
LOAD: Load a File

This chapter covers the following topics:

Essential Parameters

Optional Parameters and Subparameters

Examples

1

LOAD: Load a File LOAD: Load a File

LOAD Data and Space Requirements

Loading Expanded Files

Loading Multiclient Files

Essential Parameters
DSSIZE: Extent Size for Data Storage

DSSIZE is the count of blocks or cylinders to be assigned to the file’s Data Storage logical extent.
This value must be specified. Block values must be followed by "B" (for example, 5000B).

The number can be taken directly from the Space Requirements report produced by the ADACMP
utility. If the specified extent size exceeds the largest free size, ADALOD allocates as many file
extents as necessary (up to a total of 5) to satisfy the request.

If a small number of records is being loaded now and a larger number of records is to be added later,
the ADACMP report value should be increased in proportion to the total records to be added;
otherwise, the space allocation for Data Storage (the original and four additional extents) may not be
large enough to accommodate the records to be added. The file must then be unloaded and reloaded
(or reordered) to increase the Data Storage space allocation. For more information, see the section
LOAD File Space Allocation in the LOAD Data and Space Requirements section.

FILE: File Number, File Type

FILE specifies the Adabas file number and file type to be assigned to the file.

The number specified must not be currently assigned to another file in the database, unless that file
was first deleted using the KEEPFDT parameter (see ADADBS DELETE function). The number
must not be greater than the maximum file number defined for the database; for a checkpoint,
security, or system file, the number must be 255 or lower (a trigger file can have a two-byte file
number). File numbers may be assigned in any sequence.

The file type is used to indicate that the file is an Adabas system file. One of the following keywords
may be specified:

CHECKPOINT Adabas checkpoint file

SECURITY Adabas security file

SYSFILE Adabas system file

TRIGGER Adabas trigger file

Notes:

1. An existing checkpoint system file created using the ADADEF utility cannot be overwritten.
2. The security system file is required if Adabas Security is to be used.
3. In an Adabas Transaction Manager (ATM) database, SYSFILE numbers 5 and 6 are reserved

for the ATM nucleus. For Adabas version 7.1, these file numbers cannot be changed. The file
numbers will become more flexible in subsequent versions of Adabas.

2

Essential ParametersLOAD: Load a File

4. Use the following parameters to load the ATM system files on an ATM database (ADARUN
DTP=TM): ADALOD LOAD FILE=5,SYSFILE , ADALOD LOAD FILE=6,SYSFILE

5. If CHECKPOINT, SECURITY, or TRIGGER is specified, the contents of DD/EBAND are
ignored.

6. CHECKPOINT, SECURITY, or SYSFILE files can be deleted only by the ADADBS DELETE
function running as the only Adabas user; deleting a system file terminates Adabas when deletion is
completed.

7. Adabas allows a maximum of eight (8) system files.
MAXISN: Maximum ISN Count

The MAXISN parameter is required. Specify the maximum number of ISN mappings in the address
converter (AC). ADALOD determines the number of ISN mappings to allow space for in the AC
using the calculation:

(MAXISN - MINISN) + 1

There is no default value.

The MAXISN and MINISN values you specify are used to calculate the initial number of AC blocks
to allocate during the ADALOD execution. Depending on the size of RABNs in the database (which
is determined by the ADADEF DEFINE parameter RABNSIZE), each RABN requires 3 or 4 bytes
in the AC. In addition, the block size of each AC block depends upon the device type of the
Associator. So the number of AC blocks that should be allocated is affected by the number of ISN
mappings allowed, the RABN size, and the block size of the Associator device.

To calculate the number of AC blocks that must be allocated, ADALOD uses the following
calculation and rounds up to the nearest integer:

(#-of-ISN-mappings X RABN-size)/ device-blocksize

For example, assume the RABN size for the database is set to "3" (the ADADEF DEFINE
RABNSIZE parameter) and that the block size of the device on which the Associator resides is 2544
bytes. If MAXISN=1000 and MINISN=1, ADALOD calculates that the actual number of ISNs to be
mapped as (1000 -1)+1 (MAXISN – MINISN +1), or 1000. It then multiplies 1000 by three (the
RABN size), to get 3000 bytes. Finally, it divides 3000 by 2544 (the block size of the device),
resulting in a value of roughly 1.18, which it rounds up to two. So ADALOD determines that two AC
blocks should be allocated for this ADALOD run. (Note that on the corresponding ADAREP report,
the "MAX-ISN Expected" value would not be listed as 1000; instead it is listed as the actual number
of ISNs that would fit into two AC blocks – in this case about 1694.)

If more than (MAXISN - MINISN) + 1 records are to be loaded, and if NOACEXTENSION is not
specified, ADALOD increases the MAXISN value and allocates an additional AC extent.

MAXISN does not specify the maximum number of records that can be loaded into the file. The
maximum number of records that Adabas permits in a file depends on the ISNSIZE parameter, which
specifies whether ISNs in the file are 3 bytes or 4 bytes long. (If ISNSIZE=3, Adabas permits up to
16,777,215 records. If ISNSIZE=4, Adabas permits up to 4,294,967,294 records.)

3

LOAD: Load a FileEssential Parameters

SORTSIZE: Sort Size

SORTSIZE specifies the space available for the sort dataset or datasets R1/2 (SORTR2 is not
supported under VSE). The value can be either cylinders (a numeric value only) or blocks (a numeric
value followed by "B"). If blocks are specified, they should be equivalent to a full number of
cylinders. The SORTSIZE parameter must be specified. Refer to the Adabas DBA Reference
documentation for more information on estimating the sort space.

