
Installing Adabas With TP Monitors
This section provides information needed to install Adabas in batch mode and with teleprocessing (TP)
monitors Com-plete, CICS and Shadow. Information about using Adabas with TP monitors is also
contained in the section describing Adabas installation.

TP Monitor TP Monitor / Adalink

All environments All

CICS command-level LNKOLSC / LNKOLM

CICS high-performance stub LNCSTUB

Com-plete ADALCO

Shadow ADALNS

Batch ADALNK, ADALNKR(LNKVSER)

Preparing Adabas Link Routines for z/VSE

Installing Adabas with CICS

Installing the CICS High-Performance Stub Routine

Installing Adabas with Com-plete

Installing Adabas with Shadow

Installing Adabas with Batch / TSO

Preparing Adabas Link Routines for z/VSE
High-Level Assembler

Addressing Mode Assembly Directives

UES-Enabled Link Routines

High-Level Assembler

To maintain compatibility with year 2000 date format requirements, use the IBM high-level assembler
when assembling the Adabas link routines for TP monitors on z/VSE. The high-level assembler generates
4-digit year assembly dates into the load modules using the &SYSDATC assembly variable.

It is possible to assemble the link routines with the old VSE assembler after editing the source members
and making the following changes:

For all link members

1

Installing Adabas With TP MonitorsInstalling Adabas With TP Monitors

1. Remove the keyword HLASM=YES from the ASMDATE macro in the source.

2. Supply the following statement on the assembly step to provide the assembly date:

// OPTION SYSPARM=‘ yyyymmdd’
—where
yyyy is the 4-digit year
mm is the 2-digit month
dd is the 2-digit day

Notes:

1. The ASMDATE macro can also accept a 2-digit year from SYSPARM (// OPTION
SYSPARM=‘yymmdd’)

2. The ASMDATE.E book must be available in the LIBDEF search chain to assemble the link
routines with the old VSE assembler.

3. Remove or comment out the AMODE and RMODE directives in the source members.

For the ADALCO (Com-plete) link routine

Ensure that the BASSM.E and BSM.E books are in the LIBDEF search chain of the old VSE
assembler job step.

Addressing Mode Assembly Directives

The Adabas link routines now have AMODE and RMODE assembly directives in the source. These allow
the linkage editor to produce warning messages when conflicting AMODE or RMODE linkage editor
control statements are encountered in the link JCS or EXECs.

These assembly directives also serve to document the preferred AMODE and RMODE for each link
routine. It is important to note that in and of themselves, these directives do not alter the actual addressing
mode of the link routine during execution.

The batch link routine ADALNK has the following AMODE and RMODE assembly directives:

ADABAS AMODE 31
ADABAS RMODE 24

Software AG recommends RMODE 24 for the z/VSE batch link routine.

For the CICS command-level link routines (modules LNKOLM, LNKOLSC), the directives are

ADABAS AMODE 31
ADABAS RMODE ANY

Modifying the Assembly Directives

These directives may be changed by modifying the source members before assembling them, or they may
be overridden by linkage editor control statements. For example, to link the batch/TSO ADALNK module
with AMODE 31 and an RMODE ANY, the following control statements may be provided as input to the
linkage editor:

2

Addressing Mode Assembly DirectivesInstalling Adabas With TP Monitors

MODE AMODE(31),RMODE(ANY)
ENTRY ADABAS

The linkage editor control statements override the Assembler directives in the source module.

For more information about the AMODE and RMODE directives and their effects on the assembler,
linkage editor, and execution, consult the IBM MVS/ESA Extended Addressability Guide.

UES-Enabled Link Routines

For Adabas Version 7.4, UES is enabled by default for the batch/TSO, Com-plete, and IMS link routines.
It is not necessary to disable UES support. Applications that do not require UES translation continue to
work properly even when the UES components are linked with the Adabas link routines. See the section
Connecting UES-Enabled Databases for more information.

Disabling UES Support

However, if for some reason you feel it necessary to disable UES support in the Adabas link routines, use
the following procedure to do so:

1. Edit the source member ADALCO, ADALNI, ADALNK, or ADALNKR. Set the &UES Boolean
assembler variable to 0 by commenting out the source line where it is set to 1 and removing the
comment from the line where it is set to 0.

2. Assemble the link routine after making any other necessary modifications to the equates and other
directives in the source module as required by your installation.

3. Link the Adabas link routine and do not include any of the UES components (that is, LNKUES,
ASC2EBC, or EBC2ASC).

Installing Adabas with CICS
The Adabas command-level link routine supports the CICS transaction server (TS) 1.1 running under
z/VSE 2.4 and above.

How Adabas is installed on CICS-based systems depends on the level of CICS being run:

The command-level link can be used with VSE CICS/VS 2.2 and 2.3.

CICS TS 1.1 running under z/VSE 2.4 and above must run a current version of Adabas and use the
command-level link component.

Note:
The OPID option for the USERID field is not supported under CICS/VS 2.3 and above; therefore, it is not
provided with the command-level link routine.

The following sections describes specific points of Adabas/CICS installation and operation from the CICS
perspective, depending on the CICS level being used.

CICS MRO Environment Requirements

3

Installing Adabas With TP MonitorsInstalling Adabas with CICS

Standard Versus Enhanced Installation

Fully Reentrant Operation

DISPGWA Module : Displaying the CICS Global Work Areas

LNKENAB and LNKTRUE Modules

JCL and Source Members

Sample Resource Definitions

Modifying Source Member Defaults (ADAGSET Macro)

Installation Procedure

CICS MRO Environment Requirements

If you run the Adabas CICS command-level link routine with the CICS multiple region option (MRO),
you must set the ADAGSET option MRO=YES and use the default value for the ADAGSET NETOPT
option.

You can use the ADAGSET NTGPID option to provide a 4-byte literal for the Adabas communication ID
to be used by the Adabas SVC when applications that call Adabas span multiple application regions.

Alternatively, you can create a user exit B (UEXITB) for the link routine that

sets UBFLAG1 (byte X’29’ in the UB DSECT) to a value of X’08’ (UBF1IMSR); and

places a 4-byte alphanumeric value in the UB field UBIMSID.

The exit then allows the Adabas SVC to provide a proper Adabas communication ID in the Adabas
command queue element (CQE) even when transactions originate in multiple regions.

Standard Versus Enhanced Installation

All supported versions of the command-level link routine can be installed using the standard installation,
which comprises steps 1 through 3 of the installation procedure.

Steps 1 through 5 are required in order to use the enhanced features of the command-level link routine:

CICS transaction isolation;

a fully reentrant command-level link.

Step 6 is used to install the optional DISPGWA program. The DISPGWA program is only available with
the enhanced installation.

The enhanced installation is required if

CICS transaction isolation is used;

4

CICS MRO Environment RequirementsInstalling Adabas With TP Monitors

the DISPGWA storage display program is used.

CICS Transaction Isolation

The enhanced Adabas CICS command-level link components take advantage of the transaction isolation
facility provided by the CICS transaction server (TS) Version 1.1 when running with specific hardware
under z/VSE 2.4 or above.

Transaction isolation is an extension of the storage protection mechanism, which permits resources to
access either CICS or user storage by using storage protection keys. Resources defined to operate in

user key may not overwrite CICS storage, thus affording a degree of protection to CICS.

CICS key may read or write either CICS or user key storage, affording the highest degree of access
to CICS resources.

Using the transaction isolation facility of CICS TS 1.1 under z/VSE 2.4 or above, CICS resources are
further protected by isolating them in subspaces. This protects user key resources from one another, and
protects CICS key resources from the CICS kernel.

Transaction isolation can be enabled globally through the TRANISO system initialization (SIT)
parameter, and for each CICS transaction with the new resource definition ISOLATE keyword.

Transaction isolation places some restrictions on CICS resources that must be available both during the
life of the CICS system and to all transactions running in the CICS system.

The Adabas CICS command-level link components must be defined to CICS with the proper storage
access to ensure proper operation when transaction isolation is active:

The Adabas CICS command-level link routine, comprising the LNKOLSC, LNKOLM, and CICS
entry and exit code, must be defined to CICS as a user key program.

