
Installation Procedure
This section describes the procedure for Adabas installation:

Installation Checklist

Preparing to Install Adabas

Installing the Release Tape

Initializing the Adabas Communication Environment

Installing the Adabas Database

Migrate an Existing Database

Logical Unit Requirements

Job Exit Utility

Acquiring Storage for the ID Table

Acquiring Storage for the IIBS Table

Displaying Storage Allocation Totals

Calls from Other Virtual Address Spaces

Dummy Sequential Files

Backward Processing of Tapes and Cartridges

Applying Zaps (Fixes)

Optional z/VSE User Zaps

Adalink Considerations

Setting Defaults in ADARUN

Installation Checklist
The following is an overview of the steps for installing Adabas on an z/VSE system.

Step Description Additional Information

1 Allocate DASD space for the Adabas
libraries.

The libraries are restored from the
installation tape. Refer to the
section Disk Space Requirements
for Libraries.

1

Installation ProcedureInstallation Procedure

Step Description Additional Information

2 Allocate DASD space for the Adabas
database.

For better performance, distribute
the database files over multiple
devices and channels. Refer to the
section Disk Space Requirements
for the Database.

3 Specify a z/VSE partition for running
the Adabas nucleus.

Refer to the section Adabas
Nucleus Partition/Address Space
Requirements.

4 Define the library before restoration.See section Defining the Library.

5 Restore the Adabas libraries. See section Installing the Adabas
Release Tape.

6 Install the Adabas SVC using the
ADASIP program.

See section Initializing the Adabas
Communication Environment.

7 Create the sample JCS job control for
installing Adabas.

See section Installing the Adabas
Database.

8 Customize and run job ADAIOOAL
to link the Adabas options table for
installation customization.

9 Customize and catalog the two
procedures ADAVvLIB and
ADAV vFIL before placing them back
in the procedure library. The
following specific items must be
customized:

file IDs for the database and
libraries;

volumes for libraries and
database files;

space allocation for database
files

10 Customize and run ADAFRM to
allocate and format the Adabas
database.

11 Customize and run ADADEF to
define global database characteristics.

12 Customize and run ADALODE,
ADALODV, and ADALODM to load
the demo files.

13 Customize and run JCLNUC to start
the Adabas nucleus to test Adabas
communications.

2

Installation ChecklistInstallation Procedure

Step Description Additional Information

14 Customize and run ADAREP in
MULTI mode with the CPLIST
parameter to test Adabas partition
communication.

15 Customize and run NATINPL and
JCLONL to load the Adabas Online
System, if used.

16 Terminate the Adabas nucleus.

17 Customize and run ADASAV to back
up the database.

18 Customize and run DEFAULTS to
insert the ADARUN defaults with the
ZAP utility.

19 Install the required TP link routines
for Adabas

See section Installing Adabas with
TP Monitors.

Preparing to Install Adabas
The major steps in preparing for Adabas installation are

checking for the correct prerequisite system configuration; and

allocating disk and storage space.

The following sections describe the nominal disk and storage space requirements, and how to allocate the
space.

Disk Space Requirements for Libraries

Disk Space Requirements for the Database

Datasets Required for UES Support

Disk Space Requirements for Internal Product Datasets

Adabas Nucleus Partition/Address Space Requirements

Defining the Library

Restoring the ADAvrs LIBR File

Using the ADAvrs LIBR File

Installing Adabas in a VSE VM Guest System

3

Installation ProcedurePreparing to Install Adabas

Disk Space Requirements for Libraries

The Adabas library requires a minimum of 3380/3390 disk space as shown below. A certain amount of
extra free space has been added to the requirements for library maintenance purposes.

Library 3380 Tracks 3390 Tracks

Adabas Library 330 300

This space is needed for Adabas objects and phases as well as source and JCS samples.

Disk Space Requirements for the Database

The Adabas database size is based on user requirements. For more information, refer to Adabas DBA
Tasks. Suggested sizes for an initial Adabas database, allowing for limited loading of user files and the
installation of Natural, are as follows.

The minimum 3380 disk space requirements are:

Database
Component

3380 Cylinders
Required

3380 Tracks Required

ASSOR1
(Associator)

30 450

DATAR1 (Data
Storage)

70 1050

WORKR1 (Work
space)

10 150

TEMPR1
(temporary work
space)

15 225

SORTR1 (sort work
space)

15 225

The minimum 3390 disk space requirements are:

4

Disk Space Requirements for LibrariesInstallation Procedure

Database
Component

3390 Cylinders
Required

3390 Tracks Required

ASSOR1
(Associator)

26 390

DATAR1 (Data
Storage)

62 930

WORKR1 (Work
space)

10 150

TEMPR1
(temporary work
space)

14 210

SORTR1 (sort work
space)

14 210

Datasets Required for UES Support

The Software AG internal product libraries (BTE - basic technologies; and APS - porting platform) are
required if you intend to enable a database for universal encoding service (UES) support. These libraries
are now delivered separately from the product libraries.

For UES support, the following libraries must be loaded and included in the steplib concatenation:

BTE421.L aann
APS271.LIBR
APS271.L002

—where aa is LD, LC, or LS and nn is the load library level. If the library with a higher level number is
not a full replacement for the lower level load library(s), the library with the higher level must precede
those with lower numbers in the libdef concatenation.

Note:
If you are using an Adabas load library prior to Version 7.2.2, it contains internal product libraries with an
earlier version number and must be ordered below the current internal product libraries in the libdef
concatenation.

Also for UES support, the following library must be loaded and included in the session execution JCL:

BTE421.LC nn

For information about setting up connections to UES-enabled databases through Entire Net-Work and
ADATCP, see section Connecting UES-Enabled Databases.

Disk Space Requirements for Internal Product Datasets

The minimum disk space requirements on a 3390 disk for the internal product libraries delivered with
Adabas Version 7.4 are as follows:

5

Installation ProcedureDatasets Required for UES Support

Library 3390 Cylinders 3390 Tracks

BTE421.LD01 3 44

BTE421.LC01 16 236

BTE421.LS01 1 15

APS271.LIBR 8 109

APS271.L002 5 65

Adabas Nucleus Partition/Address Space Requirements

The Adabas nucleus requires at least 900-1024 KB to operate. The size of the nucleus partition may need
to be larger, depending on the ADARUN parameter settings. Parameter settings are determined by the
user.

Defining the Library

It is necessary to define the library before restoration. The following two examples show how VSAM and
non-VSAM libraries are defined.

Defining a VSAM Library

The following is a job for defining a VSAM library:

// JOB DEFINE DEFINE VSAM V7 ADABAS LIBRARY
// OPTION LOG
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER -
(NAME(ADABAS.Vvrs.LIBRARY) -
VOLUME(vvvvvv vvvvvv) -
NONINDEXED -
RECORDFORMAT(NOCIFORMAT) -
SHR(2) -
TRK(nnnnnn)) -
DATA (NAME(ADABAS.Vvrs.LIBRARY.DATA))
/*
// OPTION STDLABEL=ADD
// DLBL SAGLIB,’ADABAS.V vrs.LIBRARY’,,VSAM
// EXEC IESVCLUP,SIZE=AUTO
A ADABAS.Vvrs.LIBRARY
/*
// EXEC LIBR
DEFINE L=SAGLIB R=Y
DEFINE S=SAGLIB.ADA vrs REUSE=AUTO R=Y
LD L=SAGLIB OUTPUT=STATUS
/*
/&

—where
vvvvvv vvvvvv are the volumes for primary and secondary space.
nnnnnn is the number of tracks for primary and secondary space.
vrs is the Adabas version/revision/system maintenance level.

6

Adabas Nucleus Partition/Address Space RequirementsInstallation Procedure

Notes:

1. For FBA devices the tracks (TRK...) operand is replaced by the blocks (BLOCKS...) operand.
2. SAGLIB is the name of the Adabas library. The name SAGLIB can be changed to suit user

requirements.

Defining a Non-VSAM Library

The following is a job for defining a non-VSAM library:

// JOB DEFINE DEFINE NON-VSAM V7 ADABAS LIBRARY
// OPTION LOG
// DLBL SAGLIB,’ADABAS.V vrs.LIBRARY’,2099/365,SD
// EXTENT SYS010 ,vvvvvv,1,0, ssss,nnnn
// ASSGN SYS010,DISK,VOL= vvvvvv,SHR
// EXEC LIBR
DEFINE L=SAGLIB R=Y
DEFINE S=SAGLIB.ADA vrs REUSE=AUTO R=Y
LD L=SAGLIB OUTPUT=STATUS
/*
/&

—where
SYS010 is the logical unit for Adabas library.
vvvvvv is the volume for Adabas library.
ssss is the starting track or block for specified library.
nnnn is the number of tracks or blocks for specified library.
vrs is the Adabas version/revision/system maintenance level.

Restoring the ADAvrs LIBR File

Restore the ADAvrs LIBR file into sublibrary SAGLIB.ADAvrs. See the next section for information
about preparing modules to run without the ESA option active.

Note:
See the Report of Tape Creation that accompanies the tape to position the tape to the correct file.