TEMPSIZE: Temporary Storage Size

TEMPSIZE specifies the size of the temp dataset for the file. The Temp size equals the total of
TEMP space required for each descriptor in the file; see the section LOAD File Space Allocation in
the LOAD Data and Space Requirements section for more information. The size can be either in
cylinders or blocks (followed by "B").

Optional Parameters and Subparameters
ACRABN/ DSRABN/ NIRABN/ UIRABN: Starting RABN

Causes space allocation for the address converter (ACRABN), Data Storage (DSRABN), the normal
index (NIRABN), or the upper index (UIRABN) to begin at the specified RABN.

ADAMFILE: File to Be Loaded with ADAM Option

ADAMFILE specifies the file is to be loaded using the ADAM option.

If this parameter is specified, the Data Storage RABN for each input record is calculated using a
randomizing algorithm, the result of which is based on the value of the ADAM descriptor in each
record. See the ADAMER utility description for additional information about using the ADAM
option. If ADAMFILE is specified, ADAMDE must also be specified.

ADAMDE: ADAM Key

ADAMDE specifies the field to be used as the ADAM key.

The ADAM descriptor must be defined in the field definition table (FDT). The descriptor must have
been defined with the UQ option, and cannot

be a sub-, super-, hyper-, collation, or phonetic descriptor;

be a multiple-value field;

be a field within a periodic group;

be variable length;

specify the null suppression (NU) option.

If the ISN of the record is to be used as the ADAM key, ADAMDE=ISN must be specified.

This parameter must be specified when the ADAM option has been selected for the file being loaded
with the ADAMFILE parameter.

4

Optional Parameters and SubparametersLOAD: Load a File

ADAMOFLOW: Overflow Area Size for ADAM File

ADAMOFLOW is the size of the Data Storage area to be used for ADAM file overflow. The
ADAMOFLOW value applies only if the ADAM option has been selected for the file being loaded
(see ADAMFILE parameter).

ADALOD will choose a prime number which is less than DSSIZE minus ADAMOFLOW (in
blocks). This prime number is used to compute the Data Storage RABN for each record. If a record
does not fit into the block with the computed RABN, it is written to the next free RABN in the
overflow area.

ADAMPARM: Bit Truncation for ADAM File

ADAMPARM specifies the number of bits to be truncated from the ADAM descriptor value before it
is used as input to the ADAM randomizing algorithm. A value in the range 1-255 may be specified.
If this parameter is omitted, a value of 0 bits (no truncation) will be used.

This parameter achieves a type of record "clustering" with nearly equal ADAM keys. ADAMPARM
can be specified only when the ADAMFILE parameter has also been specified.

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained according
to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails, the
utility retries the allocation without the placement parameter.

If insufficient space can be obtained according to the placement parameters DSRABN, NIRABN, or
UIRABN, only the first extent will be made there and the rest (until the fifth extent) will be made
elsewhere. But if the placement parameter ACRABN is used with ALLOCATION=FORCE, the
complete space has to be available there; otherwise, the utility terminates with an error.

ANCHOR: Expanded Component/ Anchor File

ANCHOR defines the base (anchor) file for either an existing or a new expanded file. If the file
defined by ANCHOR is the same as that defined by the FILE parameter, the loaded file becomes the
physical base (anchor) file for a new expanded logical file. Otherwise, the FILE file becomes a new
component of the expanded file defined by ANCHOR.

If ANCHOR specifies a file that is not part of an expanded file, the LOAD operation defines this file
and the file specified by the FILE parameter as a new expanded file. It also sets the
NOACEXTENSION indicator for the file specified by ANCHOR.

If ANCHOR specifies the anchor file of an already existing expanded file, the LOAD operation adds
the file specified by FILE to the expanded file.

Note:
When loading a new file to an existing expanded file, you must have exclusive update use of the
anchor file as well as the file being added. This can be achieved by locking the anchor file for utility

5

LOAD: Load a FileOptional Parameters and Subparameters

use.

Both the file specified by ANCHOR and the file specified by FILE must have the same field
definition table (FDT) structure. The maximum record length (MAXRECL parameter) and any file
security definitions must also be the same.

If ANCHOR is specified, the MINISN and NOACEXTENSION parameters must also be specified.
Coupled files or multiclient files cannot be part of expanded files.

ASSOPFAC: Associator Padding Factor

ASSOPFAC defines the padding factor to be used for each Associator block. If not specified, the
default padding factor is 10.

The value specified represents the percentage of each Associator block (padding area) that is not to
be used during the loading process. The padding area is reserved for use when additional entries must
be added to the block for new descriptor values or new ISNs for existing values, thereby avoiding the
overhead caused by relocating overflow entries into another block.

A value in the range 1-90 may be specified. The number of bytes contained in an Associator block,
minus the number of bytes reserved for padding, must be larger than the largest descriptor value
contained in the file, plus 10 bytes.

A small padding factor (1-10) should be specified if little or no descriptor updating is planned. A
larger padding factor (10-50) should be specified if a large amount of updating including addition of
new descriptor values (or new ISNs) is planned.

ASSOVOLUME: Associator Extent Volume

Note:
The value for ASSOVOLUME must be enclosed in apostrophes.

