID indicating that only DL/Iand Adabas calls originating from
the specified terminal will be repeated.

i is a task number up to five digits long indicating that only DL/Iand Adabas calls originating from
the specified task number will be repeated.

Interfaces 127

Debugging Aids - ADL Trace Facility

x is any combination of the following values:

Value |Suppressed Buffer/Calls
R |Adabas record buffer
F |Adabas format buffer
S |Adabas search buffer
V |Adabas value buffer
I |Adabas ISN buffer
N |Adabas calls before the first DL/I call

and y is any combination of the following values:

Value |Suppressed Areas
I |DL/IT/O area
K |DL/I key feedback area
P |DL/Iuser PCB
S |DL/ISSAs

Specifying any of the x or y parameter values suppresses reporting of the indicated buffer or area.

J

Note: MODE=SHORT

is the same as

MODE=

FULL,ADA=RFSVI,DLI=IKS

Example:

MODE=

FULL,ADA=RFI,DLI=I

This parameter statement would cause the Adabas search and value buffers and the DL/I PCB,

key feedback area and SSAs to be reported.

128

Interfaces

Debugging Aids - ADL Trace Facility

Internal Routine Trace

The Trace facility may be used to trace all internal routine calls for ADL. The default setting causes
all routine calls from the beginning of the job to the end to be traced. However, you may use the
TRACE parameter operands listed earlier in the section on Data Acquisition to specify the name of
the routine at which tracing should be started and to ignore the first “n” times the routine was
called.

In batch, the routine calls trace is routed direct to the printer. In CICS, an extra partition data set
is used for this. Any standard printing utility, or the DAZPRINT utility, may then be used to print
the trace. The DAZPRINT utility is activated by executing the ADL initialization program DAZIFP
with the parameters shown below (see the section Batch Installation and Operation for details):

PRT,DAZPRINT
The following additional parameter statement must be specified:

MODE=ROUTINE[,TERM=t]
where

t is a four-character CICS terminal ID, indicating that only routine calls originating from the ter-
minal specified should be printed.

z/0S JCL Requirements

The JCL requirements for the Trace facility are discussed below. Explanations of how to use the
Trace facility during a batch run and how to print out the trace data set are given.

Using the Trace Facility

The table below lists the data sets used by the ADL batch monitor when the Trace facility has been
activated. These data sets are used in addition to any others.

Interfaces 129

Debugging Aids - ADL Trace Facility

DDname Medium |Description
DAZOUTS5 | Tape/Disk |Trace output file *
DAZOUT1 | Printer |ADL routine calls trace **

* Only required when the trace to be performed is to include DL/I and Adabas calls.

** Required when the trace to be performed is to include internal ADL routine calls. This file is

also used to print error messages, and should therefore already have been included.

Example

//
//STEPLIB
//
//DDCARD

EXEC PGM=DAZIFP,PARM='DLI,pgmname,psbname, TRACE=(RD)"'
DD DSN=ADL.LOAD,DISP=SHR
DD DSN=ADABAS.LOAD,DISP=SHR

DD *

ADARUN PROGRAM=USER, . ..
DD SYSOUT=X

//DAZOUT1
//DAZOUTS

DD DISP=SHR,DSN=d-trace-dataset

Printing the Trace Data Set

The following table lists the data sets used by the Print Trace utility, DAZPRINT.

DDname Medium |Description
DAZIN1 Reader |Control input for the Print utility, DAZPRINT.
DAZOUT1 | Printer |Report, messages and codes.
DAZIN4 | Tape/Disk |DL/I and Adabas calls trace file.
DAZINS | Tape/Disk |Routine trace file.
Examples

The following is an example of a job to print the data base call trace:

//
//STEPLIB
//DAZIN4
//DAZOUT1
//DAZIN1
MODE=FULL
//*

EXEC PGM=DAZIFP,PARM='PRT,DAZPRINT'
DD DSN=ADL.LOAD,DISP=SHR
DD DSN=d-trace-dataset,DISP=SHR

DD SYSOUT=X

DD *

130

Interfaces

Debugging Aids - ADL Trace Facility

The following is an example of a job to print the internal routine trace from disk:

// EXEC PGM=DAZIFP,PARM="'PRT,DAZPRINT"
//STEPLIB DD DSN=ADL.LOAD,DISP=SHR

//DAZINS DD DSN=r-trace-dataset,DISP=SHR
//DAZOUT1 DD SYSOUT=X

//DAZIN1 DD *

MODE=ROUTINE

¥

z/VSE JCS Requirements

The JCS requirements for the Trace facility described in this section are discussed on the following
pages. Explanations of how to use the Trace facility during a batch run and how to print out the
trace data set are given.

Using the Trace Facility

The table below lists the files used by the ADL batch monitor when the Trace facility has been
activated. These files are used in addition to any others.

DTF Logical Unit | Medium |Description

DAZOTSD | SYS012 Disk |Trace output file. *
DAZOTS5T | SYS012 Tape |Trace output file. *
DAZOUT1 | SYSLST | Printer |[ADL routine calls trace. **

* Only required when the trace to be performed is to include DL/I and Adabas calls. Only one of
the two files is needed.

The logical unit indicated is the default logical unit. To change it, specify the TRACE parameter
either in the ADL parameter module or as a dynamic parameter:

TRACE=(,,,,,6)

** Required when the trace to be performed is to include internal ADL routine calls. This file is
also used for the printing of error messages, and is therefore automatically included.

Interfaces 131

Debugging Aids - ADL Trace Facility

Example

// ASSGN SYSO012,DISK,VOL=volume, SHR
// DLBL DAZOT5D, 'd-trace-dataset'

// EXTENT SYS012,volume
// EXEC PROC=ADLLIBS

// EXEC DAZIFP
DLI,pgmname,psbname, TRACE=(RD)

/*

ADARUN PROGRAM=USER

/*
/&

Printing the Trace Data File

s e e e

The following table lists the files used by the Print Trace utility, DAZPRINT.

DTF Logical Unit | Medium |Description
DAZIN1 SYSIPT | Reader |Control input for the ADL batch monitor, DAZIFP.
DAZIN2 SYSIPT | Reader |Control input for the Print utility, DAZPRINT.
DAZIN4D | SYS012 Disk |DL/I and Adabas call trace file. *
DAZIN4T | SYS012 Tape |DL/I and Adabas call trace file.*
DAZOUT1 | SYSLST | Printer |Report, messages and codes.
DAZIN5D | 5YS014 Disk |Routine trace file. **
DAZINST | SYS014 Tape |Routine trace file. **

* Only one of the two files is required. The logical unit indicated is the default logical unit. To
change it, specify the TRACE parameter either in the ADL parameter module or as a dynamic

parameter:

TRACE=(,,,,,6)

**Only one of the two files is required. The logical unit indicated is the default logical unit. To
change it, specify the FX parameter in the ADL parameter module:

FX=(15,)

132

Interfaces

Debugging Aids - ADL Trace Facility

The control input for both the batch monitor (DAZIFP) and DAZPRINT is read from SYSIPT. The
control statements must be specified in the following order:

PRT,DAZPRINT input for DAZIFP

/*

MODE=FULL input for DAZPRINT
/*

Examples

The following is an example of a job to print the data base call trace:

// ASSGN SYS012,DISK,VOL=volume, SHR
// DLBL DAZIN4D, 'd-trace-dataset'
// EXTENT SYS012,volume

// EXEC PROC=ADLLIBS

// EXEC DAZIFP

PRT,DAZPRINT

/*

MODE=FULL

/*

/&

The following is an example of a job to print the internal routine trace:

// ASSGN SYS014,DISK,VOL=volume, SHR
// DLBL DAZINS5D, 'r-trace-dataset’
// EXTENT SYS014,volume

// EXEC PROC=ADLLIBS

// EXEC DAZIFP

PRT,DAZPRINT

/*

MODE=ROUTINE

/*

/&

Interfaces 133

134

12 CALLDLI Test Program - DAZZLER

L 10T (Vo o 3 136
B DL/ SEAIBMENTS ©.ueeiiiii e e e e e e 137
LT T RPRPUPTRT 137
B DAZZLER Control STatEMENTSo 141
m z/OS JCL Requirements for DAZZLER ..o 143
m 7/VSE JCS Requirements for DAZZLER ... 144

135

CALLDLI Test Program - DAZZLER

This chapter covers the following topics:

Introduction

DAZZLER is a special test utility provided with the Adabas Bridge for DL/I. It is used to format
DL/I calls and to monitor their results. This may be necessary, for example, to compare DL/I and
Adabas performance.

DAZZLER handles up to the following maximum values:

Number of PCBs |10

Number of SSAs |15
I/O area length (bytes) [256
SSA length (bytes) |256

You are most likely to want to use DAZZLER for low volume input, and for this reason the eight
possible statement types have been divided into two groups of four. The first group contains those
statements necessary for creating DL/I calls, and are referred to as DL/I statements. The second
group consists of statements provided for the user's benefit, particularly when handling medium-
to-large volumes of input. The statements in this second group are known as DAZZLER control
statements, and are all optional.

All statements in both groups contain a number of validated fields. The validation rules for each
field are explained in the discussion of the individual statements.

You should note that the first three positions of each statement contain an identifying title. Invalid
titles, and thus the information on the statement concerned, are immediately rejected.

Blank statements are ignored.

| Note: AlIPSBsused for the DAZZLER program must have been created with either the PSBGEN

statement option LANG=ASSEM or LANG=COBOL. Alternatively, if the PSB had been created
with LANG=PLI, you must specify LANG=COBOL as DAZIFP parameter.

Appendix A shows an example of DAZZLER usage.

136 Interfaces

CALLDLI Test Program - DAZZLER

DL/l Statements

The following table lists the DL/I statements.

Statement Function

HEADER Statement |A compulsory statement which contains the DL/I call and other important related
parameters. It must be the first statement within the set (see below).

IOA Statement An optional “input/output area” statement which, when present, causes the existing
I/O area to be overwritten.

SSA Statement An optional “segment search argument” statement which, when present, causes
a specified segment search argument to be overwritten.

SUMMARY Statement |An optional statement which, when present, produces a tabular summary of all
segment names and how many occurrences there are in a given PCB.

Sets

Each individual DL/I call requires that a set of statements be input — a set being defined as a
group of statements beginning with a HEADER statement and ending with either the statement
preceding the next HEADER or SUMMARY DL/I statement, JUMP DAZZLER control statement, or with
the end of the file, as appropriate. A SUMMARY statement is considered to be a set in itself.

In other words, a set can consist of:

" only a HEADER statement,

" a HEADER statement followed by any combination of other DL/I or DAZZLER control statements
(any COMMENT statements encountered will be ignored), or

® only a SUMMARY statement.

If the HEADER statement of a set is rejected by the validation routines, all the remaining statements
in the same set will be rejected as well.

The following pages describe the individual statements, their layouts and the validation routines
appropriate in each case.

Interfaces 137

CALLDLI Test Program - DAZZLER

HEADER Statement

B O TR~ PRURIC DU O R TR PR RPN ¢ AP

*HD call nnn cc pp ss 1iiii +++++ sSSS1ssS1sSsIssslssslsssIssslsssl

The following pages explain the individual entries on the statement in detail.

Statement | Position | Status* |Description

Field
*HD 1-3 C |The identifier for the HEADER statement.
call 5-8 C |The kind of DL/I call. This is validated against an internal table and must
be four characters long, plus trailing blanks if appropriate. e.g. "DLET",
"REPL", "GU", "GHNP", etc.
nnn 10-12 O |The number of times the set is to be run. The range is 1-999, with leading
zeros as appropriate. The default is 001. See also the “cc” field.
cc 14-15 O |Any non-blank entry overrides any value entered in the "nnn" field. The
set is repeated until the status code returned by DL/I corresponds exactly
to the entry made here. An entry of “??” instructs DAZZLER to stop repeating
the call as soon as a non-blank status code is returned.
PP 17-18 C |The PCB number to be used for this call.

ss 20-21 O |The number of SSAs in the call. The range is 00 to 15 (a leading zero must
be provided if necessary). The default is 00.

1iiii 23-27 O |If this parameter is omitted, or if “00000” is entered, no further validation
is performed and any further coding in this statement is treated as a
printable comment. If a five-figure number (including leading zeros) is
entered, this value is used as the initial value for an iterative overwrite of
the IOA. All remaining fields are then used to specify this overwrite.

+HHH 29-33 O |Afive-figure number with leading zeros which will be used as the increment

sssl...etc | 35-66 | O/C** |Each occurrence of “sssl” represents the start position (SSS) and the length
("I") of the iterative overwrite of the IOA. The "sss” entry must include
leading zeros if necessary and be in the range 1-256. The “I” entry must be
in the range 1-5. In addition, the end position calculable from the two entries
must be less than 257. A minimum of 1 and a maximum of 8 “sss!” entries
may be provided. Blank entries are ignored.

* C = compulsory, O = optional

138 Interfaces

CALLDLI Test Program - DAZZLER

Example of the Iterative Overwrite Facility

provided

SSs1ssslsssTssslssslssslssslsssl

oo Ao+l

02040352

0615

BT
0013

BICTRE

then the results of the coding are:

1111

IOA Posititions | 1st Iteration | 2nd Iteration | 3rd Iteration | 4th Iteration
20,21,22,23 0100 0135 0170 0205
35,36 00 35 70 05
61,62,63,64,65 00100 00135 00170 00205
1,2,3 100 135 170 205
111 0 5 0 5
BACK Call

In addition to DL/I calls you can specify BACK as the call in the HEADER statement. This results in
an Adabas BT (Backout Transaction) call which removes all data base modifications performed
during the user's current logical transaction. The BACK call can only be used, if DAZZLER runs as an
online batch application, i.e. with BMP, MPS or SDB as first DAZIFP parameter. To prevent conflicts
with the automatic ET functionality, it is recommended to specify ET=NO as DAZIFP parameter or
in the ADL Parameter Module. The BACK call can not be used while DAZZLER runs against DL/I.

IOA and SSA Statements

R R S Tt PC DU R O AETTTRI DU PR ¢ I

tit form sss 11 dd

Statement | Position | Status* |Description
Field

tit 1-3 C |Two settings are possible:

IOA - Indicates that the I/O area is to be overwritten.