If you have a license for one of the following Software AG products, restore the file into the appropriate
sublibrary:

Product File Sublibrary

Adabas Caching Facility (ACF) ACFvrs.LIBR SAGLIB.ACFvrs

Adabas Parallel Services (ASM) ASMvrs.LIBR SAGLIB.ASMvrs

Adabas Delta Save Facility (ADE) ADEvrs.LIBR SAGLIB.ADEvrs

For information about installing these products, see the documentation for that product.

Using the ADAvrs LIBR File

Where applicable, modules for Adabas are shipped with AMODE=31 active.

7

Installation ProcedureRestoring the ADAvrs LIBR File

Storage Above or Below the 16-MB Limit

Adabas can acquire storage above the 16-megabyte addressing limit. This capability allows Adabas to
acquire the buffer pool (LBP), work pool (LWP), format pool (LFP), and attached buffers (NAB) above 16
MB.

Where applicable, modules for Adabas are shipped with AMODE=31 active. If you prefer to have buffers
placed below the 16-megabyte limit, ADARUN must be relinked with AMODE=24.

User Program Execution in AMODE=31 and RMODE=ANY

Programs that will execute AMODE=31 or RMODE=ANY must be relinked with the new ADAUSER
object module.

In addition, because the IBM VSE LOAD macro cannot be issued in RMODE=ANY, the IBM VSE
CDLOAD macro must be used. Therefore, the zap to change the ADAUSER CDLOAD to the LOAD
macro cannot be used. See the section describing z/VSE User Zaps for more information.

Installing Adabas in a VSE VM Guest System

Adabas may be installed and executed on a VSE system that runs as a guest under VM.

When running Adabas in this environment, the CPUID of the guest VSE system must not contain a value
of X‘FFFFFFFF’. It it does, the Adabas nucleus terminates abnormally during command queue
processing.

Installing the Release Tape
This section explains how to:

copy dataset COPY.JOB from tape to disk

modify this member according to your local naming conventions

The JCL in this member is then used to copy all data sets from the tape to disk.

If the datasets for more than one product are delivered on the tape, the member COIPYTAPE.JOB
contains JCL to unload the data sets for all delivered products from the tape to your disk, except the data
sets that you can directly install from tape, for example, Natrural INPL objects.

You can use the modified dataset to copy all datasets from tape to disk. You will then need to perform the
individual install procedure for each component.

Note:
If you are using SMA, please refer to Installing Software AG Products with SMA in the System
Maintenance Aid documentation. If you are not using SMA, please follow the instructions below.

Step 1: Copy Data Set COPYTAPE.JOB From Tape To Disk

Step 2: Modify COPYTAPE.JOB

8

Installing the Release TapeInstallation Procedure

Step 3: Submit COPYTAPE.JOB

Step 1: Copy Data Set COPYTAPE.JOB From Tape To Disk

The data set COPYTAPE.JOB (file 5) contains the JCL to unload all other existing data sets from tape to
disk. To unload COPYTAPE.JOB, use the following sample JCL:

* $$ JOB JNM=LIBRCAT,CLASS=0, +
* $$ DISP=D,LDEST=(*,UID),SYSID=1
* $$ LST CLASS=A,DISP=D
// JOB LIBRCAT
* ***
* CATALOG COPYTAPE.JOB TO LIBRARY
* ***
// ASSGN SYS004,nnn <------ tape address
// MTC REW,SYS004
// MTC FSF,SYS004,4
ASSGN SYSIPT,SYS004
// TLBL IJSYSIN,’COPYTAPE.JOB’
// EXEC LIBR,PARM=’MSHP; ACC S=lib.sublib’ <------- for catalog
/*
// MTC REW,SYS004
ASSGN SYSIPT,FEC
/*
/&
* $$ EOJ

--- where
 nnn is the tape address, and lib.sublib is the library and sublibrary of the catalog.

Step 2: Modify COPYTAPE.JOB

Modify COPYTAPE.JOB to conform with your local naming conventions and set the disk space
parameters before submitting this job.

Step 3: Submit COPYTAPE.JOB

Submit COPYTAPE.JOB to unload all other data sets from the tape to your disk.

Initializing the Adabas Communication Environment
Communication between the Adabas nucleus residing in a VSE partition and the user (either a batch job or
TP monitor such as Com-plete or CICS) in another partition is handled with an Adabas SVC (supervisor
call).

The program ADASIP is used to install the Adabas SVC. The system can run ADASIP to dynamically
install the SVC without an IPL. Special instructions apply when using VSE with the Turbo Dispatcher as
described in the next section below.

For information about messages or codes that occur during the installation, refer to the Adabas Messages
and Codes documentation.

Installing the Adabas SVC with Turbo Dispatcher Support

9

Installation ProcedureInitializing the Adabas Communication Environment

ADASIP Processing

Running ADASIP

Finding an Unused SVC

Loading a Secondary Adabas SVC

ADASIP Execution Parameters

Installing the Adabas SVC with Turbo Dispatcher Support

The Adabas SVC module supports the IBM Turbo Dispatcher environment available with z/VSE 2.1 and
above.

In a Turbo Dispatcher environment, the Adabas SVC runs in parallel mode when entered. Adabas
processes multiple SVC calls made by users in parallel.

ADASIP Processing

To enable Turbo support, ADASIP installs a VSE first-level interrupt handler (ADASTUB) that screens
all SVCs. When ADASTUB finds an Adabas SVC, it passes control directly to the Adabas SVC.

If your system is capable of running the Turbo Dispatcher and you do not want to run a particular SVC
through the Turbo interface, you can set the UPSI flag V to 1 to exclude a particular SVC from use
through the Turbo interface. See the ADASIP UPSI statement.

Effective with Version 7.4 of ADASIP, you can activate the ADABAS SVC with multiple CPUs active by
specifying UPSI C. ADASIP will dynamically de-activate and re-activate the CPUs if required. If multiple
CPUs are active and the UPSI C has not been specified, the following messages will be displayed:

ADASIP60 Only 1 CPU can be active during ADASIP
ADASIP79 Should we stop the CPUs? (yes/no)

Answering yes to this message will allow activation to occur; the CPUs will be dynamically de-activated
and re-activated. Answering no will terminate ADASIP.

The ADASTUB module is installed only once per IPL process. On the first run of a successful ADASIP,
the following set of messages are returned:

ADASIP63 ADASTUB Module Loaded at nnnnnnnn
ADASIP78 VSE Turbo Dispatcher Version nn
ADASIP69 Turbo Dispatcher Stub A C T I V E

When running ADASIP for subsequent Adabas SVC installations, the following message is displayed for
information only:

ADASIP74 Info : Stub activated by previous ADASIP

When dynamically re-installing an Adabas SVC that was previously installed with Turbo Dispatcher
support, execute a SET SDL for the Adabas SVC only. Do not execute the SET SDL for ADANCHOR a
second time.

10

Installing the Adabas SVC with Turbo Dispatcher SupportInstallation Procedure

Note:
Repeated re-installations of an Adabas SVC without an IPL may result in a shortage of 24-bit GETVIS in
the SVA.

Running ADASIP

ADASIP requires a prior SET SDL for the SVC, and therefore must run in the BG partition. To install the
Adabas SVC without an IPL, execute the following JCS in BG.

Notes:

1. When using the EPAT Tape Management System, EPAT must be initialized before running
ADASIP.

2. At execution time, the ADASIP program determines if a printer is assigned to system logical unit
SYSLST. If no printer is assigned, messages are written to SYSLOG instead of SYSLST.

For information about the ADASIP parameters, see the section ADASIP Execution.

To automatically install the Adabas SVC during each IPL, insert the following JCS (or its equivalent) into
the ASI BG JCS procedure immediately before the START of the POWER partition where

nn is the number of IDT entries

suffix is the optional two-byte suffix for the z/VSE SVC name to
be loaded by ADASIP. The previous VSE SVC version
must be linked with a different suffix.

svc is an available SVC number in your z/VSE system to be
used as the Adabas SVC.

volume is the specified volume for the Adabas library.

vrs is the Adabas version/revision/system maintenance level.

Without Turbo Dispatcher Support

The following sample is available in member ADASIP.X:

// DLBL SAGLIB,’ADABAS.V vrs.LIBRARY’
// EXTENT SYS010, volume
// ASSGN SYS010,DISK,VOL= volume,SHR
// LIBDEF PHASE,SEARCH=SAGLIB.ADA vrs
SET SDL
ADASVCvr,SVA
/*
// OPTION SYSPARM=’ svc,suffix’ SVC NUMBER
// UPSI 00000000 UPSI OPTIONS FOR ADASIP
// EXEC ADASIP,PARM=’NRIDTES= nn’

With Turbo Dispatcher Support

The following sample is available in member ADASIPT.X:

11

Installation ProcedureRunning ADASIP

// JOB ADASIPT INSTALL THE ADABAS SVC (TURBO)
// OPTION LOG,NOSYSDUMP
// DLBL SAGLIB,’ADABAS.V vrs.LIBRARY’
// EXTENT SYS010, volume
// ASSGN SYS010,DISK,VOL= volume,SHR
// LIBDEF PHASE,SEARCH=SAGLIB.ADA vrs
SET SDL
ADASVCvr,SVA
ADANCHOR,SVA
/*
// OPTION SYSPARM=’ svc,suffix’ SVC NUMBER
// SETPFIX LIMIT=100K REQUIRED; SEE NOTE 2
// UPSI 00000000 UPSI OPTIONS FOR ADASIP
// EXEC ADASIP,PARM=’NRIDTES= nn’

Notes:

1. A SETPFIX parameter is required with Turbo Dispatcher support to page fix ADASIP at certain
points in its processing. A value of 100K should be adequate.