ASSOVOLUME specifies the volume on which the file’s Associator space (that is, the AC, NI, and
UI extents) is to be allocated. If the requested number of blocks cannot be found on the specified
volume, ADALOD retries the allocation while disregarding the ASSOVOLUME parameter.

Note:
If there are five or more blocks of unused ASSO space on the specified volume, ADALOD allocates
these blocks; if this is not enough space, it ends with ERROR-060. If there are no free blocks
remaining on the specified volume, ADALOD tries to allocate space on another volume.

If ACRABN, UIRABN, or NIRABN is specified, ADALOD ignores the ASSOVOLUME value
when allocating the corresponding extent type. If ASSOVOLUME is not specified, the file’s
Associator space is allocated according to ADALOD’s default allocation rules.

DATAFRM: Overwrite ADAM Data Storage

DATAFRM controls overwriting of an ADAM file’s Data Storage during loading. DATAFRM=YES
(the default) forces ADALOD to reformat the Data Storage area when the file is loaded;
DATAFRM=NO prevents reformatting, and is recommended when loading relatively few records
because the load operation may run significantly faster. Specifying NO, however, assumes that the
Data Storage area was previously formatted with the ADAFRM utility specifying FROMRABN.

6

Optional Parameters and SubparametersLOAD: Load a File

Warning:
Specify DATAFRM=NO with care. If the primary Data Storage
area was incorrectly formatted, later file processing could cause
errors and unpredictable results.

DATAPFAC: Data Storage Padding Factor

DATAPFAC is the padding factor to be used for each Data Storage physical block. A percentage
value in the range 1-90 may be specified. If not specified here, the default padding factor is 10.

A small padding factor (1-10) should be specified if little or no record expansion is expected. A
larger padding factor (10-50) should be specified if a large amount of updating is planned that will
expand the logical records.

The percentage value specified represents the portion of each Data Storage block (padding area) to be
reserved during the loading process for later record expansion. The padding area is used when any
given logical record within the block requires additional space as the result of record updating,
thereby avoiding the overhead that would be needed to relocate the record to another block.

Since records loaded into a file can be different lengths, the padding factor cannot be exactly the
percentage specified in each block. Adabas balances the size of the padding area for the different
record lengths to the extent that at least 50 bytes remain in a block.

Example:

A blocksize is 1000 bytes; the padding factor is 10%. The space available for loading records
(blocksize - padding-area) is therefore 900 bytes.

After loading some records, 800 bytes of the block have been used. The next record is 170 bytes
long. This record cannot be loaded into the current block because less the 50 bytes would remain in
the block after the record was loaded. Therefore, the record is loaded into the next block.

The current block remains filled to 800 bytes. The difference between 800 and 900 bytes (that is,
-100 bytes) is used for balancing.

Suppose the next record had been 150 bytes instead of 170 bytes, and assume that the cumulative
balancing value at that point in time is a negative number of bytes. The 150-byte record would be
loaded because 50 bytes would remain in the block after the record was loaded (1000 - 950).

However, 50 bytes of the padding area would have been used (900 - 950) leaving +50 bytes for
balancing.

For files loaded with the ADAM option, a new record is loaded into its calculated Data Storage block
if space is available in the block (including the padding area). Records that cannot be stored in their
calculated block are stored in another block (in this case, the padding area is not used).

DATAVOLUME: Data Storage Extent Volume

Note:
The value for DATAVOLUME must be enclosed in apostrophes.

7

LOAD: Load a FileOptional Parameters and Subparameters

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) is to be
allocated. If the number of blocks requested with DSSIZE cannot be found on the specified volume,
ADALOD retries the allocation while disregarding the DATAVOLUME value.

If DSRABN is specified, DATAVOLUME is ignored for the related file. If DATAVOLUME is not
specified, the Data Storage space is allocated according to ADALOD’s default allocation rules.

DSDEV: Data Storage Device Type

DSDEV specifies the device type on which the file’s Data Storage is to be loaded. There is no default
value; if DSDEV is not specified, an arbitrary device type is used.

DSREUSE: Data Storage Reusage

DSREUSE indicates whether Data Storage space which becomes available is to be reused. The
default is YES.

ETID: Multiclient File Owner ID

The ETID parameter assigns a new owner ID to all records being loaded into a multiclient file. It
specifies the user ID identifying the owner of the records being loaded. The owner ID assigned to the
records is taken from the user profile of the specified user ID.

The ETID parameter must be specified if the file is to be loaded as a multiclient file (see the
LOWNERID parameter discussion) and the input file contains no owner IDs; that is, the input file
was not unloaded from a multiclient source file.

ETID is optional if the input file was unloaded from a multiclient source file. In this case, the loaded
records keep their original owner IDs.

The ETID parameter must not be specified when loading a non-multiclient file.

Note:
If the ETID parameter is used, the ADALOD utility requires an active nucleus. The nucleus will
translate the ETID value into the internal owner ID value.

IGNFDT: Ignore Old FDT

When a file is deleted using the ADADBS DELETE function with the KEEPFDT parameter, the
field definition table (FDT) remains in the Associator. When the file is again reloaded and IGNFDT
is not specified, ADALOD compares the file’s old FDT with the new one (security information is not
compared). If both FDTs are identical, ADALOD loads the file and replaces the old FDT with the
new FDT. If the FDTs are not identical, the old FDT is kept and the ADALOD operation ends with
an error message.

Specifying the IGNFDT parameter causes ADALOD to ignore any existing (old) FDT for the file; no
comparison is made. The new FDT replaces the old FDT, and ADALOD loads the file.