Snn - Indicates that an SSA is to be overwritten. The value "nn" specifies the
SSA concerned and must be in the range 1-15, with a leading zero if necessary.
The entry in "nn" is validated for being not greater than the number of SSAs
coded on the HEADER statement.

Interfaces 139

CALLDLI Test Program - DAZZLER

Statement | Position | Status* |Description
Field

form 5-8 O | A four-character entry with a trailing space if necessary. Indicates the format
for the rewrite to the program. The possible values are:

CHAR Characters
HEX Hexadecimal data

PCK Positive packed decimal number

PCK+ Positive packed decimal number

PCK- Negative packed decimal number
The default is CHAR.

Sss 10-12 C | A three-figure number with leading zeros, if necessary, which specifies the
start position for the overwrite. It must be in the range 1-256.

11 14-15 C |Two-digit string, with a leading zero if necessary, specifying the length of the
overwrite. It is dependent on the entry made under "form" .If this specifies
character format, the " 11" entry determines the number of bytes to be
overwritten. If it specifies non-character format, it specifies the number of
digits to be read from the statement. The entry must be in the range 1-50,
except for packed decimal data, in which case the maximum is 18. The
calculable end position for the overwrite must be less than 257.

dddd ... | 17-66 C |The data to be used in the overwrite are entered here, left-justified. Overwrites
in hexadecimal format cause the program to validate the data for being in the
ranges 0-9 or A-F and for being an even number of digits. Packed decimal
format causes validation for the range 0-9.

* C = compulsory, O = optional

The I/O area and the SSAs are only overwritten when this is specifically requested. If a subsequent
call requires some or all of the same SSAs or the same data in the I/O area, it is not necessary for
these to be recoded. You should note that the I/O area may well change as the result of a DL/I call.

SUMMARY Statement
3070 a0 odhooc
SUMMARY pp
Statement Field | Position Status Description
pPp 9-10 | Compulsory |The required PCB number. The range is 01-10. A leading zero must
be provided if necessary.

This statement causes the program to produce a table showing, for any one PCB, all the retrievable
segment names and how many occurrences of each there are. The statement is NOT a part of a set
as defined earlier, but rather can be considered a set in itself. When a SUMMARY statement has been
encountered and validated as correct, the program issues an unqualified GU to establish position

140 Interfaces

CALLDLI Test Program - DAZZLER

on the first segment and then issues successive GN calls until a status code of "GB" is returned. The
table is then printed out and the program continues with the next statement. A SUMMARY statement
may appear anywhere in the job stream and will also be recognized as ending a previous HEADER
statement set.

DAZZLER Control Statements

Statement Function

PRINT CONTROL | An optional statement which provides run control parameters. It comes at the
PARAMETER front of the input stream.

COM(MENT) This statement enables users to make comments which will not subsequently be
printed. It can appear anywhere in the job stream, and is ignored as soon as it is
encountered. It is used to help understand the test stream.

JuMmp This statement tells DAZZLER to ignore all following statements until the
corresponding LABEL statement is read. It allows users to jump down the stream
and skip some or all statements.

LABEL This statement is the partner of a JUMP statement. It places a label in the job stream
to indicate the point at which the program is to restart processing statements. If
no prior associated JUMP statement exists, the LABEL statement is ignored.

PRINT CONTROL PARAMETER Statement

If the PRINT CONTROL PARAMETER statement is omitted, dates are printed with the format "DD/MM/YY"
and a page throw occurs before each new set of statements.

The layout of the statement is as follows:

A
PARddtccsssssppeee
Statement | Position | Status* |Description
Field
PAR 1-3 C |The identifier for the statement.
dd 4-5 C |The date print field. Two values are possible:
US - Dates are printed in the format MM/DD/YY.
AM - Dates are printed in the format DD/MM/YY.
If the PRINT CONTROL PARAMETER statement is not used, then the date will
automatically have the format DD/MM/YY.
t 6 O |If an entry is made here, the automatic page throw for every new call is
suppressed.

Interfaces 141

CALLDLI Test Program - DAZZLER

Statement | Position | Status* |Description
Field

cc 7-8 O | Specifies what is to be printed. Permissible entries are:

PA Print all.

PN Print no results from the calls.

PF Print from a specified call number onwards.

PC Print no results until a non- blank status code is
returned: after this, print the number of calls specified
by the "pp" field (see below).

PS Print slots (e.g. print every 20th call).
The default is PA.

5585 9-13 O |Specifies the start call number when PF or PS have been entered in the "cc"
field. If entered, the start call number must be a five-figure number with
leading zeros if necessary.

PP 14-15 O |Two uses are possible:

Specifies the number of calls to be printed after a PC or a PF. The value
entered must be a two-figure number with a leading zero if necessary. An
entry of 99 means that all remaining calls will be printed.

For the PS parameter, specifies the number of calls either side of the selected
call number to be printed.

eee 16-18 O |Used only with the PS parameter. Specifies the number of calls to be skipped
when slots are to be printed. It is the repeating increment and must be a
three-figure number (including leading zeros where necessary).

* C = compulsory, O = optional

COMMENT Statement

COM

Positions 1-3 must contain COM. This statement will be ignored by the program and is provided so
that users can increase the legibility of their test streams.

142 Interfaces

CALLDLI Test Program - DAZZLER

JUMP and LABEL Statements

50776 0 0

JUMP 111
LABELT11

This pair of statements is provided so that users can ignore calls in the test stream. As soon as the
program reads the JUMP statement ("JUMP" in columns 1-5), it ignores all subsequent statements
until the matching LABEL statement (" LABEL" in columns 1-5) is found. The match is performed
on columns 6-8 (inclusive) of both statements. The three characters must match exactly for the
program to restart. If no LABEL statement exists for a JUMP statement, no further calls will take
place. If no JUMP statement exists for a LABEL statement, then the latter is ignored. Note that a JUMP
statement forces an end of set condition (see earlier in this section).

z/0S JCL Requirements for DAZZLER

The following table lists the data sets used by the Test utility, DAZZLER.

DDname | Medium |Description

CFILE | Reader |Control input for DAZZLER.
PRNTR | Printer |Report.

Example

// EXEC PGM=DAZIFP,PARM="DLI,DAZZLER,psbname’
//STEPLIB DD DSN=ADL.LOAD,DISP=SHR

// DD DSN=ADABAS.LOAD,DISP=SHR

//DDCARD DD *

ADARUN PROGRAM=USER, . ..
//DAZOUT1 DD SYSOUT=X
//*

//* DAZZLER DATASETS
//*

//PRNTR DD SYSOUT=X
//CFILE DD *

*HD GU 01
*HD GN GB 01
/%

Interfaces 143

CALLDLI Test Program - DAZZLER

z/VSE JCS Requirements for DAZZLER

The following table lists the files used by the Test utility, DAZZLER.

DTF Logical Unit | Medium |Description

CFILE | SYS007 | Reader |Control input for DAZZLER.
PRNTR | SYS006 | Printer |Report.

The control input for the batch monitor (DAZIFP) and for ADARUN is read from SYSIPT. Where the
control input for DAZZLER itself is also to be read from SYSIPT (by assigning SYS007 to SYSIPT), the
control statements must be specified in the following order:

DLI,DAZZLER,psbname, ... input for
DAZIFP

/*

ADARUN DB=dbid,MO=MULTI,PROGRAM=USER, ... input for ADARUN

/*

*HD GU

input for DAZZLER

/*
Example

// ASSGN SYS006,SYSLST
// ASSGN SYS007,SYSIPT
// EXEC DAZIFP
DLI,DAZZLER,psbname

/*
ADARUN PROGRAM=USER, . ..
/*

*HD GU 01

*HD GN GB 01

/*

144 Interfaces

13 Managing ADL Files

B OVBIVIBW ..ttt e ettt e e e oottt et e e e e oo ettt e e et e e e ettt et e e e e oottt e e et e e e ettt e e e e e e e e e 146
= Reorganization with ADL Utilities (Pseudo Mixed MOdE)cooiiiiiiiiiiiiiieiiie e 146
= Reorganization with ADL Utilities (Normal MOGE)ccoiiiiiiiiiiiiiie e 149
= Reorganization With Adabas ULIIIIEScoiiiiiiiii e 151
= Reorganization with USer-written Programscccoooooiiiiiiiiiiioe e 152
= Change of DL/l Segment DEfiNItIONSoiiiiiiiiiiiii e 153
= Change of DL/I Field DEINIIONSccciiiiiiiiiii e 154
m Change of the Data LaYOULc.ueiiiiiii e 155
= Re-establishment of the Hierarchical SEQUENCEooiiiiiiiiiii e 159
® Change of DL/ PSB DEfiNItIONSvvvvieieeiii ittt e e e e 159
® Change 0f the ADL STIUCIUIEeeiiiiiiii et 159
= Change of Adabas DBIDs and File NUMDETSoviiiiiiiiiiiii e 160
= Change of the Adabas File LayOULooiiiiiiiii s 162

145

Managing ADL Files

This chapter covers the following topics:

Overview

When a DL/I data base has been converted into ADL files, the need for modifications of these files
may arise. The reason for this could be changes in the DL/I data base structure as well as changes
in the Adabas files layout of the ADL files. Also, ADL files need to be maintained for reorganization,
backup and recovery reasons in the same or similar way as normal Adabas files. During reorgan-
ization of an Adabas data base, ADL files may be assigned to Adabas DBIDs and file numbers
different from those assigned when the files were created.

The first three sections in this chapter describe the procedures applicable when modifying ADL
files, in particular the reorganization of ADL files.

* by ADL utilities,

® by Adabas utilities,

" or by user-written programs.

The remaining sections list potential changes and outlines which of the procedures should be used
to perform the change. The following issues are explained in details:

® how to change the DL/I structures like the PSB, segment or field definitions;

* how to change the data layout of the I/O area;

" how to re-establish the hierarchical sequence of the migrated data;

* how to change the ADL structure by splitting a DBD over several files,

® how to change the Adabas structure like the DBID, file number, group or field definitions.

Reorganization with ADL Utilities (Pseudo Mixed Mode)

Some of the changes described later in this chapter require a logical unload and reload of the data.
Logical unloads and reloads should be performed using the standard ADL Unload and Reload
utilities. The procedure is similar to that used to convert the original DL/I data base (see the section
ADL Conversion Utility in the ADL Conversion documentation).

At the conversion of the original DL/I data, ADL runs in “mixed mode”, i.e. DL/I calls ADL which
calls the ADL Unload utility DAZUNDLI

When the structure of the converted data changes, DAZUNDLI maps the old to the new structure.
For this task it must be aware of both structures simultaneously. But the ADL directory supports
only one version of a DBD. Therefore “pseudo mixed mode” was introduced to ADL. In the pseudo

146 Interfaces

Managing ADL Files

mixed mode, DAZUNDLI accesses two ADL environments, containing two interface programs
DAZIFP, two batch nuclei DAZNUCB and two ADL directories, one containing the old, the other
containing the new structure.

In a first step, a copy of the (“standard”) ADL environment is created by copying the ADL batch
interface program DAZIFD, the batch nucleus DAZNUCB, and the ADL directory. This ADL-copy-
environment reflects the old structure; the standard ADL environment is used to convert the new
structure. In “pseudo mixed mode”, the ADL-copy-environment calls the standard ADL environ-
ment which calls the ADL Unload utility DAZUNDLL

The following steps must be performed:

Step |Description

Step 1 |Copy ADL programs

Step 2 |Create the ADL unload PSB
Step 3 |Copy the ADL directory
Step 4 |Modify and convert the DBD
Step 5 |Create the ADL reload PSB

Step 6 |Unload the data in pseudo-mixed mode
Step 7 |Load the Adabas file(s)
Step 8 |Re-establish logical relationships

These steps are explained in detail below. For more information about the ADL CBC utility see
the section ADL Conversion Utilities for DBDs and PSBs in the ADL Conversion documentation.

Step 1: Copy ADL programs

In the ADL load library, make a copy of “DAZIFP” named “DAZIFPX”, and a copy of “DAZNUCB”
named “DAZNUCX".

Step 2: Create an ADL Unload PSB

Create a PSB containing two PCBs. Both PCBs should be based on the original DBD and should
reference all segments. The first PCB will be used for reading the original data.

Run the PSB through the CBC utility.

Interfaces 147

Managing ADL Files

Step 3: Copy the ADL directory

Copy the ADL directory file using standard Adabas utilities. This “copy-directory” contains the
old structure including the Unload PSB and will not be changed. The source directory (“standard
directory”) will be used for the new structure definitions.

Step 4: Modify and Convert the DBD

Modify the DBD sources according to your requirements.

Run the DBD through the CBC-utility. Ensure that the new structure is written into the standard
directory.

Step 5: Create the ADL Reload PSB

Create a PSB containing two PCBs. Both PCBs should be based on the modified DBD and should
reference all segments. The second PCB will be used for loading the modified data.

The Reload PSB must have the same name as the Unload PSB created in step 2. If both PSBs look
the same, you can omit this step.

Run the PSB through the CBC utility. Ensure that the new structure is written into the standard
directory.

Step 6: Unload the Data in Pseudo-Mixed Mode

Unload the data by running the ADL Unload utility, DAZUNDLI. As mentioned above, DAZUNDLI
is executed in pseudo mixed mode.

DAZIFP is used to read the source data. The old structure definitions are taken from the copy-
directory, i.e. it acts like DL/I in mixed mode. DAZIFP calls the application program DAZIFPX.

DAZIFPX writes the data with the new layout (as defined in the standard directory) to a sequential
file.

The control statement must have the following layout:

EXEC DAZIFP

DLI,DAZIFPX,psbname, FNR=c-dir, ... input for DAZIFP
UNL,DAZUNDLI,psbname, FNR=s-dir, ... input for DAZIFPX
ADARUN DB=dbid, ... input for ADARUN
MODE=CHECKNUM input for DAZUNDLI

where psbname is the name of the unload/reload PSB, c-dir is the file number of the copy directory
with the old structure and s-dir is the file number of the standard directory with the new structure.