The LNKTRUE and LNKENAB (ADATRUE and ADAENAB) programs must both be defined as
CICS key programs.

This permits the correct degree of isolation between applications invoking the link routine, and the Adabas
CICS task-related user exit (TRUE), which interacts directly with CICS resources.

When CICS transaction isolation is active, user SVCs cannot execute from the CICS region. SVCs can be
executed in CICS key, however, during the PLT phase of the CICS startup and termination. For this
reason, the module LNKENAB is provided to execute during the PLTPI phase of CICS initialization.

Fully Reentrant Operation

The Adabas command-level link routine can now be made fully reentrant and not self-modifying when the
module LNKENAB is executed. During execution, a CICS global work area (GWA) is obtained and
passed to the command-level link, which uses the GWA to store initialization addresses. This feature is
available for CICS TS 1.1 under z/VSE 2.4 and above.

5

Installing Adabas With TP MonitorsFully Reentrant Operation

DISPGWA Module : Displaying the CICS Global Work Areas

The DISPGWA module is a program provided by Software AG as an optional feature for CICS TS 1.1
under z/VSE Version 2.4 and above.

The DISPGWA program displays the global work area (GWA) used by the various command-level link
components. It can be used to display other areas of CICS that are important to the Adabas
command-level link routine when it is executing as a task-related user exit (TRUE). With the help of
Software AG personnel, you can use this program to interrogate important data areas during problem
determination.

The DISPGWA module is used only if the LNKTRUE module is used, since it is the LNKTRUE module
that actually EXTRACTs the global work area.

LNKENAB and LNKTRUE Modules

This section describes the usage of the LNKENAB and LNKTRUE modules.

LNKENAB Module

The LNKENAB module

starts and enables the task-related user exit LNKTRUE (see the next section) during PLTPI
processing.

defines the length of storage that CICS gives to LNKTRUE as each task is invoked for the first time.
The storage remains in CICS until the task terminates and is used by LNKTRUE as a task work area.

issues an Adabas command to the default target and Adabas SVC defined in the ADAGSET macro in
LNKOLSC. The target need not be active.

The purpose of the command is to derive the address of the IDTH from the first SVC call. All other SVC
calls from the command-level link routine are then made using a branch entry into the Adabas SVC.

LNKTRUE Module

When started and enabled by LNKENAB during PLTPI processing, the task-related user exit LNKTRUE
module

permits the command-level link routine to obtain the pointer to the access control environment
element (ACEE) in a CICS/ESA 4.1 environment;

facilitates processing when CICS transaction isolation is installed and enabled; and

coordinates Adabas transactions through the CICS Resource Manager Interface (RMI) when the
Adabas Transaction Manager (ATM) is installed and enabled.

Most of the command-level link components execute under the umbrella of LNKTRUE. This means that
any abend condition during the execution of LNKTRUE is serious; CICS may even respond by
terminating the entire CICS region.

6

DISPGWA Module : Displaying the CICS Global Work AreasInstalling Adabas With TP Monitors

Items that may cause this condition include, but are not limited to

invalid application parameter lists for Adabas calls;

inconsistent or incorrect keyword values coded in the ADAGSET macro for the various
command-level components;

user modification to the command-level link components or the task-related user exit; or

incorrect coding in UEXITA and/or UEXITB components.

Software AG strongly recommends that you test application programs in a CICS region that supports the
non-task-related user exit version (standard installation) of the command-level link before migrating to a
task-related user exit version (enhanced installation) of the command-level link routine.

JCL and Source Members

The JCL members use the sources indicated in the following table:

JCL Source Source Description

CICSASMC LNKOLSC/LNKOLM LNKOLSC is the dependent part of the Adabas
command-level link routine. LNKOLM is the
independent part of the Adabas command-level
link routine.

CICSASMD DISPGWA Display program for Adabas global work area
(GWA).

CICSASME LNKENAB Adabas PLT-enable program.

CICSASMT LNKTRUE Adabas task-related user exit.

Sample Resource Definitions

Under CICS/TS 1.1 and above for z/OS and VSE, the preferred method for defining and installing CICS
programs and transactions is RDO (resource definition online). The CICS documentation no longer
recommends the assembly of PPT and PCT entries to define resources.

The following table provides sample RDO definitions for the Adabas CICS command-level link
components. The data has been extracted directly from the CICS CSD file and should be used as a guide
for providing comparable information on the CEDA panels.

**
* Sample DEFINE control statements for the DFHCSDUP utility.
* For Adabas V7.4 CICS command-level link routine components.
*
* These control statements can be used as input to the DFHCSDUP
* CICS CSD update utility to define the Adabas CICS command-level
* link routine components on a CICS/TS system.
**
DEFINE PROGRAM(ADABAS) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s COMMAND LEVEL LINK ROUTINE)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

7

Installing Adabas With TP MonitorsJCL and Source Members

DEFINE PROGRAM(ADAENAB) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s PLTPI ENABLE ADATRUE PROGRAM)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE PROGRAM(ADATEST) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s DISPLAY GWA PROGRAM - DISPGWA)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
ELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE PROGRAM(ADATRUE) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s TASK RELATED USER EXIT)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(DGWA) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO DISPLAY ADABAS GWA)
PROGRAM(ADATEST) TWASIZE(128) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(CICS) STORAGECLEAR(NO)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

—where s is the system maintenance level of Adabas.

These sample DEFINE statements are located in member DEFADAC in the Adabas Version 7.4 CICS
command-level source library. They can be modified and used as input to the IBM DFHCSDUP utility to
define the Adabas CICS command-level components. Consult the appropriate IBM CICS documentation
for information on the DFHCSDUP utility.

Modifying Source Member Defaults (ADAGSET Macro)

The ADAGSET macro is used to create default settings for the command-level link components. This
macro exists in each of the installation source members. The macro settings must be identical in every
installation source member used.

To facilitate the assembly of the Adabas command-level link components, Software AG recommends that
you modify the ADAGSET macro with site-specific keyword values and place the updated copy in a
library that is available in the LIBDEF source search chain for the assembly job step.

If more than one version of the Adabas command-level link routine components is to be used in a given
CICS system, modify a separate ADAGSET macro for each version and place these macros in unique
sublibraries. Then reference the appropriate sublibrary in the LIBDEF search chain in the assembly JCS.

Note:
Beginning with Adabas version 6.2.3, the source members no longer contain any keyword values on the
ADAGSET statement. Thus, the macro itself must be modified to provide site-specific defaults.

It is critical that the values for the following keywords agree for all components of the Adabas CICS
command-level link routine: LOGID, SVCNO, LUINFO, LRINFO, LUSAVE, NUBS, ENTPT,
TRUENAM, and ENABNAM.

8

Modifying Source Member Defaults (ADAGSET Macro)Installing Adabas With TP Monitors

Step 1 of the installation procedure identifies the source members that must be edited for standard and
enhanced installation.

The ADAGSET parameter options with their default values (underlined) are described below:

AVB: Adabas VSAM Bridge Support

Parameter Description

AVB={ NO | YES }

Indicates whether or not Software AG’s Adabas Bridge for VSAM is to be
supported by this command-level link routine.

AVB=YES: Adabas VSAM Bridge is to be supported.

AVB=NO: Adabas VSAM Bridge is not to be supported.

ENABNM: Entry Point Name for Program to Enable Adabas TRUE

Parameter Description

ENABNM={ ’ADAENAB’ | ’name’ }
The entry point name for the program that is run to enable
the Adabas TRUE during CICS PLTPI processing. The
value must be a valid program name that matches the
module name specified in the DFHPLT table at your site.

This parameter is ignored if TRUE=NO is specified.

ENTPT: Name of the Adabas CICS Command-Level Link Routine

Parameter Description

ENTPT={ ’ADABAS’ | ’name’ }
The name given to the Adabas CICS command-level link
routine, which is the combination of LNKOLSC, LNKOLM,
and the CICS entry and exit code. This name is used in EXEC
CICS LINK commands to invoke Adabas services from CICS
application programs.

