
Device And File Considerations
This section provides information for the following device and system file topics:

Supported Device Types

ECKD Devices

Adding New Devices

Installing Adabas Using VSAM Data Sets

Supported Device Types
The standard characteristics of the device types supported by Adabas on z/OS are summarized in the
following table. Adabas block sizes and RABNs per track are provided for each Adabas component for
each device type.

1

Device And File ConsiderationsDevice And File Considerations

Device Trks/Cyl ASSO DATA WORK PLOG/RLOG CLOG TEMP/SORT/DSIM Notes

0512 16 2044:8 4092:4 8192:2 8192:2 8192:2 8192:2

3310 11 2044:8 4092:4 4096:4 4096:4 4096:4 8192:2

3330 19 1510:8 3140:4 4252:3 4252:3 3156:4 3140:4

3340 12 1255:6 2678:3 3516:2 3516:2 3516:2 3500:2

3350 30 1564:11 3008:6 4628:4 4628:4 3024:6 3008:6

3370 12 2044:15 3068:10 5120:6 5120:6 3072:10 7680:4

3375 12 2016:15 4092:8 4096:8 4096:8 4096:8 8608:4

3380 15 2004:19 4820:9 5492:8 5492:8 4820:9 7476:6 3

3390 15 2544:18 5064:10 5724:9 5724:9 5064:10 8904:6 3

8345 15 4092:10 22780:2 22920:2 22920:2 22920:2 22920:2

8350 30 3008:6 6232:3 9442:2 9442:2 9442:2 9442:2 1

8380 15 3476:12 6356:7 9076:5 9076:5 9076:5 9076:5 1

8381 15 3476:12 9076:5 11476:4 11476:4 9076:5 9076:5 1

8385 15 4092:10 23292:2 23468:2 23468:2 23468:2 23468:2 1

8390 15 3440:14 6518:8 10706:5 10706:5 8904:6 8904:6 1

8391 15 4136:12 10796:5 13682:4 13682:4 8904:6 18452:3 1

8392 15 4092:12 12796:4 18452:3 18452:3 18452:3 18452:3 1

8393 15 4092:12 27644:2 27990:2 27990:2 27990:2 27990:2 1

9332 6 2044:10 4092:5 5120:4 5120:4 10240:2 10240:2 2

9335 6 2556:14 3580:10 5120:7 5120:7 7168:5 7168:5

9345 15 4092:10 7164:6 11148:4 11148:4 22920:2 22920:2 3

Notes:

1. The 8350, 838n, and 839n are pseudodevice types physically contained on a 3350, 3380, and 3390
device, respectively, but for which some or all of the standard block sizes are larger.

2. The number of tracks per cylinder listed here is artificial.
3. The IBM RAMAC 9394 emulates devices 3390 Model 3, 3380 Model K, or 9345 Model 2.

Support for VSAM Data Sets

VSAM support is available only on z/OS.

To support VSAM data sets, the following table shows the CISZ values for the Adabas components on the
3380/90 devices:

2

Supported Device TypesDevice And File Considerations

Device ASSO DATA WORK PLOG/RLOG CLOG TEMP/SORT/DSIM

3380 2048 5120 5632 5632 5120 7680

3390 2560 5120 6144 6144 5120 9216

The VSAM device types 5555, 6666, 7777, 8888, and 9999 are dynamic device types that depend on the
user definition.

A VSAM user can determine the RABN size currently in use from message ADAI64.

ECKD Devices
Adabas supports ECKD DASD devices such as the IBM 3390 with the 3990 controller and ESCON
channels.

During an open operation, ADAIOR determines which DASD device types are being used for the ASSO,
DATA, WORK, SORT, and TEMP data sets. At that time, Adabas issues an informational message for
each Adabas database component, where type is the component:

ADA164 ... FILE DD type HAS BEEN OPENED IN ckd/eckd MODE - RABN SIZE rabn-size

Note:
Software AG strongly recommends that you avoid mixing ECKD and CKD extents within a file, because
the file will be opened only in CKD mode. Mixing extents could degrade performance when file I/O
operations are performed.

Adding New Devices
Support for new device types that include user-defined block sizes can be implemented in ADAIOR by
modifying one of the table of device-constant entries (TDCEs) reserved for this purpose.

A TDCE is X’40’ bytes long and the first free TDCE can be identified by X’0000’ in its first two bytes
(TDCDT).