148 Interfaces

Managing ADL Files

Under z/OS the input for DAZIFP is read with the PARM keyword, the input for DAZIFPX is read
from DAZIN2, the ADARUN input is read from DDCARD, and the DAZUNDLI input from
DAZIN1. Under z/VSE all control input statements are read from SYSIPT.

The unloaded data will be stored on a sequential file (DAZOUT3/DAZOT3D). See the section ADL
Conwversion Utility in the ADL Conversion documentation for more information on the DAZUNDLI
utility.

Step 7: Load the Adabas File(s)

Each Adabas file used to store the converted data is loaded separately using the standard Adabas
utilities, ADACMP and ADALOD. In other words, Step 7 needs to be run once for each of the
Adabas files used to store the data.

Step 8: Re-Establish Logical Relationships
If the DBD is involved in logical relationships, the steps above must be performed for each DBD
logical related. Finally, each logical child segment needs to be connected to its logical parent. This

is done by performing Steps 8 and 9 of the section ADL Data Conversion Utilities in the ADL Con-
version documentation.

Reorganization with ADL Utilities (Normal Mode)

If the new structure is the same as the old structure, the logical unload and reload of the data can
be performed in "normal mode" using the standard ADL Unload and Reload utilities. The procedure
is a simplified version of the pseudo mixed mode procedure described in the section above.

The copy of the ADL environment is not needed. DAZUNDLI is executed as a “normal mode”
batch program (see Normal Mode Batch Execution in the section Batch Installation and Operation).

The following steps must be performed:

Step |Description

Step 1 |Create the ADL unload PSB.
Step 2 |Unload the data in normal mode.
Step 3 |Load the Adabas file(s).

Step 4 |Re-establish logical relationships.

These steps are explained in detail below. For more information about the ADL CBC utility see
the section ADL Conversion Utilities for DBDs and PSBs in the ADL Conversion documentation.

Interfaces 149

Managing ADL Files

Step 1: Create an ADL Unload PSB
Create a PSB containing two PCBs. Both PCBs should be based on the DBD and should reference

all segments. The first PCB will be used for reading the data. The second PCB will be used for
loading the data.

Run the PSB through the CBC utility.
Step 2: Unload the Data in Normal Mode
Unload the data by running the ADL Unload utility, DAZUNDLI. As mentioned above, DAZUNDLI

is executed in normal mode. Note that this differs from the unloading of a native DL/I data base,
which is executed in “mixed mode”.

The control statement must have the following layout:

EXEC DAZIFP

UNL,DAZUNDLI,psbname, ... input for DAZIFP
ADARUN DB=dbid, ... input for ADARUN
MODE=CHECKNUM input for AZUNDLI

where psbname is the name of the unload PSB.

Under z/OS the input for DAZIFP is read with the PARM keyword, the ADARUN input is read
from DDCARD, and the DAZUNDLI input from DAZIN1. Under z/VSE all control input statements
are read from SYSIPT.

The unloaded data will be stored on a sequential file (DAZOUT3/DAZOT3D). See the section ADL
Data Conversion Utilities in the ADL Conversion documentation for more information on the
DAZUNDLI utility

Step 3: Load the Adabas File(s)

Each Adabas file used to store the converted data is loaded separately using the standard Adabas
utilities, ADACMP and ADALOD. In other words, Step 3 needs to be run once for each of the
Adabas files used to store the data.

The sequential file produced by Step 2 is taken as input for the ADACMDP, as is the FDT and the
user exit 6 generated at the conversion of the DBD

The process of loading the data using Adabas utilities is identical to the process described under
Step 6 of the section ADL Data Conversion Utilities in the ADL Conversion documentation.

150 Interfaces

Managing ADL Files

Step 4: Re-Establish Logical Relationships

If the DBD is involved in logical relationships, the steps above must be performed for each DBD
logical related. Finally, each logical child segment needs to be connected to its logical parent. This
is done by performing Steps 8 and 9 of the section ADL Data Conversion Utilities in the ADL
Conversion documentation.

Reorganization with Adabas Utilities

You may use any Adabas utility for the maintenance of ADL files. But one important restriction
must be considered: Never alter or implicitly change the ISN of an ADL record.

ADL uses the Adabas ISN to maintain the hierarchical structure of the data base as defined in the
DL/IDBDs. To alter the ISN of a record would thus destroy the physical pointer to its child records.

The ISNs of records in ADL files must be preserved by specifying the option USERISN=YES for the
Adabas utilities ADACMP (edit/compress /decompress data) and ADALOD (file loading).

Some of the changes described later in this section do not require a logical unload and reload of
the data with ADL utilities. The Adabas utilities can be used instead, which are considerably faster.
The following steps must be performed:

Step |Description

Step 1 |Unload the data
Step 2 |Convert the (changed) physical DBD

Step 3 |Generate an user exit 6

Step 4 |Load the data

These steps are explained in detail below.
Step 1: Unload the Data

Use the Adabas utility ADACMP with the DECOMPRESS function to unload and decompress the
data of the ADL file. The Adabas utility is described in the Adabas Utilities documentation.

Interfaces 151

Managing ADL Files

Step 2: Convert the (Changed) Physical DBD

Run the (changed) DBD against the ADL CBC-utility (see the section ADL Conversion Ultilities for
DBDs and PSBs in the ADL Conversion documentation). Use the original DBD name for the new
structure. This step can be omitted, if there is no change in the DBD definition.

Step 3: Generate an User Exit 6

Write, assemble and link-edit an ADACMP user exit 6, which maps the data from the old structure
to the new structure. Special care has to be taken for the ADL internal fields, which should remain
untouched in most cases. You may use the member ADLEX06 (z/OS) or ADLEX06.A (z/VSE) in the
ADL source library as an Assembler skeleton for an ADACMP user exit 6. For more information on
the ADACMP user exit 6 see the Adabas DBA Reference documentation.

Step 4: Load the Data

The data is loaded into Adabas with the Adabas utilities ADACMP and ADALOD. The sequential file
produced in Step 1 and the ADACMP cards generated by the CBC utility in Step 2 are used as input
for ADACMP. This utility calls the user exit 6 from Step 3.

Note, that you can not use the standard ADL user exit DAZUEX06, if the data have been unloaded
with Adabas utilities. And vice versa, if the data have been unloaded with ADL utilities like
DAZUNDLI, the ADL user exit must be used rather than your own.

Reorganization with User-written Programs

Some specific changes in the database structure can not be handled by standard utilities. In general,
you have to follow the same steps as described in the section Reorganization with ADL Utilities
(Pseudo Mixed Mode) for details on unloading/reloading data. In this case the DAZUNDLI utility
is replaced by your own unload program. The related unload PSB should contain two PCBs as
described in the section mentioned above. The second PCB should specify the processing option
'L' (LOAD), and the ADL LOAD parameter should be set to "'UTILITY", so that the data is written to
a sequential file. The insert call which writes the data to the sequential file, must supply the data
in the new hierarchical sequence. The SSA for the call must be unqualified and should only refer
to the segment name corresponding to the data.

152 Interfaces

Managing ADL Files

Change of DL/I Segment Definitions

ADL does not store any information about the child segments in the respective parent data.
Therefore, the addition or deletion of dependent segment types does not effect the parent segments.
But, since the segment number is part of the ADL internal pointer filed, all segments following in
the hierarchy are effected when a segment type is inserted or deleted.

Adding a new Segment Type

When a new segment type is added to the end of the DBD, no other segment is affected.
The following steps are required:

® Add the new segment definition to the DBD source and run it through the ADL CBC utility. If
the data of the new segment should reside on a separate Adabas file, add a GENSEG statement
to the input cards of the CBC utility.

® Modify the Adabas file definitions. If the data is on a separate file, use the ADACMP and ADALOD
utilities to allocate an empty Adabas file. Otherwise, add the new group/field definitions to the
existing FDT, for example with the Adabas Online System (AOS).

When the new segment is not the last segment in the DBD a logical unload and reload of the data
is required. This will supply the ADL internal pointers with the new segment numbers. Follow
the steps described in the section Reorganization with ADL Utilities (Pseudo Mixed Mode)
earlier in this documentation.

Deleting a Segment Type

If an entire segment type is to be deleted, the procedure to follow depends on the hierarchical
position of the segment. Additionally, if data is stored for this segment, the related storage space
has to be released.

If the segment is the last segment of the DBD and the data is stored on a separate Adabas file,
follow these steps:

® Delete the segment definition from the DBD source and run it through the ADL CBC utility.
Take care that no GENSEG statement refers to the deleted segment.

® Delete the Adabas file related to the segment with the DELETE function of the Adabas utility.

If the segment is the last segment of the DBD and no data is stored for this segment, it is sufficient
to run the modified DBD definition through the ADL CBC utility. The group and field definitions
related to the segment remain in the Adabas FDT, but because of the Adabas compression there

is no storage possessed by that field. It it sufficient to eliminate these fields during the next reor-
ganization.

Interfaces 153

Managing ADL Files

Another situation is given, if the segment to be deleted is supplied with data and if it is stored
with data of other segments on one Adabas file. If the segment is the last one in the DBD, follow
the steps described in the section Reorganization with Adabas Utilities. If it is not the last one, a
logical unload and reload is required as described in the section Reorganization with ADL Utilities
(Pseudo Mixed Mode). Leave out the corresponding sensitive segment from the first PCB of the
unload PSB.

Moving a Segment Type

Moving a segment type to another hierarchical position is a special task which can not be handled
by standard utilities. Refer to the section Reorganization with User-written Programs for details.

Increasing the Segment Length

If you want to increase the overall length of a segment, the modified DBD definition must run
through the ADL CBC utility. Depending on the last Adabas field in the group which corresponds
to the segment, further action may be necessary:

= If the length of this field can be increased so that the entire new segment is covered by the whole
group, this should be done using the Adabas Online System (AOS). The maximum length of an
Adabeas field is restricted to 253 bytes. Note, that the FDT generated by the ADL CBC can differ
from the one defined by AOS. But this is no problem as long as the overall group length is the
same as the segment length.

= If the new length of the last Adabas field would exceed 253 bytes, you have to follow the steps
described in the section Reorganization with Adabas Utilities . In this case you can use the
FDT generated by the ADL CBC utility to reload the data.

Change of DL/I Field Definitions

DL/I corresponds with the application on a segment level. Field definitions affect the application
only for sequence fields, sensitive fields and fields which are referred to in secondary indices. All
other normal' field definitions are meaningless to the application. This means, the application
can work with copy codes which are totally different from the layout defined by the DBD definition.
Therefore, these 'normal’ DL/I field definitions can be changed without the need to modify your
application, as long as they still fit into the segment.

ADL uses the DL/I field definitions to generate the initial layout of the corresponding Adabas file.
See the section Conversion of the Data Structure - General Considerations in the ADL Conversion docu-
mentation for more information on the generated Adabas file layout. As with DL/I, the DL/I field
definitions do not affect the DL/I application, when it runs against ADL. But it concerns the Adabas
file layout in that way that the Adabas compression and the Natural programs which access the
migrated data, as described in the section mentioned above.

154 Interfaces

Managing ADL Files

Therefore, the DL/I field definitions should be checked carefully before the conversion or at reor-
ganization time.

If you want to change the DL/I field definitions after the migration, you should follow the steps
outlined in the section Reorganization with Adabas Utilities earlier in this section. There is no
need for an user exit 6, as long as the data layout remains the same. If the data layout should be
modified too, refer the next section. All these reorganization steps are only required, if the Adabas
file layout should match the DL/I definitions. Since there is no need for this correspondence, you
may modify the DL/I definitions only using the ADL CBC utility or on the other hand you may
modify the Adabas file layout only, as described later.

Adding Key Fields and Logical Relationships
If you want to define a new sequence field or a new secondary index, you must follow the steps
outlined in the section Reorganization with ADL Utilities (Pseudo Mixed Mode) earlier in this

documentation. The same is true, if you want to add a new logical relationship to the DBD defin-
itions.

Change of the Data Layout

The data layout of a segment is usually described in the copy code of the I/O area in the applications.
A data field is a part of the I/O area and is of a specific meaning to the application. It can match a
DL/I field definition but as described earlier there is no need for this.

If changes have been made to the data layout and this new structure is to be reflected in the ADL
directory (for the Natural access or for the ADL Online System) the modified DBD definitions
have to be run through the ADL Conversion Utilities as described in the section ADL Conversion
Utilities for DBDs and PSBs. This step is required if the overall segment length has been changed
or sequence or secondary index fields have been moved or modified. In all other cases this step
is optional.

Changing the Length of a Data Field

If you want to increase the size of a data field, the corresponding Adabas file description is import-
ant. There is one special case to be regarded:

® The end of a data field coincides with the end of an Adabas field and the increased length of
this Adabas field does not exceed 253 bytes. In this case use the Adabas Online System to increase
the length of that Adabas field.

In all other cases follow the steps outlined in the section Reorganization with Adabas Utilities
earlier in this section.

If you want to decrease the size of a data field there is again one special case to be regarded:

Interfaces 155

Managing ADL Files

® The end of a data field coincides with the end of an Adabas field, the length of the decreased
field is greater than zero, and the part to be omitted contains all null values. In this case use the
Adabas Online System to decrease the length of that Adabas field.

In all other cases follow the steps outlined in the section Reorganization with Adabas Utilities
earlier in this section.

Changing the length of data fields can affect the overall segment length and the start position of
all following fields. Therefore, check whether the DBD definitions have to be modified as well, as
described at the beginning of this section.

Changing the Length of a Sequence Field

If you want to change the length of a root sequence field, perform the following steps:

® Modify the DBD and run it through the ADL CBC utility.

= If the DBD is involved in logical relationships, run all connected DBDs through the ADL CBC
utility.
® Use AOS to increase the length of all modified fields (compare the old ADACMP cards with

the new ones). These fields are the root sequence field (usually “AA”) and the corresponding
concatenated key fields (usually “PA” or “QA”) in all involved Adabas files.

= If the field is involved in secondary indices, you must unload and reload the data with ADL
Utilities. See the section Reorganization with ADL Utilities (Normal Mode). If the data is not
involved in secondary indices, unload and reload of the data is not required.

