Installing Adabas With TP Monitors Installing Adabas With TP Monitors

Installing Adabas With TP Monitors

This section provides information needed to install Adabas for the teleprocessing (TP) monitors shown in
the table below. Information about using Adabas with TP monitors is contained in other sections as well,
particularly in the sections describing Adabas installation by operating system.

Platform TP Monitor TP Monitor / Adalink

Fuijitsu, Ltd. AIM/DC ADALNA / ADALND

(FACOM)

IBM z/OS CICS command-level LNKOLSC / LNKOLM

IBM z/OS CICS high-performance |LNCSTUB

stub

IBM z/OS Com-plete ADALCO

IBM IMS IMS/DC ADALNI / ADALNK

IBM z/OS Shadow ADALNS

IBM z/OS Batch / TSO ADALNK /
ADALNKR

e Installing Adabas with AIM/DC

® Preparing Adabas Link Routines for IBM Platforms
e |[nstalling Adabas with CICS

e |nstalling the CICS High-Performance Stub Routine
e |Installing Adabas with Com-plete

e |nstalling Adabas with IMS

e Installing Adabas with Shadow

e |nstalling Adabas with Batch / TSO

Installing Adabas with AIM/DC

This section describes installation of the Fujitsu (FACOM) AIM/DC TP monitor with Adabas.

Installing Adabas With TP Monitors Preparing Adabas Link Routines for IBM Platforms

LSER PROGRAM
LOAD ADALNA

Calling Adabas

ADALND

The job AIMASM is provided for assembling the source members ADALNA and ADALND, the
AIM/DC-dependent link routines. You must first customize the JCL for AIMASM to select the MVS
operating system MACLIB (SYS1.MACLIB) containing the LOAD macro.

Before AIMASM can be run, ADALNA must be customized to select the following options:

Option Value Specify ...
SVCNR |249 |nn the value of the MSP SVC number. The default value is R49.
LOGID 1|nn the value of the default logical database ID in the range

1-255. The default value is 1.

NUBS 50 |nn the value for the number of UBs (user blocks) to be created
by ADALNA. This value must be high enough to handle the
maximum possible number of concurrent Adabas requests.
The default value is 50.

Note:

The modules ADALNA and ADALND are linked together to form ADALNA.

Preparing Adabas Link Routines for IBM Platforms

This section describes the preparation of Adabas link routines for TP monitors for IBM platforms.
e High-Level Assembler
® Addressing Mode Assembly Directives

® UES-Enabled Link Routines

High-Level Assembler

The IBM high-level Assembler is required when assembling the Adabas link routines for TP monitors.
The high-level Assembler generates 4-digit year assembly dates into the load modules using the
&SYSDATC assembly variable. The older Assemblers H and F do not support 4-digit year assembly
dates.

Addressing Mode Assembly Directives Installing Adabas With TP Monitors

It is possible to assemble the Adabas link routines without the high-level Assembler, either as is (ignore
the assembly error), or with the &SYSDATC variable changggygmmddany valid 4-byte unsigned
decimal assembly date whergyyis a 4-digit yearmmis a 2-digit month, andd is a 2-digit day. The
assembly date field is restricted to 4 bytes in the load module.

Addressing Mode Assembly Directives

The Adabas link routines now have AMODE and RMODE assembly directives in the source. These allow
the linkage editor to produce warning messages when conflicting AMODE or RMODE linkage-editor
control statements are encountered in the link JCL, JCS, or EXECs.

These assembly directives also serve to document the preferred AMODE and RMODE for each link
routine. It is important to note that in and of themselves, these directives do not alter the actual addressing
mode of the link routine during execution.

The batch/TSO link routine ADALNK has the following AMODE and RMODE assembly directives:

ADABAS AMODE 31
ADABAS RMODE 24

For the CICS and IMS link routines (modules LNKOLM, LNKOLSC, and ADALNI) the directives are

ADABAS AMODE 31
ADABAS RMODE ANY

Modifying the Assembly Directives

These directives may be changed by modifying the source members before assembling them, or they may
be overridden by linkage editor control statements. For example, to link the batch/TSO ADALNK module
with AMODE 31 and an RMODE of ANY, the following control statements may be provided as input to

the linkage editor:

MODE AMODE(31),RMODE(ANY)
ENTRY ADABAS
NAME ADALNK(R)

The linkage editor control statements override the Assembler directives in the source module.

Note:

Future releases of the Adabas link routines may require an AMODE of 31 and an RMODE of ANY to
function properly in the z/OS environment. Software AG strongly recommends that you evaluate
application programs and update them to conform to this standard.

For more information about the AMODE and RMODE directives and their effects on the assembler,
linkage editor, and execution, consult tB& MVS/ESA Extended Addressabil@yide.

UES-Enabled Link Routines

For Adabas Version 7.4, UES is enabled by default for the batch/TSO, Com-plete, and IMS link routines.
It is not necessary to disable UES support. Applications that do not require UES translation continue to
work properly even when the UES components are linked with the Adabas link routines. See the section
Connecting UES-Enabled Databages more information.

Installing Adabas With TP Monitors Installing Adabas with CICS

Disabling UES Support

However, if for some reason you feel it necessary to disable UES support in the Adabas link routines, use
the following procedure to do so:

1. Edit the source member ADALCO, ADALNI, ADALNK, or ADALNKR. Set the &UES Boolean
assembler variable to 0 by commenting out the source line where it is set to 1 and removing the
comment from the line where it is set to 0.

2. Assemble the link routine after making any other necessary modifications to the equates and other
directives in the source module as required by your installation.

3. Link the Adabas link routine and do not include any of the UES components (that is, LNKUES,
ASC2EBC, or EBC2ASC).

Installing Adabas with CICS

CICS/ESA 3.2 and above for z/OS environments must run a current version of Adabas and use the
command-level link component. The macro-level link routine ADALNC is no longer supported in this
environment.

The Adabas command-level link routine supports the CICS transaction server (CTS) environment.
Notes:

1. The OPID option for the USERID field is not supported under CICS/ESA 3.2 and above; therefore, it
is not provided with the command-level link routine.
2. When running under CICS 4.1, the CICS components from Adabas 5.3.3 or above are required.

The following sections describe specific points of Adabas/CICS installation and operation from the CICS
perspective:

® Adabas Bridge for VSAM Considerations

e CICS MRO Environment Requirements

e Using CICS Storage Protection

e Standard Versus Enhanced Installation

e | NKENAB and LNKTRUE Modules

® JCL and Source Members

® Sample Resource Definitions

e Modifying Source Member Defaults (ADAGSET Macro)

® |nstallation Procedure

Adabas Bridge for VSAM Considerations Installing Adabas With TP Monitors

Adabas Bridge for VSAM Considerations

If you are running Adabas Bridge for VSAM 4.2 or 5.1 under CICS, you must run CICS 3.3 or above and
the Adabas Version 7.1 or above command-level link routine.

Note:
Adabas Bridge for VSAM Version 4.1.1 must use the Adabas command-level link routine included in the
AVB 4.1.1 source library.

CICS MRO Environment Requirements

If you run the Adabas CICS command-level link routine with the CICS multiple region option (MRO),
you must set the ADAGSET option MRO=YES and use the default value for the ADAGSET NETOPT
option.

You can use the ADAGSET NTGPID option to provide a 4-byte literal for the Adabas communication 1D
to be used by the Adabas SVC when applications that call Adabas span multiple application regions.

Alternatively, you can create a user exit B (UEXITB) for the link routine that
® sets UBFLAGL1 (byte X'29’ in the UB DSECT) to a value of X’08" (UBF1IMSR); and
® places a 4-byte alphanumeric value in the UB field UBIMSID.

The exit then allows the Adabas SVC to provide a proper Adabas communication ID in the Adabas
command queue element (CQE) even when transactions originate in multiple regions.

Using CICS Storage Protection

The storage protection mechanism (STGPROT) was introduced under CICS/ESA 3.3. Storage protection
permits resources to access either CICS or user storage by using the storage protection keys. Resources
defined to operate in

® user key may not overwrite CICS storage, thus affording a degree of protection to CICS.

® CICS key may read or write either CICS or user key storage, affording the highest degree of access
to CICS resources.

To use storage protection with Adabas, you must either
e use the task-related user exit (ADAGSET TRUE=YES); or
e define the Adabas link routine with EXECKEY(CICS) in RDO.

Software AG recommends using the task-related user exit.

Standard Versus Enhanced Installation

All supported versions of the command-level link routine can be installed using the standard installation,
which comprises steps 1 through 3 of iin&tallation procedure

Installing Adabas With TP Monitors Standard Versus Enhanced Installation

Steps 4 and 5 are required in order to use the enhanced features of the command-level link routine:
e CICS transaction isolation;
® ADASAF under CICS 4.1 or above; and
® an operationally reentrant command-level link after initialization.

Step 6 is used to install the optional DISPGWA program. The DISPGWA program is only available with
the enhanced installation.

The enhanced installation is required if
® Adabas SAF Security (ADASAF) is being used under CICS 4.1 or above;
e CICS transaction isolation is used;

® Adabas Bridge for VSAM is used (Version 4.1 uses a separate command-level link routine included
in the AVB Version 4.1 source library; Versions 4.2 and 5.1 use the same routine as Adabas); or

e the DISPGWA storage display program is used.
CICS Transaction Isolation

The enhanced Adabas CICS command-level link components take advantage of the transaction isolation
facility provided by CICS/ESA 4.1 when running with specific hardware under z/OS.

Transaction isolation is an extension of the storage protection mechanism. It further protects CICS
resources by isolating them in subspaces. This protects user key resources from one another, and protects
CICS key resources from the CICS kernel.

Transaction isolation can be enabled globally through the TRANISO system initialization (SIT)
parameter, and for each CICS transaction with the new resource definition ISOLATE keyword.