2. The SET SDL statement for ADANCHOR is required for Turbo Dispatcher support. This is in
addition to the SET SDL statement for ADASVCvr.

Finding an Unused SVC

Adabas requires an entry in the VSE SVC table. To find an unused SVC, use one of the following
methods:

Method 1

Set the S flag specified in the UPSI for ADASIP to create a list of used and unused SVCs in the VSE SVC
table.

Method 2

Obtain a listing of the supervisor being used.

Using the assembler cross-reference, locate the label SVCTAB; this is the beginning of the VSE SVC
table. The table contains a four-byte entry for each SVC between 0 and 150 (depending on the VSE
version).

Locate an entry between 31 and 150 having a value of ERR21. This value indicates an unused SVC table
entry. Use the entry number as input to ADASIP.

Loading a Secondary Adabas SVC

You can optionally specify a suffix to indicate the version of an SVC, as shown in the previous JCS
examples. This allows you to run two different versions of the SVC. Before specifying a suffix, however,
you must have previously linked the second version of the SVC. In addition, you must have performed a
SET SDL operation on the new SVC’s name (for example, ADASVCxx).

To optionally specify a different Adabas SVC using ADASIP, specify the SVC suffix (the last two bytes
in the form, ADASVCxx), as follows:

12

Finding an Unused SVCInstallation Procedure

// OPTION SYSPARM=’ svc,xx’
—where xx is the two-byte suffix of the new SVC.

ADASIP Execution Parameters

This section describes the ADASIP execution parameters.

OPTION SYSPARM= Statement

An optional correction (zap) can be applied to the Adabas ADASIP program to insert the default SVC so
that no SYSPARM need be specified. See the section Applying Zaps.

SVC The Adabas SVC number chosen must be unused by VSE or any other third party
products (see the section Finding an Unused SVC).

SUFFIX An optional two-byte value used to load a new version of the Adabas VSE SVC (see
the section Loading a Secondary Adabas SVC)..

UPSI Statement

// UPSI DSxTVOCG

Setting the UPSI byte is the user’s responsibility. If the UPSI byte is not set, the SVC installation executes
normally.

The UPSI byte is used to select the following options:

Option If option is set to 1

D ADASIP dumps the Adabas SVC and ID table using PDUMP. This
option should be used only after the SVC is installed.

S ADASIP dumps the VSE SVC table and indicates whether each SVC
is used or unused. No SVC number is required when using this
function of ADASIP.

T ADASIP dumps the VSE SVC table and the VSE SVC mode table.

V The SVC is excluded from use through the Turbo interface.

O Override the messages that ask if you wish to stop the processors when
more than one processor is active. If you choose to override, the
processors will be automatically stopped during ADASIP execution
and restarted upon ADASIP termination.

C ADASIP will deactivate and reactivate the CPUs if more than one
CPU is active.

G ADASIP will display SYSTEM GETVIS allocation totals.

13

Installation ProcedureADASIP Execution Parameters

NRIDTES PARM= Option

The size of the ID table default supports up to 10 Adabas targets. However, the ADASIP program will
allow you to increase this number by using this new option of the PARM operand on the EXEC card. To
increase the size of the ID table to nn entries, specify the following when executing ADASIP:

// EXEC ADASIP,PARM=’NRIDTES=nn’

where nn is the number of databases to be supported. Refer to the section Acquiring Storage for the ID
Table for information about calculating the correct value for nn.

DMPDBID PARM= Option

This ADASIP option allows snap dumps of the Adabas command queue for a specified database ID
(DBID). The dump is written to SYSLST. The OPTION SYSPARM statement must specify the SVC
number to perform the snap dump. For example, to perform a snap dump of the database 5 command
queue, issue:

// OPTION SYSPARM=’ svc,suffix’
// EXEC ADASIP,PARM=’DMPDBID=5’

Runtime Display

When ADASIP is run, the ADASIP00 message displays the current system level.

ADASIP00 ...ADABAS V7 VSE SIP STARTED
SIP IS RUNNING UNDER VSE/systype-mode
ADASIP00 ... (yyyy-mm-dd, SM= sm-level, ZAP= zap-level)
ADASIP00 ... SIP IS RUNNING UNDER OSYS LEVEL V nnn
ADASIP00 ... SIP IS LOADING ADABAS SVC LEVEL V nnn
ADASIP00 ... ADASIP IS LOADING ADABAS SVC AMODE= amode

Installing the Adabas Database
This section describes installation of the Adabas database for z/VSE systems. Note that all applicable
early warnings and other fixes must first be applied. For descriptions of any messages or codes that occur,
refer to the Adabas Messages and Codes documentation.

Prepare the Installation Sample JCS for Editing

Modify, Assemble, and Link the Adabas Options Table

Catalog Procedures for Defining Libraries and the Database

Install a New Database

Prepare the Installation Sample JCS for Editing

Note:
This step is only necessary if the library cannot be edited directly.

The following sample installation job is available in member INSTALL.X.

14

Installing the Adabas DatabaseInstallation Procedure

Run the following job to load the installation samples:

* $$ JOB JNM=PUNINST,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* $$ PUN CLASS= p,DISP=D
// JOB PUNINST INSTALL SAMPLES FOR ADABAS
// OPTION LOG
// DLBL SAGLIB,’ADABAS.V vrs.LIBRARY’
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL= volume,SHR
// EXEC LIBR
ACCESS SUBLIB=SAGLIB.ADAvrs
PUNCH ADAPROC.X /* PROCS FOR FILE AND LIBRARY DEFINITIONS */
PUNCH ADAIOOAL.X /* ADABAS OPTIONS TABLE CUSTOMIZATION */
PUNCH ADASIP.X /* ADASIP JOB (NON-TURBO DISPATCHER) */
PUNCH ADASIPT.X /* ADASIP JOB (TURBO DISPATCHER) */
PUNCH ADAFRM.X /* SAMPLE ADAFRM JOB */
PUNCH ADADEF.X /* SAMPLE ADADEF JOB */
PUNCH ADALODE.X /* LOAD DEMO FILE EMPLOYEES */
PUNCH ADALODV.X /* LOAD DEMO FILE VEHICLES */
PUNCH ADALODM.X /* LOAD DEMO FILE MISC */
PUNCH ADANUC.X /* SAMPLE NUCLEUS STARTUP */
PUNCH ADAREP.X /* SAMPLE ADAREP JOB */
PUNCH NATINPL.X /* SAMPLE NATINPL TO INSTALL AOS */
/*
/&
* $$ EOJ

—where
p is the output class for punch
volume is the specified volume for the Adabas library.
vrs is the Adabas version/revision/system maintenance level.

Once the selected members in the INSTALL job are within the local editor facility, the customization can
begin.

Modify, Assemble, and Link the Adabas Options Table

Customize and run job ADAIOOAL to assemble and link the Adabas options table for installation
customization.

The following describes the IORDOSO macro, which must be assembled and linked to the Adabas
sublibrary as PHASE ADAOPD. The member X.ADAIOOAL shipped with Adabas can be used for this
purpose.

IORDOSO Macro Overview
IORDOSO Macro Parameters

IORDOSO Macro Overview

The IORDOSO macro allows you to customize Adabas operation in the following areas:

Loading phases;

IDRC compaction support for 3480 and 3490 tape devices;

15

Installation ProcedureModify, Assemble, and Link the Adabas Options Table

Interfaces to VSE disk space managers such as DYNAM/D;

Interfaces to VSE tape managers such as DYNAM/T

An option controlling how the system writes to fixed block addressing (FBA) devices;

An option to write printer (PRINT and DRUCK) files under either DTFPR or DTFDI control;

GETVIS message printing;

Optional job exit processing;

Options for controlling the creation of VSE JCS with the Adabas Recovery Aid utility ADARAI;

Sequential file processing under VSAM/SAM;

Input device control with SYS000 assignment;

Name of external sort program.

IORDOSO Macro Parameters

CDLOAD

Parameter Description

CDLOAD={ NO | YES }

Determines whether Adabas uses the CDLOAD (SVC 65) or the LOAD
SVC (SVC 4) to load modules.

COMPACT

Parameter Description

COMPACT={ NO | YES }
If a sequential protection log (SIBA) is assigned to a 3480 or 3490 tape
device, COMPACT=YES writes the SIBA in IDRC compaction mode.
The default is COMPACT=NO (no compaction).

DISKDEV

Parameter Description

DISKDEV=devtype

Specifies the device type on which space for sequential files is to be allocated
(see notes 1 and 2).

DISKMAN

16

Modify, Assemble, and Link the Adabas Options TableInstallation Procedure

Parameter Description

DISKMAN={ NO | YES }
Indicates to Adabas that a VSE disk space manager such as
DYNAM/D is active. If DISKMAN=YES is specified, DISKDEV or
DISKSYS must also be specified.

DISKSYS

Parameter Description

DISKSYS=sysnum

When a disk space manager such as DYNAM/D is present, use the DISKSYS
parameter to specify the programmer logical unit (LUB). The specified value,
which can be from 000 to 255, determines the disk device type for the SAM or
VSAM sequential file. There is no default value.