If you want to change the length of a dependent sequence field, perform the same steps as for a
root sequence field. But you must always unload and reload the data with ADL Utilities to build
up the new internal pointer field (Z1).

Adding and Deleting Data Fields

A new data field can be added by increasing the length of the previous data field as described
above. Note, that in case you do not need to reorganize the data with Adabas utilities, the ADACMP
cards generated by an ADL CBC run of the modified DBD does not match the current used FDT.

Deleting a data field can be reached by decreasing the size of the data field to the length of null.
This is also outlined in the previous section.

156 Interfaces

Managing ADL Files

Changing the Data Position

If a data field should be moved to another position in the I/O area the procedure described in
section Reorganization with Adabas Utilities must be followed. During this reorganization other
modifications can be performed like changing the field or segment lengths, add or delete fields,
etc. as described above.

Examples

Increase the length of a field

In the Instructor database ' INSTDB' there is a segment ADDRESS which describes the address of the
instructor. The segment was originally defined in the following way:

SEGM NAME=ADDRESS, PARENT=INSTRUCT,BYTES=60
FIELD NAME=ZIPCODE,BYTES=4,START=1

FIELD NAME=CITY,BYTES=16,START=5

FIELD NAME=STREET,BYTES=40,START=21

The Adabas group and fields corresponding to this segment and its elements are named SE, AG,
AH and AT respectively. The length of the Adabas fields are the same as those of the corresponding
DL/I fields.

Now the zip code should be increased from 4 to 5 bytes and the city field from 16 to 20 bytes.

In a first step you have to modify the DBD source:

SEGM NAME=ADDRESS, PARENT=INSTRUCT,BYTES=65
FIELD NAME=ZIPCODE,BYTES=5,START=1

FIELD NAME=CITY,BYTES=20,START=6

FIELD NAME=STREET,BYTES=40,START=26

Run the modified DBD against the ADL CBC utility as described in the section ADL Conversion
Utilities for DBDs and PSBs in the ADL Conversion documentation . This ensures that the new segment
length is known to ADL. Use the Adabas Online System to increase the length of the Adabas fields
AG and AK from 4 to 5 bytes and from 16 to 20 bytes, respectively. From the view of the database
management the work is finished. Of course, now the applications have to be modified to reflect
the new layout of the I/O area for the ADDRESS segment. Depending on the task it can be required
to edit the data, for example in case of zip code data moving from 4 digits to 5 digits.

Interfaces 157

Managing ADL Files

Adding a new field

The new field NUMBER containing the house number has to be added to the ADDRESS segment. The
tield should be 6 bytes long and be of type character. The easiest way is to increase the STREET

field from 40 to 46 bytes. The application can use these additional 6 bytes as the house number
field.

The new DBD definition looks like this:

SEGM NAME=ADDRESS, PARENT=INSTRUCT,BYTES=71
FIELD NAME=ZIPCODE,BYTES=5,START=1

FIELD NAME=CITY,BYTES=20,START=6

FIELD NAME=STREET,BYTES=46,START=26

Run the new definition against the ADL CBC utility. Use the Adabas Online System to increase
the length of the Adabas field AI from 40 to 46 bytes. Note, that the new part of the I/O area (field
NUMBER) is initially filled with blanks.

Move fields

The field STREET (including the NUMBER data field) of the example above should be moved to the
start of the ADDRESS segment. The new DBD definition should look like:

SEGM NAME=ADDRESS, PARENT=INSTRUCT,BYTES=71
FIELD NAME=NUMBER,BYTES=6,START=1

FIELD NAME=STREET,BYTES=40,START=7

FIELD NAME=ZIPCODE,BYTES=5,START=47

FIELD NAME= CITY,BYTES=20,START=52

First unload and decompress the corresponding Adabas file, then run the modified DBD definition
against the ADL CBC utility. To generate an user exit 6 you may use the Assembler skeleton
ADLEX06 from the ADL source library. Make sure that all fields which should not be reorganized
are moved unchanged from the input to the output record. Assuming that register 5 points to the
start of SE group (segment ADDRESS) in the input record and register 6 to the same in the output
record, the following Assembler statements will reorganize the fields:

MVC 0(6,6),65(5) MOVE NUMBER
MVC 6(40,6),25(5) MOVE STREET
MVC 46(5,6),0(5) MOVE ZIPCODE
MVC 51(20,6),5(5) MOVE CITY

Assemble and link-edit the user exit. Then load the data back into Adabas with the ADACMP and
ADALOD utilities. The ADACMP utility must use the newly created user exit and the new ADACMP cards
produced by the ADL CBC utility.

158 Interfaces

Managing ADL Files

Re-establishment of the Hierarchical Sequence

At an initial load the migrated data is stored in Adabas in the hierarchical sequence. Continuous
insertion and deletion of data distorts this sequential order and eventually may decrease the access
performance as described in section Performance Considerations in this documentation. Therefore,
it may be advantageous to re-establish the hierarchical sequence. This can be achieved by following
the steps outlined in the section Reorganization with ADL Utilities (Normal Mode) earlier in this
documentation.

Change of DL/I PSB Definitions

If any changes have been made to the DL/I PSB definitions, the modified PSB must be run against
the ADL CBC utility as described in the section ADL Conversion Utilities for DBDs and PSBs in the
ADL Conversion documentation.

Ensure that the old definition are deleted from the directory before converting the new one.

The following PSB definitions can be modified: the processing option, the key length, the position-
ing, or the processing sequence. In addition, PCBs, sensitive segments or sensitive fields can be
added or deleted to/from the PSB. After adding new elements to a PSB which is contained in the
ADL CICS table DAZPSB, the ADL CICS tables DAZDBD and DAZBUF must be regenerated as described
in the section CICS Installation and Operation in this documentation.

Change of the ADL Structure

At DBD conversion time it is defined on which Adabas files the segments should be stored. Later,
it may become necessary to change these definitions. If you want to move or copy the ADL files
to anew DBID/FNR combination, refer to the section Change of Adabas DBIDs and File Numbers
later in this section.

Splitting a DBD

If the segments of a DBD should be distributed over several Adabas files, the data must be unloaded
and reloaded as described in the section Reorganization with ADL Utilities (Pseudo Mixed Mode)
earlier in this documentation. Although the DBD definition did not change, it is necessary to
generate a new DBD reflecting the new structure. Use the GENSEG keyword for the ADL CBC
utility to specify, on which files the segments should be stored.

Interfaces 159

Managing ADL Files

Change of Adabas DBIDs and File Numbers

The DBID and file number assigned to the segment types of a database during the DBD conversion
process is stored in the ADL directory. If you want to assign to an ADL file an Adabas DBID or
file number different from the one defined at database conversion time, you must run the DBD
against the ADL Control Block Conversion with the new DBID / FNR combination.

If the DBID used to store the data is the same as the DBID of the ADL directory, it is recommended
to omit the DBID parameter with the GENDBD function. See the example Creating a mirror database
later in this section for details.

At the ADL Control Block Conversion a logical ID is defined for the DBD. This logical ID is used
by ADL as a part of the physical pointers reflecting the hierarchical structure of the data base.
Related segments are found based on the values stored in the physical pointers. If you want to
assign to an ADL file an Adabas DBID or file number different from the one defined at data base
conversion time, you must specify the same logical ID as with the original conversion.

For synchronization reasons it is important that all DBIDs referenced by all PCBs of a PSB are
identical. If ADL detects that this is not the case, it will abnormally terminate the application with
the error code "ADL0329".

Examples

Moving an ADL file within an ADL environment

Assume a DL/I database named "ADLDBD1" has been assigned to Adabas DBID 2 and file number
96 and was converted with LOGID=1. After reorganization of the system this file should be assigned
to file number 10 on the same DBID. You would have to code the following statement at the control
block conversion:

GENDBD NAME=ADLDBD1,DBID=2,FNR=10,L0GID=1

If the ADL directory is also on DBID=2, you can omit the DBID keyword (recommended). Note
that LOGID=1 is the default value. Therefore you can shorten the statement as follows:

GENDBD NAME=ADLDBDI1,FNR=10

160 Interfaces

Managing ADL Files

Copying an ADL file within an ADL environment

Assume a DL/I database named “ADLDBD2A” has been assigned to Adabas DBID 2 and file
number 20 and was converted with LOGID=1.

GENDBD NAME=ADLDBD2A,DBID=2,FNR=20,L0GID=1

Later the data has been unloaded and reloaded to file number 21 with Adabas utilities. Now it is
desired to access both files with one DL/I or with one Natural application through the ADL
CALLDLI or ADL Consistency Interface, respectively.

In order to do this, perform the following steps:

® Copy the DBD source and use a new DBD name, e.g. "ADLDBD2B".

® Run the DBD definitions of “ADLDBD2B” through the ADL Control Block Conversion. Specify
the new DBID/FNR combination. Use the same LOGID as with the original DBD and store it on
the same ADL directory.

GENDBD NAME=ADLDBD?Z2B,DBID=2,FNR=21,L0GID=1

Copying an ADL file to another ADL environment

Assume a DL/I database named “ADLDBD3” has been assigned to Adabas DBID 2, file number
11 and LOGID=1.

GENDBD NAME=ADLDBD3,DBID=2,FNR=11,L0GID=1

A new ADL environment has been created with its own ADL directory file and ADL nucleus
modules. The data of “ADLDBD3” has been copied to DBID 3 and file number 22 with Adabas
utilities. To access this data in the new environment perform the following steps:

® Run the DBD definitions of “ADLDBD3” against the ADL Control Block Conversion. Store the
definitions on the new directory file. Use the same LOGID as in the original DBD. You can use
the same DBD name. Specify the new DBID and FNR at the GENDBD statement.

GENDBD NAME=ADLDBD3,DBID=3,FNR=22,L0GID=1
Creating a mirror database

Assume the ADL directory file and all the ADL files, which are referred in this directory, are stored
on DBID 1. Moreover at the conversion the DBID parameter was never specified for the GEND-
BD/GENSEG function.

To create a mirror database on DBID 2, unload the ADL directory file and all ADL files with
Adabas utilities from DBID 1 and reloaded them to DBID 2, assigning the same file numbers as
before. Take care that the Adabas utilities preserve the User ISNS.

Interfaces 161

Managing ADL Files

There is no need to run any of the DBD definitions against the ADL Control Block Conversion
again. If no DBID is specified in the ADL directory for an ADL data file, ADL assumes that the
data uses the same DBID as the directory.

You can create a new ADL batch nucleus with the new DBID specified in the ADL parameter
module to access the new environment in batch. But you can also use the same ADL batch nucleus
for both environments. When you start a batch program, you just have to specify the DBID of the
ADL directory file as a dynamic parameter for DAZIFP as described in the section Batch Install-
ation and Operation in this documentation. Thereupon ADL will treat this DBID as the physical
DBID of all ADL files.

For CICS you have to create a new ADL CICS nucleus specifying the DBID of the new directory
file with the DAZPARM macro.

Root-only databases

A root-only database is a database, which does not have any dependent segment type. Therefore
the LOGID parameter which is stored with dependent segments is meaningless. When you copy
or move a root database follow the rules described above for normal databases.

Change of the Adabas File Layout

All modifications described in this section concern the Adabas side, only. Changes which affect
the DL/I side as well are described in the previous sections.

The need to change the Adabas field layout of ADL files may originate from requirements of new
Natural or Adabas applications. Also, to obtain an increase in the Adabas compression rate or
performance might be a reason for modifications. You may change the Adabas layout of an ADL
file after the data base conversion within certain limitations.

Changing Adabas Group Definitions

The overall length of the Adabas groups generated for each segment type must not be altered. A
group length can only be altered as a result of a changed DL/I segment length as described earlier.

The Adabas group name corresponding to a DL/I segment is defined at the DBD conversion. If
the group name should be altered, follow the steps outlined in the section Reorganization with
Adabas Utilities earlier in this section. Use the ADANAME keyword of the GENSEG function when
running the ADL CBC utility to specify the new group name. Note that the change of one group
name can affect the group names of the following segments. There is no need for a user exit 6 at
the ADACMP run.

162 Interfaces

Managing ADL Files

Changing Adabas Field Definitions

The following rules apply when attempting to alter the Adabas field definitions:

You must not alter

® the ADL system fields (ZO .. Z8),

® the ADL generated PCK field and the descriptors corresponding to secondary index fields (both
are identified by a clear comment in the ADL generated input source for ADACMP),

" the Adabas field corresponding to a sequence field.

You can alter

all field definitions inside the Adabas groups corresponding to segments, provided the overall
group length remains the same. This regards the number of the fields inside the group, the
length and the format of each field. Note, however, that ADL is not aware of the types of these
Adabas fields and thus errors due to invalid data supplied for numerical fields can occur. Follow
the steps outlined in the section Reorganization with Adabas Utilities earlier in this section.
There is no need for an user exit 6 (step 3), if the data layout has not been changed and as long
as the DBD has not been touched, step 2 can also be omitted. After unloading the data, modify
the ADACMP cards manually as required.

You can add

* any new Adabas field definitions outside of the Adabas group corresponding to DL/I segments,

® any definitions of descriptors, superdescriptors, etc., regardless whether the related fields have
been generated by ADL or not. If a descriptor is defined as UNIQUE in ADL files, be aware that

your DL/TISRT calls may receive the status ' I1' (segment already exists). This happens because
the CALLDLI Interface automatically transforms an Adabas response code 198 into a DL/I status
code 'II".

A\ Important: Please note that new Adabas fields defined outside the DL/I segment (group) are
not unloaded at the reorganization with ADL utilities.

Interfaces 163

164

14 Performance Considerations

LI 121 (oo 1 o110 o PRSP PPPTPPRR 166
® Data Processing and POINETSiiiiiiiiii ettt 167
= |nitial Load and Reload the Databaseuuuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiei e 169
= Using the Adabas Multifetch FEAtUrEcomiiiiii e 170
B NSEIt ANA DEIBE ... e a e e 172
B SPIENG @ DBD ... 173
B FIEld DEFINIIONS ...t et e e e ae e e 173
B ENQUEUE LOGIC -ttt e ettt 174
m CICS/Batch COMMUNICALIONeiieiiiiii ettt e e e et e e e et e e e et e e e e nnneee e 174
= Application Program and DB DESIGNuuueuuuruenenii e 174

165

Performance Considerations

This chapter covers the following topics:

Introduction

The performance of DL/I applications depends on various factors:

® The environment: The hardware, how the data is physically stored, the operating system, the
TP monitor, the number of users on the system, the number of users accessing the database
management system, whether there are batch jobs running at the same time as online applications
and more.