See also notes 1 and 2 in the installation procedure.

LADAFP: Length of Work Area for Adabas Fastpath Exit

9

Installing Adabas With TP MonitorsModifying Source Member Defaults (ADAGSET Macro)

Parameter Description

LADAFP={ 0 | nn}
The length of the work area provided to the Adabas Fastpath exit.

Values from 0 (the default) to 32767 may be specified. 0 indicates that
Adabas Fastpath is not linked with the Adabas command-level link routine.
A non-zero value requires that the parameter TRUE=YES is also set and the
Adabas task-related user exit (TRUE) is used. Consult the Adabas Fastpath
documentation for recommended values.

Note:
This parameter is not yet fully implemented. It is provided for future use by
Adabas Fastpath.

LOGID: Default Logical Database ID

Parameter Description

LOGID= nnn
The value of the default logical database ID. Valid ID numbers are 1-65535.

LRINFO: Length of Adabas Review Data Area

Parameter Description

LRINFO={ 0 | 256}
The length (in bytes) of the Adabas Review data area to be used by the
REVEXITB program. The default is zero (Adabas Review is not being
used). The minimum (and recommended) value is 256, the size Adabas
Review expects when the REVEXITB program is invoked. See the Adabas
Review documentation for more information.

LUINFO: Length of User Data passed to Adabas UEXITA and UEXITB

Parameter Description

LUINFO={ 0 | length}
Length of the user data to be passed from the CICS link routine to
Adabas UEXITA and UEXITB.

If LUINFO is not specified, the default is zero (no user save area is
passed).

LUSAVE: Size of User Save Area for Adabas UEXITA and UEXITB

Parameter Description

LUSAVE={ 0 | size}
Size of the user save area to be used by Adabas user exits UEXITA and
UEXITB. If LUSAVE is specified, a value of 72 or higher must be
specified.

If LUSAVE is not specified, the default is zero (no user data is passed).

10

Modifying Source Member Defaults (ADAGSET Macro)Installing Adabas With TP Monitors

LXITAA: Length of Work Area provided to UEXITA

Parameter Description

LXITAA={ 0 | nn}
Length of the work area provided to the UEXITA user exit program.

Values from 0 (the default) to 32767 may be specified. 0 indicates that no
UEXITA program is linked with the Adabas command-level link routine
and no data is passed to UEXITA.

Note:
This parameter is not yet fully implemented. It is provided for future use
by the CICS user exit A program linked with LNKOLM.

LXITBA: Length of Work Area for UEXITB

Parameter Description

LXITBA={ 0 | nn}
Length of the work area provided to the UEXITB user exit program.

Values from 0 (the default) to 32767 may be specified. 0 indicates that no
UEXITB program is linked with the Adabas command-level link routine
and no data is passed to UEXITB.

Note:
This parameter is not yet fully implemented. It is provided for future use
by the CICS user exit A program linked with LNKOLM.

MRO: Multiple Region Option

Parameter Description

MRO={ NO | YES }
The MRO parameter is used to indicate whether or not the CICS multiple
region option is to be used.

If you run the CICS command-level link with the CICS multiple region
option (MRO), set MRO=YES; otherwise, use the default value
MRO=NO.

If MRO=YES, NETOPT must be set to NETOPT=NO (the default) to
prevent non-unique LU names from multiple application regions.

If NETOPT=YES and MRO=YES are specified, an assembler MNOTE
and a return code of 16 are produced from the assembly step.

NETOPT: Method Used to Create User ID

11

Installing Adabas With TP MonitorsModifying Source Member Defaults (ADAGSET Macro)

Parameter Description

NETOPT={ NO | YES }
If NETOPT=YES is specified, an 8-byte user ID will be constructed
from the VTAM LU name. If NETOPT=NO is specified, the user ID is
created from the constant “CICS” plus the four-byte CICS terminal ID
(TCTTETI) for terminal tasks. For non-terminal tasks, the user ID
comprises the constant “CIC” plus the CICS task number.

If you run with the CICS multiple region option (MRO), you must use
the default value for this option. If NETOPT=YES and MRO=YES are
specified, an assembler MNOTE and a return code of 16 are produced
from the assembly step.

NTGPID: Natural Group ID

Parameter Description

NTGPID=4-byte-value
This parameter is used to specify a 4-byte Natural group ID as required
for unique Adabas user ID generation in the CICSplex environment with
Natural Version 2.2.8 and above. The value is associated with all users
who call the Adabas command-level link routine assembled with the
specified value.

There is no default value. If no value is specified, the Adabas internal
user ID is built in the conventional manner.

Any 4-byte alphanumeric value may be specified, but it must be unique
for each Adabas command-level link routine running in a CICSplex, or
z/OS image. If more than one NTGPID is required (for example, both
test and production Natural 2.2.8), more than one Adabas
command-level link routine with associated TRUE must be generated.

If you run with the CICS multiple region option (MRO), you may use
NTGPID to provide a 4-byte literal for the Adabas communication ID to
be used by the Adabas SVC when multiple application regions call
Adabas.

NUBS: Number of User Blocks Created By CICS Link Routine

Parameter Description

NUBS={ 50 | blocks }
The number of user blocks (UBs) to be created by the CICS link
routine. The number of blocks must be large enough to handle the
maximum possible number of concurrent Adabas requests.

Note:
The Adabas 6.2 and above command-level link routine obtains storage
for the user blocks (the UB pool) above the 16-megabyte line.

12

Modifying Source Member Defaults (ADAGSET Macro)Installing Adabas With TP Monitors

PARMTYP: Area for Adabas Parameter List

Parameter Description

PARMTYP={ ALL | COM | TWA }
The area which is to contain the Adabas parameter list. TWA
picks up the parameter list in the first six fullwords of the
transaction work area (TWA). COM picks up the list in the
COMMAREA, followed by the normal Adabas parameter list.
The COMMAREA list must be at least 32 bytes long and
begin with the label ADABAS52. PARMTYP=ALL (the
default) uses both the COMMAREA and TWA to pass the
Adabas parameters; in this case, the COMMAREA is checked
first.

PARMTYP=ALL or PARMTYP=COM must be used if the
TRUE=YES option is specified.

PURGE: Purge Transaction

Parameter Description

PURGE={ NO | YES }
The PURGE parameter is used when assembling with CICS 3.2 or above.
If PURGE=YES is specified, the CICS WAIT EXTERNAL will contain
PURGEABLE as one of its parameters, allowing the transaction to be
purged by CICS if the DTIMOUT value is exceeded and PURGE is
specified.

If PURGE=NO (the default) is specified, the NONPURGEABLE option
is generated.

RMI: Resource Manager Interface

Parameter Description

RMI={ NO | YES }
The RMI parameter is used to indicate whether or not the CICS Resource
Manager Interface is to be used.

If RMI=YES is specified, the Adabas task-related user exit (TRUE) will
be executed as a resource manager (RM) using the CICS Resource
Manager Interface (RMI).

RMI=YES is valid only when the Adabas Transaction Manager is
installed, enabled, and available to users executing in the CICS
environment. Consult the Adabas Transaction Manager documentation for
additional instructions related to the installation of the Adabas TRUE.

SAF: Adabas Security

13

Installing Adabas With TP MonitorsModifying Source Member Defaults (ADAGSET Macro)

Parameter Description

SAF={ NO | YES }
The SAF paramter is to indicate whether or not the Adabas SAF Security
(ADASAF) is used. The default SAF=NO must be used for z/VSE.

SAP: SAP Application Support

Parameter Description

SAP={ NO | YES }
The SAP parameter is used to indicate whether or not Adabas support for
the SAP application system is required.

If SAP=YES is specified, the LNKOLSC program will detect a SAP
initialization call and set the user ID for SAP applications from the
constant provided on the initialization call, plus the field ACBADD2.

For more information, refer to the supplementary information provided
to customers using the SAP application system.

SVCNO: Adabas SVC number

Parameter Description

SVCNO={ 0 | nnn}
The SVCNO parameter is used to specify the value of the Adabas SVC
number.