DISKTYP

Parameter Description

DISKTYP=text
This parameter is for information only, and is processed as a comment. The
value text can be up to 16 bytes long.

DTFDI

Parameter Description

DTFDI={ NO | YES }

DTFDI=YES directs the PRINT (SYSLST) and DRUCK (SYS009)
output to be device-independent, causing all ADARUN, ADANUC,
session, statistics, and utility output to be written to where SYSLST or
SYS009 is assigned (printer, disk, or tape). When you specify
DTFDI=YES, the PRTDSYS and PRTRSYS parameters are ignored. If
you specify DTFDI=NO (the default), output is directed using DTFPR.

FBAVRF

Parameter Description

FBAVRF={ NO | YES }

FBA users only: the FBAVRF parameter specifies whether Adabas does
WRITE VERIFY I/O commands, or normal WRITEs. If FBAVRF=YES
is specified, WRITE VERIFY I/Os are performed; the default is normal
WRITE operation.

GETMMSG

17

Installation ProcedureModify, Assemble, and Link the Adabas Options Table

Parameter Description

GETMMSG={ NO | YES }

Determines whether or not VSE ADAIOR GETMAIN (GETVIS)
messages are printed. No printing is the default.

JBXEMSG

Parameter Description

JBXEMSG={ NO| YES | PRT }
The z/VSE parameter JBXEMSG determines whether job exit
utility error messages are printed (JBXEMSG=PRT), displayed
(JBXEMSG=YES, the default), or not presented
(JBXEMSG=NO).

JBXIMSG

Parameter Description

JBXIMSG={ NO | YES | PRT }
The z/VSE parameter JBXIMSG determines whether job exit
utility information messages are printed (JBXIMSG=PRT, the
default), displayed (JBXIMSG=YES), or not presented
(JBXIMSG=NO).

JOBEXIT

Parameter Description

JOBEXIT={ NO | YES }
JOBEXIT=YES activates the Adabas job exit utility, allowing any *
SAGUSER job control statements to override the normal job input.

PFIXRIR

Parameter Description

PFIXRIR={ NO | YES }
Specifies whether or not ADAMPM is page fixed in storage during the
nucleus initialization process.

PRTDSYS

18

Modify, Assemble, and Link the Adabas Options TableInstallation Procedure

Parameter Description

PRTDSYS={ sysnum | SYSLST }
Specifies the programmer logical unit (LUB), and may be any
number 000 - 254. If specified, the sysnum value replaces the
default where the ADARUN messages are printed, which is
SYSLST.

The value specified by sysnum must be assigned in the
partition before running the ADARUN program. For example:

PRTDSYS=050
.
// ASSGN SYS050,PRINTER

PRTRSYS

Parameter Description

PRTRSYS={ sysnum | SYS009 }
Specifies the programmer logical unit (LUB). If specified, this
sysnum value replaces the default where the Adabas utility
(DRUCK) messages are printed, which is SYS009.

RAIDASG

Parameter Description

RAIDASG={ NO | YES }
RAIDASG=YES specifies that the Adabas Recovery Aid (ADARAI) is
to create VSE disk ASSGN statements. Such statements are sometimes
not needed with a VSE disk manager facility.

RAITASG

Parameter Description

RAITASG={ NO | YES }
RAITASG=YES specifies that the Adabas Recovery Aid (ADARAI) is
to create VSE tape ASSGN statements. Such statements are sometimes
not needed with a VSE tape manager facility.

SORTPGM

Parameter Description

SORTPGM={ sortpgm | SORT }
Specifies the name of the external sort program to be invoked
during execution of the Adabas changed-data capture utility
ADACDC. The default name is SORT.

SYS000O

19

Installation ProcedureModify, Assemble, and Link the Adabas Options Table

Parameter Description

SYS000O={ NO | YES }

If SYS000O=NO (the default) is specified, the ADARUN statements
are read normally. If SYS000O=YES is specified, Adabas determines
the correct DTF for opening, depending on where SYS000 is assigned,
as follows:

Medium - SYS000 DTF Type

Card DTFCD
Disk DTFSD
Tape DTFMT

TAPEDEV

Parameter Description

TAPEDEV=devtype

Specifies the tape device type on which sequential files are written (see notes
1 and 3).

TAPEMAN

Parameter Description

TAPEMAN={ NO | YES }
Indicates that a VSE tape manager such as DYNAM/T is active. If
TAPEMAN=YES is specified, TAPEDEV or TAPESYS must also be
specified.

TAPESYS

Parameter Description

TAPESYS=sysnum
When a tape manager such as DYNAM/T is present, this parameter is used to
specify the programmer logical unit (LUB). The specified value, which can be
any value from 000 to 255, determines the tape device type for the sequential
file (see note 1). There is no default value.

TAPETYP

Parameter Description

TAPETYP=text
This parameter is for information only, and is processed as a comment. The
value text can be up to 16 bytes long.

VSAMDEV

20

Modify, Assemble, and Link the Adabas Options TableInstallation Procedure

Parameter Description

VSAMDEV=devtype
Specifies the disk device type on which VSAM/SAM space is to be allocated
(see notes 1 and 2).

VSAMSEQ

Parameter Description

VSAMSEQ={ NO | YES }
Specifies whether sequential files are to be under the control of
VSAM/SAM software. If VSAMSEQ=YES is specified, either
VSAMDEV or VSAMSYS must also be specified.

VSAMSYS

Parameter Description

VSAMSYS=sysnum
Specifies the programmer logical unit (LUB). The specified value, which can
from 000 to 255, determines the device type for the sequential file written to
VSAM/SAM space (see note 1). There is no default value.

Notes:

1. Adabas requires device type information when opening files. However, there may be situations
where the device cannot be determined before the open without additional operations; for example,
when a VSE Disk Space Manager or Tape Manager is active, or when using VSAM/SAM sequential
files. Adabas also determines the block size to be used for sequential I/O areas by device type.

2. Valid disk device types are 3380, 3390, 9345 and FBA.
3. Valid tape device types are 2400, 3410, 3420, 3480, 3490E, 3590, and 8809.

Additional Parameters Used for Internal Control Only

Three additional parameters are also available but are used only for internal control and should not be
changed from their default settings unless otherwise specified by your Software AG technical support
representative:

IORTRAC={NO | YES}
IORTSIZ={3000 | tablesize}
IORTTYP=(1... 14)(, opt1 ... opt14).

Catalog Procedures for Defining Libraries and the Database

Note:
Sample JCS is available in ADAPROC.X

The job ADAPROC is divided into two procedures:

ADAV vLIB defining the library or libraries; and

ADAV vFIL defining the database.

21

Installation ProcedureCatalog Procedures for Defining Libraries and the Database

Customize and catalog the two procedures before placing them back in the procedure library. The
following specific items must be customized:

file IDs for the database and libraries;

volumes for libraries and database files;

space allocation for database files.

The Adabas DEMO database files include ASSO, DATA, WORK, TEMP, SORT, CLOG, and PLOG.

Install a New Database

Follow the steps outlined below to install a new Adabas database under z/VSE.

Notes:

1. For information about running ADADEF ADALOD, ADAREP, and ADASAV in steps 1-3, 5, and 8
below, see the Adabas Utilities documentation.

2. For information about customizing the nucleus job and about starting and terminating the nucleus in
steps 4 and 7 below, see the Adabas Operations documentation.

 to install a new Adabas database

1. Allocate and format the DEMO database

Note:
Sample JCS is available in ADAFRM.X

Customize and run the ADAFRM utility job to format the DEMO database areas. The following
specific items must be customized:

the Adabas SVC number, the database ID, and database device type(s);

sizes of the datasets for each ADAFRM statement.

2. Define the global database characteristics

Note:
Sample JCS is available in ADADEF.X

Customize and run the ADADEF utility job to define the global definition of the database. The
following items must be customized:

the Adabas SVC number, the database ID, and database device type(s);

ADADEF parameters.

3. Load the demonstration (demo) files

Note:
Sample JCS is available in ADALODE.X, ADALODV.X, and ADALODM.X.

22

Install a New DatabaseInstallation Procedure

Customize and run the job

ADALODE to load the sample demo file EMPL;

ADALODV to load the sample demo file VEHI; and

ADALODM to load the sample demo file MISC.

For each job, the following items must be customized:

the Adabas SVC number, the database ID, and database device type(s);

ADALOD parameters.

4. Start the Adabas nucleus and test the Adabas communications

Note:
Sample JCS is available in ADANUC.X.

Customize and run the job JCLNUC to start up the Adabas nucleus. The following items must be
customized:

the Adabas SVC number, the database ID, and device type(s);

ADANUC parameters.

5. Test Adabas partition communications

Note:
Sample JCS is available in ADAREP.X.

Customize and run the job ADAREP in MULTI mode with the CPLIST parameter to test Adabas
partition communications. The following items must be customized:

the Adabas SVC number, the database ID, and device type(s);

ADAREP parameters.

6. Load the Adabas Online System, if used

Note:
Sample JCS is available in NATINPL.X. Read Installing the AOS Demo Version and, if necessary,
the installation section of the Adabas Online System documentation.

