
Introduction
The Adabas Triggers and Stored Procedures Facility is used to define, process, and monitor triggers and
stored procedures.

This chapter introduces both types of procedures and their characteristics. It introduces the components of
the facility and describes how they function together to provide online services and background
processing.

This chapter covers the following topics:

Procedures

Components

Processing Summary

Procedures
A procedure is a Natural subprogram that is written and tested using standard Natural facilities. The
primary difference between triggers and stored procedures is the way they execute:

A trigger executes ("fires") automatically when a specified event occurs-usually a data access or
update to the associated table. The event occurs when selection criteria are satisfied. Selection criteria
include file number and possibly command type and/or the name of a field located in the format
buffer.

A stored procedure executes when the database management system (that is, Adabas) receives a
special user call.

The same parameters are passed to the subprogram whether it is a trigger or a stored procedure.

Stored Procedures

A stored procedure is invoked from a user application, which issues a special call to the procedure and
may pass it one or more parameters. The procedure is executed by Adabas.

Because the procedure is stored in the Natural system file (an Adabas file) loaded on the database (server),
it reduces the amount of data traffic to and from the server.

A sample stored procedure subprogram is provided; the call structure that is predefined in the stored
procedure front-end may be modified.

The following figure illustrates stored procedure usage. STPLNK is the stored procedure link routine used
to invoke a stored procedure request; STPRBE is the record buffer extraction routine, which is called by
the procedure and used to retrieve the parameters passed by the calling routine.

1

IntroductionIntroduction

For more information about STPLNK, see the section Stored Procedure Link Routine (STPLNKnn). For
programming information about STPRBE, see the section Record Buffer Extraction Routine (STPRBE).

Triggers

A trigger has two parts: the triggering event and the triggered procedure.

The triggering event is defined by a set of selection criteria such as an Adabas file number and optionally
a command and/or a field name. When the criteria are met, the event occurs and the triggered procedure is
executed in response. For example, a trigger might be fired by an update command to the SALARY field
in the EMPLOYEES file.

Note:
A trigger cannot be fired by another trigger.

Triggers can be defined to execute before or after the initiating Adabas command is executed by the
Adabas nucleus. The behavior of a trigger depends to some extent on whether the trigger and the Adabas
command are synchronized and, if so, whether the trigger participates in the transaction logic of the
command.

Triggers have three major characteristics:

2

TriggersIntroduction

pre-command or post-command execution A trigger can execute before or after the initiating Adabas
command.

asynchronous or synchronous execution A trigger can execute independently of Adabas command
processing or require suspension of Adabas command processing (that is, command processing must
wait for the results of the triggered procedure).

participation or non-participation A synchronous trigger may participate or not participate in the
user’s transaction (that is, ET) logic.

Pre-command or Post-command

A pre-command (or "pre-") trigger is executed before the initiating Adabas command is processed by
the Adabas nucleus. Before an Adabas command is executed, a check is made to verify whether a
trigger should be fired.

For example, if a trigger is defined to fire every time an N1 command is issued against a specified
file, the N1 is the initiating Adabas command. Before the N1 is executed, a check determines that a
pre-command trigger is to be fired. The N1 is processed after the triggered procedure is successfully
executed.

A post-command (or "post-") trigger executes after the initiating Adabas command is processed by
the Adabas nucleus. The triggered procedure executes only if the return code for the command from
the Adabas nucleus is zero. If the return code is nonzero, no checking for triggers is done, and
processing continues in the normal way. For a successfully executed command, the command is
checked for any triggers before processing of the command completes.

For example, if a trigger is defined to fire every time an L3 command is issued against a specified
file, the L3 is the initiating Adabas command. After a zero return code is received, a check
determines that a post-command trigger is to be fired. The triggered procedure is executed after the
command is successfully executed and before the user is notified.

Asynchronous or Synchronous

An asynchronous trigger executes independently of the initiating Adabas command. Adabas
command processing for the user continues uninterrupted while the triggered procedure executes as a
separate process. The triggered procedure may execute after the user has already received the
response from the initiating command.

When a command is issued that fulfills trigger criteria, the trigger is fired and processing of the
Adabas command resumes. The Adabas command and the triggered procedure do not affect each
other directly.