TRUE: Adabas Task-Related User Exit

Parameter Description

TRUE={ NO | YES }
The TRUE parameter is used to indicate whether or not the Adabas
task-related user exit is to be used.

If TRUE=YES is specified, LNKOLSC will use the Adabas task-related
user exit LNKTRUE.

If TRUE=YES is specified, the parameter settings PARMTYP={ALL |
COM} and TRUENM=’name’ must also be specified.

TRUENM: Name of Adabas Task-Related User Exit

Parameter Description

TRUENM= ’name’
The TRUENM parameter is used to specify the name of the Adabas
task-related user exit.

This parameter is required if TRUE=YES is specified.

See also notes 1 and 2 in the installation procedure.

14

Modifying Source Member Defaults (ADAGSET Macro)Installing Adabas With TP Monitors

UBPLOC: User Block Pool Allocation

Parameter Description

UBPLOC= {ABOVE | BELOW}
The UBPLOC parameter is used to specify whether the user block
(UB) pool is to be obtained above (the default) or below the
16-megabyte line in CICS.

The ECB used by the EXEC CICS WAIT WAITCICS or the EXEC
CICS WAIT EXTERNAL is included in the UB pool.

The UBPLOC=BELOW setting supports versions of CICS that do
not allow ECBs above the 16-megabyte line; that is, CICS/ESA 3.2
or below.

Refer to the IBM manual CICS/ESA Application Programming
Reference for more information.

XWAIT: XWAIT Setting for CICS

Parameter Description

XWAIT={ NO | YES }
Specifies whether a standard EXEC CICS WAIT EVENT
(XWAIT=NO) or a CICS WAIT EVENTS EXTERNAL
(XWAIT=YES) will be generated into the command-level link
component by the assembler process in the LNKOLSC module:

NO (the default) must be used for CICS/VS 2.3 and below.

YES is valid for CICS TS 1.1 under z/VSE 2.4 and above.

Note:
All EXEC CICS commands are processed by the CICS preprocessor;
the ADAGSET parameters cause the subsequent assembly step to skip
some of the statements.

XWAIT=YES is the recommended interface for CICS TS 1.1 under
z/VSE 2.4 and above. Using the XWAIT=NO interface in these
environments may result in poor CICS transaction performance or
unpredictable transaction results in busy environments.

Installation Procedure

Step 1: Modify the ADAGSET Macro for the Source Member(s)

Modify the ADAGSET macro for the source members to be used.

See the section Modifying Source Member Defaults (ADAGSET) for details. Software AG recommends
that you modify a common version of ADAGSET and place it in a library available in the SYSLIB
concatenation when the Adabas command-level link components are assembled.

15

Installing Adabas With TP MonitorsInstallation Procedure

Note:
It is no longer necessary to modify the equates inside the LNKOLSC code. Instead, use the ADAGSET
macro to set default values before assembly, thus making the process easier and more self-documenting.

For the Standard Installation (Without Enhanced Functions)

Modify the source member ADAGSET to set the following options:

database ID (LOGID);

Adabas SVC number (SVCNO);

any additional options necessary for your site.

For the Enhanced Installation

Modify the source member ADAGSET to set the following options:

database ID (LOGID);

Adabas SVC number (SVCNO);

the command-level link routine name (ENTPT);

the task-related user exit name (TRUENM);

any additional options necessary for your site.

Notes:

1. It is critically important that the ENTPT and TRUENM parameters coded in the LNKENAB,
LNKTRUE, and LNKOLSC modules are identical. These module names are used to identify the
global work area and task-related user exit (TRUE) storage provided for the CICS transaction using
the link-specific link component.

2. If you are installing multiple instances of the command-level link routine, the ENTPT and TRUENM
names must be unique, as there is a one-for-one relationship between a command-level link routine,
its associated task-related user exit (TRUE), and the enabling program LNKENAB run at CICS
startup.

Step 2: Modify the JCS Members

Use your editor to modify the JCS members necessary for your installation, and set the library names
according to your installation’s specifications. The Adabas job library contains the following JCS
members:

16

Installation ProcedureInstalling Adabas With TP Monitors

JCS
Member

Installation
Type

Required/Optional This job preprocesses, assembles, and
links ...

CICSASMC standard
and
enhanced

required enhanced LNKOLSC and LNKOLM to
create ADAOLSC and ADAOLM; then,
links these modules with the CICS prolog
and epilog stubs to create the Adabas
CICS command-level link component.

CICSASMD enhanced required the Adabas global work area display
program DISPGWA to create the
ADATEST module.

CICSASME enhanced required the LNKENAB PLTPI initialization
program ADAENAB.

CICSASMT enhanced optional the LNKTRUE source module to create
the Adabas task-related user exit module
ADATRUE.

Instructions for modifying the JCS are included in the JCS members themselves. These include but may
not be limited to the following:

1. Correct the POWER control statements:

change ... to ...

$* /*

$& /&

X $$ * $$

2. Replace the following symbols with site-specific values:

change ... to ...

LLLLLLLL Adabas library DLBL name

SSSSSSSS Adabas sublibrary for cataloging

UUUUUUUU user ID

EXT1 extent start value for work file 1

EXT2 extent start value for work file 2

EXT1L extent length value for work file 1

EXT2L extent length value for work file 2

VVVVVV volume ID for work files

17

Installing Adabas With TP MonitorsInstallation Procedure

Step 3: Install the Adabas Command-Level Link Component

 to install the Adabas command-level link component, for the JCS members CICSASMC,
CICSASMD, CICSASME, and CICSASMT:

1. Include the proper EXEC PROC= statements to define the Adabas library.

2. Modify the LIBDEF statements for proper search order and for the proper sublibrary for cataloging
the PHASEs.

3. Ensure that the library containing the PHASEs will be available to the CICS system at execution
time.

The JCS members use two disk work files for SYSPUNCH output from the preprocessor and
assembler steps.

4. Check the DLBL and EXTENT information for these work files.

5. Use DFHCSDUP or the CEDA RDO entry panels to add the following definition to your CICS CSD
file:

DEFINE PROGRAM(ADABAS) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s COMMAND LEVEL LINK ROUTINE)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(USER) EXECUTIONSET(FULLAPI)

—where s is the system maintenance level of Adabas.

The Adabas command-level link routine is now installed. This completes the standard installation. To
install the enhanced functions, continue with step 4.

Step 4: Install the Adabas Task-Related User Exit

The Adabas CICS components reside in the Adabas base source library.

 to install the Adabas Task-Related User Exit:

1. Execute CICSASME.

This job preprocesses, assembles, and links the Adabas task-related user-exit-enabling program
LNKENAB (ADAENAB).

2. Use DFHCSDUP or the CEDA RDO entry panels to add the following definition to your CICS CSD
file:

DEFINE PROGRAM(ADATRUE) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s TASK RELATED USER EXIT)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

—where s is the system maintenance level of Adabas.

18

Installation ProcedureInstalling Adabas With TP Monitors

3. After defining LNKENAB to CICS, add the following entry to your PLTPI table, DFHPLT:

DFHPLT TYPE=ENTRY,PROGRAM=ADAENAB

This entry should follow the first DFHPLT TYPE=DELIM statement to ensure that LNKENAB will
be executed in either stage II or stage III of the CICS PLTPI process. This is necessary because the
CICS EXEC interface environment must be present to support the writing of console messages using
the EXEC CICS WRITE OPERATOR command employed by the LNKENAB module.

4. Code an appropriate PLTPI=xx parameter in the CICS start-up data. xx should match the suffix value
given in the DFHPLT table.

The Adabas command-level link enhanced functions are now installed. This completes the enhanced
installation; however, you may optionally continue with Step 6, Installing the DISPGWA Program.

Step 5: Install the Adabas PLT-Enable Program (SMA Job Number I070)

The Adabas CICS components reside in the Adabas base source library ADA74s.SRCE.

 to install the Adabas PLT-enable program:

1. Execute CICEASM.

This job preprocesses, assembles, and links this module into a staging library, and then links it with
CICS entry and exit code into a CICS RPL library.