= The database structure: The ACCESS method used, the number of hierarchical levels, the com-
plexity of the structure including logical relationships and secondary indices, the distribution
of the database over different Adabas files and more.

® The application: The way it retrieves the data: direct (GU calls) or sequential (GN, GNP calls), the
amount of data for insert, update or delete requests, the complexity of the SSAs, the fields used
for qualifying the call and more.

Further on, there are some side-effects related to the performance which should also be considered:

The disk space required to store the data.

How often the database has to be reorganized.

How flexible the database system is, that is, how much effort it takes to change the layout of
the database.

How the database system affects the loading of the TP monitor.

What tools are available to debug performance-critical applications.

When the DL/I application runs against migrated data, two Software AG products are involved:
ADL and Adabas. For the tuning of Adabas, you should refer to the appropriate Adabas docu-
mentations, such as, the Adabas DBA Reference documentation . It helps you to optimize your
physical database layout (disk usage), the buffer pool management, the usage of Multifetch and
more. You may use Adabas facilities, such as Review, Adabas Statistics Facility and AOS/Adabas
Manager to debug performance-critical applications. You should always keep in mind that, from
the Adabas point of view, your DL/I application is like any other application making Adabas direct
calls.

The current section explains the tuning of ADL. It describes in detail how the performance is affected
by

® direct and sequential data processing,

* the layout of the ADL internal pointer fields,

* unload and reload the data with ADL utilities,

166 Interfaces

Performance Considerations

® initial load of HDAM databases,

® Adabas Multifetch (Prefetch) feature,

® the Multifetch table (MFT parameter) and the Record Buffer Extension (RBE parameter),
" the last-call save area (LCS parameter),

" mass insert by user application,

= deletion of data,

= splitting the segments of a DBD over several Adabas files,

® Adabas Fastpath,

" the field definitions,

® the enqueue logic (ET parameter),

® the communication between Adabas and the CICS or batch region,

® the way your application accesses the data.

Data Processing and Pointers

Three DL/I commands are available to retrieve data:

" Get Unique (“GU”) for direct access of specific data,
" Get Next (“GN”) for sequential read of the whole database,
" Get Next in Parent (“GNP”) for sequential read of a part of the hierarchy.

For the sequential read commands, DL/I supplies pointers which reflect the sequence of the pro-
cessing:

® The hierarchic forward pointer which points to the hierarchical “next” segment, that is, the
segment which will be retrieved at the next unqualified “GN” command.

® The physical child first and the physical twin forward pointers. These pointers are used when
processing a “GNP” command.

For the direct access of data, DL/I treats the root segment differently from the others.

® The root segment is handled by the appropriate ACCESS method, for example, VSAM if this was
specified at the DBD generation.

* Dependent segment data is searched by running through the pointers, that is, for each level, the
physical child first pointer is used to get the first occurrence of the segment type wanted, and
then the physical twin forward pointer is repeatedly used until the specified data occurrence is
reached.

Interfaces 167

Performance Considerations

In order to reflect the hierarchical structure, ADL mainly uses one field, the ADL physical pointer
field Z1 which is defined as a unique Adabas descriptor. In fact it is a “descriptor” rather than a
“pointer” because it describes its own position instead of pointing to other data. In addition to the
Z1 field, the root sequence field is defined as a descriptor too (the “root descriptor”).

The layout of the ADL physical looks like:

Field | Parent Logical ID | Segment Number | Parent ISN | Segment Sequence Field | Appendage

Length 1 1 4 variable variable

The Logical ID and segment number are each 1 byte long, the Parent ISN is 4 bytes long, the length
of the sequence field is defined by the DBD definition and the appendage has a variable length.
If the segment sequence field is not unique or does not exist at all, the appendage is generated to
make the Z1 field unique. The Z1 field can be up to 126 bytes long. To minimize the space require-
ments, an appendage as short as possible is used.

Note: The layout of the ADL physical pointer field has been changed with ADL 2.3. The

former DBID (1 byte) and FNR (1 byte) have been replaced by the Logical ID (1 byte); and
the parent ISN has been increased from 3 bytes to 4 bytes. ADL 2.3 uses only one layout of
the ADL physical pointer where the segment number is in front of the parent ISN corres-
ponding to the ADL 2.2 “SEQ=SEG” layout.

For the direct access of data, ADL treats the root segment differently from the others (like DL/I):

® On the root level, ADL makes use of the root descriptor.

* For dependent segments, the Z1 field is used.

For each level, an L3 or L9 call is issued, depending whether the data is wanted (for path call or
lowest level) or not. The start value for these calls is built up for dependent segments from the
already known Logical ID and ISN of the parent and from the requested segment number. If the
SSA searches for a specific sequence field value (with “greater” or “equal”), this value is included
in the start value too. In this case, the value on that level can be accessed directly; no run through
a pointer queue is required.

Sequential reading of the root segment data is handled by sequential reading of the root descriptor.
Sequential reading through the hierarchy cannot be translated into one Adabas sequence. For each
(sensitive) segment, there is one Adabas sequence (one command ID). To read the first occurrence
in a twin chain, ADL makes a value start call, where the sequence field part of the Z1 field in the
value buffer is supplied with a minimal value.

To retrieve the next occurrence in the twin chain, ADL continues reading in the Adabas sequence.
Since there is no information which says how many records are in the twin chain, ADL has to
check whether the retrieved record belongs to the current twin chain. This is done by checking
whether the Logical ID, segment number and ISN match those requested. This has the effect that

168 Interfaces

Performance Considerations

ADL reads one record too many at the end of a twin chain. This additionally-read record is used
by the last-call save area as described later.

Initial Load and Reload the Database

The data is initially loaded to the ADL files with the Adabas utilities ADACMP and ADALOD. The
physical sequence in which it is loaded is defined by the unload utility, usually DAZUNDLI (see the
section ADL Data Conversion Utilities in the ADL Conversion documentation for more information).
This utility reads the data in the hierarchical sequence, that is, for each root, it reads all dependent
segments before it accesses the next root. Therefore, the loaded data is in the hierarchical sequence
too. This means that, if a root segment is on one data block, then the dependents will be on the

same block, the next root also, and so on, depending on how many records can be stored on one
data block.

An application which reads the data in the hierarchical sequence can therefore issue many DL/I
calls before the next physical I/O is required. This is, of course, only true as long as the data is in
the hierarchical sequence. When new data is inserted and old data deleted, it comes more and
more out of that sequence. If you notice a considerable decrease in performance, you should think
about restoring the database. Restoring with Adabas utilities makes no sense, because Adabas has
no idea about the hierarchy which is inherent in your data. The easiest way is similar to the initial
load: unload the database with DAZUNDLI and reload it with ADACMP and ADALOD. In this case,
DAZUNDLI runs as a normal (that is, not mixed mode) application, as described in the section
Managing ADL Files in this documentation. This brings the data back to the hierarchical sequence.

Additional considerations should be made when initially loading a randomized database, such
as, an HDAM database. Root segments are retrieved by DL/I in the randomized sequence. When
reading with ADL, they are accessed in the sequence of the root sequence field. If these two se-
quences do not match, you may notice poor performance for sequential reads. In this case, you
should load the data in the root key sequence, as described in the section Unloading a HDAM
Database in the ADL Conversion documentation.

The unload utility, DAZUNDLI (or DAZREFOR), also assigns the Adabas ISNs which are used when
the data is loaded into the Adabas file. Therefore, after an initial load or restoring of the data, the
ISNs reflect the hierarchical sequence too. The sequence of the ISNs is only important when the
last-call save area (LCS) is used (described below). This feature works best when the ISNs are in
the hierarchical sequence. Thus, if the LCS is used, restoring of the data with ADL utilities should
be considered if the ISNs are out of the hierarchical sequence for the most part.

Interfaces 169

Performance Considerations

Using the Adabas Multifetch Feature

The Adabas Multifetch feature reduces the communication overhead between the application
program and the Adabas nucleus for sequential reads. See the Adabas Operations documentation
for more information. The Multifetch feature is similar to the Prefetch feature. If not otherwise
stated, we use Multifetch as a synonym for Multifetch and Prefetch.

The Multifetch feature is activated for batch applications by specifying the ADARUN PREFETCH=YES
parameter. The number of sequences (command IDs) which are multifetched is defined by the
keywords PREFTBL (total buffer length) and PREFSBL (single buffer length), exactly PREFTBL divided
by PREFSBL. This number has to be evaluated very carefully. Multifetching “bad” sequences can
considerably decrease the performance. For example, an L3 sequence with many value-restarts
(“V” option) is bad, because Multifetch throws away the data of the corresponding buffer at every
restart. The Multifetch buffers are occupied by the sequences which are used first, that is, the first
CID uses the first buffer, the second the next one, and so on. You can exclude specific command/file
number combinations from Multifetch by specifying the PREFXCMD and PREFXFIL keywords. Note
that an Adabas OP (open) command refreshes all the buffers.

The ADL parameters RBE and MFT can be used to restrict the number of multifetched records for
a specific PCB/SENSEG combination. (See the section ADL Parameter Module in the ADL Installation
documentation for a detailed description.) Here we have to distinguish between Multifetch and
Prefetch. The MFT can only be used with the Multifetch feature and, in this case, you are recommen-
ded to use it instead of the RBE.

With the Multifetch Table (MFT), you can explicitly specify the number of multifetched records.
For an unspecified PCB/SENSEG combination, the maximum number of records will be multifetched.
If you want to multifetch not the maximum number but a smaller amount, you should specify an
MEFT entry for this PCB/SENSEG combination. Because of the double buffering of Multifetch,
Adabas will return twice as many records as you specify. To minimize the amount of returned
data for a specific sequence you should specify a value “1”, which will result in 2 returned records.

With the Record Buffer Extension (RBE) parameter, you can increase the record- buffer length for
specific PCB/SENSEG combinations. This has the effect that fewer records fit into the the ISN buffer
for the corresponding Prefetch call. Thus, the fewer records you want to prefetch, the bigger the
corresponding RBE entry should be. To retrieve the maximum number of records for a specific
PCB/SENSEG combination, you should omit the corresponding RBE entry.

The use of Multifetch for migrated data requires knowledge of the application and of how ADL
translates the DL/I calls into Adabas calls. With the ADL trace facility, you can obtain this inform-
ation (see the section Debugging Aids - ADL Trace Facility. It lists you the DL/I calls of the application
and the resulting Adabas calls. From this list, you can see, for example, that a GU call is translated
into an Adabas “L3” with value-start. Therefore the corresponding CIDs are bad candidates for
Multifetch. On the other hand, if a root segment is read sequentially (GN calls), there is one value-
start at the first call and then no other restart. Therefore, you can multifetch this sequence.

170 Interfaces

Performance Considerations

With the last-call save area (LLCS), the record last retrieved is saved. This feature can be activated
by specifying the LCS parameter, as described in the section ADL Parameter Module in the ADL
Installation documentation. If an application program reads the same record twice or more, only
one Adabas call will be issued by ADL because it finds this value in the LCS. But the main import-
ance of the LCS is when reading sequentially through dependent segments.

As described earlier, ADL makes a value-start call at the beginning of each twin chain. Then it
reads sequentially through the chain until it finds one record that does not belong to the chain.
Now, under certain circumstances, it can happen that this additionally read record is the first record
of the next twin chain of the same segment type. In this case, the LCS preserves ADL for reading
the same record twice. Since this saved call was the call with the value-start, a sequential read (GN
or GNP) through a dependent segment type is translated into sequential Adabas reads without
intermediate restarts. Therefore, you can use the Multifetch feature for dependent segments too.
The remaining questions are: which record does ADL find after the end of a twin chain and under
which condition is this record the first of the next twin chain for the same segment type? The se-
quence in which ADL retrieves the data is determined by the layout of the ADL physical pointer
fields, which is described earlier in this section.

The Z1 physical pointer field sorts the data in the sequence “segment number / parent ISN”. In
general, the record found after the end of a twin chain is from the same segment type with the
next higher parent ISN. If this ISN belongs to the next parent, the record found is the first of the
next twin chain. Therefore, the ISNs should match the hierarchical sequence. This is true after an
initial load of the data or after a restore. If the ISNs are mainly out of the hierarchical sequence,
you should reestablish the hierarchical sequence as described in the section Managing ADL Files
in this manual. If you do not want to reestablish the hierarchical sequence by any reason, adjust
the number of multifetched records with the MFT or RBE parameter or avoid multifetching those
sequences at all.

Summary

® Do not use Multifetch for direct reading (“GU”).
® Use Multifetch for sequential reading of root-segment data.
" Use the last-call save area (LCS) and Multifetch for sequential reading of dependent data.

® Do not use Multifetch for sequential reading of dependent data if you do not use the last-call
save area (LCS).

® Adjust the number of multifetched/prefetched records with the MFT or RBE parameter, respectively.

® Check with the ADL trace facility or with Adabas utilities whether the data and ISNs are still
in the hierarchical sequence. If required, restore the database with ADL utilities, so that the ISNs
match the hierarchical sequence again.

Interfaces 171

Performance Considerations

Insert and Delete

A DL/lIinsert request ("ISRT") is translated by ADL into an Adabas N1 call. A special case is given
when loading the database. For the initial load during the conversion process, the data which have
been unloaded by ADL utilities are loaded into Adabas with the Adabas utilities ADACMP and
ADALOD. ADACMP requires the ADL user exit DAZUEX06.

Another way of initially loading data is using insert calls by a user application against a PCB with
PROCOPT=L. This insert call must be qualified with one SSA which specifies the segment to be in-
serted but no other qualification. The data must be inserted in the hierarchical sequence. How
such an insert call is treated by ADL depends on the setting of the LOAD parameter.