Transaction isolation places some restrictions on CICS resources that must be available both during the
life of the CICS system and to all transactions running in the CICS system.

The Adabas CICS command-level link components must be defined to CICS with the proper storage
access to ensure proper operation when transaction isolation is active:

® The Adabas CICS command-level link routine, comprising the LNKOLSC, LNKOLM, and CICS
entry and exit code, must be defined to CICS as a “user key” program.

e The LNKTRUE and LNKENAB (ADATRUE and ADAENAB) programs must both be defined as
“CICS key” programs.

This permits the correct degree of isolation between applications invoking the link routine and the Adabas
CICS task-related user exit (TRUE), which interacts directly with CICS resources.

When CICS transaction isolation is active, user SVCs cannot execute from the CICS region. SVCs can be
executed in CICS key, however, during the PLT phase of the CICS startup and termination. For this
reason, the module LNKENAB is provided to execute during the PLTPI phase of CICS initialization.

LNKENAB and LNKTRUE Modules Installing Adabas With TP Monitors

ADASAF and CICS 4.1

The Adabas SAF Security (ADASAF) module resides in the Adabas nucleus region to handle the
authorization of Adabas resources.

Under CICS 4.1, this module depends on the external security identifier (user sign-on) being extracted
from the access control environment element (ACEE) in the caller’'s address space, and being passed on to
Adabas by the SVC.

Under CICS 4.1, the command-level link routine must utilize a CICS task-related user exit to extract the
external security identifier from the ACEE. The Adabas task-related user exit in the module LNKTRUE
has been included in Adabas for this purpose.

Note:
The Adabas task-related user exit LNKTRUE is not required for ADASAF under CICS versions prior to
4.1.

Operationally Reentrant Link Routine after Initialization

The Adabas command-level link routine is operationally reentrant and not self-modifying after
initialization. During execution, a CICS global work area (GWA) is obtained and passed to the
command-level link, which uses the GWA to store addresses. This feature is available for CICS Version
3.2 and above.

Note:
Do not use the JCL parameter RENT when assembling/linking the command-level link routine.

DISPGWA Module : Displaying the CICS Global Work Areas

The DISPGWA module is a program provided by Software AG as an optional feature for CICS Version
3.3 and above.

The DISPGWA program displays the global work area (GWA) used by the various command-level link
components. It can be used to display other areas of CICS that are important to the Adabas
command-level link routine when it is executing as a task-related user exit (TRUE). With the help of
Software AG personnel, you can use this program to interrogate important data areas during problem
determination.

The DISPGWA module is used only if the LNKTRUE module is used, since it is the LNKTRUE module
that actually EXTRACTSs the global work area.

LNKENAB and LNKTRUE Modules

This section describes the usage of the LNKENAB and LNKTRUE modules.
LNKENAB Module

The LNKENAB module

e starts and enables the task-related user exit LNKTRUE (see the next section) during PLTPI
processing.

Installing Adabas With TP Monitors JCL and Source Members

e defines the length of storage that CICS gives to LNKTRUE as each task is invoked for the first time.
The storage remains in CICS until the task terminates and is used by LNKTRUE as a task work area.

® issues an Adabas command to the default target and Adabas SVC defined in the ADAGSET macro in
LNKOLSC. The target need not be active.

The purpose of the command is to derive the address of the IDTH from the first SVC call. All other SVC
calls from the command-level link routine are then made using a branch entry into the Adabas SVC.

LNKTRUE Module

When started and enabled by LNKENAB during PLTPI processing, the task-related user exit LNKTRUE
module

e permits the command-level link routine to obtain the pointer to the access control environment
element (ACEE) in a CICS/ESA 4.1 environment;

e facilitates processing when CICS transaction isolation is installed and enabled; and

e coordinates Adabas transactions through the CICS Resource Manager Interface (RMI) when the
Adabas Transaction Manager (ATM) is installed and enabled.

Most of the command-level link components execute under the umbrella of LNKTRUE. This means that
any abend condition during the execution of LNKTRUE is serious; CICS may even respond by
terminating the entire CICS region.

Items that may cause this condition include, but are not limited to
e invalid application parameter lists for Adabas calls;

® inconsistent or incorrect keyword values coded in the ADAGSET macro for the various
command-level components;

e user modification to the command-level link components or the task-related user exit; or
® incorrect coding in UEXITA and/or UEXITB components.

Software AG strongly recommends that you test application programs in a CICS region that supports the
non-task-related user exit version (standard installation) of the command-level link before migrating to a
task-related user exit version (enhanced installation) of the command-Ilevel link routine.

JCL and Source Members

The JCL members use the sources indicated in the following table:

Sample Resource Definitions

Installing Adabas With TP Monitors

JCL Source Source Description

CICCASM | LNKOLSC/LNKOLM | LNKOLSC is the dependent part of the Adabas command-le
link routine. LNKOLM is the independent part of the Adabas
command-level link routine.

CICTASM|LNKTRUE Adabas task-related user exit.

CICEASM|LNKENAB Adabas PLT-enabled program.

CICDASM | DISPGWA Display program for Adabas global work area (GWA).

Sample Resource Definitions

el

Under CICS/TS 1.1 and above for z/OS and VSE, the preferred method for defining and installing CICS
programs and transactions is RDO (resource definition online). The CICS documentation no longer
recommends the assembly of PPT and PCT entries to define resources.

The following table provides sample RDO definitions for the Adabas CICS command-level link

components (SMA job number 1005). The data has been extracted directly from the CICS CSD file and
should be used as a guide for providing comparable information on the CEDA panels.

* Sample DEFINE control statements for the DFHCSDUP utility.
* For Adabas V7.4 CICS command-level link routine components.

*

* These control statements can be used as input to the DFHCSDUP
* CICS CSD update utility to define the Adabas CICS command-level
* link routine components on a CICS/TS system.

DEFINE PROGRAM(ADABAS) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s COMMAND LEVEL LINK ROUTINE)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE PROGRAM(ADAENAB) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s PLTPI ENABLE ADATRUE PROGRAM)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE PROGRAM(ADATEST) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s DISPLAY GWA PROGRAM - DISPGWA)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE PROGRAM(ADATRUE) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s TASK RELATED USER EXIT)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(DGWA) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO DISPLAY ADABAS GWA)
PROGRAM(ADATEST) TWASIZE(128) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(CICS) STORAGECLEAR(NO)
RUNAWAY (SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

Installing Adabas With TP Monitors Modifying Source Member Defaults (ADAGSET Macro)

—wheres s the system maintenance level of Adabas.

These sample DEFINE statements are located in member DEFADAC in the Adabas Version 7.4 CICS
command-level source library. They can be modified and used as input to the IBM DFHCSDUP uitility to
define the Adabas CICS command-level components. Consult the appropriate IBM CICS documentation
for information on the DFHCSDUP utility.

Modifying Source Member Defaults (ADAGSET Macro)

The ADAGSET macro is used to create default settings for the command-level link components. This
macro exists in each of the installation source members. The macro settings must be identical in every
installation source member used.

To facilitate the assembly of the Adabas command-level link routine components, Software AG
recommends that you program the ADAGSET macro with site-specific default values and put itin a
source library that is available in the SYSLIB concatenation during assembly.

It is critical that the values for the following keywords agree for all components of the Adabas CICS
command-level link routine: LOGID, SVCNO, LUINFO, LRINFO, LUSAVE, NUBS, ENTPT,
TRUENAM, and ENABNAM.

Step 1 of the installation procedure identifies the source members that must be edited for standard and
enhanced installation.

The ADAGSET parameter options with their default values (underlined) are described below:

AVB: Adabas VSAM Bridge Support

Parameter| Description Syntax

AVB Indicates whether or not Software AG’s Adabas Bridge fo
VSAM is to be supported by this command-level link routil| AVB={_NO_ | YES }

® AVB=YES: Adabas VSAM Bridge is to be supported.

e AVB=NO: Adabas VSAM Bridge is not to be supporte

ENABNM: Entry Point Name for Program to Enable Adabas TRUE

Parameter| Description Syntax

ENABNM | The entry point name for the program that is
to enable the Adabas TRUE during CICS PL|[ENABNM={ ' ADAENAB' | 'nane’ }
processing. The value must be a valid progre
name that matches the module name specifi
the DFHPLT table at your site. The default
value is ADAENAB.

This parameter is ignored if TRUE=NO is
specified.

10

Modifying Source Member Defaults (ADAGSET Macro)

ENTPT: Name of the Adabas CICS Command-Level Link Routine

Parameter

Description Syntax

ENTPT

The name given to the Adabas CICS

command-level link routine, which is the ENTPT={ ' ADABAS' | 'nane’ }

combination of LNKOLSC, LNKOLM, and the
CICS entry and exit code. This name is used in
EXEC CICS LINK commands to invoke Adabay
services from CICS application programs.

See also notes 1 and 2 in the installation
procedure.

LADAFP: Length of Work Area for Adabas Fastpath Exit

Parameter

Description Syntax

LADAFP

The length of the work area provided to the Adabas Fastpg
exit.

LADAFP={ 0 | nn}

Values from O (the default) to 32767 may be specified. 0
indicates that Adabas Fastpath is not linked with the Adabg
command-level link routine. A non-zero value requires that
parameter TRUE=YES is also set and the Adabas task-relg
user exit (TRUE) is used. Consult the Adabas Fastpath
documentation for recommended values.

Note:
This parameter is not yet fully implemented. It is provided f
future use by Adabas Fastpath.