2. Use DFHCSDUP or the CEDA RDO entry panels to add the following definition to your CICS CSD
file:

DEFINE PROGRAM(ADAENAB) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s PLTPI ENABLE ADATRUE PROGRAM)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USE
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

—where s is the system maintenance level of Adabas.

3. After defining LNKENAB to CICS, add the following entry to your PLTPI table, DFHPLT:

DFHPLT TYPE=ENTRY,PROGRAM=ADAENAB

This entry should follow the first DFHPLT TYPE=DELIM statement to ensure that LNKENAB will
be executed in either stage II or stage III of the CICS PLTPI process. This is necessary because the
CICS EXEC interface environment must be present to support the writing of console messages using
the EXEC CICS WRITE OPERATOR command employed by the LNKENAB module.

4. Code an appropriate PLTPI=xx parameter in the CICS start-up data. xx should match the suffix value
given in the DFHPLT table.

Step 6: Install the DISPGWA Program (Optional)

 to install the DISPGWA program:

19

Installing Adabas With TP MonitorsInstallation Procedure

1. Execute CICDASM.

This job preprocesses, assembles, and links this module into a staging library, then links it with CICS
entry and exit code into a CICS RPL library. The final link step creates the load module ADATEST.

2. Add a CICS transaction to execute the ADATEST program. RDO may be used to do this. Sample
DEFINE statements for the ADATEST (DISPGWA) program and the transaction to execute it are:

DEFINE PROGRAM(ADATEST) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s DISPLAY GWA PROGRAM - DISPGWA)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(DGWA) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO DISPLAY ADABAS GWA)
PROGRAM(ADATEST) TWASIZE(128) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(CICS) STORAGECLEAR(NO)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

—where s is the system maintenance level of Adabas.

The Adabas command-level link routine, enhanced functions, and DISPGWA program are now
installed.

Installing the CICS High-Performance Stub Routine
The Adabas high-performance stub routine extends the direct call interface (DCI) facility that is available
with the Adabas CICS command-level link component to applications written in languages other than
Software AG’s Natural (for example, Assembler, COBOL, PL/I).

Note:
The stub routine must be used with the Adabas CICS command-level link component. The stub routine
will not function properly with the Adabas CICS macro-level link component.

The DCI allows a CICS TS 1.1 application running under z/VSE 2.4 or above to call Adabas through the
Adabas command-level link routine. The overhead incurred when the EXEC CICS LINK and EXEC
CICS RETURN command set is used to transfer program control is thus avoided. Once the proper
environment has been established with the initial call (IC) command from the high-performance stub or
Natural 3.1 or above, the DCI permits a BALR interface to be used.

The high-performance stub routine is written in Assembler language. When linked with the application
program, it serves as an interface between the application and the Adabas CICS command-level link
component. The application program can then issue CALL statements to access the stub routine when
executing an Adabas command.

A CICS TS 1.1 application under z/VSE 2.4 or above derives the following advantages from the
high-performance stub:

20

Installing the CICS High-Performance Stub RoutineInstalling Adabas With TP Monitors

improved performance and throughput when issuing Adabas commands under CICS/ESA 3.2 or
above due to the reduced use of CICS services related to the CICS LINK and RETURN program
control mechanism.

a call mechanism for Adabas requests under CICS/ESA 3.2 or above which is simpler than the
methods normally employed to pass control with information from one program to another in the
CICS environment.

Restrictions and Requirements

The following restrictions and requirements apply to the high-performance stub routine:

CICS TS 1.1 under z/VSE 2.4 Required

The Adabas high-performance stub routine is supported for CICS TS 1.1 under z/VSE 2.4 and above.
Earlier versions of CICS are not supported.

A CICS transaction work area (TWA) of at least 28 bytes must be provided to the application for the
proper execution of the high-performance stub routine.

CICS Command-Level Link Required

The application program must be written using the CICS command-level interface and instructions,
and may not issue any CICS macro level commands.

Supported Programming Languages

The application program may be written in ALC (Assembler language), COBOL, COBOL II, PL/I,
or C. Installation verification programs (IVPs) are provided in ALC and COBOL on the distribution
tape.

Additional requirements for specific programming languages are discussed later in the sections relating to
each language.

Stub Components

Type Member Description

Source ALCSIVP
COBSIVP
LNCSTUB

source for ALC install verification
source for COBOL install verification
source for high-performance stub

Job control JCLALCI.X
JCLCOBI.X
JCLLNCS.X

sample JCL for ALC installation verification
sample JCL for COBOL installation verification
sample JCL LNCSTUB (high-performance stub). The final
step of the job catalogs the LNCSTUB.OBJ module so it is
ready to be included when the application program is
linked. See the JCLALCI or JCLCOBI sample jobs.

21

Installing Adabas With TP MonitorsRestrictions and Requirements

Installation Overview

Use the following procedure to install the Adabas CICS high-performance stub routine:

Edit, preprocess, assemble and link the LNCSTUB module.

(Optional) Modify, preprocess, compile or assemble, link, and execute the desired installation
verification program (IVP).

Modify, preprocess, compile or assemble, link, and execute the application programs.

Step 1: Install the LNCSTUB Module

The Adabas CICS high-performance stub routine is an Assembler language module provided in source
form on the distribution tape in member LNCSTUB.

Step 1 has the following substeps:

Edit the ADAGSET macro.

Change the LNCNAME field value, if necessary.

Modify member JCLLNCS.X.

Preprocess, assemble, and link the LNCSTUB module.

Place the LNCSTUB load module in a library that is available to your application programs when
they are linked.

Edit the ADAGSET Macro

Note:
For information about editing the ADAGSET macro, refer to the section Modifying Source Member
Defaults (ADAGSET Macro).

Edit the LNCSTUB module to provide parameters on the ADAGSET macro located at the beginning of
the source deck. The values provided to the ADAGSET macro should match those provided on the
Adabas CICS command-level link routine LNKOLSC.

The values given for the ADAGSET parameters are primarily for documentation purposes within the
LNCSTUB module, but may be used at a later time in the stub routine at the discretion of Software AG.

Change the LNCNAME Field Value

If your Adabas CICS command-level link component program has been linked with a name other than
ADABAS, change the constant value in the field LNCNAME to match the name used (see the ADAGSET
option ENTPT). The value in this field is used in the priming EXEC CICS LINK command issued by
LNCSTUB.

22

Installation OverviewInstalling Adabas With TP Monitors

Modify Member JCLLNCS.X

Member JCLLNCS.X is used to preprocess, assemble, and catalog the LNCSTUB module.

 To modify this JCL to meet your site requirements

1. Modify the POWER job information, CLASS, DEST, and LDEST values:

2. Throughout the member, make the following changes:

change ... to ...

$* /*

$& /&

X $$ * $$

3. Provide any site-specific names for the Adabas JCS PROC or other required PROCs.

4. Replace the following symbols with site-specific values:

change ... to ...

SSSSSSSS Adabas sublibrary for cataloging

UUUUUUUU user ID

EXT1 extent start value for work file 1

EXT2 extent start value for work file 2

EXT1L extent length value for work file 1

EXT2L extent length value for work file 2

VVVVVV volume ID for work files

5. Software AG recommends that you use the high-level Assembler to assemble the LNCSTUB
module.

If you must use the old VSE Assembler, supply the following statement on the assembly step to
provide the assembly date:

// OPTION SYSPARM=‘ yymmdd’
—where
yy is the 2-digit year
mm is the 2-digit month
dd is the 2-digit day

6. Check the access and catalog statements on the final LIBR step that catalogs the LNCSTUB.OBJ
module.

23

Installing Adabas With TP MonitorsInstallation Overview

Preprocess, Assemble, and Link the LNCSTUB Module

Because of the possible use of the 31-bit instructions, high-level Assembler (ASMA90) should be used to
assemble the LNCSTUB module after CICS preprocessing.

 to preprocess, assemble, and link the LNCSTUB Module

1. Provide library definitions for the Adabas and CICS libraries using PROCs or DLBL statements.

2. Construct LIBDEF statements for the search order and for the library where the LNCSTUB.OBJ
module is to be cataloged.

Make the LNCSTUB Available to Application Programs

The LNCSTUB module has an entry name of ADABAS, which can be used by the application program as
the object of a CALL statement to pass control to LNCSTUB with a list of parameters. The
language-specific calling conventions for LNCSTUB are discussed later in this section.