If LOAD=DIRECT is specified, an Adabas N1 call is issued, as with any “normal” insert against a
PCB with PROCOPT=I.

If LOAD=UTILITY is specified, the data is written to a sequential file. It has the same layout as the
data generated by the ADL data conversion utilities. It is loaded into Adabas with ADACMP (with
the ADL user exit) and ADALOD.

Which of these two methods should be used depends on the amount of data to be loaded. If it is
only a small amount of data, the easiest way is to load it directly into Adabas. If, however, there

is a lot of data to be loaded, you are recommended to use the Adabas utilities, because the utilities
are considerably faster than a direct insert.

A DL/l delete request ("DLET") is translated by ADL into Adabas E1 calls for the specified segment
occurrence and all its dependents. Normally, DL/I does not really delete the data; it sets a flag
which indicates that the record is “deleted”. When retrieving the data, DL/I has to run through
such “deleted” data, because the pointers are still there. Therefore, the DL/I database has to be
reorganized to get rid of that garbage and to release the corresponding storage.

When Adabas deletes a record, the storage is released immediately. This takes more time than just
setting a flag and you may notice an increased time, especially for mass deletes by user applications.
On the other hand, there is no running through “deleted” data and no requirement for a reorgan-
ization to release the storage.

172 Interfaces

Performance Considerations

Splitting a DBD

With the GENSEG statement of the ADL CBC utility, you can distribute the segments of a DBD
to multiple Adabas files.

The following reasons for splitting a DBD are related to performance.

= If the application accesses some segment types and not others, splitting will reduce the number
of physical I/Os. This is because more of the accessed data fits on one data block, since the in-
formation not requested is no longer stored with it.

® If some of the segments contain constant data like tables, which are often read but not updated,
you can use Adabas Fastpath especially for these files.

® For some requests, you can use Adabas utilities if the segment is separated. For example, if you
want to delete all the data of a dependent segment type, you can refresh the corresponding
Adabeas file.

But splitting a DBD can also have disadvantages:

® The initial load will consume more time, because the ADL user exit always has to process the
whole DBD data.

= If your application accesses segments that reside on different Adabas files, it probably requires
more physical I/Os. If it reads, for example, one root segment occurrence and all its dependents,
atleast one I/O is performed for each Adabas file. As long as your application reads sequentially
through the data, this will not lead to any problem. This is because Adabas will find the sub-
sequent data in the buffer pool and therefore, the total number of I/Os will not increase. If,
however, it reads the data out of sequence, the number of I/Os is multiplied by the number of
Adabeas files accessed.

Field Definitions

The fields are primarily defined in the DL/I DBD source. As described in the section Conversion of
the Data Structure - General Considerations in the ADL Conversion documentation , you can change
the default Adabas field specifications before or during the conversion process. One reason for
such a modification can be better compression. The more the data is compressed, the fewer I/Os
are required. However, the compression itself also needs some time. Therefore, if you add new
field definitions for “better” compression, but, in fact, there is nothing to compress, you keep
Adabas occupied with unnecessary work

If a Natural program accesses all the data of one segment, the corresponding format buffer (FB)
contains all Adabas fields that build up the Adabas group related to the segment. More field
definitions require more time for the format buffer translation. This is especially the case if the

Interfaces 173

Performance Considerations

call has to be handled by the ADL Consistency Interface, since the format buffer translation of
ADL is not as sophisticated as of Adabas.

Enqueue Logic

Batch applications which run in multi-user or shared-database (so called “online batch”) mode
should supply their own enqueue logic. Nevertheless, you can run a program in online batch, al-
though it was originally designed to run in normal mode. ADL guarantees the integrity of the
data by putting each accessed root record into hold. If the application does not make checkpoints,
the Adabas hold queue will soon be full. For this situation, ADL offers the automatic-ET feature,
which is controlled by the ET parameter described in the ADL Installation documentation , section
ADL Parameter Module. Because each ET call consumes some time, you should set the ET parameter
to a value right below the critical value where an Adabas hold queue overflow would occur.

Under CICS, ADL puts each accessed root record into hold, as in online batch. It is released as
soon as the next root record is accessed if there was no update on that hierarchy. Here, the ET
parameter helps you reduce the number of Rl calls. The records not released remain in hold status
until the next syncpoint or terminate call is issued. This may lead to situations where other users
have to wait for such records or, fatally, to deadlock situations. If, however, your application
avoids such situations, you can adjust the ET parameter to save the time for the RI calls.

CICS/Batch Communication

Usually, DL/I runs in the same region/partition as the user application. This saves interregion
communication. On the other hand, it loads the online system, especially when big buffers are
required on smaller machines. In addition, if batch applications access online databases, the CICS
system has to forward the calls to the “online” DL/I. Adabas runs in its own region/partition (if
not in single user mode), Therefore, you have the overhead of the interregion communication, but
the online system is relieved of the database management system and, of course, no batch request
must be handled by CICS.

Application Program and DB Design

A good programming style is a general task and not directly related to a conversion. However,
some problems become obvious when you are using features of ADL or Adabas. If, for example,
you see one DL/I call in the ADL trace which is translated into myriads of Adabas calls, you should
not hesitate to take a look into your application program or into the DB design. Changes in this
area would help DL/I as well as ADL. In addition, if your application makes one million calls too

174 Interfaces

Performance Considerations

many, you can tune your database system as much as you like, but you will never get rid of these
superfluous calls in this way.

The examples that follow are far from complete. Most of them have been seen on real sites. They
should give you an idea of what can be done wrong and how to make things work better.

Examples

Non-descriptor Search

Description: |1n a qualified SSA, a normal field is used for searching, that is, no sequence field and no
secondary index field.

Effect: This is a “non-descriptor search”. For a root segment, the range of the search extends from
the first record to the end of the database. For dependent segments, it is restricted to the
children of one specific parent occurrence. The search stops if a record fulfils the qualification;
otherwise, it runs until the end of the range is reached.

Action: Use, as far as possible, the sequence field or an already existing secondary index. Otherwise,
define a new secondary index which specifies the field from the SSA as search field.

Wrong Key

Description: |1 a qualified SSA for a root segment, the primary key is used, but the PCB specifies an alternate
processing sequence.

Effect: This is also a non-descriptor search, as in the previous example. If a "PROCSEQ" statement is
specified in the PCB definition, the only usable key field is the corresponding secondary index
field. All the other fields, including the primary key, are treated like non-descriptors.

Action: Use a PCB without an alternate processing sequence.

Second-level Qualification

Description: | The SSA specifies two levels: the first level is not qualified but the second level is qualified.

Effect: This is a non-descriptor search on the first level. It stops when the correct second-level segment
is found or at the end of the database.

Action: Define a secondary index on the second-level segment and use this in the call.

Interfaces 175

Performance Considerations

Retrieve same Data

Description: | The application program issues a path call over two levels. The first level always specifies the
same segment occurrence.

Effect: The first-level segment occurrence has to be read for each call.

Action: Once the first level is read, avoid reading it again. You can specify only the lowest-level segment
or make no path call.

Note: If you use the last-call save area (LCS), the record is saved in the LCS buffer. For the repeated
read, the value of the LCS is taken and the overhead is minimized.

Concatenated Segment

Description: |1 a concatenated segment, the sequence or any other field of the destination parent is used
for the qualification in the SSA.

Effect: This is a non-descriptor search.

Action: The only key field you can use for concatenated segments is the sequence field of the logical
child segment.

No Sequence Field

Description: | A qualified SSA is used for a dependent segment, but this does not have a sequence field.
Effect: This is a non-descriptor search.
Action: Define a (non-unique) sequence field for the field used in the SSA.

Read in Sequence

Description:

The application reads the data in the sequence of the sequence field, but it uses qualified direct
reads, such as:

GU ROOT (SQF =1) GU ROOT

(SQF =2) GU ROOT (SQF = 3)

This can be, for example, in an HDAM database, where the randomized sequence does not
match the key-field sequence.

Effect:

Each call is translated into an Adabas call with value-start. Multifetch can not be used. In
addition, if there are gaps in the data, a lot of unnecessary calls are issued.

Action:

Read the data with GN calls and an unqualified SSA, such as

GN ROOT

Under this condition, you can use Multifetch. This also works for HDAM databases, since
ADL always returns the data in the sequence of the sequence field.

176

Interfaces

Performance Considerations

Segments without Data

Description: | An application makes unqualified GN or GNP calls and some of the sensitive segments in the
PCB are never supplied with data.

Effect: , one Adabas call is issued, in order to realize that there is no data of that segment type under
this parent.

Action: Use qualified calls or do not specify the sensitive segments in the PCB.

Note: If you use the last-call save area (LCS), the next record is saved in the LCS buffer. When reading
the empty segment, ADL realizes from the value saved in the LCS that there is no data for this
segment and the overhead is minimized.

Interfaces 177

178

15 Recovery and Restart Procedures

LI 121 (oo 1 o110 o PRSP PPPTPPRR 180
B EXtensions and RESHCHONSuuiiiiiie e 180
B AGADAS USEI TYPES ..ttt ettt ettt e et e e e e 181
m Automatic ET Calls ISSUEA DY ADLcouiiiiiiiiiii et 185
= Restart/Recovery LOgic UNAEr ADLooiiiiiiiiii e 186
= ADL Actions for Basic and Symbolic ChecKpOiNtScciiiiriiiiiiiici e 191
® How to Restart @ BatCh Programcooooiiiiiii e 192

179

Recovery and Restart Procedures

This chapter covers the following topics:

Introduction

This section describes how the Adabas Bridge for DL/I (ADL) handles DL/Icheckpoint calls and,
in the case of an abnormal end to a program, how the database can be recovered and the application
program restarted.

Note that the recovery and restart logic and procedures for Natural applications or programs using
direct Adabas calls are not affected by ADL.

In DL/I, an application program may set checkpoints using the CHKP call. This results in the con-
firmation of all changes to the database made by the program up to this point. In addition, under
z/OS, the XRST routine allows the use of “symbolic checkpointing”, with which user data may be
saved for each checkpoint. These data can later be used to restart the program, should it have
terminated abnormally.

The ADL reproduces the full functionality of the DL/I XRST and CHKP calls and thus provides
complete restart and recovery capabilities.

Adabas provides two basic methods of checkpointing:

® ET (“end of transaction”) logic, intended to be used for updating files concurrently, and

® C1 checkpoint calls, intended to be used by programs which use files exclusively.

Both the ET and C1 checkpoint methods are used by ADL.

Extensions and Restrictions

Symbolic checkpointing is also possible under z/VSE, thus allowing full recovery/restart capabil-
ities.

The following restrictions apply to ADL:

® The use of time stamps instead of checkpoint identifiers is not supported.
" OS/VS checkpoint requests are not supported.

® (for IMS/TP BMP only) "LAST" may not be used to indicate that the program is to be restarted
from the last issued checkpoint. Instead, establish the checkpoint identifier of the last issued
checkpoint using the messages on the DAZ0UT1 file, and then supply this for the XRST call.

180 Interfaces

Recovery and Restart Procedures

Adabas User Types

As mentioned above, the restart/recovery logic used by Adabas in a given situation mainly depends
on how an application program accesses the data base. Three user types are distinguished: access-
only users (ACC), exclusive file users (EXU) and ET logic users (UPD). ADL uses all of these:
which type will be used in a given situation depends on the following features:

" the operational environment;

® the mode in which the application program is run (the first three characters in the parameter
statement);

* how the files in the data base are accessed (read only, update), as determined by the PSB specified
for the program; and

* the method of (DL/I) checkpointing used (without checkpointing, basic checkpointing or sym-
bolic checkpointing).

The following tables show how ADL applies the Adabas user types and checkpoint methods, e.g.
the last column in the first table means

" 1st table: “STA” is specified for DAZIFP, i.e. the program runs as “stand-alone”.
® Last block “Update”: The program makes updates.

® Last column in block “Symb”: The program uses symbolic checkpointing.

Under these conditions, ADL runs the program as Adabas “EXU” user (indicated in the third line),
it issues no ETs (forth line) but uses “C1” commands (fifth line) for the ADL checkpoint method.

Normal Batch Programs

Two situations may be distinguished:

® where “STA” has been specified as the first positional parameter for DAZIFP
® where “DLI”, or “IMS” has been specified as the first parameter for DAZIFP

Interfaces 181

Recovery and Restart Procedures

With "STA"
Read Only
Checkpointing MMMMMM

Adabas User Type ACC - EXU -
oL ™ ™
Checkpoint | =V No No

Method ‘C1 Yes - Yes -

182 Interfaces

Recovery and Restart Procedures

With "DLI", or "IMS"

Read Only
Checkpointing MMMMMM
Adabas User Type ACC - EXU -
oL s Yes.
Checkpoint | =V — e
Method ‘51 Yes - Yes -

The advantage of using the "STA" parameter for normal batch programs is that no ET calls have
to be issued. However, other application programs also using symbolic checkpoints cannot run
concurrently. This is because STA programs use the ADL directory file as exclusive (EXU) users.

Interfaces 183

Recovery and Restart Procedures

SDB, BMP (z/0S) or MPS (z/VSE) Programs

Read Only
Checkpointing MMMMMM
Adabas User Type UPD - UPD -
oL | v oo
Checkpoint | =" Yes Yes
Method ‘(31 No - No -

184 Interfaces

Recovery and Restart Procedures

CICS or IMS/TP Message Region

Read Only Update
Checkpointing m&mm&m
Adabas User Type UPD - UPD -
oL | o o
Checkpoint | =" e Yes
Method ‘ c1 No - No -

Automatic ET Calls Issued by ADL

Adabas ET logic allows concurrent processing of one or more files by more than one user. All records
which are updated by a program are held in a queue and may not be updated by any other user
until the program issues an Adabas ET call. This results in a confirmation of all updates made by
the program and the release of the held records. However, the use of ET logic for programs (e.g.
batch programs) which use files as exclusive users or which do not update these files is not recom-
mended.

If ET calls are not issued often enough, the Adabas hold queue for update records may overflow,
resulting in a fatal error. On the other hand, ET calls should not be issued too frequently, in order
to avoid unnecessary buffer flushes.