LOGID: Default Logical Database ID

Parameter | Description Syntax
LOGID The value of the default logical database ID. Valid ID numt

are 1-65535. LOG D= nnn
LRINFO: Length of Adabas Review Data Area
Parameter| Description Syntax
LRINFO | The length (in bytes) of the Adabas Review data area to

used by the REVEXITB program. The default is zero (Adg

LRINFO={ 0 | 256}

Review is not being used). The minimum (and recommen
value is 256, the size Adabas Review expects when the
REVEXITB program is invoked. See the Adabas Review
documentation for more information.

Installing Adabas With TP Monitors

11

Installing Adabas With TP Monitors Modifying Source Member Defaults (ADAGSET Macro)

LUINFO: Length of User Data passed to Adabas UEXITA and UEXITB

Parameter| Description Syntax

LUINFO |Length of the user data to be passed from the CICS lir
routine to Adabas UEXITA and UEXITB. LUNFO={ 0 | Iength}

If LUINFO is not specified, the default is zero (no user
save area is passed).

LUSAVE: Size of User Save Area for Adabas UEXITA and UEXITB

Parameter| Description Syntax

LUSAVE | Size of the user save area to be used by Adabas user ex
UEXITA and UEXITB. If LUSAVE is specified, a value of|| LUSAVE={ 0 | size}
72 or higher must be specified.

If LUSAVE is not specified, the default is zero (no user d
is passed).

LXITAA: Length of Work Area provided to UEXITA

Parameter| Description Syntax

LXITAA | Length of the work area provided to the UEXITA user exit
program. LXITAA={ 0 | nn}

Values from O (the default) to 32767 may be specified. 0
indicates that no UEXITA program is linked with the Adaba
command-level link routine and no data is passed to UEXI]

Note:

This parameter is not yet fully implemented. It is provided f
future use by the CICS user exit A program linked with
LNKOLM.

LXITBA: Length of Work Area for UEXITB

12

Modifying Source Member Defaults (ADAGSET Macro)

Parameter

Description

Syntax

LXITBA

Length of the work area provided to the UEXITB user exit
program.

Values from O (the default) to 32767 may be specified. 0
indicates that no UEXITB program is linked with the Adaba
command-level link routine and no data is passed to UEXI]

Note:

This parameter is not yet fully implemented. It is provided f
future use by the CICS user exit A program linked with
LNKOLM.

LXI TBA={ 0 | nn}

MRO: Multiple Region Option

Parameter

Description

Syntax

MRO

The MRO parameter is used to indicate whether or not the
CICS multiple region option is to be used.

If you run the CICS command-level link with the CICS
multiple region option (MRO), set MRO=YES; otherwise, u
the default value MRO=NO.

If MRO=YES, NETOPT must be set to NETOPT=NO (the
default) to prevent non-unique LU names from multiple
application regions.

If NETOPT=YES and MRO=YES are specified, an assemb
MNOTE and a return code of 16 are produced from the
assembly step.

MRO={_NO | YES }

NETOPT: Method Used to Create User ID

Parameter

Description Syntax

NETOPT

If NETOPT=YES is specified, an 8-byte user ID will be

constructed from the VTAM LU name. If NETOPT=NO | NETOPT={ NO | YES }

specified, the user ID is created from the constant CICS
plus the four-byte CICS terminal ID (TCTTETI) for
terminal tasks. For non-terminal tasks, the user ID
comprises the constant CIC plus the CICS task number

If you run with the CICS multiple region option (MRO),
you must use the default value for this option. If
NETOPT=YES and MRO=YES are specified, an assem
MNOTE and a return code of 16 are produced from the
assembly step.

Installing Adabas With TP Monitors

13

Installing Adabas With TP Monitors Modifying Source Member Defaults (ADAGSET Macro)

NTGPID: Natural Group ID

Parameter| Description Syntax

NTGPID |This parameter is used to specify a 4-byte Natural grou
as required for unique Adabas user ID generation in the| NTGPI D=4-byt e-val ue
CICSplex environment with Natural Version 2.2.8 and
above. The value is associated with all users who call tt
Adabas command-level link routine assembled with the
specified value.

There is no default value. If no value is specified, the
Adabas internal user ID is built in the conventional man

Any 4-byte alphanumeric value may be specified, but it
must be unique for each Adabas command-level link ro
running in a CICSplex, or z/OS image. If more than one
NTGPID is required (for example, both test and product
Natural 2.2.8), more than one Adabas command-level li
routine with associated TRUE must be generated.

If you run with the CICS multiple region option (MRO),
you may use NTGPID to provide a 4-byte literal for the
Adabas communication ID to be used by the Adabas S
when multiple application regions call Adabas.

NUBS: Number of User Blocks Created By CICS Link Routine

Parameter| Description Syntax

NUBS The number of user blocks (UBs) to be created by the
CICS link routine. The number of blocks must be large]| NUBS={ 50 | blocks }
enough to handle the maximum possible number of
concurrent Adabas requests.

Note:
The Adabas 6.2 and above command-level link routing
obtains storage for the user blocks (the UB pool) abov
16-megabyte line.

PARMTYP: Area for Adabas Parameter List

14

Modifying Source Member Defaults (ADAGSET Macro)

Parameter

Description Syntax

PARMTYP

The area which is to contain the Adabas

parameter list. TWA picks up the parameter lis|| PARMIYP={ ALL | COM| TWA }

the first six fullwords of the transaction work ar
(TWA). COM picks up the list in the
COMMAREA, followed by the normal Adabas
parameter list. The COMMAREA list must be g
least 32 bytes long and begin with the label
“ADABASS52". PARMTYP=ALL (the default)
uses both the COMMAREA and TWA to pass |
Adabas parameters; in this case, the
COMMAREA is checked first.

PARMTYP=ALL or PARMTYP=COM must be
used if the TRUE=YES option is specified.

PURGE: Purge Transaction

Parameter

Description Syntax

PURGE

The PURGE parameter is used when assembling with C
3.2 or above. If PURGE=YES is specified, the CICS WA
EXTERNAL will contain PURGEABLE as one of its

PURGE={ NO | YES }

parameters, allowing the transaction to be purged by CI(
the DTIMOUT value is exceeded and PURGE is specifie

If PURGE=NO (the default) is specified, the
NONPURGEABLE option is generated.

RMI: Resource Manager Interface

Parameter

Description

Syntax

RMI

The RMI parameter is used to indicate whether or not the ¢
Resource Manager Interface is to be used.

If RMI=YES is specified, the Adabas task-related user exit
(TRUE) will be executed as a resource manager (RM) usin
CICS Resource Manager Interface (RMI).

RMI=YES is valid only when the Adabas Transaction Mana
is installed, enabled, and available to users executing in th
CICS environment. Consult the Adabas Transaction Mana
documentation for additional instructions related to the
installation of the Adabas TRUE.

RM ={ NO | YES }

Installing Adabas With TP Monitors

15

Installing Adabas With TP Monitors Modifying Source Member Defaults (ADAGSET Macro)

SAF: Adabas SAF Security

Parameter| Description Syntax

SAF Indicates whether or not the Adabas SAF Security (ADASA
is to be used. If you are using ADASAF, you must set SAF={ NO | YES }
SAF=YES.

® YES: Adabas SAF Security is to be used.
e NO: Adabas SAF Security is not to be used.

ADASAF requires the Adabas task-related user exit (TRUE
when running under CICS/ESA 4.1 or above. When SAF=

and TRUE=YES, the task-related user exit passes the use
external security ID (sign-on) to Adabas.

If TRUE=YES is not specified in this case, the ADAGSET
macro terminates the LNKOLSC, LNKTRUE, or LNKENAB
assembly process with an MNOTE and a return code of 16

TRUE=YESSs not required when running ADASAF under
CICS/ESA 3.3 or below. The combination SAF=YES and
TRUE=NO is valid in such cases.

SAP: SAP Application Support

Parameter| Description Syntax
SAP The SAP parameter is used to indicate whether or not Ada
support for the SAP application system is required. SAP={ NO | YES }

If SAP=YES is specified, the LNKOLSC program will detec
SAP initialization call and set the user ID for SAP applicatig
from the constant provided on the initialization call, plus the
field ACBADD?2.

For more information, refer to the supplementary informatic
provided to customers using the SAP application system.

SVCNO: Adabas SVC number

Parameter| Description Syntax
SVCNO | The SVCNO parameter is used to specify the value of the
Adabas SVC number. SVCNO={_0 | nnn}

16

Modifying Source Member Defaults (ADAGSET Macro) Installing Adabas With TP Monitors

TRUE: Adabas Task-Related User Exit

Parameter| Description Syntax

TRUE The TRUE parameter is used to indicate whether or not th
Adabas task-related user exit is to be used. TRUE={ NO | YES }

If TRUE=YES is specified, LNKOLSC will use the Adabag
task-related user exit LNKTRUE.

If TRUE=YES is specified, the parameter settings
PARMTYP={ALL | COM} and TRUENM="name’ must als¢
be specified.

TRUENM: Name of Adabas Task-Related User Exit

Parameter| Description Syntax
TRUENM | The TRUENM parameter is used to specify the
name of the Adabas task-related user exit. TRUENME {’ name’ | ADATRUE}

This parameter is required if TRUE=YES is
specified.

See also notes 1 and 2 in the installation proced

UBPLOC: User Block Pool Allocation

Parameter| Description Syntax

UBPLOC | The UBPLOC parameter is used to specify whethel
user block (UB) pool is to be obtained above (the UBPLOC= { ABOVE | BELOW
default) or below the 16-megabyte line in CICS.

The ECB used by the EXEC CICS WAIT WAITCIC
or the EXEC CICS WAIT EXTERNAL is included in
the UB pool.

The UBPLOC=BELOW setting supports versions o
CICS that do not allow ECBs above the 16-megaby
line; that is, CICS/ESA 3.2 or below.

Refer to the IBM manudlICS/ESA Application
Programming Referender more information.