INDEXCOMPRESSION: Compress File Index

INDEXCOMPRESSION indicates whether the index of the file is loaded in compressed or
uncompressed form. A compressed index usually requires less index space and improves the
efficiency of index operations in the Adabas nucleus.

8

Optional Parameters and SubparametersLOAD: Load a File

If INDEXCOMPRESSION is not specified, ADALOD obtains the default value from the sequential
input file. If the input file was created using

ADACMP, the default value is NO.

ADAULD, the value of the file at the time of the unload is taken as the default.

ISNREUSE: ISN Reusage

ISNREUSE indicates whether or not an ISN freed as the result of deleting records may be reassigned
to a new record. The default is NO.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE indicates whether ISNs in the file are 3 or 4 bytes long. The default is 3 bytes.

LIP: ISN Buffer Pool Size

LIP specifies the size of the ISN pool for containing ISNs and their assigned Data Storage RABNs.
The value may be specified in bytes as a numeric value ("2048") or in kilobytes as a value followed
by "K" ("2K"). The default for LIP is 2000 bytes.

LIP can be used to decrease the number of address converter I/Os during loading when the
USERISN=YES and the user-supplied ISNs are unsorted. Optimum performance is obtained if LIP
specifies a buffer size large enough to hold all ISNs to be processed.

The length of one input record is ISNSIZE + RABNSIZE + 1. Thus the entry length is at least 7 bytes
(the ISNSIZE of the file is 3 and the RABNSIZE of the database is 3) and at most 9 bytes (the
ISNSIZE is 4 and the RABNSIZE is 4).

LOWNERID: Internal Owner ID Length for Multiclient File

The LOWNERID parameter specifies the length of the internal owner ID values assigned to each
record for multiclient files. Valid length values are 0-8. If the LOWNERID parameter is not
specified, its default value is the length of the owner IDs in the input file.

The specified or default value of the LOWNERID parameter determine whether a file is to be loaded
as a multiclient or a non-multiclient file. If the effective LOWNERID value is zero, the file is loaded
as a normal, non-multiclient file; if it is nonzero, the file is loaded as a multiclient file.

In combination with the ETID parameter, the LOWNERID parameter can be used to

reload a non-multiclient file as a multiclient file;

increase/decrease the length of the owner ID for the file; or

remove the owner ID from the records of a file.

The following table shows the possible combinations of the LOWNERID parameter and the owner
ID length in the input file.

9

LOAD: Load a FileOptional Parameters and Subparameters

LOWNERID
Parameter
Setting

Owner ID Length Value in Input File

0 2

0 Keep as a non-multiclient
file

Convert to a non-multiclient
file

1 Set up multiclient file
(ETID)

Decrease owner ID length

2 Set up multiclient file
(ETID)

Keep owner ID length

3 Set up multiclient file
(ETID)

Increase owner ID length

(not specified) Keep as a non-multiclient
file

Keep as a multiclient file

When loading a multiclient file (the specified or default value of LOWNERID is non-zero), the ETID
parameter can be specified to assign a new owner ID to all records being loaded. If the input file
already contains owner IDs and ETID is omitted, all records keep their original owner IDs.

Where the table indicates the ETID parameter in the "Owner ID Length...0" column, the ETID
parameter is mandatory, as there are no owner IDs given in the input file.

LWP: Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can be
specified in bytes or kilobytes followed by a "K". If no value is specified, the default is 1048576
bytes (or 1024K); however, to shorten ADALOD run time for files with very long descriptors or an
unusually large number of descriptors, set LWP to a higher value. To avoid problems with the sort
dataset, a smaller LWP value should be specified when loading relatively small files.

The minimum work pool size depends on the sort dataset’s device type:

Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes

2000 106496 104K

2314 090112 88K

3375 131072 128K

3380 139264 136K

3390 159744 156K

MAXDS/ MAXNI/ MAXUI: Maximum Secondary Allocation

Specifies the maximum number of blocks per secondary extent allocation for Data Storage
(MAXDS), normal index (MAXNI), or upper index (MAXUI). The value specified must be in blocks
(for example, MAXNI=8000B) and cannot be more than 65535B. If no limit is specified, no limit is
assumed (the default).

10

Optional Parameters and SubparametersLOAD: Load a File

MAXRECL: Maximum Compressed Record Length

MAXRECL specifies the maximum compressed record length permitted for the file. The default is
the maximum length supported by the device type being used.

MINISN: Lowest ISN to be Allocated

This parameter specifies the lowest ISN that can be assigned in the file. The default is 1.

The main purpose of MINISN is to assign the low end of the ISN range for a component file of an
Adabas expanded file. MINISN is required when ANCHOR is specified for an expanded file.

Use MINISN to avoid wasting Associator space in files where all records are assigned ISNs
significantly greater than 1. For example, a savings bank uses account numbers as ISN numbers, and
the lowest account number is 1,000,001. Specifying MINISN = 1 000 001 stops Adabas from
allocating address converter space for ISNs 1-999 999, which would be unused. For more
information, see the description of the MAXISN parameter.

MIXDSDEV: Data Storage Mixed Device Types

MIXDSDEV allows the allocation of secondary Data Storage extents on different device types, and
therefore with different block lengths. If MIXDSDEV is not specified (the default), Data Storage
extents for the specified file must all be on the same device type.