Customize and run the job NATINPL to load the Adabas Online System into a Natural system file. A
Natural file must first be created, requiring an INPL input file (see the Natural installation
instructions). The following items must be customized:

the Adabas SVC number, the database ID, and device type(s);

the Natural INPL parameters and system file number.

23

Installation ProcedureInstall a New Database

7. Terminate the Adabas nucleus

Communicate with the Adabas nucleus (MSG Fn) to terminate the session by entering the Adabas
operator command ADAEND into the Adabas nucleus partition.

8. Back up the database

Customize and run the ADASAV utility job to back up the Version sample database. The following
items must be customized:

the Adabas SVC number, the database ID, and device type(s);

ADASAV parameters.

9. Insert the ADARUN defaults

Optionally customize and run the DEFAULTS job to set the ADARUN defaults using the MSHP
utility and to relink ADARUN. The following items may be customized:

SVC number;

database ID;

device type(s).

10. Install the required TP link routines for Adabas

Refer to the section Installing Adabas with TP Monitors for the TP link routine procedure.

See the following Adabas manuals for the related information:

Adabas Utilities documentation for information on running the ADALOD, ADAFRM and ADAREP
utility jobs.

Adabas Operations documentation for information about operator commands for monitoring and
controlling the nucleus.

Migrate an Existing Database
Use the ADACNV utility to migrate existing databases to new releases of Adabas. See the Adabas
Utilities documentation for more information.

Logical Unit Requirements
This section describes the Adabas logical unit requirements.

ADARUN

24

Migrate an Existing DatabaseInstallation Procedure

Logical Unit File Storage Medium

SYSLST PRINT Printer

SYS000 CARD Tape / Disk

SYSRDR CARD Reader

Utility

Logical Unit File Storage Medium

SYS009 DRUCK Printer

SYSIPT KARTE Reader

Nucleus

Logical Unit File Storage Medium

SYSLST PRINT Printer

SYSRDR CARD Reader

The highest logical unit used is SYS038 for the ADASAV utility. The programmer logical units default is
described in the section Device and File Considerations. The system programmer should review these
requirements to ensure that there are enough programmer logical units to run the desired utilities in the
desired partitions.

Job Exit Utility
Adabas provides a job exit to perform two different functions:

Librarian input override processing

The exit scans a job stream for Librarian input override statements. These statements indicate that
card input (ADARUN CARD or utility KARTE statements) for a job step is to come from Librarian
members rather than from SYSRDR or SYSIPT.

ADARAI JCS capture processing

The exit captures JCS before it is modified by tape or disk management systems for later use by
ADARAI.

You can set the job exit to perform either function or both. By default, the job exit performs Librarian
input override processing.

Installation and Initialization

The job exit can be installed during ASI processing or at any time afterward. It is installed in two steps:

25

Installation ProcedureJob Exit Utility

 to install the job exit:

1. Install programs SAGJBXT and SAGIPT in the SVA.

2. Run program SAGINST to initiate job exit processing.

You can include SAGJBXT in the $JOBEXIT list of eligible exits, but you must still place SAGIPT in the
SVA and run SAGINST to allocate the required table(s).

SAGIPT runs above the 16-megabyte line if an appropriate 31-bit PSIZE is available. In addition, the
table that stores information from input-override statements and/or the table that stores JCS for ADARAI
use is placed in 31-bit GETVIS, if available.

SAGINST reads an input parameter that tells it whether to install the Librarian input override processing,
ADARAI JCS capture processing, or both. The following parameter values are valid:

PARM=ADALIB (the default) installs Librarian input override processing
PARM=ADARAI installs ADARAI JCS capture processing

The following sample job control initializes the job exit:

Note:
Sample JCS to initialize the job exit is available in member JBXTINST.X.

* $$ JOB JNM=SAGEXIT,CLASS=0
* $$ LST CLASS=A,DISP=D
// JOB SAGEXIT
// LIBDEF *,SEARCH=SAGLIB.ADA vrs
// EXEC PROC=ADAVvLIB
SET SDL
SAGJBXT,SVA
SAGIPT,SVA
/*
// EXEC SAGINST,PARM=ADARAI,ADALIB
/&
* $$ EOJ

—where vrs is the Adabas version, revision, and system maintenance level.

Librarian Input Override Processing

If Librarian input override processing is specified, the job exit scans a job stream for input override
statements indicating that card input (ADARUN CARD or utility KARTE statements) for a job step is to
come from Librarian members rather than from SYSRDR or SYSIPT. By default, the exit can store a
maximum of 2000 input override cards simultaneously throughout the system. Adabas uses this facility
when processing CARD and KARTE parameters.

Enable Librarian input override processing by adding * SAGUSER control statements to the job control
stream between the // JOB and // EXEC statements.

A * SAGUSER statement can have three keyword parameters: FILE, LIBRARY, and MEMBER.

26

Librarian Input Override ProcessingInstallation Procedure

Keyword Syntax Description

FILE={ CARD | KARTE }
The file to be read from a
Librarian member. Specify
“CARD” for ADARUN
statements, or “KARTE” for
utility statements.

LIBRARY={ library.sublibrary | libdef.source }
The library and sublibrary to be
searched. If omitted, the current
libdef.source chain is used.

MEMBER=name [,{ type | A }]
The member name and
optionally the type to be read. If
type is omitted, “A” is assumed.

The following is an example of a * SAGUSER control statement that specifies an alternate job exit
member:

* SAGUSER FILE=CARD,MEMBER=NUC151

In the example above, Adabas searches the current libdef.source chain for member NUC151 with type A.
If NUC151 is found, Adabas uses its contents as the nucleus startup parameters instead of SYSIPT.

To permit flexible startup processing, multiple SAGUSER statements may be specified for each file. In
the following example, Adabas reads the input parameters first in member NUC151, then in member
IGNDIB:

* SAGUSER FILE=CARD,MEMBER=NUC151
* SAGUSER FILE=CARD,MEMBER=IGNDIB

The following examples show the use of the LIBRARY parameter, and apply to z/VSE systems only:

* SAGUSER FILE=CARD,MEMBER=NUC151,LIBRARY=SAGULIB.TESTSRC

In the example above, Adabas searches sublibrary TESTSRC in the SAGULIB library for member
NUC151 with type A. If NUC151 is not found in sublibrary TESTSRC of library SAGULIB, no further
search is made. The DLBL and EXTENT information for the SAGULIB library must be available.

* SAGUSER FILE=CARD,MEMBER=NUC151.ADARUN,LIBRARY=SAGULIB.TESTSRC

In the example above, Adabas searches sublibrary TESTSRC in the SAGULIB library at nucleus
initialization for member NUC151 with type ADARUN. The library member types PROC, OBJ, PHASE,
and DUMP are not permitted.

Activating Adabas Use of Job Exit Processing

Specify JOBEXIT=YES to allow Adabas to use SAGUSER statements in the job stream and recatalog the
Adabas options table (ADAOPD).

27

Installation ProcedureActivating Adabas Use of Job Exit Processing

Using the Job Exit Utility for ADARAI JCS Capture

Once the job exit utility has been installed for ADARAI, all utilities that write information to the RLOG
automatically obtain file information from the ADARAI table that the job exit maintains. Manual
intervention is not required.

Job Exit Storage Requirements

The job exit requires from 84 to 298 kilobytes (KB) of SVA storage, depending on whether the Librarian
input override interface and/or the ADARAI JCS interface is installed. Of that total,

2 kilobytes are used for program storage (PSIZE);

82-kilobyte GETVIS for Librarian input override storage; and

214-kilobyte GETVIS for ADARAI JCS storage.

When running in ESA or VM/ESA mode on ESA hardware, all of the GETVIS and 1 kilobyte of the
PSIZE can be run above the 16-megabyte line.

Optional Console or Printer Messages

You have the option of displaying, printing, or preventing these messages by specifying the JBXEMSG
and JBXIMSG parameters in the Adabas options table.

Diagnostic Functions

After the job exit is installed, you can produce dumps of the two tables for diagnostic purposes. Executing
SAGINST with the ADASIP UPSI statement:

UPSI 10000000 produces a dump of the Librarian input override table;

UPSI 01000000 produces a dump of the ADARAI JCS table.

If the size of these two tables needs to be changed for any reason, SAGIPT may be zapped before being
loaded into the SDL:

The Librarian input override table size may be changed from the default of X‘00014874’ (84,084
bytes) to an appropriate value by zapping location X‘18’. When altering the SAGIPT.OBJ module,
ESDID=002 is required on the MSHP AFFECTS statement.

The ADARAI JCS table size may be changed from the default of X‘000355D6’ to an appropriate
value by zapping location X‘0C’.

Each element in the Librarian input override table is 42 bytes in length. The default table size assumes 10
SAGUSER statements per file name, 10 file names, and 20 partitions, plus two extra unused entries. This
number is an estimate of maximum concurrent residency; each statement is removed from the table after it
is used.

Each element in the ADARAI JCS table is 91 bytes in length. The default table size accommodates 2400
entries with each DLBL, TLBL, or EXTENT statement requiring an entry in the table. Whenever a JOB
statement is encountered, all entries for that partition (task ID) are cleared from the table.