XWAIT: XWAIT Setting for CICS

17

Installing Adabas With TP Monitors Modifying Source Member Defaults (ADAGSET Macro)

Parameter| Description Syntax

XWAIT | The XWAIT parameter is used to specify whether a stan
EXEC CICS WAITCICS (XWAIT=NO) or a WAIT XWAI T={ NO | YES }
EVENTS EXTERNAL (XWAIT=YES) will be generated
into the command-level link component by the assemble
process in the LNKOLSC module. XWAIT=YES is the
default.

The CICS WAIT EVENTS EXTERNAL (XWAIT=YES) is
the recommended interface for CICS/ESA 3.3 and above

The CICS WAITCICS statement (XWAIT=NO) is provide
for use with CICS/MVS 2.1.2 and for CICS/VSE 2.1 throt
2.3. It may also be used for CICS/ESA 3.3 and above, by
may result in poor CICS transaction performance or
unpredictable transaction results in busy CICS/ESA
environments.

Note:

If XWAIT=NO is specified for use under CICS/ESA 3.3,
IBM APAR PN39579 must be applied to the CICS/ESA 3
system. For CICS/ESA 4.1 and above, this APAR is not
required.

Notes:

1. With Adabas Version 6, the default for the XWAIT parameter changed from XWAIT=NO to
XWAIT=YES to conform with IBM usage.

2. If XWAIT=NO is specified, the Adabas 6.2 and above LNKOLSC module issues an EXEC CICS
WAITCICS command instead of the EXEC CICS WAIT EVENT command used in previous
versions. This conforms with recommended IBM usage of the WAIT and ECB lists in a
high-transaction volume CICS system with CICS/ESA Version 4.1 and above.

3. All EXEC CICS commands are processed by the CICS preprocessor; the ADAGSET parameters
cause the subsequent assembly step to skip some of the statements.

XWAIT Posting Mechanisms

CICS WAITCICS (XWAIT=NO) can support a “soft post” of the specified ECB. This has the
disadvantage of becoming a low priority dispatchable unit of work in a CICS/ESA environment, since the
“hand postable” work is not processed by CICS on every work cycle.

EXEC CICS WAIT EXTERNAL (XWAIT=YES), on the other hand, allows CICS to make use of its
special post exit code, and will always be checked and processed (if posted) on every CICS work cycle.

For more details on the differences between the various CICS WAIT commands and their relationship to
hard and soft posting mechanisms, consult the (BRIS/ESA Application Programming Reference
Guideand the texts accompanying IBM APAR PN39579 or “ltem RTA000043874" on the IBM InfoLink
service.

18

Installation Procedure Installing Adabas With TP Monitors

XWAIT and the Adabas SVC / Router

The Adabas 6.2 and above SVC is fully compatible with the XWAIT=YES setting. The SVC performs the
necessary “hard post” for Adabas callers under CICS/ESA using the Adabas 6 command-level link
routine. The same SVC performs a “soft post” for batch callers where the hard post is not required.

If XWAIT=YES is specified and the Adabas SVC is below the 6.2 level, a zap is required to provide the
“hard post” code preferred for CICS/ESA users:

ZAP A0O33024 for an Adabas 5.3.3 SVC
ZAP A013016 for an Adabas 6.1.2 or 6.1.3 SVC

This zap is available from your Software AG technical support representative.

Software AG strongly recommends that you use the Adabas 6.2 or above SVC/router with XWAIT=YES.
The zaps to earlier SVC/routers may degrade performance for non-CICS Adabas transactions that use the
modified SVC/router.

Installation Procedure
Step 1: Modify the ADAGSET Macro for the Source Member(s)
Modify the ADAGSET macro for the source members to be used.

See the sectioModifying Source Member Defaults (ADAGSHEdr)details. Software AG recommends
that you modify a common version of ADAGSET and place it in a library available in the SYSLIB
concatenation when the Adabas command-level link components are assembled.

Note:
It is no longer necessary to modify the equates inside the LNKOLSC code. Instead, use the ADAGSET
macro to set default values before assembly, thus making the process easier and more self-documenting.

For the Standard Installation (Without Enhanced Functions)
Modify the source member ADAGSET to set the following options:
e database ID (LOGID);
® Adabas SVC number (SVCNO);
® any additional options necessary for your site.
For the Enhanced Installation
Modify the source member ADAGSET to set the following options:
e database ID (LOGID);
® Adabas SVC number (SVCNO);

® the command-level link routine name (ENTPT);

19

Installing Adabas With TP Monitors Installation Procedure

e the task-related user exit name (TRUENM);
® any additional options necessary for your site.
Notes:

1. Itis critically important that the ENTPT and TRUENM parameters coded in the LNKENAB,
LNKTRUE, and LNKOLSC modules are identical. These module names are used to identify the
global work area and task-related user exit (TRUE) storage provided for the CICS transaction using
the link-specific link component.

2. If you are installing multiple instances of the command-level link routine, the ENTPT and TRUENM
names must be unique, as there is a one-for-one relationship between a command-level link routine,
its associated task-related user exit (TRUE), and the enabling program LNKENAB run at CICS
startup.

Step 2: Modify the JCL Members

Use your editor to modify the JCL members necessary for your installation, and set the library names
according to your installation’s specifications. The Adabas job library contains the following JCL
members:

JCL Installation Type |Required/Optional | Description

Member

CICCASM |standard and required Adabas command-level link routine
enhanced modules.

CICTASM |enhanced required Adabas task-related user exit
enhanced required Adabas PLT-enabled program
enhanced optional Adabas global work area (GWA) display

program.

Make mass changes to the JCL members in the following order:

Order |change ... to ...

1 ADABAS.V7nn.COML |Adabas CICS ... source library.

2 ADABAS.V7nn Adabas V7 prefix.

3 MACS5="CICS’ CICS system prefix.

4 CLIB="CICS’ CICS system prefix for CICS LOAD.
5 RPLLIB="ADABAS’ COMLEYV CICS RPL lib.

Step 3: Install the Adabas Command-Level Link Component (SMA Job Number 1070)

¥ to install the Adabas command-level link component:

1. For CICCASM, concatenate the Adabas CICS 7.4 source library on the assembler SYSLIB statement
in front of the Adabas source library for the version of Adabas you are running.

20

Installation Procedure Installing Adabas With TP Monitors

2. Execute CICCASM.

This job preprocesses, assembles, and links the Adabas CICS command-level link routine modules
LNKOLSC and LNKOLM into a staging load library.

The final step of the CICCASM job links the LNKOLSC and LNKOLM modules together with
CICS entry and exit code to form the Adabas command-level link routine, which is placed in a CICS RPL
library.

3. Use DFHCSDUP or the CEDA RDO entry panels to add the following definition to your CICS CSD
file:

DEFINE PROGRAM(ADABAS) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s COMMAND LEVEL LINK ROUTINE)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY/(CICS) EXECUTIONSET(FULLAPI)

—wheres is the system maintenance level of Adabas.

The Adabas command-level link routine is now installed. This completes the standard installation. To
install the enhanced functions, continue with step 4.

Step 4: Install the Adabas Task-Related User Exit (SMA Job Number 1070)
The Adabas CICS components reside in the Adabas CICS source library $SRTE).
» to install the Adabas Task-Related User Exit:

1. Execute CICTASM.

This module preprocesses, assembles, and links the Adabas task-related user exit into a staging load
library, and then links it with CICS entry and exit code into a CICS RPL library.

Unless you are following the installation procedure required for running with the Adabas Transaction
Manager, expect the unresolved external references TCISYNC and TCIRESYN.

2. Use DFHCSDUP or the CEDA RDO entry panels to add the following definition to your CICS CSD
file:

DEFINE PROGRAM(ADATRUE) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s TASK RELATED USER EXIT)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY/(CICS) EXECUTIONSET(FULLAPI)

—wheres is the system maintenance level of Adabas.

Step 5: Install the Adabas PLT-Enable Program (SMA Job Number 1070)

The Adabas CICS components reside in the Adabas base source library SERCE.

¥ to install the Adabas PLT-enable program:

21

Installing Adabas With TP Monitors Installation Procedure

1. Execute CICEASM.

This job preprocesses, assembles, and links this module into a staging library, and then links it with
CICS entry and exit code into a CICS RPL library.

Use DFHCSDUP or the CEDA RDO entry panels to add the following definition to your CICS CSD
file:

DEFINE PROGRAM(ADAENAB) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s PLTPI ENABLE ADATRUE PROGRAM)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY/(CICS) EXECUTIONSET(FULLAPI)

—wheres is the system maintenance level of Adabas.
After defining LNKENAB to CICS, add the following entry to your PLTPI table, DFHPLT:
DFHPLT TYPE=ENTRY,PROGRAM=ADAENAB

This entry should follow the first DFHPLT TYPE=DELIM statement to ensure that LNKENAB will

be executed in either stage Il or stage Ill of the CICS PLTPI process. This is necessary because the
CICS EXEC interface environment must be present to support the writing of console messages using
the EXEC CICS WRITE OPERATOR command employed by the LNKENAB module.

Code an appropriate PLTRkparameter in the CICS start-up datashould match the suffix value
given in the DFHPLT table.

Step 6: Install the DISPGWA Program (Optional)

¥ to install the DISPGWA program:

1. Execute CICDASM.

22

This job preprocesses, assembles, and links this module into a staging library, then links it with CICS
entry and exit code into a CICS RPL library. The final link step creates the load module ADATEST.