For all versions of Adabas prior to version 6.2, the address of the first TDCE is at offset ADAIOR+ X‘34’.

For Adabas Version 6.2, TDCE entries are in the ADAIOR CSECT TDCON: the first TDCE entry is at
offset 0; the first free TDCE entry is at offset X‘400’.

For Adabas Version 7.1, TDCE entries are in the ADAIOS CSECT TDCON: the first TDCE entry is at
offset 0; the first free TDCE entry is at offset X‘580’.

This information is valuable when adding an additional TDCE entry.

Information to be Zapped into the First Free ADAIOR TDCE

General Rules for Defining Device Block Sizes

Maximum Sequential Block Size

3

Device And File ConsiderationsECKD Devices

Rules for Associator and Data Storage Block Sizes

Rule for Work Data Set Block Size

Rules for TEMP/SORT Data Set Block Sizes

Rules for PLOG or SIBA Block Sizes

Sequential Protection Log Block Size in I_PPT

Information to be Zapped into the First Free ADAIOR TDCE

The information in the following tables must be zapped into the first free TDCE. The rules described in
the section General Rules for Defining Device Block Sizes must be followed when changing the TDCE.

Label Offset Contents

TDCDT 00 Device type in unsigned decimal (X’3385’), must be
numeric, and unique among all TDCEs.

TDCKSN 02 Constant set number: must be uniquely chosen from
the values X’2B’ or X’2E’.

TDCF 03 The flag bit must be set—TDCFCKD (X’40’) for
CKD devices, TDCFECKD (X’60’) for ECKD
devices or TDCFECKD (X’61’) for ECKD, not user
defined devices.

TDCDT1 04 (see note 1)

TDCDT2 05 (see note 1)

TDCDT3 06 (see note 1)

TDCDT4 07 (see note 1)

TDCMSBS 08 Refer to the section Maximum Sequential Block Size.

TDCTPC 0A Number of tracks per cylinder.

TDCCIPT 0C (see note 2)

TDCBPCI 0E (see note 2)

TDCABPT 10 Number of Associator blocks per track.

TDCABS 12 Associator block size.

TDCACPB 14 (see note 2)

TDCDBPT 16 Number of Data Storage blocks per track.

TDCDBS 18 Data Storage block size.

TDCDCPB 1A (see note 2)

TDCWBPT 1C Number of Work blocks per track.

TDCWBS 1E Work block size.

TDCWCPB 20 (see note 2)

4

Information to be Zapped into the First Free ADAIOR TDCEDevice And File Considerations

Label Offset Contents

TDCTSBPT 22 Number of TEMP or SORT blocks per track

TDCTSBS 24 TEMP or SORT block size.

TDCTSCPB 26 (see note 2)

TDCPBPT 28 Number of PLOG blocks per track.

TDCPBS 2A PLOG block size.

TDCPCPB 2C (see note 2)

TDCCBPT 2E Number of CLOG blocks per track.

TDCCBS 30 CLOG block size.

TDCCCPB 32 (see note 2)

Notes:

1. One or more operating-system-dependent codes for identifying the device type: z/OS, the UCB unit
type from UCBTBYT4.

2. Not used for z/OS operating systems.

General Rules for Defining Device Block Sizes

The following general rules must be followed when defining Adabas device block sizes:

All block sizes must be multiples of 4.

A single block cannot be split between tracks (that is, the block size must be less than or equal to the
track size).

Maximum Sequential Block Size

When adding new devices, the maximum sequential block size must also be specified. The value to be set
to the maximum sequential block size is TDCMSBS, located at offset X’08’ from the beginning of the
ADAIOR TDCE table.

Depending on the device type, the TDCMSBS value should be as follows:

5

Device And File ConsiderationsGeneral Rules for Defining Device Block Sizes

Device Type Maximum Block Size

0512 32760

3310 32760

3330 13030

3340 8368

3350 (8350) 19069

3370 32760

3375 17600

3380 (8380/81) 23476

339n 27998

8380/1/5 23476

839n 27998

9332 32760

9335 32760

Note:
On some devices, it may be most efficient to use smaller block sizes (for example, to specify 23476 for
the 3380, but with two blocks per track).