Asynchronous triggers are used when there is no interdependency between the procedure and the
actual Adabas command.

A synchronous trigger requires a suspension of Adabas command processing for the user. The
initiating Adabas command is suspended until the triggered procedure completes execution. It is
possible that the results of the procedure will affect the Adabas command.

For a post-command trigger, the Adabas command executes before the triggered procedure and then
is suspended; the results of the command are not returned to the user until the triggered procedure
completes execution.

3

IntroductionTriggers

Participating or Non-participating

Synchronous triggers may participate or not in the logic of the initiating Adabas command.

A participating trigger results in the execution of a procedure that is assigned the same user
(communication) ID as the Adabas command that caused the participating trigger to be fired; thus, it
can participate fully in the logic of the transaction.

An ET (end transaction) or BT (backout transaction) issued by the initiating command’s process
affects any transactions in flight from the trigger.

An ET or BT issued by the triggered procedure affects any transactions in flight for the initiating
command.

A non-participating trigger has a user (communication) ID that is different from that of the Adabas
user queue element (UQE) that identifies the initiating command; thus, it does not participate in the
initiating command’s transaction logic.

An ET or BT issued by the initiating command’s process does not affect the triggered
procedure.

An ET or BT issued by the triggered procedure does not affect the initiating command’s
process.

Components
Adabas uses three major components to implement and process triggers and stored procedures:

the Adabas trigger driver is part of the Adabas nucleus and has overall control of triggers and stored
procedures. It detects procedure requests and initializes the Natural trigger driver to execute them.

the Natural trigger driver runs as a batch Natural nucleus that actually executes both triggers and
stored procedures. Operating in conjunction with the Adabas trigger driver, it handles the
interprocess communications between the Adabas nucleus and the Natural subsystem that executes
the procedure.

Trigger Maintenance is a Natural application accessible from the selectable unit Adabas Online
System (AOS). A system of menus allows you to create and maintain trigger definitions, define the
triggers profile, and monitor and to some extent control trigger activity within the nucleus.

Adabas Trigger Driver

The Adabas trigger driver is executed as a part of the Adabas nucleus and generally controls the whole
run-time processing of a trigger. It determines whether a trigger is to be fired, initiates the Natural trigger
driver, and interacts with it to ensure the correct and timely processing of the procedures. For more
detailed information about how procedures are processed, see section Processing and Performance.

4

ComponentsIntroduction

Initialization

When the Adabas nucleus starts, it determines whether the ADARUN parameter SPT=YES has been
specified; if so, the nucleus passes control to the Adabas trigger driver to allow it to initialize. During
initialization, the Adabas trigger driver

acquires storage for buffers;

verifies that a valid trigger file is loaded;

verifies the triggers profile on the trigger file and extracts the session parameters to be used in
processing triggers and stored procedures for the session;

verifies that the trigger file contains at least one trigger definition (a requirement for Adabas trigger
driver initialization); and

reads the trigger definitions and adds entries to the trigger table, which occupies a buffer in memory.
In a nucleus cluster environment, the trigger table is obtained from an active nucleus. During
procedure processing, the trigger table can then be checked for the existence of a trigger, instead of
the more expensive alternative of reading the trigger file.

Starting Natural Subsystems

After the Adabas trigger driver is initialized, it starts the Natural subsystems that are responsible for the
actual execution of the procedures.

The Natural subsystems execute user-written procedures. The maximum subsystems parameter in the
Adabas triggers profile determines the number of Natural subsystems (1-10) to be started.

Each Natural subsystem is typically a minimally modified batch Natural nucleus that runs as a subtask in
the Adabas address space. This affects the region size specified on the MPM start-up JCL/JCS. The effect
may be minimized by using a split Natural nucleus.

When a Natural subsystem is started, the Adabas trigger driver keeps track of any change in subsystem
status or activity. The user can monitor these activities by using the Subsystem Activity function of the
Triggers Maintenance facility.

When a Natural subsystem becomes active:

the Natural trigger driver acquires control; and

the Adabas trigger driver is informed that the subsystem is ready to start processing any procedures
that may result from a stored procedure request or the firing of a trigger.

