
Disk Space Usage 
The efficient use of disk space is especially important in a database environment since 

sharing data between several users, possibly concurrently and in different combinations, normally
requires that a large proportion of an organization’s data be stored online; and 

some applications require extremely large amounts of data.

Decisions concerning the efficient usage of disk space must be made while considering other objectives of
the system (performance, flexibility, ease of use). This section discusses the techniques and considerations
involved in performing trade-offs between these objectives and the efficient usage of disk space. 

This chapter covers the following topics:

Data Compression

Forward Index Compression

Padding Factors

Data Compression
Each field may be defined to Adabas with one of three compression options: 

Fixed storage (FI), in which the field is not compressed at all. One-byte fields that are always filled
(for example, "gender" in a personnel record) and alphanumeric or numeric fields with full values
("personnel number") should always be specified as fixed (FI) fields. 

Ordinary compression (the default) which causes Adabas to remove trailing blanks from
alphanumeric fields and leading zeros from numeric fields; 

Null-value suppression, which includes ordinary compression and in addition suppresses the null
value for a field. Adjacent null value fields are combined into a single value. 

The following table illustrates how various values of a five-byte alphanumeric field are stored using each
compression option. 

Field Value Fixed Storage Ordinary Compression Null-Value Suppression 

ABCbb ABCbb (5 bytes) 4ABC (4 bytes) 4ABC (4 bytes) 

ABCDb ABCDb (5 bytes) 5ABCD (5 bytes) 5ABCD (5 bytes) 

ABCDE ABCDE (5 bytes) 6ABCDE (6 bytes) 6ABCDE (6 bytes) 

bbbbb bbbbb (5 bytes) 2b (2 bytes) * (1 byte) 

X X (1 byte) 2X (2 bytes) 2X (2 bytes) 

1

Disk Space UsageDisk Space Usage



The number preceding each stored value is an inclusive length byte (not used for FI fields). The asterisk
shown under null-value suppression indicates a suppressed field count. This is a one-byte field which
indicates the number of consecutive empty (suppressed) fields present at this point in the record. This field
can represent up to 63 suppressed fields. 

The compression options chosen also affect the creation of the inverted list for the field (if it is a
descriptor) and the processing time needed for compression and decompression of the field. 

Fixed Storage 

Fixed storage indicates that no compression is to be performed on the field. The field is stored according
to its standard length with no length byte. Fixed storage should be specified for small one- or two-byte
fields that are rarely null, and for fields for which little or no compression is possible. Refer to the Adabas
Utilities documentation the ADACMP utility, for restrictions related to the use of FI fields. 

Ordinary Compression 

Ordinary compression results in the removal of trailing blanks from alphanumeric fields and leading zeros
from numeric fields. Ordinary compression will result in a saving in disk space if at least two bytes of
trailing blanks or leading zeros are removed. For two-byte fields, however, there is no savings, and for
one-byte fields, adding the length byte actually doubles the needed space. Such fields, and fields that
rarely have leading or trailing zeros or blanks, should be defined with the fixed storage (FI) option to
prevent compression. 

Null-Value Suppression 

If null-value suppression (NU) is specified for a field, and the field value is null, a one-byte empty field
indicator is stored instead of the length byte and the compressed null value (see Data Compression). This
empty field indicator specifies the number of consecutive suppressed fields that contain null values at this
point in the record. It is, therefore, advantageous to physically position fields which are frequently empty
next to one another in the record, and to define each with the null-value suppression option. 

An NU field that is also defined as a descriptor is not included in the inverted lists if it contains a null
value. This means that a find command referring to that descriptor will not recognize qualifying descriptor
records that contain a null value. 

This applies also to subdescriptors and superdescriptors derived from a field that is defined with
null-value suppression. No entry will be made for a subdescriptor if the bytes of the field from which it is
derived contain a null value and the field is defined with the null-value suppression (NU) option. No entry
will be made for a superdescriptor if any of the fields from which it is derived is an NU field containing a
null value. 

Therefore, if there is a need to search on a descriptor for null values, or to read records containing a null
value in descriptor sequence-for example, to control logical sequential reading or sorting-then the
descriptor field should not be defined with the NU option. 