Rules for Associator and Data Storage Block Sizes

The following rules apply for Associator and Data Storage block sizes:

Associator block size must be greater than one-fourth the size of the largest FDT, and should be large
enough to accept definitions in the various administrative blocks (RABN 1 - 30) and in the FCB;

The block sizes for Associator and Data Storage should be a multiple of 256, less four bytes (for
example, 1020) to save Adabas buffer pool space.

The Associator and Data Storage block sizes must be at least 32 less than the sequential block size.

Data Storage block size must be greater than: (maximum compressed record length + 10 + padding
bytes).

Rule for Work Data Set Block Size

The Work block size must be greater than either (maximum compressed record length + 110) or
(Associator block size + 110), whichever is greater.

Rules for TEMP/SORT Data Set Block Sizes

If ADAM direct addressing is used:

6

Rules for Associator and Data Storage Block SizesDevice And File Considerations

size > (maximum compressed record length + ADAM record length + 24);
size > 277 (maximum descriptor length + 24)

However, TEMP and SORT are generally read and written sequentially; therefore, the larger the
TEMP/SORT block size, the better.

Block sizes for TEMP and SORT must be greater than the block sizes for Data Storage.

Rules for PLOG or SIBA Block Sizes

Note:
The use of 3480/3490 tape cartridge compression (IDRC) is not recommended for protection log files. The
ADARES BACKOUT function will run at least twice as long under z/OS when processing compressed
data.

The following rules apply for PLOG or SIBA block sizes:

The PLOG or SIBA block size must be greater than either (maximum compressed record length +
110) or (Associator block size + 110), whichever is greater.

It is also recommended that PLOG/SIBA be defined larger than the largest Data Storage block size.
This avoids increased I/O caused by splitting Data Storage blocks during online ADASAV
operations.

The block size (BLKSIZE) of a sequential file is determined as follows:

if PTTF(JCL) then BLKSIZE is taken from file assignment statement or label;
if PTTMBS > 0 then BLKSIZE = PTTMBS;
if PTTMBS = 0 then
if tape then BLKSIZE = 32760;
else BLKSIZE = TDCMSBS;
else if BLKSIZE in file assignment statement or label then use it;
if PTTF(OUT) then
if QBLKSIZE > 0 then BLKSIZE = QBLKSIZE;
if tape then BLKSIZE = 32760;
else BLKSIZE = TDCMSBS;
else error.

Note:
QBLKSIZE is an ADARUN parameter.

Sequential Protection Log Block Size in I_PPT

In addition, the sequential protection log block size may have to be increased in the corresponding PTT
entry in CSECT I_PTT of the load module ADAIOR.

The address of the first PTT entry is contained in the fullword at ADAIOR+X‘4C8’.

PTT entries begin at offset 0 into CSECT I_PTT.

Each PTT entry is X’10’ bytes long and has the structure given below:

7

Device And File ConsiderationsRules for PLOG or SIBA Block Sizes

Label Offset Contents

PTTPN 00 Program number

PTTFT 01 File type

PTTN 02 DD name characters 2 - 8

PTTF 08 Flags:

OUT (X’80’) output

BSAM (X’40’) BSAM

BACK (X’20’) read backwards

JCL (X’10’) BLKSIZE/LRECL/RECFM taken from
DATADEF statement or label

UNDEF (X’04’) undefined record format

VAR (X’02’) variable record format

- 09 Reserved

PTTMBSZ 0C Maximum block size

The PTT entry for the sequential protection log can be identified by X‘12F1’ in its first two bytes.

Installing Adabas Using VSAM Data Sets
This section presents information needed to install Adabas on z/OS systems using VSAM as the access
method for containing Adabas data. Software AG provides a VSAM interface as an alternative to using
EXCP with BDAM container files.

Suggested Additional VSAM Information Sources

Defining VSAM Data Sets

Defining Control Interval Sizes

Using Existing Adabas Device Definitions

Defining Your Own Device Characteristics

Mixing VSAM and BDAM Components

Converting Adabas BDAM Components to VSAM

VSAM File Storage Requirements

Allocating VSAM Data Sets on Multiple Volumes

8

Installing Adabas Using VSAM Data SetsDevice And File Considerations

VSAM Limitations

Comparison of EXCP and VSAM on High-Capacity Disk Drives

Suggested Additional VSAM Information Sources

Software AG recommends that you have the following reference manuals when dealing with VSAM files.
References are made in this section to these manuals:

IBM Access Method Services

IBM VSAM Administration Guide, Macro References

See the list of manuals in the introduction for more specific information.