NAME: File Name

NAME is the name to be assigned to the file. This name appears, along with data pertaining to this
file, on the Database Status Report produced by the ADAREP utility. The maximum number of
characters permitted is 16. The default name assigned is TESTFILE.

If the file name contains special characters or embedded blanks, the name must be enclosed within
apostrophes (’...’), which themselves must be doubled if one is included in the name; for example,
’JAN’’S FILE’.

NISIZE: Normal Index Size

NISIZE specifies the number of blocks or cylinders to be assigned to the normal index. A block value
must be followed by "B" (for example, 5500B).

If the specified extent size exceeds the largest free size, ADALOD allocates as many file extents as
necessary (up to a total of 5) to satisfy the request.

If the NISIZE parameter is omitted:

ADALOD determines the space allocation for the normal index based on a sampling of records
taken from the input dataset. Since this calculation requires additional CPU time and I/O
operations, Software AG recommends setting this parameter if the size is known so that no
estimation is performed.

and INDEXCOMPRESSION=YES is set, the index size estimation made by ADALOD does not
consider the index compression as it has no knowledge of the rate of compression to be
expected. ADALOD may thus allocate a larger index than necessary.

11

LOAD: Load a FileOptional Parameters and Subparameters

If a small number of records is being loaded and a larger number of records is to be added later, the
NISIZE parameter should be set to increase the Normal Index to accommodate the total record
amount. For more information, see the section LOAD File Space Allocation in the LOAD Data and
Space Requirements section.

NOACEXTENSION: Limit Address Converter Extents

If NOACEXTENSION is specified, the MAXISN defined for this file cannot be increased in the
future. No additional address converter (AC) extents will be created. NOACEXTENSION applies
mainly to component files comprising Adabas expanded files; if ANCHOR is specified,
NOACEXTENSION must also be specified.

NOUSERABEND: Termination without Abend

When an error is encountered while the function is running, the utility prints an error message and
terminates with user abend 34 (with a dump) or user abend 35 (without a dump).

If NOUSERABEND is specified, the utility will not abend after printing the error message. Instead,
the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

NUMREC: Limit Number of Records to Be Loaded

NUMREC specifies the limit on the number of records to be loaded. If NUMREC is specified,
ADALOD stops after processing the specified number of records (unless an end-of-file condition on
the input dataset ends ADALOD operation before that time). This option is most often used to create
a subset of a file for test purposes. If this parameter is omitted, all input records are processed.

If the input dataset contains more records than specified by NUMREC, ADALOD processes the
number of records specified by NUMREC and then ends with condition code 4.

PGMREFRESH: Program-Generated File Refresh

PGMREFRESH specifies whether a user program is allowed to perform a refresh operation on the
file being loaded. If PGMREFRESH is specified, a refresh can be made using an E1 command, or an
equivalent call to the nucleus.

RESTART: Restart Interrupted ADALOD Execution

RESTART forces an interrupted ADALOD run to be restarted, beginning with the last "restart point"
reached before the interruption. The "restart point" is the latest point of execution that can be restored
from the temp dataset.

If ADALOD is interrupted by a defined error condition, ADALOD issues a message indicating
whether or not a restart is possible.

When restarting the ADALOD operation, the following parameters may be changed:

TEMPSIZE can be increased to make the temp dataset larger. Note, however, that the temp
dataset content contains information necessary for the restart operation, and therefore must not
be changed ;

12

Optional Parameters and SubparametersLOAD: Load a File

The SORTSIZE and SORTDEV parameters and the sort dataset can be changed.

No other parameters can be changed. The DDEBAND/EBAND and DDFILEA/FILEA datasets must
remain the same.

SKIPREC: Number of Records to Be Skipped

SKIPREC specifies the number of input records to be skipped before beginning load processing. The
default is 0 (no records are skipped).

SORTDEV: Sort Device Type

ADALOD uses the sort dataset to sort descriptor values. The SORTDEV parameter indicates the
device type to be used for this dataset. This parameter is required only if the device type to be used is
different from that specified by the ADARUN DEVICE parameter.

TEMPDEV: Temporary Storage Device Type

ADALOD uses the temp dataset to store intermediate data. The TEMPDEV parameter indicates the
device type to be used for this dataset. This parameter is required only if the device type to be used is
different from that specified by the ADARUN DEVICE parameter.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables.

UISIZE: Upper Index Size

UISIZE specifies the number of blocks or cylinders to be assigned to the upper index. A block value
must be followed by "B" (for example, 5500B).

If the specified extent size exceeds the largest free size, ADALOD allocates as many file extents as
necessary (up to a total of 5) to satisfy the request.

If the UISIZE parameter is omitted:

ADALOD determines the space allocation for the upper index based on a sampling of records
taken from the input dataset. Since this calculation requires additional CPU time and I/O
operations, Software AG recommends setting this parameter if the size is known so that no
estimation is performed.

and INDEXCOMPRESSION=YES is set, the index size estimation made by ADALOD does not
consider the index compression as it has no knowledge of the rate of compression to be
expected. ADALOD may thus allocate a larger index than necessary.

If a small number of records is being loaded and a larger number of records are to be added later, the
UISIZE parameter should be set to increase the upper index to accommodate the total record amount.
For more information, see the section LOAD File Space Allocation in the LOAD Data and Space
Requirements section.

UQDE: Unique Descriptors

13

LOAD: Load a FileOptional Parameters and Subparameters

UQDE defines one or more descriptors as unique. Each descriptor specified must contain a different
value in each input record. If a non-unique value is detected during ADALOD processing, ADALOD
terminates with an error message.