Null-value suppression is normally recommended for multiple-value fields and fields within periodic
groups in order to reduce the amount of disk space required and the internal processing requirements of
these types of fields. The updating of such fields varies according to the compression option used. 

2

 Fixed StorageDisk Space Usage



If a multiple-value field value defined with the NU option is updated with a null value, all values to the
right are shifted left and the value count is reduced accordingly. If all the fields of a periodic group are
defined with the NU option, and the entire group is updated to a null value, the occurrence count will be
reduced only if the occurrence updated is the highest (last) occurrence. For detailed information on the
updating of multiple-value fields and periodic groups, see the Adabas Utilities documentation ADACMP
utility, and the Adabas Command Reference documentation A1/A4 and N1/N2 commands. 

Forward Index Compression
The forward (or ‘front’ or ‘prefix’) index compression feature saves index space by removing redundant
prefix information from index values. The benefits are less disk space used, possibly fewer index levels
used, fewer index I/O operations, and therefore greater overall throughput. The buffer pool becomes more
effective because the same amount of index information occupies less space. Commands such as L3, L9,
or S2, which sequentially traverse the index, become faster and the smaller index size reduces the elapsed
time for Adabas utilities that read or modify the index. 

Within one index block, the first value is stored in full length. For all subsequent values, the prefix that is
common with the predecessor is compressed. An index value is represented by 

 <l,p,value>

where

p is the number of bytes that are identical to the prefix of the preceding value; and 

l is the exclusive length of the remaining value including the p-byte. 

For example:

Decompressed Compressed 

ABCDE 6 0 ABCDE 

ABCDEF 2 5 F 

ABCGGG 4 3 GGG 

ABCGGH 2 5 H 

Index compression is not affected by the format of a descriptor. It functions as well for PE-option and
multiclient descriptors. 

The maximum possible length of a compressed index value occurs for an alphanumeric value in a periodic
group: 

253 bytes for the proper value if no bytes are compressed 
1 byte for the PE index 
1 byte for the p-byte.

3

Disk Space UsageForward Index Compression



The total exclusive length can thus be stored in a single byte.

Adabas implements forward index compression at the file level. When loading a file (ADALOD), an
option is provided to compress index values for that file or not. The option can be changed by reordering
the file (ADAORD). 

Adabas also provides the option of compressing all index values for a database as a whole. In this case,
specific files can be set differently; the file-level setting overrides the database setting. 

The decision to compress index values or not is based on the similarity of index values and the size of the
file: 

the more similar the index values, the better the compression results. 

small files are not good candidates because the absolute amount of space saved would be small
whereas large files are good candidates for index compression. 

Even in a worst case scenario where the index values for a file do not compress well, a compressed index
will not require more index blocks than an uncompressed index. 

Padding Factors 
A large amount of record update activity may result in a considerable amount of record migration, i.e.,
removal of the record from its current block to another block in which sufficient space for the expanded
record is available. Record migration may be considerably reduced by defining a larger padding factor for
Data Storage for the file when it is loaded. The padding factor represents the percentage of each physical
block which is to be reserved for record expansion. 

The padding area is not used during file loading or when adding new records to a file (this is not
applicable for an ADAM file, since the padding factor is used if necessary to store records into their
calculated Data Storage block). A large padding factor should not be used if only a small percentage of the
records is likely to expand, since the padding area of all the blocks in which nonexpanding records are
located would be wasted. 

If a large amount of record update/addition is to be performed in which a large number of new values
must be inserted within the current value range of one or more descriptors, a considerable amount of
migration may also occur within the Associator. This may be reduced by assigning a larger padding factor
for the Associator. 

The disadvantages of a large padding factor are a larger disk space requirement (fewer records or entries
per block) and possible degradation of sequential processing since more physical blocks will have to be
read. 

Padding factors are specified when a file is loaded, but can be changed when executing the ADADBS
MODFCB function or the ADAORD utility for the file or database. 

4

Padding FactorsDisk Space Usage


	Disk Space Usage
	Data Compression
	 Fixed Storage
	Ordinary Compression
	 Null-Value Suppression

	Forward Index Compression
	Padding Factors