Defining VSAM Data Sets

The following topics describe the VSAM file types used for Adabas files, and how to define and delete
those files with the IDCAMS utility.

VSAM File Types

There are four types of VSAM container files:

KSDS key sequential data sets
ESDS entry sequence data sets
RRDS relative record data sets
LDS linear data sets

Adabas uses RRDS or the optional LDS as the VSAM container file type that must be defined.

Normally, files are seen as containing records that can be read and written by the application program.
Adabas uses the VSAM record to hold a block of compressed Adabas data. This means that the VSAM
file contents is identical with that of its BDAM equivalent; only the access method is different. The RRDS
and LDS VSAM file types were chosen because of their similarity to the current BDAM file structure.

Defining a VSAM Data Set with the IDCAMS Utility

To define a VSAM data set, the IBM-supplied utility IDCAMS is used. This utility and its parameters are
discussed in the manual IBM Access Method Services. It is not the intention here to describe IDCAMS in
detail, but only those aspects that relate to Adabas requirements.

The following is an example job set-up for defining a VSAM data set for Adabas:

//IDC01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER (NAME (EXAMPLE.ASSOR1) VOL (VOLXXX) -
CYLINDER(100) NUMBERED) -
DATA (NAME (EXAMPLE.ASSOR1.DATA) -
SHAREOPTIONS (3 3) -
CISZ (2048) -
RECORDSIZE (2004 2004))
/*
//

9

Device And File ConsiderationsSuggested Additional VSAM Information Sources

The first SYSIN statement defines the VSAM cluster. The information that follows the SYSIN statement
(within the outer parentheses) describe the VSAM file. The following is a short description of the
parameters:

Parameter Description

NAME Name assigned to the data set and used to refer to the data set in
later jobs; for example, the following data definition refers to the
name defined in the above example:

//DDASSOR1 DD DSN=EXAMPLE.ASSOR1,DISP=SHR

VOL Volume or volumes on which this file is contained.

CYLINDER DASD space required for this component. This may also be
specified as RECORDS, TRACKS, etc.

NUMBERED Identifies the file type as RRDS.

DATA
(NAME)

Internal name describing the Data component of the VSAM file.

SHAREOPTIONS

(3 3)
Defines how this data set is to be shared among other users. See
the IBM Access Method Services manual for more information.

CISZ Internal VSAM control interval size for this data set.

RECORDSIZE VSAM record size; for Adabas use, this is the Adabas block size.

The “-” character indicates continuation on the next job statement line.

Deleting a VSAM Data Set

The IDCAMS utility is also used to delete a VSAM data set. The following is an example of a job for
deleting a VSAM file:

//IDC01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
DELETE (EXAMPLE.ASSOR1)
/*
//

Multiple IDCAMS Operations

You can combine more than one IDCAMS utility operation. For example, you can delete and define a
cluster or multiple clusters in one execution step. The following is an example:

//IDC01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER (NAME (EXAMPLE.ASSOR1) VOL (VOLXXX) -
CYLINDER(100) NUMBERED) -
DATA (NAME (EXAMPLE.ASSOR1.DATA) -
SHAREOPTIONS (3 3) -
CISZ (2048) -
RECORDSIZE (2004 2004))

10

Defining VSAM Data SetsDevice And File Considerations

DELETE (EXAMPLE.DATAR1)
DEFINE CLUSTER (NAME (EXAMPLE.DATAR1) VOL (VOLXXX) -
CYLINDER(100) NUMBERED) -
DATA (NAME (EXAMPLE.DATAR1.DATA) -
SHAREOPTIONS (3 3) -
CISZ (5120) -
RECORDSIZE (4820 4820))
/*
//

Defining Control Interval Sizes

A control interval is an area in which VSAM manages a record or group of records. VSAM maintains
locks at the control-interval level; if an update is in progress for a record within a control interval, all
records in that control interval are also locked, and cannot be accessed or changed. For this reason, only
one record per control interval should be defined for Adabas VSAM files, since Adabas must be allowed
to update or access any block on the database at any given time.

The following diagram shows a control interval containing an Adabas block:

How large the control interval is, depends on the record size. For records less than 8 KB, the control
interval is defined in multiples of 512 bytes; for records equal to or larger than 8 KB, the control interval
is defined in multiples of 2048 bytes.