28

Using the Job Exit Utility for ADARAI JCS CaptureInstallation Procedure

Acquiring Storage for the ID Table
The SYSTEM GETVIS is used to acquire storage for the ID table (IDT). This storage is acquired using
the ADASIP at SVC installation time. The size of storage in the SYSTEM GETVIS depends on the
number of IDT entries specified using ADASIP. The default number of IDT entries (IDTEs) is 10. The
size can be calculated as follows:

SIZE (in bytes) =1024 (IDT prefix) + 96 (IDT header) + (32 x number of IDTEs)
= 1024 + 96 + (32 x 10)
= 1024 + 96 + 320
= 1440 bytes

Also, additional SYSTEM GETVIS storage is acquired. This storage permits users to communicate from
multiple address spaces when Adabas is not running in a shared partition. In this case, the following
formula is used to calculate SYSTEM GETVIS:

SIZE (in bytes) = 192 (CQ header) + (192 x NC value) + (4352 x NAB value)

It may be necessary to increase the SVA size to meet these requirements. To do so, change the SVA
operand in the appropriate $IPLxxx procedure, then re-IPL.

Note:
By default, the SYSTEM GETVIS is acquired above the 16-megabyte line. To acquire most of this space
below the line, linkedit ADARUN AMODE 24.

Acquiring Storage for the IIBS Table
The 31-bit SYSTEM GETVIS is used to acquire storage for the IIBS table (IIBS). This storage is acquired
using the ADASIP at SVC installation time. The size of storage in the 31-bit SYSTEM GETVIS is 128K.

Displaying Storage Allocation Totals
Specifying // UPSIG during the ADASIP execution will generate allocation messages on the system
console, showing the total 24-bit GETVIS and 31-bit GETVIS storage allocated by Adabas:

ADASIP85 GETVIS-24 storage allocated: nnnK
ADASIP85 GETVIS-31 storage allocated: nnnK

Calls from Other Virtual Address Spaces
In the non-shared mode of VSE, you may select whether this nucleus will accept calls from another virtual
address space. The default for a nucleus running in a non-shared partition causes Adabas to accept calls
from partitions in other address spaces, and to acquire storage in the SVA GETVIS area for any required
attached buffers. The buffers hold data moved between the nucleus and users in other partitions in other
address spaces.

However, if you want the nucleus to accept calls from other partitions within the same address space but
not from other address spaces, you must specify the following statement in the Adabas startup JCS:

29

Installation ProcedureAcquiring Storage for the ID Table

// OPTION SYSPARM=’NOSVA’

When NOSVA is specified, storage is acquired within the Adabas nucleus partition and not in the SVA
GETVIS area (except for ID table storage, which is still taken from the SVA). Calls from users in other
partitions in other address spaces will receive an Adabas response code 148, “nucleus not available”.

Dummy Sequential Files
If the file is not needed, it can be unassigned or assigned IGN such as the following:

// ASSGN SYS014,UA
—or
// ASSGN SYS014,IGN

Backward Processing of Tapes and Cartridges
To perform backward processing of tapes or cartridges, file positioning must occur before the file is
opened. This can only be done when an assignment is made for the file. When performing the ADARES
BACKOUT utility function, the // ASSGN ... for file BACK must be done explicitly.

No tape management system can be used, because such systems perform the assign operation when the
file is opened; the LUB and PUB remain unassigned until this occurs.

Applying Zaps (Fixes)
The jobs described in this section can be used to permanently change defaults and apply corrections (zaps)
to the libraries in the supported z/VSE systems.

Two methods are used in z/VSE for applying corrective fixes to Adabas:

the MSHP PATCH facility requires no definition of Adabas as a product/component on the MSHP
history file. This method only alters phases. If the phase is relinked, the zap is lost.

the MSHP CORRECT facility requires the definition of Adabas as a product/component using
MSHP ARCHIVE.

Software AG distributes Adabas zaps to z/VSE users in MSHP CORRECT format and therefore
recommends that you use MSHP CORRECT.

Applying Fixes Using MSHP PATCH

Applying Fixes Using MSHP CORRECT

Link Book Update Requirements for Secondary SVC

Link Book Update Requirements for Running AMODE 24

30

Dummy Sequential FilesInstallation Procedure

Applying Fixes Using MSHP PATCH

A sample job for applying a fix to Adabas using MSHP PATCH is as follows:

Note:
This sample job is available in member MSHPPAT.X.

// JOB PATCH APPLY PATCH TO ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
PATCH SUBLIB=saglib.ADAvrs
AFFECTS PHASE=phasenam
ALTER offset vvvv : rrrr
/*
/&

—where
vrs is the Adabas version/revision/system maintenance (SM) level
saglib is the Adabas library name in procedure ADAV vFIL
phasenam is the Adabas phase to be zapped
offset is the hexadecimal offset into the phase
vvvv is the verify data for the zap
rrrr is the replace data for the zap

Applying Fixes Using MSHP CORRECT

MSHP ARCHIVE

For new users or users with no requirement to maintain multiple versions of Adabas, the following sample
job can be used to define Adabas to MSHP.

Note:
This job uses the history file identified by the IJSYSHF label in the VSE standard label area.

Note:
This sample JCL is available in member MSHPARC.X.

// JOB ARCHIVE ARCHIVE ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
ARCHIVE ADAvrs
COMPRISES 9001-ADA-00
RESOLVES ’SOFTWARE AG - ADABAS Vv.r’
ARCHIVE 9001-ADA-00- vrs
RESIDENCE PRODUCT=ADAvrs -
PRODUCTION=saglib.ADAvrs -
GENERATION=saglib.ADAvrs
/*
/&

—where
vrs is the Adabas version/revision/system maintenance (SM) level
saglib is the Adabas library name in procedure ADAV vFIL

31

Installation ProcedureApplying Fixes Using MSHP PATCH

Starting with Version 7.1, a different MSHP history file must be used for each version and revision level
of Adabas to which maintenance is applied.

To preserve the MSHP environment of an older version level of Adabas during an upgrade to a new
version, it is necessary to create an additional MSHP history file for use by the new version.

The following sample MSHP job can be used to create an additional history file for a new version of
Adabas and define Adabas to it.

Note:
This sample JCL is available in member MSHPDEF.X.

// JOB ARCHIVE DEFINE HISTORY AND ARCHIVE ADABAS
// OPTION LOG
// EXEC PROC=ADAVvLIB
// ASSGN SYS020,DISK,VOL= volhis,SHR
// EXEC MSHP
CREATE HISTORY SYSTEM
DEFINE HISTORY SYSTEM EXTENT=start:numtrks -
UNIT=SYS020 -
ID=’ adabas.new.version.history.file’
ARCHIVE ADAvrs
COMPRISES 9001-ADA-00
RESOLVES ’SOFTWARE AG - ADABAS Vv.r’
ARCHIVE 9001-ADA-00- vrs
RESIDENCE PRODUCT=ADAvrs -
PRODUCTION=saglib.ADAvrs -
GENERATION=saglib.ADAvrs
/*
/&

—where
vrs is the Adabas version/revision/system maintenance (SM) level
volhis is the volume on which the Adabas V vr history file resides
start is the start of the extent on which the Adabas Vvr history file resides
numtrks is the length of the extent on which the Adabas V vr history file resides
adabas.new.version.history.file is the physical name of the Adabas V vr history file
saglib is the Adabas library name in procedure ADAV vFIL

Once migration to the new version is complete, you can either

continue to use the new history file to apply subsequent fixes; or

delete the old version of Adabas from MSHP and merge the new version into the standard MSHP
history file.

Caution:
Before running any MSHP REMOVE or MERGE jobs, back up your MSHP environment by running
MSHP BACKUP HISTORY jobs against all MSHP history files.

A sample MSHP job to remove an old version of Adabas is provided below.

Note:
This sample JCL is available in member MSHPREM.X.

32

Applying Fixes Using MSHP CORRECTInstallation Procedure

// JOB REMOVE REMOVE OLD ADABAS
// OPTION LOG
// PAUSE ENSURE MSHP HISTORY FILE BACKUP HAS BEEN TAKEN
// EXEC MSHP
REMOVE ADAvrs
REMOVE 9001-ADA-00- vrs
/*
/&

—where vrs is the old Adabas version/revision/system maintenance (SM) level.

A sample MSHP job to merge an additional history file for Adabas into the standard MSHP history file is
provided below.

Note:
This sample JCL is available in member MSHPMER.X.

// JOB MERGE MERGE SEPARATE ADABAS INTO STANDARD HISTORY
// OPTION LOG
// PAUSE ENSURE MSHP HISTORY FILE BACKUPS HAVE BEEN TAKEN
// ASSGN SYS020,DISK,VOL= volhis,SHR
// EXEC MSHP
MERGE HISTORY AUX SYSTEM
DEFINE HISTORY AUX EXTENT=start:numtrks -
UNIT=SYS020 -
ID=’ adabas.new.version.history.file’
/*
/&

—where
volhis is the volume on which the Adabas Vvr history file resides
start is the start of the extent on which the Adabas V vr history file resides
numtrks is the length of the extent on which the Adabas V vr history file resides
adabas.new.version.history.file is the physical name of the Adabas V vr history file

MSHP CORRECT

The MSHP CORRECT and UNDO jobs use the history file identified by label IJSYSHF in the VSE
standard label area. If Adabas is maintained from a different MSHP history file, include the following
label information in the CORRECT or UNDO job:

// DLBL IJSYSHF,’ adabas.new.version.history.file’
// EXTENT SYS nnn
// ASSGN SYS nnn,DISK,VOL= volhis,SHR

—where
volhis is the volume on which the Adabas V vr history file resides
nnn is the user-defined SYS number
adabas.new.version.history.file is the physical name of the Adabas V vr history file

A sample of the use of MSHP CORRECT to install a fix to Adabas is provided below.