. Add a CICS transaction to execute the ADATEST program. RDO may be used to do this. Sample

DEFINE statements for the ADATEST (DISPGWA) program and the transaction to execute it are:

DEFINE PROGRAM(ADATEST) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s DISPLAY GWA PROGRAM - DISPGWA)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY/(CICS) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(DGWA) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO DISPLAY ADABAS GWA)
PROGRAM(ADATEST) TWASIZE(128) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY/(CICS) STORAGECLEAR(NO)
RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)
RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

Installing the CICS High-Performance Stub Routine Installing Adabas With TP Monitors

—wheres is the system maintenance level of Adabas.

The Adabas command-level link routine, enhanced functions, and DISPGWA program are now
installed.

Installing the CICS High-Performance Stub Routine

The Adabas high-performance stub routine extends the direct call interface (DCI) facility that is available
with the Adabas CICS command-level link component to applications written in languages other than
Software AG’s Natural (for example, Assembler, COBOL, PL/I).

Note:
The stub routine must be used with the Adabas CICS command-level link component. The stub routine
will not function properly with the Adabas CICS macro-level link component.

The DCI enables a CICS/ESA 3.2 application or above to call Adabas through the Adabas command-level
link routine. The overhead incurred when the EXEC CICS LINK and EXEC CICS RETURN command

set is used to transfer program control is thus avoided. Once the proper environment has been established
with the initial call (IC) command from the high-performance stub or Natural 3.1 or above, the DCI

permits a BALR interface to be used.

The high-performance stub routine is written in Assembler language. When linked with the application
program, it serves as an interface between the application and the Adabas CICS command-level link
component. The application program can then issue CALL statements to access the stub routine when
executing an Adabas command.

An application at CICS/ESA 3.2 level or above derives the following advantages from the
high-performance stub:

® improved performance and throughput when issuing Adabas commands under CICS/ESA 3.2 or
above due to the reduced use of CICS services related to the CICS LINK and RETURN program
control mechanism.

® a call mechanism for Adabas requests under CICS/ESA 3.2 or above which is simpler than the
methods normally employed to pass control with information from one program to another in the
CICS environment.

Restrictions and Requirements
The following restrictions and requirements apply to the high-performance stub routine:
® CICS/ESA 3.2 or above Required

The Adabas high-performance stub routine is supported under CICS/ESA 3.2 or above. Earlier
versions of CICS are not supported.

A CICS transaction work area (TWA) of at least 24 bytes must be provided to the application for the
proper execution of the high-performance stub routine.

® CICS Command-Level Link Required

23

Installing Adabas With TP Monitors Stub Components

The application program must be written using the CICS command-level interface and instructions,
and may not issue any CICS macro level commands.

Supported Programming Languages

The application program may be written in ALC (Assembler language), COBOL, COBOL I, PL/I,
or C. Installation verification programs (IVPs) are provided in ALC and COBOL on the distribution tape.

Additional requirements for specific programming languages are discussed later in the sections relating to
each language.

Stub Components

Type Member Description

Source ALCSIVP source for the ALC install verification
COBSIVP source for the COBOL install verification
LNCSTUB source for the high-performance stub

Job control |JCLALCI sample JCL for ALC install verification
JCLCOBI sample JCL for COBOL install verification
JCLLNCS sample JCL for LNCSTUB (high-performance stub)

Installation Overview

Use the following procedure to install the Adabas CICS high-performance stub routine:

Edit, preprocess, assemble and link the LNCSTUB module.

(Optional) Modify, preprocess, compile or assemble, link, and execute the desired installation
verification program (IVP).

Modify, preprocess, compile or assemble, link, and execute the application programs.

Step 1: Install the LNCSTUB Module

The Adabas CICS high-performance stub routine is an Assembler language module provided in source
form on the distribution tape in member LNCSTUB.

Step 1 has the following substeps:

24

Edit the ADAGSET macro.

Change the LNCNAME field value, if necessary.
Modify member JCLLNCS.

Preprocess, assemble, and link the LNCSTUB module.

Place the LNCSTUB load module in a library that is available to your application programs when
they are linked.

Installation Overview Installing Adabas With TP Monitors

Edit the ADAGSET Macro

Note:
For information about editing the ADAGSET macro, refer to the sebtimtifying Source Member
Defaults (ADAGSET Macro)

Edit the ADAGSET macro in a library that will be available in the SYSLIB concatenation when
LNCSTUB is assembled.

The values given for the ADAGSET parameters are primarily for documentation purposes within the
LNCSTUB module, but may be used at a later time in the stub routine at the discretion of Software AG.

Change the LNCNAME Field Value

If your Adabas CICS command-level link component program has been linked with a name other than
ADABAS, change the constant value in the field LNCNAME to match the name used ($d2AGSET
option ENTPT). The value in this field is used in the priming EXEC CICS LINK command issued by
LNCSTUB.

Modify Member JCLLNCS

Member JCLLNCS is used to preprocess, assemble, and link the LNCSTUB module. To modify this JCL
to meet your site requirements, change the JOB card in the member and the symbolic values as indicated
in the following table:

25

Installing Adabas With TP Monitors

Installation Overview

Value Description

&SUFFIX Suffix value used for the CICS translator. The default value is “1$".

&ASMBLR Assembler program used to assemble the LNCSTUB source.

&M Member name to be processed; code LNCSTUB or ALCSIVP.

&STUBLIB A load library to contain the LNCSTUB load module. This library should be
available to application programs when they are linked.

&INDEX High-level qualifier for the CICS macro library used in the SYSLIB DD staternent
for the assembiler.

&INDEX2 High-level qualifier for the CICS load library to use for the translator STEPLIB
DD statement, and for the SYSLIB in the link step.

&ADACOML Adabas command-level source library containing the ADACB, ADAGDEF,
ADAGSET, and LNCDS copy code and macros.

&ADASRCE Adabas source library used for additional copy code or macro expansion.

&STBSRCE Source library containing the distributed Adabas CICS high-performance styb
LNCSTUB.

&MAC1 Primary system macro library, usually SYS1.MACLIB.

&OUTC Output class for messages, SYSPRINT, SYSOUT.

® Step region size.

&NCAL Value for the linkage editor NCAL parameter. The recommended value is NCAL.

&LSIZE Primary and secondary table sizes used by the linkage editor.

&WORK DASD device type to use for temporary and utility data sets.

Preprocess, Assemble, and Link the LNCSTUB Module

Because of the possible use of the 31-bit instructions, Assembler H (IEV90) or the High-Level Assembler
(ASMA90) should be used to assemble the LNCSTUB module after CICS preprocessing.

Note:
The LNCSTUB module can be linked reentrant or reusable. If it is linked reentrant, it is automatically
reusable; if it is linked reusable, it is not automatically reentrant.

In addition to the CICS macro library, the Adabas CICS command-level source library and standard
Adabas source library must be provided to the SYSLIB DD statement in the assembly step:

® do not concatenate any CICS load libraries in the SYSLIB DD statement when linking the
LNCSTUB load module.

® inthe SYSLIN data stream after the LNCSTUB object deck, use just the control statement

NAME LNCSTUB(R)

® do not include the CICS stub modules DFHEAIO & DFHEAI1 with the LNCSTUB load module. As
a result, however, the following occurs:

26

Installation Overview Installing Adabas With TP Monitors

O the linkage editor issues IEW462 or similar messages indicating that DFHEAIL is an unresolved
external reference;

O the LNCSTUB module may be marked NOT EXECUTABLE by the linkage editor;
O a condition code of 8 may be set in the link step.

When the application program is linked with LNCSTUB, all the external references are resolved.

Make the LNCSTUB Available to Application Programs

The LNCSTUB module has an entry name of ADABAS, which can be used by the application program as
the object of a CALL statement to pass control to LNCSTUB with a list of parameters. The
language-specific calling conventions for LNCSTUB are discussed later in this section.

The LNCSTUB load module must be available to the link step of the application program that is to use the
DCI facility.

Note:
In the same step, the CICS load library should be available; otherwise, the external references to the CICS
stub modules will not be resolved.

Place the LNCSTUB load module in a library available to your application language assembler or
compiler so that it will be included when the application programs are linked.

Step 2: (Optional) Install and Execute an IVP

Two installation verification programs (IVPs) are provided in source form: one for Assembler language,
and one for COBOL/VS. These programs are samples for implementing the Adabas high-performance
stub routine in your applications. They also provide a way of verifying the proper installation of the
LNCSTUB module.

Step 2 has the following substeps:

o Modify the Assembler (ALCSIVP) or COBOL (COBSIVP) source decks to provide the proper
Adabas database ID and file number on your site’s database for the Software AG-provided
PERSONNEL file.

o Modify the JCL provided to preprocess and compile (assemble) the desired IVP.
® Preprocess, compile or assemble, and link the IVP using the sample JCL provided as a guide.
® Add RDO entries to your CICS system to execute the IVPs.
® Execute the IVPs to verify the LNCSTUB module (ALCSIVP and COBSIVP).
Install and Execute the Assembler IVP: ALCSIVP

The source member ALCSIVP is provided to demonstrate and verify the use of the Adabas DCI using the
LNCSTUB module. This program issues a series of Adabas commands using the conventional CICS
LINK/RETURN mechanism, produces a partial screen of output data, then reexecutes the same call
sequence using the Adabas DCI and the LNCSTUB subprogram.

27

Installing Adabas With TP Monitors Installation Overview

» to modify source member ALCSIVP:

1. Edit the database ID and file number fields DBID (line 321) and DBFNR (line 322) to be sure they
match the values needed to access the PERSONNEL file on the database you intend to use.

2. Check the fields FBUFF, SBUFF and VBUFF for values consistent with your PERSONNEL file's
FDT and data content.

3. Check the name used in the EXEC CICS LINK statement (line 242) to be sure it matches the name of
your Adabas CICS command-level link component program.

» to modify the JCLALCI sample job stream:

1. Member JCLALCI is used to preprocess, assemble, and link the installation verification program
ALCSIVP. Place the load module in your CICS RPLLIB.