To ensure that the correct CISZ is coded in your IDCAMS DEFINE request, use the following formula:

For records less than 8 KB:

resulta = (recordsize + (7-byte CI overhead)) / 512

Round resulta up to the next higher number, then calculate CISZ:

CISZ = resulta (rounded) * 512

For records equal or larger than 8 KB:

resulta = (recordsize + (7-byte CI overhead)) / 2048

Round resulta up to the next higher number, then calculate CISZ:

CISZ = resulta (rounded) * 2048

The following table shows the record sizes and CISZ values for the Adabas components on the 3380/90
devices:

11

Device And File ConsiderationsDefining Control Interval Sizes

Device ASSO DATA WORK PLOG/RLOG CLOG TEMP/SORT

3380 2004:2048 4820:5120 5492:5632 5492:5632 4820:5120 7476:7680

3390 2544:2560 5064:5120 5724:6144 5724:6144 5064:5120 8904:9216

Using Existing Adabas Device Definitions

It is possible to use existing devices and device characteristics within the Adabas VSAM interface. No
DEVICE-related changes are required in the ADARUN control parameters. The only requirement is that
the IDCAMS RECORDSIZE parameter be identical to the block size of your existing BDAM component.
However, it should be taken into account that this may lead to wasted disk space.

For example, a 3380 definition for the Associator requires a block size of 2004 bytes, plus seven bytes
overhead per control interval and only one record per control interval. The actual use of the control
interval is 2011 bytes, resulting in an unused area of 37 bytes (2048 - 2011 = 37). This unused space
generally requires that the VSAM physical space allocation for the data set be larger than its BDAM
equivalent.

It is not necessary that the VSAM data sets be on the same device type as that defined on the present
ADARUN statements. For example, you may define the RECORDSIZE parameter for IDCAMS as a 3390
Adabas block size, while the VOL parameter points to a 3350 physical device type. In addition, VSAM
allows the cluster to span different physical device types, while appearing to Adabas as a single device
type.

Defining Your Own Device Characteristics

When you define your own block sizes, the Adabas VSAM interface detects this and dynamically creates
a device type of 9999 for the DD/xxxxR1 Adabas component. Or, if the VSAM interface detects an
ADARUN DEVICE=9999 parameter, the VSAM file information is obtained from the VSAM catalog
entry.

By defining your Adabas data sets with your own RECORDSIZE definition, you can ensure the best use
of VSAM’s control intervals. However, you must adhere to the guidelines for Adabas block sizes as
defined in the section General Rules for Defining Device Block Sizes, except for the restriction that
prohibits splitting a block between tracks. This can be done with the VSAM interface.

DD/xxxxR2 Adabas components (DD/PLOGR2, DD/ASSOR2, etc.) are defined using a dynamic device
type of 8888, DD/xxxxR3 uses 7777, DD/xxxxR4 uses 6666, and DD/xxxxR5 uses 5555. For utilities that
require DATADEV or ASSODEV, it is important to provide the appropriate dynamic device types
according to this system.

The DD/xxxxR2-R5 data sets are only required for different Adabas block size definitions; they are no
longer needed for defining VSAM files on different physical device types alone. A single component may
span physically different devices in the VSAM interface, while still appearing to Adabas as being on the
same device type.

Mixing VSAM and BDAM Components

VSAM and BDAM components can be mixed. For example, you can have an Associator in a VSAM file
with the rest of the Adabas components in BDAM files. But you cannot mix VSAM and BDAM within
the same component. If, for example, you have DD/ASSOR1 and R2 defined, they must both be either

12

Using Existing Adabas Device DefinitionsDevice And File Considerations

VSAM or BDAM files. Any Adabas component that currently resides on a BDAM file may be redefined
on a VSAM data set. This includes Associator, Data, Work, PLOG, CLOG and the RLOG.

Converting Adabas BDAM Components to VSAM

There are two ways to convert Adabas Associator (ASSO) and Data Storage (DATA) components to
VSAM. The simplest method, described next, may require more DASD space for the VSAM components.
The second method takes more time, but may save on DASD space.

Method 1

 to convert ASSO and DATA components to VSAM (method 1):

1. Run the ADAREP (database report) utility on the existing database with its BDAM components.

2. Run ADASAV SAVE on the database.

3. Run the IDCAMS utility to DEFINE the cluster or clusters for the Associator and/or Data Storage
components being converted. Specify a RECORDSIZE that is consistent with these components, and
a RECORDS value using the number of blocks indicated in the ADAREP output’s “database
physical layout” section for those components being converted. Remember to add one track’s worth
of blocks to the size reported there.