ADL includes an option to issue ET calls automatically. The actual procedure performed depends
on the program type and the operational environment. Automatic ETs will be issued in the following
cases:

* Normal Batch and SDB, BMP (z/OS) or MPS (z/VSE) Programs
ADL issues ET calls automatically. The ET parameter provided when creating the ADL parameter
module (see the section ADL Parameter Module in the ADL Installation documentation) or as a
keyword for DAZIFP, determines the number of changes which can be made to the root segment
position in the database (summarized over all PCBs in the PSB) before an ET call is automatically
issued. For some batch programs it may be desirable not to issue ET calls at all. This can be
achieved by specifying "ET=NO".

Interfaces 185

Recovery and Restart Procedures

= IMS/TP
ADL automatically issues an ET call each time the application program issues a GU call on the
I/O PCB.

® CICS Environment
Under CICS, all users are ET logic users and ADL will automatically issue an ET call in two
situations:

® where the application program issues an explicit termination call, and
" every time an implicit termination call is taken (i.e. at the end of a task).

When a program terminates abnormally, an Adabas BT call is issued and all database modifica-
tions made by this program are backed out.

If OPENRQ=YES has been specified when assembling the parameter module DAZPARM, ADL
will issue an Adabas "0P" each time a scheduling call is received, and a "CL" for the termination
call.

Restart/Recovery Logic under ADL

The figures on the following pages explain how ADL uses restart/recovery logic for different
program types and operational environments.

Normal Batch Programs

Two situations may be distinguished:

" with "STA" as the first positional parameter specified for DAZIFP
" with "DLI" or "IMS" specified as the first parameter for DAZIFP

These two cases are described in the tables below.

186 Interfaces

Recovery and Restart Procedures

With "STA"
Symbolic Checkpoint
XRST
CHKP — C1 + userdata
DL/ Calls
CHKP — C1 + user data

In the case of basic checkpointing, it is recommended that DLI or IMS be used instead of STA as
the first parameter for DAZIFP to avoid the ADL directory file being in exclusive mode.

Interfaces

187

Recovery and Restart Procedures

With "DLI", or "IMS"

Symbolic Checkpoint

XRST

CHKP

—

DL/l Calls

Root
Segment
Change

DL/l Calls

CHKP

ET+ C1
+ user data

automatic ET
(optional)

ET+ C1
+ user data

Basic Checkpoint

CHKP

— C1

DL/l Calls

Root
Segment
Change

automatic ET
(optional)

DL/l Calls

CHKP

— C1

188

Interfaces

Recovery and Restart Procedures

SDB, BMP (z/0S) or MPS (z/VSE) Programs

Symbolic Checkpoint

XRST

CHKP

—

DL/l Calls

Root
Segment
Change

DL/l Calls

CHKP

ET
+ user data

automatic ET
(optional)

ET
+ user data

Basic Checkpoint

CHKP

— ET

DL/l Calls

Root
Segment
Change

automatic ET
(optional)

DL/l Calls

CHKP

— ET

Interfaces

189

Recovery and Restart Procedures

CiCS

DL/l Calls

Explicit
Termination
Call

— automatic ET

DL/l Calls

CHKP

— ET

DL/l Calls

Implicit
Termination
Call

— automatic ET

190

Interfaces

Recovery and Restart Procedures

IMS/TP Message Region
GU — automatic ET
(10 PCB)
DL/l Calls

CHKP ——ET

DL/l Calls

ISRT
(10 PCB)

— automatic ET

ADL Actions for Basic and Symbolic Checkpoints

Normal Batch and SDB/BMP/MPS Programs

With a CHKP call, the following message is written to the DAZOUT1 file:

"DAZCHKP - CHECKPOINT WRITTEN. DATE: dd/mm/yy TIME: hh/mm/ss FOR PROGRAM progname
WITH CHECKPOINT-IDENTIFIER chkpiden'

Interfaces 191

Recovery and Restart Procedures

where

dd/mm/ yy |is the actual date,

hh/mm/ ss |the actual time,

progname |the name of the application program,

chkpiden |the eight-character checkpoint identifier as passed to the CHKP call.

If the symbolic checkpoint call is used, up to seven data areas are stored on the ADL directory file.
The checkpoints on the latter are identified by the name of the program and the eight-character
checkpoint identifier.

Finally, ADL issues an ET and/or a C1 call. In the Adabas checkpoint table, the checkpoints associated
with the C1 call are identified by the checkpoint name "CHKP". Please refer to the Adabas Utilities
documentation for details on how to obtain and read the Adabas checkpoint table.

If a program ends normally, the corresponding checkpoint entries on the ADL directory file will
be deleted. If a program ends abnormally, these entries will be deleted after the program has been
restarted. An abnormally ended program which is never restarted will thus produce garbage in
the directory file. In order to clear the ADL directory file, run a dummy program containing only
an XRST call. This dummy program must have the same name as the abnormally terminated
program.

Alternatively, you can list and delete the checkpoint entries in the ADL directory with the ADL
Online Services as described in the section The ADL Online Services in this documentation.

CICS and IMS/TP

ADL issues an ET call for each CHKP call.

In all cases, the current position in the data base will be deleted after a CHKP call. In the case of a
restart, the position is NOT reestablished after an XRST call.

How to Restart a Batch Program

To restart a batch program, perform the following five steps:
Step 1

Use the output of the application program on the DAZOUT1 file to find the checkpoint identifier
and the date and time of the checkpoint at which you want to restart your program.

192 Interfaces

Recovery and Restart Procedures

Step 2

Find the corresponding protection log number and block number of the desired checkpoint in the
Adabas checkpoint table. This table may be obtained using the Adabas ADAREP (report) utility. See
the Adabas Utilities documentation for more details.

Step 3

Make a copy of the protection log file using the Adabas ADARES (restart) utility with either the COPY
or the PLCOPY function, for single or dual protection logging respectively. The following ADARUN
and ADARES statements are provided as an example (dual protection logging was active):

ADARUN input statement:
ADARUN PROGRAM=ADARES,MODE=SINGLE
ADARES input statement:

ADARES PLCOPY DUALPLD=3350
See the Adabas Utilities documentation for more details.
Step 4

Restore the entire data base or one or more of its files to the state in effect when the desired
checkpoint was taken, using the Adabas ADARES utility with the BACKOUT function. The following
ADARUN/ADARES input statements are provided as an example.

ADARUN input statement:
ADARUN PROGRAM=ADARES,MODE=SINGLE
ADARES input statement:

ADARES BACKOUT FILE=37,PLOGNUM=8,TOCP=CHKP,TOBLK=19

File 37 is restored to the checkpoint which is found on protection log file 8 in block 19 (all check-
points issued by ADL are named CHKP). Please refer to the Adabas Utilities documentation and
the Adabas Operations documentation for more details.

Step 5

Restart your program. The eight-character checkpoint identifier may be supplied either with the
CPID keyword for DAZIFP or in the I/O area referenced by the XRST call in the application program.
If both methods are used at the same time, the value provided with the CP1D keyword will be used.

Interfaces 193

Recovery and Restart Procedures

If the checkpoint is not found on the ADL directory file, or if the XRST call requests more data than
have been previously stored with the CHKP call, ADL will issue an error message and abend the

application program immediately.

194 Interfaces

16 Appendix A - DAZZLER Test Stream

COM BRI R e e b R e e b b A e i b i S e b b S e b b b e e b b S e b 3

COM * THIS DAZZLER STREAM IS DESIGNED TO PROVIDE EXAMPLES =
COM * OF THE USE OF THE VARIOUS STATEMENTS (BOTH e
CoM * OPTIONAL AND MANDATORY) THAT CAN BE USED. 2
COM khkhkkhkkhkhkhkhkhkhkhhkhkhkhkhkhhhhkhkhkhhkhkhhkhkhhhhkhkhkhhkhhkhkhkhkhhrhkhkhhkhkhhkhkhkhkihhkhkhkhik
COM *

COM Al1 these comment statements (indicated as so by the 'COM' in

*
COM * the first three positions) are ignored by the program,
COM * as are any blank statements Tike the ones following:

COMment statements do not have to have a blank/asterisk (' *') in
COM positions 4 and 5 and are not printed. In addition, as no

COM statement contains information after position 66, it is possible
COM to code printable comments in positions 67 - 80 inclusive.

COM * In these examples, comments PRECEDE the actual coding, and
COM * blank statements have been inserted for ease of reading.
CoM *

COM R R e b B b b b S b e b e b e b e b e b e b S b b e e b e b b S b b b g S b b S b b b e b g o

COM RR AR R b R R e I b b e b b R e b b e b b R e i b R e e b b e e i b i S e b b S e b e e b b S e b b 3

COM =

COM * 1) The first decision to be made concerns the

COM = printer. Some consideration should be given

coM * to the volume and required content. Many options

COM * are available. The default values assumed if

cCoM * this statement is not present are that dates take the
COM * format dd/mm/yy and that all Tines should be

CoM * printed with an automatic page-throw before each

cCoM * set of statements. The following example suppresses the
COM = automatic page-throw, prints dates as mm/dd/yy

cCoM * and only prints the 10675th and 10676th calls in

195

Appendix A - DAZZLER Test Stream

cCoM * detail.

COM *

cCoM * The program always prints every statement read, with
CoM * the exception of comment or blank statements, plus
COM = a last page showing the total number of calls made.
COM *

COM khkhkkhkhkkhkhkkhhkkhkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhkhkhhkkhhkkhhkkhhkkhhkhhkkhhkhhkkhkkhhkhkkhhkhkkhhkhxk
PARUS>PF1067501

COM Khkhkkhhkkhhkhhkkhhkkhhkkhhkkhhkhhkkhhkkhhkhhkhhkhhkkhhkkhhkkhhkhhkkhhkhhkhhkkhhkhhkhhkhhkkhhkkhkkhkkhikhxk

COM
COM
COM
COM
COM

COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM

*HD
S01

* As a reminder, all the preceding statements in this example
* are totally optional and, if the default settings for the
* PAR statement above were required, then nothing need

* have been encoded.
R b o B b b b o b o e o B i g i b i e b b e g o b i b i b b i i b o b e e g b b b i b o b i b b b b

R e b e e b e b e b e b S b b e b e S b S b e S b S b e S b e e b S b S b e b S b o

ok o oF F X O b > o 3F >k X S b X X 3k > X 3 b X X 3 o X X o

2)

The following example shows the use of the

iterative function on the header statement and the use
of both types of overwrite statement.

Reading from the left, the header statement specifies
the following:

Do an '"ISRT' call 9 times in succession using PCB1
with 1 SSA, iteratively increasing the number from
its start value of 100 by 100 and overwriting the
I/0 Area in position 14 for a length of 5 and in
position 95 for a Tength of 4.

The next statement causes the first SSA to have the
segment name in positions 1 to 8 inclusive (all

segment names are 8 characters long and left-justified)
followed by 42 spaces. The default format (character
format) is used as no entry was made in positions

5 to 8 inclusive. For the same reason, this default
also applies to the remaining IOA statements.

These Tast four statements cause the I/0 Area to be set
up for a total of 170 characters. The NNNNN entries
will be iteratively overwritten by the values from

the *HD statement.

Note that the order of the five statements following
the *HD statement is immaterial: the same results are
achieved no matter what order they are specified in.

R R b B b e b e b B R i e b e b e b e b b e b R e e b S b b S b b b g b S b e b b b e b g o

ISRT 009

01 01 00100 00100 0145 0954

001 50 ITEMID

196

Interfaces

Appendix A - DAZZLER Test Stream

I0A
I0A
I0A
I0A

COM
COM
COM
COM
COM
COM
COM
COM
COM
COM

*HD
S01
S02
I0A
I0A
I0A

COM
COM
COM
COM
COM
COM
COM
COM
COM
COM

*HD
S01
S02

COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM

001 50 ITEMID/MITEM/NNNNN*. i
051 50 .ot ITEMID/MMACD/*NNNN**
10T 50 oottt END OF

151 20 SEGMENT ITEMID --->:

R R b R R e I b R e b b R S e b b S b b R e b b R e e b b e e b b i S e b b S e b b b e e b b S e b b 3

*

& 3) The following example shows a single call

w ("ISRT') using two SSAs.

o The *HD statement specifies an insert using PCB1 and
w SSAs.

o The two SSAs and the I0A are created as explained

% above in the second step.

*

R R R B e R b b b i b b b b i b 4

ISRT 01 02
001 50 ITEMID (MITEM = ITEMID/MITEM/00100%*)
001 50 LAGER
001 50 THIS IS A LAGER SEGMENT THAT CONTAINS NO SEQUENCE
051 50 FIELD WHATSOEVER - HOWEVER FOR INTERNAL CONTROL PU
101 50 RPOSES -0101- END OF SEGMENT LAGER --->:

Sk o o o o o o ok ok kA ok o o o ok ok ok ok ok ok ko ko o ok ok ok ok ok ok kR kA ok ko ko k ok kA Ak

*

% 4) The following example shows a single call

* ('"GHU') using two SSAs.

% The *HD statement specifies a 'GHU' using PCB1 and 2
% SSAs.

W The two SSAs are created as explained

& above in the second step.

*

KAk hkkhkhkhkhkhkhkhkhhkhkhhkhkhhkhhhkhkhhkhkhhkhkhhkhhhkhkhhkhhkhkhkhhrhkhkhhkkhhkhkhkhkhihhkhkhkkkk

GHU 01 02
001 50 ITEMID (MITEM = ITEMID/MITEM/00700%*)
001 50 PRODST (SPKEY = ITEMID-00700/SPKEY-701****%)
Sk ok o o o ok ok ok ok ok kA ok ok ok o ok ok ok ok ok ok kA ok o ok o ok ok ok ok ok ok kA ok ko k ok ok kA A Ak

5) POSITION AT BEGINNING AND PRINT THE LOT

This is achieved by issuing an unqualified get
unique which automatically retrieves the first
segment in the data base and follows this with
successive get nexts until the end of the data
base is reached. This condition is indicated

by a status code of 'GB'.