The LNCSTUB load module must be available to the link step of the application program that is to use the
DCI facility.

Note:
In the same step, the CICS load library should be available; otherwise, the external references to the CICS
stub modules will not be resolved.

Place the LNCSTUB load module in a library available to your application language assembler or
compiler so that it will be included when the application programs are linked.

Step 2: (Optional) Install and Execute an IVP

Two installation verification programs (IVPs) are provided in source form: one for Assembler language,
and one for COBOL. These programs are samples for implementing the Adabas high-performance stub
routine in your applications. They also provide a way of verifying the proper installation of the
LNCSTUB module.

Step 2 has the following substeps:

Modify the Assembler (ALCSIVP) or COBOL (COBSIVP) source decks to provide the proper
Adabas database ID and file number on your site’s database for the Software AG-provided
PERSONNEL file.

Modify the JCL provided to preprocess and compile (assemble) the desired IVP.

Preprocess, compile or assemble, and link the IVP using the sample JCL provided as a guide.

Add PPT and PCT entries to your CICS system to execute the IVPs.

Execute the IVPs to verify the LNCSTUB module (ALCSIVP and COBSIVP).

24

Installation OverviewInstalling Adabas With TP Monitors

Install and Execute the Assembler IVP: ALCSIVP

The source member ALCSIVP is provided to demonstrate and verify the use of the Adabas DCI using the
LNCSTUB module. This program issues a series of Adabas commands using the conventional CICS
LINK/RETURN mechanism, produces a partial screen of output data, then reexecutes the same call
sequence using the Adabas DCI and the LNCSTUB subprogram.

 to modify source member ALCSIVP:

1. Edit the database ID and file number fields DBID (line 321) and DBFNR (line 322) to be sure they
match the values needed to access the PERSONNEL file on the database you intend to use.

2. Check the fields FBUFF, SBUFF and VBUFF for values consistent with your PERSONNEL file’s
FDT and data content.

3. Check the name used in the EXEC CICS LINK statement (line 242) to be sure it matches the name of
your Adabas CICS command-level link component program.

 to modify the JCLALCI.X sample job stream:

1. Member JCLALCI.X is used to preprocess, assemble, and link the Assembler IVP. Place the
ALCIVP.PHASE in a library that will be available to your CICS partition.

2. Modify JCLALCI.X to meet your site requirements.

Modify the POWER job information, CLASS, DEST, and LDEST values:

Throughout the member, make the following changes:

change ... to ...

$* /*

$& /&

X $$ * $$

Provide any site-specific names for the Adabas JCS PROC or other required PROCs.

Replace the following symbols with site-specific values:

25

Installing Adabas With TP MonitorsInstallation Overview

change ... to ...

SSSSSSSS Adabas sublibrary for cataloging

UUUUUUUU user ID

EXT1 extent start value for work file 1

EXT2 extent start value for work file 2

EXT1L extent length value for work file 1

EXT2L extent length value for work file 2

VVVVVV volume ID for work files

3. Software AG recommends that you use the high-level Assembler to assemble the LNCSTUB
module.

If it is necessary to use the old VSE Assembler, supply the following statement on the assembly step
to provide the assembly date:

// OPTION SYSPARM=‘ yymmdd’
—where
yy is the 2-digit year
mm is the 2-digit month
dd is the 2-digit day

 to preprocess, assemble, and link ALCSIVP:

1. Using the modified sample JCLALCI.X member, preprocess, assemble, and link ALCSIVP.

 to add PPT and PCT entries:

1. Add the following PPT and PCT entries to your CICS system, or use the RDO facility to add the
STB1 transaction to run the ALCSIVP program:

DFHPPT TYPE=ENTRY,PROGRAM=ALCSIVP
DFHPCT TYPE=ENTRY,PROGRAM=ALCSIVP,TRANSID=STB1, X
TPURGE=YES,SPURGE=NO,TWASIZE=28

 to execute ALCSIVP:

1. Run the STB1 transaction to execute ALCSIVP. Executing ALCSIVP verifies the LNCSTUB
module.

Install and Execute the COBOL IVP: COBSIVP

Member COBSIVP illustrates the use of the Adabas DCI with a COBOL program. COBIVP produces a
screen showing output lines produced by a series of Adabas calls executed by the CICS LINK/RETURN
facility, followed by the reexecution of these Adabas commands using the DCI.

 to modify source member COBSIVP:

1. Edit the fields WORK-DBID and WORK-FNR to place the desired database ID and file number in
the VALUE clauses to access the PERSONNEL file on your site’s database.

26

Installation OverviewInstalling Adabas With TP Monitors

2. Ensure that the value in the field LINK-NAME matches the name used in your Adabas CICS
command-level link component program.

3. Ensure that the values (literals in the PROCEDURE DIVISION) in the following fields are consistent
with the requirements of the PERSONNEL file FDT and data content you are using:

ADABAS-FORMAT-BUFFER,
ADABAS-SEARCH-BUFFER, and
ADABAS-VALUE-BUFFER

 to modify the JCLCOBI.X sample job stream:

1. Member JCLCOBI.X is used to preprocess, compile, and link the COBSIVP installation verification
program.

Modify JCLCOBI.X to meet your site requirements.

Modify the POWER job information, CLASS, DEST, and LDEST values:

Throughout the member, make the following changes:

change ... to ...

$* /*

$& /&

X $$ * $$

Provide any site-specific names for the Adabas JCS PROC or other required PROCs.

Replace the following symbols with site-specific values:

change ... to ...

cuu channel and unit address for SYSPCH

lib Adabas library DLBL name

sublib Adabas sublibrary for cataloging

UUUUUUUU user ID

rtrk relative track number for the extent

ntrks number of tracks in the extent

volid volume ID for work files

Replace the names in lowercase with the site-specific library and dataset names.

2. Member JCLCOBI.X is used to preprocess, compile, and link the COBSIVP installation verification
program.

 to preprocess, compile, and link COBSIVP:

27

Installing Adabas With TP MonitorsInstallation Overview

1. Use the modified JCLCOBI.X job to preprocess, compile, and link the COBSIVP program.
Assemble ADASTWA into a library available to COBOL programs when they are linked. Include
the ADASTWA load module in the link of COBSIVP.

COBSIVP uses the ADASTWA subroutine when it issues Adabas calls through the standard CICS
LINK/RETURN mechanism. ADASTWA is supplied in source form in the Adabas source library.

The LNCSTUB subroutine does not use ADASTWA because it places the passed Adabas parameters
in the TWA. Thus, the ADASTWA routine is not required when linking COBOL applications that
utilize the Adabas DCI through the LNCSTUB module.

Even though the LNCSTUB routine does not require the ADASTWA subroutine, it is included in the
COBSIVP program to illustrate the usual way in which a COBOL application places the Adabas call
parameters into the CICS TWA.

2. Link the COBSIVP program with the LNCSTUB object module and the ADASTWA object module.
Make the LNCSTUB load module available to the linkage editor to be included with the COBSIVP
load module.

Note:
The CICS stub modules are also resolved in the link step.

 to add PCT and PPT entries:

1. Add the following PPT and PCT entries to your CICS system, or use the RDO facility to add the
STB2 transaction to run the COBSIVP program:

DFHPPT TYPE=ENTRY,PROGRAM=COBSIVP
DFHPCT TYPE=ENTRY,PROGRAM=COBSIVP,TRANSID=STB2, X
TPURGE=YES,SPURGE=NO,TWASIZE=28

 to execute COBSIVP:

1. Run the STB2 transaction to execute COBSIVP. Executing COBSIVP verifies the LNCSTUB
module.

Step 3: Link and Execute the Application Program

Once the IVP programs have been successfully executed, the Adabas DCI is ready to be used with real
application programs. In step 3, the application program interface (API) is coded to utilize the LNCSTUB
subprogram.