4. Following successful IDCAMS operation, run the ADAFRM utility on the VSAM files to format
them. Remember to use the same device types as were defined on the BDAM database.

5. Run the ADASAV RESTORE function on the new VSAM data sets.

6. Convert all other nucleus and utility job control statements to apply to the VSAM data sets.

Method 2

 to convert ASSO and DATA components to VSAM (method 2):

1. Run the ADAORD RESTRUCTUREDB function on the BDAM-based database. Do not specify an
Associator device type with ASSODEV different from the existing Adabas block size and device
type definitions.

2. Run IDCAMS to allocate the VSAM files, using your own RECORDSIZE and size definitions.
Define all Adabas Data Storage and/or Associator components.

3. Run the ADAFRM utility to format the VSAM files created in step 2. When using existing Adabas
block sizes, use the existing device definition; otherwise, specify DEVICE=9999 to indicate dynamic
device usage (see the section Defining Your Own Device Characteristics for more information).

4. Run the ADADEF DEFINE function on the VSAM files, and specify ASSOSIZE/DATASIZE
according to the result of step 2, above, minus one track’s worth of blocks.

5. Run the ADAORD STORE function on the VSAM files, and specify the correct device types. Use
device type “9999” for dynamic device usage (see the section Defining Your Own Device
Characteristics for more information).

13

Device And File ConsiderationsConverting Adabas BDAM Components to VSAM

Specify ADARUN TMLOG=NEVER for the purpose of verifying the installation. Once the
verification process has been completed, reconsider this parameter setting.

6. Change all other nucleus and utility job control to specify the VSAM data sets defined and formatted
in steps 2 through 5. Remember to change any device specifications to “9999” if you are using dynamic
device definition (see the section Defining Your Own Device Characteristics for more information).

Converting WORK, PLOG, CLOG and RLOG Components

 To convert WORK, PLOG, CLOG and RLOG components:

1. Execute IDCAMS to define the cluster, using either the existing Adabas block sizes or your own
RECORDSIZE definitions.

2. Execute ADAFRM to format the VSAM data sets.

3. Use the VSAM file or files in place of their BDAM counterparts in all Adabas nucleus and utility job
control statements.

VSAM File Storage Requirements

The Adabas VSAM interface makes use of BDAM user buffering and VSAM control interval processing
to minimize VSAM overhead. However, this requires that the Adabas VSAM interface acquire storage to
manage the contents of VSAM control intervals.

The Adabas VSAM interface uses up to 255 areas per Adabas file to manage VSAM control intervals.
Each area is equivalent to the CISIZE specified in the IDCAMS definition for the file. These control
interval areas are acquired dynamically while the nucleus or utility is executing; this minimizes the
amount of storage required, based on the I/O response times of your environment. For example, in an
environment where I/O performance is optimized, it is possible that only seven to ten of these CIAREAs
would be needed to handle concurrent asynchronous VSAM requests.

In 31-bit addressing mode, these buffers are allocated above 16 MB. Software AG therefore recommends
that you run with AMODE=31 when using the VSAM interface.

Allocating VSAM Data Sets on Multiple Volumes

Allocating VSAM data sets across multiple volumes is done by specifying secondary space allocations as
well as the volume serial numbers that will contain the VSAM data set. The following is a sample
IDCAMS execution for defining EXAMPLE.ASSOR1 on volumes VOLXXX and VOLYYY with a
primary space allocation of 100 cylinders and a secondary space allocation of 50 cylinders:

//IDC01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER (NAME (EXAMPLE.ASSOR1) VOL (VOLXXX VOLYYY) -
CYLINDER(100 50) NUMBERED) -
DATA (NAME (EXAMPLE.ASSOR1.DATA) -
SHAREOPTIONS (3 3) -
CISZ (2048) -
RECORDSIZE (2004 2004))

14

VSAM File Storage RequirementsDevice And File Considerations

If the secondary allocation of 50 cylinders can be obtained on VOLXXX, it will be taken from that
volume. Allocation of 50 cylinders will continue until VOLXXX can no longer satisfy an allocation.
Then, space is acquired from VOLYYY.