2. To modify this JCL to meet your site requirements, change the JOB card in the member and the
symbolic values as indicated in the table used in step B{epel, Modify Member JCLLNES

The JCLALCI member uses one additional symbolic parameter: &CICSLIB. This is the name of
your CICS RPL library.

¥ to preprocess, assemble, and link ALCSIVP:

1. Using the modified sample JCLALCI member, preprocess, assemble, and link ALCSIVP.

¥ to add RDO entries:

1. Add the following RDO entries to your CICS system, or use the RDO facility to add the STB1
transaction to run the ALCSIVP program:

DEFINE PROGRAM(ALCSIVP) GROUP(ADABAS)
DESCRIPTION(ADABAS V74s ASSEMBLER IVP FOR HIGH-PERFORMANCE STUB)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(USER) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(STB1) GROUP(ADABAS)
DESCRIPTION(TRANSACTION TO EXECUTE THE ASSEMBLER IVP FOR HIGH-PERFORMANCE STUB)
PROGRAM(ALCSIVP) TWASIZE(32) PROFILE(DFHCICST) STATUS(ENABLED)

TASKDATALOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)

RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)

PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)

RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)

RESSEC(NO) CMDSEC(NO)

¥ t0 execute ALCSIVP:

1. Run the STBL1 transaction to execute ALCSIVP. Executing ALCSIVP verifies the LNCSTUB
module.

28

Installation Overview Installing Adabas With TP Monitors

Install and Execute the COBOL IVP: COBSIVP

Member COBSIVP illustrates the use of the Adabas DCI with a COBOL program. COBIVP produces a
screen showing output lines produced by a series of Adabas calls executed by the CICS LINK/RETURN

facility, followed by the reexecution of these Adabas commands using the DCI.
¥ to modify source member COBSIVP:

1. Edit the fields WORK-DBID and WORK-FNR to place the desired database ID and file number in
the VALUE clauses to access the PERSONNEL file on your site’'s database.

2. Ensure that the value in the field LINK-NAME matches the hame used in your Adabas CICS
command-level link component program.

3. Ensure that the values (literals in the PROCEDURE DIVISION) in the following fields are consistent
with the requirements of the PERSONNEL file FDT and data content you are using:

ADABAS-FORMAT-BUFFER,

ADABAS-SEARCH-BUFFER, and
ADABAS-VALUE-BUFFER

» to modify the JCLCOBI sample job stream:

1. Member JCLCOBI is used to preprocess, compile, and link the COBSIVP installation verification
program. To modify the JCLCOBI example to meet site requirements, change the JOB card in the
member and provide values for the symbolic procedure variables as described in the following table:

29

Installing Adabas With TP Monitors Installation Overview

Value Description

&ADALIB Adabas load library used to provide the ADASTWA load module for|the
linkage editor.

&MEM Member name to be processed; in this case, COBSIVP.

&CICSLIB CICS RPL library where the COBSIVP load module is placed for
execution under CICS.

&COBLIB COBOL compiler STEPLIB.

&INDEX High-level qualifier for the CICS macro library used in the SYSLIB OD
statement for the compiler.

&INDEX2 High-level qualifier for the CICS load library to use for the translator
STEPLIB DD statement, and for the SYSLIB in the link step.

&LINKLIB COBOL LINKLIB.

&STBSRCE Source library containing the distributed Adabas CICS high-performgnce
stub LNCSTUB.

&STUBLIB A load library to contain the LNCSTUB load module. This library should
be available to your application programs when they are linked.

&SYSMSG Output class for translator messages.

&SYSOUT Output class for SYSOUT and SYSPRINT messages.

&WORK DASD device type to use for temporary and utility data sets.

¥ to preprocess, compile, and link COBSIVP:

1. Use the maodified JCLCOBI job to preprocess, compile, and link the COBSIVP program. Assemble

30

ADASTWA into a library available to COBOL programs when they are linked. Include the
ADASTWA load module in the link of COBSIVP.

COBSIVP uses the ADASTWA subroutine when it issues Adabas calls through the standard CICS
LINK/RETURN mechanism. ADASTWA is supplied in source form in the Adabas source library.

The LNCSTUB subroutine does not use ADASTWA because it places the passed Adabas parameters
in the TWA. Thus, the ADASTWA routine is not required when linking COBOL applications that
utilize the Adabas DCI through the LNCSTUB module.

Even though the LNCSTUB routine does not require the ADASTWA subroutine, it is included in the
COBSIVP program to illustrate the usual way in which a COBOL application places the Adabas call
parameters into the CICS TWA.

Link the COBSIVP program with the LNCSTUB load module and the ADASTWA load module.
Make the LNCSTUB load module available to the linkage editor to be included with the COBSIVP
load module.

Note:
The CICS stub modules are also resolved in the link step.

Installation Overview Installing Adabas With TP Monitors

t0 add RDO entries:

1. Add the following RDO entries to your CICS system, or use the RDO facility to add the STB2
transaction to run the COBSIVP program:

DEFINE PROGRAM(COBSIVP) GROUP(ADABAS)

DESCRIPTION(ADABAS V74s COBOL IVP FOR HIGH-PERFORMANCE STUB)
LANGUAGE(COBOL) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
EXECKEY(USER) EXECUTIONSET(FULLAPI)

DEFINE TRANSACTION(STB2) GROUP(ADABAS)

DESCRIPTION(TRANSACTION TO EXECUTE THE COBOL IVP FOR HIGH-PERFORMANCE STUB)
PROGRAM(COBSIVP) TWASIZE(32) PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(USER) STORAGECLEAR(NO)

RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)

PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO) INDOUBT(BACKOUT)

RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
RESSEC(NO) CMDSEC(NO)

» {0 execute COBSIVP:

1. Run the STB2 transaction to execute COBSIVP. Executing COBSIVP verifies the LNCSTUB
module.

Step 3: Link and Execute the Application Program

Once the IVP programs have been successfully executed, the Adabas DCI is ready to be used with real
application programs. In step 3, the application program interface (API) is coded to utilize the LNCSTUB
subprogram.

Step 3 has the following substeps:

o Modify the application programs that will utilize the Adabas CICS high-performance stub routine in
accordance with the guidelines described in the following section.

® Preprocess, compile or assemble, and link the application programs to include the LNCSTUB
module.

® Execute the application programs using the Adabas CICS high-performance stub.
Guidelines for Modifying the Application Program

The LNCSTUB load module must be linked with your application program. The application program
invokes the DCI interface using a standard batch-like call mechanism. The LNCSTUB module makes any
additional CICS requests required to pass data to the Adabas CICS command-level link component.

® Programming Languages Supported by LNCSTUB

The LNCSTUB program functions with application programs written in Assembler language,
VS/COBOL, COBOL Il, PL/I, and C.

® Transaction Work Area Required

31

Installing Adabas With TP Monitors Installation Overview

32

A transaction that uses the Adabas DCI or the Adabas CICS command-level link component must
provide a transaction work area (TWA) at least 28 bytes long. Failure to provide an adequate TWA will
result in an abend U636 (abnormal termination of the task).

Reentrant Requirement

The application program may or may not be reentrant. The LNCSTUB module has been written to be
reentrant, but using linkage editor parameters to mark the LNCSTUB load module as reentrant is not
recommended.

CICS Requests Issued by LNCSTUB

The LNCSTUB module issues the following command-level CICS requests whenever it is invoked:

EXEC CICS ADDRESS TWA
EXEC CICS ASSIGN TWALENG
EXEC CICS ADDRESS EIB

DCI Entry Point Address

An EXEC CICS LINK command is issued by LNCSTUB at least once to acquire the DCI entry point
from the Adabas CICS command-level link component program. This address is then used for BALR
access on all subsequent Adabas calls for a transaction. Thus, the calling application program must
provide a fullword (4-byte) field to hold the DCI entry point address obtained by LNCSTUB. This
4-byte field is the first parameter passed to the LNCSTUB module by the call mechanism. The
remaining parameters comprise the standard Adabas parameter list needed to execute an Adabas
request.

DCI Parameter List

The Adabas DCI parameter list expected by the LNCSTUB program is composed of a pointer to the
DCI entry point in the Adabas CICS command-level link component followed by the six pointers to
the Adabas control block and buffers: format, record, search, value, and ISN.

For information on coding the standard Adabas control block and buffers, refeAdaies
Command Reference

The parameter list offsets are summarized in the table below:

Offset Pointer to the ...

0 DCI entry point in the Adabas command-level link component
4 Adabas control block

8 Adabas format buffer

12 Adabas record buffer

16 Adabas search buffer

20 Adabas value buffer

24 Adabas ISN buffer

Installation Overview Installing Adabas With TP Monitors

All of the parameters except the first (the DCI entry point) are built and maintained by the
application program in accordance with the requirements of an Adabas call.

The DCI entry point parameter should be set to binary zeros at the beginning of a task, and should
not be modified by the application program thereafter. Software AG strongly recommends that the fields
comprising the parameter list be placed in CICS storage (WORKING-STORAGE for COBOL and the
DFHEISTG user storage area for Assembler) to maintain pseudo-reentrability.

The following is a sample parameter list for an assembler language program:
DFHEISTG DSECT

PARMLIST DS OF
DS A(DCIPTR)
DS A(ADACB)

DS A(ADAFB)

DS A(ADARB)

DS A(ADASB)

DS A(ADAVB)

DS A(ADAIB)

DCIPTR DS F
ADACB DS CL80
ADAFB DS CL50
ADARB DS CL250
ADASB DS CL50
ADAVB DS CL50
ADAIB DS CL200

DFHEIENT CODEREG=(R12),EIBREG=(R10),DATAREG=(R13)

LA R1,PARMLIST
L R15,=V(ADABAS)
BALR R14,R15

END

Note:

The DFHEIENT macro in the Assembler example uses a DATAREG parameter of register 13. This
IS a strict requirement of the LNCSTUB program. When the LNCSTUB program is invoked, register
13 should point to the standard CICS save area (DFHEISA) and register 1 should point to the
parameter list. The best way to ensure this standard is to code the Assembler application with a
DFHEIENT macro like the one in the example.