If the unique descriptor (UQ) option was specified with the ADACMP utility, the UQDE parameter
here is not required.

Adabas prevents a descriptor defined with the unique descriptor (UQ) option from being updated
with an add or update command if the update would cause a duplicate value for the descriptor.

Note:
For Adabas expanded files, ADALOD can only detect unique descriptor violations within the
component file. If an identical value exists for a unique descriptor in one of the other component files,
ADALOD cannot detect it. You must therefore ensure that unique descriptor values remain unique
throughout an expanded file.

USERISN: User ISN Assignment

USERISN=YES indicates that the USERISN option for the loaded file is to be in effect, and that the
ISN for each new record is being supplied by the user in the input data. If USERISN=NO, Adabas
assigns the ISN for each new record.

If USERISN is not specified, a default setting is assumed that depends on the input file itself. If the
input file was created by ADACMP with the USERISN option or by ADAULD from a file having
the USERISN option, the default for ADALOD operation is USERISN=YES; otherwise, the default
is USERISN=NO. Specifying USERISN here overrides the existing default value.

Note:
Adabas 5.2 files initially loaded with the USERISN option do not require USERISN=YES to again
be specified when the files are reloaded; ADALOD assumes the default as described above.
However, Adabas 5.1 files initially loaded with the USERISN option must have USERISN=YES
specified whenever they are reloaded.

VERSION: Input Data Format

Originally, this parameter specified the Adabas version of the output (ADACMP) datasets to be
loaded into Adabas.

Because ADALOD determines the version of the sequential input dataset itself, this parameter is
ignored. It is available only for compatibility with old ADALOD jobs.

Examples
Example 1:

ADALOD LOAD FILE=6,MAXISN=20000,DSSIZE=20,ASSOPFAC=15,
ADALOD DATAPFAC=15,TEMPSIZE=20,SORTSIZE=10

14

ExamplesLOAD: Load a File

File 6 is to be loaded. The number of records initially permitted for the file is 20,000. 20 cylinders are to
be allocated for Data Storage. The Associator and Data Storage block padding factors are both 15 percent.
The temp and sort datasets are 20 and 10 cylinders, respectively.

Example 2:

ADALOD LOAD FILE=7,MAXISN=350000,ASSOPFAC=5,MINISN=100001
ADALOD DATAPFAC=15,DSSIZE=100,USERISN=YES
ADALOD TEMPSIZE=200,SORTSIZE=100

File 7 is to be loaded. The number of records initially allocated for the file is 250,000, and the minimum is
100,001. The Associator padding factor is 5 percent. The Data Storage padding factor is 15 percent. 100
cylinders are to be allocated for Data Storage. ISNs are contained in the input. The temp and sort datasets
are equal to 200 and 100 cylinders, respectively.

Example 3:

ADALOD LOAD FILE=8,ADAMFILE,ADAMDE=’AK’
ADALOD ADAMPARM=4,ADAMOFLOW=5,UQDE=’AK’,MINISN=1
ADALOD MAXISN=10000,DSSIZE=20,ASSOPFAC=5,DATAPFAC=5
ADALOD TEMPSIZE=10,SORTSIZE=5

File 8 is to be loaded as an ADAM file. Field AK is the ADAM key. 4 bits are to be truncated from each
value of AK before using the value to calculate the Data Storage RABN for the record. The size of the
ADAM overflow area is 5 cylinders. The field AK is defined as a unique descriptor. The maximum
number of records initially allocated for the file is 10,000. 20 cylinders are to be allocated to Data Storage,
from which the five ADAM overflow cylinders are taken. The padding factor for both the Associator and
Data Storage is 5 percent. The sizes of the temp and sort datasets are 10 and 5 cylinders, respectively.

Example 4:

ADALOD LOAD FILE=9,NAME=INVENTORY,MAXISN=5000
ADALOD DSSIZE=2000B,DSRABN=30629,NISIZE=300B,UISIZE=50B
ADALOD MAXDS=1000B,MAXNI=50B,MAXUI=1B
ADALOD INDEXCOMPRESSION=YES
ADALOD ASSOPFAC=20,DATAPFAC=10
ADALOD TEMPSIZE=10,SORTSIZE=5,UQDE=’U1,U2’

File 9 is to be loaded. The text name for the file is INVENTORY. The initial space allocation for the file
is for 5,000 records. 2,000 blocks are to be allocated for Data Storage, beginning with RABN 30,629. 300
blocks are to be allocated for the normal index. 50 blocks are to be allocated to the upper index. The
maximum allocations per secondary extent for Data Storage, normal index and upper index are 1000
blocks, 50 blocks, and 1 block respectively. The index is to be compressed. The padding factor for the
Associator is 20 percent. The padding factor for Data Storage is 10 percent. The sizes of the temp and sort
datasets are 10 and 5 cylinders respectively. Descriptors U1 and U2 are defined as unique descriptors.

15

LOAD: Load a FileExamples

Example 5:

ADALOD LOAD FILE=2,SECURITY
ADALOD DSSIZE=20B,MAXISN=2000,NISIZE=20B,UISIZE=5B
ADALOD TEMPSIZE=10,SORTSIZE=5

File 2 is to be loaded as an Adabas security file. The DDEBAND contents are ignored. Space is allocated
for Data Storage (20 blocks), for the address converter (2000 ISNs), the normal index (20 blocks), and the
upper index (5 blocks). The temp size is 10 cylinders, and the sort area size is 5 cylinders.