Note:
This sample JCL is available in member MSHPCOR.X.

// JOB CORRECT APPLY ADABAS FIX
// OPTION LOG
// EXEC PROC=ADAVvLIB
// EXEC MSHP
CORRECT 9001-ADA-00- vrs : A xnnnnn

33

Installation ProcedureApplying Fixes Using MSHP CORRECT

AFFECTS MODE=modname
ALTER offset vvvv : rrrr
INVOLVES LINK= lnkname
/*
/&

—where
vrs is the Adabas version/revision/system maintenance (SM) level
x is the Adabas component (for example, N for nucleus)
nnnnn is the Adabas fix number
modname is the Adabas object module to be zapped and then relinked
offset is the hexadecimal offset to the beginning of the zap
vvvv is the verify data for the zap
rrrr is the replace data for the zap
lnkname is the link book for the phase affected

The CORRECT job updates object and phase in a single job step using the link book feature of MSHP.
The INVOLVES LINK= statement automatically invokes the linkage editor after the object module is
updated.

For a zap applied with the INVOLVES LINK= statement, the following UNDO can be used to remove the
fix from both object module and phase:

Note:
This sample JCL is available in member MSHPUND.X.

// EXEC MSHP
UNDO 9001-ADA-00- vrs : A xnnnnn
/*

—where
vrs is the Adabas version/revision/system maintenance (SM) level
x is the Adabas component (for example, N for nucleus)
nnnnn is the Adabas fix number

Adabas provides a link book containing parameters for invoking the linkage editor for each Adabas phase.
The name of each link book begins with LNK-/ESA and includes the type OBJ in the following format:

LNKaaaaa.OBJ
—where aaaaa (3 to 5 characters) is underlined in the following list for each Adabas phase:

Note:
Link books are not provided for ADAOPD or for TP monitor links. These programs are distributed in
source form and continue to be modified using assembly and link jobs.

$$BADAS5 ADALCO ADAMPM ADAORD ADASVCMP
ADAACK ADALNK ADAMSG ADAPCS ADATRA
ADANCHOR ADALNKR ADAMXA ADAPLP ADATRC
ADABSP ADALOD ADAMXB ADAPMT ADATRI
ADACCS ADALOE ADAMXD ADAPOB ADATSP
ADACDC ADALOF ADAMXF ADAPOK ADAULD
ADACLX ADALOG ADAMXH ADAPOP ADAUSER
ADACLU ADAMER ADAMXI ADAPOV ADAVAL
ADACMO ADAMGA ADAMXL ADAPRF ADAZAP
ADACMP ADAMGB ADAMXO ADAPRI AFPADA
ADACMR ADAMGC ADAMXR ADAPSM AOSASM
ADACMU ADAMGD ADAMXT ADAPST AVIADA
ADACNS ADAMGE ADAMXU ADARAC AVILOOK
ADACNV ADAMGI ADAMXY ADARAG NOAUTOR (NAU)
ADACOM ADAMGM ADAMXZ ADARAI NOOPRSP (NOP)

34

Applying Fixes Using MSHP CORRECTInstallation Procedure

ADACON ADAMGN ADANCA ADAREP PINRSP (PNR)
ADACOT ADAMGR ADANCB ADARES PINUES (PNU)
ADACVC ADAMG0 ADANCC ADAREX PRILOG (PRL)
ADADBS ADAMG1 ADANCX ADARMT SAGINST
ADADCK ADAMG2 ADANC0 ADARST SAGIPT
ADADEC ADAMG3 ADANC1 ADARUN SAGJBXT
ADADEF ADAMG4 ADANC2 ADARVU STPEND
ADADSP ADAMG5 ADANC3 ADASAV STPNAT
ADAECS ADAMG6 ADANC4 ADASCR STPUES
ADAFDP ADAMG7 ADANC5 ADASEL USEREX2
ADAFRM ADAMG8 ADANC6 ADASIP WTOVSE
ADAICK ADAMG9 ADANC7 ADASQD
ADAINV ADAMIM ADANC8 ADASQR
ADAIOR ADAMLF ADANC9 ADASTUB
ADAIOS ADAMOD ADAOPD ADASVC74

If you choose not to take advantage of the link book facility, remove the INVOLVES LINK= statement
from any zap before applying it. You can then run the linkage editor step to recreate the phase separately,
as before.

This may be done to link a temporary version of a phase into a separate sublibrary for testing purposes.
However, it is also possible to maintain a separate test version of Adabas modules by defining an
additional VSE system history file. See Maintaining a Separate Test Environment in VSE.

Link Book Update Requirements for Secondary SVC

If you use the link book facility and require a non-standard SVC suffix (for example, if you relink the
Adabas 7.4 SVC to phase ADASVC11), you must remember to update the link book for the SVC
(LNKSVC.OBJ) to reflect the new phase name.

The link book provided for ADASVC74 is LNKSVC.OBJ. It contains the following:

PHASE ADASVC74,*,NOAUTO,SVA
MODE AMODE(31),RMODE(24)
INCLUDE SVCVSE
INCLUDE LCTVSE
ENTRY ADASVC

To set up an SVC with suffix -11, you would need to update the link book as follows:

// DLBL SAGLIB,’ adabas.Vvrs.library’
// EXTENT SYS010
// ASSGN SYS010,DISK,VOL= volser,SHR
// EXEC LIBR
ACCESS SUBLIB=SAGLIB.ADAvrs
CATALOG LNKSVC.OBJ REPLACE=YES
PHASE ADASVC11,*,NOAUTO,SVA
MODE AMODE(31),RMODE(24)
INCLUDE SVCVSE
INCLUDE LCTVSE
ENTRY ADASVC
/+
/*

—where
vrs is the Adabas version/revision/system maintenance (SM) level
adabas.Vvrs.library is the physical name of the Adabas vrs library
volser is the volume on which the library resides

35

Installation ProcedureLink Book Update Requirements for Secondary SVC

Link Book Update Requirements for Running AMODE 24

If you use the link book facility and require AMODE 24 versions of any modules linked by default as
AMODE 31 (ADARUN, ADASVC74), you must update the corresponding link book (LNKRUN.OBJ,
LNKSVC.OBJ) to remove the MODE statement.

This link book update can be made using a method similar to that described in the previous section for the
SVC suffix update.

Optional z/VSE User Zaps
The following table describes the changes (zaps) currently available for Adabas:

Zap Module Offset VER REP Description

1 ADAUSER 0102 4700 47F0 Use VSE LOAD (SVC 4) instead of CDLOAD
(SVC 65) when loading ADARUN (see note 1).

2 WTOVSE 0104 4700 47F0 Suppress DUMP (JDUMP) when an error occurs
in loading ADARUN.

3 RUNVSE 10FC 4700 47F0 Use VSE LOAD (SVC 4) instead of CDLOAD
(SVC 65) when loading Adabas modules.

4 LNKVSE 01F2 4700 47F0 Suppress DUMP (JDUMP) when an error occurs
in ADALNK.

5 SIPVSE 0030 0A00 0AXX Insert the default ADASIP SVC. XX is the
hexadecimal SVC number.

Notes:

1. When executing in AMODE=31 and RMODE=ANY, CDLOAD must be used; this zap cannot be
installed.

2. Optional zaps for ADAUSER, WTOVSE, and RUNVSE require ESDID=002 on the respective
MSHP AFFECTS statements.

Adalink Considerations
User Exit B (Pre-Command) and User Exit A (Post-Command)

LNKUES for Data Conversion

ADAUSER Considerations

User Exit B (Pre-Command) and User Exit A (Post-Command)

One or two user exits may be linked with an Adalink routine:

UEXITB receives control before a command is passed to a target with the router 04 call.

36

Optional z/VSE User ZapsInstallation Procedure

Note:
Special commands emanating from utilities and from Adabas Online System are marked as physical
calls. These calls must be bypassed in user exits. These calls have X‘04’ in the first byte (TYPE field) of
the command’s Adabas control block (ACB). UEXITB must check this byte and return if it is set to X‘04’.
Be sure to reset R15 to zero on return.

UEXITA receives control after a command has been completely processed by a target, the router, or
by the Adalink itself.

At entry to the exit(s), the registers contain the following:

Register Contents

1 Address of the UB.

If the flag bit UBFINUB is reset, the contents of the halfword at
Adabas + X’86’ have been moved to UBLUINFO. If those
contents are greater than zero, the two bytes starting at UBINFO
(UB+X’40’) have been set to zero.

If UBFINUB is set, no changes can be made to the UB or ACB
(except for ACBRSP).

2 Address of a 16-word save area (for ADALNC only)

13 Address of an 18-word save area (for non-CICS Adalink exits)

14 Return address

15 Entry point address: UEXITB or UEXITA

Any registers except register 15 that are modified by the user exits must be saved and restored; the address
of a save area for this purpose is in register 13.