The following is a sample parameter list for a COBOL language program:
WORKING-STORAGE SECTION.

01 STUB-DCI-PTR PIC S9(8) COMP VALUE ZERO.
01 ADACB PIC X(80).

01 ADAFB PIC X(50).

01 ADARB PIC X(250).

01 ADASB PIC X(50).

01 ADAVB PIC X(50).

01 ADAIB PIC X(200).

PROCEDURE DIVISION.

CALL 'ADABAS’ USING STUB-DCI-PTR,

33

Installing Adabas With TP Monitors Installation Overview

ADACB,
ADAFB,
ADARB,
ADASB,
ADAVB,
ADAIB.

EXEC CICS RETURN END-EXEC.

GOBACK.
Restrictions on Application Program Coding

In all other respects, the application program should be coded like a standard CICS command-level
routine. As long as the DCI parameter list is correct when LNCSTUB is called, there are no
restrictions on the CICS commands that an application can issue.

Standard Batch Call Mechanism Used

As shown in the Assembler and COBOL language program parameter list examples above, the call to
ADABAS (the LNCSTUB entry point) is accomplished like a batch application. Likewise, calls for
the other supported languages should be coded with their standard batch call mechanisms.

Link the Application Programs to Include the LNCSTUB Module

To properly link the LNCSTUB module with application programs, link the application program to
include the LNCSTUB module and the CICS stub modules. The method for doing this varies with the
programming language used for the application:

® Assembler language programs should include the DFHEAI and DFHEAIO CICS modules;

® COBOL applications should include DFHECI and DFHEAIO.

To avoid a double reference to the DFHEAIO module, code the linkage editor REPLACE DFHEAIO
control statement at the beginning of the SYSLIN data deck.

¥ for linking Assembler language programs:

1. For an Assembler program, the SYSLIN input is similar to:

INCLUDE DFHEAI

The Assembler object input is similar to:

REPLACE DFHEAIO
INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAIO)
NAME ALCSIVP(R)

When examining the cross-reference from the linkage editor, the symbol “ADABAS” must have the
same starting location as the LNCSTUB module in the link map.

¥ for linking COBOL language programs:

34

Performance Using LNCSTUB Installing Adabas With TP Monitors

1. For an COBOL program, the SYSLIN input is similar to:

REPLACE DFHEAIO
INCLUDE SYSLIB(DFHECI)

The COBOL object input is similar to:

INCLUDE SYSLIB(LNCSTUB)
INCLUDE SYSLIB(DFHEAIO)
NAME COBSIVP(R)

When examining the cross-reference from the linkage editor, the symbol “ADABAS” must have the
same starting location as the LNCSTUB module in the link map.

» for linking PL/I and C language programs:

1. Refer to the IBM manu&ICS/ESA System Definition Guifiee information about linking PL/I and
C applications under CICS.

Performance Using LNCSTUB

To obtain the best performance from applications using the Adabas direct call interface (DCI), examine
how the DCI interface functions at the logical level.

A CICS application using the standard LINK/RETURN mechanism to access the Adabas link routines
invokes the CICS program control service for every Adabas request made to the link routine. The
LNCSTUB module permits a BALR interface to be used. A BALR interface can substantially reduce the
CICS overhead required to pass control from the application program to the Adabas CICS command-level
link component.

The LNCSTUB module accomplishes this by using the standard EXEC CICS LINK/RETURN

mechanism to make an Initial Call (IC) to the Adabas CICS command-level link routine. The link routine
recognizes this call, and returns the entry point address of the DCI subroutine to LNCSTUB. LNCSTUB
must then save this address in a location that can be assured of existence throughout the duration of the
invoking task. This is why the calling program must provide the 4-byte field to hold the DCI entry point
address. After the DCI address has been obtained, and for as long as LNCSTUB receives this address as
the first parameter passed to it on subsequent Adabas calls, LNCSTUB utilizes the BALR interface to pass
control to the Adabas CICS command-level link component program.

As a consequence of this logic, the more Adabas requests made between ICs, the more efficient the
application in terms of passing data to and from Adabas under CICS. In fact, pseudo-conversational
applications that issue one Adabas call each time a task is invoked should not be coded to use the DCI
because there will be an IC request for each Adabas command issued by the calling program.

An additional performance improvement can be realized by taking advantage of the fact that the Adabas
CICS command-level link component program must be defined as resident in CICS. This fact should
allow the DCI entry point to be stored across CICS tasks, making it possible for different programs to call
the LNCSTUB module with a valid DCI entry point. The IC at each program startup is thus avoided.
When this procedure is used, however, any change to the CICS environment that invalidates the entry
point address (such as a NEWCOPY) will lead to unpredictable and possibly disastrous results.

35

Installing Adabas With TP Monitors Installing Adabas with Com-plete

It is imperative that at least one IC be made to the Adabas CICS command-level link component program
using CICS services. This call is used to trigger the acquisition of shared storage for the Adabas user
block (UB) and (in the case of migration aids) an array of register save areas. If no IC request is made,
Adabas calls will not execute due to a lack of working storage, and to the fact that critical control blocks
used by the link routines and the Adabas SVC are not built.

Installing Adabas with Com-plete

Certain Adabas parameters are required by Com-plete, Software AG’s TP monitor, when installing
Adabas. For more information, see tbem-plete System Programmensnual.

The link routine for Com-plete initialization (module/phase ADALCO) is provided in the Adabas

distribution library for the z/OS environments. ADALCO is loaded during Com-plete initialization to
service Adabas calls. The Adabas library containing ADALCO should be placed in either the z/OS
COMPINIT library concatenation or in the VSE/ESA LIBDEF search chain (SMA job number 1070).

The Adabas Version 7.4 ADALCO is UES-enabled as distributed. See the $&mtioacting
UES-Enabled Databasdsr more information.

Installing Adabas with IMS

This section describes installation of the Adabas link routine for the IMS TP monitor with Adabas.

® |MS Link Routines

Obtaining the Adabas User ID

Obtaining the SAF ID

Generating a Reentrant Version

Installation Procedure

IMS Link Routines
The Adabas link routines for IMS are:
® ADALNI for message processing programs (MPPs), and

® ADALNK the batch Adabas link routine, for batch message processing (BMP) programs,
batch-oriented BMP programs, and batch processing programs (DLIBATCH).

ADALNI and ADALNK use the CSECT name and ENTRY directive ADABAS by default.

The Adabas Version 7.4 ADALNI and ADALNK are UES-enabled as distributed. See the section
Connecting UES-Enabled Databages more information.

This section describes using ADALNI only. For information on using ADALNK, teathlling Adabas
with Batch / TSO

36

Obtaining the Adabas User ID Installing Adabas With TP Monitors

Obtaining the Adabas User ID

The Adabas user ID is obtained at execution time by the ADALNI load module from the LTERM field
(first first eight bytes) of the IOPCB. The user ID is stored in the Adabas user block field UBUID and will
be used for the last eight bytes of the Adabas communication ID.

Obtaining the SAF ID

The SAF ID is supported for use by Adabas SAF Security (ADASAF) if an external security package such
as IBM’'s RACF or CA’s ACF2 is present. The SAF ID is obtained at execution time by the ADALNI load
module from the user ID field (bytes 33-40) in the IOPCB. To get a valid user ID, signon must be active
in your IMS installation and the user has performed an IMS /SIGN command to log on to an IMS
terminal.

Generating a Reentrant Version

It is not recommended that a reentrant ADALNI version be generated. Please contact Software AG
support if you plan to do this.

Note:
The reentrant version of ADALNI musbt be used with Software AG’s Natural

Installation Procedure

The following steps are required to install the Adabas IMS link routine ADALNI (SMA job number 1055):
e Edit the ADALNI source member to set the assembly variables and equate values
® Assemble the ADALNI module
® Link the ADALNI module into an appropriate execution library

Step 1: Edit the ADALNI Source Member

The ADALNI source module must be edited before it can be assembled to provide the following
information:

e Assembly language variables for the IMS level to be supported, and whether Adabas SAF Security
(ADASAF) will be supported:;

® Values for the assembler equates (EQU symbols) must be provided for the database ID (logical ID),
Adabas SVC number, length of Adabas Review, and user information areas.

After modifying the assembler variables and the equate values, save your changes.
&ADAESI

A global Boolean assembly language variable, &ADAESI, is provided. Use an editor to find the SETB
assembler directives in the ADALNI module and modify it to set &ADAESI as required.

37

Installing Adabas With TP Monitors Installation Procedure

If you plan to use Adabas SAF Security (ADASAF) under IMS, you must
® Set the variable &ADAESI to a 1 prior to assembling the ADALNI routine.
® Link the ADASAF exit with the Adabas router (SVC).
® Enforce all external security procedures for IMS transactions at user sign-on time.

The variable &ADAESI must be turnemh (set to a "1") if ADASAF is linked with the Adabas SVC that
the ADALNI module will invoke during execution.

&IMSLVL

When assembling the Adabas IMS link routine that is distributed with the Adabas source library, find the
assembler local variable &IMSLVL and modify the character value in the assembler SETC directive to
match the level of your IMS system: V8 or V9.