LOAD Data and Space Requirements
The following general information describes data requirements for LOAD operation, and how ADALOD
LOAD allocates space. For more information about space allocation, refer to the Adabas DBA Reference
documentation.

Input Data for LOAD Operations

Compressed data records produced by the ADACMP or ADAULD utility may be used as input to
ADALOD. If output from an ADAULD utility run made with the MODE=SHORT option is used as
ADALOD input, any descriptor information will be removed from the FDT, and no index will exist
for the file.

LOAD File Space Allocation

ADALOD allocates space for the normal index (NI), upper index (UI), address converter (AC), Data
Storage, and the temp area for the file being loaded.

Index Space Allocation

If the NISIZE and/or the UISIZE parameters are supplied, allocation is made using the user-supplied
values. If these parameters are not supplied, ADALOD allocates space for these indexes based on a
sampling of the values present for each descriptor.

Descriptor values are sampled as follows:

1. ADALOD reads the compressed input, stores the records into Data Storage, extracts each value
for each descriptor and writes these values to the temp dataset. Each temp block contains values
for one descriptor only. At the end of this processing phase, the following information is
present:

number of values for each descriptor

number of bytes required for each descriptor

temp RABNs used for each descriptor

For unique descriptors, the NI space requirement is equal to the temp size used. For non-unique
descriptors, the number of duplicate values must be determined. Each duplicate value’s space
requirement must be estimated and then subtracted from the number of bytes required. The
result is the NI size required for the duplicate descriptor.

16

LOAD Data and Space RequirementsLOAD: Load a File

The number of duplicate values is determined by reading up to 16 temp blocks containing
values for a single descriptor. These values are sorted to determine how many are duplicates. The resulting
count of duplicate values is multiplied by the factor:

The result is the estimated number of identical descriptor values present in the entire file for this
descriptor. This space requirement is subtracted from the temp size estimate.

2. The upper index (UI) size is computed after all normal index (NI) and temp sizes are available.

3. The NI and UI sizes are each multiplied by the result of:

For example, if 10000 records require 10 blocks of UI space and 500 blocks of NI space with
MINISN = 1 (the default), the specification of MAXISN = 60000 causes 60 UI blocks and 3000 NI blocks
to be allocated:

However, this calculation is not made if USERISN=YES is in effect.

By setting MAXISN appropriately, it is therefore possible to increase the size allocation for files
in which a small number of records are being loaded and for which a much larger number of records are to
be added subsequently.

If the NISIZE and UISIZE parameters have been specified, the space allocation is made using
unassigned Associator RABNs. If the NIRABN and/or the UIRABN parameters are supplied, space
allocation is made at the user-specified RABN.

Address Converter Space Allocation

The address converter allocation is based on the MAXISN and MINISN values for the file.
ADALOD allocates the blocks needed to contain the number of bytes calculated by the formula:

RABNSIZE x((MAXISN - MINISN)+ 1)

17

LOAD: Load a FileLOAD Data and Space Requirements

If the ACRABN parameter has been specified, ADALOD allocates the address converter beginning
with the user-specified block number; otherwise, it uses unassigned Associator RABNs.

Data Storage Space Allocation

Data Storage allocation is based upon the value specified with the DSSIZE parameter. If the
DSRABN parameter has been specified, the allocation is made beginning with the user-specified block
number; otherwise, unassigned Data Storage RABNs are used.

If there are different device types in the database, Data Storage allocation can be forced on a
specified device type by specifying DSDEV. The MIXDSDEV parameter permits Data Storage allocation
on different device types, assuming the device types can store records with the length specified by
MAXRECL.

Temp Area Space Allocation

For each descriptor, ADALOD generates a list of the values and ISNs of the records containing the
value, and writes this information to the temp dataset. The space required for descriptor information is
equal to the sum of the space required for each descriptor. The space needed for each descriptor can be
calculated using the following formula:

SP = N x NPE x NMU x (L + 4)

where

SP is the space required for the descriptor (in bytes).

N is the number of records being loaded.

NPE is the average number of occurrences, if the descriptor is
contained in a periodic group. If not in a periodic group, NPE
equals 1.

NMU is the average number of occurrences, if the descriptor is a
multiple-value field. If not a multiple-value field, NMU equals 1.

L is the average length (after compression) of each value for the
descriptor.

Example:

A file containing 20,000 records is being loaded. The file contains two descriptors (AA and CC).
Descriptor AA has 1 value in each record and the average compressed value length is 3 bytes.
Descriptor CC has an average of 10 values in each record and the average compressed value length is
equal to 4 bytes.

Field Definitions:

01,AA,5,U,DE
01,CC,12,A,DE,MU

18

LOAD Data and Space RequirementsLOAD: Load a File

Space requirement for AA.

SP = 20,000 • 1 • (3 + 4)
SP = 140,000 bytes

Space requirement for CC.

SP = 20,000 • 10 • (4 + 4)
SP = 1,600,000 bytes

Total space requirement = 1,740,000 bytes .

The number of cylinders required may be calculated by dividing the number of blocks required by
the number of blocks per cylinder.

For a model 3380 device type:

Associator Updating by LOAD

ADALOD then sorts the descriptor values collected in the input phase and enters the sorted values
into the normal index and upper index. If the allocated index space is not enough for the normal
index or upper index, ADALOD allocates up to four additional extents.