Step 3 has the following substeps:

Modify the application programs that will utilize the Adabas CICS high-performance stub routine in
accordance with the guidelines described in the following section.

Preprocess, compile or assemble, and link the application programs to include the LNCSTUB
module.

Execute the application programs using the Adabas CICS high-performance stub.

28

Installation OverviewInstalling Adabas With TP Monitors

Guidelines for Modifying the Application Program

The LNCSTUB load module must be linked with your application program. The application program
invokes the DCI interface using a standard batch-like call mechanism. The LNCSTUB module makes any
additional CICS requests required to pass data to the Adabas CICS command-level link component.

Programming Languages Supported by LNCSTUB

The LNCSTUB program functions with application programs written in Assembler language,
VS/COBOL, COBOL II, PL/I, and C.

Transaction Work Area Required

A transaction that uses the Adabas DCI or the Adabas CICS command-level link component must
provide a transaction work area (TWA) at least 28 bytes long. Failure to provide an adequate TWA
will result in an abend U636 (abnormal termination of the task).

Reentrant Requirement

The application program may or may not be reentrant. The LNCSTUB module has been written to be
reentrant, but using linkage editor parameters to mark the LNCSTUB load module as reentrant is not
recommended.

CICS Requests Issued by LNCSTUB

The LNCSTUB module issues the following command-level CICS requests whenever it is invoked:

EXEC CICS ADDRESS TWA
EXEC CICS ASSIGN TWALENG
EXEC CICS ADDRESS EIB

DCI Entry Point Address

An EXEC CICS LINK command is issued by LNCSTUB at least once to acquire the DCI entry point
from the Adabas CICS command-level link component program. This address is then used for BALR
access on all subsequent Adabas calls for a transaction. Thus, the calling application program must
provide a fullword (4-byte) field to hold the DCI entry point address obtained by LNCSTUB. This
4-byte field is the first parameter passed to the LNCSTUB module by the call mechanism. The
remaining parameters comprise the standard Adabas parameter list needed to execute an Adabas
request.

DCI Parameter List

The Adabas DCI parameter list expected by the LNCSTUB program is composed of a pointer to the
DCI entry point in the Adabas CICS command-level link component followed by the six pointers to
the Adabas control block and buffers: format, record, search, value, and ISN.

For information on coding the standard Adabas control block and buffers, refer to the Adabas
Command Reference.

The parameter list offsets are summarized in the table below:

29

Installing Adabas With TP MonitorsInstallation Overview

Offset Pointer to the ...

0 DCI entry point in the Adabas command-level link component

4 Adabas control block

8 Adabas format buffer

12 Adabas record buffer

16 Adabas search buffer

20 Adabas value buffer

24 Adabas ISN buffer

All of the parameters except the first (the DCI entry point) are built and maintained by the
application program in accordance with the requirements of an Adabas call.

The DCI entry point parameter should be set to binary zeros at the beginning of a task, and should
not be modified by the application program thereafter. Software AG strongly recommends that the
fields comprising the parameter list be placed in CICS storage (WORKING-STORAGE for COBOL
and the DFHEISTG user storage area for Assembler) to maintain pseudo-reentrability.

The following is a sample parameter list for an assembler language program:

DFHEISTG DSECT
.
PARMLIST DS 0F
DS A(DCIPTR)
DS A(ADACB)
DS A(ADAFB)
DS A(ADARB)
DS A(ADASB)
DS A(ADAVB)
DS A(ADAIB)
.
DCIPTR DS F
ADACB DS CL80
ADAFB DS CL50
ADARB DS CL250
ADASB DS CL50
ADAVB DS CL50
ADAIB DS CL200
.
DFHEIENT CODEREG=(R12),EIBREG=(R10),DATAREG=(R13)
.
LA R1,PARMLIST
L R15,=V(ADABAS)
BALR R14,R15
.
END

Note:
The DFHEIENT macro in the Assembler example uses a DATAREG parameter of register 13. This
is a strict requirement of the LNCSTUB program. When the LNCSTUB program is invoked, register
13 should point to the standard CICS save area (DFHEISA) and register 1 should point to the
parameter list. The best way to ensure this standard is to code the Assembler application with a
DFHEIENT macro like the one in the example.

30

Installation OverviewInstalling Adabas With TP Monitors

The following is a sample parameter list for a COBOL language program:

WORKING-STORAGE SECTION.
.
01 STUB-DCI-PTR PIC S9(8) COMP VALUE ZERO.
01 ADACB PIC X(80).
01 ADAFB PIC X(50).
01 ADARB PIC X(250).
01 ADASB PIC X(50).
01 ADAVB PIC X(50).
01 ADAIB PIC X(200).
.
PROCEDURE DIVISION.
.
CALL ’ADABAS’ USING STUB-DCI-PTR,
ADACB,
ADAFB,
ADARB,
ADASB,
ADAVB,
ADAIB.
.
EXEC CICS RETURN END-EXEC.
.
GOBACK.

Restrictions on Application Program Coding

In all other respects, the application program should be coded like a standard CICS command-level
routine. As long as the DCI parameter list is correct when LNCSTUB is called, there are no
restrictions on the CICS commands that an application can issue.

Standard Batch Call Mechanism Used

As shown in the Assembler and COBOL language program parameter list examples above, the call to
“ADABAS” (the LNCSTUB entry point) is accomplished like a batch application. Likewise, calls for
the other supported languages should be coded with their standard batch call mechanisms.

Link the Application Programs to Include the LNCSTUB Module

To properly link the LNCSTUB module with application programs, link the application program to
include the LNCSTUB module and the CICS stub modules. The method for doing this varies with the
programming language used for the application:

Assembler language programs should include the DFHEAI and DFHEAI0 CICS modules;

COBOL applications should include DFHECI and DFHEAI0.

To avoid a double reference to the DFHEAI0 module, code the linkage editor REPLACE DFHEAI0
control statement at the beginning of the SYSLIN data deck.

 for linking Assembler language programs:

1. For an Assembler program, the SYSLIN input is similar to:

31

Installing Adabas With TP MonitorsInstallation Overview

INCLUDE DFHEAI

For an Assembler program, the input to the linkage editor is

PHASE pgmname,*
MODE AMODE(ANY),RMODE(ANY)
INCLUDE DFHEAI
INCLUDE LNCSTUB
INCLUDE DFHEAI0
ENTRY pgmname

—where pgmname is the name of your application program.

The Assembler object deck looks like

REPLACE DFHEAI0
INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAI0)
NAME ALCSIVP(R)

When examining the cross-reference from the linkage editor, the symbol ADABAS must have the
same starting location as the LNCSTUB module in the link map.

 for linking COBOL language programs:

1. For a COBOL program, the input to the linkage editor is

PHASE pgmname,*
MODE AMODE(ANY),RMODE(ANY)
INCLUDE LNCSTUB
INCLUDE DFHECI
ENTRY pgmname

—where pgmname is the name of your application program.

The COBOL object input is similar to:

INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAI0)
NAME COBSIVP(R)

When examining the cross-reference from the linkage editor, the symbol ADABAS must have the
same starting location as the LNCSTUB module in the link map.

 for linking PL/I and C language programs:

1. Refer to the IBM manual CICS/ESA System Definition Guide for information about linking PL/I and
C applications under CICS.

Performance Using LNCSTUB

To obtain the best performance from applications using the Adabas direct call interface (DCI), examine
how the DCI interface functions at the logical level.

A CICS application using the standard LINK/RETURN mechanism to access the Adabas link routines
invokes the CICS program control service for every Adabas request made to the link routine. The
LNCSTUB module permits a BALR interface to be used. A BALR interface can substantially reduce the

32

Performance Using LNCSTUBInstalling Adabas With TP Monitors

CICS overhead required to pass control from the application program to the Adabas CICS command-level
link component.