Modify Assembler Language Equates

Locate and modify the following assembly language EQU statement parameter values:

Parameter| Description Syntax
LNUINFO | Length of the user information area passed to the
Adabas user exit B (UEXITB) and user exit A LNUI NFO={user-area | 0 }
(UEXITA).
Values from 0 to 32767 may be coded. The defau
value is 0.
Parameter| Description Syntax
LRVINFO | Length of the Adabas Review work area provided
the Adabas Review exit (REVEXITB). LRVI NFO={wor k-si ze | 0 }

The default value is 0, indicating that no Adabas
Review support is required.

See the Adabas Review documentation for a
recommended LRVINFO value.

Parameter| Description Syntax

LOGID The default database ID. Values from 1 to 65535 may be
provided. The default value is 1, which will be used if no LOG D={dbid | 1}
value is provided in

® the Adabas control block on each call, or

e the ADARUN DDCARD input data.

38

Installing Adabas with Shadow Installing Adabas With TP Monitors

Parameter| Description Syntax
SVCNR | The Adabas SVC number. A value from 200 to 2
may be provided. The default value is 249. SVONR={ svc-number | 249 }

The value must match the number of the Adabas
SVC installed in your z/OS image.

Step 2: Assemble the Edited ADALNI Module
Use the IBM high-level Assembler to assemble the ADALNI routine.

The order of data set concatenation on the assembly JCL SYSLIB DD statement is critically important:

Data Set Description
1 Allvrs.SRCE Adabas for IMS source library
2 ADAVrs.SRCE Standard or base Adabas source
library
4 SYS1.MACLIB
SYS1.AMODGEN or SYS1.MODGEN in z/OS systemg.

Step 3: Link ADALNI for IMS
Link the ADALNI module into a library that is available in your runtime concatenation.

Specifying AMODE and RMODE

Software AG also recommends that you link the Adabas IMS link routine with AMODE of 31 and a
RMODE of ANY under IMS.

The addressing mode and run mode of the Adabas link routine for IMS must be chosen to match the mode
of the application programs that invoke the link routine. Since the ADALNI module will not validate the
parameter addresses passed to it, it is the responsibility of the user to ensure the proper addressing
(AMODE) mode.

Note:
All IMS programs that are to access Adabas should be relinked to include the Version 7.4 ADALNI
module if IMS Version 3.1 or above is used at your site.

Installing Adabas with Shadow

Shadow can be used in OS/390 or z/OS and in VSE/ESA environments. The Adabas link routine specific
to Shadow, ADALNS, is provided in source form along with the job SHADASM to assemble it.
SHADASM must be customized to select the Shadow macro (source) library containing the macros
SAVED, $WAIT, RELOCD, RETURND, TCBD.

39

Installing Adabas With TP Monitors Installing Adabas with Batch / TSO

Selecting Options for ADALNS

Customizing the source member ADALNS means selecting the following options:

Option Default Specify . . .

SVCNR 0 Adabas SVC number

LOGID 1 Default logical database ID (range 1-255).
NUBS 50 Number of UBs (user blocks) to be created

by ADALNS. This must be high enough {o
handle the maximum possible number o
concurrent Adabas requests.

PLINTWA Y (yes) N if the Adabas parameter list is passed|in
register 1 instead of at offset O in the
Shadow TWA.

LNUINFO 0 Length for the user data to be passed frgqm
the ADALNS link routine to the Adabas
user exit 4.

Shadow Table Entry for ADALNS

The user must specify the following entry in the Shadow PCT table:

PCT PROG=ADABAS,DISP=INITL,LANG=BAL,SAVE=YES,PURGE=YES

It is important that Adabas be made resident. Under Shadow, the ADABAS parameter is normally passed
in the first 24 bytes of the TWA.

The user exit called from ADALNS gains control before the Adabas call (UEXITB), and can be used to
modify the eight-byte UBUID field. This allows users who process the command log to have a unique
terminal, since the command log presently contains only a four-byte field. This field does not contain a
unique ID. The user exit could then be used to make the first four bytes unique. The user exit must create
a unique user exit for each user. For Shadow, the UBUID field normally contains the constant “SHAD” in
the high-order four bytes, followed by the value from ITRMTYPE.

Installing Adabas with Batch / TSO

When installing Adabas on TSO systems, the standard Adabas batch link routine (ADALNK) provides
Adabas/TSO communication (SMA job number 1088).

The Adabas Version 7.4 ADALNK is UES-enabled as distributed. See the Sgotioecting
UES-Enabled Databasdsr more information.

However, it is important to note that user programs linked with ADAUSER also load ADARUN.
ADARUN, in turn, loads other modules.

To start a user program linked with ADAUSER, the following modules must all be available from the
defined load libraries for that specific TSO user at execution time:

40

ADALNKR : Reentrant Batch Link Routine Installing Adabas With TP Monitors

ADAIOR ADAMLF
ADAIOS ADAPRF
ADALNK ADARUN

ADALNKR : Reentrant Batch Link Routine

The ADALNKR source modules are provided in the Adabas source library to support applications where
a reentrant batch link routine is desired. Several Software AG products require the use of the reentrant
batch link routine and the ADALNKR load module is provided in the Adabas load library to support them.

Notes:

1. For Adabas 7.2.2 and above, the ADALNKR source module should be assembled separately to
obtain the reentrant version of the batch/TSO link routine.

2. The ADALNKR routine differs somewhat from the nonreentrant ADALNK routine provided in the
Adabas source library. It is no longer sufficient to set the &RENT Boolean variable to 1 in the
ADALNK module to obtain a reentrant version which is compatible with Adabas 7.2.2 and above.

3. Software AG still recommends that batch application programs be linked with the ADAUSER
module, not ADALNK or ADALNKR. The ADAUSER load module is not reentrant, but the
ADALNKR module may be linked with it as long as the application program conforms to the calling
requirements described below.

41

	Installing Adabas With TP Monitors
	Installing Adabas with AIM/DC
	Preparing Adabas Link Routines for IBM Platforms
	High-Level Assembler
	Addressing Mode Assembly Directives
	Modifying the Assembly Directives

	UES-Enabled Link Routines
	Disabling UES Support

	Installing Adabas with CICS
	Adabas Bridge for VSAM Considerations
	CICS MRO Environment Requirements
	Using CICS Storage Protection
	Standard Versus Enhanced Installation
	CICS Transaction Isolation
	ADASAF and CICS 4.1
	Operationally Reentrant Link Routine after Initialization
	DISPGWA Module : Displaying the CICS Global Work Areas

	LNKENAB and LNKTRUE Modules
	LNKENAB Module
	LNKTRUE Module

	JCL and Source Members
	Sample Resource Definitions
	Modifying Source Member Defaults (ADAGSET Macro)
	AVB: Adabas VSAM Bridge Support
	ENABNM: Entry Point Name for Program to Enable Adabas TRUE
	ENTPT: Name of the Adabas CICS Command-Level Link Routine
	LADAFP: Length of Work Area for Adabas Fastpath Exit
	LOGID: Default Logical Database ID
	LRINFO: Length of Adabas Review Data Area
	LUINFO: Length of User Data passed to Adabas UEXITA and UEXITB
	LUSAVE: Size of User Save Area for Adabas UEXITA and UEXITB
	LXITAA: Length of Work Area provided to UEXITA
	LXITBA: Length of Work Area for UEXITB
	MRO: Multiple Region Option
	NETOPT: Method Used to Create User ID
	NTGPID: Natural Group ID
	NUBS: Number of User Blocks Created By CICS Link Routine
	PARMTYP: Area for Adabas Parameter List
	PURGE: Purge Transaction
	RMI: Resource Manager Interface
	SAF: Adabas SAF Security
	SAP: SAP Application Support
	SVCNO: Adabas SVC number
	TRUE: Adabas Task-Related User Exit
	TRUENM: Name of Adabas Task-Related User Exit
	UBPLOC: User Block Pool Allocation
	XWAIT: XWAIT Setting for CICS
	XWAIT Posting Mechanisms
	XWAIT and the Adabas SVC / Router

	Installation Procedure
	Step 1: Modify the ADAGSET Macro for the Source Member(s)
	For the Standard Installation (Without Enhanced Functions)
	For the Enhanced Installation
	Step 2: Modify the JCL Members
	Step 3: Install the Adabas Command-Level Link Component (SMA Job Number I070)
	Step 4: Install the Adabas Task-Related User Exit (SMA Job Number I070)
	Step 5: Install the Adabas PLT-Enable Program (SMA Job Number I070)
	Step 6: Install the DISPGWA Program (Optional)

	Installing the CICS High-Performance Stub Routine
	Restrictions and Requirements
	Stub Components
	Installation Overview
	Step 1: Install the LNCSTUB Module
	Edit the ADAGSET Macro
	Change the LNCNAME Field Value
	Modify Member JCLLNCS
	Preprocess, Assemble, and Link the LNCSTUB Module
	Make the LNCSTUB Available to Application Programs
	Step 2: (Optional) Install and Execute an IVP
	Install and Execute the Assembler IVP: ALCSIVP
	Install and Execute the COBOL IVP: COBSIVP
	Step 3: Link and Execute the Application Program
	Guidelines for Modifying the Application Program
	Link the Application Programs to Include the LNCSTUB Module

	Performance Using LNCSTUB

	Installing Adabas with Com-plete
	Installing Adabas with IMS
	IMS Link Routines
	Obtaining the Adabas User ID
	Obtaining the SAF ID
	Generating a Reentrant Version
	Installation Procedure
	Step 1: Edit the ADALNI Source Member
	&ADAESI
	&IMSLVL
	Modify Assembler Language Equates
	Step 2: Assemble the Edited ADALNI Module
	Step 3: Link ADALNI for IMS
	Specifying AMODE and RMODE

	Installing Adabas with Shadow
	Selecting Options for ADALNS
	Shadow Table Entry for ADALNS

	Installing Adabas with Batch / TSO
	ADALNKR : Reentrant Batch Link Routine