Each additional extent allocated is equal to about 25 percent of the total current space allocated to the
index. If insufficient space is available for the additional extent or the maximum of five extents has
already been allocated, ADALOD terminates with an error message.

Loading Expanded Files
An expanded file is made up of a series of normal Adabas physical files. The number sequence of the files
within the expanded file is arbitrary. The first file may be file 53; the second, file 127; the third, 13, and so
on. ISNs assigned to each component file must be unique; no two files can contain the same ISN. The ISN
range over all files must be in ascending order; however, there can be gaps in the sequence.

The total number of records in an expanded-file chain cannot exceed 4,294,967,294.

The sequence of physical component files that build an expanded logical file is defined by the ANCHOR
parameter, which defines the first component file (anchor) in the sequence. The anchor file is loaded just
as any other Adabas file; each additional component file must be loaded with the ANCHOR parameter

19

LOAD: Load a FileLoading Expanded Files

referring to the anchor file. ADALOD inserts the new physical file into the existing expanded file chain
according to the range of ISNs assigned to the added file. Each added component file must also specify
the NOACEXTENSION parameter when being loaded to prevent Adabas from assigning new ISNs to a
component file.

ADALOD processes only the anchor file and the single physical (component) files that compose an
expanded file, and not the complete expanded file itself.

Loading Data into an Expanded File

To load data (for example, several million records) into different physical files, the input data must first be
divided into several DDEBAND/EBAND input files. The DDEBAND/EBAND file data may be mapped
into the component files using the SKIPREC and NUMREC parameters; however, one-to-one mapping
without skipping or limits is recommended. This avoids the need to read records that will not be used
later, and thus improves performance.

Examples:

The following examples, which show parts of one or more jobs for loading an expanded file, illustrate the
mapping of DDEBAND/EBAND file data into component files:

//DDEBAND DD DSN=LOAD.DATA.FILE1,...
//DDKARTE DD *
ADALOD LOAD FILE=40,NAME=’XXX_Part1’
ADALOD MINISN=1,MAXISN=10000000,NOACEXTENSION
ADALOD NUMREC=10000000
ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...
 .
 .

//DDEBAND DD DSN=LOAD.DATA.FILE1,...
//DDKARTE DD *
ADALOD LOAD FILE=41,NAME=’XXX_Part2’,ANCHOR=40
ADALOD MINISN=10000001,MAXISN=20000000,NOACEXTENSION
ADALOD NUMREC=10000000,SKIPREC=10000000
ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...
 .
 .

//DDEBAND DD DSN=LOAD.DATA.FILE2,...
//DDKARTE DD *
ADALOD LOAD FILE=35,NAME=’XXX_Part2’,ANCHOR=40
ADALOD MINISN=20000001,MAXISN=30000000,NOACEXTENSION
ADALOD NUMREC=10000000
ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...
 .
 .

Loading Multiclient Files
Note:
A multiclient file cannot be made part of an expanded file, and an expanded file cannot be converted to a
multiclient file.

20

Loading Multiclient FilesLOAD: Load a File

A multiclient file stores records for multiple users or groups of users. It divides the physical file into
multiple logical files by attaching an owner ID to each record. Each user can access only the subset of
records that is associated with the user’s owner ID.

For any installed external security package such as RACF or CA-Top Secret, a user is still identified by
either Natural ETID or LOGON ID. The owner ID is assigned to a user ID. A user ID can have only one
owner ID, but an owner ID can belong to more than one user.

The ADALOD LOAD function uses the LOWNERID and ETID parameters to support the migration of an
application from a standard to a multiclient environment. The parameters work together to define owner
IDs and determine whether a file is a multiclient file.

LOWNERID specifies the length of the internal owner ID values assigned to each record for multiclient
files. In combination with the ETID parameter, the LOWNERID parameter can be used to reload a
standard file as a multiclient file, change the length of the owner ID for the file, or remove the owner ID
from the records of a file.

If the LOWNERID parameter is not specified, the length of the owner ID for the input file (if any)
remains the same.

ETID assigns a new owner ID to all records being loaded into a multiclient file, and must be specified if
the input file contains no owner IDs; that is, the input file was not unloaded from a multiclient source file.

Examples of Loading/Updating Multiclient Files

ADALOD LOAD FILE=20,LOWNERID=2,NUMREC=0

Creates file 20 as a multiclient file. The length of the internal owner ID is two bytes, but no actual owner
ID (ETID) is specified. No records are actually loaded in the file (NUMREC=0).

ADALOD LOAD FILE=20,LOWNERID=2,ETID=USER1

Creates file 20 as a multiclient file, load all supplied records, and assign them to user USER1. The length
of the internal owner ID is two bytes.

ADALOD UPDATE FILE=20,ETID=USER2

Performs a mass update to add records to file 20, a multiclient file. Load all the new records and assign
them to USER2.

21

LOAD: Load a FileExamples of Loading/Updating Multiclient Files

	 LOAD: Load a File
	Essential Parameters
	Optional Parameters and Subparameters
	Examples
	
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Example 5:

	LOAD Data and Space Requirements
	
	Index Space Allocation
	Address Converter Space Allocation
	Data Storage Space Allocation
	Temp Area Space Allocation
	Example:

	Loading Expanded Files
	Loading Data into an Expanded File
	Examples:

	Loading Multiclient Files
	Examples of Loading/Updating Multiclient Files