If at return from UEXITB register 15 contains a value other than zero (0), the command is not sent to the
target but is returned to the caller. The user exit should have set ACBRSP to a non-zero value to indicate
to the calling program that it has suppressed the command: response code 216 is reserved for this purpose.

The UEXITB exit may set the UB field UBLUINFO to any lesser value, including zero; an abend occurs
if the user exit sets UBLUINFO to a greater value. The UBLUINFO length cannot be changed when any
other exit is used.

The user information received by a UEXITA exit may have been modified; this modification may include
decreasing its length, possibly to zero, by any of the Adalink user exits.

An Adalink routine can return the following non-zero response codes in ACBRSP:

Response Code Description

213 No ID table

216 UEXITB suppressed the command

218 No UB available

37

Installation ProcedureUser Exit B (Pre-Command) and User Exit A (Post-Command)

At least the following three equates, described at the beginning of the source, can be modified before an
Adalink routine is assembled. In some Adalink routines, however, the corresponding information can be
zapped:

Equate Description

LOGID The default logical ID, ranging in value from 1 to 65535. The default
is 1.

LNUINFO The length of the user information to be passed to Adalink user exits,
ranging in value from 0 to 32767. The default is 0.

SVCNR The Adabas SVC number; its range of values and the default depend
on the operating system. This value can be provided as SYSPARM
value for assembly of the following Adalink routine:

//EXEC PGM=ass,PARM=‘......,SYSPARM(svcnr)’

The first 152 (X’98’) bytes of all Adabas Adalinks must maintain the following structure:

Offset Label Contents Meaning

00 ADABAS Entry code

12 CL6’ADALN x’ Program name

18 XL4’ yyyymmdd’ Assembly date

1C A(ZAPTAB) Address of zap table

20 PATCH XL96’00’ Patch area

80 LNKLOGID AL2(LOGID) Default logical ID (default: 1)

82 82 XL2’00’ Reserved

84 LNKSVC SVC SVCNR Executable SVC instruction for Adabas SVC
(default: operating-system-dependent)

86 LUINFO Y(LNUINFO) Length of user information (default: 0)

88 VUEXITA V(UEXITA) Address of user exit after call (weak)

8C VUEXITB V(UEXITB) Address of user exit before call (weak)

90 ADABAS51 CL8’ADABAS51’ IDT ID

LNKUES for Data Conversion

The Adabas Version 7 standard batch ADALNK is delivered with UES (Universal Encoding Support).
The LNKUES module, as well as the modules ASC2EBC and EBC2ASC, are linked into the standard
batch ADALNK. LNKUES converts data in the Adabas buffers and byte-swaps, if necessary, depending
on the data architecture of the caller.

Prior to Version 7, Entire Net-Work converted all data for mainframe Adabas. When Entire Net-Work
Version 5.5 and above detects that it is connected to a target database that converts data, it passes the data
through without converting it.

38

LNKUES for Data ConversionInstallation Procedure

LNKUES is called only on ADALNK request (X’1C’) and reply (X’20’) calls if the first byte of the
communication ID contains X’01’ and the second byte does not have the EBCDIC (X’04’) bit set.

For requests, LNKUES receives control before UEXITB.

For replies, LNKUES receives control after UEXITA.

By default, two translation tables are linked into LNKUES/ADALNK:

ASC2EBC: ASCII to EBCDIC translation; and

EBC2ASC: EBCDIC to ASCII translation.

Note:
It should only be necessary to modify these translation tables in the rare case that some country-specific
character other than "A-Z a-z 0-9" must be used in the Additions 1 (user ID) or Additions 3 field of the
control block.

If you prefer to use the same translation tables that are used in Entire Net-Work:

in ASC2EBC and EBC2ASC, change the COPY statements from UES2ASC and UES2EBC to
NW2ASC and NW2EBC, respectively.

re-assemble the translation tables and re-link LNKUES/ADALNK.

Both the Adabas and Entire Net-Work translation table pairs are provided in the section Translation
Tables. You may want to modify the translation tables or create your own translation table pair. Be sure to
(re)assemble the translation tables and (re)link LNKUES/ADALNK.

The following is a sample job for (re)linking ADALNK with LNKUES and the translation tables:

*
// JOB ...
// EXEC PROC=
// LIBDEF *,SEARCH=(search-chain-library.sublib ...)
// LIBDEF PHASE,CATALOG=(lib.sublib)
PHASE ADABAS,*
MODE AMODE(31),RMODE(24)
INCLUDE ADALNK
INCLUDE LNKUES
INCLUDE ASC2EBC
INCLUDE EBC2ASC
ENTRY ADABAS
// EXEC LNKEDT

The (re)linked ADALNK must be made available to Entire Net-Work. If you are calling Adabas version 7
and you do not have the correct LNKUES/ADALNK module, Adabas produces unexpected results:
response code 022, 253, etc.

ADAUSER Considerations

ADAUSER is a program that links the user to Adabas. It is specific to an operating system and is
independent of release level and mode. It can be used in batch and in some TP environments.

39

Installation ProcedureADAUSER Considerations

ADAUSER contains the entry point ADABAS and should be linked with all user programs that call
Adabas. No other programs containing the CSECT or entry point name ADABAS can be linked in these
load phases.

On the first Adabas call, ADAUSER (CDLOAD) loads the latest version of ADARUN. This makes the
calling process release-independent. Subsequent Adabas calls bypass ADARUN.

ADARUN processes its control statements. For the ADARUN setting PROGRAM=USER (the default),
ADARUN loads the appropriate TP Adalink if the ADARUN parameter setting MODE=MULTI is
specified, or the Adabas nucleus (ADANUC) if the ADARUN parameter setting MODE=SINGLE is
specified. This makes the calling process mode independent.

Setting Defaults in ADARUN
The member DEFAULTS.X is available for setting the ADARUN defaults.

DEFAULTS.X uses MSHP CORRECT to install the fix.

Default Name Current Value

Device type 3380

SVC number 45

Database ID 1

40

Setting Defaults in ADARUNInstallation Procedure

	Installation Procedure
	Installation Checklist
	Preparing to Install Adabas
	Disk Space Requirements for Libraries
	Disk Space Requirements for the Database
	Datasets Required for UES Support
	Disk Space Requirements for Internal Product Datasets
	Adabas Nucleus Partition/Address Space Requirements
	Defining the Library
	Defining a VSAM Library
	Defining a Non-VSAM Library

	Restoring the ADAvrs LIBR File
	Using the ADAvrs LIBR File
	Storage Above or Below the 16-MB Limit
	User Program Execution in AMODE=31 and RMODE=ANY

	Installing Adabas in a VSE VM Guest System

	Installing the Release Tape
	Step 1: Copy Data Set COPYTAPE.JOB From Tape To Disk
	Step 2: Modify COPYTAPE.JOB
	Step 3: Submit COPYTAPE.JOB

	Initializing the Adabas Communication Environment
	Installing the Adabas SVC with Turbo Dispatcher Support
	ADASIP Processing
	Running ADASIP
	Without Turbo Dispatcher Support
	With Turbo Dispatcher Support

	Finding an Unused SVC
	Method 1
	Method 2

	Loading a Secondary Adabas SVC
	ADASIP Execution Parameters
	OPTION SYSPARM= Statement
	UPSI Statement
	NRIDTES PARM= Option
	DMPDBID PARM= Option
	Runtime Display

	Installing the Adabas Database
	Prepare the Installation Sample JCS for Editing
	Modify, Assemble, and Link the Adabas Options Table
	IORDOSO Macro Overview
	IORDOSO Macro Parameters
	CDLOAD
	COMPACT
	DISKDEV
	DISKMAN
	DISKSYS
	DISKTYP
	DTFDI
	FBAVRF
	GETMMSG
	JBXEMSG
	JBXIMSG
	JOBEXIT
	PFIXRIR
	PRTDSYS
	PRTRSYS
	RAIDASG
	RAITASG
	SORTPGM
	SYS000O
	TAPEDEV
	TAPEMAN
	TAPESYS
	TAPETYP
	VSAMDEV
	VSAMSEQ
	VSAMSYS
	Additional Parameters Used for Internal Control Only

	Catalog Procedures for Defining Libraries and the Database
	Install a New Database

	Migrate an Existing Database
	Logical Unit Requirements
	
	ADARUN
	Utility
	Nucleus

	Job Exit Utility
	Installation and Initialization
	Librarian Input Override Processing
	Activating Adabas Use of Job Exit Processing
	Using the Job Exit Utility for ADARAI JCS Capture
	Job Exit Storage Requirements
	Optional Console or Printer Messages
	Diagnostic Functions

	Acquiring Storage for the ID Table
	Acquiring Storage for the IIBS Table
	Displaying Storage Allocation Totals
	Calls from Other Virtual Address Spaces
	Dummy Sequential Files
	Backward Processing of Tapes and Cartridges
	Applying Zaps (Fixes)
	Applying Fixes Using MSHP PATCH
	Applying Fixes Using MSHP CORRECT
	MSHP ARCHIVE
	MSHP CORRECT

	Link Book Update Requirements for Secondary SVC
	Link Book Update Requirements for Running AMODE 24

	Optional z/VSE User Zaps
	Adalink Considerations
	User Exit B (Pre-Command) and User Exit A (Post-Command)
	LNKUES for Data Conversion
	ADAUSER Considerations

	Setting Defaults in ADARUN