The LNCSTUB module accomplishes this by using the standard EXEC CICS LINK/RETURN
mechanism to make an Initial Call (IC) to the Adabas CICS command-level link routine. The link routine
recognizes this call, and returns the entry point address of the DCI subroutine to LNCSTUB. LNCSTUB
must then save this address in a location that can be assured of existence throughout the duration of the
invoking task. This is why the calling program must provide the 4-byte field to hold the DCI entry point
address. After the DCI address has been obtained, and for as long as LNCSTUB receives this address as
the first parameter passed to it on subsequent Adabas calls, LNCSTUB utilizes the BALR interface to pass
control to the Adabas CICS command-level link component program.

As a consequence of this logic, the more Adabas requests made between ICs, the more efficient the
application in terms of passing data to and from Adabas under CICS. In fact, pseudo-conversational
applications that issue one Adabas call each time a task is invoked should not be coded to use the DCI
because there will be an IC request for each Adabas command issued by the calling program.

An additional performance improvement can be realized by taking advantage of the fact that the Adabas
CICS command-level link component program must be defined as resident in CICS. This fact should
allow the DCI entry point to be stored across CICS tasks, making it possible for different programs to call
the LNCSTUB module with a valid DCI entry point. The IC at each program startup is thus avoided.
When this procedure is used, however, any change to the CICS environment that invalidates the entry
point address (such as a NEWCOPY) will lead to unpredictable and possibly disastrous results.

It is imperative that at least one IC be made to the Adabas CICS command-level link component program
using CICS services. This call is used to trigger the acquisition of shared storage for the Adabas user
block (UB) and (in the case of migration aids) an array of register save areas. If no IC request is made,
Adabas calls will not execute due to a lack of working storage, and to the fact that critical control blocks
used by the link routines and the Adabas SVC are not built.

Installing Adabas with Com-plete
Certain Adabas parameters are required by Com-plete, Software AG’s TP monitor, when installing
Adabas. For more information, see the Com-plete System Programmer’s manual.

For Com-plete Versions 4.5 and above, the link routine for Com-plete initialization (module/phase
ADALCO) is provided in the Adabas distribution library. ADALCO is loaded during Com-plete
initialization to service Adabas calls. The Adabas library containing ADALCO should be placed in the
z/VSE LIBDEF search chain.

Com-plete branches to the module/phase ADALCO according to the AMODE setting established in the
link of ADALCO. The Adabas Version 7.4 ADALCO routine uses the ESA BASSM and BSM
instructions to

call the Com-plete wait service in the proper AMODE; and

return to the caller of ADALCO in the caller’s AMODE.

33

Installing Adabas With TP MonitorsInstalling Adabas with Com-plete

Installing Adabas with Shadow
The Adabas link routine specific to Shadow, ADALNS, is provided in source form along with the job
SHADASM to assemble it. SHADASM must be customized to select the Shadow macro (source) library
containing the macros SAVED, $WAIT, RELOCD, RETURND, TCBD.

Selecting Options for ADALNS

Customizing the source member ADALNS means selecting the following options:

Option Default Specify . . .

SVCNR 0 Adabas SVC number

LOGID 1 Default logical database ID (range 1-255).

NUBS 50 Number of UBs (user blocks) to be created by ADALNS. This
must be high enough to handle the maximum possible number of
concurrent Adabas requests.

PLINTWA Y
(yes)

N if the Adabas parameter list is passed in register 1 instead of at
offset 0 in the Shadow TWA.

LNUINFO 0 Length for the user data to be passed from the ADALNS link
routine to the Adabas user exit 4.

Shadow Table Entry for ADALNS

The user must specify the following entry in the Shadow PCT table:

PCT PROG=ADABAS,DISP=INITL,LANG=BAL,SAVE=YES,PURGE=YES

It is important that Adabas be made resident. Under Shadow, the ADABAS parameter is normally passed in
the first 24 bytes of the TWA.

The user exit called from ADALNS gains control before the Adabas call (UEXITB), and can be used to
modify the eight-byte UBUID field. This allows users who process the command log to have a unique
terminal, since the command log presently contains only a four-byte field. This field does not contain a
unique ID. The user exit could then be used to make the first four bytes unique. The user exit must create
a unique user exit for each user. For Shadow, the UBUID field normally contains the constant SHAD in
the high-order four bytes, followed by the value from ITRMTYPE.

Installing Adabas with Batch / TSO
ADALNK is the standard Adalink for running Adabas in batch. ADALNKR (LNKVSER) is supplied as a
reentrant batch link routine.

However, it is important to note that user programs linked with ADAUSER also load ADARUN.
ADARUN, in turn, loads other modules. To start a user program linked with ADAUSER, the following
modules must be available in the LIBDEF search chain:

34

Installing Adabas with ShadowInstalling Adabas With TP Monitors

ADAIOR
ADAIOS
ADALNK
ADAMLF
ADAOPD
ADAPRF
ADARUN

35

Installing Adabas With TP MonitorsInstalling Adabas with Batch / TSO

	Installing Adabas With TP Monitors
	Preparing Adabas Link Routines for z/VSE
	High-Level Assembler
	Addressing Mode Assembly Directives
	Modifying the Assembly Directives

	UES-Enabled Link Routines
	Disabling UES Support

	Installing Adabas with CICS
	CICS MRO Environment Requirements
	Standard Versus Enhanced Installation
	CICS Transaction Isolation

	Fully Reentrant Operation
	DISPGWA Module : Displaying the CICS Global Work Areas
	LNKENAB and LNKTRUE Modules
	LNKENAB Module
	LNKTRUE Module

	JCL and Source Members
	Sample Resource Definitions
	Modifying Source Member Defaults (ADAGSET Macro)
	AVB: Adabas VSAM Bridge Support
	ENABNM: Entry Point Name for Program to Enable Adabas TRUE
	ENTPT: Name of the Adabas CICS Command-Level Link Routine
	LADAFP: Length of Work Area for Adabas Fastpath Exit
	LOGID: Default Logical Database ID
	LRINFO: Length of Adabas Review Data Area
	LUINFO: Length of User Data passed to Adabas UEXITA and UEXITB
	LUSAVE: Size of User Save Area for Adabas UEXITA and UEXITB
	LXITAA: Length of Work Area provided to UEXITA
	LXITBA: Length of Work Area for UEXITB
	MRO: Multiple Region Option
	NETOPT: Method Used to Create User ID
	NTGPID: Natural Group ID
	NUBS: Number of User Blocks Created By CICS Link Routine
	PARMTYP: Area for Adabas Parameter List
	PURGE: Purge Transaction
	RMI: Resource Manager Interface
	SAF: Adabas Security
	SAP: SAP Application Support
	SVCNO: Adabas SVC number
	TRUE: Adabas Task-Related User Exit
	TRUENM: Name of Adabas Task-Related User Exit
	UBPLOC: User Block Pool Allocation
	XWAIT: XWAIT Setting for CICS

	Installation Procedure
	Step 1: Modify the ADAGSET Macro for the Source Member(s)
	For the Standard Installation (Without Enhanced Functions)
	For the Enhanced Installation
	Step 2: Modify the JCS Members
	Step 3: Install the Adabas Command-Level Link Component
	Step 4: Install the Adabas Task-Related User Exit
	Step 5: Install the Adabas PLT-Enable Program (SMA Job Number I070)
	Step 6: Install the DISPGWA Program (Optional)

	Installing the CICS High-Performance Stub Routine
	Restrictions and Requirements
	Stub Components
	Installation Overview
	Step 1: Install the LNCSTUB Module
	Edit the ADAGSET Macro
	Change the LNCNAME Field Value
	Modify Member JCLLNCS.X
	Preprocess, Assemble, and Link the LNCSTUB Module
	Make the LNCSTUB Available to Application Programs
	Step 2: (Optional) Install and Execute an IVP
	Install and Execute the Assembler IVP: ALCSIVP
	Install and Execute the COBOL IVP: COBSIVP
	Step 3: Link and Execute the Application Program
	Guidelines for Modifying the Application Program
	Link the Application Programs to Include the LNCSTUB Module

	Performance Using LNCSTUB

	Installing Adabas with Com-plete
	Installing Adabas with Shadow
	Selecting Options for ADALNS
	Shadow Table Entry for ADALNS

	Installing Adabas with Batch / TSO