Checking for Triggers

For each command that the nucleus receives, the Adabas trigger driver determines whether a trigger needs
to be fired.

For pre-command triggers, the Adabas trigger driver checks for triggers before the command is selected
for processing by the Adabas thread. Once a command has been processed successfully by Adabas and the
response code is zero, the Adabas trigger driver determines whether there are any post-command triggers
to be fired. Only two triggers (one pre- and one post-command trigger) can be fired for any one command,
regardless of the results.

5

IntroductionAdabas Trigger Driver

If a command results in a trigger being fired, or if the Adabas trigger driver determines that the command
is a stored procedure request, an entry is created in the

pre-trigger queue if the command has not been executed; or the

post-trigger queue if the command has been executed successfully.

The entry contains information obtained from both the command and the corresponding entry in the
trigger table.

If a Natural subsystem is waiting for work, it is given the trigger request immediately. Otherwise, the
trigger request remains in the pre- or post-trigger queue until the next subsystem is available. When a
subsystem accepts a trigger request, processing continues under the control of the Natural trigger driver
(see Components).

Processing Procedure Results

When the procedure completes execution, the Natural trigger driver places the results in the "trigger
request entry" and the status is updated appropriately. When the Adabas trigger driver detects this, it takes
responsibility for completing the trigger processing.

For both pre- and post-command triggers, the return code from the procedure determines how the results
are processed. For more information, see the section Processing the Results.

Shutdown

The Adabas trigger driver keeps track of all Natural subsystems that fail. If all subsystems fail, it
determines that no further processing of procedures is possible and terminates according to the error
action value in the Adabas triggers profile. The error action Ignore or Reject in a nucleus cluster
environment is passed to all other nuclei in the cluster.

The Adabas trigger driver also terminates if the Adabas nucleus receives the ADAEND or HALT operator
command and instructs the Adabas trigger driver to shut down as well.

Natural Trigger Driver

The Natural trigger driver is initialized during the start-up of the Natural subsystems. It is responsible for
executing all triggered and stored procedures, and includes the following components:

STP is invoked when a Natural subsystem is started. STP initializes the global
data area STPGDA and establishes any necessary settings for the Natural
session. Its primary function is to handle recovery from any errors and
ensure that a restart is done.

STPPDRIV functions as the main routine for the Natural trigger driver, and is
responsible for invoking the procedure. STPPDRIV calls STPNAT.

STPNAT is responsible for any communication with the Adabas trigger driver and for
servicing the trigger requests for the subsystem. It notifies the Adabas
trigger driver that it is ready for work.

SPAENA (BS2000 only) retrieves the address of the database command queue.

6

Natural Trigger DriverIntroduction

Setting Up the Parameter List

When a trigger request is accepted by a Natural subsystem, STPPDRIV sets up the parameter list to be
passed to the procedure, depending on which parameter list was specified by the trigger that was fired.

Invoking the Tracking Routine STPUTRAK

If the log trigger activity setting in the Adabas triggers profile is "active", the routine STPUTRAK is
invoked.

STPUTRAK is a user-defined routine that tracks every request to invoke a procedure, both before and
after the procedure is invoked. You can use this routine to write trace messages or audit trigger processing
for each subsystem. A default STPUTRAK routine is supplied.

Parameters that are similar to those of the procedure and contain information about the trigger are passed
to the STPUTRAK routine, in addition to a 250-byte area that can be used as a work area. STPUTRAK
uses the work area to retain information for the entire session; the work area is never changed by the
Natural trigger driver. STPUTRAK contains an option that allows you to pass this work area to the
procedure.

Processing the Procedure

After STPUTRAK has been processed and control has returned to STPPDRIV, the triggered procedure is
invoked with a CALLNAT.

When the procedure completes processing, STPPDRIV again checks whether the "log trigger activity"
option in the Adabas triggers profile is set to "active" before informing STPNAT of the results. If log
activity is "active", STPUTRAK is invoked so that the results of the procedure can be audited.

Recovering from Errors

The procedure does not terminate normally if it incurs an error such as NAT0954, NAT3009, or
NAT1305. Instead, the Natural trigger driver performs error recovery.