The primary allocation must be acquired from VOLXXX; otherwise, IDCAMS will fail. The maximum
number of VSAM extents is 123. On large databases, you must be careful to avoid fragmented VSAM file
allocations that could cause the limit of 123 extents to be exceeded. For extremely large databases or for
those requiring more than 123 extents, consider allocating additional database components
(DD/xxxxR2-R5).

VSAM Limitations

VSAM files can be defined to include up to 123 extents, or a maximum size of 4,294,967,296 bytes (4
gigabytes). Therefore, Adabas is permitted a maximum of 20 gigabytes of Associator (ASSO) and 20
gigabytes of Data Storage (DATA) components through the use of DD/xxxxR1 - DD/xxxxR5 data sets,
and up to 4 gigabytes for all other Adabas components.

Comparison of EXCP and VSAM on High-Capacity Disk Drives

Newly developed DASD (disk) devices have capacities considerably larger than any previous devices.
The IBM 3390 Model 9 is one example. Such devices contain more than 65,535 tracks per volume, which
makes it impossible to allocate a complete volume as a single data set, regardless of the number of extents.
The 65,535 track limit is imposed by the operating system for most access methods.

To make use of a whole volume for ASSO or DATA files, it becomes necessary to allocate more than one
container data set per volume, each data set not exceeding 65,535 tracks. These data sets would then be
assigned to separate DATARn or ASSORn DD statements in Adabas JCL procedures. Since DATA and
ASSO can each have up to five containers, this technique allows up to 327,675 tracks total for each. On a
3390-type device, this can be more than 18 GB.

If larger DATA or ASSO files are required, it is necessary to allocate one or more container files on
multiple volumes. The operating system permits a single data set to span up to 59 volumes, as long as the
total number of tracks allocated on each volume does not exceed 65,535. This allows DATA and ASSO
each to be as large as 19,332,825 tracks, which can be more than 1 TB on 3390-type devices.

When deciding between EXCP and VSAM for such a device, the factors that should be considered are

performance;

maximum capacity; and

ease of maintenance.

VSAM permits easier handling and improved SMS integration, but at the cost of somewhat lower
performance. Also, since there can only be one VSAM cluster per operating system file (i.e., ASSOR1,
etc.), this limits the total Associator or Data Storage size to 20 gigabytes. The maximum size for the Work
data set is four gigabytes.

The capacity of high-capacity devices themselves may also restrict the choice. Unlike a BDAM file, a
single VSAM cluster cannot exceed four gigabytes. This means that a single VSAM cluster cannot
reference the complete volume on such a device (for example, the 3390 Model 9 has a maximum capacity
of 8.5 gigabytes).

15

Device And File ConsiderationsVSAM Limitations

Notes:

1. EXCP offers high volume and performance, but with the disadvantage of requiring more
maintenance.

2. Certain high-capacity drives have a slower data transfer rate. The performance impact of the data
transfer rate must be taken into consideration when choosing the access method to be used on such
devices.

16

Comparison of EXCP and VSAM on High-Capacity Disk DrivesDevice And File Considerations

	Device And File Considerations
	Supported Device Types
	
	Support for VSAM Data Sets

	ECKD Devices
	Adding New Devices
	Information to be Zapped into the First Free ADAIOR TDCE
	General Rules for Defining Device Block Sizes
	Maximum Sequential Block Size
	Rules for Associator and Data Storage Block Sizes
	Rule for Work Data Set Block Size
	Rules for TEMP/SORT Data Set Block Sizes
	Rules for PLOG or SIBA Block Sizes
	Sequential Protection Log Block Size in I_PPT

	Installing Adabas Using VSAM Data Sets
	Suggested Additional VSAM Information Sources
	Defining VSAM Data Sets
	VSAM File Types
	Defining a VSAM Data Set with the IDCAMS Utility
	Deleting a VSAM Data Set
	Multiple IDCAMS Operations

	Defining Control Interval Sizes
	Using Existing Adabas Device Definitions
	Defining Your Own Device Characteristics
	Mixing VSAM and BDAM Components
	Converting Adabas BDAM Components to VSAM
	Method 1
	Method 2
	Converting WORK, PLOG, CLOG and RLOG Components

	VSAM File Storage Requirements
	Allocating VSAM Data Sets on Multiple Volumes
	VSAM Limitations
	Comparison of EXCP and VSAM on High-Capacity Disk Drives