The two *HD statements are translated as follows
Issue a 'GU' using PCB1 and then issue a 'GN',
also using PCB1. Keep issuing a 'GN' call

ok X o oF X X o X X %

Interfaces

Appendix A - DAZZLER Test Stream

COM
COM
COM
COM

*HD
*HD

COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM
COM

*

*

*

until a status code of 'GB' is returned in the
PCB.

R b R e b b b e b R e e b b e b b R e e b R e e b b e e i b i S b b S e b b e b b S e b b 4

GU
GN

01
GB 01

B R R R R R R R R R b R i R e R e S i R R S b R S b i b i b S b 3

LAST) PRINT THE NUMBER OF EACH TYPE OF SEGMENT

*
*
*
*
*
*
*
*
*
*
*
*

ACCESSIBLE BY PCB3

Internally, this statement will cause an unqualified
GU on PCB3 to be issued, thus positioning at

the beginning. Unqualified GNs are then issued

until a status code of 'GB' is returned in the

PCB. This is apparently the same as the previous

two *HD statements in combination (but on a different
PCB), but the SUMMARY statement does not print out
each segment as it reads it. Instead, it only

prints the summary table at the end.

R R R R R R R R S b R R e R e I i R e S b R S S e i b i b S b 3

SUMMARY 03

COM
COM
COM
COM
COM
COM
COM

R R R o R b R e b R S i b R e b R e i b R e b e i b i e b b S e i b e i b b S e b 3

* ok X oF of

As all blank statements and comment lines are ignored by
DAZZLER, the identical results from the stream above
would be achieved by the stream which now follows.

BRI b R e b b R e e b b S S b b i e b b R e e b b A e b b i S e b b S e b b b e e b b b S e b b 3

PARUS>PF1067501

*HD ISRT 009 01 01 00100 00100 0145 0954

S01 001 50 ITEMID

I0A 001 50 ITEMID/MITEM/NNNNN*. i,
I0A 051 50 .ot ITEMID/MMACD/*NNNN**
I0A 101 50 oottt e END OF
I0A 151 20 SEGMENT ITEMID --->:

*HD ISRT 01 02

S01 001 50 ITEMID (MITEM = ITEMID/MITEM/00100%)

S02 001 50 LAGER

I0A 001 50 THIS IS A LAGER SEGMENT THAT CONTAINS NO SEQUENCE
I0A 051 50 FIELD WHATSOEVER - HOWEVER FOR INTERNAL CONTROL PU
I0A 101 50 RPOSES -0101- END OF SEGMENT LAGER --->:

*HD GHU 01 02

S01 001 50 ITEMID (MITEM = ITEMID/MITEM/00700%)

S02 001 50 PRODST (SPKEY = ITEMID-00700/SPKEY-701**%*%**)
*HD GU 01

198

Interfaces

Appendix A - DAZZLER Test Stream

*HD GN GB 01
SUMMARY 03

Interfaces 199

200

17

Appendix B - z/OS Dataset Usage

The following table provides a complete list of all the z/OS input and output data sets used by the

ADL Interfaces.

DDname BLKSIZE LRECL RECFM | DSORG | Storage Medium
DAZIN1 80 F PS READER
DAZIN2 80 F PS READER

DAZOUT1 132 F PS PRINTER
DAZOUT?2 132 F PS PRINTER
DAZIN3 | user-defined | user-defined | VB PS TAPE/DISK*
DAZOUTS3 | user-defined | user-defined VB PS TAPE/DISK*
DAZIN4 8196 8192 VB PS TAPE/DISK
DAZIN5 | user-defined 132 FB PS TAPE/DISK*
DAZOUT5 8196 8192 VB PS TAPE/DISK
DAZOUT4 80 F PS TAPE/DISK

* The block size and/or record format may be changed by specifying a DCB for the data set in the
DD statement.

201

202

18

Appendix C - z/VSE Dataset Usage

The following table provides a complete list of all the z/VSE input and output files used by the

ADL Interfaces.

DTF Logical Unit | BLKSIZE | LRECL | RECFM | DSORG | Storage Medium
DAZIN1 SYSIPT 80 F PS READER
DAZIN2 SYSIPT 80 F PS READER

DAZOUT1 | SYSLST 132 F PS PRINTER
DAZOUT2 | SYS011 132 F PS PRINTER *1
DAZIN3D SYS013 8196 8192 VB PS DISK *2
DAZIN3T SYS013 8196 8192 VB PS TAPE *2
DAZOT3D | SYS013 8196 8192 VB PS DISK *2
DAZOT3T SYS013 8196 8192 VB PS TAPE *2
DAZIN4D SYS012 8196 8192 VB PS DISK *3
DAZINA4T SYS012 8196 8192 VB PS TAPE *3
DAZIN5D SYS014 1320 132 FB PS DISK*4
DAZINS5T SYS014 1320 132 FB PS TAPE*4
DAZOT5D | SYS012 8196 8192 VB PS DISK *3
DAZOT5T SYS012 8196 8192 VB PS TAPE *3
DAZOUT4 | SYSxxx 80 F PS DISK *5

*1 This printer output may be routed to a second logical printer, if one is available, by specifying

PR=2 in the ADL parameter module or as a dynamic parameter. If no second logical printer is

available, the printer output is written to a temporary file using DAZ0T3D as output and DAZIN3D
as input, and printed on SYSLST at the end of the job.

203

Appendix C - z/VSE Dataset Usage

*2 The logical unit and block size may be modified by specifying S0=(logical unit,block size) in
the ADL parameter module or as a dynamic parameter. The values given in the table are the default
values.

*3 The logical unit and block size may be modified by specifying TRACE=(,,,,,logical unit,block
size) in the ADL parameter module or as a dynamic parameter. The values given in the table are
the default values.

*4 The logical unit and block size may be modified by specifying FX=(logical unit, blocksize) in
the ADL parameter module or as a dynamic parameter. The values given in the table are the default
values.

*5 The logical unit must be assigned using an EXTENT statement.

204 Interfaces

	Interfaces
	Table of Contents
	1 Interfaces
	2 Introduction
	Operational Environments
	Batch Operation
	Online Operation (CICS)
	IMS/TP

	Other Documentation You May Need
	Documentation Related to non-SAG Products

	3 Batch Installation and Operation
	CALLDLI Interface
	Positional Parameters for DAZIFP
	Keywords for DAZIFP

	Normal Mode Batch Execution
	Mixed Mode Batch Execution
	Pseudo Mixed Mode Batch Execution
	Link-editing of Application Programs

	Consistency Interface
	Activating the Consistency Interface
	Customizing the Consistency Interface
	Parameters for the Consistency Interface
	Table of Converted Adabas Files (DAZTCF)
	Summary

	User Exit
	z/OS JCL Requirements
	Normal Mode Batch Operation
	Mixed Mode Batch Operation

	z/VSE JCS Requirements
	Normal Mode Batch Operation
	Mixed Mode Batch Operation

	4 CICS Installation and Operation
	Overview CICS Installation
	Prerequisites for z/OS CICS Installation
	Step 1
	Step 2 (optional)
	Step 3
	Step 4
	Step 5

	Prerequisites for z/VSE CICS Installation
	Step 1
	Step 2 (optional)
	Step 3
	Step 4
	Step 5
	Step 6

	Important Note for CICS Users
	Generating the Runtime Control Tables
	Step 1: Generating the Table of PSBs (DAZPSB)
	Step 2: Determining Requirements for the Runtime Control Tables
	Step 3: Generating the Internal Control Block Table (DAZBUF)
	Step 4: Generating the DBD Table (DAZDBD)

	Tuning and Maintaining the Runtime Control Tables
	z/OS Requirements
	z/VSE Requirements
	Activating and Controlling the ADL Interfaces
	CALLDLI Interface
	Normal Mode and Mixed Mode
	Link-Editing of Application Programs
	De-synchronization of CICS Applications

	Consistency Interface
	Installing the Consistency Interface
	Customizing the Consistency Interface
	Activating the Consistency Interface
	Parameters for the Consistency Interface
	Summary

	User Exit

	5 IMS/TP Installation and Operation
	Overview
	Generating the Runtime Control Tables
	CALLDLI Interface
	IMS/TP Message Region Execution
	Pre-requirements for IMS/TP Application Programs
	Parameters for the ADL Message Region Control Program

	ADL Pre-load Program
	User Exit
	JCL Requirements

	6 ADL Online Services
	Introduction
	Prerequisites
	Starting the ADL Online Services
	Terminating the ADL Online Services
	Online Help
	General Key Assignments
	General Map Elements

	Main Menu
	Maintaining the ADL Interfaces under CICS
	Switch ADL Interfaces on / off
	Switch Trace Facility on / off
	List CICS PSB Table
	List ADL Zap Status
	Dump ADL Tables

	ADL Directory Management Facility
	Directory Management Facility Menu
	DBD List Menu
	List Segments Menu
	List Fields Menu
	PSB List Menu
	External Control Block Information Menu
	Specific ECB Information

	Consistency DBD Maintenance
	Maintenance of the Rolled-out PSBs
	Rolled-out PSB-related ICBs menu
	List of the PSBs in the Environments
	List of the Environments
	Delete Rolled-out PSBs

	Maintenance of Checkpoints
	Checkpoint Maintenance Menu
	Checkpoint Information List
	Checkpoint Program List
	Deletion of Checkpoints

	Messages and Codes Retrieval

	7 Precompiler for EXEC DLI Commands
	Introduction
	Running HLPI Programs without the ADL Precompiler
	Running HLPI Programs with the ADL Precompiler

	ADL Precompiler Input
	ADL Precompiler Output
	COBOL Generated Code
	PL/I Generated Code
	CICS Command Language Translator
	Linkage-Editor Requirements for Application Programs
	z/OS JCL Requirements
	z/VSE JCS Requirements

	8 Using ADL Files with Natural/Adabas
	Introduction
	Consistency Interface
	Restrictions when using Natural/Adabas
	Improve the Natural Access to Migrated Files
	Error Situations and Consistency Response Codes
	Availability of the Consistency Interface
	Example Programs

	9 Converting Natural for DL/I Programs
	Introduction
	Conversion of the Data Definitions and of the Data
	Modification of the Application

	10 SQL Access to the Migrated Files
	Introduction
	How to Access the Migrated Data
	Improving the Access to Migrated Data
	Restrictions for SQL Applications

	11 Debugging Aids - ADL Trace Facility
	Data Base Call Trace
	Tracing DL/I and Adabas Calls
	Data Acquisition
	Data Reporting

	Internal Routine Trace
	z/OS JCL Requirements
	Using the Trace Facility
	Printing the Trace Data Set

	z/VSE JCS Requirements
	Using the Trace Facility
	Printing the Trace Data File

	12 CALLDLI Test Program - DAZZLER
	Introduction
	DL/I Statements
	Sets
	HEADER Statement
	Example of the Iterative Overwrite Facility
	BACK Call

	IOA and SSA Statements
	SUMMARY Statement

	DAZZLER Control Statements
	PRINT CONTROL PARAMETER Statement
	COMMENT Statement
	JUMP and LABEL Statements

	z/OS JCL Requirements for DAZZLER
	z/VSE JCS Requirements for DAZZLER

	13 Managing ADL Files
	Overview
	Reorganization with ADL Utilities (Pseudo Mixed Mode)
	Step 1: Copy ADL programs
	Step 2: Create an ADL Unload PSB
	Step 3: Copy the ADL directory
	Step 4: Modify and Convert the DBD
	Step 5: Create the ADL Reload PSB
	Step 6: Unload the Data in Pseudo-Mixed Mode
	Step 7: Load the Adabas File(s)
	Step 8: Re-Establish Logical Relationships

	Reorganization with ADL Utilities (Normal Mode)
	Step 1: Create an ADL Unload PSB
	Step 2: Unload the Data in Normal Mode
	Step 3: Load the Adabas File(s)
	Step 4: Re-Establish Logical Relationships

	Reorganization with Adabas Utilities
	Step 1: Unload the Data
	Step 2: Convert the (Changed) Physical DBD
	Step 3: Generate an User Exit 6
	Step 4: Load the Data

	Reorganization with User-written Programs
	Change of DL/I Segment Definitions
	Adding a new Segment Type
	Deleting a Segment Type
	Moving a Segment Type
	Increasing the Segment Length

	Change of DL/I Field Definitions
	Adding Key Fields and Logical Relationships

	Change of the Data Layout
	Changing the Length of a Data Field
	Changing the Length of a Sequence Field
	Adding and Deleting Data Fields
	Changing the Data Position
	Examples
	Increase the length of a field
	Adding a new field
	Move fields

	Re-establishment of the Hierarchical Sequence
	Change of DL/I PSB Definitions
	Change of the ADL Structure
	Splitting a DBD

	Change of Adabas DBIDs and File Numbers
	Examples

	Change of the Adabas File Layout
	Changing Adabas Group Definitions
	Changing Adabas Field Definitions
	You must not alter
	You can alter
	You can add

	14 Performance Considerations
	Introduction
	Data Processing and Pointers
	Initial Load and Reload the Database
	Using the Adabas Multifetch Feature
	Summary

	Insert and Delete
	Splitting a DBD
	Field Definitions
	Enqueue Logic
	CICS/Batch Communication
	Application Program and DB Design
	Examples

	15 Recovery and Restart Procedures
	Introduction
	Extensions and Restrictions
	Adabas User Types
	Normal Batch Programs
	With "STA"
	With "DLI", or "IMS"

	SDB, BMP (z/OS) or MPS (z/VSE) Programs
	CICS or IMS/TP Message Region

	Automatic ET Calls Issued by ADL
	Restart/Recovery Logic under ADL
	Normal Batch Programs
	With "STA"
	With "DLI", or "IMS"

	SDB, BMP (z/OS) or MPS (z/VSE) Programs
	CICS
	IMS/TP Message Region

	ADL Actions for Basic and Symbolic Checkpoints
	Normal Batch and SDB/BMP/MPS Programs
	CICS and IMS/TP

	How to Restart a Batch Program

	16 Appendix A - DAZZLER Test Stream
	17 Appendix B - z/OS Dataset Usage
	18 Appendix C - z/VSE Dataset Usage