Regardless of the log trigger activity setting, information about the error is conveyed to STPUTRAK. This
information can be used by the DBA for debugging or problem analysis. Therefore, STPUTRAK should
always be available for execution by the Natural trigger driver. Software AG recommends activating the
trace to obtain this information.

Updating the Trigger Request Entry

After the results of a procedure are delivered to STPNAT, the trigger request is updated and its status is
changed to "completed". When the Adabas trigger driver detects the updated entry, it takes responsibility
for completing the trigger processing.

STPNAT waits for another trigger request to be made, and the entire cycle starts again.

Trigger Maintenance

Trigger Maintenance, which requires the full version of Adabas Online System, is an interactive facility
for creating trigger definitions and monitoring system processing. For detailed information, see the section
Trigger Maintenance in this documentation.

7

IntroductionTrigger Maintenance

A "trigger definition" comprises the name and attributes of the procedure to be executed, and the selection
criteria that compose the triggering event (Adabas command type, file name or number, and field name).

Trigger Maintenance also provides functions for monitoring and controlling the execution of any trigger
processing by the nucleus. You can examine the activities of both the Adabas and Natural trigger drivers
and

determine the state of the triggers environment in the nucleus; that is, determine which triggers are
active and which are not, buffer sizes, and the status of the Natural subsystems;

modify the settings of various parameters such as activity timeout, log trigger activity, and error
action during an active session;

examine the pre- and post-trigger queues, which contain the procedures waiting to be executed for
the pre- and post-command triggers that have been fired;

examine the activity of the Adabas triggers and stored procedures facility to determine what is
executing, whether problems exist, the number of Natural subsystems that are currently active, and so
on;

refresh the trigger table in the Adabas nucleus with new, deleted, or updated trigger definitions; and

individually activate or deactivate a trigger. If a problem is found with a particular trigger, it can be
temporarily or permanently deactivated while the problem is resolved.

Processing Summary

Stored Procedure Processing

The steps involved in stored procedure processing are illustrated in the following figure and described in
Processing Steps.

8

Processing SummaryIntroduction

 Processing Steps

1. The user application sets up the required parameters and issues a CALL to the stored procedure link
routine STPLNKnn.

2. STPLNKnn interprets the user’s request and issues the call to the DBMS in the form of a standard
Adabas API (direct call).

3. The Adabas trigger driver receives the stored procedure request and passes it on to the Natural trigger
driver.

4. The specified Natural subprogram (the stored procedure) is invoked.

5. The caller’s parameters are made available to the subprogram by the record buffer extraction routine,
as required. The parameters can be modified if the option settings permit it.

9

IntroductionStored Procedure Processing

6. On completion, the Natural subprogram returns control to the Natural trigger driver.

7. The Natural trigger driver returns the results of the stored procedure request to the Adabas trigger
driver.

8. The user is notified and any modified parameters are returned.

Trigger Processing

The steps involved in trigger processing are illustrated by the following figure and described in
Processing Steps.

10

Trigger ProcessingIntroduction

 Processing Steps

1. The Adabas trigger driver receives all Adabas commands and inspects them for trigger events.

2. If a command meets trigger criteria, the Adabas trigger driver places the trigger request and
interprocess information in the trigger table.

3. When the Natural trigger driver control routine STPPDRIV is ready to process another trigger
request, it calls STPNAT.

4. STPNAT gets the next trigger request from the trigger table and passes it to STPPDRIV.

5. STPPDRIV determines the trigger request type and issues a CALLNAT to the Natural subprogram
named in the trigger definition, passing the relevant parameters.

6. STPNAT updates the trigger entry in the trigger table to indicate when the trigger is completed.

11

IntroductionTrigger Processing

	Introduction
	Procedures
	Stored Procedures
	Triggers

	Components
	Adabas Trigger Driver
	Initialization
	 Starting Natural Subsystems
	Checking for Triggers
	Processing Procedure Results
	Shutdown

	Natural Trigger Driver
	Setting Up the Parameter List
	Invoking the Tracking Routine STPUTRAK
	Processing the Procedure
	Recovering from Errors
	Updating the Trigger Request Entry

	Trigger Maintenance

	Processing Summary
	Stored Procedure Processing
	Trigger Processing

